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AN INTRODUCTION TO
QUANTUM SHEAF COHOMOLOGY

by Eric SHARPE (*)

Abstract. — In this note we review “quantum sheaf cohomology,” a deforma-
tion of sheaf cohomology that arises in a fashion closely akin to (and sometimes
generalizing) ordinary quantum cohomology. Quantum sheaf cohomology arises in
the study of (0,2) mirror symmetry, which we review. We then review standard
topological field theories and the A/2, B/2 models, in which quantum sheaf co-
homology arises, and outline basic definitions and computations. We then discuss
(2,2) and (0,2) supersymmetric Landau-Ginzburg models, and quantum sheaf co-
homology in that context.
Résumé. — Dans ces notes nous passons en revue la "cohomologie quantique

des faisceaux", une déformation de la cohomologie des faisceaux qui apparaît d’une
façon similaire à la cohomologie quantique ordinaire (tout en la généralisant par-
fois). La cohomologie quantique des faisceaux apparaît dans l’étude de la symétrie
miroir (0,2), ce qui est passé en revue. Après ça nous passons en revue la théorie
standard des champs topologique et les modèles A/2, B/2, dans lesquels la coho-
mologie quantique des faisceaux apparaît, et esquissons les définitions basiques et
les calculs. Ensuite nous discutons dans ce contexte les modèles de supersymétrie
Landau-Ginzburg (2,2) et (0,2) ainsi que la cohomologie quantique des faisceaux.

1. Introduction

The development of mirror symmetry, a duality between quantum field
theories describing (typically) topologically distinct spaces, led to profound
advances in the mathematics of enumerative geometry. Since its original
development in the early 1990s there have been a number of offshoots,
perhaps the most famous of which is homological mirror symmetry [18].

Keywords: (0,2) mirror symmetry, quantum sheaf cohomology, Landau-Ginzburg model.
Math. classification: 81T45,53D45,14N35.
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In this note we will review progress towards understanding another off-
shoot of mirror symmetry, known as “(0,2) mirror symmetry,” and in par-
ticular its analogue of enumerative geometry, “quantum sheaf cohomol-
ogy.” After giving a brief introduction to (0,2) mirror symmetry, we discuss
quantum sheaf cohomology in some detail. After setting it up formally and
discussing some examples, we then discuss Landau-Ginzburg models, and
how they also give some perspective on quantum sheaf cohomology.

2. (0,2) mirror symmetry

Ordinary mirror symmetry, in its most basic incarnation, exchanges pairs
of Calabi-Yau’s X1, X2 of matching dimension in such a way as to flip their
Hodge diamonds. For example, a quintic hypersurface in P4 is mirror to a
(resolution of a) quintic hypersurface in P4/(Z5)3, which have the Hodge
diamonds below:

Quintic in P4 Mirror in P4/(Z5)3

1
0 0

0 1 0
1 101 101 1

0 1 0
0 0

1

1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1

(0,2) mirror symmetry is a conjectured generalization arising in heterotic
string theories that, in its simplest formulation, exchanges pairs

(X1, E1) ↔ (X2, E2)

where the Xi are Calabi-Yau manifolds of matching dimension and the
Ei → Xi are stable holomorphic vector bundles of matching rank such that

ch2(E) = ch2(TX).

(There exists a generalization in which non-Calabi-Yau spaces are mirror
to Landau-Ginzburg models, though for simplicity we shall not speak to
that here.) It reduces to ordinary mirror symmetry in the special case that
Ei ∼= TXi. That said, in general if (X1, E1) is (0,2) mirror to (X2, E2), the
underlying spaces X1 and X2 need not be mirror to one another in the
older sense of mirror symmetry.

ANNALES DE L’INSTITUT FOURIER



QUANTUM SHEAF COHOMOLOGY 2987

Instead of exchanging (p, q) forms, (0,2) mirror symmetry exchanges
sheaf cohomology groups:

Hj
(
X1,ΛiE1

)
↔ Hj

(
X2,

(
ΛiE2

)∗)
.

Note that when Ei ∼= TXi, this reduces to

Hn−i,j(X1) ↔ Hi,j(X2)

(for Xi Calabi-Yau, n = dimXi), and so this generalizes the exchange of
Hodge numbers of ordinary mirror symmetry.
One example of a (0,2) mirror pair is as follows [5]. The complete inter-

section P5
[1,1,1,1,2,2][4, 4], with bundle E given by

0 −→ E −→
5⊕
1
O(1) −→ O(5) −→ 0

is (0,2) mirror to the complete intersection P5
[3,4,4,5,8,8][16, 16] with bundle

E ′ given by

0 −→ E ′ −→ O(3)⊕O(4)⊕3 ⊕O(5) −→ O(20) −→ 0.

Not much is currently known about (0,2) mirror symmetry, though the
basics are known, and more is rapidly developing.

In one of the first checks of the existence of (0,2) mirror symmetry [4], a
computer was programmed to tabulate the dimensions of sheaf cohomology
groups in a large number of examples. Within that list, most examples had
partners on the list with dual sheaf cohomology dimensions, as expected if
(0,2) mirror symmetry exists.

In addition, an analogue of the Greene-Plesser construction [11] (in which
mirrors close to Fermat points are constructed via orbifolds) is known [5],
as is an analogue [1] of the Hori-Vafa-Morrison-Plesser mirror construction
[15, 26]. An analogue of quantum cohomology has been known since 2004,
see e.g. [2, 6, 7, 12, 17, 24, 20, 21, 22, 27, 28]. Very recently, for deformations
of the tangent bundle, there now exists a (0,2) monomial-divisor mirror map
[23]. Put briefly, progress in this area seems to be speeding up.

In these notes we will outline one aspect of (0,2) mirrors, namely, quan-
tum sheaf cohomology (the (0,2) analogue of quantum cohomology), and
then discuss (2,2) and (0,2) Landau-Ginzburg models and some related
issues.

TOME 61 (2011), FASCICULE 7
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3. Topological field theories and the A/2, B/2 models

Before discussing topological field theories, let us pause for a moment to
review some language. The worldsheet theory for a heterotic string with
E = TX has a total of 4 supersymmetries split into 2 pairs, labelled “(2,2),”
and so the worldsheet theory is called a “(2,2) supersymmetric nonlinear
sigma model,” or simply a “(2,2) model.” The worldsheet theory for a more
general heterotic string has half as much supersymmetry, technically de-
noted “(0,2),” and hence the worldsheet theory is called a “(0,2) model.”
Ordinary quantum cohomology is computed by the A model topological

field theory [30], which is a theory with (2,2) supersymmetry, a twisted
version of a supersymmetric nonlinear sigma model. There is a (0,2) super-
symmetric analogue of the A model, responsible for quantum sheaf coho-
mology. This (0,2) analogue is commonly denoted the “A/2 model.” Simi-
larly, there is a (0,2) analogue of the B model, denoted the “B/2 model.”
We shall review these theories in this section.

Briefly, the A/2 and B/2 models are no longer strictly topological field
theories, though they become honest topological field theories in the special
case that E = TX (the “(2,2) locus”). Nevertheless, despite the fact that
they are not honest topological field theories, some correlation functions
still have a mathematical understanding. Also, the A/2 and B/2 models
have some new symmetries not possessed by ordinary topological field the-
ories: the A/2 model on (X, E) is the same as the B/2 model on (X, E∗).
Next, we shall start working through a more detailed description of these

models. First, recall the ordinary A model. This is defined by the La-
grangian

gi∂φ
i∂φ + igiψ


−Dzψ

i
− + igiψ


+Dzψ

i
+ + Riklψ

i
+ψ


+ψ

k
−ψ

l
−

where φ : Σ→ X is a map from the two-dimensional worldsheet Σ into the
space X, and ψi,ı± are fermions, coupling to the following bundles:

ψi−(≡ χi) ∈ Γ
(
(φ∗T 0,1X)∗

)
, ψi+(≡ ψiz) ∈ Γ

(
K ⊗ φ∗T 1,0X

)
,

ψı−(≡ ψız) ∈ Γ
(
K ⊗ φ∗T 0,1X

)
, ψı+(≡ χı) ∈ Γ

(
(φ∗T 1,0X)∗

)
(where Γ denotes smooth sections andK the antiholomorphic version of the
canonical bundle). This theory possesses a symmetry known as the “BRST
symmetry.” Infinitesimally, this symmetry group acts as

δφi ∝ χi, δφı ∝ χı,

δχi = 0, δχı = 0,
δψiz 6= 0, δψız 6= 0,

ANNALES DE L’INSTITUT FOURIER
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so the pertinent states (namely, BRST-closed, modulo BRST-exact) are

O ∼ bi1···ipı1···ıqχ
ı1 · · ·χıqχi1 · · ·χip ↔ Hp,q(X),

Q ↔ d

where Q denotes the “BRST operator” that generates infinitesimal BRST
transformations.
In the A/2 model, the Lagrangian is

gi∂φ
i∂φ + ihabλ

b
−Dzλ

a
− + igiψ


+Dzψ

i
+ + Fiabψ

i
+ψ


+λ

a
−λ

b
−

where λa,a− , ψi,ı+ are fermions coupling to the following bundles:

λa− ∈ Γ
(
(φ∗E)∗

)
, ψi+ ∈ Γ

(
K ⊗ φ∗T 1,0X

)
,

λb− ∈ Γ
(
K ⊗ φ∗E

)
, ψı+ ∈ Γ

(
(φ∗T 1,0X)∗

)
.

Not any holomorphic bundle E → X is allowed; only those satisfying the
following two constraints. The first consistency condition is known as the
“Green-Schwarz condition,” and says

ch2(E) = ch2(TX).

The second condition is specific to the A/2 model:

ΛtopE∗ ∼= KX

where KX is the canonical bundle of X. (This second constraint is a close
analogue of the condition in the B model that X must be such that K⊗2

X
∼=

OX [28, 30].) The pertinent states of the A/2 model are of the form

O ∼ bı1···ına1···apψ
ı1
+ · · ·ψ

ın
+ λ

a1
− · · ·λ

ap
− ↔ Hn(X,ΛpE∗).

In the special case that E = TX, the A/2 model reduces to the A model.
In this case, both of the conditions on E are satisfied automatically, and
moreover the states match, as

Hq(X,Λp(TX)∗) = Hp,q(X).

Now, let us turn to correlation function computations. We will first give
a formal overview of computations in both the A model and the A/2 model,
making the simplifying assumption that all moduli spaces are smooth, com-
pact, and have universal instantons. In practice, this will never be true, but
it will serve for the purposes of a short overview. Furthermore, for those
readers acquainted with Gromov-Witten theory, we will not couple to topo-
logical gravity in these notes, again for simplicity.

TOME 61 (2011), FASCICULE 7
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Let us first remind ourselves how classical contributions to A model cor-
relation functions come about. Assume the spaceX is compact of dimension
n, then classically (i.e. in degree zero), correlation functions have the form

〈O1 · · · Om〉 =
∫
X

ω1 ∧ · · · ∧ ωm

where ωi ∈ Hpi,qi(X) is a differential form corresponding to Oi. Physically,
in the quantum field theory there is a constraint (technically, arising as a
‘selection rule’ from left and right U(1)R symmetries), which implies that
for the correlation function to be nonzero,∑

i

pi =
∑
i

qi = n = dim X.

Thus, classical contributions to A model correlation functions have the form

〈O1 · · · Om〉 ∼
∫
X

(top-form).

In the A/2 model there is an analogous story. Assume that X is compact
of dimension n, and that E has rank r, then in degree zero correlation
functions have the form

〈O1 · · · Om〉 =
∫
X

ω1 ∧ · · · ∧ ωm

where ωi ∈ Hqi(X,ΛpiE∗). The same selection rules as before imply that
in order for this correlation function to be nonzero, we must have∑

i

qi = n,
∑
i

pi = r,

and so the correlation function has the form of an integral over X of an
element of Htop(X,ΛtopE∗). The constraint ΛtopE∗ ∼= KX makes the inte-
grand a top-form.
Now, let us return to the A model and consider contributions from world-

sheet instantons. In a sector of nonzero degree, the space of bosonic zero
modes is given by some (compactified) moduli space of worldsheet instan-
tonsM. If the sheaf

R1π∗α
∗TX ≡ 0,

where α : Σ×M → X is the universal instanton (Σ the worldsheet), and
π : Σ×M→M, then

〈O1 · · · Om〉 ∼
∫
M
ω1 ∧ · · · ∧ ωm

ANNALES DE L’INSTITUT FOURIER
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where ωi ∈ Hpi,qi(M). More generally,

〈O1 · · · Om〉 ∼
∫
M
ω1 ∧ · · · ∧ ωm ∧ Eul(Obs).

where
Obs ≡ R1π∗α

∗TX.

(Physically, the factor above arises from the effects of four-fermi terms in
the action, and zero modes of ψiz, ψız.) In all cases,

〈O1 · · · Om〉 ∼
∫
M

(top-form) .

Next, let us consider worldsheet instantons in the A/2 model. The bundle
E on X induces a sheaf F (physically, of λ zero modes) onM:

F ≡ R0π∗α
∗E

where π and α are as above. On the (2,2) locus, where E = TX, we have that
F = TM. (Experts are reminded that we are not coupling to topological
gravity.)
When

R1π∗α
∗TX = 0 = R1π∗α

∗E

correlation functions look like an integral overM of an element of

Htop (M,ΛtopF∗
)
.

By itself, this would be a problem – to get a number, we need to integrate
a top-form. However, if we apply the conditions

ΛtopE∗ ∼= KX ,

ch2(E) = ch2(TX),

then Grothendieck-Riemann-Roch implies that ΛtopF∗ ∼= KM, and so the
integrand is a top-form, as needed.
More generally, we get a more complicated expression. Define

Obs ≡ R1π∗α
∗TX, F1 ≡ R1π∗α

∗E ,

then if the ranks of Obs and F1 match, it can be shown there is a contri-
bution to correlation functions given by an integral overM of an element
of

H
∑

qi
(
M,Λ

∑
piF∗

)
∧Hn

(
M,ΛnF∗ ⊗ ΛnF1 ⊗ Λn (Obs)∗

)
where n is the rank of Obs.

TOME 61 (2011), FASCICULE 7
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This reduces to the usual A model result on the (2,2) locus by virtue
of Atiyah classes. In the special case that E = TX, the sheaf cohomology
group

H1 (M,F∗ ⊗F1 ⊗ (Obs)∗
)

contains the Atiyah class of Obs, and wedging copies together builds the
Euler class

Eul(Obs).

In this case, the anomaly conditions

ΛtopE∗ ∼= KX ,

ch2(E) = ch2(TX)

imply via Grothendieck-Riemann-Roch that

ΛtopF∗ ⊗ ΛtopF1 ⊗ Λtop (Obs)∗ ∼= KM

so again the integrand is a top-form.
So far, for simplicity of presentation, we have made the unreasonable

assumptions that M is compact, smooth, and has a universal instanton.
To do any computations, we need explicit expressions for the space M
and sheaf F , which will not have all of the properties above. We will use
“linear sigma model” moduli spaces. This has the advantage of being closely
connected to physics, though the disadvantage that there is no universal
instanton α : Σ×M→ X. As a result, the previous discussion was merely
formal, we will need to extend the induced sheaves over the compactification
divisor.
Schematically, a linear sigma model moduli space of maps P1 → V//G,

for V a vector space and G a reductive algebraic group, is a fine moduli
space of pairs(

principal G− bundle E on P1, G− equivariant map E → V
)
.

For example, a linear sigma model moduli space of maps from P1 into the
Grassmannian G(k, n) of k-planes in Cn (representable as Ckn//GL(k))
is a Quot scheme of subsheaves of On of rank k and fixed degree on P1

(see e.g. [8] and references therein). These moduli spaces arise physically
in “gauged linear sigma models,” thus the name.
Over the Grassmannian G(k, n), the physics construction will build all

bundles from (co)kernels of short exact sequences of “special homogeneous”
bundles, defined by representations of U(k) (rather than U(k)×U(n−k)).
A simple example of a bundle built in this form is the bundle E defined as

ANNALES DE L’INSTITUT FOURIER
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the kernel of the short exact sequence below:

0 −→ E −→
n⊕
V(k)

k+1⊕
Alt2V(k) −→

k−1⊕
Sym2V(k) −→ 0.

The vector bundle V(k) is the bundle associated to the fundamental repre-
sentation k of U(k), and so it is “special homogeneous” in the sense above,
as are the other factors above.
We will describe how such bundles naturally lift to sheaves on P1 ×M,

whereM is the linear sigma model moduli space (Quot scheme), which we
can then pushforward toM to get the desired induced sheaves.

Corresponding to the special homogeneous bundle V(k) is a rank k ‘uni-
versal subbundle’ S on P1×M. (Existence of S follows from the fact that
the linear sigma model moduli space is fine.) We lift all special homoge-
neous bundles so as to form a U(k)-representation homomorphism. For
example,

V(k) 7→ S∗,
V(k)⊗ V(k) 7→ S∗ ⊗ S,

AltmV(k) 7→ AltmS∗.

Then, given sheaves on P1 ×M, we pushforward toM, and compute.
To give more insight into these computations, let us specialize to the

projective space PN−1, defined by N homogeneous coordinates x0, · · · , xN ,
each of weight 1.
For projective spaces, there is a more concrete construction of the Quot

scheme M, which we outline next. (See [25] for more details.) For degree
d maps P1 → PN−1, we expand the homogeneous coordinates as:

xi = xi0u
d + xi1u

d−1v + · · · + xidv
d

where u, v are homogeneous coordinates on P1. We identify the xij with
homogeneous coordinates onM, then

MLSM = PN(d+1)−1.

We can do something similar to build F →M. For example, consider a
completely reducible bundle over PN−1:

E =
⊕
a

O(na).

Corresponding to the line bundle O(−1)→ PN−1 is the bundle

S ≡ π∗1OP1(−d)⊗ π∗2OPN(d+1)−1(−1) −→ P1 ×PN(d+1)−1.

TOME 61 (2011), FASCICULE 7
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The lift of E to P1 ×M is⊕
a

S−na −→ P1 ×PN(d+1)−1

which pushes forward to

F =
⊕
a

H0 (P1,O(nad)
)
⊗C O(na).

There is also a trivial extension of this to more general toric varieties.
For example, corresponding to the completely reducible bundle

E =
⊕
a

O(~na)

is the locally-free sheaf

F =
⊕
a

H0
(

P1,O(~na · ~d)
)
⊗C O(~na).

Let us work through these details on the (2,2) locus, where E = TX. The
tangent bundle of a (compact, smooth) toric variety X can be expressed as

0 −→ O⊕k −→
⊕
i

O(~qi) −→ TX −→ 0.

Applying the previous ansatz, we find

0 −→ O⊕k −→
⊕
i

H0
(

P1,O(~qi · ~d)
)
⊗C O(~qi) −→ F −→ 0,

F1 ∼=
⊕
i

H1
(

P1,O(~qi · ~d)
)
⊗C O(~qi).

The F above is precisely TMLSM, and F1 = Obs, as expected.
Now, let us turn to quantum cohomology. Physically, quantum coho-

mology is an “operator product” ring. For PN−1, quantum cohomology is
defined by the correlation functions

〈xk〉 =
{
qm if k = mN +N − 1,
0 else.

Physically, to get a clean result for operator products of the form above,
it is sometimes claimed that one requires (2,2) supersymmetry. However,
this has been shown not to be the case. Historically, [1] first conjectured
examples of (0,2) analogues of quantum cohomology, which were verified
in the work [17] which gave a mathematical definition of (0,2) quantum
cohomology and computed some basic examples. Later, [2] found a general
physical argument explaining why (0,2) quantum cohomology can exist
physically. Since then, there have been a number of followup papers in the
physics literature, including [12, 13, 19, 20, 21, 22, 23, 24, 27, 28].

ANNALES DE L’INSTITUT FOURIER
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Let us now ouline an example [1, 6, 7, 17]. Consider X = P1 ×P1, with
bundle E a deformation of the tangent bundle, expressible as a cokernel

0 −→ O ⊕O ∗−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0 (3.1)

where

∗ =
[
Ax Bx

Cx̃ Dx̃

]
, (3.2)

in which A, B, C, D are 2× 2 complex matrices, and

x =
[
x1
x2

]
, x̃ =

[
x̃1
x̃2

]
are the homogeneous coordinates on each copy of P1.

Briefly, one computes quantum (sheaf) cohomology by looking for rela-
tions in correlation functions. Let us work in degree (d, e). Then,

M = P2d+1 ×P2e+1

and

0 −→ O⊕2 −→
2d+2⊕

1
O(1, 0)⊕

2e+2⊕
1
O(0, 1) −→ F −→ 0,

F1 = 0 = Obs.
Correlation functions are linear maps

Sym2d+2e+2 (H1(F∗)
)
−→ H2d+2e+2(ΛtopF∗) = C.

It is possible to compute the kernel of this map (see [6, 7] for details); the
result for the quantum sheaf cohomology ring is that

det
(
Aψ + Bψ̃

)
= q1,

det
(
Cψ + Dψ̃

)
= q2.

Let us check that in the special case E = T (P1 × P1), we recover the
standard quantum cohomology ring. This case is described by

A = D = I2×2, B = C = 0,

and in this case, the quantum sheaf cohomology ring reduces to ψ2 = q1,
ψ̃2 = q2, perfectly matching the ordinary quantum cohomology ring of
P1 ×P1.
More generally, it has been argued [20] that for “linear” deformations of

tangent bundles of toric varieties,∏
α

(detMα)Q
a
α = qa

TOME 61 (2011), FASCICULE 7



2996 E. Sharpe

generalizing Batyrev’s ring

∏
i

(∑
b

Qbiψb

)Qai
= qa.

In addition to the A/2 model, one can also define a B/2 model, a (0,2)
analogue of the ordinary B model topological field theory. The A/2 and
B/2 models possess a symmetry not possessed by ordinary topological field
theories. Specifically, the B/2 model on a space X with a bundle E is equiv-
alent to the A/2 model on X with bundle E∗. This duality and associated
subtleties are discussed in [28].

4. (2,2) and (0,2) Landau-Ginzburg models

So far we have discussed the A/2 and B/2 models, which are “pseudo-
topological-twists” of ordinary nonlinear sigma models.

A (2,2) supersymmetric Landau-Ginzburg model is a nonlinear sigma
model on a space or stack X plus a “superpotential” W , a holomorphic
function W : X → C. In physics, we describe this theory via its action:

S =
∫

Σ
d2x

(
gi∂φ

i∂φ + igiψ

+Dzψ

i
+ + igiψ


−Dzψ

i
− + · · ·

+ gi∂iW∂W + ψi+ψ
j
−Di∂jW + ψı+ψ


−Dı∂W

)
.(4.1)

There are analogues of the A and B model topological field theories for
such Landau-Ginzburg models. In the math community, A-twisted Landau-
Ginzburg models were discussed beginning in [9, 10]; in the physics com-
munity, they have been discussed in [14, 16]. B-twisted Landau-Ginzburg
models when X is a vector space were originally discussed in [29].
Let us quickly review B-twisted Landau-Ginzburg models, over general

spaces X. The states of the theory are BRST-closed (modulo BRST-exact)
products of the form

b(φ)j1···jm
ı1···ın η

ı1 · · · ηınθj1 · · · θjm

where the η, θ are linear combinations of the fermions ψi,ı± . Under the action
of the BRST operator Q,

Q · φi = 0, Q · φı = ηı, Q · ηı = 0, Q · θj = ∂jW, Q2 = 0,

which are almost the same as the standard B model, except for the BRST
variation of θj , which here is nonzero, and vanishes for the ordinary B

ANNALES DE L’INSTITUT FOURIER
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model. If we identify

ηı ↔ dzı, θj ↔
∂

∂zj
, Q ↔ ∂

then we can identify the BRST cohomology with hypercohomology groups
[14]

H·
(
X, · · · −→ Λ2TX

dW−→ TX
dW−→ OX

)
.

Let us perform some consistency checks of the description above.
• In the case that the superpotential W vanishes, the Landau-Ginz-

burg model above should reduce to an ordinary B model on X.
In this case, the hypercohomology reduces to H∗(X,Λ∗TX), which
are precisely the states of the B model [30], as expected.

• In the case that X = Cn and W a quasihomogeneous polynomial,
the sequence above resolves the fat point {dW = 0}, so that the
hypercohomology is isomorphic to the ring

C[x1, · · · , xn]/(dW )

matching the standard result [29] for this case.
To perform the A twist of the Landau-Ginzburg model, we need a U(1)

isometry on X with respect to which the superpotential is quasi-homoge-
neous. Technically, we then twist by the combination of that isometry and
the R-symmetry of the nonlinear sigma model. In more detail, let Q(ψi) be
such that

W (λQ(ψi)φi) = λW (φi)
then we twist by taking

ψ 7→ Γ
(

original⊗K−(1/2)QR
Σ ⊗K−(1/2)QL

Σ

)
where

QR,L(ψ) = Q(ψ) +


1 ψ = ψi+, R,

1 ψ = ψi−, L,

0 else.
For example, consider the case that X = Cn, and W is a quasi-homoge-

neous polynomial. Here, to perform the A twist, we need to make sense of
e.g. K1/r

Σ where r = (2)(degree). There are two ways to handle this issue:
• One way is to couple to topological gravity, where one can make
sense of such roots of the canonical bundle. This is the procedure
followed in [9, 10].

• Alternatively, one can choose not to couple to topological gravity,
as was done in [14], but then one cannot twist this example.
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We will discuss the second case.
Let us outline the details of a ‘twistable’ example. Consider a Landau-

Ginzburg model on
X = Tot (E∗ −→ B)

with B a compact Kähler manifold, and

W = pπ∗s

where s ∈ Γ(B, E) and p is a fiber coordinate. In this case, we can take the
U(1) isometry to act as phase rotations along the fiber directions. Following
the prescription above, we find that the fermions along the base B are
twisted in the usual fashion:

ψi−
(
≡ χi

)
∈ Γ

((
φ∗T 0,1B

)∗)
, ψi+

(
≡ ψiz

)
∈ Γ

(
K ⊗ φ∗T 1,0B

)
,

ψı−
(
≡ ψız

)
∈ Γ

(
K ⊗ φ∗T 0,1B

)
, ψı+

(
≡ χı

)
∈ Γ

((
φ∗T 1,0B

)∗)
,

whereas the fermionic partners of the fiber directions are twisted differently:

ψp−
(
≡ ψpz

)
∈ Γ

(
K ⊗

(
φ∗T 0,1

π

)∗)
, ψp+ (≡ χp) ∈ Γ

(
φ∗T 1,0

π

)
,

ψp−
(
≡ χp

)
∈ Γ

(
φ∗T 0,1

π

)
, φp+

(
≡ ψpz

)
∈ Γ

(
K ⊗

(
φ∗T 1,0

π

)∗)
and the p field itself is also twisted.
The states we can build(1) in this theory are BRST-closed (modulo

BRST-exact) products of the form

b(φ)ı1···ınj1···jmχ
ı1 · · ·χınχj1 · · ·χjm

where φ ∼ {s = 0} ⊂ B, ψ ∼ TB|{s=0}, and the BRST operator acts as

Q · φi ∝ χi, Q · φı ∝ χı, Q · χi = Q · χı = 0,

Q · χp 6= 0, Q · χp 6= 0, Q2 = 0.

We identify
χi ↔ dzi, χı ↔ dzı, Q ↔ d,

so we see that the states above can be identified with elements of

Hm,n(B)|s=0.

(1)The states ‘accessible’ to this theory are not precisely the same as the states available
at the endpoint of renormalization group flow – we get the restriction of the cohomology
of B, instead of the cohomology of a complete intersection. This is a standard technical
issue in constructions of this form.
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Next, consider correlation functions. In prototypical cases correlation
functions can be shown to have the form

〈O1 · · · On〉

=
∫
M
ω1 ∧ · · · ∧ ωn

·
∫
dχpdχp exp

(
−|s|2 − χpdziDis − c.c. − Fidz

idzχpχp
)
.︸ ︷︷ ︸

Mathai−Quillen form

The Mathai-Quillen form represents a Thom class, so

〈O1 · · · On〉 =
∫
M ω1 ∧ · · · ∧ ωn ∧ Eul(N{s=0}/M)

=
∫
{s=0} ω1 ∧ · · · ∧ ωn

which is the same as the ordinary A model on the space {s = 0} ⊂ B. This
is not a coincidence, as we shall see shortly.
Let us consider a particular example, a Landau-Ginzburg model on

X = Tot
(
O(−5) −→ P4)

withW = pπ∗s, s a quintic polynomial on P4. The degree zero contribution
to correlation functions on a genus zero worldsheet is of the form

〈O1 · · · On〉 =
∫

P4
d2φi

∫ ∏
i

dχidχıdχpdχpO1 · · · On

· exp
(
−|s|2 − χiχpDis − χpχıDıs − Rippkχ

iχpχpχk
)

(where the curvature term describes the curvature of O(−5)).
In the A twist (unlike the B twist), the superpotential terms are BRST

exact:

Q ·
(
ψi−∂iW − ψi+∂ıW

)
∝ −|dW |2 + ψi+ψ

j
−Di∂jW + c.c.

As a result, under rescalings of the superpotential W by a constant factor
λ, correlation functions are unchanged. Let us check that in more detail.

〈O1 · · · On〉

=
∫

P4
d2φi

∫ ∏
i

dχidχıdχpdχpO1 · · · On

· exp
(
−λ2|s|2 − λχiχpDis − λχpχıDıs − Rippkχ

iχpχpχk
)
.

From our previous remarks, the correlation function above should not de-
pend upon the value of λ. Let us compare its values in the following two
rescaling limits:
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(1) λ → 0. In this case, the exponential reduces to purely curvature
terms, hence one brings down enough factors to eat up the χp zero
modes. This is equivalent to inserting an Euler class.

(2) λ→∞. In this case, the theory localizes on {s = 0} ⊂ P4.
The results in the two limits are equivalent, as expected.
To understand how these Landau-Ginzburg models are related to nonlin-

ear sigma models, we need to say a few words about the “renormalization
group.” This is a semigroup operation on the space of quantum field the-
ories, that constructs new quantum field theories approximating previous
ones valid at long distances.

The renormalization group turns out to be a very useful tool in physics
for understanding long distance, low energy behavior of physical systems.
One of its drawbacks, however, is that it is impracticle to follow it explic-
itly: usually the best one can manage is to construct an asymptotic series
expansion for its tangent vector.

One of the important properties of the renormalization group is that it
preserves topological field theories. If two physical theories are related by
renormalization group flow, then, correlation functions in the two theories
must match.

In the present case, it can be argued that a Landau-Ginzburg model on

X = Tot
(
E∗ π−→ B

)
with W = pπ∗s, s ∈ Γ(E), flows under the renormalization group to a
nonlinear sigma model on {s = 0} ⊂ B. This is the physical reason for the
matching correlation functions we computed earlier.
So far we have outlined (2,2) supersymmetric Landau-Ginzburg mod-

els. Next, we shall discuss (0,2) supersymmetric Landau-Ginzburg models,
also known as heterotic Landau-Ginzburg models (we shall use the terms
interchangeably).

A heterotic Landau-Ginzburg model is defined by an action

S =
∫

Σ
d2x

(
gi∂φ

i∂φ + igiψ

+Dzψ

i
+ + ihabλ

b
−Dzλ

a
− + · · ·

+ habFaF b + ψi+λ
a
−DiFa + c.c.

+ habE
aE

b + ψi+λ
a
−DiE

bhab + c.c.
)
.

In the expression above, the sections

Ea ∈ Γ(E), Fa ∈ Γ(E∗)
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are constrained to obey ∑
a

EaFa = 0

and replace the superpotential – instead of a holomorphic function W , one
has Ea, Fa.
We can recover ordinary (2,2) supersymmetric Landau-Ginzburg models

as special cases of heterotic Landau-Ginzburg models by taking E = TX,
Ea ≡ 0, and Fi ≡ ∂iW where W is the superpotential of the (2,2) Landau-
Ginzburg model. It is straightforward to check that in this case, the action
above reduces to that for a (2,2) supersymmetric Landau-Ginzburg model,
equation (4.1).
Heterotic Landau-Ginzburg models have analogues of the A/2 and B/2

twists:
• If Ea ≡ 0, then we can perform the standard B/2 twist. We take

ψı+ ∈ Γ
(
(φ∗T 1,0X)∗

)
, λa− ∈ Γ

(
φ∗E

)
.

We require

ΛtopE ∼= KX , ch2(E) = ch2(TX).

The pertinent states are elements of the hypercohomology groups

H·
(
· · · −→ Λ2E iFa−→ E iFa−→ OX

)
.

• If Fa ≡ 0, then we can perform the standard A/2 twist. We take

ψi+ ∈ Γ
(
φ∗T 1,0X

)
, λa− ∈ Γ

(
φ∗E

)
.

We require

ΛtopE∗ ∼= KX , ch2(E) = ch2(TX).

The pertinent states are elements of the hypercohomology groups

H·
(
· · · −→ Λ2E∗ iEa−→ E∗ iEa−→ OX

)
.

More generally, one must combine with a C× action in order to twist.
Heterotic Landau-Ginzburg models are often related to heterotic non-

linear sigma models by renormalization group flow. In general, a heterotic
Landau-Ginzburg model on the space

X = Tot
(
F1 ⊕F∗3

π−→ B
)

with bundle E given by an extension

0 −→ π∗G∗ −→ E −→ π∗F2 −→ 0
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flows under the renormalization group to a nonlinear sigma model on
Y ≡ {Gµ = 0} ⊂ B, with Gµ ∈ Γ(G), with bundle given as the middle
cohomology of the short complex

F1 −→ F2 −→ F3.

(The maps in the short complex above are determined by the Ea, Fa in
the heterotic Landau-Ginzburg theory.)
For example, a heterotic Landau-Ginzburg model on the space

X = Tot
(
F1

π−→ B
)

with bundle E ′ = π∗F2 and Fa ≡ 0, Ea = pẼa (p a fiber coordinate along
F1, Ẽa : F1 → F2) can be shown to flow, under the renormalization group,
to a heterotic nonlinear sigma model on B with bundle

E = coker
(
Ẽa : F1 −→ F2

)
.

As a check of the claim above regarding renormalization group flow, we
can compare elliptic genera, which are preserved under the renormaliza-
tion group. The elliptic genus of this (0,2) Landau-Ginzburg model can be
computed, and is proportional to [3]∫
B

Td(TB) ∧ ch
(
⊗Sqn((TB)C)⊗ Sqn((e−iγF1)C)⊗ Λ−qn((e−iγF2)C)

)
.

It is straightforward to check [3] that this matches the elliptic genus of the
claimed correspoinding nonlinear sigma model. (More generally, though we
shall not discuss details, there is a Thom class argument [3] that elliptic
genera in (2,2) and (0,2) Landau-Ginzburg models match elliptic genera
of nonlinear sigma models believed to be related by renormalization group
flow.)
Let us return to the example of a nonlinear sigma model on P1×P1 with

bundle a deformation of the tangent bundle, as defined in equations (3.1),
(3.2). Corresponding to that heterotic nonlinear sigma model is a heterotic
Landau-Ginzburg model on the space

X = Tot
(
O ⊕O π−→ P1 ×P1

)
with bundle

π∗O(1, 0)2 ⊕ π∗O(0, 1)2

with Fa ≡ 0 and

(Ea) =
[
Ax Bx

Cx̃ Dx̃

] [
p1
p2

]
.
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Since Fa ≡ 0, we can perform the standard A/2 twist (without having to
invoke a U(1) isometry). Correlation functions have the form

〈O1 · · · On〉 =∫
P1×P1

d2x

∫
dχi

∫
dλaO1 · · · On

(
λaẼa1

) (
λbẼb2

)
f(Ẽa1 , Ẽa2 )

which reproduces standard results for quantum sheaf cohomology in this
example.
Let us outline computations in another example. Specifically, consider the

heterotic string on a quintic hypersurface in P4, with bundle a deformation
of the tangent bundle. This is equivalent under renormalization group flow
to a Landau-Ginzburg model on the space

X = Tot
(
O(−5) π−→ P4

)
with bundle E = TX, Ea ≡ 0, and

Fa = (G, p(DiG+Gi))

where G ∈ Γ(O(5)) and p a fiber coordinate. This heterotic Landau-
Ginzburg model flows under the renormalization group to a (0,2) theory
on {G = 0} ⊂ P4, with bundle a deformation of the tangent bundle, as
defined by the Gi.
Now, let us perform the A/2 twist. Correlation functions are of the form

〈O1 · · · On〉 =∫
d2φi

∫
dχi

∫
dλı

∫
dχp

∫
dλpO1 · · · On

· exp
(
−|G|2 − χiλpDiG− χpλı

(
DıG+Gı

)
−Rippkχ

iχpλpλk
)
.

After performing the Grassmann integrals over χp, λp, we have that this
correlation function is∫

d2φi
∫
dχi

∫
dλıO1 · · · On

·
[(
χiDiG

) (
λı
(
DıG+Gı

))
+Rippkg

ppχiλk
]

exp
(
−|G|2

)
.

The expression above encodes a (0,2) deformation of a Mathai-Quillen form.
More generally, based on computations in gauged linear sigma models,

I. Melnikov and J. McOrist [21] have a formal argument that the A/2 twist
should be independent of Fa’s and the B/2 twist should be independent
of Ea’s, which generalizes the statement that the ordinary A model is
independent of complex structures, and the B model is independent of
Kähler structures.
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5. Conclusions

Briefly, in this short note, we have given an overview of progress towards
(0,2) mirror symmetry, then a more detailed discussion of quantum sheaf
cohomology (part of the (0,2) mirrors story), and finally discussed (2,2)
and (0,2) supersymmetric Landau-Ginzburg models over nontrivial spaces.
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