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COXETER ELEMENTS FOR VANISHING
CYCLES OF TYPES A 1

2∞
AND D 1

2∞

by Kyoji SAITO

Abstract. — We introduce two entire functions fA 1
2∞

and fD 1
2∞

in two vari-
ables. Both of them have only two critical values 0 and 1, and the associated maps
C2 → C define topologically locally trivial fibrations over C\{0, 1}. All critical
points in the singular fibers over 0 and 1 are ordinary double points, and the as-
sociated vanishing cycles span the middle homology group of the general fiber,
whose intersection diagram forms bi-partitely decomposed infinite quivers of type
A 1

2∞
and D 1

2∞
, respectively. Coxeter elements of type A 1

2∞
and D 1

2∞
, acting

on the middle homology group, are introduced as the product of the monodromies
around 0 and 1. We describe the spectra of the Coxeter elements by embedding the
middle homology group into a Hilbert space. The spectra turn out to be strongly
continuous on the interval (− 1

2 ,
1
2 ) except at 0 for type D 1

2∞
.

Résumé. — Nous introduisons deux fonctions entières de deux variables fA 1
2∞

et fD 1
2∞

. Leurs seules valeurs critiques sont 0 et 1, et les applications associées

C2→C définissent des fibrations localement topologiquement triviales au-dessus
de C\{0, 1}. Tous les points critiques dans les fibres singulières au-dessus de 0 et
1 sont des points doubles ordinaires, les cycles évanescents associés engendrent le
groupe d’homologie en dimension moitié de la fibre générique, et leur diagramme
d’intersection est un carquois infini bipartite de type A 1

2∞
et D 1

2∞
, respective-

ment. Les transformations de Coxeter de type A 1
2∞

et D 1
2∞

, agissant sur le groupe
d’homologie en dimension moitié, sont définies par le produit des monodromies en
0 et 1. On décrit les spectres de ces transformations de Coxeter en plongeant le
groupe d’homologie en dimension moitié dans un espace de Hilbert. Ces spectres
sont fortement continus sur l’intervalle (− 1

2 ,
1
2 ), sauf en 0 en type D 1

2∞
.

Keywords: vanishing cycle, spectra, Coxeter element, transcendental function.
Math. classification: 32S30.
The present paper is planned as the first part of a paper “Primitive forms of types A
and D” in preparation. We publish the present part (the spectra of Coxeter elements)
separately, because of its own independent interest.
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1. Introduction

We introduce two particular entire transcendental functions in two vari-
ables, which we will call the functions of types A 1

2∞
and D 1

2∞
, respectively.

They are introduced in the hope that period maps associated with them
should contribute to the understanding of KP- and KdV-hierarchies. For
this purpose, we need to develop a theory of primitive forms for these
transcendental functions by analogy with the classical theory of primitive
forms for polynomial local singularities [6],(1) where the spectrum of Milnor
monodromies is basic. Therefore, as a first step to this theory, we study the
spectrum of the large circle monodromy, which we call the Coxeter element,
acting on the lattice of vanishing cycles of these functions. The goal is to
show that the spectrum is contained in the interval (- 1

2 ,
1
2 ).

We are still in early stage in studing transcendental functions in such
geometric contexts. Many of classical algebraic tools are not available due
to the lack of compactness/finiteness nature of them. However, the tran-
scendency of the functions which we study in the present paper as the
test cases, is still not “wild”, and we handle them by “hand”. Even though
each step of the calculation is elementary, we want to be cautious and will
proceed with the calculations in down to earth fashion.

Let us explain the contents of the present paper in more details. We first
explain a classical analogue ([7, §2.5,3]) of the present work. Then we make
some comparisons between the classical case and the present case.
For a Dynkin graph ΓW of type W ∈{Al (l∈Z>1), Dl (l∈Z>4), E6, E7, E8},

there exists a real polynomial fW (x, y, z) satisfying the following i)-iii).(2)

i) All critical points of fW are Morse (i.e. Hessians at the critical points
are non-degenerate), and fW has only two critical values 0 and 1.
ii) The map fW : C3 → C is a locally trivial fibration over C \ {0, 1}.

Let us denote by Xt the fiber f−1
W (t) over a point t ∈ C.

(1) In the classical theory, a primitive form is defined on the universal unfolding of a func-
tion having an isolated critical point. Whereas, in the present program, the “generating
center of the unfoldings” are these functions of types A 1

2∞
and D 1

2∞
, having infinitely

many critical points, where there is not yet a general frame work available.
(2)This is a consequence of a result in [7, §2.5, 3]([4, §6.5 Remark 19 and §8.9 Remark
27]). Let us briefly recall the result. For each simply-laced Dynkin type W , there exists
a two parameter family fW (x, y, z, R, S) of real polynomials of type W , having only two
critical values and having properties ii) and iii) (choose fW such that its deformation
class [fW ] belongs to the vertex orbit line O in the deformation parameter space TW of
simple polynomials of type W ). Then, fix the parameter values of (R,S) to re-size the
critical values to {0, 1}. In particular, if W =Al, the polynomial is given by (Chebyshev
polynomial in x) +y2 + z2.

Instead of the formulation in 3-variables as given here, we may formulate results in
2-variables by replacing an intersection diagram by a quiver diagram (see §3.3).
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iii) For t ∈ (0, 1), let {γ(i)
0 }i∈C0 (resp. {γ(i)

1 }i∈C1) be the set of cycles in
the middle homology group H2(XtZ) which vanish at a critical point in the
fiber X0 as t↓0 (resp. X1 as t↑1). Then, a) the union {γ(i)

0 }i∈C0∪{γ
(i)
1 }i∈C1

forms a basis of H2(Xt,Z), b) the intersection diagram of the basis gives a
bi-partite decomposition of the Dynkin graph ΓW .
In the first half of the present paper, we show that the functions of type

A 1
2∞

and D 1
2∞

satisfy exactly the properties parallel to i), ii) and iii) by
replacing ΓW by the infinite quivers of type A 1

2∞
and D 1

2∞
introduced in

§3.2. This fact explains the naming of the functions. Here we should note
that the middle homology group is an infinite rank lattice.
In the classical polynomial fW case, the product of the two monodromies

of the fibration around 0 and around 1, acting on the lattice H2(Xt,Z), is
called the Coxeter element. The eigenvalues of the Coxeter elements are
given by the set exp(2π

√
−1mi

h
) (i= 1,· · ·, l), where h ∈ Z>0 is the Coxeter

number of type W and 0 < m1 < m2 6 · · · < ml < h are called exponents
(see [2, ch.V,§6,no2]). The data of exponents, or equivalently, the spectrum
mi

h (i= 1,· · ·, l) are quite important both for the Lie theory of type W [2]
and for the primitive forms of type W [6]. For instance, the fact that the
spectrum is contained in the interval (d2−1, d2 ) means that the primitive form
is of “simple type” of dimension d (see Remark at the end of §3 and [5]).
However, the eigenvalues of the Coxeter element alone are not sufficient
to recover the spectrum due to an ambiguity modulo integers. The clue to
recover the spectrum is the study of eigenvalues of the intersection form on
the root lattice, as will be described in §4 in the present paper.
Returning to the transcendental functions of types A 1

2∞
and D 1

2∞
, in

analogy with the classical case, we introduce the Coxeter element as the
product of the local monodromy around 0 and around 1. In order to be able
to discuss about the “eigenvalues” of the Coxeter element, we embed the
“lattice” into the Hilbert space (see §4.1) such that the simple root basis
turns to the ortho-normal basis of the Hilbert space.(3)

The main result of the present paper is that the spectrum of the Coxeter
element is given by the function θ − 1

2 on the interval θ ∈ [0, 1] with a
Stieltjes measure ξW,θ which is strongly continuous (§4 Theorem 7). Actu-
ally, ξW,0 = ξW,1 = 0 (i.e. there is no discrete spectrum at θ = 0, 1) so that
the spectrum is contained in the open interval (− 1

2 ,
1
2 ).

This is what was expected from the analogy with classical theory.

(3)This view point is already implicitly in [2, ch.V,§6,no2]. The Hilbert space lies
between the homology group H1(Xt,C) and the cohomology group H1(Xt,C) (i.e. a
sort of “intersection cohomology group”, See end of §4.2), which fit with our original
intention to develop a period map theory for this cohomology groups.

TOME 61 (2011), FASCICULE 7
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2. Functions of types A 1
2∞

and D 1
2∞

We introduce functions of type A 1
2∞

and D 1
2∞

and associated fibrations.

2.1. Definition of fA 1
2∞

and fD 1
2∞

Definition. — The function fW of typeW ∈ {A 1
2∞

,D 1
2∞
} (4) is a real

entire function(5) in two variables x and y given by

fA 1
2∞

(x, y) := xs2(x)− y2 = 1− c2(x)− y2 (2.1.1)

fD 1
2∞

(x, y) := xs2(x)− xy2 = 1− c2(x)− xy2. (2.1.2)

Here s(x) and c(x) are real entire functions (6) in a variable x given by

s(x) := sin
√
x√

x
=

∞∏
n=1

(
1− x

n2π2

)
(2.1.3)

c(x) := cos
√
x =

∞∏
n=1

(
1− 4x

(2n− 1)2π2

)
. (2.1.4)

2.2. Real level sets XA 1
2∞

,0,R and XD 1
2∞

,0,R

We introduce the real level-0 set of the function fW of type W by

XW,0,R := R2 ∩ f−1
W (0) .

Conceptual figures of them are drawn in the following.

Fig. 1

XA 1
2∞

,0,R

(4) In the present paper, the expression “of type W " automatically implies W ∈
{A 1

2∞
,D 1

2∞
}. Meaning for this name is given in §3.2 Quiver and its Remark.

(5)We mean by a real entire function of n-variables a holomorphic function on Cn which
is real valued on the real form Rn of Cn.
(6) In the sequel of the present paper, we shall freely use the following equalities:
c(0)=s(0)=1, xs2(x)+c2(x)=1, s′(x)= 1

2x (c(x)−s(x)) and c′(x)=−1
2 s(x)

without referring to them explicitly (here f ′(x)=the differentiation of f(x)).

ANNALES DE L’INSTITUT FOURIER
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Fig. 2

XD 1
2∞

,0,R

Terminology 1. By a bounded connected component (bcc for short) of type
W , we mean a bounded connected component of R2 \XW,0,R.

2. By a node of typeW , we mean a point on the real curve XW,0,R where
two local smooth irreducible components are crossing normally.
3. We say that a node of type W is adjacent to a bcc of type W if the

node belongs to the closure of the bcc.

We state some immediate observations on the level set XW,0,R, which
can be easily verified by a use of absolutely convergent infinite products
(2.1.3) and (2.1.4).

Observation 1. For n= 0, 1, 2, · · · , there exists exactly one bounded con-
nected component of type W , containing the interval (n2π2, (n+1)2π2) on
the x-axis and contained in the domain (n2π2, (n+1)2π2)× y-axis.
2. For n = 1, 2, 3, · · · , the point c(n)

W,0 := (n2π2, 0) on the x-axis is a
node of type W , which is adjacent to two bcc containing the interval ((n−
1)2π2, n2π2) and the interval (n2π2, (n+1)2π2).

2.3. Fibrations over C \ {0, 1}

For each type W ∈ {A 1
2∞

,D 1
2∞
}, let us consider the holomorphic map

fW : XW −→ C, (2.3.5)

where the domain XW := C2 of fW is regarded as a contractible Stein
manifold equipped with the real form R2. The fiber XW,t := f−1

W (t) over
t ∈ C is an open Riemann surface, closedly embedded in C2.

Remark. — As we shall see in sequel, the fiber XW,t (t ∈ C) has infinite
genus. It is “wild” in the sense that the closure X̄W,t in P2

C is equal to
XW,t ∪P1

C (i.e. the “ends” of XW,t is the P1
C, this fact can be easily shown

by the value distribution theory of one variable). By putting

X̄W := XW ∪ (P1
C ×C) := ∪t∈C(X̄W,t, t) ⊂ P2

C ×C, (2.3.6)

we obtain a proper map, i.e. a “compactification” of (2.3.5):

f̄W : X̄W −→ C. (2.3.7)

TOME 61 (2011), FASCICULE 7
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However, the spaces X̄W,t and X̄W are not manifolds with boundary (note
that their “boundaries” P1

C and P1
C × C, respectively, have the same di-

mension as the “interior” XW,t and XW ).
By a lack of tools to handle such objects at present, we shall not use

this compactification in the present paper. Nevertheless, in the following
Theorem 3, we show that fW induces a locally topologically trivial fibration
over C \ {0, 1}. The proof is an elementary handwork, however it is not
standard due to the transcendental nature of fW mentioned. Therefore, we
write the proof in down to earth fashion.

Theorem. — For each type W ∈ {A 1
2∞

,D 1
2∞
}, we have the following.

1. The function fW has only two critical values 0 and 1. That is, the set
of critical points CW of fW is contained in two fibers XW,0 and XW,1.
2. i) The critical set CW lies in the real form R2 of XW .
ii) The Hessian form of fW |R2 at a critical point is non-degenerate. More

precisely, the Hessian form is indefinite at a point in CW,0 := CW ∩XW,0
and is negative definite at a point in CW,1 :=CW ∩XW,1.
iii) We have the natural bijections:

CW,0 ' {nodes of type P} (identity map), (2.3.8)

CW,1 ' {bcc’s of type W} (c 7→ Bc := the bcc
containing c) (2.3.9)

3. The restriction of the map fW to the smooth fibers:

fW |XW \(XW,0∪XW,1) : XW \ (XW,0 ∪XW,1)→ C \ {0, 1} (2.3.10)

is a topologically locally trivial fibration.

Proof. — 1. We proceed by direct calculations separately for each type.
A 1

2∞
: The defining equations for CA 1

2∞
are ∂xfA 1

2∞
= cs = 0, ∂yfA 1

2∞
=

−2y=0. Hence, CA 1
2∞

={(x, 0) | s(x)=0 or c(x)=0}, where we have

fA 1
2∞

(x, 0) =
{

0 if s(x) = 0,
1 if c(x) = 0.

D 1
2∞

: The defining equations for CD 1
2∞

are ∂xfD 1
2∞

=cs−y2 =0, ∂yfD 1
2∞

=
−2xy= 0. Hence, CD 1

2∞
= {(0,±1)} ∪ {(x, 0) | s(x) = 0 or c(x) = 0}, where

we have

fD 1
2∞

(0,±1)=0 and fD 1
2∞

(x, 0) =
{

0 if s(x) = 0,
1 if c(x) = 0.

2. i) Due to the descriptions of CW in 1., we have only to show that the
zero loci of s(x) = 0 and c(x) = 0 are real numbers. This follows from the

ANNALES DE L’INSTITUT FOURIER
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fact that the infinite product expressions (2.1.3) and (2.1.4) are absolutely
convergent and the zero loci of s(x)=0 and c(x)=0 are given by the union
of zero loci of factors of the expressions, respectively.
ii) Let us calculate the Hessian at a critical point.
The statement for the two critical points (0,±1) on XD 1

2∞
,0 can be veri-

fied directly. The other critical points are on the x-axis, i.e. one always has
y = 0. Since ∂x∂yfW |y=0= 0 for each type W ∈ {A 1

2∞
.D 1

2∞
}, the Hessian

is a diagonal matrix of the form

[∂x(c(x)s(x)),−2]diag for type P = A 1
2∞

,

[∂x(c(x)s(x)),−2x]diag for type P = D 1
2∞

,

where the second diagonal component is always negative. We calculate the
sign of the first diagonal component by
∂x(c(x)s(x)) |c=0= − 1

2s
2 = − 1

2x < 0 and ∂x(c(x)s(x)) |s=0= 1
2x > 0,

implying the statement ii).
iii) Combining the explicit descriptions of the set CW,0, CW,1 in Proof of 1.
with Observations 2. and 3. in §2.2, the correspondences are defined and are
injective (see Figure 1 and 2.). So, we need only to show their surjectivity.
But, this is again trivial since i) any node of a curve is a critical point of the
defining equation of the curve, where Hessian is indefinite, and ii) inside
of any bounded connected component of a complement of a real curve in
R2, there exists at least a point where fW takes local maximum, then the
Hessian at the point should be negative definite since we saw in 2. ii) that
it is already non-degenerate.
3. Let us show that the fibration (2.3.10) is locally topologically trivial.
Since our map is neither proper nor extendable to a suitably stratified
proper map (recall Remark 1.3.), we cannot use standard techniques such
as Thom-Ehresmann theorems. Instead, we use the elementary fact that
XW,t is a ramified covering space: namely, in view of the equations (2.3.8)
and (2.3.9), the projection map (x, y) ∈ C2 7→ x ∈ C to the x-plane induces
a proper and ramified double covering map πW,t:

XA 1
2∞

,t→ C (t∈C) and XD 1
2∞

,t→ C \{0} (t∈C \{0}), (2.3.11)

(for XD 1
2∞

,0, see (7) ). Let us denote by CW the base space of this covering,
i.e. CW := C if W = A 1

2∞
and := C \ {0} if W = D 1

2∞
. In view of the

(7)Since the fiber XD 1
2∞

,0 contains an irreducible component L :={x=0}, the map on

XD 1
2∞

,0 is not a covering, but its restriction to XD 1
2∞

,0 \ L is a covering.

TOME 61 (2011), FASCICULE 7
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defining equation of XW,t, the covering is ramifying at XW,t ∩ {y=0}, i.e.
at solutions x ∈ Cw of the equation

xs2(x)− t = 0, (2.3.12)

which, apparently, has infinitely many solutions, depending on t ∈ C.

We, now, state an elementary but crucial fact on the function xs2.

Fact. The correspondence π : CW → C, x 7→ t := xs2(x) = sin2(
√
x) is

ramifying exactly and only at the inverse images of the points 0 and 1, and
induces a (topological) covering map over C \ {0, 1}.

Proof of Fact. The critical points of the map t=xs2(x) are given by the
equation s(x)c(x) = 0, and are exactly the points where t= 0 or 1 (recall
Proof of 1.). Thus, the restricted map π′ := π|π−1(C\{0,1}) over C \ {0, 1}
is a local homeomorphism. To see that π′ is a covering (i.e. a proper map
on each component of an inverse image of a simply connected open subset
of C \ {0, 1}), we need to show that the inverse map of xs2(x) = t as a
multivalued function in t is analytically continuable everywhere on the set
C \ {0, 1}. Since the equation is equivalent to

√
x=± sin−1(

√
t), this fact

follows from the fact that the multivalued function sin−1(u) has singular
points (i.e. points where the function cannot be analytically continued) only
at u=±1, easily seen from the integral expression sin−1(u)=

∫ u
0

du√
1−u2 . �

Owing to Fact, we find a disc neighbourhood U for any t0 ∈C \{0, 1}
so that π−1(U) decomposes into components homeomorphic to U . For each
xi∈π−1(t0) (i ∈ I index set), let si(t) be the function on t∈U, defining a
section of π such that si(t0)=xi (actually, si(t)=

(√
xi+

∫√t√
t0

du√
1−u2

)2 for
choices of

√
t0 and √xi such that

√
t0 = sin (√xi) and path of integral in

the connected component of ±
√
U containing

√
t0).

We can find a differentiable map ϕ : U×CW→CW such that i) ϕ(t0, x)=
x, ii) for each t∈U , the ϕt := ϕ(t, ·) is a diffeomorphism of CW , and iii) for
each i ∈ I, ϕ(t, si(t)) is constant (equal to si(t0)=xi). The diffeomorphism
ϕt can be uniquely lifted to a diffeomorphism ϕ̂t : XW,t ' XW,t0 of the
double covers such that ϕt ◦ πW,t = πW,t0 ◦ ϕ̂t. The ϕ̂t gives the local
trivialization of (2.3.10). �

This completes a proof of Theorem 1., 2. and 3. �

ANNALES DE L’INSTITUT FOURIER
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3. Vanishing cycles of types A 1
2∞

and D 1
2∞

We show that the middle homology group of a generic fiber of the map
(2.3.5) has a basis consisting of vanishing cycles. The intersection form
among them forms the principal quiver(8) of type A 1

2∞
or D 1

2∞
.

3.1. Middle homology groups

In the present paragraph, we describe the middle homology group of the
general fibers of (2.3.10) in terms of vanishing cycles of the function fW of
type W ∈ {A 1

2∞
,D 1

2∞
}.

Vanishing cycles: For a critical point c ∈ CW = CW,0tCW,1, we define
an oriented 1-cycle γW,c in XW,t for t ∈ (0, 1) as follows.

Due to Theorem 2, we can choose holomorphic local coordinates (u, v)
in a neighborhood U of c in XW such that i) u and v are real valued on
UR := U ∩ R2, ii) ∂(u,v)

∂(x,y) |UR
> 0 and iii) fW |U = u2 − v2 if c ∈ CW,0 and

fW |U =1−u2 − v2 if c ∈ CW,1. Then, define cycles:

γW,c :=
{

(
√
t cos(θ),

√
−1
√
t sin(θ)) (0 6 θ 6 2π), if c∈CW,0

(
√

1−t cos(θ),
√

1−t sin(θ)) (06θ62π), if c∈CW,1.
(3.1.1)

Fact. The oriented cycle γW,c in the surface XW,t is, up to free homotopy,
unique and independent of a choice of coordinates (u, v).

Definition. — We shall denote the homology class in H1(XW,t,Z) of
the cycle γW,c by the same γW,c, and call it the vanishing cycle of the
function fW at the critical point c ∈ CW (vanishing along the path t ↓ 0 or
t↑1).

Sign convention of intersection numbers of 1-cycles onXW,t.
i) Let I be the skew symmetric intersection form between two oriented
1-cycles on a oriented surface. Then we define the convention of the sign of
intersection number locally as follows:

↘↗ γ2 ↘ ↗ γ1

Fig. 3 I(γ1, γ2) = 1 if × , I(γ1, γ2) = −1 if ×
↗ ↘ γ1 ↗ ↘ γ2

(8)We mean by a quiver an oriented graph. It is called principal, if the set of vertices
has a bipartite decomposition Γ0tΓ1 such that the head (resp. tail) of any edge belongs
to Γ0 (resp. Γ1) (e.g. Figure 3 and 4). See [Sa2,3].

TOME 61 (2011), FASCICULE 7
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ii) The orientation of the surface XW,t is
√
−1dz∧dz̄= 2dx∧dy for a local

holomorphic coordinate z = x+iy on XW,t. Eg. Cycles γx and γy locally
homotopic to x-axis and y-axis intersect with I(γx, γy)=1 at z=0.

Theorem. — 4. The middle homology group of XW,t, t∈(0,1) is given
by

H1(XW,t,Z) ' HW := HW,0 ⊕ HW,1, (3.1.2)
where

HW,0 := ⊕c∈CW,0ZγW,c (3.1.3)
HW,1 := ⊕c∈CW,1ZγW,c (3.1.4)

are formally defined free abelian group spanned by vanishing cycles.
5. Let IW : H1(XW,t,Z)×H1(XW,t,Z)→ Z be the intersection form on

the middle homology group. Then we have

IW = JW − tJW (3.1.5)

where JW and tJW are integral bilinear forms on HW given by

JW (γW,c, γW,c′) :=


1 if c = c′,

−1 if c ∈ CW,0, c′ ∈ CW,1 and c ∈ Bc′ ,
0 else,

(3.1.6)

and

tJW (γW,c, γW,c′) :=


1 if c = c′,

−1 if c ∈ CW,1, c′ ∈ CW,0 and c′ ∈ Bc,
0 else.

(3.1.7)

Remark. — The meaning to use the form JW shall be clarified in §3.3.

Proof. — We first calculate intersection numbers between vanishing cy-
cles γW,c and γW,c′ as given in 5.

Suppose both critical points c, c′ belong to CW,0 (resp. CW,1). If c 6= c′

then, for t close enough to 0 (resp. 1), the supports of the vanishing cycles
are close to c and c′ so that they are disjoint, i.e. γW,c∩γW.c′ = ∅ and we
get IW (γW,c, γW,c′)=0. Then, this equality holds for any t∈(0, 1). If c=c′,
then IW (γW,c, γW,c) = 0 due to skew-symmetry of IW .
Next, we consider a cycle γW,c for c∈CW,0 and a cycle γW,c′ for c′∈Cw,1.

From their expressions in (3.1.1), we observe the following two facts:
i) The cycle γW,c intersects only with each connected component of R2\

XW,0,R adjacent to c at one point (u, v) = (ε
√
t, 0) for ε ∈ {±1}.

ii) The underlying set |γW,c′ | is presented by a circle of radius 1−t in the
bcc Bc′ containing c′, i.e. it is equal to {(u′, v′)∈Bc′ | fW (u′, v′)= t}.

ANNALES DE L’INSTITUT FOURIER



COXETER ELEMENTS FOR VANISHING CYCLES OF TYPES A 1
2∞

AND D 1
2∞
2969

This means that cycles γW,c and γW,c′ for the same t ∈ (0, 1) intersect if
and only if the critical point c is adjacent to the bounded component Bc′ ,
and, then, they intersect transversely at one point, say p. Let (u′, v′) be the
coordinates for the cycle γW,c′ in (3.1.1). Then, by an orientation preserving
orthogonal linear transformation of the coordinates, the intersection point
p may be given by (u′, v′) = (

√
1−t, 0)

We determine the sign of the intersection as follows: in a neighbourhood
of p, we have an equality fW =u2−v2 =1−u′2−v′2. Then the differentiation
at p of the equation gives df |p=ε

√
tdu|p=−

√
1−tdu′|p. Since du ∧ dv|p =

cdu′ ∧ dv′|p for some positive c ∈ R>0, we get
a) ∂v

∂v′ |p = εc
√
t√

1−t .
On the other hand, since du and du′ are co-normal vectors to XW,t at p

(i.e. df |p // du|p // du′|p), we use dv and dv′ as for complex coordinates of
the 1-dimensional complex tangent space T (XW,t)p at p, which are com-
patible with the sign convention ii) of the surface XW,t.

Using these coordinates, the infinitesimal direction ∂
∂θ |p of γW,c at p is

evaluated by
b) ∂v

∂θ |p = ε
√
−1
√
t

and the infinitesimal direction ∂
∂θ′ |p of γW,c′ at p is evaluated by

c) ∂v′

∂θ′ |p =
√

1− t.
Combining a), b) and c), we obtain that the angle from the cycle γW,c′
to the cycle γW,c at their intersection point p is given by the angle of the
complex number
d)

(
∂v
∂θ |p/

∂v′

∂θ′ |p
)
/ ∂v
∂v′ |p =

√
−1
c ,

i.e. the angle is π
2 . Then due to our sign convention, we obtain

IW (γW,c, γW,c′) = −1 and IW (γW,c′ , γW,c) = 1,

which is independent of the sign ε ∈ {±1}. Thus, (3.1.5) is shown.

Finally in the following i)-v), we prove 4.
We formally put (3.1.3) and (3.1.4).

i) Let us first show a natural isomorphism.

H1(XW,0,Z) ' HW,1. (3.1.8)

Proof of (3.1.8). We first show that XW,0,R is a deformation retract of
XW,0. For the proof of it, recall the double cover expression of XW,0 over
CW , used in the proof of Theorem 3. In case of type W = A 1

2∞
, the

deformation retract of the plane CW to the half real axis R>0 induces the
retract of the covering space XW,0 to its real form XW,0,R. In case of type
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W = D 1
2∞

, we do the retraction irreducible-componentwisely to the real
axis R (details are left to the reader). Thus, in view of Figures 1 and 2, we
have a natural isomorphism:

H1(XW,0,Z) ' H1(XW,0,R,Z) ' HW,1. � )

ii) Using the double cover expressions of fibers XW,t in the proof of
Theorem 3., we can show that f−1

W ([0, t]) (t ∈ (0, 1)) retracts to its subset
XW,0. Then composing with the inclusion map XW,t ⊂ f−1

W ([0, t]), we get
an exact sequence

HW,0 → H1(Xw,t,Z) r→ H1(XW,0,Z) → 0,

where the restriction of r to the submodule HW,1 composed with the iso-
morphism (3.1.8) induces the identity on HW,1. This implies that HW,1 is
a factor of H1(XW,t,Z).
iii) What remains to show is that HW,0 is injectively embedded in
H1(XW,t,Z). This can be partially shown by using the non-degeneracy of
the intersection relations (3.1.6) as follows.
Let γ∈HW,0 be a non-zero element, whose image in H1(XW,t,Z) is zero.

Then solving the relation IW (γ, γW,c)=0 for c=c
(n)
W,1∈CW,1 (see Notation

in §3.2) from large enough n ∈ Z>0 backwards to 1, we see successive
vanishings of the coefficients of γ, and finally see that γ, up to a constant
factor, is equal to γ+

D,0−γ
−
D,0 (see §3.2 for Notation γ+

D,0 and γ−D,0). In order
to show that this is not possible, we prepare a fact.

iv) Fact. The function fW of type W is invariant by the involution σ :
XW→XW , (x, y) 7→ (x,−y) on its domain, i.e. fW ◦ σ=fW . The induced
involution on the surface XW,t, denoted again by σ, is equivariant with the
covering map πW,t (2.3.11), i.e. πW,t ◦σ = πW,t. Then, one has σ∗(γW,c) =
−γW,c for all c ∈ CW , except for the following two cases

σ∗(γ+
D,0) = −γ−D,0 and σ∗(γ−D,0) = −γ+

D,0.

Proof of Fact. Except for the cases γ+
D,0 and γ−D,0, we can choose the

coordinate in (3.1.1) in such manner that σ(u, v) = (u,−v). �

v) Assuming γ+
D,0 =γ−D,0, let us show a contradiction. Consider the homo-

morphism (πD)∗ : H1(XD,t,Z) → H1(CD,Z) ' Z. Above Fact. implies
(πD)∗(γ+

D,0)=(πD ◦ σ)∗(γ+
D,0)=(πD)∗ ◦ σ∗(γ+

D,0)=−(πD)∗(γ−D,0) which, by
the assumption, is equal to −(πD)∗(γ+

D,0). Thus, we get (πD)∗(γ+
D,0) = 0.

This contradicts the fact that (πD)∗(γ+
D,0) generates H1(CD,Z)' Z (ob-

served easily from the fact that the equation x= 0 defines i) a branch of
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XD,0,R at the nodal point c+D,0 and also ii) the puncture in CD, and from
the description of γ+

D,0 in (3.1.1)).
This completes a proof of Theorem 4. and 5. �

Remark. — In the step v) in above proof, we may use a σ-invariant
form ω := Res

[
ydxdy
fD−t

]
. Since

∫
γ+

D,0
ω =

∫
γ+

D,0
σ∗(ω) =

∫
σ∗(γ+

D,0)ω = −
∫
γ−

D,0
ω,

the assumption γ+
D,0 = γ−D,0 implies

∫
γ+

D,0
ω = 0. On the other hand, ω =

Res
[
ydxdy
fD−t

]
= dx

2x |XD,t
, and hence

∫
γ+

D,0
ω=±

√
−1π 6= 0. A contradiction!

3.2. Quivers of type A 1
2∞

and D 1
2∞

We encode homological data of vanishing cycles of fW in a quiver ΓW .

Definition. — A quiver ΓW of type W ∈ {A 1
2∞

,D 1
2∞
} is defined by

i) The set of vertices of ΓW is in bijection with {γW,c | c ∈ CW,0∪CW,1}.
ii) We put an oriented edge from γW,c to γW,c′ if and only if c ∈CW,0,

c′∈CW,1 and c ∈ Bc′ , that is, when JW (γW,c, γW,c′) = −1.

Let us fix a numbering of elements in CW,0 ∪ CW,1 as follows.

CA,0 = {c(n)
A,0 := (n2π2, 0)}n∈Z>0

CA,1 = {c(n)
A,1 := ((n− 1

2)2π2, 0)}n∈Z>0

CD,0 = {c(n)
D,0 :=(n2π2, 0)}n∈Z>0 ∪ {c+D,0 :=(0, 1), c−D,0 :=(0,−1)}

CD,1 = {c(n)
D,1 := ((n− 1

2)2π2, 0)}n∈Z>0 .

According to them, the vertices of the quiver ΓW are numbered as below.

ΓA 1
2∞

: γ
(1)
A,1 −→ γ

(1)
A,0 ←− γ

(2)
A,1 −→ γ

(2)
A,0 ←− γ

(3)
A,1 −→ γ

(3)
A,0 ←− · · ·

γ+
D,0

↖
ΓD 1

2∞
: γ

(1)
D,1 −→ γ

(1)
D,0 ←− γ

(2)
D,1 −→ γ

(2)
D,0 ←− γ

(3)
D,1 −→ · · ·

↙
γ−D,0

Note that the decomposition of the critical set CW into CW,0 ∪CW,1 gives
rise to the bi-partite (or principal) decomposition of the quiver ΓW .
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3.3. Suspensions to higher dimensions

In this subsection, we briefly describe the suspensions of the results in
previous subsections to higher dimensional cases.

For a type W ∈ {A 1
2∞

,D 1
2∞
} and d ∈ Z>1, let us introduce the d-th

suspension f
(d)
W of fW (where f (1)

W = fW ) as the entire functions in d + 1
variables x, y and z = (z2, · · · , zd) defined by

f
(d)
W (x, y, z) := fW (x, y)− z2

2 − · · · − z2
d. (3.3.9)

Then, replacing the function fW by f
(d)
W and the domain XW = C2 by

X(d)
W = C2×Cd−1, we obtain a holomorphic map (2.3.5)(d) whose fibers,

denoted by X(d)
W,t (t∈C), are Stein varieties of complex dimension d.

Replacing, further, the real form R2 of XW by the real form R2×Rd−1 of
X(d)
W , Theorem 1., 2., 3. in §1.3 hold completely parallely for f (d)

W , where
the set of critical points of f (d)

W is bijective to that of fW by the natural
embedding XW ⊂ X(d)

W so that we identify them. Then the signature of
Hessians of f (d)

W at points of CW,0 is (1, d) and that at points of CW,1 is
(0, d+1). The suspended fibration shall be referred by (2.3.10)(d). The proof
is reduced to the original case d=1.
Applying d−1-times suspension S on a homology class γ in H1(XW,t,Z),

we obtain an element Sd−1γ of the middle homology group Hd(X(d)
W,t,Z) of

the d-dimensional fiber X(d)
W,t. In particular, the suspension Sd−1γW,c of a

vanishing cycle γW,c of fW at a critical point c ∈ CW is a vanishing cycle
of f (d)

W at the same critical point, which, for simplicity, we shall denote
again by γW,c. Then replacing H1(XW,t,Z) by the middle homology group
Hd(X(d)

W,t,Z), Theorem 4. in §2.1 holds completely parallely, where we
keep notations (3.1.2) and (3.1.3).
The intersection form I

(d)
W on the middle (= d)-dimensional homology

group is well known to be symmetric or skew-symmetric according as cycles
are even or odd dimensional (i.e. according as d is even or odd). It is also
well known that I(d)

W (γW,c, γW,c) = (−1) d
2 2 for even d-dimensional vanishing

cycles. Therefore, the formula (3.1.5) of the intersection form in Theorem
5. need to be slightly modified as in the following theorem, where we keep
the notation JW and tJW together with the formulae (3.1.6) and (3.1.7).

Theorem 5(d). — Let I(d)
W : Hd(X(d)

W,t,Z) × Hd(X(d)
W,t,Z) → Z be the

intersection form on middle-homology groups of the fibers of the fibration
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(2.3.10)(d). Then we have the following 4-periodic expression.

I
(d)
W = (−1)[ d

2 ]JW − (−1)[ d−1
2 ] tJW . (3.3.10)

The proof of Theorem is standard, and is omitted. Actually, the form
I

(d)
W is symmetric for d even and is skew symmetric for d odd.

Remark. — We may regard that the form JW is an infinite rank ana-
logue of a Seifert matrix with respect to a “suitable compactification” of
the threefold f−1

W (S1), where S1 is a circle in the base space C of (2.3.5)
which encloses the two points 0 and 1. However, we do not pursue any
further this analogy (see §1.3 Remark and the next subsection §2.4).

3.4. Monodromy Transformations and Coxeter elements

The fundamental group π1(C \ {0, 1}, t0) with t0 ∈ (0, 1) of the base
space of the fibration (2.3.10)(d) has two generators g0 and g1 which are
presented by circular paths in C\{0, 1} starting at t0 and turning once
around the point 0 and 1 counterclockwise, respectively. Let σ(d)

W,0 (resp.
σ

(d)
W,1) be the monodromy action of g0 (resp. g1) on the middle homology

group (3.1.2)(d) of the fiber of the family (2.3.10)(d), which preserves the
intersection form (3.3.10). Though the singular fibers X(d)

W,0 and X(d)
W,1 have

infinitely many critical points, we can apply Picard-Lefschetz formula. That
is, for u∈HW := HW,0⊕HW,1

σ
(d)
W,0(u) = u+ (−1)[ d−1

2 ]∑
c∈CW,0

I
(d)
W (u, γW,c)γW,c

= u+
∑
c∈CW,0

((−1)d−1Jw(u, γw,c)− JW (γW,c, u))γW,c

=
{

(−1)d−1u if u∈HW,0

u−
∑
c∈CW,0

JW (γW,c, u)γw,c if u∈HW,1
(3.4.11)

σ
(d)
w,1(u) = u+ (−1)[ d−1

2 ]∑
c∈CW,1

I
(d)
W (u, γW,c)γW,c

= u+
∑
c∈CW,1

((−1)d−1JW (u, γW,c)− JW (γW,c, u))γW,c,

=
{
u+ (−1)d−1∑

c∈CW,1
JW (u, γW,c)γW,c if u∈HW,0

(−1)d−1u if u∈HW,1.

(3.4.12)
Note that σ(d)

W,0 = σ
(d+2)
W,0 and σ(d)

W,1 = σ
(d+2)
W,1 for d ∈ Z>1.
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Note. Let d be even. Then the reflections σ(d)
W,0, σ

(d)
W,1 are involutive:

(σ(d)
W,0)2 = (σ(d)

W,1)2 = idHW
. (3.4.13)

In the next section, we shall see that the eigenvalues in a suitable sense
of the product σ(d)

W,0 ◦ σ
(d)
W,1 are "dense" in the unit circle S1 in C×, and

hence σ(d)
W,0 ◦ σ

(d)
W,1 is of infinite order. As a consequence, there are no more

relations among σ(d)
W,0 and σ(d)

W,1, and the monodromy group is isomorphic
to Z/2Z ∗ Z/2Z.

Definition. — In analogy with the classical simple singularities, let us
call the product of the two monodromy transformations σ(d)

W,0 and σ
(d)
W,1

a Coxeter element. Two Coxeter elements depending on the order of the
product are conjugate to each other. We fix one order as follows and call
the product the Coxeter element.

Cox
(d)
W (u) := σ

(d)
W,0 ◦ σ

(d)
W,1 (u)

=


(−1)d−1(u+

∑
c∈CW,1

JW (u, γW,c)γW,c
−
∑
c∈CW,1

∑
d∈CW,0

JW (u, γW,c)JW (γW,d, γW,c)γW,d
)

if u∈HW,0

(−1)d−1(u−∑c∈CW,0
JW (γW,c, u)γW,c

)
if u∈HW,1.

(3.4.14)

Observation. The Coxeter element is, up to the sign factor (−1)d−1,
independent of the suspensions for d ∈ Z>1 (3.3.9).

Remark. — It is well known that a classical Coxeter element for a root
system of finite type W is semisimple of finite order, and 1

2π
√
−1 log of

its eigenvalues, referred as spectra and given by mi

h (i = 1,· · ·, n), play an
important role in Lie theory ([2]). They appear also as exponents of the
primitive forms associated with simple polynomials of type W [6] and the
fact that they lie in the interval (0, 1) for the case d = 2 characterizes that
they are primitive forms associated with simple polynomials [5].
The Coxeter elements of types A 1

2∞
and D 1

2∞
are no longer of finite

order. However, in the next section, we show that they are diagonalizable
in suitable sense and the spectra for them are introduced. Then, the sign
factor (−1)d−1 in (3.4.14) of the Coxeter element Cox(d)

W is lifted to the
shift of the spectra by d−1

2 so that the spectra of Cox(d)
W is contained in

the interval (d2 − 1, d2 ). The spectra should play a key role for primitive
forms of type A 1

2∞
and D 1

2∞
in a forthcoming paper, where the shift of

the spectra corresponds to the d−1
2 -shift of the primitive forms in the semi-

infinite Hodge filtration.
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4. Spectra of Coxeter elements of types A 1
2∞

and D 1
2∞

We study spectra of the Coxeter element Cox(d)
W for W ∈ {A 1

2∞
,D 1

2∞
}.

For the purpose, we extend the domain of the Coxeter element to the
completion of HW,C := HW ⊗Z C with respect to the l2-norm with the
ortho-normal basis {γW,c}c∈CW

. The Coxeter element action on this space
is diagonalizable (in a suitable sense), and its “eigenvalues” take values in
the unit circle S1 ⊂ C×. We want to determine 1

2π
√
−1 log of the “eigenval-

ues”, called the spectra of the Coxeter element. Actually, it is calculated by
a help of the intersection form İW , since it, as a positive symmetric opera-
tor, has only positive real eigenvalues. It turns out that we get a continuous
spectra on the interval (d2 − 1, d2 ).

4.1. Hilbert space HW,C

Consider C-vector spaces obtained by the complexification of the Z-
lattices HW,0, HW,1 and HW (recall (3.1.2),(3.1.3) and (3.1.4)):

HW,0,C :=HW,0⊗ZC, HW,1,C :=HW,1⊗ZC and HW,C :=HW⊗ZC. (4.1.1)

We equip them with a hermitian inner product 〈·, ·〉 defined by

〈
∑
c∈CW

acγW,c,
∑
c∈CW

bcγW,c〉 :=
∑
c∈CW

acb̄c, (4.1.2)

where ac, bc (c∈CW ) are complex numbers. Then, the l2-completions of the
spaces with respect to this inner product are separable Hilbert spaces, de-
noted by HW,0,C, HW,1,C and HW,C, respectively. We have the orthogonal
direct sum decomposition:

HW,C = HW,0,C ⊕HW,1,C. (4.1.3)

Let us denote by π0 and π1 the orthogonal projections of the space HW,C
to the subspaces HW,0,C and HW,1,C, respectively, so that the sum

idHW,C
= π0 + π1

is the identity map on HW,C.
Remark that the lattice HW is self-dual: HomZ(HW ,Z)∩HW,C =HW .

Convention. In the sequel of the present paper, we freely identify a con-
tinuous bilinear form A on HW,C (resp. HW,C) and a continuous endomor-
phism Ȧ on HW,C (resp. HW,C) by the following relations:

A(ξ, η) = 〈Ȧ(ξ), η〉 and
∑
c∈CW

A(u, γW,c)γW,c = Ȧ(u).
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Transposes tA of A and t(Ȧ) of Ȧ are defined by the relations tA(ξ, η) =
A(η, ξ) and 〈Ȧ(u), v〉=〈u,t(Ȧ)(v)〉, respectively. Then, t(Ȧ) = ˙(tA) .

4.2. Extendability of I(d)
W and Cox

(d)
W on HW

In order to calculate the eigenvalues of the intersection forms I(d)
W and

the Coxeter elements Cox(d)
W , we use the identification mentioned at the

end of §3.1. Before we do this, we need to check that they are continuously
extendable to the completion HW,C. This is achieved by using the extend-
abilities of the endomorphisms J̇W , tJ̇W associated with the bilinear forms
(3.1.6) and (3.1.7). Put

J̇W (u) :=
∑
c∈CW

J(u, γW,c)γW,c

=
{
u+

∑
c∈CW,1

JW (u, γW,c)γW,c if u ∈ HW,0

u if u ∈ HW,1

(4.2.4)

tJ̇W (u) :=
∑
c∈CW

tJ(u, γW,c)γW,c

=
{
u if u ∈ HW,0

u+
∑
c∈CW,0

JW (γW,c, u)γW,c if u ∈ HW,1

(4.2.5)

which are endomorphisms on HW,C, since the quiver ΓW in §2.2 is locally
finite, i.e. any vertex is connected with only a finite number of other ver-
tices. The inverse action of J̇W (resp. tJ̇W ) on HW,C can be obtained by
just replacing “+” by “−” in RHS of (4.2.4) (resp. (4.2.5)).

Assertion 1. The endomorphisms J̇W , tJ̇W and their inverses J̇−1
W , tJ̇−1

W

acting on HW,C are extendable to bounded endomorphisms on HW,C. The
extensions are transpose to each other.
Proof. — We show only the extendability of the domain of endomor-

phisms J̇W , tJ̇W and their inverses J̇−1
W , tJ̇−1

W from HW,C to HW,C, where
the extensions are denoted by the same notation. Then the relations
t(J̇W ) = tJ̇W , J̇W J̇−1

W = idHW
, . . . , etc. are automatically preserved for

the extensions.
The quivers ΓA 1

2∞
and ΓD 1

2∞
show that any critical point c ∈ CW,0 is

adjacent to at most two bdd components. In view of (4.2.4), this implies
the inequality ‖ J̇W (u)−u‖6 2‖u‖. Hence J̇W is extendable to a bounded
endomorphims on HW,C, denoted by the same J̇W .

We observe also that, to any bdd component, at most 3 critical points
in CW,0 are adjacent (actually, 3 occurs only one bdd component for the
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critical point c(1)
D,1 of type D 1

2∞
). In view of (4.2.5), we get an inequality

‖ tJ̇W (u) − u ‖6 3 ‖ u ‖, implying again the extendability of tJ̇W to a
bounded endomorphism on HW,C, denoted by the same tJ̇W .
Similar arguments shows the extendability of the inverses. �

An immediate consequence of Assertion 1 is that the endomorphism

(3.3.22)• İ
(d)
W := (−1)[ d

2 ]J̇W − (−1)[ d−1
2 ] tJ̇W

defined on HW,C is extendable to a bounded endomorphism on HW,C.
Another important consequence of Assertion 1 is the following.

Corollary. — The Coxeter element Cox(d)
W (d ∈ Z>1) defined on

HW,C is extendable to an invertible bounded automorphism on HW,C.

Proof. — Let us, first, show a formula:

Cox
(d)
W = (−1)d−1 (tJ̇W )−1J̇W , (4.2.6)

on HW by a direct calculation using formulae (3.4.14), (4.2.4) and

(4.2.30)−1 (tJ̇W )−1(u) =

{
u if u ∈ HW,0
u−

∑
c∈CW,0

JW (γW,c, u)γW,c if u ∈ HW,1.

Then, RHS of (4.2.6) is extendable to a bounded operator on HW,C.
Invertibility of Cox(d)

W follows from that of J̇W and tJ̇W . �

Remark. — Let ȞW,C := HomC(HW,C,C) be the (formal) dual vector
space of HW,C. The contragredient actions on ȞW,C of the endomorphisms
J̇W , tJ̇W , İ(d)

W , tİ(d)
W , Cox(d)

W and tCox
(d)
W on HW,C shall be denoted, as usual,

by the super script “ t(-) ” such that “ tt(-)=(-) ”.
On the other hand, by regarding {γW,c}c∈CW

as the self-dual basis, ȞW,C
is identified with the direct product

∏
c∈CW

CγW,c so that we have natural
inclusions of C-vector spaces:

HW,C ⊂ HW,C ⊂ ȞW,C.

Then it is easy to verify that the extensions of J̇W , tJ̇W , İ(d)
W , tİ(d)

W , Cox(d)
W

and tCox
(d)
w to the spaces Hw,C and ȞW,C are naturally compatible with

respect to the above inclusions. The relationships between these extensions
and the transpositions are given as follows:

tİ
(d)
W = (−1)dİ(d)

W and (tCox(d)
W )−1 = J̇W Cox

(d)
W J̇−1

W .

However, the bilinear form IW,C itself is no longer extandable to ȞW,C and
the endomorphism İW on ȞW,C has non-trivial kernel.
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4.3. Spectral decomposition of I(d)
W for even d

Using the fact (3.3.10), the bilinear form I
(d)
W is symmetric for even d.

Let us consider the operator for the cases d ∈ Z>1 with d ≡ 0 mod 4,(9)

İW := İ
(d)
W = J̇W + tJ̇W . (4.3.7)

We, first, determine the point spectrum of the symmetric operator İW
on HW,C. Let us consider the following two eigenspaces for λ ∈ C:

ȞW,λ := {ξ∈ȞW,C | İW (ξ)=λξ} and HW,λ := ȞW,λ ∩HW,C. (4.3.8)

Assertion 2. For each type W ∈{A 1
2∞

,D 1
2∞
} and all λ∈C, we have

dimC ȞW,λ = 1 and dimC HW,λ = 0, (4.3.9)
except for the case W = D 1

2∞
and λ = 2, where we have

dimC ȞD 1
2∞

,2 = 2 and dimC HD 1
2∞

,2 = 1, (4.3.10)
and HD 1

2∞
,2 is spanned by the vector γ+

D,0 − γ
−
D,0.

Proof. — This is shown by solving the equation İW (ξ) = λξ for the co-
efficients of ξ=

∑
c∈CW

acγW,c ∈ ȞW,C formally and inductively according
to the following labeling and ordering of coefficients:

ΓA 1
2∞

: a0 −→ a1 ←− a2−→ a3←− a4−→ a5 ←− · · ·
b+0 ↖ΓD 1

2∞
: b1 −→ b2 ←− b3 −→ b4 ←− b5 −→ · · ·↙

b−0
Details of the calculation are omitted. Results are summarized as:
A 1

2∞
: The space ȞA 1

2∞
,λ for any λ∈C is spanned by

ξ̌A 1
2∞

,λ : an = exp((n+ 1)
√
−1πθ)− exp(−(n+ 1)

√
−1πθ)

exp(
√
−1πθ)− exp(−

√
−1πθ)

(n > 0)

where θ is any complex number satisfying λ=4 sin2(π2 θ). In case λ=0 or 4
(i.e. when θ ∈ Z), we interpret this formula as an = ±(n+ 1).
D 1

2∞
: For all λ ∈ C, let us introduce a vector
ξ̌D 1

2∞
,λ : b+

0 = 1, b−0 = 1, bn = exp(n
√
−1θ) + exp(−n

√
−1θ) (n > 1)

where θ is any complex number satisfying the equation λ = 4 sin2(π2 θ).
Then, the space ȞD 1

2∞
,λ for any λ 6= 2 is spanned by ξ̌D 1

2∞
,λ. The space

ȞD 1
2∞

,2 is spanned by ξ̌D 1
2∞

,2 and

γ+
D,0 − γ

−
D,0 : b+0 = 1, b−0 = −1, bn = 0 (n > 1).

(9)We choose d ≡ 0 mod 4 so that the form IW is positive and symmetric, defining a
“root lattice structure of infinite rank” on HW (cf. Proof of Assertion 3.).
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The norm 〈ξ̌W,λ, ξ̌W,λ〉 (4.1.2) for any W ∈{A 1
2∞

,D 1
2∞
} and any λ∈C

is unbounded, whereas γ+
D,0 − γ

−
D,0 has the bounded norm=2. �

Corollary. — The point spectrum of İA 1
2∞

on HW,C is empty, and
that of İD 1

2∞
consists of a single eigenvalue λ= 2 with multiplicity 1. In

particular, the operator İW for any W ∈{A 1
2∞

,D 1
2∞
} is non-degenerate on

HW,C in the sense that ker(İW )∩HW,C ={0}.

Remark. — By introducing the double cover of the λ-plane by µ :=
exp(π

√
−1θ) ∈ C\{0} with the relation 2−λ=µ+µ−1, the base ξ̌W,λ in the

proof of Assertion 2 can be expressed in terms of Laurent polynomials in
µ. The reader may be puzzled by the use of θ instead of µ in the above proof.
We used the parameter θ since it shall parametrize the spectra of Coxeter
elements in the next paragraph. We remark also that λ ∈ [0, 4] ⇔ θ ∈ R.

For a symmetric operator İW on HW,C, the greatest lower bound and
the least upper bound are defined as the maximal real number m and the
minimal real number M satisfying the following inequalities, respectively
(see [3, §104]).

m〈ξ, ξ〉 6 〈İW (ξ), ξ〉 = IW (ξ, ξ) 6 M〈ξ, ξ〉 ∀ξ ∈ HW,C (4.3.11)

Assertion 3. The greatest lower bound m and the least upper bound M of
İW for both W ∈ {A 1

2∞
,D 1

2∞
} are given by m = 0 and M = 4.

Proof. — For the definition of m and M , it is sufficient to run ξ only in
HW in the defining relation (4.3.11), since HW,C is dense in HW,C. Any
ξ ∈ HW is contained in a sublattice L of HW generated by the vertices
of a finite (connected) subdiagram Γ of ΓW (recall §2.2). Actually, Γ is a
diagram of type either Al or Dl for some l ∈ Z>0 and IW |L gives a root
lattice structure of that type on L. That is, {IW (γW,c, γw,d)}c,d∈Γ⊂CW

is
the Cartan matrix of type Γ. In particular, the eigenvalues of İW |L are
given by 4 sin2(π

2
mi

h

)
(i= 1,· · ·, l= rank(L)), where mi are the exponents

and h is the Coxeter number of the root system of type Γ ([2, ch.V,§6,no2]).
Since the smallest and the largest exponent of the (finite) root system are
1 and h−1, respectively, the minimal and the maximal of the eigenvalues
are 4 sin2(π

2
1
h

)
and 4 cos2(π

2
1
h

)
, respectively. Since h → ∞ according as Γ

"exhaust" ΓW , we obtain

m = inf
Γ⊂ΓW

4 sin2
(π

2
1
h

)
= lim
h→∞

4 sin2
(π

2
1
h

)
= 0.

M = sup
Γ⊂ΓW

4 cos2
(π

2
1
h

)
= lim
h→∞

4 cos2
(π

2
1
h

)
= 4.

�
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We apply the spectral decomposition theory of bounded symmetric op-
erators (see [3, §107 Theorem]) to the operator İW . Let us reformulate the
result in [ibid] by adjusting the notation to our setting.

Theorem 6.— For each type W ∈ {A 1
2∞

,D 1
2∞
}, there exists a unique spec-

tral family {EW,λ}λ∈R (i.e. a family of projection operators(10) on HW,C)
satisfying the following a), b), c):
a) For λ 6 µ, one has EW,λ 6 EW,µ (⇔

def
EW,λEW,µ = EW,λ).

b) The family is strongly continuous with respect to λ, i.e.
EW,λ+0(:= lim

µ↓0
Ew,λ+µ) = EW,λ−0(:= lim

µ↑0
Ew,λ−µ),

for all λ except at λ = 2 for type W = D 1
2∞

. We have

ED 1
2∞

,2+0 − ED 1
2∞

,2−0 = ηD (4.3.12)

where ηD is the projection: HD 1
2∞

,C → HD 1
2∞

,2 = C(γ+
D,0 − γ

−
D,0).

c) One has EW,λ = 0 for λ 6 0 and Ew,λ = IdHw,C
for λ > 4, so that

the following (4.3.13) holds.

(İW )r =
∫ 4

0
λrdEW,λ (for r = 0, 1, 2, · · · ), (4.3.13)

where the integral is in the sense of Lebesgue-Stieltjes. (11)

4.4. Spectra of Coxeter elements

Recall that λ ∈ [0, 4] in §4.3 Theorem 6 is the parameter for the spectra
of the intersection form IW := I

(d)
W for d≡ 0 mod 4. What is wonderful, is

the fact that this parameter gives a clue to parametrize the spectra θ of
the Coxeter elements Cox(d)

W for all d ∈ Z>1. In order to achieve this, we
re-parametrize λ by a new parameter θ and by the relation (which we once
used in a proof of Assertion 2.)

λ = 4 sin2
(
θ
π

2

)
for 0 6 θ 6 1. (4.4.14)

(10)Here, we mean by a projection operator an orthogonal projection map from HW,C
to its closed subspace such that the real form HW,R is mapped into itself. The fact that
EW,λ is real, is not explicitly stated in the literature [3], but follows trivially from its
construction and from the fact that İW is real.
(11)Furthermore, [3, §107 Theorem], for any complex valued continuous function u(λ)
on the interval [0, 4], we have an equality u(İW ) =

∫ 4
0 u(λ)dEW,λ between bounded

operators, where LHS is defined by a (monotone decreasing) polynomial approximation
of u and RHS is given by the norm-limit of the Stieltjes type summation. Then, for any
ξ, η ∈ HW,C, we have 〈u(İW )ξ, η〉 =

∫ 4
0 u(λ)d〈EW,λξ, η〉.
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Let us introduce a Stieltjes measure on the interval θ ∈ [0, 1]:

ξW,θ := Uθ ·dEW,λ ·U−1
θ (4.4.15)

for each W ∈{A 1
2∞

,D 1
2∞
}, where

(i) {EW,λ}λ∈[0,4] is the spectral family in §4.3 Theorem 6,
(ii) Uθ (06θ61) is a family of unitary operators on HW,C given by

Uθ := exp
(
− π

2
√
−1θ

)
π0 − exp

(π
2
√
−1θ

)
π1, (4.4.16)

where πi (i=0, 1) is the orthogonal projection to the subspace HW,C,i.

Theorem 7. — We have the following a) and b).
a) The ξW,θ is a Stieltjes measure on θ ∈ [0, 1], which is strongly contin-

uous except at θ = 1
2 for the type D 1

2∞
. We have

ξD 1
2∞

, 1
2 +0 − ξD 1

2∞
, 1

2−0 = ηD, (4.4.17)

where we recall (4.3.12) for ηD.
b) The following two formulae hold:

Cox
(d)
W ·ξW,θ = exp

(
2π
√
−1
(
θ + d− 2

2

))
ξW,θ, (4.4.18)

and ∫ θ=1

θ=0
ξW,θ = 1

2 İW . (4.4.19)

Proof. — a) The first half of the statement is obvious. Since HD 1
2∞

,2 is
a subspace of HD 1

2∞
,0, we have π0ηD = ηDπ0 = ηD and π1ηD = ηDπ1 = 0.

Then, LHS of (4.4.17) is given by U 1
2
dED 1

2∞
,2+0U

−1
1
2
− U 1

2
dED 1

2∞
,2−0U

−1
1
2

= U 1
2

(dED 1
2∞

,2+0 − dED 1
2∞

,2−0)U−1
1
2

= U 1
2
ηDU

−1
1
2

= ηD (cf. (4.3.12)).

b) 1. Proof of (4.4.18).
Consider the infinitesimal form of the formula (4.3.13) for r=1:

İW ·dEW,λ = λdEW,λ. (4.4.20)

Substitute the decomposition dEW,λ = π0·dEW,λ+π1·dEW,λ in this formula.
Then, using (4.3.7) , the LHS is equal to

İW ·dEW,λ = (J̇W +t J̇W )(π0 ·dEW,λ + π1 ·dEW,λ)
= 2 π0 ·dEW,λ + 2 π1 ·dEW,λ

+ (J̇W − id)(π0 ·dEW,λ) + (J̇W − id)(π1 ·dEW,λ)
+ (tJ̇w − id)(π0 ·dEw,λ) + (tJ̇W − id)(π1 ·dEw,λ).
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On the other hand, recalling (4.2.4) and (4.2.5), we know that

(J̇W−id)(π1 ·dEW,λ)=0, (J̇W−id)(π0 ·dEW,λ) ∈ Hom(HW,C, HW,C,1),
(tJ̇w−id)(π0 ·dEW,λ)=0, (tJ̇W−id)(π1 ·dEW,λ) ∈ Hom(HW,C, HW,C,0).

Equating this with λdEW,λ=λπ0 ·dEw,λ+λπ1 ·dEw,λ (4.4.19), we obtain

(tJ̇W−id)(π1·dEW,λ)=(λ−2)π0·dEW,λ, (J̇W−id)(π0·dEW,λ)=(λ−2)π1·dEW,λ.

Rewriting these together in matrix expressions, we obtain

J̇W

(
π0 ·dEW,λ
π1 ·dEW,λ

)
=
(

1 λ− 2
0 1

)(
π0 ·dEW,λ
π1 ·dEW,λ

)
. (4.4.21)

tJ̇W

(
π0 ·dEW,λ
π1 ·dEW,λ

)
=
(

1 0
λ− 2 1

)(
π0 ·dEW,λ
π1 ·dEW,λ

)
. (4.4.22)

and, hence, also

(tJ̇W )−1
(
π0 ·dEW,λ
π1 ·dEW,λ

)
=
(

1 0
2− λ 1

)(
π0 ·dEW,λ
π1 ·dEW,λ

)
.

Thus, combining these with the expression (4.2.6), we obtain

Cox
(d)
W

(
π0 ·dEW,λ
π1 ·dEW,λ

)
=(−1)d−1

(
1 λ− 2

2−λ 1−(λ−2)2

)(
π0 ·dEW,λ
π1 ·dEW,λ

)
. (4.4.23)

Substitute λ in the RHS matrix by the expression (4.4.14) :

(−1)d−1
(

1 λ− 2
2− λ 1− (λ− 2)2

)
= (−1)d−1

(
1 −2 cos(πθ)

2 cos(πθ) sin2(πθ)− 3 cos2(πθ)

)
.

We see that the matrix is semi-simple for any θ. The eigenvalues are
exp
(
± 2π

√
−1
(
θ + d− 2

2

))
,

and associated row eigenvectors (independent of n) are(
exp

(
∓ π

2
√
−1θ

)
,− exp

(
± π

2
√
−1θ

))
.

Therefore, by introducing the unitary operators

U±θ := exp
(
∓ π

2
√
−1θ

)
π0 − exp

(
± π

2
√
−1θ

)
π1 (4.4.24)

satisfying relations: tU±θ = U±θ = U∓θ and U±θ ·U∓θ = idHW,C
, we intro-

duce a Stieltjes measure on [0, 4] := {λ∈R | 06λ64} ' [0, 1] := {θ∈R |
06θ61}:

ξ±W,θ := U±θ ·dEW,λ ·U∓θ. (4.4.25)
Then, from (4.4.23), we obtain

Cox
(d)
W ·ξ

±
W,θ = exp

(
± 2π

√
−1
(
θ + d− 2

2

))
ξ±W,θ. (4.4.26)

Putting ξW,θ := ξ+
W,θ, we obtain (4.4.17).

b) 2. Proof of (4.4.19).

ANNALES DE L’INSTITUT FOURIER



COXETER ELEMENTS FOR VANISHING CYCLES OF TYPES A 1
2∞

AND D 1
2∞
2983

Using (4.4.15) and (4.4.16), we decompose ξW,θ into 4 pieces:
π0·dEW,θ·π0+π1·dEW,θ·π1−exp(π

√
−1θ)π1·dEW,θ · π0−exp(−π

√
−1θ)π0·dEW,θ·π1.

The first two terms are integrated easily by∫ θ=1

θ=0
π0 ·dEW,θ ·π0 = π0 ·

(∫ θ=1

θ=0
dEW,θ

)
·π0 = π0 · idHW,C

· π0 = π0,∫ θ=1

θ=0
π1 ·dEW,θ ·π1 = π1 ·

(∫ θ=1

θ=0
dEW,θ

)
·π1 = π1 · idHW,C

· π1 = π1.

The third and fourth terms are integrated by the use of Footnote 8.
First, we introduce bounded nilpotent operators K̇W :HW,0,C→HW,1,C

and tK̇W :HW,1,C→HW,0,C, by K̇W :=idHW,C
−J̇W and tK̇W :=idHW,C

−tJ̇W
so that we have K̇2

W =tK̇2
W =0 and İW =2 idHW,C

−K̇W−tK̇W . Then,(12)∫ θ=1
θ=0 exp(π

√
−1θ)π1 ·dEW,θ · π0

= π1

[∫ θ=1
θ=0

(
1−2 sin2(π2 θ)+

√
−1 2

√
1−sin2(π2 θ) sin(π2 θ)

)
dEW,λ

]
π0

= π1

[∫ θ=1
θ=0

(
1− λ

2 +
√
−1
2
√

(4− λ)λ
)
dEW,λ

]
π0

= π1

[
idHw,C

− İW

2 +
√
−1
2

√
(4 idHw,C

− İW )İW
]
π0

After sandwiching by π1 and π0, the first and the second terms turn out to
be π1 · idH · π0 = 0 and π1 · İW

2 · π0 = − K̇W

2 , respectively. The third term
turns out to be zero, since the operator√

(4 id
HW,C

−İW )İW =
√

(2 id
HW,C

+K̇W + tK̇W )(2 id
HW,C

−K̇W−tK̇W )

=
√

4 idHW,C
− K̇W · tK̇W − tK̇W · K̇W

preserves the decomposition (4.1.3) so that it does not have the “cross”
term sandwiched by π1 and π0. Thus, we get∫ θ=1

θ=0
exp(π

√
−1θ)π1 ·dEw,λ · π0 = K̇W

2 .

Similarly, we obtain also∫ θ=1

θ=0
exp(−π

√
−1θ)π0 ·dEW,λ · π1 =

tK̇W

2 .

These altogether show the formula (4.4.19) �

Corollary. — Let ϕ(θ) =
∑
m∈Z am exp(2π

√
−1m(θ + d−2

2 )) be an
absolutely convergent Fourier expansion of a complex valued continuous
function on the interval θ ∈ [0, 1]. Then, we have

2
∫ θ=1

θ=0
ϕ(θ) · ξW,θ =

∑
m∈Z

am(Cox(d)
W )m · İW . (4.4.27)

(12) In the present paper,
√
X takes the positive branch for a positive object X.
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Remark. — Due to the integral formula (4.4.19), we get a factor İW at
the end of the formula (4.4.27). Since İW is not invertible by a bounded
operator (recall the comment at the end of §4.2), the meaning of this factor
is unclear. It would be desirable to ask:

Question: Can ξW,θ be divisible by İW from the right (cf. §4.3 Corollary
to Assertion 2)?
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