i

S %
2oy ANNALES

DE

L INSTITUT FOURIER

José Pedro GAIVAO

Analytic invariants for the 1 : —1 resonance
Tome 63, n°4 (2013), p. 1367-1426.

<http://aif.cedram.org/item?id=AIF_2013__63_4_1367_0>

© Association des Annales de 1’institut Fourier, 2013, tous droits
réserves.

L’acces aux articles de la revue « Annales de I’institut Fourier »
(http://aif.cedram.org/), implique 1’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie de cet article sous quelque forme que
ce soit pour tout usage autre que 1’utilisation a fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://aif.cedram.org/item?id=AIF_2013__63_4_1367_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Ann. Inst. Fourier, Grenoble
63, 4 (2013) 1367-1426

ANALYTIC INVARIANTS FOR THE 1: -1
RESONANCE

by José Pedro GAIVAO (*)

ABSTRACT. Associated to analytic Hamiltonian vector fields in C* having an
equilibrium point satisfying a non semisimple 1 : —1 resonance, we construct two
constants that are invariant with respect to local analytic symplectic changes of
coordinates. These invariants vanish when the Hamiltonian is integrable. We also
prove that one of these invariants does not vanish on an open and dense set.

REsUME. — Etant donnés des champs de vecteurs Hamiltoniens analytiques
dans C* ayant un point d’équilibre satisfaisant une résonance 1 : —1 non semi-
simple, nous construisons deux constantes qui sont invariantes relativement aux
changements de coordonnées symplectiques analytiques. Ces invariants sont égaux
a zéro lorsque ’Hamiltonien est intégrable. Nous montrons également que ces in-
variants sont différents de zéro dans un ensemble ouvert et dense.

1. Introduction

Let Xz : (C%0) — (C%0) be an analytic Hamiltonian vector field, i.e.
there exists an analytic function H : (C*,0) — (C,0) called the Hamilton-
ian such that Q(X g, v) = dH(v) for every v € C* where Q is a symplectic
form in C*. For definiteness we assume that  is the standard symplectic
form,

(1.1) Qx,y) = x'Jy, x,yeC* where J= (—(;d I(?) .

Keywords: analytic classification, Stokes phenomenon, splitting of separatrices.
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The matrix J is known as the standard symplectic matrix. In this setting,
the Hamiltonian vector field Xz written in coordinates reads,

OH o0H
Xa(a.p) = (Gr@p). -G ap)). (ap) e xch

In this paper we study a Hamiltonian vector field Xy with an equilibrium
point Xz (0) = 0 in a 1 : —1 resonance, i.e. the matrix DXy (0) is not
diagonalizable and has a pair of double imaginary eigenvalues +ia,, a > 0.

Our study is motivated by the problem of estimating the size of the
chaotic zone near a Hamiltonian-Hopf bifurcation [9, 19, 24]. This is a
codimension one bifurcation of an equilibrium point in a two degrees of
freedom Hamiltonian system in R*. More precisely, let H, be a real an-
alytic family of Hamiltonian functions defined in a neighborhood of the
origin in R*. Suppose that the origin is an equilibrium point of Xy, i.e.,
Xp.(0) =0 for every ¢, and that as € — 0T the equilibrium goes through a
Hamiltonian-Hopf bifurcation: for € > 0 the matrix DXy _(0) has two pairs
of complex conjugate eigenvalues 0, + ia, a., B > 0 that approach the
imaginary axis as € — 07 yielding a pair of double imaginary eigenvalues
+iag, ag > 0 for DXy, (0). At the critical value € = 0 the equilibrium is
at a 1 : —1 resonance. This bifurcation has been extensively studied [30]
and it is known that there are two main bifurcation scenarios. In one of
these scenarios, for € > 0 there are two dimensional stable W and unsta-
ble W manifolds that live inside the three dimensional energy level set
{H. = H.(0)} and shrink to the equilibrium as the bifurcation parameter
approaches the critical value. Points in the manifold W2 (resp. W*) con-
verge to the equilibrium forward (resp. backward) in time under the action
of the flow. The intersection W2 N W if not empty consists of homoclinic
orbits, thus is at least one-dimensional. It is well known that the existence
of a transverse homoclinic orbit is a route to the onset of chaotic dynamics
in a neighborhood of the equilibrium point [4, 18].

In [9] a quantity w known as homoclinic invariant was introduced to
measure the size of the splitting of stable and unstable manifolds. Roughly
speaking, it is defined to be the symplectic area formed by a pair of nor-
malized tangent vectors at a homoclinic point. Let us show how to define
it precisely. In a neighborhood of the equilibrium, the unstable manifold
W2 can be locally parameterized by a C! function,

I“:{(p,2):peT,z< 2} — R

ANNALES DE L’INSTITUT FOURIER



1:—1 RESONANCE 1369

for some 2y € R where T = R/27xZ. Moreover, T'* is a solution of the
nonlinear PDE,
(1.2) a0, ,I" + 0. T = Xy (T),
with the following asymptotic condition,

lim T%(p,2) = 0.
Such parameterization is said to be a natural parameterization of W!.
Since it satisfies the PDE (1.2), T'* conjugates the motion on the unstable
manifold in a neighborhood of the equilibrium to the linear motion on the
cylinder T x (—o0, z9). That is,

(1.3) (o + aet, z + Bet) = Dl oT"(gp, 2),

where (I>§LIE is the Hamiltonian flow. The derivatives 0,I'* and 0, define
a basis of tangent vectors at each point of W!. To obtain a natural pa-
rameterization for the stable manifold we can reverse the time and repeat
the same reasoning, or equivalently consider —H.. For simplicity, suppose
that Xp_ is time-reversible, i.e., S, Xy, = —Xp_, where § # £Id is some
linear involution. In the reversible setting it is convenient to define a local
parameterization for the stable manifold as

I‘s((p7 Z) =8o FU(—% _Z)v

which satisfies the same PDE (1.2). The freedom in the definition of the
parameterizations is reduced to translations in their arguments. Let Fix(S)
denote the set of fixed points of the involution. Given an orbit ~ of the vec-
tor field X g, we call it symmetric if vy NFix(S) # 0. In [15] the existence of
two primary symmetric homoclinic orbits is proved. Roughly, they corre-
spond to the “first intersection” of both W2 * with Fix(S). Let -, denote
one these homoclinic orbits. Due to the freedom in the definition of the
parameterizations we can suppose that v,(to) = I'“(v0, 20) = I'*(go, 20)
for some typ € R and (pg,20) € T x R. The homoclinic invariant of -y, is
defined in the following way,

w = Q(0,T* (9o, 20), 0T (0, 20)).-
Clearly, w takes the same value along the homoclinic orbit +,. Moreover,
if w # 0 then ~; is a transverse homoclinic orbit. Thus, w measures the
splitting of the stable and unstable manifolds along the homoclinic orbit
~n- Based on analytical and numerical evidence, in [9] it is conjectured that
the homoclinic invariant has the following asymptotic expansion,

(1.4) w ~ e e Zwkek as e—0".
k>0

TOME 63 (2013), FASCICULE 4
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The symbol ~ in (1.4) means that if we truncate the series then the error in
the approximation is of the order of the first missing term. Recall that j, is
the absolute value of the real part of the eigenvalues and that 5. — 0 as € —
0T. Thus (1.4) implies that w is exponentially small with respect to €. The
leading term wq in the asymptotic expansion is called the splitting constant
since wy # 0 implies that w # 0 for e sufficiently small. The splitting
constant is defined at the moment of bifurcation, i.e., it only depends on
the Hamiltonian with a 1 : —1 resonance. Moreover, wy = QM where
is one of the invariants studied in the present paper.

Proving (1.4) is a highly non-trivial problem comparable to the problem
of the splitting of the separatrices of the standard map that started with
the work of V. Lazutkin [17] and ended with a complete proof given by
V. Gelfreich in [11]. Based on the results of [8] and on the results of the
present paper the author has an unpublished proof of (1.4) that will send
for publication as a separate paper.

Also related to this work is the study of the so-called inner equation
[1, 22, 25]. In most problems of exponentially small splitting of separa-
trices, the leading constant of an asymptotic formula that measures the
splitting comes from the study of an inner equation which, roughly speak-
ing, contains the most singular behavior of the problem [10].

The study of exponentially small splitting of invariant manifolds in
Hamiltonian systems of higher dimensions can be found in [21, 26]. In these
works, the authors have devised a geometrical method to study the splitting
of stable and unstable manifolds of a partially hyperbolic invariant torus
(known as “whiskered torus”) in near-integrable Hamiltonian systems.

The combination of geometrical and analytical methods to study the
exponentially small splitting of separatrices has proved fruitful and still
today, it follows closely the original ideas introduced by V. Lazutkin in
[17].

Finally, let us mention that the invariants found in this paper have a
parallel to the analytic invariants found in [12] which are defined for diffeo-
morphisms in C? with a parabolic fixed point. One of these invariants also
plays a role in the splitting of separatrices near a saddle-center bifurcation
[14]. In particular, for the Hénon map the same study was carried out in
[13] where a connection with the resurgent theory of J. Ecalle was estab-
lished. For a more recent treatment on the connection between resurgence
and splitting of separatrices the reader is referred to [27]. See also [6, 23, 29]
for related studies in analytic classification of germs of vector fields.

ANNALES DE L’INSTITUT FOURIER
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To conclude the introduction let us outline the structure of the rest
of paper. In Section 2 we setup the problem and recall some well known
facts about normal forms. The main results of this paper are presented in
Section 3. In Section 4 we construct formal solutions of certain differential
equations. Section 5 develops a theory to invert a type of linear operators.
In Section 6 we study a variational equation and Sections 7 and 8 contain
the proofs of our main results.

2. Preliminaries

Let Xy be defined as in the introduction. The well known normal form
theory for quadratic Hamiltonians [2] provides a symplectic linear change
of variables that transforms the quadratic part of the Hamiltonian H into
the following normal form,

L
2
where q = (q1,¢2), P = (p1,p2), t? = 1 and a > 0. Without lost of general-
ity we can assume that & = 1 and ¢« = 1. Indeed, by a re-parameterization of

H(q,p) = —a(gp1 — ¢ip2) + = (¢f + ¢3) + high order terms,

time or equivalently by scaling the Hamiltonian H by ta~! and performing
the symplectic linear change of variables,

a Va 1
) ) — = 9 y b y T =
(CI17Q2 b1 Pz) <L\/afh \/EQZ L o P1 \/am),

we obtain the desired normalization of « and ¢. It is also possible to nor-
malize the higher order terms of H. The normal form of H is attributed to
Sokol’skii who derive it when studying the formal stability of H.

THEOREM 2.1 (Sokol’skif [28]). — There is a formal near identity sym-
plectic change of coordinates ® such that,

Hi=Ho®d =1, + 1, + Z ap I TE,
I+k>2
where
_di+e _pitn
= s 3 = .
2 2
The normal form coefficients a;, € C are uniquely defined, forming an

(2.1) I = gop1 — q1p2, 12

infinite set of invariants for the Hamiltonian H.

The normal form H* is obtained inductively by constructing a near iden-
tity symplectic changes of variables that normalizes each order of H at a
time without affecting the previous orders. Moreover, it is constructed in

TOME 63 (2013), FASCICULE 4
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such a way that has an additional S! symmetry induced by the integral of
motion Iy, i.e. Q(Xps, Xy,) = 0. There is a convenient way of rewriting
the normal form that takes into account the different contributions of the
higher order monomials. More precisely, we define a new order for a mono-
mial in Clg1, g2, p1, p2]: for i = 1,2 we let g; have order 2 while p; have order
1. For example, using this new ordering we say that the monomial p;p, has
order 2 while q;p; has order 3. Reordering the terms of H* according to
this new order we get,

HY=Ho® =1, + I, +nl?+ Z ap 1T,
314+2k>5
where the coefficient 7 is equal to as . In general, the limit of the normal
form procedure produces a normal form transformation ® that is divergent.
However the normal form is rather useful and can be used to approximate
at any order the original H by an integrable one. Thus we can assume that
H is in the general form,

(2.2) H=-I+ I+l +F,

where n € C and F : U4 — C is a bounded analytic function defined on
an open neighborhood U of the origin in C* and containing monomials of
order greater or equal than 5.

In the real analytic setting, the normal form coefficients are real and 7
determines the stability type of the equilibrium of Xp. According to [20],
when 7 > 0 the equilibrium is Lyapunov stable and it becomes unstable
when 1 < 0. The degenerate case corresponds to n = 0.

Throughout this paper we will consider the case of a non-degenerate
elliptic equilibrium,

(2.3) n # 0.

This is a generic condition. In the degenerate case, one has to include in
the leading order (2.2) the next term ag xI% of the normal form for which
o,k # 0.

Although the equilibrium point of Xy is elliptic, we will show that it
has a stable (resp. unstable) immersed complex manifold by constructing a
stable (resp. unstable) parameterization T (¢, 7) (resp. I'™(p, 7)) defined
in certain regions of C?, with some prescribed asymptotics at infinity and
satisfying the nonlinear PDE:

(2.4) DI* = Xy (I'%),  where D=0, +0,.

In a common domain of intersection, the stable and unstable parameteri-
zations are described by a single asymptotic expansion, implying that their

ANNALES DE L’INSTITUT FOURIER
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difference is beyond all algebraic orders. We will obtain a refined estimate
for the difference of parameterizations and prove that it has an asymptotic
expansion with an exponentially small prefactor. Moreover, in the four di-
mensional space C* the difference of the parameterizations can be locally
described by four constants that can be used to define two local analytic
invariants for the Hamiltonian H.

Let us precisely state our results.

3. Main results
3.1. Parameterizations

First we will study formal solutions of equation (2.4). Denote by T the
space of trigonometric polynomials with complex coefficients, i.e., the space
of functions of the form,

n n
ao + Z a, cos(ke) + Zbk sin(kp), ag,br € C, n € Np.
k=1 k=1
We solve equation (2.4) in the space of formal power series T4[[71]], i.e.,
we substitute a series into the equation, collect coefficients at each order
of 771 in both sides and then solve an infinite system of equations in T.
Then we obtain the following result.

THEOREM 3.1 (Formal Separatrix). — Equation (2.4) has a non-zero
formal solution T’ having the form,
T Zf‘l((p”r)
o
~ I A
31) Plor) = |7 20T here Te T[], i=1....4
T 1:3(907 T)
T 1F4(§0,7’)
with the leading orders,
Dy (p,7) = Kcosp + Bt -1, . Ly(p,7) = Ksing — it S
n

A A

FS(@»T):KCOS@+@T—1+... F4(@,T):nsin@—@7_l+...
7 1

2

where K

7% and the ellipsis mean higher order terms in 7. Moreover,

for any other non-zero formal solution T of (2.4) having the same form
(3.1) there exist (0o, 70) € C2 such that T(p,7) = I'(¢ + ©0, 7 + 70).

TOME 63 (2013), FASCICULE 4



1374 José Pedro GAIVAO

This theorem is proved in Section 4. We call I'a formal separatriz. In
general, these formal series do not converge (see Corollary 3.8). According
to the previous theorem, the freedom in the choice of formal solutions is
given by translations in the (i, z)-plane. We can eliminate this freedom by
fixing the first two coefficients of the formal series I';. This freedom can
not be eliminated in a coordinate independent way, unless the Hamiltonian
vector field has some extra properties, such as being time-reversible (see
Remark 4.6).

In the following we construct analytic solutions of equation (2.4) with
prescribed asymptotics I' in certain regions of C2. Fix h > 0 and let

T, ={peC/2rZ: [Imp| <h}.

In order to state our results we need to introduce the notion of asymptotic
expansion. Let X be a subset of C that contains a limit point a, possibly
the point at infinity. A sequence of functions {¢,}, .y defined in X and
taking values in C is called as asymptotic sequence as 7 — a if none of the
functions &,, vanish in a neighborhood of a (except the point a) and if for
every n € N we have,

lim £n+1 (T)

T—a gn(T) =0

For example, {77"}, .y is an asymptotic sequence as 7 — oo. Given two
functions f,g : Tj, x X — C we shall frequently use the big-O notation
f = O(g) meaning that there exists a constant C' > 0 such that |f(p,7)| <
Clg(p, )| for all (¢, ) € Ty, x X or we write f = O(g) as (T — a) meaning
that there exists a constant C' > 0 and a neighborhood U of a such that
If (@, 7)] < Clg(p,7)| for all (p,7) € Tj, x (XNU). Finally, given a function
f:Tp x X — C we say that it has an asymptotic expansion with respect
to the asymptotic sequence {&,} and write,

Fl@,m) ~ Y enl)n(r),

n>1

if for every N € N the following holds,

Flo,m) =Y en(9)én(r) = O(€nsa(1)) as (1 —a).

It is easy to see that the asymptotic expansion of f is unique. Moreover, the
definition of the big-O notation and of asymptotic expansion easily extends
to functions taking values in C* for any k € N.

ANNALES DE L’INSTITUT FOURIER
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Given r > 0 and 0 < § < 7 consider the following sector,
(3.2) D ={reC: |arg(T+7r)| >0},

which can be visualized in Figure 3.1.

Figure 3.1. Domains D} .

We shall leave the parameters 6 and h fixed throughout this paper. The
next theorem gives the existence of an analytic solution of equation (2.4)
having the formal separatrix as an asymptotic expansion in the sector D, .
The proof of the theorem can be found in Section 7.

THEOREM 3.2 (Unstable Parameterization). — Given a formal separa-
trix I' there exist r— > 0 and a unique analytic function ' : T, x D —

C* solving equation (2.4) such that T~ (¢, 7) ~ (¢, 7) as 7 — oo in D .

It follows from the asymptotics of I'” that for » > 0 sufficiently large
the set T~ (T, x D) is a two dimensional immersed complex manifold.
Points in this manifold converge to the equilibrium under the flow, i.e.
®L (I~ (¢,7)) = 0as Ret — —oo. Thus I'™ is an analytic parameterization
of a local unstable manifold of the equilibrium of Xg. An analogous result
is valid for the stable manifold. More precisely, for r > 0 let D, be the
symmetric sector,

Df={reC|-7€D;}.
By properly modifying the arguments in the proof of Theorem 3.2, we can

prove that given a formal separatrix I' there exist 7, > 0 and an analytic
function TF : T, x D, — C* solving the same equation (2.4) such that

+ [ . ; +
I'*(p,7) ~T(p,7) as 7 — o0 in Df .

TOME 63 (2013), FASCICULE 4
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3.2. The difference I'T —T'~

Therefore, equation (2.4) has two analytic solutions I'* both defined in
symmetric sectors D for r = max {r_,r, } whose intersection in the 7-
plane consists of two connected components (see Figure 3.2). Since both
functions have the same asymptotic expansion I then,

T (p,7) =T (p,7)~0 as T—00 in DSND,.

Figure 3.2. The intersection of the domains D;f.

Thus, their difference is said to be beyond all algebraic orders. We shall
obtain a more precise estimate for the difference of the parameterizations
on the lower component of the set D;f N D,” which we denote by D2. Similar
considerations work for the upper connected component D). In order to
obtain such estimate we will use the fact that ' — '™ is approximately a
solution of the variational equation of Xy along the unstable solution I'~.
Therefore, we study the analytic solutions of the variational equation,

(3.3) Du= DXy (T (¢,7))u.

Since both 0,I'~ and 9,I'~ solve equation (3.3) we shall construct a matrix
solution U of equation (3.3) satisfying the following properties:
(1) The matrix-valued function U : Tj, x D, — C*** is analytic and
continuous on the closure of its domain.
(2) The third and fourth columns of U are the known solutions 0,I'~
and 9,I'" respectively.
(3) U is symplectic, i.e. UTJU = J where J is the standard symplectic
matrix (1.1).
A matrix U satisfying the above conditions is said to be a normalized
fundamental solution of equation (3.3). We will also construct asymptotic

ANNALES DE L’INSTITUT FOURIER
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expansions for these fundamental solutions as formal solutions of the formal
variational equation,

(3.4) Du = DXy (T (¢, 7)),

where T' is a formal separatrix. The existence of such formal solutions is
provided by the next proposition whose proof can be found in Section 4.

PROPOSITION 3.3. — Given a formal separatrix I, the corresponding
formal variational equation (3.4) has a formal fundamental solution U of
the following form,

15 724 —2 -3
T U1 TUl2 T O TUL3 U1,4
14 724 -2 -3
2. T U231 T U22 T “U23 T “U24
U= 24 34 —14 -2 )
T"U31 TTU32 T U333 T TU34
724 34 —1n -2
T Ug,1 T Ug2 T "Uq3 T “Ugy

where 4; ; € T[[r7 Y]], for i,j = 1,...,4 such that the third and fourth
columns of U are 8@f‘ and 0,T respectively and UTJU = J. Moreover
for any other formal fundamental solution U of the same form of U there
exists C' € C?>*? symmetric matrix (CT = C) such that U = UEc where,

(3.5) Fo— (Ig 1?1) .

The existence of a normalized fundamental solution of equation (3.3)
with asymptotic expansion U is given by the following proposition whose
proof is placed in Section 6.

PRrROPOSITION 3.4. — Given an unstable parameterization T'™ ~ I' and
a formal fundamental solution U there exists r > 0 such that the variational
equation (3.3) has an unique normalized fundamental solution U : T), x
Dy — C** such that U ~ U as 7 — oo in D

Using these fundamental solutions for the variational equation (3.3) we
obtain an exponentially small estimate for the difference of stable and un-
stable parameterizations.

THEOREM 3.5. — Given € > 0 and a normalized fundamental solution
U there exists a vector @~ € C* such that the following asymptotic formula
holds,

(36) T*(p,7) T (p,7) = "9 U(p, )07 + O™ C=9)),

as T — oo in D).

TOME 63 (2013), FASCICULE 4
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We prove this theorem is Section 8. As an immediate corollary of Theo-
rem 3.5 and taking into account the asymptotic expansion of U we obtain
the following asymptotic expansion for the difference,

e (T—¢) (I‘Jr(go,r) - 1"7(90,7')) ~ ﬂ(gp,r)@f as T—oo in DI

Using the leading orders of U (see Proposition 3.3) it is possible to obtain
an exponentially small upper bound for the difference of stable and unstable
parameterizations in the lower connected component D;. Indeed, since for
every 7 € D> and o > 0 the vertical segment [, 7 — io] is contained in D/
then there exists C' > 0 such that for every o > 0,

T (p,7) =T (¢, 7)| < Co’e7,

for all ¢ € Tj, and 7 € D> with Im7 < —o.

As mentioned before, it is possible to use the previous arguments mutatis
mutandis to study the difference '™ — I' in the upper connected compo-
nent D). Similar to Theorem 3.5 one can prove the existence of ©F € C*
such that,

e =) (D (p,7) =T (p,7)) ~Ulp,7)0" as 700 in D).

3.3. Analytic invariants

In this section we use the asymptotic formula of Theorem 3.5 to construct
two analytic invariants for the Hamiltonian H. One of these invariants
measures the splitting distance of the complex manifolds parameterized
by I'*. This invariant is also related to the Stokes phenomenon which
is observed in solutions of certain differential equations where the same
solution possesses different asymptotic expansions at infinity in different
sectors of the complex plane [3].

In order to define these invariants, let T'F ~ I' be a stable and unstable
parameterization and U ~ U a normalized fundamental solution of the
variational equation around I'". Moreover, let

A(va T) = I‘+((p7 T) - I‘_((p’ T) .
According to Theorem 3.5 we have the following asymptotics,
(3.7) eTT=AA(p,7) ~ U(p,7)0F as Imr — +oo.

We call the first two components of % = (@?E7 o7,01, @ff) the normal
components and the last two the tangent components. The following limit

ANNALES DE L’INSTITUT FOURIER
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provides a way to compute the components of the vectors OF,

(3.8) QOFv)= (Alp,7),U(p, 1)v)eT =9 v eC?,

lim Q
ImT—+o0
where  is the standard symplectic form and the convergence of the limit
is uniform with respect to ¢ € T},. The proof of (3.8) is straightforward.
Indeed, it follows from the asymptotics (3.7) and the fact that UTJU = J.
Moreover, the previous formula is useful from the computational point of
view, since to compute the normal components of ©F it only requires know-
ing the stable and unstable parameterizations TF. In fact OF = Q(OF, ¢e3)
where e3 = (0,0,1,0)T. Since Uez = 9,I'~ we conclude that,

(3.9) OF = lim Q(A(p,7),0,T (g, 7)eT 7).
mT— 100

A similar formula is valid for the normal component @2i, where the tangent
vector field J,I'~ is replaced by 0,.I'". The components of the vector ot
are not independent and due to the freedom in the choice of the parame-
terizations they are not uniquely defined.

LEMMA 3.6. — Given any stable (resp. unstable) parameterizations
I'* ~ T and normalized fundamental solution U ~ U, the following holds:

(1) ©f + 65 =0.
(2) If = ~ T is another stable (resp. unstable) parameterization with

normalized fundamental solution U ~ U then there exist (¢o,70) €
C? and a symmetric matrix C € C?*? such that

éi _ EC@ieii(To—Lpo)

Proof. — To prove item (1) it is enough to show the equality for the —
case, since the + case is completely analogous.
Note that (3.7) implies,

H(TH(p,7)) = HT (¢,7)) + VH(T ™ (p,7) A, 7) + O(e~ F9)ilr=0)y,

as Im7 — —oo for some € > 0 arbitrarily small. Due to the conservation of
energy we have that H(T'*(p,7)) = 0. Thus,

(3.10) lim  VH(T (9, 7)A(p, 7)el" %) =0,
mr7——o0
Moreover,
VH(I A =Q(Xg(T7),A)
DI, A)
=—-Q(A,0,T7) —Q(A,0.T7).

TOME 63 (2013), FASCICULE 4
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Thus, (3.10) implies that,

lim (A, 7),8,T (¢, 7)) + QA(p, 7),0-T (¢, 7)) 79 =0

ImT——o00

which proves the desired equality.
To prove item (2), let A = 't —T'~. Similar to (3.7) there exists ©F € C*
such that,

(3.11) eF =P A(p, ) ~ IQJ(ap,T)(:)i as Im7 — +oo.

According to Theorem 3.1 there exists (pg, 7o) € C? such that f‘(go,T) =

A

T'(p+ ¢o, 7+ 70). Thus, the uniqueness of solutions in Theorem 3.2 implies
that f(gom) = T'(¢ + ¢o, 7 + 70). Moreover, since ﬂ(ap + @, T+ 70) is a
formal nprmalized fundamental solution of the formal variational equation
around T, :nhen by Proposition 3.3 there exists a 2 X 2 symmetric matrix C'
such that U(p, 1) = Ij(g0+<p0, T+710)Ec. Again, by uniqueness of solutions
in Proposition 3.4 we conclude that U(p, 1) = U(p + g, T+ 70) Ec. Thus,
we can rewrite (3.11) as follows,

eF TP A (¢ + o, 7+ 10) ~ Ulp + @0, 7+ 10)EcOF as 7 — Fioco,
which is equivalent to,
e:Fi(T-'rTo_(SO"FLPO))A(SD + @0, T+ 70) ~ fj(@ + 0, T+ TO)EC(:)ie:Fi(TO—g;O)7
as 7 — £ioco. On the other hand, taking into account (3.7) we have that,
e:Fi(T-i-To—(‘P-‘rSOO))A((p + 0o, T + 7o) ~ ﬂ(tp + 0o, T + T0)9i7

as 7 — tioo. Finally, the uniqueness of the asymptotic expansions implies
that ©F = EoO%eTH0-%0) Rearranging terms and noting that Eal =
E_ ¢ we conclude the proof of the lemma. O

Using this result and the definition of the constants ©F we construct the
following analytic invariants.

THEOREM 3.7 (Analytic Invariants). — The following numbers,
K=0fe; and J=Q0O%,07),

do not depend on the choice of parameterizations and are invariant under
symplectic changes of coordinates fixing the origin. Moreover, if H is real
analytic then

K = —sgn(n) |@1_|2 €R and J = —sgn(n)Q(0©-,07) € iR.
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Proof. — First, we prove that K and J do not depend on the choice of
the parameterizations. Given two parameterizations I't and I't we know
by Lemma 3.6 that there exist (oo 7o) € C* and C' € C*** (CT = C) such
that ©F = Eo©FeFi(T0—%0) Thus,

K =667 =0ofemwgrein—v) —ofo; =K,
and

J =

(o}

+ é*) — Q(EC@Jrei(To*tpo)’ EC@*(i*i(To*spo))
=QEc0T,Ec07)=Q(01,07)=J.
Next we prove that £ and J are invariant under symplectic changes of

coordinates fixing the origin. Let ¥ : (C*0) — (C*0) be an analytic
symplectic map. Define

(g, 7)== U (p,7)) and Ulp,7):= DY (p,7))U(p, ).
It is enough to prove that Q(6F,v) = Q(6%,v) for all v € C*. Taking into
account (3.7) we can write A := 't —T'~ as follows,
Alp,7) = DU (2,7) A, 7) + 80 7),
where g is analytic in T;, x (D;5 N D,") such that,

(3.12) lim g((p’T)eiFi(H*P«)(Tftﬂ) =0,

ImrT—+o00
for any p > 0 arbitrarily small. Moreover, for v € C* we have that,
(3.13) Q(A, Uv) = Q(DU(I'7)A + g, DU(I'™)Uv)
' = Q(A, Uv) + Q(g, D¥(T)Uv),

where the last equality follows from the fact that ¥ is symplectic. From the
asymptotics of I'™ and U we know that T~ (¢, 7) = O(77!) and U(p,7) =
O(7%) as T — oo in D, . Thus, for every u > 0,

lim D\I’(F_((p,T))U(gO,T)VGiiM(T_(’D) =0,

Im7—+o00

and taking into account (3.12) we get that,
lim Q(g(go,T),D\IJ(F’(cp,r))U(%T)v)eﬁ(rfw) = 0.

Im7T—+o00

Finally, the previous limit and (3.13) gives,
Q6%,v)=_lim  QA(p,7), U(p, 7)v)eT =

ImrT—+o0

= lim Q(A(p7), Ulp, IIv)eFiT—9) = (0%, v).

ImT—+o00
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To conclude the proof of the theorem suppose that H is real analytic. It
is sufficient to prove that for any v € R* we have,

(3.14) QO-,v) = —sgn(n)QOT, V).

Indeed, it follows from the previous equality that ©— = —sgn(n)©*, from
which we obtain

K = —sgn(n) |61_|2 and J = —sgn(n)Q(6-,07).

We prove (3.14) considering i > 0. The 1 < 0 case is proved analogously.
According to (3.8) we can take 7, = —io,, where 0,, — +00 is an increasing
sequence of real numbers such that for every v € R* we have,

(3.15) QO™ ,v)= ngrfoo Q(A(0, —i0,),U(0, —io,)v)e’™.
Remarks 4.5 and 4.10 imply that,

A0, —io,) = A(m,io,) and U(0, —io,) = U(r,ioy,).
Thus, taking complex conjugation in (3.15) we get,

Q6 v) = lim_ QA0 —ir,), U0, —io,))e”

= lim QA(m,ioy), Ulr,ioy,))e (7= emin

n—-+oo
= 7Q(®+’ V);
as we wanted to show. O

The invariant I is known as the Stokes constant. If I does not vanish
then the asymptotic expansion (3.7) provides an exponentially small lower
bound for the splitting distance [T (p,7) — T~ (¢, 7)|, which implies that
H is non-integrable and the normal form transformation diverges [31].

COROLLARY 3.8. — If K # 0 then H is non-integrable.

3.4. Parameterized families

Let & C C* be an open neighborhood of the origin and denote by Ds C C
the open disc of radius § centered at the origin. In this section we consider
analytic one-parameter families of Hamiltonians H, with a generic 1 : —1
resonance. We say that H, is an analytic family if,

H,=—-I +1,+nl? +F,

where v € Ds and F, : U — C is analytic. We also suppose that F), is
analytic with respect to v and for each v € Dy, F), contains only monomials
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of order greater or equal than 5. Moreover, the elliptic equilibrium satisfies
the non-degenerate condition n # 0.

For each v € D the Hamiltonian vector field X, satisfies the assump-
tions of the previous theorems. In particular the function v — K(v) is well
defined, where K(v) is the Stokes constant of the Hamiltonian H,. The
next result shows that the Stokes constant varies analytically with v.

THEOREM 3.9. — There exist parameterizations T'; and a normalized
fundamental solution U, both analytic with respect to v € Ds such that
©* : D5 — C* is analytic.

According to the definition of K (see Theorem 3.7) we conclude that
K :Ds — C is analytic.

Proof of Theorem 3.9. — Tracing the proofs of Theorems 3.1 and 3.3 we
see that there exist formal series fy and fJ,, such that the coefficients of the
these formal series depend polynomially on a finite number of coefficients
of H,, which are assumed to be analytic with respect to v. Thus, the
coefficients of both f‘l, and fJ,, are analytic with respect to v. Note that the
theory developed in Section 5 can be generalized to functions that are also
analytic with respect to a parameter. Following the proofs of Theorems 3.2
and 3.4 and the fact that the fundamental matrix Uy defined in (5.17) does
not depend on v we conclude that there exist a normalized fundamental
solution U, and analytic parameterizations T';, all of which are analytic
with respect to v such that U, ~ ny and I‘f ~ f‘y. Let A, = I‘,‘f -I.
A closer look at the proof of Theorem 3.5 reveals that,

AV(@) T) = UV(‘P? T)CV(T - 90) + Rl/(‘)Dv T),

where c, is an analytic 27-periodic vector-valued function defined in a
lower half complex plane, analytic with respect to v and ¢,(z) — 0 as
Imz — —oo. Moreover R, (p,7) = O(e~?~9i(7=%)) where the upper
bound is uniform with respect to v and € is an arbitrarily small positive
real number. As in the proof of Theorem 3.5 we can write c, in Fourier
series:
c,(2) =0~ (V)e ™ +0(e??), as Imz— —oo,

where again the bound is uniform with respect to v. The first Fourier
coefficient ©~ (v) is given by the well known integral,

1 2m—io )
07 (v) / c,(s)e?ds,

2m —1i0

for some o > 0. Clearly ©~ (v) is analytic with respect to v. Arguing in a
similar way one can also prove that ©T (v) is analytic. O
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3.4.1. Example

We shall give an example of a Hamiltonian having non-zero Stokes con-
stant. Consider the following analytic family H, of Hamiltonians,

H, = —I + I, + nl3 + vg3,

where 7 € C* and v € C. Notice that Hy = —I; + Iy + nl? is integrable
since I; is a first integral of Hy.

According to Theorem 3.2 there exist r > 0 and analytic parameteriza-
tions T : Tj, x DF — C*. Following the arguments in the proof of Theorem
3.9 these parameterizations are also analytic with respect to v. Thus we
can write them as follows,

(3.16) TE =T+ véd + 0(W?),

where Ty is the parameterization of Hy (see (5.14)) and &5 satisfies the
following equation,

(3.17) D&y = Aol 7)&5 + X3 (To),

where Ag(p,7) := DX g, (To(p,7)). For our convenience, let us write (see
(5.14)) the expression for T'g,

_ —92 . — —1 . T
Lo(p,7) = (k7 2cos g, kT 2sin g, kTt cos p, kT Lsin )

The homogeneous equation in (3.17) has a fundamental solution Uy(y, 7)
given by (5.17) and having the following properties: it is symplectic, i.e.,
Ul JU, = J and its last two columns are 9,I¢ and 9. respectively.
Thus, by the method of variation of constants we can write some integral
formulae for §0i,

(3.18)
0
& (e.7) = Uslorr) [ UG (o 57+ 9)Xg(Tol + 5,7 + 9)ds,
+oo
53(9@, 7) = =Up(p, 1) Uo_l(gp +s,7+ s)qu (To(o + 8,7+ s))ds.

0

The integrals above converge uniformly for 7 € DF. Indeed a simple com-
putation shows that,

5k sint @) r

(3.19) X5(To) = (0, 0,0, -2

T

Taking into account the leading orders of Uy (see (5.17)), we can bound
from above the integral in the first formula of (3.18) using the following
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0
1
[
—o0 |T + S|

which converges uniformly with respect to 7 € D, ,. A similar estimate
shows that the second integral in (3.18) converges uniformly.

Our goal is to compute the Stokes constant IC(v) of H,. According to
the results of the previous section IC(v) is analytic with respect to v and
by definition K(v) = O] (v)O] (v) where OF (1) are defined by the limits,

integral,

Or ()= lim QA (,7),0,T, (¢, 7)™ 77,
Im7T—+o0
where A, := T} — T, . Since Hy is integrable we know that K(0) = 0. So
in order to prove that K(v) is non-zero for a certain v it is sufficient to
prove that the derivative of ©F (v) at ¥ = 0 does not vanish. The following
lemma provides a formula for computing this derivative,

LEMMA 3.10. — Let Ag = & — &, . Then,

det .
— ; Fi(r—)
dv (0) Im 71'11>nioo Q(AO(QD7 T)a a(PFO(QP, 7'))6 .

Let us postpone the proof of this lemma. In order to use the formula of
the previous lemma we have to compute the difference Ag = far —& - It
follows from (3.18) that,

+oo
Ao(p,T) :UO(%T)/ Fo(o+ 5,7+ s)ds,

—00

(3.20)
where Fo(p,7) := fUal(QD,T)qu (Tolp,7))-

Again, taking into account the expressions for Uy and (3.19) a simple
computation shows that,
(3.21)

_ 5k%cos psint o 10k°sin® ¢ 103 cos psin® ¢ 3x3sin® o ’
FO(SDa T)_ +10 L S T 377 ) 6 :

Since Uy is symplectic, (3.20) and (3.21) imply that,
Q(AO(@a T)v 3¢I‘0(<,0, T))

“+oo
_0 (Uo«o, N[ Rt S)dSﬁq;Fo(%T))

/+°° 5k° cos(p + s) sin* (¢ + s)
= ds.
B L
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Let us denote the integral above by I(p, 7). Using the calculus of residues
to compute this integral we obtain,
(3.22)
5P 5 3105k 45 519657 s
_ (r—¢) _ 36i(T—¢) 58i(T—¢)
1(<p,7)_5(239!ez T T T g )

where § = sgn(Im 7). Finally, Lemma 3.10 and (3.22) give,

407 . Filr—p) _ LN
o 0=, lim @Bo(p7), 9pTo(p, 7))e = 5501

Recall that k2 = —%. Since 7 # 0, the previous equality implies that

des
dv

(0) # 0. Consequently K(v) is non-zero for |v| # 0 sufficiently small.

Proof of Lemma 3.10. — We prove the lemma for the — case, omitting
the + case as it is completely analogous. According to the definition of
©7 (v) we have that,

(3.23) O7(v)=_lim QA (p,7),0,T, (¢, 7))elT=#),

Im7——00

where A, = I')) — ;. Moreover, it follows from (3.22) that,

(3.24) Fo:= lim Q(Ao(¢,7)73¢Fo(<p,7))ei(7_“”) < 00.

Im7——00

Define the following auxiliary function,
R(p,m,v) = {2Au(p,7),0,T (#,7)) = Ao, 7), Do To (0, 7)1} €779,

Note that R is analytic in Tj, x D} x C and 2E(p,7,0) = 0. Moreover, it
follows from (3.23) and (3.24) that,

lim R(p,7,v) =0, (v) — For.

Im7——o0

Due to the uniform convergence of the limit we get at once,

_ d6y

d
= Gt RO = g, 0 R 0
COROLLARY 3.11. — Let (G, by an analytic family. For every ¢ > 0

there exists an e-close analytic family H,, i.e.,

sup ||H, — G, | <k,
veDs

such that the Stokes constant of H,, does not vanish on an open and dense
subset of Ds.
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Proof. — By assumption G, is in the general form,
G,=-I+L+nl+F,

where F, is analytic and contains only monomials of order greater or equal
than 5. According to Example 3.4.1 there exists v, € Ds such that the
Stokes constant of the Hamiltonian H, = —I; + I —|—77[§ + V*qg is non-zero.
Let,
H,\=G,+\H,—G,,), NeC.

Denote by K(v,\) the Stokes constant of H,, x. It follows from Theorem
3.9 that K(v4, A) is analytic with respect to A\. Moreover, since H,_ 1 = H,
then K(vy,1) # 0. Thus, for any € > 0 we can choose,

7 < ”H* - Gv*

such that there exists A, € C with |[\.| <y and K(v., Ai) # 0. Thus, H, »,
is the desired family. a

—1
€,

4. Asymptotic series

In this section we prove Theorem 3.1 and Proposition 3.3. These results
deal with formal series, therefore we do not care about the convergence of
the power series involved.

We will look for formal solutions of equation (2.4) in the class of for-
mal power series in the variable 77! with coefficients in T. To that end,
it is convenient to transform H into its normal form and compute a for-
mal solution in the normal form coordinates. Then using the normal form
transformation we pullback the formal solution to the original coordinates.

According to Theorem 2.1 there is a formal near identity symplectic
change of variables x = ®(z) that transforms the Hamiltonian H into its
normal form,

(4.1) HY=Ho®=—I + I, +nl?+ Z ap I TE,
314-2k>5

where I, I and I3 are given in (2.1) and a;; € C. Note that the nor-
mal form (4.1) is rotationally symmetric, i.e., it commutes with the one
parameter group of rotations R,

R 0 cosp —sing
4.2 = ® h, = .
(42) Re ( 0 RW) where R, (sincp cos ¢ >
In the following we look for formal solutions of,

(4.3) Dz = Xpy:(z),
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in the class of formal power series 7~!T#[[7~!]] (which is to be understood
as the formal power series in T#[[7~!]] without the constant term).

PROPOSITION 4.1. — Equation (4.3) has a formal solution Z &
71T4[[7=1)] having the form Z(p,7) = R &(T) where € € 7 C{[r~1]].
The components of £ satisfy,

&(1) = —0,r(T) cos O(T), &(T) = r(1) cosb(r),
& (1) = =0, (1) sinO(7), &(1) = r(1)sin (7).
where 0, r € C[[r~!]] are odd formal power series having the leading orders,
T'(T):K/T_l“y_"', ez_gT_l_‘_...’

where K2

= % The formal solution Z is unique up to a rotation R, i.e.
7 and R.7Z are the only formal solutions satisfying the properties stated
above. Moreover, for any other formal solution Y € 77 'T#[[r7!]] there

exist (g, 10) € C? such that Y(gp,T) = Z((p + 0, T + 70).

Proof. — Setting z(p,7) = R,§(7) and taking into account that Xy
commutes with R, (which has infinitesimal generator —X7, ) then equation
(4.3) reduces to,

(4.4) 0r€ = Xpze 11, (6).
It is convenient to change to polar coordinates given by,

51:Rc089—%sin0, &3 =rcosb,
(4.5)
52:Rsin9+%cosﬂ, &4 =1rsind,

where £ = (£1,&2,&3,&4). Note that I; = ©. In these new variables equation
(4.4) takes the form,

&) T
(46)  0=-—— > ZHe LY gr=-R 0,0=0
3i4+25>5
e? 3 2jaij i 21
(4.7) aTR:<—TS+m)+ > TR

3i+25>5

We solve these equations formally in C[[77!]]. Let us start with the third
equation of (4.6). Taking © € C[[r7!]] and substitute into the equa-
tion we get immediately that ©(7) = Oy with ©p € C. Since O(7) =
&(7)&3(T) — &1(7)€4(T) and each & must be in 77!C[[r!]] we conclude
that © € 772C[[r~!]]. Thus O(7) = 0.
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We consider now the second equation of (4.6) and equation (4.7). Setting
© = 0, these two equations are equivalent to the following single equation,

2(] + l)ao’ i1 9
(4-8) 3.,2.7" = —777"3 - Z ler27+1.
j=2

LEMMA 4.2. — Equation (4.8) has a non-zero formal solution r having
only odd powers of 7—'. Moreover,
1
(49) ’r‘(’r) = KT 1_ §a0’3/§/57—_3 —+ .. ,
where k% = —%. The solution is unique if we fix one of the two values
for k. Moreover, for any other non-zero formal solution # € 7= *C[[r71]] of
equation (4.8) there exists 19 such that #(7) = £r(T + 79).

Proof. — Let us take a formal series r(7) = Zk>l 77 % and substitute
into equation (4.8). After collecting terms of the same order in 775=2 we
obtain an equation which we can solve for the coefficient r;. Let us present

the details. At order 73 we get the following equation for r,
(4.10) 2ry = —nri,

which implies that 72 = —% (the other solution is trivially 7, = 0 which
leads to the zero formal solution r = 0). Hence we let 1 = x where x? =
—%. Note that x can take two distinct values. We choose one value for

4

and move to the next order. At order 77* we obtain,

6ry = —3177“%7“2.

Note that this equation is linear with respect to ro. Taking into account that
r1 = k we can simplify the previous equation and conclude that it holds for
every 1o € C. Hence 19 is a free coefficient. Since we are considering only
odd powers of r we set this coefficient to zero.

At this stage, we have determined r; = k and 12 = 0. Now we proceed
by induction on k. First let us determine r3. It is not difficult to write the
equation for r3 which reads,

6
6r3 = ——ag.3rs.
3 g 40,371
%a0,3ﬁ5. Now suppose that all coefficients r;, 3 < [ < k have

been defined uniquely such that for [ even we have r; = 0 and for [ odd

Thus rg = —

we have r; = p(k) where p € C[x] and contains only odd powers in k.
Due to the induction hypothesis, at the order 77%~3 we have the following
equation for 741,

(k4+1)(k+2) = 6)rps1 = fra1(r, ... 7k)
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where fr11 is a polynomial depending on a finite number of coefficients
ap,j+1 for j = 2. Note that it is always possible to solve the previous
equation with respect to 1,41 for k > 2 since (k4 1)(k +2) — 6 = 0 only
if k =1or k = —4. Now we have to distinguish two cases. First consider
the case when k + 1 is even. Since the right hand side of equation (4.8) has
only odd powers of r and according to the induction hypothesis r; = 0 for
even [ then fry+1 = 0. Thus ry41 = 0. On the other hand, when k+1 is odd
then by the same reasoning as above it is not difficult to see that fiy1 is a
polynomial in C[x], having only odd powers of k, and 711 is determined
uniquely by the formula 7411 = ((k+1)(k+2) —6) 7! fr4+1. This completes
the induction. Finally let 7 € 7~'C[[r~!]] be a non-zero formal solution of
equation (4.8). We can write 7 =3, -, 77~ k. As before, we conclude that
72 = k2 thus, 7, = +x. Now for 79 € C we have that,
K Tok

(r+m)=——H0 oty
r(r 4 70) = =
0 T+ 7 T T2

is also a formal solution of equation (4.8). Comparing the second order
coefficient —1yk with the coefficient 75 we conclude by the uniqueness of r
that if 7o = —22 then 7(7) = +r(7 + 79) and the claim is proved. O

Using the formal solutions ©(7) and r(7) we simplify the first equation
of (4.6) to obtain,

(4.11) 0,0 =-Y" a21j’,j S

j>1 k>1

25

25 .
Note that (Zk>1 ’I“kT_k> € 772 C[[r~!]] and contains only even powers
in 771, Thus equation (4.11) can be further simplified,
00 = b2k,
k>1

where b, depends on a finite number of coefficients of r(7) and a, ; for
j = 1. Thus,

by
4.12 0(t) = — =2k
(4.12) (1) 90+Z—2k+17 :
k21
where 0y € C. We set 0y = 0. To conclude the proof, we show how to come
back to the variable £. First observe that,
2

—1) b _
cosf(r) = _ ((21'))! > _21:+ 1 T

i>0 k>1
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and taking into account that the formal series inside the parenthesis of
the right hand side of the previous formula is an even formal series in 77!

starting with the term 772 we conclude that,

(4.13) cosf(t) = ZwkT*Qk,

k>0
where wy, depends on a finite number of coefficients of (7). A similar
formula holds for the sine which reads,

(4.14) siné(r) = Z T 2L

k>0
where z; depends on a finite number of coefficients of §(7). Now according
to the change of variables (4.5) the formal power series Z(7) := RpE(T) is
the desired formal solution of equation (4.3) where the components of ¢ are
given by,

&1 (T) = 78.,-7”(7’) COSQ(T)a 53(7_) = 7‘(7’) COSQ(T)v
& (1) = =0,r(7) sin O(7), &4(1) = r(7)sinO(7).

The expressions (4.13) and (4.14) imply that & € 7 'C[[r7!]] for i =
1,...,4, thus proving the first part of the proposition. Any other formal
solution satisfying the same properties of V4 (as stated in the proposition)
will have the form,

RSOR@(T)-‘!-QO(*@TT(T + 7-0)7 0, T(T + 7—0)7 O)Ta

for some 79,09 € C. Clearly for 79 # 0, r(7 + 79) will be no longer an
odd power series in 7!, Thus 79 must be zero. Moreover, equation (4.10)
implies that g = 0 or #y = w. Therefore, 7 is uniquely defined up to a
rotation R. Moreover, if Y € 771 T4[[r~!]] is another formal solution then
there exists £ € 77 C*[[r~1]] such that Y(p,7) = R,&(7). Taking into
account Lemma 4.2 and equation (4.12) we conclude that

&(r) = Ro(r)+p0 (—077(T 4 70),0,7(T 4 70), 0)%,
for some (¢g,79) € C2. This completes the proof of the proposition. O

Remark 4.3. — 1If the Hamiltonian H is real analytic then its normal
form H* is a formal series with real coefficients, i.e. H#(z) = H*(z). In
particular, the normal form coefficient 7 is real. Depending on the sign of 7
we can say more about the structure of the formal solutions of (4.3). If n < 0
then one can trace the proof of the previous proposition and conclude that
the coefficients of Z are real, i.e., Z(p, 7) = R,£(7) where € € 77 'RY[[71]].

Thus, Z(yp,7) = Z(,7) when 1 < 0. On the other hand, when 7 > 0 then
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the coefficients of Z are imaginary numbers, i.e. Z(p, ) = iR £(T) where
€ e 77 'RY[r~"]]. Thus, Z(p,7) = Z(% + 7, 7) when 5 > 0.

Remark 4.4. — The normal form Hamiltonian vector field X g is time-
reversible with respect to the linear involution,

(4.15) S(q1,92,p1,p2) = (—q1,92,P1, —P2)-

If the Hamiltonian H is real analytic then the formal solution Z satisfies,
Z(QO, T) = S(Z(_Ev _?)) :

The formal solution Z is said to be symmetric and this condition defines

the solution uniquely (up to a rotation R) in a coordinate independent

way.

4.1. Proof of Theorem 3.1

By the normal form theory there exists a (non-unique) near identity
formal symplectic change of variables x = ®(z) that transforms the Hamil-
tonian H into its normal form H* = H o ®. Let z = (q,p) € C2 x C2. For
our purposes, we can suppose that ® is in the general form,

(4.16) (@p)~ (a+ > cdp.p+ Y, dijd'p |,
2[i+5124 2Ji[+]41>3

written in multi-index notation, for some ¢; j,d;; € C?. According to

Proposition 4.1 there exists a formal series Z € 7~ 'T4[[z~!]] such that

DZ = Xy (Z). Thus,

L(p,7) i= 20 Z(p, 7)),

is a formal solution of equation (2.4). Note that Z starts with terms of order
71 Thus, ® o Z belongs to the same class of Z since its coefficients can
be computed from a finite number of coefficients of 7 and . Moreover, we
know that Z(y,7) = R,&(T) where the components of ¢ have the leading
orders,

Ka

G(r)=rT 24, &(7) :—Tl’lfuw ,
Ka

G(r)=rr ™+, &(r)= 7#772 +

Taking into account (4.16) ‘we obtain the leading orders of I' as stated in

the theorem. Moreover, if I' € 7= T4[[r~1]] is another formal solution of
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(2.4) then it is clear from Proposition 4.1 that there exist (o, 70) € C?
such that T'(p,7) = T'(¢ + @0, 7 + 70). O

Remark 4.5. — If the original Hamiltonian H is real analytic then

I'(p,7) is also a formal solution of equation (2.2). Indeed,

DI(5,7) = DE(%,7) = Xu(F(.7) = Xu (F(2,7)),

where D = 93 + 0;. Moreover, since in the real analytic case the normal
form transformation ® has real coefficients then Remark 4.3 implies that,

L(p,7) = ®(Z(p, 7)) = ®(L(p+m,7) =T(p+m,71), for 7>0,

I(p,7) = ®(Z(p, 7)) = ©(Z(p, 7)) = L(p,7), for 1< 0.

Remark 4.6. — If the original Hamiltonian H is real analytic and Xg
is reversible with respect to the involution (4.15) then the normal form
preserves the reversibility. By Remark 4.4 the formal solution I uniquely
defined (up to a translation I'(¢ + 7, 7)) by the following condition,

L(p,7) = S(P(—p,~7)).

Remark 4.7. — Let n > 1 and I';, be a partial sum of the formal series

—m=1 in the first two components and up to order 7™

I up to order T in
the last two. Then,

(4.17)
DT, = Xpg(Ta) = (770 Ry 7= Ry, 7D Ry 77OV Ry, )

for some R;, € TY[r7Y], i = 1,...,4. Indeed, for a formal series ' =
> k>1 ', 77" to solve formally equation (2.4), then the coefficients ', must
solve the infinite system of equations,

(4.18) 8¢Fk - X_n+n (Fk) = (k‘ — 1)Fk_1 + Gk(l‘l, - ,Fk_g), keN,

obtained from substituting the formal series into equation (2.4) and col-
lecting terms of the same order in 77%. The G}’s are polynomials in k — 2
variables and can be defined in a recursive way.

Since the first n coefficients of the sum T',, solve (4.18) for k =1,...,n
then in order to get (4.17) we consider the equation (4.18) for &k = n +
1. Note that the left hand side of equation (4.18) depends only on the
kth coefficient of the formal series I'. Moreover, due to the form of the
vector field X_p, 4r,, the first two components of the expression in the left
hand side of (4.18) only depend on the first two components of T'y. These
observations allow us to conclude (4.17).
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4.2. Formal variational equation

In this subsection we prove Proposition 3.3. Consider the formal varia-
tional equation of Xy around the formal separatrix T,

(4.19) Du = DXy (T)u

Our goal is to construct a convenient basis for the space of formal solutions
of equation (4.19). These formal solutions provide asymptotic expansions
for certain analytic solutions of equation (3.3). We know already two formal
solutions of the previous equation: Qaf‘ and 9,I'. Note that these formal
solutions are linearly independent as formal series in T*[[7~1]]. Moreover,

(4.20) Q(9,I,0,T) = 0,

where 2 is the standard symplectic form (1.1). The previous equality follows
from a more general fact: if u; and us are two formal solutions of (4.19),
then (uy,uz) € C. To prove this, note that

DQ(ul, 112) = Q(Dul, 112) =+ Q(ul, DUQ)
(4.21) = QDX (T)uy, uy) + Q(uy, DX (Duy)
=0.

In particular, DQ((?@IA‘, 8Tf‘) = 0. Now we apply the next Lemma to get
the desired equality.

LEMMA 4.8. — Let g € T/ T4[[r1]] for some j € Z and suppose that
Dg = 0. Then g = g9 € C. In addition, if j < —1 then g = 0.

Proof. — Let g = Zk@. ™" where gp € T*. Substituting g into the

k

equation Dg = 0 and collecting terms of the same order in 7 we get the

following system of equations,
a,pgj = O7

4.22 .
“22) Opgr + (k+1)gry1 =0, k<j—1

The first equation of (4.22) implies that g; € C. Now using the second
equation we can solve for g;,. Taking into account that g, € T* we conclude
that (k4 1)gr4+1 = 0 for all k£ < j — 1. Note that when k = —1 we have no
restriction on gy and the lemma follows. O

Proof of Proposition 3.3. — In the proof of Theorem 3.1 we have ob-
tained the formal solution I' using the normal form Hamiltonian H* by
defining I' := ® 0 Z, where ® is the normal form transformation and Z is
the formal solution of Proposition 4.1. Also from the same proposition we
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know that Z = R,€ where R, is defined in (4.2) and £ is a formal series
having the form,
(4.23)

&(1) = (=0,r(1)cosO(r), —0;r(7) sin (1), (1) cos (1), r(7) sin 9(7’))T ,

where r and 6 are the formal series (4.9) and (4.12) respectively. In the
normal form coordinates equation (4.19) reads,

(4.24) Dv = DXt (Z)v,

where u = D®(Z)v. We seek for formal solutions of (4.24) in the form
v = R,( where ¢ € 7/C*[[r7!]] for some j € Z. Similar to the proof of
Proposition 4.1 the formal series ¢ must satisfy the equation,

0:¢ = DXy yp, (§)C

Bearing in mind (4.23), we now rewrite the previous equation in polar
coordinates,

(4.25)

lay 1 a

_ doat—1, L 2,0 21

Orwy = Z 21_17“ wa r2 + Z ol-1
1>0

>1

ws, a‘er = —Wy,

(20 -1 l
drws =0, Orwy=| 3nr’ +227)a(” 2-2 w2+2%r2l’1w3,
1>3 1>1

where W = (w;), ¢ = DA(0,r,0,—0,r)W and A denotes the change of vari-
ables (4.5). Note that A is symplectic with multiplier —1, i.e. (DA)TJDA =
—J. We know already two formal solutions of equation (4.25):

(4.26) Wy = (1,0,0,0)"  and Wy = (0:6,0,r,0,-0%)"

In the original coordinates, these formal solutions correspond to QDIA‘ and
9, T respectively. We now construct other two formal solutions that are
formally independent of (4.26) and belong to the class of formal series
7IC[[771]] for some j € Z. Let us consider the second and fourth equations
of (4.25). They are equivalent to the single equation,

Lao, lavy o
(4.27) 9wy = — | 3nr +Z 21 - =2 w2—22171r21 L

>3 >1

In order to solve the previous equation, we first study the formal solutions
of the homogeneous equation.
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LEMMA 4.9. — The linear homogeneous equation,
21 — 1
(4.28) 02wy = — +Z a0t 212 o,
1>3

has two linearly independent formal solutions,
wyy € T2C[[77Y])] and wep € T3C[r Y]

such that ws is an even formal series and ws o an odd formal series.
3
Moreover wg 1 = 0,7, w2 = g—ﬁ + %a(]731$37' + .-+ and,

(4.29) Wo 207 W21 — W 107 w22 = 1.

Proof. — That 0,r is a formal solution of the homogeneous equation is
obvious. Moreover its properties follow from the properties of the formal
series 7. Now let us determine the second formal solution. It follows from
the fact that the formal series r € 77!C[[r~!]] is odd that the right hand
side of the homogeneous equation (4.28) is a formal series of the form
b= Zk<71 bi72F where by, depends on a finite number of coefficients of 7
and ag, for I > 3. Moreover, according to (4.9) we have,

1
r(r) = kTt — §a0,3n57*3 4o

= — 2 Using the leading orders of r, we compute the first few
orders of the formal series b for further reference,

where k2

21@0’3
”o
Now we are ready to solve equation (4.28) in the class of formal series. Thus,

substituting the formal series wq o = Zk@ w272’k7'2k+1 into equation (4.28)
k

(4.30) b_1=6 and b_o=—

and collecting terms of the same order in 7
system of linear equations,

we obtain the following infinite

-2
(2k(2k‘ + 1) — 6) Wo 2k = Z w2,27k_j_1bj, k=1,0,-1,
j=k—2
For k =1 we get no condition on the first coefficient, thus w21 € C. For
k = 0 we obtain wg 20 = —*’U)g 2,1b_2. When k < —1, a simple induction
argument shows that we can determine the coefficients ws 2 5 (which depend
linearly on the coefficient wy 21) in a recursive way by using the previous
formula since (2k(2k +1) —6) = 0 only if k =1 or k = —3. Finally let us
derive the equality (4.29). Since,

Or (W2,20; w21 — wa10;wa2) = 0,
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due to the fact that both w; and ws 2 solve the homogeneous equation
(4.28) we have that we 20;ws 1 — we 10; w22 is equal to some constant.
Taking into account the leading orders of the formal solutions wo ; and ws 2
we conclude that w27287w271 — w27187—w272 = 5[&11/272,1. As w22,1 is a free
coefficient we can define wy 21 := é and obtain the desired equality. [

Returning to the non-homogeneous equation (4.27), we see that the last
term of the right hand side of the equation depends on ws from which we
know that 0;ws = 0. Thus ws = w3y € C is a constant. Now, taking into
account that r is an odd formal power series we conclude that,

la _ _ _
g(r) =) gyt e IClr ],

1>1

is an odd formal series whose coeflicients depend on a finite number of
coefficients of r and a; ; for I > 1. Using the well known method of variation
of constants we can write the general formal solution of (4.27) as follows,

T T
(4.31) wo = crwe1 + cowao + w2,2/ Wo,1gW3,0 — wz,l/ Wa,2gW3,0,

where w3 ,c1,co € C. Note that the integration in the previous formula
is well defined in the class of formal series C[[r~!]][[7]]. Indeed, it can
be easily checked that ws1g € 773C[[r7!]] is an odd formal series and
wa 29 € T2C[[771]] is an even formal series. Hence both integrands do not
contain the term 77 !'. Next we define two particular formal solutions of
(4.27),

T T
0._ 1._
(4.32) wy :=wz2 and wj:i= ’(1)272/ Wa,19 — ”U.)271/ Wa,24-

The first formal solution corresponds to setting ¢; = w3 =0and c; =1
in the general solution (4.31) and the second corresponds to ¢; = cg = 0
and w3 = 1. Note that w3 € 73C[[r7!]] is an odd formal series and
wi € 7C[[771]] is also odd formal series.

Now coming back to the first equation of (4.25), we can rewrite it as

follows,
Orwy = —gwy + fws,
where,
Fo_L_ S Ll
r2 2l-1 '
1>0

It is not difficult to see that f € 72C[[r!]] is an even formal series. More-
over both gw9 € 72C[[r~!]] and gw;' € C[[r~!]] are even formal series.
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These observations allow us to conclude that the following are formal so-
lutions of (4.25),

(4.33) w) = —/ gwy and wi = —/ qws + / fs

which are well defined in the class of formal series C[[r~']][[7]] and moreover
w, wi € 73C[[r71]] are both odd formal series. Thus we obtaln two formal
solutions of (4.25) defined as follows,

Wy = (w%,w%, ,—0r w2)T and Wy = (w?,wg,o,fang)T
Note that {W;},_; , is a set of linearly independent formal solutions of
equation (4.25) and that,

Q(Wy,Wo) =0, Q(Wo,Wy)=-1, Q(W1,Wy) =0,

4.34
( ) Q(Wo,W3) =0, Q(Wi,w3)=-1, Q(Wsz,wy)=0.

where ) is the canonical symplectic form in the polar coordinates, i.e.,
Q2 =df AO +dr AdR. The bottom identities of (4.34) are straightforward
to prove using the definition of W;. The ones on the top are harder to prove
and so we handle them bellow. First note that similar arguments as in
(4.21) show that 0.Q(W;,Ww;) = 0 for 4,5 = 1,...,4. Secondly, it follows
from Lemma 4.9 and from (4.9) that,

(4.35)
3

_T 7 oo 1 5 -3
waa(T) = B 40(10 3K3T + - and r(7) = kT 8010’3,/1 7% 4+

Now we compute (W1, Ws). Using the definition of both W, and Wwo we
get
Q(W1, Wo) = —wp — wld wh + O, wiws.

Bearing in mind (4.32) and (4.33) we can simplify the previous expression
and rewrite it as follows,

Q(W1, W) = (1 — w2021 + Drwa20,7) / gwa 2.

Now using the leading orders (4.35) we conclude that the expression inside
the parenthesis in the previous formula belongs to 7=4C[[7~!]]. Moreover
J7 gwa o € T3C[[771]] and consequently Q(W1,Ws) € 771C[[7~1]]. Apply-
ing Lemma 4.8 we get (W1, W3) = 0 as we wanted to show.
Now we handle Q(Wa, Wy). Again, it follows from the definitions (4.32)
that,
Q(Wz, vAV4) = w2,1arw2,2 - w2,2afw2,1~

The identity now follows from (4.29).
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At last, let us compute Q(Wq,Wy). Again using the definitions of the
power series Wi and Wy we get,

Q(Wla “A,4) - 87'0 + w;laTR + aTTaT’LU;l.

This last expression belongs to 7~ 2C[[7~2]] and applying Lemma 4.8 we
obtain the desired result.
Coming back to the coordinates of equation (4.24) we define,

Vi(p,7) == Ry DA(O(7),r(7),0, =071 (7)) Wi(T).
Clearly the matrix V = (¥;) i=1,... 4 consists of linearly independent formal
solutions of equation (4.24) such that ¥5 = 8@2 and V4 = BTZ. Moreover,
a simple computation shows that,
T_3A1 0 Ao As
T_2A4 0 TA5 T_lAG
T_2A7 Ag 0 0 ’
T_lAg T_lAlo 0 0
where A; € C[[77!]] for i = 1,...,10. Thus, taking into account the defini-
tion of w1 and Wy we conclude that,

DA(0,7,0,—0,1) =

~ ~ ~ PIN PIN T
V1 = (7011, 7021, 7703,1, T7041) "

A (24 2 A 3 A 3 A T
Vo = (T V1,2, T V2,2, T V32, T U4,2) )

for some 9; 1,0;2 € T[[T71]], i = 1,...,4. Since A is symplectic with mul-
tiplier —1 and taking into account the identities (4.34) we get,
(4.36) VIV =J.

Finally, pulling back the formal solutions ¥; by the normal form transforma-
tion ® we obtain the desired formal fundamental solution U := D®(Z)V.
Similar to the proof of Theorem 3.1, U belongs to the same class of formal
series as V. Moreover, (4.36) implies that U7 JU = .J. In order to conclude
the proof of the proposition, note that by the method of variation of con-
stants a general formal solution of equation (4.19) is of the form Uc where
c is any formal series in 7/ T#[[7~1]] for some j € Z, such that Dc = 0. It
follows from Lemma 4.8 that ¢ € C*. Thus, if U is another formal funda-
mental solution of (4.19) then there exists a matrix E € C*** such that
U UE. Since U and U are symplectic it also follows that FE must be

symplectic. Moreover, as the third and fourth columns of U have to be
the derivatives of I' then a simple computation shows that one can reduce
the number of entries of E to obtain (3.5). This concludes the proof of the
proposition. O
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Remark 4.10. — Similar to Remark 4.5, one can trace the proof of the
previous proposition and conclude that when H is real analytic then,
—— Ulp, 1) if p<o0
U@®@,7) =4 - .
U(p+m7) if >0

Remark 4.11. — For n > 1 let U,, be a partial sum of the formal series
—n—1

U up to order T in the first two components (of each column) and up

to order 7" in the last two components. Similar to Remark 4.7 we have
that,
TR T2 T3 T2,
T2 T T s T 2
DU, —DXyg(T,3)Up=| _ _ 37 1 1 e
" (Tra)Un Ty 7T gy T g3 T gy
T T G T s T

for some &; ; € T[[t71]].

5. Linear operators

In this section we define certain complex Banach spaces and study some
linear operators acting on them. The linear operators and motivated by the
study of the solutions of the nonlinear PDE (2.4). These technical results
are at the core of the proofs of the main theorems of this paper.

5.1. Solutions of Du = f

Fix h > 0 and let T, = {9 € C/27Z : |[Imy| < h}. We consider the
problem of solving the linear PDE,

(5.1) Du = fa

where D = 0, + 0; is a first order linear differential operator and u and f
are analytic complex-valued functions defined in T}, x B where B is some
domain of C.

The simplest case is when f = 0. As one would expect, by using the
method of characteristics, a solution of the homogeneous equation Du = 0
must be a function which is constant along the characteristics

=1 and 7=1.

Thus, u is a function depending on a single variable, say 7 — ¢. The next
result determines such function and its domain of analyticity.
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LEMMA 5.1. — Let u : T, x B — C be analytic and suppose that
Du = 0. Then there exists a unique analytic function ¢ : |J, . 7+Typ — C
such that u(p, ) = (T — @).

Proof. — Given 1y € B let
Qo ={(p,7) €T xB: ¢ —7+71€Th}.

Note that Q,, is an open and connected set of C2. The initial value problem,

(5.2) {D5_0 ,
5(907 7—0) = u(<p7 TO)

has a solution £(p,7) = u(¢ — 7 + 70, 70). Hence £ is an analytic function
of a single variable 7 — ¢ and is defined in the translated horizontal strip
70 + Th. By the main local existence and uniqueness theorem for analytic
partial differential equations (see [7] for instance) we conclude that u = &
on Q.. Thus u(p, 7) = u(p — 7+ 70, 70). Taking into account that T, x B =
Ume g €17, and the uniqueness of analytic continuation we get the desired
result. |

When f is non-zero and defined in Tj, x D*, where the sets D,jF are

T

depicted in Figure 3.1, then equation (5.1) has two solutions,

0 +o0o
u” (@, 7) :/ flo+s,7+s)ds and u'(p,7)=— / flo+s, 7+s)ds,
oo 0

provided the integrand in both functions is well defined in the domain of f
and the corresponding integral converges.

PROPOSITION 5.2. — Let r > 1 and f : T}, x D, — C be analytic and
continuous in the closure of its domain. Moreover, suppose that | f(, )| <
II:—(L for some Ky > 0 and p > 2. Then,

0
uw%7%3[ flo+ 5,7+ s)ds,

ro

defines an analytic function in Ty, x D, , continuous in the closure of its

domain. Moreover,

K, 1K;

7P

(5.3) |u(p,7)| <

i

for some K, > 0 independent of r.

In order to prove this proposition we need the following estimate,
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LEMMA 5.3. — Letp > 1, 7 € D;\. Then there exists a constant K, > 0
such that,

0
1 K
5.4 ———ds < —5.
o4 L. s TP

Proof. — The proof of this lemma follows from simple estimates. First,
using a suitable change of variables we can write,

/0 ds 1 /0 dt
—oo |7+ 5P et 71" J oo |1 4 e—ianem P
K

Now we show that the integral in the right-hand-side of the previous equa-
tion is bounded by a constant which only depends on p and 6 (see the
definition of D; in (3.2)). To that end we split the integral,

/0 dt _/0 dt +/—1 dt
o |1+€72’arg(7—)t}1’+1 - 1 |1 +e—iarg(q—)t|p+1 e ’1+6—iarg(‘r)t p+17

and estimate each term separately. Clearly |1 + e*iarg(T)ﬂ > sin@ for all
t <0and 7€ D_ (see Figure 5.1). Thus

/0 dt < o 1
-1 |14 e*iarg(T)ﬂpH = te-1,0] |14 eiars(n)g pl
1
= (sin@)pt1l’

p
NI

Figure 5.1. The set {1+ e "Mt : t+<0 and 7€ D;}.

ANNALES DE L’INSTITUT FOURIER



1: -1 RESONANCE 1403

On the other hand,
_ 2
‘1 + e—““g(f)t‘ =1+ 2tcos(arg(r)) + 2
> cos?(arg(T)) + 2t cos(arg(r)) + t
= (cosarg(7) +1)2.

Thus
‘1 + e*””g(”t‘ > |t + cos(arg(7))|, Vt € R Vr € D,

which implies that,

! dt 1 1
TS 7S o
— |1+ 6—iarg(7’)t|p p (1 — cos(arg(7))) p (1 —cos0)
and the result follows. O

Proof of Proposition 5.2. — Let f : Ty, x D — C be an analytic
function as defined in the statement of the proposition. Moreover we know
that |f(¢,7)] < IIT(—‘{, for some Ky > 0 and p > 2. For N > 0 we have
(p —N,7—N) €Ty x D, . Thus,

-N 0
/ UW+ammnw</ flo—N+s,7—N+s)|ds

o —00
0
K
5.5 < . S
(5:5) /_DO|7'—N—|—S\F5
Ky, 1K

S = NPTY

by Lemma 5.3. Hence, the integral fEN f(p+s,7+s)ds converges uniformly
in Tp, x D as N — +00. We can apply a classical result of analysis (see
for instance [5] on pag. 236) to deduce that,

0
u (¢, 7) = /_ flo+s,7+ s)ds,

is an analytic function in T}, x D_ . The continuity in the closure of its
domain also follows from the continuity of f and the uniform convergence of
the integral (5.5). The upper bound for u~ follows from (5.5) with N = 0.

O

Remark 5.4. — A similar proposition holds for the function,

+oo
1ﬁWﬂ?:—/) F(o + 5,7+ s)ds,
0

which is defined in T}, x D;t.
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Now we consider the problem of solving equation (5.1) but for functions
defined in T}, x D! where,

D!=DfnD;N{reC: Imr< —r}.

Regarding this new domain D} we can not repeat the same arguments of
Proposition 5.2 since D} does not contain an infinite horizontal segment. In
order to overcome this difficulty, we construct an analytic solution of (5.1)
using a technique similar to the partition of unity, originally developed by
V. F. Lazutkin in [16]. This technique relies on a version of the Cauchy
integral formula for analytic functions which we now describe in detail.

Let £(dD}) denote the set of bounded complex-valued Lipschitz func-
tions y : D} — C with the norm,

r—=y

x(z) — x(y)’ _

x|l = sup [x(z)| + sup

z zFy

LEMMA 5.5 (Cauchy integral). — Let x € £(0D}) and f: T, x D} — C
be a bounded analytic function having a continuous extension to the closure

of its domain. Moreover, suppose that

1

f= 5= |f((p,7')||d7'|<00, VSOGTh~
27 Jap1

Then

_ 1 X(8) (e, 7)
h(p,7) = i /8D7{ 5_77515

defines two analytic functions hins and hegy defined in Ty, x D} and T}, x
C\ D} respectively. Moreover, both functions extend continuously to the
closure of its domains and

|hint, et (@, T)] < X (J5 4 sup [ £]) -

Proof. — This lemma is a parameterized version of Lemma 9.2 in [11].
Its proof is completely analogous and we shall omit the details. O

Remark 5.6. — 1If supp(x) € D} then h;ny = heye on C \ supp(x)

2tan @
PROPOSITION 5.7. — Let € > 0, p > 4 and r > max {2, 1_taan9}, Sup-
pose that f: Tj x D} — C is analytic, continuous on the closure of its

domain and there exists Ky > 0 such that
Ky

’Tpei€(7—750) | ’

V(cp,T) e Ty x D}

ro.

[f (e, 7)] <
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Then equation Du = f has an analytic solution u: Ty x D} — C, continuous
on the closure of its domain, such that
4K Kp 3 1

r |7—p_3€i6(7_30)|

(e, 7)] <

Proof. — Following the ideas of [11] we define the domains,

Dy ={r€C: |arg(r+7) >0 and Imr7 < —r},
D:‘:{TEC: —TEDT_}.

Note that D} = Df N D7. Let u(p,7) = 729 and f(p,7) =
w(p, 7)f(p, 7). We use the previous lemma on the Cauchy integral to write
the function f as a sum of two functions f* analytic in T}, x ﬁ;t respectively.
To that end, we define a partition of unity for the set D} as follows. Let
x: R — [0, 1] be a smooth function such that x(¢) =0 for ¢t < -1, x(t) =1
fort > 1 and |x'(t)| < 1forallt € R. Define two functions x*: 9D} — [0, 1]
by,

X" (1) =xRe(r)) and x (1) =1-x"().

Clearly x* € £(dD}) and ||x*|| < 2. Since r > 2208 (see Figure 5.2),
f*: T), x DF — C defined by

[ EOF8)
f(w)—/m el

Figure 5.2. The domain DT_

TOME 63 (2013), FASCICULE 4



1406 José Pedro GAIVAO

is analytic, continuous on the closure of its domain. Moreover

_ 1 F— £
fle,7) = o) (fer)+ [T (7).
Hence,
_ [P fletsts) [P etsT4s)
(5:6)  ulem) = —oo M+ 5,7+ 8) s /0 (e + 5,7+ s) s

is a solution of equation Du = f provided the integrals in (5.6) converge
uniformly. Let us show that the first integral defines an analytic function
in Tj, x D}. The second integral can be handled analogously.

Applying Lemma 5.3 and the upper bound from Lemma 5.5 to the first
term of (5.6) we get,

‘f ptsT+s)| <IXI(Jf-+8111>|f|)/O 1
(p+s.7+5) = |eic(m—¢)| |T+.s|1"’2
< Il Uy +sup | f]) 1,
|rp—3eic(r— ¢)|
Clearly ||x~|| <2, sup|f| < K;/r? and J; < 5L Since r > 2 we get,
_ ~ 2K
X~ (J5 +sup | f]) < Tf
which implies that,
(5.7) f <p+s T+ 5) < 2KiK,_3 1 .
©+ 5,7+ s) r |7P=3eic(r=9)|

Similar to the proof of Proposition 5.2, for p > 4 the integral converges
uniformly in T}, x DT . Hence, it defines an analytic function in T}, x D,, . The
continuity on the closure of T}, x ]3; also follows from uniform convergence
and continuity of f~. In an analogous way we conclude that

+oo
(o, 7 »—>/ f L'O+ST+S)ds
wlp+s,7+5s)

is analytic in Tp, X Df , continuous on the closure of T}, x D;’ and having the
same upper bound (5.7). Putting these upper bounds together we obtain,
4K Ky, 3 1

r |7-p—36is(r—sa)’

(e, 7)] <

and the proof is complete. O
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5.2. Linear operator L

Let B C C be an open set which does not intersect a neighborhood of
the origin. Both sets D and their intersection satisfy this condition for
r sufficiently large. Let p € Z and denote by X, (T), x B) the space of
analytic functions f = (f1,..., f1) : Tn x B — C* which have continuous
extension to the closure of its domain and have finite norm,

||f||p=( )S;? B(‘Tp+1f1(9077)|+|Tp+1fz(%7)|
®,T hX

+ 7P f3(@, )| + |7 falep, T)|) < 00.

The space X, (T, x B) endowed with the norm |-, as defined above is a
complex Banach space. When f € X, (T}, x B) we occasionally write

f(@?T) = (T_p_lfl(@vT)vT_p_1f2(907 T)aT_pf3(90a T)vT_pfﬁl((p?T))v
4

where the norm of f is now | f[|, = sup Z | filwo, 7).
(,7) i=1
For p > 0 let 9,(Ty, x B) be the space of analytic functions § =
(&1,...,&4) : T), x B — C* which have continuous extension to the clo-

sure of its domain and have finite norm,

4
el = sup D[ (p,7)| < oo
(Lp,T)ETh x B i=1
Given two Banach spaces (X, |[[|x) and (2, |-[ly) we define the usual
norm on the space of linear operators £ : X — 9) as follows,

1£() g

E f— .
£l 2= sup =

To simplify the notation we will not write, when it is clear from the
context, the dependence of the Banach spaces from the domains where the
functions are defined. Moreover, we will write the norm of a linear operator
L:X, — X as [|L],, and the norm of a linear operator £:9),, — 9, as
1l

Let A : Tj, x B — C**4 be an analytic matrix-valued function and define
L: X, = X, according to,

(5.8) £(f)(90, 7) =DE(p, T) — A(QD’ 7)5(907 T)7

where D = 0, + 0; is the same differential operator defined in the previous
section. We say that a 4-by-4 matrix-valued function U : Tj x B — C**4 is
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a fundamental matriz of £ if £L(U) =0, det(U) =1 and the columns (u;);
of U satisfy u; € X_o, us € X_3, ug € X; and uy € X5. We also define,

(5.9) Ky :=max {|lus||_, [[uz]| s, l[usly , [l } -

In the following we will be concerned with the problem of solving equation
L(€) = f for a given analytic function f : T, x B — C* with some pre-
scribed behavior. In other words, we want to invert the linear operator £
in the Banach spaces defined above. To that end, knowing a fundamental
matrix U for £ we can use the method of variation of constants as follows:
let ¢ = Uc where ¢ : T;, x B — C* is analytic. Substituting into £(£) we
get,

L(§) =D (Uc) — AUc
= (DU)c + UDc — AUc
= (DU - AU)c + UDc
= UDec.

Note that U has determinant equal one, hence invertible. Thus £ = Uc is
a solution of equation £(§) = f provided c satisfies the equation,

(5.10) Dc=U"'f.

A simple computation shows that we can write,

T_lul’l T_lul’g T_2’U,1’3 ’7'_2’1“’4

—2 —2 -3 -3
(511) U,1 _ T “U2,1 T "U22 T "U23 T “U24
TQU3’1 T2U3’2 TUu3,3 TU3,4

T3U4’1 7’3U4’2 T2’U44’3 TQU4’4

for some functions w; ; : T, x B — C, analytic with continuous extension
to the closure of T, x B. Moreover,

(5.12) Ky-1 := max sup  |u; (e, 7)| p < o0.
b3 (¢,7)ETLXB

Depending on the sets where U and f are analytic we can use Propositions
5.2 and 5.7 to obtain a solution of (5.10), thus constructing a right inverse
for L. Before stating and proving a couple of theorems that make the
previous discussion precise, let us present an example that motivates the
definition of £ and its fundamental matrix.
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5.2.1. An example: Ly

Here we define a linear operator Ly in the form of (5.8). This linear
operator plays an important role in the perturbation theory developed in
the subsequent sections. Let us consider the following PDE,

(5.13) Dx = Xy, (x),

where Hj denotes the leading order of H which we recall for convenience
Hy=—1 + Iy +nl.

A direct computation shows that,

(5.14)  To(p,7) = (k7 cosp, kT 2sinp, k7' cos, kT~ " sin <p)T ,
solves equation (5.13) where k2 = —%. Indeed, using the polar coordinates,
q1 = Rcosf, py=rcosf, gy = Rsinf, ps;=rsinb.
we see that equation (5.13) reduces to the following equations,

DO =1, Dr=-R, DR=nr’.

The last two equations define a second order differential equation D?r =
—nr3 which has a solution r(p,7) = £. Thus R(p,7) = %. Now using
0(¢,T) = ¢ as a solution of the first equation we get the desired solution
T'y. The linearized Hamiltonian vector field Ag := DX g, (o) evaluated at
T’y reads,

2 sin
0o -1 fHQTc# 7#
(5.15) Ao, T) 1 0 _sin(2p) _1+25;n2g)
. T) = L :
o\¥ 10 K -
0 -1 1 0

Note that Ag does not depend on the choice of k. Moreover Ag: Ty x C* —
C*** is analytic. Define Lo : X; — X; by

(5.16) Lo(§)(p,7) = DE(p,7) — Ao(0, 7)€, 7) -

It can be checked directly (or using the polar coordinates as before) that,

_ 27sing _37'2 cosep _ ksing _ 2kcosyp
3k 5K T2 73

2T cos ¢ _ 372 sin K COS _ 2kxsing
_ 3Kk 5Kk T2 T3

(517) UO(SQ’T) - 72 sin @ 73 cos @ __ksing __kcosg ’

3K 5K T T2

77'2 cos ¢ 73 sin K COS __ ksing
3k 5k T T2

is a fundamental matrix for the linear operator Ly. Moreover, Ug(p, 7) is
symplectic for all (¢, 7) € T), x C*. In particular, det(Uyp) = 1.
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5.2.2. Inverse theorems for the linear operator £

THEOREM 5.8. — Let p > 3, r > 1 and suppose that the linear operator
L:%X,(T), x D;) — X,(T), x D;7) has a fundamental matrix U. Then L
has trivial kernel. Moreover there exists a unique bounded linear operator
L71:X,11(Th x D7) — X,(T, x D7) such that LL™! = 1d.

Proof. — Let us prove the first assertion of the theorem: kernel of £
is trivial. To that end, let £ € X,(T, x D, ) such that £(§) = 0. Then,
according to (5.10) we have that Dc = 0 where ¢ = U~!¢. Applying Lemma
5.1 to each component of ¢ we conclude that c(p,7) = co(7 — ¢) where
co : C — C*is a 27-periodic entire function. Moreover, since cg = U1 we
can bound cq as follows. Let & = (77P71&, 77P~ & 77P&3, 77P&,)T. Then
(5.11) implies that,

(5.18)

4 4 4 4 T
Y —p—3 —pt1 —pt2
co=|77" E U1, T 7 E Ui, T 7 E u3,:&i, T 7 E ug,i&; | -
| i=1 i=1 i1

It follows from (5.12) that the functions w;; are bounded. Thus, cq is
bounded for p > 3. An entire bounded function must be constant by Li-
ouville’s theorem. Moreover, since co(s) — 0 as Im s — +oo we conclude
that ¢y = 0, thus proving that the kernel of £ is trivial.

Now let us construct an inverse of L, i.e., solve equation £(§) = f, where
f € Xp1(Thp x D). Let £ = Uc. Then ¢ must satisfy,

(5.19) Dc=U"'f.

Let f = (77P 2f1, 7P 2fy, 7P Lf3 77771 )T and g = U~'f. Taking
into account (5.11) we can write

4 4 4 4 T
N —p—4 - —p+1
g= {7 unifi P Jugifi, P usafi, TPy uaifi |
i=1 i=1 1=1 i=1

Bearing in mind that || f||
of g as follows,

pi1 < 00and (5.12) we can bound the components

Kyt [[fllps1 Ky | £l

lg1(0, 7)| < #;gpa 920, )| < #a
7] 7]

Ky || £l Ky || £l

l93(¢, 7)| < Tpp’ l94(, 7)| < W_lp.

For p > 3 we can apply Proposition 5.2 to each component of equation
(5.19) and conclude that there exists an analytic vector-valued function
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¢ = (c1,ca,¢3,¢4) : Ty, x D7 — C*, continuous in the closure of Tj, x D,
such that,

KproKy-1 ||f||p+1 KpisKy-1 Hf||p+1

lei(p, 7)] < BEE ) lea(p, T)| < o :
K, 1Ky-1 K oK

|C3(<P,T)| g p—102UT _IHf”p—‘rl’ |C4(SO”T)| < p—202U _2”pr+1
|T|p |7_|p

Finally, define the linear operator £=! as L7(f) = & where ¢ = Uc.
Using the previous estimates we obtain the following upper bounds for the
components of &:

K K
1€1(,7)| < P [ P 1€2(p, 7)| < P [
K K
€3, 7)| < P [ | €40, 7)| < P [

where K = (K, 1+ Kp13+ K12+ K, o) KuKy-1. Consequently €11, <
K || fll, .y yielding [~ ., < K. Thus

L7 %, 11(Ty, x D) — X,(Ty x D;)

is a bounded right inverse for £. The uniqueness follows from the kernel of
L being trivial. |

' 1—tan 6
the linear operator L : X,(Ty x D}) — X,(T, x D}) has a fundamental
matrix U. Then the kernel of L consists of functions of the form

U(p, m)e(T — )

where ¢ : {s € C : Ims < h —r} — C* is analytic, 2r-periodic, continuous
in the closure of its domain and c(s) — 0 as Im s — —oo. Moreover,

THEOREM 5.9. — Let p > 3, r > max{2 2tand } and suppose that

(1) there exists a bounded linear operator L~ : Xp43(Ty x D}) —
X, (T, x D}) such that LL™! =1d,

(2) for any 0 < p’ < u there exists a bounded linear operator E;l :
D, (Th x D}) = D, (Ty x D}) such that LL,;' =1d.

Proof. — The proof of the first part of this theorem is almost identical
to the previous one except that the functions are now defined in Ty, x D}.
As before, if £ € X, such that £(£) = 0 then by the method of variation of
constants Dc = 0 where ¢ = U~!¢. Applying Lemma 5.1 to each compo-
nent of the vector function ¢, we conclude that c(p, 7) = co(7 — ¢) where
co:{s€C:Ims<h—r}— C*is an analytic, 2r-periodic vector-valued
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function. Moreover, as in the proof of the previous theorem we conclude
that co(s) — 0 as Im s — —oo, thus proving the first part of the theorem.
For the second part, let us first prove item (1). We shall construct an in-
verse of £ by solving the equation £(§) = f where f € X,13(T) x D}).
Again, we look for a solution using the method of variation of constants.
Let £ = Uc. As before, ¢ must satisfy

(5.20) Dc=U"'f.

Let f= (77P74f), 7774 fy, 77 P73 f3 77P=3f;) and g = U~!f. Taking into
account (5.11) we can write g as follows,

4 4 4 4 T
—p—>5 —p—6 —p—2 —p—1
g=|7"" E Ul,ifiﬂ' P E U2,ifia7' P E U3,ifi77' P E u4,z'fz‘ .
i=1 i=1 i=1 i=1

Bearing in mind that || f|| ;5 < oo and (5.12) we can bound the components
of g as follows,

Ky [ fllp4s Ku-1 [fll,13
l91(p,7)[ < ?J? lg2(ep, 7)| < ?ﬂjp,
Ky [| £l Ky || fll13
lg3(0, )| < WJ,_QP? l9a(ep, )| < \TT“IP
Since r > max {2, f_tf;nee} we can apply Proposition 5.7 with ¢ = 0 and

p = 3 to each component of equation (5.20) and conclude that there exists
a vector-valued function ¢ = (cy, ¢, ¢3,¢4) : Ty, x DI — C* such that each
¢; is an analytic function in T}, x D}, continuous in the closure of its domain
and satisfying,

AK o Kyt || fll, 4K 3Ku-1 || fll,0s
C s T NS ) C s T ~X )
| 1(50 )| T|T|p+2 | 2(80 )| 7ﬂ|7_|p+3
AKy 1 Ky || f]l,4 AKp o Ku-1 || fll,43
les(p, )| < s Jea(e, )| < o
r|7] 7|7

Finally, as in the proof of the previous theorem, we define the linear oper-
ator L7 as L7(f) = £ where £ = Uc. If §; denote the components of ¢
then &; can be bounded in Ty, x D} in the following way,

K K
§1(,7)] < P 1 llpyas [SICIIIES P 115
K K
€a(p, 7)| < e [fllpys,  1&ale, Tl < P 11l s
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where K = 2(K,_1+Kpi3+ Kpr2+K,—2) KuKy-1. Consequently €11, <
K || fl,45 vielding ||£*1Hp)er3 < K. Thus £71 : X, 43(Typ x D)) — X,(Tp, x
D}!) is a bounded right inverse of L.

In order to prove item (2) let 0 < /' < p and consider the problem of
solving equation £(§) = f but now with f € 9,(T, x D}) C X,(T, x D})
where the inclusion clearly holds for any p € Z. Again, we look for a solution
using the method of variation of constants. Thus we have to solve equation
(5.20) where f can now be written as f(p,7) = e #{("=%) f(p, 7) where f
is a bounded analytic function in Tj, x D}. Taking into account (5.11) we

can bound the components of g := U~ f in T; x D} as follows,

iy Ky-
lgi(p,7)| < sup [P (v )l(r—cp)’ ‘”f'/t v

7: - 1 DY 4 .
1 ) 3 )
(@,T)ET;LXD,,{ T 66“ ir )

Note that the supremum in the previous estimate is finite since p— p' > 0.
So we can again apply Proposition 5.7 with € = p/ and p = 6 to each
component of equation (5.20) and conclude that there exists an analytic
vector-valued function ¢ = (c1, ¢z, c3,¢4) : Ty x D} — C*, continuous in
the closure of its domain such that,
K

(5.21) |ci(p, 7)) |T3€“/Z(7_‘p)’

Il i=1,.004,

where,

ASUp(, yer, xpr [T IO Ky K

K. =

T
As before, we define the linear operator E;/l as E;l( f) = & where £ = Uc.
Moreover, taking into account the estimate (5.21) the &;’s can be bounded
in Ty, x D} as follows,

4Ky K. ‘
Sl IflL,, i=1,....4.

eH'i(T—SO)‘

Consequently [|¢],, < 16KuKc || f[|, yielding H,C;lﬂu v S 16KyKe. Thus
E;l 1, —+ P, is the desired bounded right inverse of L. O

6. Solutions of a variational equation

Let n > 3, £ € X,,44(Ty, x D7) and consider the following linear PDE,
(6.1) Du=DXg(T i3+ &u.

where I';, ;3 is a partial sum of the formal separatrix as defined in Remark
4.7. In the following lemma we prove the existence of a fundamental solution
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of equation (6.1) that is close to a partial sum of a formal fundamental
solution U of the formal variational equation (3.4). We shall use this result
to prove Proposition 3.4 at the end of the present section.

LEMMA 6.1. — Let n > 3 and U,, be a partial sum of a formal funda-
mental solution U as defined in Remark 4.11. Then there exists rog > 0
sufficiently large such that for every r > rg the equation (6.1) has a
unique analytic fundamental solution U : Ty, x D;- — C*** having contin-
uous extension to the closure of its domain, UT JU = J (symplectic) and
U-U, ¢ Zfﬁﬂ(’]l‘h x D).

Proof. — We look for a solution of equation (6.1) in the form,
(6.2) U=U,+V,

where V : Tj, x D7 — C** is a 4-by-4 matrix-valued function such that
each column of V belongs to the space X,, (T, x D7) for some r > 0 (to
be chosen later in the proof). Substituting (6.2) into the equation (6.1) we
obtain,

DV = DXu(Tyy3 +§V + DXy (Thys +£)U, — DU,.
This last equation can be rewritten in the following form,
(6.3) Lo(V) =BV +R,,
where Ly is defined by formula (5.16). Moreover
B=DXygThi3+&) — Ao and R, =DXg([T,ys3+EU, — DU,.

Taking into account the definition of Ag (see (5.15)) we can write the entries
of the matrix B as follows,

T_2b1’1 T_2b1,2 T_3b1)3 T_3b174
—2 —2 -3 -3

T bg’l T b2,2 T b2)3 T b274

T_1b371 T_lbgyg T_2b3)3 T_2b374

Ty T bas T %bas T 2baa

(6.4) B-=

where each function b; ; : T, xD;” — C is analytic and bounded in T}, x D" .
Thus, each column of BV belongs to X, 1. On the other hand, Remark 4.11
implies that each column of R,, also belongs to X, 1. Thus, BV + R,, €
x2 41- Since Ly has a fundamental matrix U given by (5.17) we can apply
Theorem 5.8 which guarantees the existence of an unique bounded right
inverse Eal : X1 — X, of Ly for r > 1. Thus, in order to solve (6.3) for
V, it is sufficient to find a fixed point of the following operator,

(6.5) Vi Lo (BV)+ L (R,),
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defined in X%, (T, x D;") with 7 > 1. Note that B induces a linear op-
erator B : X,, — X,41 naturally defined by B(v) = Bv. Thus, in order to
prove the existence of a fixed point for (6.5) it is enough to show that,

1

(6.6) 125" < 8], <35

for r > 1 sufficiently large. Indeed, using the previous upper bound one
can show that the linear operator defined by (6.5) is contracting and an
application of the contraction mapping theorem yields the existence and
uniqueness of a fixed point V € X2 (T, x D).

Let us now prove inequality (6.6). Given v € X,, we want to bound
(IBv]] from above using ||v||,,. According to (6.4) we have that,
(6.7)

4 4 4 4
—n—3 —n—3 —n—2 —n—2
Bv= |7 E b1,:vi, T E ba Vs, T § b3 v, T E b5 |,
i=1 i=1 i=1 i=1

n+1

—n—1

where v = (77" loy, 1 vg,T_”vg, "vg). Note that given rg >

1

sin 6
for every r > ro we have that |7| ™% < |7| 7' < 7osimg 10 Dy for k€ N (see

Figure 6.1). This observation together with (6. 7) yields

Kg

B _B
IBvI 7o sin 6

vl

n+1 \

where

K := max { sup |bi,j(<,0,7')|} < 00.

W=t (eimemxnr

Figure 6.1. Domain D,
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Kp
n+1ln X rgsinf”

taking into account that L ! is also bounded by Theorem 5.8 we get,

This proves that the linear operator B is bounded, ||B|| Now

; - S
15" 0 Bl <125 s DBl < —— L,

2Kg ||t
r0>max{ 1 B [ Lo Hn,nﬂ}7

Therefore if

sin@’ sin 6

then for every r > rg the inequality (6.6) holds. Finally, note that we can
repeat the previous arguments with n + 1 instead of n and obtain a unique
V € X2, (Ty x D;) for  sufficiently large such that U = U,1 + V
solves equation (6.1). It follows that U — U, € kS (']I‘h x Dy ) and due
to the uniqueness of the fixed point we conclude that U — U,, = V. Thus
V € X}, (T, x D7) for every r sufficiently large. In order to conclude the
proof of the theorem we just need to show that U is in fact symplectic.
This is not difficult, as it follows from Proposition 5.1, UTJU = J and the
fact that if u and v are columns of U then DQ(u,v) = 0. O

Now using the previous lemma we can prove Proposition 3.4.

Proof of Proposition 3.4. — According to Lemma 6.1 we know that for
every n > 3 there exists rg > 0 such that for every r > ry there exists
a unique fundamental solution U such that U — U,, € X,,41(T, x D,)
and UTJU = J. The uniqueness of the solution implies that the third
and fourth columns of U are 9,I'” and 0.I'" respectively. Thus U is
a normalized fundamental solution. To complete the proof it remains to
show that U is in fact independent of n. Indeed for every n > 3, we can
trace the proof of Lemma 6.1 and see that, by increasing r if necessary, we
can make |[U — Us||; as small as we want in order to apply the contraction
mapping theorem. Thus, the uniqueness of the fixed point implies that U
is in fact independence of n. O

7. Proof of Theorem 3.2

Let n > 6 and r > 0 (to be chosen later in the proof). We look for a
solution of equation (2.4) of the form,

(7.1) ' =T,+¢,

where € € X,, (T}, x D,7) and I';;, is a partial sum of the formal separatrix
as defined in Remark 4.7. Substituting (7.1) into equation (2.4) we obtain,

D¢ = Xy(T,, 4 €) — DT,
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Now we rewrite the previous equation as follows,

(7.2) L(6) = Q&) + R,

where £ : X,, — X, is a linear operator acting by £(§) = D — DX g (T',)¢
and

Q&) = Xu(Tyn + &) — Xu(Ty) — DXu(Th)E, R, = Xu(T'y) — DT,.

Our goal is to solve equation (7.2) with respect to . To that end we will
invert the linear operator £ and obtain a new equation from which we
can apply a fixed point argument to get the desired solution. According to
Theorem 5.8 we can invert £ as long as it has a fundamental matrix U.
Since n > 6, the existence of a fundamental matrix follows from Theorem
6.1. Thus, there exists an g > 1 such that for every r > rg the linear
operator £ has a fundamental matrix U such that U — U,_3 € X% _,.
Hence, we can apply Theorem 5.8 to get a unique bounded linear operator
L7 X1 — X, such that ££7! = 1d.

Now let us prove that given £ € X,, (T), x D,") the function Q(§) + R,
belongs to X,,4+1 (Ty, x D,") for r sufficiently large. First note that Remark
4.7 implies that R,, € X,,+1 (T}, x D7) for any » > 0. So it remains to
show that Q(¢) € X,41 (Tr x D7) for » > 0 sufficiently large. Denote
the components of the vector field Xy by v; and consider the following
auxiliary functions,

’yi(t) = vi(I‘n + tf) — U,(Fn) — thi(I‘n)g, 1= 1, N 74.

Note that v;(0) = 0fori =1,...,4and Q(£) = (y1(1),72(1),73(1),7a(1))".
We can integrate by parts each function ; to obtain,

%‘(1)2/0 (1—s)y/(s)ds, i=1,...,4.

By the intermediate value theorem there exist ¢; € [0,1] for ¢ = 1,...,4
such that v;(1) = (1 — ¢;)v/(t;) where the second derivative of v; can be
easily computed

(7.3) 7/ (s) = €7 Hess (03)|p, 4 &-

Taking into account that £ € X,, and the fact that Xy is analytic we obtain
the following estimate,

—2n 2
(W] < 8[[Hllgs [7I [I€]I5

for 7 > 1 where ||| s is the standard C®-norm. Using the previous upper

bound and the fact that given r; > max {To, ﬁ} and every r > r; we
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have that |7|7> < |7|™" for 7 € D, then we can estimate 1QE),,yq in
the following way,

- 2° || H|los lI€112
7.4 <2 |H e v
T0 1Ay <2 [Hllcs el sup I e o

where this last estimate holds since n > 6. Thus Q(§) € X,11 (T, x D,7)
as we wanted to show. Now in order to solve equation (7.2), it is sufficient
to find a fixed point in X,, (T), x D,") of the following non-linear operator,

£ L7HQ(E)) + LT (Rn).

Let us denote this operator by G. So in order to apply the contraction
mapping theorem we have to check that G is contracting in some invariant
ball

B, ={{cXn: [lEll, <p},
where p > 0. First we prove that G(B,) C B, for some p > 0. Let p =

2 Hﬁ_lHn’nH [Rnll,4, and € € B, then (7.4) implies that,
) . _ 2° || H|os €112
le=H @) —£7 R, <£7H], (MC;)HHRWH <p,
provided,
21 Hlleo (L7, 41 )7
(75) T1 = Slne

Thus G leaves invariant a closed ball B,. To check that G is contracting in
B, we let 1,8 € B, and consider a segment connecting both points, i.e.,

= (1 —t)&1 + t&. Clearly v, € B, for all t € [0,1]. Similar as before we
define the following auxiliary functions,

»i(t) = v;(Th + ) —0i(Tn) — Vi (Tp)y, t=1,...,4.
Note that,
Q(&1) = (11(0),%2(0),3(0),14(0)) ",
Q(€2) = (¥1(1), ¥2(1), ¢3(1), ¥a(1)) "

By the mean value theorem there exist t; € [0,1] for ¢ = 1,...,4 such that
;i (1) — 1;(0) = ¥i(t;). Differentiating the functions v; we obtain,

(7.6) (1) = 9i(0) = (Vi (T +71,) = Vi (T)) - (&2 = 1) -

Thus, we can bound the differences (7.6) as follows,

(1) = i) <8 Hllga pl7| ™" |€2 = &ull,,
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which implies that,

2°p || H s

HQ(&Q) - Q(£1)||n+1 < ( ||£2 - gl”n .

r1sin )"~

Applying the linear operator £~ and taking into account (7.5) we get,

5
e Q) QU < €7,y e,

n,n+1 (Tl sin 9)7172

1
X 5 ||€2 - §1||na

which proves that [|G(&2) — G(&1)]l,, < % [1&2 — &, in B,. Thus G is con-
tracting in the ball B, provided r > r; where,

1 ([ Hles [1£7Y

sinf’ sin 6

1€2 = &ull,,

nn+1p

1 > max\| 7o,

To conclude the proof of the theorem let us check that the unique function
~ obtained with n > 6 is in fact independent of n. Increasing r > 0 the
dlstance [T~ —Isl/g can be made as small as we want in order to apply
the contraction mapping theorem for n = 6. Due to the uniqueness of the
fixed point we conclude that the function I'” is in fact independent of n.
Finally for every n > 0 there exists r > 0 sufficiently large such that,

I~ — Fn =TI - Fn+1 + Fn+1 — Fn € %nﬂ(’]l‘h X Dr_)
Consequently I'™ ~ I' and the proof is complete. O

8. Proof of Theorem 3.5

Let £, = 't — I'". Note that since both T'* have the same asymptotic
expansion I' then &, € X,,(T), x D}) for every n € N where,

D} =DfnD, n{reC|Imr < —r}.

Let us outline the main steps of the proof. In the first step we write an
integral equation for £, and derive, using a fixed point argument, a sequence
of functions {fk}k>0 converging to &,. In a second step we prove that the
sequence {x};, is uniformly bounded (with respect to k) by a function
that is exponentially small as 7 — oo in D}. This is proved by exploiting a
recursive equation that is used to define the sequence of functions. In the
third and final step of the proof we derive the constant ©~ and obtain the
desired asymptotic formula for I'™ — I'", thus completing the proof of the
theorem. So let us start with,
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Step 1. For definiteness let us henceforth suppose that n = 5. We want
to prove the following:

Forr > 0 sufficiently large there exists a sequence {fk}k>0
in X5(Ty x D}) such that & — &, as k — +oo.

To prove this we write a fixed point equation for £, and use the contrac-
tion mapping theorem. Using the fact that both I'™ and I't are solutions
of equation (2.4) we can write,

Dé— DXy ) = Xu(T™ + &) — Xu(T7) = DXy (T )E..
Or equivalently,

(8.1) L(&) = Q(&),
where £ : X5(T), x D}) — X5(T, x D}) is the linear operator defined by
L&) =D — DXy (7)€ and

Q) = Xu(T™ +&) = Xu(I'7) = DXy (T7)Es.

Now we construct a right inverse of £. According to Proposition 3.4 there
exists 71 > 0 and a unique normalized fundamental solution U : T}, x D},l —
C**4 guch that U ~ U. Thus U is a fundamental matrix for £ provided

r > ry. For r > max{2 2 tan 0

, 17tan67r1} we can apply Theorem 5.9 which
guarantees the existence of a bounded right inverse L1 : Xg(Tj x D}) —
X5(Ty, x DY) of L, i.e., LL~1 = Id. Moreover, similar estimates as in the
proof of Theorem 3.2 (see (7.4)) show that for » > 0 sufficiently large we

have,

25 || H|| s [|€4]I2
(32) e, < 2 le &l
Thus Q(&«) € Xs. Consequently,
(8.3) o =& — L7HQ(&)),

belongs to the kernel of L. According to Theorem 5.9 there exists a 27-
periodic analytic function cg : H,_; — C*, continuous in the closure of its
domain, such that &y(¢,7) = U(p, 7)co(7 — ). The domain of ¢ is a half
plane,

H,_p={se€C: Im(s) < —r+h}.
Thus (8.3) implies that,

6* = C_l(Q(f*)) + UCOu

and the function &, is a fixed point of the nonlinear operator,

(8.4) €= L71(Q(€)) + Uy,
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which is defined in X5(T, x D}). Let p := 2||Uco|5. Similar estimates as
in the proof of Theorem 3.2 show that the nonlinear operator defined in
(8.4) is contracting in the ball B, = {£ € X5 | ||£||; < p} provided,

r> 26 H'C_le,g |H| s p-
Thus, by the contraction mapping theorem, the sequence {{} defined by,
(8.5) &1 = L71(Q(&)) + Ucy, k>0,

converges to &, i.e., [|& — &|l; = 0 as k — oo.

Step 2. It is convenient to estimate the functions & using the following

sup-norm: given a bounded analytic function g = (g1,...,94) : Ty, x D} —
C* let,
(8.6) lgll = sup Z lgi(e, 7

( GT;, XDT i=1

In the following we want to prove:
There exist C, > 0 and r > 0 sufficiently large such that
for every k > 0 we have Hei(T_‘P)U_lka < C,.

In order to prove this uniform estimate we define a new sequence of
functions:

(8.7) G, 7) =TT (0, 7)k(,7), Yk > 0.

Let Cy := ||Ck||. We want to prove that there exists C, > 0 and r > 0
sufficiently large such that Cj, < C, for all £ > 0

To that end, we construct another right inverse of L. Fix arbitrary small
positive real numbers ¢, ¢’ € RT such that € < ¢ and define p := 2 — € and
@ :=2—¢. Since 0 < /' < pu we can apply Theorem 5.9 which guarantees
the existence of a bounded right inverse £, : 9),,(Tpx D;\) = ), (Tyx D})
of £. Using (8.7) and similar estimates as in the proof of the Theorem 3.2
(see (7.3)) show that the components of Q(&x) can be bounded by,

27 || Hllga K o295 2,
in Ty, x D}. Thus,
(88l =|

for values of 7 = O(e™!). Hence £L71(Q(&)) — £,,' (Q(£1)) belongs to the
kernel of £ and by Theorem 5.9 we know that there exists a 27-periodic

ei(2—€)(7—<ﬂ)Q(£k)H <20 HH||C3 ](IQﬂﬁe(h—r)eC]%7
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analytic function cj, : H,_j, — C*, continuous in the closure of its domain
such that,

(8.9) Ucr = L71(Q(&)) — £, (Q(&))-

Taking into account (8.7) and (8.9) we can rewrite the recursive formula
(8.5) as follows,

(8.10) G = € T7OUTLN Q) + €7 Py + TPy,

In the following we estimate the norm of the functions in the right-hand-
side of (8.10). We will also need the norm induced by (8.6) on the space of
4-by-4 matrix-valued functions G = (G, ;) : Ty, x D} — C**4,

4
Gl = max  sup 3 [Gaenrl.
J=4seees (p,7)ETL XD} 4

Note that given an analytic function v : D} — C such that v(7) = O(773)
we have,

(8.11) ||’yU*1|| < 4Ky-1 sup |737(T)|.
TeD}

Let us start estimating the norm of the first term in (8.10). Taking into
account (8.11) we obtain,

cilr—o -1 £1(Q)]| < He—(u’—l)i(T—w)U—lH Heu’i(T—s&)ﬁgl(Q(&))H

Tge_(u/_m(r—«p)’ 1.1 (Q(&))]|

<4Ky-1 sup
(¢,7)ETHL X DL

Thus, (8.8) implies that

7

(8.12)

STAUTLNQE)| < Mi()e HOMCE,
where

(8.13)  M(r) =2"Ky- K¢ ||£,"

JT HH”CS Tge_(%—(e/—e))(r_h).

Clearly My (r) = O(1) since ¢’ —e > 0 is arbitrarily small. Now we deal with
the second term in equation (8.10). Taking into account (8.9) we write,

(8.14) ck = UL (Q(&)) — UL, (Q(&))-
Let us estimate each term of (8.14) separately. Using (8.11) we have,
[ 2=H Q)| < |7 Pu | |72 Q) |
<ttt sup € @),

< 4Ky [|£7Y], 4 1Q(E) s -
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Moreover, by (8.7) we have that ||& |5 < 4Kur®e~ """}, which together
with (8.2) imply that,

(8.15) 1QE) s < 2° [|H | oo KT e e CF.
Thus,

[U1L71Q(&))|| < 2" || H | oo K§ Ky ||£7 riTe2r=h 2,

Hls s

On the other hand, the second term of (8.14) can be estimate as follows,
e/L i(r— Lp 51«: H

-

gl

<4Ky-: sup
(¢,7)ETHLx DX

< 4KU_1r3e*(276/)(T7h) ||£;

w ||Q(£k)H/L .
Taking into account (8.8) we get,

UL (QE) | < 2 [l KK |25, 106G (=i=mc2,

Finally, putting all these estimates together we obtain,
lewll < Ma(r)e 20N CE,
where,

9= (3=( =) (r—h)

20
+lc”

Similar to My we conclude that Ms(r) = O(1). In order to conclude the
proof of the assertion of this step we need the following simple result.

My(r) = 2" || H| g K3 Ko (] £

1H5 . ,’,176—%(7'—}5)) )

LEMMA 8.1. — Let ¢ > 0 and f : H, — C an analytic function, 27-

periodic, continuous in the closure of H, and f(z) — 0 as Imz — —oc.
Then,

If(2)] < sup |f(z)]e™=F7.

Imz=—0

Proof. — The proof is a simple application of the maximum modulus
principle for analytic functions. a

Applying the previous result to each component of c we get,

leki(2)| < sup  |eg(2)] el ZJ”*h, i=1,...,4.
mz=—r-+
Thus,
(8.16) \ ei“w)ckH < lexl| e < Ma(r)e 20— 2
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Regarding the last term in the right-hand-side of equation (8.10) we know
that by definition Cy = Hei(T*‘P)COH. Applying Lemma 8.1 we get Cy < oo.
Thus, taking norms in both sides of equation (8.10) and using the estimates
(8.12) and (8.16) we obtain,

(8.17) Chrr < (My(r) + Ma(r)) e~ 2=MC2 1 (.

Since both M7 and M are bounded with respect to r we can choose r > 0
sufficiently large such that,
1
(M) 4 My) Coe™2(r=1) T
which implies that Cj < C, for all k > 0 where C, := 2Cj.

Step 3. In order to finish the proof of the theorem note that the uniform
estimate obtained in the previous step implies that ||e/"=?U~1¢, || < C..
Thus, the estimate (8.8) applied to &, gives that Q(&,) € 9,(Ty x D}).
Moreover, as &, — L, (Q(&+)) € Ker(L) there exists an analytic 2r-periodic
vector-valued function ¢, : H,_;, — C* such that &, = Uc, + E;l (Q(&)).
Since c.(z) — 0 as Im z — —oo, we can write its Fourier series as follows,

c.(z) = Z c*yme*im’z,
m=1
where c. ,, € C*. Moreover, as £,;' (Q(&4)) € 9 (Th x D)) then,

£.(p,7) = TP, )07 + 0 (NI,

where ©~ := c, ;. This completes the proof of the theorem. O
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