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GROMOV–WITTEN INVARIANTS FOR MIRROR
ORBIFOLDS OF SIMPLE ELLIPTIC SINGULARITIES

by Ikuo SATAKE & Atsushi TAKAHASHI

Abstract. — We consider a mirror symmetry of simple elliptic singularities. In
particular, we construct isomorphisms of Frobenius manifolds among the one from
the Gromov–Witten theory of a weighted projective line, the one from the theory
of primitive forms for a universal unfolding of a simple elliptic singularity and the
one from the invariant theory for an elliptic Weyl group. As a consequence, we give
a geometric interpretation of the Fourier coefficients of an eta product considered
by K. Saito.
Résumé. — Nous considérons une symétrie miroir des singularités elliptiques

simples. En particulier, nous construisons des isomorphismes de variétés de Frobe-
nius entre celui de la théorie de Gromov–Witten d’une droite projective à poids,
celui de la théorie des formes primitives pour un déploiement universel d’une singu-
larité elliptique simple et celui de la théorie des invariants pour un groupe de Weyl
elliptique. Comme conséquence, nous donnons une interprétation géométrique des
coefficients de Fourier d’un produit eta considéré par K. Saito.

Introduction

Mirror symmetry can be understood as a duality between algebraic ge-
ometry and symplectic geometry. It is an interesting problem to understand
based on the philosophy of mirror symmetry some mysterious correspon-
dences among isolated singularities, root systems and discrete groups such
as Schwartz’s triangle groups.

Let f(x, y, z) be a holomorphic function which has an isolated singularity
only at the origin 0 ∈ C3. A distinguished basis of vanishing cycles in the
Milnor fiber of f can be categorified to an A∞-category Fuk→(f) called

Keywords: a mirror symmetry, simple elliptic singularities, Frobenius manifolds,
Gromov–Witten theory, weighted projective line, primitive forms, the invariant theory,
an elliptic Weyl group, an eta product.
Math. classification: 14J33, 14N35, 32S25.
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the directed Fukaya category whose derived category DbFuk→(f) is, as a
triangulated category, an invariant of the holomorphic function f .

If f(x, y, z) is a weighted homogeneous polynomial then one can consider
another interesting triangulated category, the category of a maximally-
graded singularity DLf

Sg (Rf ):

D
Lf
Sg (Rf ) := Db(grLf -Rf )/Db(projLf -Rf ), (0.1)

where Rf := C[x, y, z]/(f) and Lf is the maximal grading (see section one
of [6] for the definition) of f . This category DLf

Sg (Rf ) is considered as an
analogue of the bounded derived category of coherent sheaves on a smooth
proper algebraic variety.
In this setting, homological mirror symmetry conjectures can be stated

as follows:

Conjecture ([6][23]). —
(i) Let f(x, y, z) be an invertible polynomial (see section one of [6] for

the definition). There should exist a quiver with relations (Q, I)
and triangulated equivalences

D
Lf
Sg (Rf ) ' Db(mod-CQ/I) ' DbFuk→(f t), (0.2)

where f t denotes the Berglund–Hübsch transpose of f .
(ii) There should exist triangulated equivalences

Dbcoh(P1
a1,a2,a3

) ' Db(mod-CQa1,a2,a3/I
′) ' DbFuk→(Ta1,a2,a3), (0.3)

where P1
a1,a2,a3

is the orbifold P1 with 3 isotropic points of orders
a1, a2, a3, Qa1,a2,a3 is a quiver given by the following graph

•

JJJJJJJJJJ

���������������

a1+a2+a3−1

•a1 · · · •2

xxxxxxxxx
•1

xxxxxxxx
•a1+a2−1 · · · •a1+a2+a3−2

•a1+1

vvvvvvvvv

. . .

uuuuuuuuu

•a1+a2

with the orientation from vertices with smaller indices to those
with larger indices and I ′ is the ideal generated by two generic
paths from the 1-st vertex to the a1 + a2 + a3 − 1-th vertex, and
Ta1,a2,a3 := xa1

1 + xa2
2 + xa3

3 − cx1x2x3, c ∈ C∗.
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MIRROR ORBIFOLDS OF SIMPLE ELLIPTIC SINGULARITIES 2887

It is natural to expect the following from (ii) of the above homologi-
cal mirror symmetry conjectures since their “complexified Kähler moduli
spaces" should be isomorphic and there should exist Frobenius structures
(K. Saito’s flat structures) on them:

Conjecture. — There should exist isomorphisms of Frobenius mani-
folds (see for example [3, 19] for the definition) among

(i) MP1
a1,a2,a3

, the one constructed from the Gromov–Witten theory
of P1

a1,a2,a3
,

(ii) M(Qa1,a2,a3 ,I
′), the one constructed from the invariant theory of

the reflection group associated to the quiver with relations
(Qa1,a2,a3 , I

′),
(iii) MTa1,a2,a3 ,∞, the one constructed from the universal unfolding of

Ta1,a2,a3 by the choice of primitive form “at c =∞”.

Remark 0.1. — It is also a part of conjecture that there exist Frobenius
manifolds M(Qa1,a2,a3 ,I

′) for 1/a1 + 1/a2 + 1/a3 < 1.

Rossi shows in [14] that Conjecture holds under the condition 1/a1 +
1/a2 + 1/a3 > 1. The next case to consider is when the triple (a1, a2, a3)
satisfies the condition 1/a1 + 1/a2 + 1/a3 = 1, in other words, the case
when the polynomial f defines a simple elliptic singularity (see [6] for this
relation between (a1, a2, a3) and f). In particular, in this paper we shall
give a proof of the above Conjecture for (a1, a2, a3) = (3, 3, 3) with the ex-
plicit presentation of the potential which gives us interesting quasi-modular
forms based on the uniqueness of the solution of the WDVV equation. The
following is our main result in this paper:

Theorem. — We have isomorphisms of Frobenius manifolds

MP1
3,3,3
'M

E
(1,1)
6
'MT3,3,3,∞,

where M
E

(1,1)
6

denotes the Frobenius manifold constructed from the invari-

ant theory of the elliptic Weyl group of type E(1,1)
6 .

Moreover, the genus zero Gromov–Witten potential F P1
3,3,3

0 and the genus
one Gromov–Witten potential F P1

3,3,3
1 , which is also considered as the G-

function (see [4] for the definition) on M
E

(1,1)
6

and as the one on MT3,3,3,∞,
are expressed by quasi-modular forms.

An important consequence of this theorem is that we can give a geometric
interpretation of the Fourier coefficients of an eta product considered by
K. Saito [18]:

TOME 61 (2011), FASCICULE 7



2888 Ikuo SATAKE & Atsushi TAKAHASHI

Theorem. — Denote by η(τ) the Dedekind’s eta function

η(τ) := e
2π
√
−1τ

24
∏
n>1

(
1− e2π

√
−1nτ

)
, τ ∈ H := {τ ∈ C | Imτ > 0}.

The eta product η(3τ)3/η(τ) is a generating function of Gromov–Witten
invariants of P1

3,3,3. More precisely, the Fourier coefficient ck defined by

η(3τ)3

η(τ) = e
2π
√
−1τ

3
∑
k>0

cke
2π
√
−1kτ (0.4)

is the Gromov–Witten invariant∫
[M0,0,3k[P1

3,3,3](P
1
3,3,3)]vir

ev∗1γ1 ∧ ev∗2γ2 ∧ ev∗3γ3,

where γi is an element of H2/3
orb (P1

3,3,3,Q) corresponding to the i-th isotropic
point on P1

3,3,3.

We can also apply the same method to prove the Conjecture for the two
other cases when (a1, a2, a3) = (2, 4, 4), (2, 3, 6). However, we omit them
here since the number of monomials in those potentials are large (more
than 50 for (2, 4, 4) and more than 200 for (2, 3, 6)) we can not give the
explicit presentation of the potential in this paper and we could understand
not all but a few of interesting quasi-modular forms appearing in those
potentials.
We can also consider a similar problem for which we do not have a

hypersurface singularity:

Theorem. — We have an isomorphism of Frobenius manifolds

MP1
2,2,2,2

'M
D

(1,1)
4

,

where P1
2,2,2,2 denotes an orbifold P1 with four isotropic points of orders 2

andM
D

(1,1)
4

denotes the Frobenius manifold constructed from the invariant

theory of the elliptic Weyl group of type D(1,1)
4 .

Moreover, the genus zero Gromov–Witten potential F P1
2,2,2,2

0 and the
genus one Gromov–Witten potential F P1

2,2,2,2
1 , which is also considered as

the G-function on M
D

(1,1)
4

, are expressed by quasi-modular forms.

Note that in order to obtain the mirror isomorphism we have to develop
the theory of primitive forms for a pair consisting in a singularity and its
symmetry group. Once we have such a theory, we may apply it for the pair
(T2,4,4,Z/2Z), for example.

ANNALES DE L’INSTITUT FOURIER



MIRROR ORBIFOLDS OF SIMPLE ELLIPTIC SINGULARITIES 2889

If the triple (a1, a2, a3) satisfies the condition 1/a1 + 1/a2 + 1/a3 = 1,
then we have the triangulated equivalence DLf

Sg (Rf ) ' Dbcoh(P1
a1,a2,a3

) of
Buchweitz–Orlov type (see [24]). Also note that a mathematical formula-
tion of the topological A-model for Landau–Ginzburg orbifold theory is
considered in [7], which is called Fan–Jarvis–Ruan–Witten (FJRW) theory.
Therefore, it is also natural to consider the following:

Conjecture. — Let Ta1,a2,a3 be a polynomial which defines a simple
elliptic singularity Ẽ6, Ẽ7 or Ẽ8. There should exist an isomorphism of
Frobenius manifolds between

(i) M(Ta1,a2,a3 ,Z/dZ),FJRW , the one constructed from the FJRW the-
ory for the pair (Ta1,a2,a3 ,Z/dZ) where d = 6, 7, 8 for Ẽ6, Ẽ7, Ẽ8
respectively,

(ii) MTa1,a2,a3 ,0, the one constructed from the universal unfolding of
Ta1,a2,a3 by the choice of primitive form “at c = 0”.

The authors are notified that Krawitz–Shen [8] gives a proof of this
Conjecture based on the calculations of MTa1,a2,a3 ,0 by Noumi–Yamada
[11] and Milanov–Ruan [9] prove a generalization of this, namely, the one
for all genus potentials and their quasi-modularity.

Acknowledgement
The second named author is supported by JSPS KAKENHI Grant Num-

ber 20360043, 24684005. We thank the anonymous referee for carefully
reading our paper.

1. Gromov–Witten theory for orbifolds

Gromov–Witten theory is generalized for orbifolds (smooth proper
Deligne–Mumford stacks). It is first studied by Chen–Ruan [2] in sym-
plectic geometry and later by Abramovich-Graber–Vistoli [1] in algebraic
geometry. In order to generalize Gromov–Witten theory for manifolds to
the one for orbifolds, one also needs to count the number of “stable maps
from orbifold curves". For this purpose, in [2] the notion of orbifold sta-
ble maps is introduced and in [1] the notion of twisted stable maps is
introduced. These two constructions are quite different, however, as the
usual Gromov–Witten theory for manifolds, they are expected to give the
same Gromov–Witten invariants since they have common philosophy. In
this paper, we will introduce Gromov–Witten invariants following [1] for
simplicity.

TOME 61 (2011), FASCICULE 7
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Let X be an orbifold (or a smooth proper Deligne–Mumford stack over
C). Then, for g ∈ Z>0, n ∈ Z>0 and β ∈ H2(X ,Z), the moduli space
(stack) Mg,n,β(X ) of orbifold (twisted) stable maps of genus g with n-
marked points of degree β is defined. There exists a virtual fundamental
class [Mg,n,β(X )]vir and Gromov–Witten invariants of genus g with n-
marked points of degree β are defined as usual except for that we have to
use the orbifold cohomology group H∗orb(X ,Q):

〈γ1, . . . , γn〉Xg,n,β :=
∫

[Mg,n,β(X )]vir
ev∗1γ1 ∧ . . . ev∗nγn,

γ1, . . . , γn ∈ H∗orb(X ,Q),

where ev∗i : H∗orb(X ,Q) −→ H∗(Mg,n,β(X ),Q) denotes the induced homo-
morphism by the evaluation map. We also consider the generating function

FXg :=
∑
n,β

1
n! 〈t, . . . , t〉

X
g,n,β q

β , t =
∑
i

tiγi

and call it the genus g potential where {γi} denotes aQ-basis ofH∗orb(X ,Q).
The main result in [1] and [2] tell us that we can treat the Gromov–Witten
theory defined for orbifolds as if X were usual manifold. In particular, we
have the point axiom, the divisor axiom for a class in H2(X ,Q) and the
associativity of the quantum product, namely, the WDVV equation (see, for
example, [2] for details of these axioms.), which gives a (formal) Frobenius
manifold. These axioms enable us to calculate genus zero Gromov–Witten
potential FX0 easily.
In this paper, we shall only consider the case when X is P1

2,2,2,2 or P1
3,3,3,

the orbifold P1 with 4 isotropic points of order 2 or the orbifold P1 with 3
isotropic points of order 3. Note that both are given by the global quotient
of an elliptic curve E, more precisely, we have P1

2,2,2,2 = [E/(Z/2Z)] and
P1

3,3,3 = [E/(Z/3Z)]. For these examples, by the uniqueness result on genus
zero and one potentials, we shall see that the two definitions of Gromov–
Witten invariants by [1] and [2] coincides.

2. Explicit calculations for P1
2,2,2,2

The orbifold cohomology group of P1
2,2,2,2 is, as a vector space, just the

singular cohomology group of the inertia orbifold

IP1
2,2,2,2 = P1

2,2,2,2
⊔
B(Z/2Z)

⊔
B(Z/2Z)

⊔
B(Z/2Z)

⊔
B(Z/2Z),

ANNALES DE L’INSTITUT FOURIER



MIRROR ORBIFOLDS OF SIMPLE ELLIPTIC SINGULARITIES 2891

and the orbifold Poincaré pairing is given by twisting the usual Poincaré
pairing: ∫

P1
2,2,2,2

α ∪orb β :=
∫
IP1

2,2,2,2

α ∪ Iβ,

where I is the involution defined in [1, 2]. Therefore, we can choose a basis
γ0, . . . , γ5 of the orbifold cohomology group H∗orb(P1

2,2,2,2,Q) such that

H0
orb(P1

2,2,2,2,Q) ' Qγ0, H1
orb(P1

2,2,2,2,Q) '
4⊕
i=1

Qγi,

H2
orb(P1

2,2,2,2,Q) ' Qγ5,

and ∫
P1

2,2,2,2

γ0 ∪ γ5 = 1,
∫
P1

2,2,2,2

γi ∪ γj = 1
2δi,j , i, j = 1, . . . 4.

Denote by t0, . . . , t5 the dual coordinates of the Q-basis γ0, . . . , γ5. In dis-
cussion below, by applying the divisor axiom, we consider log q as a flat
coordinate instead of t5.

2.1. Genus zero potential

Theorem 2.1. — The genus zero Gromov–Witten potential F P1
2,2,2,2

0 of
P1

2,2,2,2 is given as follows:

F
P1

2,2,2,2
0 =1

2 t
2
0 log q + 1

4 t0(t21 + t22 + t23 + t24)

+ (t1t2t3t4) · f0(q) + 1
4(t41 + t42 + t43 + t44) · f1(q)

+ 1
6(t21t22 + t21t

2
3 + t21t

2
4 + t22t

2
3 + t22t

2
4 + t23t

2
4) · f2(q),

where

f0(q) := 1
2 (f(q)− f(−q)) , (2.1)

f1(q) := f(q4), (2.2)
f2(q) := f(q)− f0(q)− f1(q), (2.3)

f(q) := − 1
24 +

∞∑
n=1

n
qn

1− qn = −q d
dq

log(η(q)), (2.4)

η(q) := q
1

24

∞∏
n=1

(1− qn). (2.5)

TOME 61 (2011), FASCICULE 7
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Proof. — We can deduce Theorem 2.1 from the following uniqueness
property of the potential:

Lemma 2.2. — There exists a unique 6-dimensional formal Frobenius
structure with flat coordinates t0, t1, t2, t3, t4, t satisfying the following
conditions:

(i) The Euler vector field E is given by E = t0
∂
∂t0

+
∑4
k=1

1
2 tk

∂
∂tk

.
(ii) The Frobenius potential F0 is given by

F0 =1
2 t

2
0t+ 1

4 t0(t21 + t22 + t23 + t24)

+ (t1t2t3t4) · f0(et) + 1
4(t41 + t42 + t43 + t44) · f1(et)

+ 1
6(t21t22 + t21t

2
3 + t21t

2
4 + t22t

2
3 + t22t

2
4 + t23t

2
4) · f2(et),

where f0(q), f1(q), f2(q) have the following formal power series
expansions:

f0(q) =
∞∑
n=1

anq
n with a1 = 1, f1(q) =

∞∑
n=0

bnq
n, f2(q) =

∞∑
n=0

cnq
n.

Proof. — We can show that the WDVV equation is equivalent to the
following differential equations:

q
d

dq
f0(q) = 8

3f0(q)f2(q)− 24f0(q)f1(q), (2.6)

q
d

dq
f1(q) = −2

3f0(q)2 − 16
3 f1(q)f2(q) + 8

9f2(q)2, (2.7)

q
d

dq
f2(q) = 6f0(q)2 − 8

3f2(q)2. (2.8)

Hence, we have the following recursion relations for an, bn, cn:

nan = 8
3

n∑
k=1

akcn−k − 24
n∑
k=1

akbn−k, (2.9)

nbn = −2
3

n−1∑
k=1

akan−k −
16
3

n∑
k=0

bkcn−k + 8
9

n∑
k=0

ckcn−k, (2.10)

ncn = 6
n−1∑
k=1

akan−k −
8
3

n∑
k=0

ckcn−k. (2.11)

In particular, by setting n = 0, 1, we get c0 = 0 and b0 = −1/24. Therefore,
the above recursion relations have the unique solution. �

ANNALES DE L’INSTITUT FOURIER
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Next, we construct the analytic solution to the WDVV equation as fol-
lows.

Lemma 2.3. — Put

f0(q) := 1
2 (f(q)− f(−q)) , (2.12)

f1(q) := f(q4), (2.13)
f2(q) := f(q)− f0(q)− f1(q), (2.14)

f(q) := − 1
24 +

∞∑
n=1

n
qn

1− qn = −q d
dq

log(η(q)). (2.15)

Then the functions f0(q), f1(q), f2(q) satisfies the following differential
equations:

q
d

dq
f0(q) = 8

3f0(q)f2(q)− 24f0(q)f1(q), (2.16)

q
d

dq
f1(q) = −2

3f0(q)2 − 16
3 f1(q)f2(q) + 8

9f2(q)2, (2.17)

q
d

dq
f2(q) = 6f0(q)2 − 8

3f2(q)2. (2.18)

Proof. — Put

ϑ2(q) :=
∑
m∈Z

q(m+ 1
2 )2
,

ϑ3(q) :=
∑
m∈Z

qm
2
,

ϑ4(q) :=
∑
m∈Z

(−1)mqm
2
,

Xi(q) := q
d

dq
log ϑi (i = 2, 3, 4).

Then the following differential relations

1
2q

d

dq
(X2(q) +X3(q)) = 2X2(q)X3(q), (2.19)

1
2q

d

dq
(X3(q) +X4(q)) = 2X3(q)X4(q), (2.20)

1
2q

d

dq
(X4(q) +X2(q)) = 2X4(q)X2(q) (2.21)

TOME 61 (2011), FASCICULE 7
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are classically known as Halphen’s equations (see [12]). For the proof of
Lemma 2.3, we should only prove that

X2(q) = −6f1(q) + 2
3f2(q), (2.22)

X3(q) = 2f0(q)− 4
3f2(q), (2.23)

X4(q) = −2f0(q)− 4
3f2(q). (2.24)

We have

X2(q) = q
d

dq
log[2η(q2)−1η(q4)2], (2.25)

X3(q) = q
d

dq
log[η(q)−2η(q2)5η(q4)−2], (2.26)

X4(q) = q
d

dq
log[η(q)2η(q2)−1] (2.27)

by Jacobi’s triple product formula (see [10]).
For f0(q), f1(q), f2(q), we prepare the following Sub-Lemma.

Sub-Lemma 2.4. — For f(q), we have
1
2(f(q) + f(−q)) = 3f(q2)− 2f(q4). (2.28)

Proof. — We define σ(n) (n > 1) by

f(q) = − 1
24 +

∞∑
n=1

σ(n)qn.

If n = 2km withm odd, then σ(n) = (1+2+· · ·+2k)σ(m) = (2k+1−1)σ(m).
Thus we have σ(2n) = 3σ(n) if n is odd. Also if n is general, we have
σ(4n) = 3σ(2n)− 2σ(n). Then we have (2.28). �

By (2.28), we have

f0(q) = −q d
dq

log[η(q)η(q2)− 3
2 η(q4) 1

2 ], (2.29)

f1(q) = −q d
dq

log[η(q4) 1
4 ], (2.30)

f2(q) = −q d
dq

log[η(q2) 3
2 η(q4)− 3

4 ]. (2.31)

From (2.25)–(2.27) and (2.29)–(2.31), we have (2.22)–(2.24). �

It is easy to show that, by our choice of basis γ0, . . . , γ5 ofH∗orb(P1
2,2,2,2,C)

and their dual coordinates t0, . . . , t5 = log q in the beginning of this section,
the Gromov–Witten potential is of the form in Lemma 2.2 except for the

ANNALES DE L’INSTITUT FOURIER
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condition a1 = 1. The condition a1 = 1 follows from the fact that the
Gromov–Witten invariant a1 counts the number of morphisms from P1

2,2,2,2
to P1

2,2,2,2 of degree one, which is exactly the identity map. Hence, we have
a1 = 1. Now, the statement in Theorem 2.1 follows from the uniqueness of
the potential. �

By Theorem 2.1, the Gromov–Witten potential F P1
2,2,2,2

0 converges on
the domain |q| < 1. Thus it gives a Frobenius manifold MP1

2,2,2,2
' {z ∈

C |Rez < 0 } × C5 with flat coordinates (log q, t0, t1, t2, t3, t4).
For the elliptic root system of type D(1,1)

4 ([17]), the domain E
D

(1,1)
4

and the elliptic Weyl group W
D

(1,1)
4

are defined and the quotient space
M
D

(1,1)
4

:= E
D

(1,1)
4

//W
D

(1,1)
4
' {z ∈ C |Rez < 0 } × C5 has a structure of

the Frobenius manifold ([17], [21]). Its potential is explicitly calculated in
[20] as follows:

Lemma 2.5. — ([20]) By choosing the flat coordinates t, e0, e1, e3, e4, e2

of M
D

(1,1)
4

, the potential FD
(1,1)
4

0 is expressed as

F
D

(1,1)
4

0 =1
2 t(e2)2

+ 1
4e2[e2

0 + e2
1 + e2

3 + e2
4]

+ (e0e1e3e4) · h0(t)

+ 1
4(e4

0 + e4
1 + e4

3 + e4
4) · h1(t)

+ 1
6(e2

0e
2
1 + e2

0e
2
3 + e2

0e
2
4 + e2

1e
2
3 + e2

1e
2
4 + e2

3e
2
4) · h2(t),

where

h0(t) = 1
8Θω1,1(et),

h1(t) = −1
2

[
1
2

d
dt [η(e2t)]
η(e2t) + 1

24Θ0,1(et)
]
,

h2(t) = −3
2

[
1
2

d
dt [η(e2t)]
η(e2t) − 1

24Θ0,1(et)
]
,

Θ0,1(q) =
∑
γ∈M

q(γ,γ) = 1 + · · · ,

Θω1,1(q) =
∑

γ∈M+ω1

q(γ,γ) = 8q + · · · ,
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where M is the coroot lattice of D4 and ω1 is the first fundamental weight
in the notation of Bourbaki.

Remark 2.6. — We remark that the correspondence of the above coor-
dinates with the ones in [20] is

t = π
√
−1τ, e0 = c0, e1 = c1, e3 = c3, e4 = c4, e2 = −1

2(2π
√
−1)2 c2

and we take the intersection form of the Frobenius manifold as −1
(2π
√
−1)2 I

∗

instead of I∗.

Since the potential FD
(1,1)
4

0 satisfies the assumptions of the Lemma 2.2,
we have

Theorem 2.7. — The Frobenius manifold MP1
2,2,2,2

and the Frobenius
manifold M

D
(1,1)
4

are isomorphic as Frobenius manifolds.

2.2. Genus one potential

We shall also give the genus one Gromov–Witten potential.

Theorem 2.8. — The genus one Gromov–Witten potential F P1
2,2,2,2

1 of
P1

2,2,2,2 is given as

F
P1

2,2,2,2
1 = −1

2 log(η(q2)). (2.32)

Proof. — The first derivative of the genus one Gromov–Witten potential
q ddqF

P1
2,2,2,2

1 is an element of Q[[q]] since the Euler vector field is given by

E = t0
∂
∂t0

+
∑4
k=1

1
2 tk

∂
∂tk

, E
(
q ddqF

P1
2,2,2,2

1

)
= 0 and we have the divisor

axiom. Therefore, we only have to consider the (orbifold) stable maps with
one marked point from smooth elliptic curves to P1

2,2,2,2 = [E/(Z/2Z)],
which factor through the elliptic curve E by definition. In particular, the
number of coverings of degree n from an elliptic curve to E is given by
σ(n) :=

∑
k|n k. Hence, we have

q
d

dq
F

P1
2,2,2,2

1 = f(q2) = − 1
24 +

∞∑
n=1

σ(n)q2n.
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One may also obtain the statement by Dubrovin–Zhang’s Virasoro con-
straint [5]. Indeed, Proposition 4 in [5] gives us the equation

q
d

dq
F

P1
2,2,2,2

1 = f1(q) + 1
3f2(q).

By Sub-Lemma 2.4, we have f1(q) + 1
3f2(q) = f(q2). �

The proof of Theorem 2.8 also shows that the genus one potential is
uniquely reconstructed from the genus zero potential. In particular, this
implies the G-function of M

D
(1,1)
4

coincides with F P1
2,2,2,2

1 .

3. Explicit calculations for P1
3,3,3

The orbifold cohomology group of P1
3,3,3 is, as a vector space, just the

singular cohomology group of the inertia orbifold

IP1
3,3,3 = P1

3,3,3
⊔
B(Z/3Z)

⊔
B(Z/3Z)

⊔
B(Z/3Z),

and the orbifold Poincaré pairing is given by twisting the usual Poincaré
pairing: ∫

P1
3,3,3

α ∪orb β :=
∫
IP1

3,3,3

α ∪ Iβ,

where I is the involution defined in [1, 2]. Therefore, we can choose a Q-
basis γ0, . . . , γ7 of the orbifold cohomology group H∗orb(P1

3,3,3,Q) such that

H0
orb(P1

3,3,3,Q) ' Qγ0, H
2
3
orb(P

1
3,3,3,Q) '

3⊕
i=1

Qγi,

H
4
3
orb(P

1
3,3,3,Q) '

6⊕
i=4

Qγi, H2
orb(P1

3,3,3,Q) ' Qγ7,

and ∫
P1

3,3,3

γ0 ∪ γ7 = 1,
∫
P1

3,3,3

γi ∪ γj = 1
3δi+j−7,0, i, j = 1, . . . , 6.

Denote by t0, . . . , t7 the dual coordinates of the Q-basis γ0, . . . , γ7. In the
discussion below, by applying the divisor axiom, we consider log q as a flat
coordinate instead of t7.
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3.1. Genus zero potential

Theorem 3.1. — The genus zero Gromov–Witten potential F P1
3,3,3

0 of
P1

3,3,3 is given as follows:

F
P1

3,3,3
0 =1

2 t
2
0 log q + 1

3 t0(t1t6 + t2t5 + t3t4) + (t1t2t3) · f0(q)

+ 1
6(t31 + t32 + t33) · f1(q) + (t1t2t5t6 + t1t3t4t6 + t2t3t4t5) · f2(q)

+ 1
2(t21t4t5 + t22t4t6 + t23t5t6) · f3(q)

+ 1
2(t1t2t24 + t1t3t

2
5 + t2t3t

2
6) · f4(q) + 1

4(t21t26 + t22t
2
5 + t23t

2
4) · f5(q)

+ 1
6
[
t1t6(t34 + t35) + t2t5(t34 + t36) + t3t4(t35 + t36)

]
· f6(q)

+ 1
2(t1t4t5t26 + t2t4t

2
5t6 + t3t

2
4t5t6) · f7(q)

+ 1
4(t1t24t25 + t2t

2
4t

2
6 + t3t

2
5t

2
6) · f8(q) + 1

24(t1t46 + t2t
4
5 + t3t

4
4) · f9(q)

+ 1
36(t34t35 + t34t

3
6 + t35t

3
6) · f10(q) + 1

24(t4t5t46 + t4t
4
5t6 + t4t5t

4
6) · f11(q)

+ 1
8(t24t25t26) · f12(q) + 1

720(t64 + t65 + t66) · f13(q),

where fi(q), i = 0, . . . , 13 are given by

f0(q) = 1
3

(
q ddqa(q)

1− a(q)3

) 1
2

= η(q9)3

η(q3) , f1(q) = a(q)f0(q),

f2(q) = −1
9
q ddqf0

f0
+ a(q)2f0(q)2,

f3(q) = f0(q)2, f4(q) = a(q)f0(q)2,

f5(q) = −2
9
q ddqf0

f0
+ a(q)2f0(q)2,

f6(q) = f0(q)3, f7(q) = a(q)f0(q)3, f8(q) = a(q)2f0(q)3,

f9(q) = a(q)3f0(q)3, f10(q) = 3a(q)f0(q)4, f11(q) = 3a(q)2f0(q)4,

f12(q) = (2 + a(q)3)f0(q)4, f13(q) = 3a(q)(2− a(q)3)f0(q)4,
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and

a(q) = 1 + 1
3

(
η(q)
η(q9)

)3
= 1

3q
−1(1 + 5q3 − 7q6 + 3q9 + . . . ).

Proof. — We can deduce the Theorem from the following uniqueness
property of the potential:

Lemma 3.2. — Let F0(t0, · · · , t6, t, f0, · · · , f13) be a polynomial defined
by

F0(t0, · · · , t6, t, f0, · · · , f13)

:=1
2 t

2
0t+ 1

3 t0(t1t6 + t2t5 + t3t4) + (t1t2t3) · f0

+ 1
6(t31 + t32 + t33) · f1 + (t1t2t5t6 + t1t3t4t6 + t2t3t4t5) · f2

+ 1
2(t21t4t5 + t22t4t6 + t23t5t6) · f3

+ 1
2(t1t2t24 + t1t3t

2
5 + t2t3t

2
6) · f4 + 1

4(t21t26 + t22t
2
5 + t23t

2
4) · f5

+ 1
6
[
t1t6(t34 + t35) + t2t5(t34 + t36) + t3t4(t35 + t36)

]
· f6

+ 1
2(t1t4t5t26 + t2t4t

2
5t6 + t3t

2
4t5t6) · f7

+ 1
4(t1t24t25 + t2t

2
4t

2
6 + t3t

2
5t

2
6) · f8 + 1

24(t1t46 + t2t
4
5 + t3t

4
4) · f9

+ 1
36(t34t35 + t34t

3
6 + t35t

3
6) · f10 + 1

24(t4t5t46 + t4t
4
5t6 + t4t5t

4
6) · f11

+ 1
8(t24t25t26) · f12 + 1

720(t64 + t65 + t66) · f13.

(i) For the holomorphic functions f0(t), · · · , f13(t), the holomorphic
function F0(t0, · · · , t6, t, f0(t), · · · , f13(t)) is a potential of an
8-dimensional Frobenius structure with flat coordinates
t0, t1, t2, t3, t4, t5, t6, t such that the Euler vector field E is given
by

E = t0
∂

∂t0
+

3∑
k=1

2
3 tk

∂

∂tk
+

6∑
k=4

1
3 tk

∂

∂tk
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if and only if there exists A ∈ C∗ such that

f0(t) = A

(
a(t)′

1− a(t)3

)1/2
, (3.1)

f1(t) = a(t)f0(t), f2(t) = − 1
2 · 32

(
a(t)′′

a(t)′ + a(t)2a(t)′

1− a(t)3

)
,

f3(t) = 1
32

a(t)′

1− a(t)3 , f4(t) = 1
32
a(t)a(t)′

1− a(t)3 ,

f5(t) = − 1
32

(
a(t)′′

a(t)′ + 2a(t)2a(t)′

1− a(t)3

)
,

f6(t) = 1
34A

−4f0(t)3, f7(t) = a(t)f6(t), f8(t) = a(t)2f6(t),

f9(t) = a(t)3f6(t), f10(t) = 1
35A

−6a(t)f0(t)4, f11(t) = a(t)f10(t),

f12(t) = 1
36A

−6(2 + a(t)3)f0(t)4, f13(t) = (2− a(t)3)f10(t), (3.2)

and

a(t)′′′

a(t)′ −
3
2

(
a(t)′′

a(t)′

)2
= −1

2
8 + a(t)3

(1− a(t)3)2 a(t) · (a(t)′)2, (3.3)

where a(t) = f1(t)/f0(t) and ′ = d
dt .

(ii) There exist unique formal power series:

f̃0(q) =
∞∑
n=1

a0(n)qn, f̃i(q) =
∞∑
n=0

ai(n)qn, i = 1, . . . , 13, (3.4)

with a0(1) = 1 and a1(0) = 1
3 such that F0(t0, · · · , t6, t, f̃0(et),

· · · , f̃13(et)) is the potential of an 8-dimensional Frobenius struc-
ture with flat coordinates t0, t1, . . . , t6, t, and Euler vector field
E = t0

∂
∂t0

+
∑3
k=1

2
3 tk

∂
∂tk

+
∑6
k=4

1
3 tk

∂
∂tk

.

Proof. — The assertion (i) is a direct consequence of WDVV equations
and discussed already in [25]. For the proof of (ii), we need the following
Sub-Lemma.

Sub-Lemma 3.3. — There exists a unique formal Laurent series

f(q) =
∞∑

n=−1
anq

n

satisfying the following conditions:
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(i) The first coefficient a−1 = 1
3 .

(ii) f(q) satisfies the following differential equation:

f(q)′′′

f(q)′ −
3
2

(
f(q)′′

f(q)′

)2
= −1

2
8 + f(q)3

(1− f(q)3)2 f(q) · (f(q)′)2, (3.5)

where ′ = q ddq .

Proof. — Put

S(q) := (1−f(q)3)2[f(q)′ ·f(q)′′′− 3
2(f(q)′′)2]+ 1

2(8+f(q)3) ·f(q) ·(f(q)′)4.

Condition (ii) is equivalent to all the coefficients of the q-expansion of S(q)
being zero. For the cases of n 6 0, the coefficients of q−8+n of S(q) equal
to zero. For the cases of n > 1, the coefficients of q−8+n of S(q) are of the
form

−n3a7
−1an−1 + a polynomial in a−1, · · · , an−2.

Since we have a−1 = 1/3, the coefficients a0, a1, · · · are uniquely determined
inductively. �

We first construct f̃0(q), · · · , f̃13(q). Take a formal Laurent series f̃(q)
as the one which is constructed in Sub-Lemma 3.3. We take A ∈ C∗ such
that the formal power series: A( q

d
dq f̃(q)

1−f̃(q)3
)1/2 has an expansion q+ · · · . Then

A2 must be 1/9. We define the following formal power series:

f̃0(q) := A(
q ddq f̃(q)

1− f̃(q)3
)1/2, f̃1(q) := f̃(q)f̃0(q),

f̃2(q) := − 1
2 · 32

(
(q ddq )2f̃(q)

q ddq f̃(q)
+
f̃(q)2q ddq f̃(q)

1− f̃(q)3

)
, · · ·

in a parallel manner as in (3.2). By (i) of this Lemma, we see that f̃i(q)(i =
0, · · · , 13) satisfy the conditions of (ii).

We show the uniqueness of f̃i(q) (i= 0,· · · ,13). We assume that f̂i(q) (i=
0, · · · , 13) also satisfy the conditions of (ii). Put f̂(q) := f̂1(q)/f̂0(q). By (i)
of this Lemma, we see that

(i) f̂(et) must satisfy the differential equation (3.3).
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(ii) ∃Â ∈ C∗ such that

f̂0(et) = Â

(
d
dt f̂(et)

1− f̂(et)2

)1/2

.

From (i), f̂(q) satisfies (3.5). Since f̂(q) has the expansion 1
3q
−1 + · · · ,

f̂(q) must be f̃(q) by Sub-Lemma 3.3. From (ii) and a comparison of the
leading term of q-expansions of f̃0(q) and f̂0(q), we have f̃0(q) = f̂0(q)
and Â2 = A2. Since f̂i(et) (i = 1, · · · , 13) must satisfy (3.2), we have
f̃i(q) = f̂i(q) (i = 1, · · · , 13). Thus we obtain Lemma 3.2. �

Next, we construct the analytic solution to the WDVV equation as fol-
lows.

Lemma 3.4. — Put

h(q) = 1 + 1
3

(
η(q)
η(q9)

)3
= 1

3q
−1 + · · · . (3.6)

Then h(q) has the following properties:
(i) h(q) satisfies the following differential equation.

h(q)′′′

h(q)′ −
3
2

(
h(q)′′

h(q)′

)2
= −1

2
8 + h(q)3

(1− h(q)3)2h(q) · (h(q)′)2,

where ′ = q ddq .
(ii) h(q) satisfies the following equation:

− 1
64
h(q)3(8 + h(q)3)3

(1− h(q)3)3 = J(q) (3.7)

where J(q) is the Laurent series characterized by the conditions
that
(a) J(q) = 1

1728 (q−3 + 744 + · · · ),
(b) J(exp( 2π

√
−1τ

3 )) is the elliptic modular function on the upper
half plane H = {τ ∈ C | Imτ > 0 }.

(iii) h(q) has the following expressions:

h(q) =ω+ 1
3

(
η(qω−2)
η(q9)

)3

·exp(2π
√
−1

12 ) =ω2+ 1
3

(
η(qω−1)
η(q9)

)3

·exp(2π
√
−1

24 ),

(3.8)
where ω = exp( 2π

√
−1

3 ).
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Proof. — The uniformization of the Hesse pencil:

x3
0 + x3

1 + x3
2 − 3ax0x1x2 = 0

is classically studied and we refer to [13]. In [13], the parameter a is de-
scribed as a holomorphic function a(τ) on the upper half plane H = {τ ∈
C | Imτ > 0 } as

a(τ) = 1 + 9
(
η(exp(2π

√
−13τ))

η(exp( 2π
√
−1τ

3 ))

)3

.

By the modular property of η(exp(2π
√
−1τ)), we have

a(−1
τ

) = h(exp(2π
√
−1τ

3 )). (3.9)

Then we can deduce Lemme 3.4 from the corresponding results for a(τ),
which are classically known and written in [13]. �

Finally, we give two important formulas for the function h(q) in Lemma
3.4:

Lemma 3.5. — We have the following equations:

(1) 1
33

(q ddqh(q))6

(h(q)3 − 1)3 = η(q3)24. (3.10)

(2)
q ddqh(q)

1− h(q)3 = 32
(
η(q9)3

η(q3)

)2

. (3.11)

Proof. — We have

1
26 · 39

(q ddqJ(q))6

J(q)4(J(q)− 1)3 = η(q3)24, (3.12)

because the leading terms of the q-expansions coincide and if we put q =
exp( 2π

√
−1τ

3 ), then both sides are cusp forms of weight 12 with respect
to the SL(2,Z) action and therefore they are uniquely determined by the
leading terms of the q-expansions.
By (3.7) and (3.12), we have (3.10).
We could easily check that

exp(2π
√
−1

24 )η(q)η(qω−1)η(qω−2)η(q9) = (η(q3))4. (3.13)

By (3.6), (3.8), (3.13), we have

h(q)3 − 1 = 1
33

(
η(q3)
η(q9)

)12

. (3.14)
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By (3.10), (3.14) and the comparison of the leading terms of q-expansions,
we have (3.11). �

It is easy to show that, by our choice of basis γ0, . . . , γ7 of the orbifold
cohomology group H∗orb(P1

3,3,3,Q) and their dual coordinates t0, . . . , t7 in
the beginning of this section, the Gromov–Witten potential is of the form
in Lemma 3.2 except for the condition a0(1) = 1. Indeed, we can choose
elements γ1, γ6 ∈ H∗orb(P1

3,3,3,C) contained in the basis which will corre-
spond to coordinates t1, t6 such that γ1 ◦ γ1 = γ6 and

∫
P1

3,3,3
γ1 ∪ γ6 = 1

3

where ◦ denotes the orbifold cohomology ring structure on H∗orb(P1
3,3,3,C).

This gives us a1(0) = 1
3 . The condition a0(1) = 1 follows from the fact that

the Gromov–Witten invariant a0(1) counts the number of morphisms from
P1

3,3,3 to P1
3,3,3 of degree one, which is exactly the identity map. Hence,

we have a0(1) = 1. Now, the statement in Theorem 3.1 follows from the
uniquness of the potential. �

Now, we consider the Frobenius structure on the base space of the univer-
sal unfolding of simple elliptic singularity of type Ẽ6 : W

Ẽ6
(x1, x2, x3) :=

x3
1+x3

2+x3
3−3ax1x2x3. It is easily obtained once we fix a primitive form (see

[19] for example). It is proven by K. Saito in [15] that there exists a primitive
form forW

Ẽ6
(x1, x2, x3) = x3

1 +x3
2 +x3

3−3ax1x2x3 and it is given by choos-
ing a cycle in the corresponding elliptic curve {W

Ẽ6
(x1, x2, x3) = 0} ⊂ P2.

Denote byM
Ẽ6,∞

the Frobenius manifold with the choice of the primitive
form associated to the cycle in the elliptic curve which vanishes when the
parameter a goes to infinity. In view of (i) of Lemma 3.2, we only have to
calculate the holomorphic function a(t) in order to describe the potential
for M

Ẽ6,∞
. However, it is also easy to see from the result in [15] that we

can choose the uniformization parameter τ/3 as the flat coordinate t for
our choice of primitive form and hence we have a(τ) = h(exp( 2π

√
−1τ

3 ))
as in the equation (3.9). By rescaling other flat coordinates suitably, it is
possible to set A = 1/3 (in the notation of (i) of Lemma 3.2). Therefore,
we can apply the uniqueness of the potential, (ii) of Lemma 3.2, and hence
we obtain an isomorphism MP1

3,3,3
'M

Ẽ6,∞
as Frobenius manifolds.

On the other hand, for the elliptic root system of type E(1,1)
6 ([17]), the

domain E
E

(1,1)
6

and the elliptic Weyl group W
E

(1,1)
6

are defined and the
quotient space M

E
(1,1)
6

:= E
E

(1,1)
6

//W
E

(1,1)
6
' {z ∈ C |Rez < 0 } × C7 has

a Frobenius manifold structure isomorphic to M
Ẽ6,∞

([16], [17], [21]). To
summarize, we obtain the following
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Theorem 3.6. — We have isomorphisms of Frobenius manifolds

MP1
3,3,3
'M

Ẽ6,∞
'M

E
(1,1)
6

.

3.2. Genus one potential

We shall also give the genus one Gromov–Witten potential.

Theorem 3.7. — The genus one Gromov–Witten potential F P1
3,3,3

1 of
P1

3,3,3 is given as

F
P1

3,3,3
1 = −1

3 log(η(q3)). (3.15)

Proof. — The proof is similar to the one for F P1
2,2,2,2

1 . It is easy to see that
the genus one Gromov–Witten potential F P1

3,3,3
1 is an element of Q[[q]] since

the Euler vector field is given by E = t0
∂
∂t0

+
∑3
k=1

2
3 tk

∂
∂tk

+
∑6
k=4

1
3 tk

∂
∂tk

.
Therefore, we only have to consider the (orbifold) stable maps with one
marked point from smooth elliptic curves to P1

3,3,3 = [E/(Z/3Z)], which
factor through E by definition. Hence, we have that

q
d

dq
F

P1
2,2,2,2

1 = − 1
24 +

∞∑
n=1

σ(n)q3n.

One may also obtain the statement by Dubrovin–Zhang’s Virasoro con-
straint [5]. Indeed, Proposition 4 in [5] gives us the equation

q
d

dq
F

P1
3,3,3

1 = 3
4f2(q) + 3

8f5(q)

= − 1
12q

d

dq
log
(
q
d

dq
h(q)

)
− 1

8
q ddqh(q) · h(q)2

1− h(q)3 .

By the equation (3.10) in Lemma 3.5, we have

− 1
12q

d

dq
log(q d

dq
h(q))− 1

8
q ddqh(q) · h(q)2

1− h(q)3 = −1
3q

d

dq
log(η(q3)). �

Strachan [22] calculates the G-function for the Frobenius structure on
the universal unfolding of simple elliptic singularities of type Ẽ6, Ẽ7, Ẽ8
with the choice of the primitive form “at a = 0". If we use the primitive
form “at a = ∞" instead, then G-functions for Ẽ6, Ẽ7 and Ẽ8 can be
obtained as − 1

3 log(η(q3)), − 1
4 log(η(q4)) and − 1

4 log(η(q4)) respectively.
This is consistent with our calculation of Gromov–Witten invariants and
mirror symmetry.
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