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ANALYTIC INVARIANTS FOR THE 1 : −1
RESONANCE

by José Pedro GAIVÃO (*)

Abstract. — Associated to analytic Hamiltonian vector fields in C4 having an
equilibrium point satisfying a non semisimple 1 : −1 resonance, we construct two
constants that are invariant with respect to local analytic symplectic changes of
coordinates. These invariants vanish when the Hamiltonian is integrable. We also
prove that one of these invariants does not vanish on an open and dense set.
Résumé. — Etant donnés des champs de vecteurs Hamiltoniens analytiques

dans C4 ayant un point d’équilibre satisfaisant une résonance 1 : −1 non semi-
simple, nous construisons deux constantes qui sont invariantes relativement aux
changements de coordonnées symplectiques analytiques. Ces invariants sont égaux
à zéro lorsque l’Hamiltonien est intégrable. Nous montrons également que ces in-
variants sont différents de zéro dans un ensemble ouvert et dense.

1. Introduction

Let XH : (C4, 0) → (C4, 0) be an analytic Hamiltonian vector field, i.e.
there exists an analytic function H : (C4, 0)→ (C, 0) called the Hamilton-
ian such that Ω(XH ,v) = dH(v) for every v ∈ C4 where Ω is a symplectic
form in C4. For definiteness we assume that Ω is the standard symplectic
form,

(1.1) Ω(x,y) = xTJy, x,y ∈ C4, where J =
(

0 Id
−Id 0

)
.

Keywords: analytic classification, Stokes phenomenon, splitting of separatrices.
Math. classification: 37J20, 34M40, 34M30.
(*) The author wishes to thank Prof. Vassili Gelfreich for his support and advice through-
out the realization of this work, to CEMAPRE and Fundação para a Ciência e a Tec-
nologia (FCT, Portugal) for the financial support through the project “Randomness in
Deterministic Dynamical Systems and Applications” (PTDC/MAT/105448/2008).
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The matrix J is known as the standard symplectic matrix. In this setting,
the Hamiltonian vector field XH written in coordinates reads,

XH(q,p) =
(
∂H

∂p (q,p),−∂H
∂q (q,p)

)
, (q,p) ∈ C2 × C2.

In this paper we study a Hamiltonian vector field XH with an equilibrium
point XH(0) = 0 in a 1 : −1 resonance, i.e. the matrix DXH(0) is not
diagonalizable and has a pair of double imaginary eigenvalues ±iα, α > 0.
Our study is motivated by the problem of estimating the size of the

chaotic zone near a Hamiltonian-Hopf bifurcation [9, 19, 24]. This is a
codimension one bifurcation of an equilibrium point in a two degrees of
freedom Hamiltonian system in R4. More precisely, let Hε be a real an-
alytic family of Hamiltonian functions defined in a neighborhood of the
origin in R4. Suppose that the origin is an equilibrium point of XHε , i.e.,
XHε(0) = 0 for every ε, and that as ε→ 0+ the equilibrium goes through a
Hamiltonian-Hopf bifurcation: for ε > 0 the matrix DXHε(0) has two pairs
of complex conjugate eigenvalues ±βε ± iαε, αε, βε > 0 that approach the
imaginary axis as ε → 0+ yielding a pair of double imaginary eigenvalues
±iα0, α0 > 0 for DXH0(0). At the critical value ε = 0 the equilibrium is
at a 1 : −1 resonance. This bifurcation has been extensively studied [30]
and it is known that there are two main bifurcation scenarios. In one of
these scenarios, for ε > 0 there are two dimensional stable W s

ε and unsta-
ble Wu

ε manifolds that live inside the three dimensional energy level set
{Hε = Hε(0)} and shrink to the equilibrium as the bifurcation parameter
approaches the critical value. Points in the manifold W s

ε (resp. Wu
ε ) con-

verge to the equilibrium forward (resp. backward) in time under the action
of the flow. The intersection W s

ε ∩Wu
ε if not empty consists of homoclinic

orbits, thus is at least one-dimensional. It is well known that the existence
of a transverse homoclinic orbit is a route to the onset of chaotic dynamics
in a neighborhood of the equilibrium point [4, 18].
In [9] a quantity ω known as homoclinic invariant was introduced to

measure the size of the splitting of stable and unstable manifolds. Roughly
speaking, it is defined to be the symplectic area formed by a pair of nor-
malized tangent vectors at a homoclinic point. Let us show how to define
it precisely. In a neighborhood of the equilibrium, the unstable manifold
Wu
ε can be locally parameterized by a C1 function,

Γu : {(ϕ, z) : ϕ ∈ T, z < z0} → R4

ANNALES DE L’INSTITUT FOURIER



1 : −1 RESONANCE 1369

for some z0 ∈ R where T = R/2πZ. Moreover, Γu is a solution of the
nonlinear PDE,

(1.2) αε∂ϕΓu + βε∂zΓu = XHε(Γu) ,

with the following asymptotic condition,

lim
z→−∞

Γu(ϕ, z) = 0 .

Such parameterization is said to be a natural parameterization of Wu
ε .

Since it satisfies the PDE (1.2), Γu conjugates the motion on the unstable
manifold in a neighborhood of the equilibrium to the linear motion on the
cylinder T× (−∞, z0). That is,

(1.3) Γu(ϕ+ αεt, z + βεt) = ΦtHε ◦ Γu(ϕ, z) ,

where ΦtHε is the Hamiltonian flow. The derivatives ∂zΓu and ∂ϕΓu define
a basis of tangent vectors at each point of Wu

ε . To obtain a natural pa-
rameterization for the stable manifold we can reverse the time and repeat
the same reasoning, or equivalently consider −Hε. For simplicity, suppose
that XHε is time-reversible, i.e., S∗XHε = −XHε , where S 6= ±Id is some
linear involution. In the reversible setting it is convenient to define a local
parameterization for the stable manifold as

Γs(ϕ, z) := S ◦ Γu(−ϕ,−z),

which satisfies the same PDE (1.2). The freedom in the definition of the
parameterizations is reduced to translations in their arguments. Let Fix(S)
denote the set of fixed points of the involution. Given an orbit γ of the vec-
tor field XHε we call it symmetric if γ∩Fix(S) 6= ∅. In [15] the existence of
two primary symmetric homoclinic orbits is proved. Roughly, they corre-
spond to the “first intersection” of both W s,u

ε with Fix(S). Let γh denote
one these homoclinic orbits. Due to the freedom in the definition of the
parameterizations we can suppose that γh(t0) = Γu(ϕ0, z0) = Γs(ϕ0, z0)
for some t0 ∈ R and (ϕ0, z0) ∈ T × R. The homoclinic invariant of γh is
defined in the following way,

ω = Ω(∂ϕΓs(ϕ0, z0), ∂ϕΓu(ϕ0, z0)).

Clearly, ω takes the same value along the homoclinic orbit γh. Moreover,
if ω 6= 0 then γh is a transverse homoclinic orbit. Thus, ω measures the
splitting of the stable and unstable manifolds along the homoclinic orbit
γh. Based on analytical and numerical evidence, in [9] it is conjectured that
the homoclinic invariant has the following asymptotic expansion,

(1.4) ω ∼ ±e−
παε
2βε
∑
k>0

ωkε
k as ε→ 0+ .

TOME 63 (2013), FASCICULE 4
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The symbol ∼ in (1.4) means that if we truncate the series then the error in
the approximation is of the order of the first missing term. Recall that βε is
the absolute value of the real part of the eigenvalues and that βε → 0 as ε→
0+. Thus (1.4) implies that ω is exponentially small with respect to ε. The
leading term ω0 in the asymptotic expansion is called the splitting constant
since ω0 6= 0 implies that ω 6= 0 for ε sufficiently small. The splitting
constant is defined at the moment of bifurcation, i.e., it only depends on
the Hamiltonian with a 1 : −1 resonance. Moreover, ω0 = 2

√
|K| where K

is one of the invariants studied in the present paper.
Proving (1.4) is a highly non-trivial problem comparable to the problem

of the splitting of the separatrices of the standard map that started with
the work of V. Lazutkin [17] and ended with a complete proof given by
V. Gelfreich in [11]. Based on the results of [8] and on the results of the
present paper the author has an unpublished proof of (1.4) that will send
for publication as a separate paper.

Also related to this work is the study of the so-called inner equation
[1, 22, 25]. In most problems of exponentially small splitting of separa-
trices, the leading constant of an asymptotic formula that measures the
splitting comes from the study of an inner equation which, roughly speak-
ing, contains the most singular behavior of the problem [10].

The study of exponentially small splitting of invariant manifolds in
Hamiltonian systems of higher dimensions can be found in [21, 26]. In these
works, the authors have devised a geometrical method to study the splitting
of stable and unstable manifolds of a partially hyperbolic invariant torus
(known as “whiskered torus”) in near-integrable Hamiltonian systems.

The combination of geometrical and analytical methods to study the
exponentially small splitting of separatrices has proved fruitful and still
today, it follows closely the original ideas introduced by V. Lazutkin in
[17].

Finally, let us mention that the invariants found in this paper have a
parallel to the analytic invariants found in [12] which are defined for diffeo-
morphisms in C2 with a parabolic fixed point. One of these invariants also
plays a role in the splitting of separatrices near a saddle-center bifurcation
[14]. In particular, for the Hénon map the same study was carried out in
[13] where a connection with the resurgent theory of J. Écalle was estab-
lished. For a more recent treatment on the connection between resurgence
and splitting of separatrices the reader is referred to [27]. See also [6, 23, 29]
for related studies in analytic classification of germs of vector fields.

ANNALES DE L’INSTITUT FOURIER
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To conclude the introduction let us outline the structure of the rest
of paper. In Section 2 we setup the problem and recall some well known
facts about normal forms. The main results of this paper are presented in
Section 3. In Section 4 we construct formal solutions of certain differential
equations. Section 5 develops a theory to invert a type of linear operators.
In Section 6 we study a variational equation and Sections 7 and 8 contain
the proofs of our main results.

2. Preliminaries

Let XH be defined as in the introduction. The well known normal form
theory for quadratic Hamiltonians [2] provides a symplectic linear change
of variables that transforms the quadratic part of the Hamiltonian H into
the following normal form,

H(q,p) = −α (q2p1 − q1p2) + ι

2
(
q2
1 + q2

2
)

+ high order terms,

where q = (q1, q2), p = (p1, p2), ι2 = 1 and α > 0. Without lost of general-
ity we can assume that α = 1 and ι = 1. Indeed, by a re-parameterization of
time or equivalently by scaling the Hamiltonian H by ια−1 and performing
the symplectic linear change of variables,

(q1, q2, p1, p2) 7→
(
ι
α√
α
q1,
√
αq2, ι

√
α

α
p1,

1√
α
p2

)
,

we obtain the desired normalization of α and ι. It is also possible to nor-
malize the higher order terms of H. The normal form of H is attributed to
Sokol’skĭı who derive it when studying the formal stability of H.

Theorem 2.1 (Sokol’skĭı [28]). — There is a formal near identity sym-
plectic change of coordinates Φ such that,

H] = H ◦ Φ = −I1 + I2 +
∑
l+k>2

al,kI
l
1I
k
3 ,

where

(2.1) I1 = q2p1 − q1p2, I2 = q2
1 + q2

2
2 , I3 = p2

1 + p2
2

2 .

The normal form coefficients al,k ∈ C are uniquely defined, forming an
infinite set of invariants for the Hamiltonian H.

The normal form H] is obtained inductively by constructing a near iden-
tity symplectic changes of variables that normalizes each order of H at a
time without affecting the previous orders. Moreover, it is constructed in

TOME 63 (2013), FASCICULE 4
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such a way that has an additional S1 symmetry induced by the integral of
motion I1, i.e. Ω(XH] , XI1) = 0. There is a convenient way of rewriting
the normal form that takes into account the different contributions of the
higher order monomials. More precisely, we define a new order for a mono-
mial in C[q1, q2, p1, p2]: for i = 1, 2 we let qi have order 2 while pi have order
1. For example, using this new ordering we say that the monomial p1p2 has
order 2 while q1p2 has order 3. Reordering the terms of H] according to
this new order we get,

H] = H ◦ Φ = −I1 + I2 + ηI2
3 +

∑
3l+2k>5

al,kI
l
1I
k
3 ,

where the coefficient η is equal to a2,0. In general, the limit of the normal
form procedure produces a normal form transformation Φ that is divergent.
However the normal form is rather useful and can be used to approximate
at any order the original H by an integrable one. Thus we can assume that
H is in the general form,

(2.2) H = −I1 + I2 + ηI2
3 + F,

where η ∈ C and F : U → C is a bounded analytic function defined on
an open neighborhood U of the origin in C4 and containing monomials of
order greater or equal than 5.

In the real analytic setting, the normal form coefficients are real and η
determines the stability type of the equilibrium of XH . According to [20],
when η > 0 the equilibrium is Lyapunov stable and it becomes unstable
when η < 0. The degenerate case corresponds to η = 0.
Throughout this paper we will consider the case of a non-degenerate

elliptic equilibrium,

(2.3) η 6= 0.

This is a generic condition. In the degenerate case, one has to include in
the leading order (2.2) the next term a0,kI

k
3 of the normal form for which

a0,k 6= 0.
Although the equilibrium point of XH is elliptic, we will show that it

has a stable (resp. unstable) immersed complex manifold by constructing a
stable (resp. unstable) parameterization Γ+(ϕ, τ) (resp. Γ−(ϕ, τ)) defined
in certain regions of C2, with some prescribed asymptotics at infinity and
satisfying the nonlinear PDE:

(2.4) DΓ± = XH(Γ±), where D = ∂ϕ + ∂τ .

In a common domain of intersection, the stable and unstable parameteri-
zations are described by a single asymptotic expansion, implying that their

ANNALES DE L’INSTITUT FOURIER



1 : −1 RESONANCE 1373

difference is beyond all algebraic orders. We will obtain a refined estimate
for the difference of parameterizations and prove that it has an asymptotic
expansion with an exponentially small prefactor. Moreover, in the four di-
mensional space C4 the difference of the parameterizations can be locally
described by four constants that can be used to define two local analytic
invariants for the Hamiltonian H.
Let us precisely state our results.

3. Main results

3.1. Parameterizations

First we will study formal solutions of equation (2.4). Denote by T the
space of trigonometric polynomials with complex coefficients, i.e., the space
of functions of the form,

a0 +
n∑
k=1

ak cos(kϕ) +
n∑
k=1

bk sin(kϕ), ak, bk ∈ C, n ∈ N0.

We solve equation (2.4) in the space of formal power series T4[[τ−1]], i.e.,
we substitute a series into the equation, collect coefficients at each order
of τ−1 in both sides and then solve an infinite system of equations in T.
Then we obtain the following result.

Theorem 3.1 (Formal Separatrix). — Equation (2.4) has a non-zero
formal solution Γ̂ having the form,

(3.1) Γ̂(ϕ, τ) =


τ−2Γ̂1(ϕ, τ)
τ−2Γ̂2(ϕ, τ)
τ−1Γ̂3(ϕ, τ)
τ−1Γ̂4(ϕ, τ)

 , where Γ̂i ∈ T[[τ−1]], i = 1, . . . , 4,

with the leading orders,

Γ̂1(ϕ, τ) = κ cosϕ+ κa1,1

η
τ−1 + · · · Γ̂2(ϕ, τ) = κ sinϕ− κa1,1

η
τ−1 + · · ·

Γ̂3(ϕ, τ) = κ cosϕ+ κa1,1

η
τ−1 + · · · Γ̂4(ϕ, τ) = κ sinϕ− κa1,1

η
τ−1 + · · ·

where κ2 = − 2
η and the ellipsis mean higher order terms in τ−1. Moreover,

for any other non-zero formal solution ˆ̃Γ of (2.4) having the same form
(3.1) there exist (ϕ0, τ0) ∈ C2 such that ˆ̃Γ(ϕ, τ) = Γ̂(ϕ+ ϕ0, τ + τ0).

TOME 63 (2013), FASCICULE 4
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This theorem is proved in Section 4. We call Γ̂ a formal separatrix. In
general, these formal series do not converge (see Corollary 3.8). According
to the previous theorem, the freedom in the choice of formal solutions is
given by translations in the (ϕ, z)-plane. We can eliminate this freedom by
fixing the first two coefficients of the formal series Γ̂i. This freedom can
not be eliminated in a coordinate independent way, unless the Hamiltonian
vector field has some extra properties, such as being time-reversible (see
Remark 4.6).
In the following we construct analytic solutions of equation (2.4) with

prescribed asymptotics Γ̂ in certain regions of C2. Fix h > 0 and let

Th = {ϕ ∈ C/2πZ : |Imϕ| < h} .

In order to state our results we need to introduce the notion of asymptotic
expansion. Let X be a subset of C that contains a limit point a, possibly
the point at infinity. A sequence of functions {ξn}n∈N defined in X and
taking values in C is called as asymptotic sequence as τ → a if none of the
functions ξn vanish in a neighborhood of a (except the point a) and if for
every n ∈ N we have,

lim
τ→a

ξn+1(τ)
ξn(τ) = 0.

For example, {τ−n}n∈N is an asymptotic sequence as τ → ∞. Given two
functions f, g : Th × X → C we shall frequently use the big-O notation
f = O(g) meaning that there exists a constant C > 0 such that |f(ϕ, τ)| 6
C |g(ϕ, τ)| for all (ϕ, τ) ∈ Th×X or we write f = O(g) as (τ → a) meaning
that there exists a constant C > 0 and a neighborhood U of a such that
|f(ϕ, τ)| 6 C |g(ϕ, τ)| for all (ϕ, τ) ∈ Th×(X∩U). Finally, given a function
f : Th ×X → C we say that it has an asymptotic expansion with respect
to the asymptotic sequence {ξn} and write,

f(ϕ, τ) ∼
∑
n>1

cn(ϕ)ξn(τ),

if for every N ∈ N the following holds,

f(ϕ, τ)−
N∑
n=1

cn(ϕ)ξn(τ) = O(ξN+1(τ)) as (τ → a).

It is easy to see that the asymptotic expansion of f is unique. Moreover, the
definition of the big-O notation and of asymptotic expansion easily extends
to functions taking values in Ck for any k ∈ N.

ANNALES DE L’INSTITUT FOURIER
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Given r > 0 and 0 < θ < π
4 consider the following sector,

(3.2) D−r = {τ ∈ C : |arg (τ + r)| > θ} ,

which can be visualized in Figure 3.1.

D+
r

θ

θ
r

D−
r

θ

θ
−r

Figure 3.1. Domains D±r .

We shall leave the parameters θ and h fixed throughout this paper. The
next theorem gives the existence of an analytic solution of equation (2.4)
having the formal separatrix as an asymptotic expansion in the sector D−r .
The proof of the theorem can be found in Section 7.

Theorem 3.2 (Unstable Parameterization). — Given a formal separa-
trix Γ̂ there exist r− > 0 and a unique analytic function Γ− : Th ×D−r− →
C4 solving equation (2.4) such that Γ−(ϕ, τ) ∼ Γ̂(ϕ, τ) as τ →∞ in D−r− .

It follows from the asymptotics of Γ− that for r > 0 sufficiently large
the set Γ−(Th × D−r ) is a two dimensional immersed complex manifold.
Points in this manifold converge to the equilibrium under the flow, i.e.
ΦtH(Γ−(ϕ, τ))→ 0 as Re t→ −∞. Thus Γ− is an analytic parameterization
of a local unstable manifold of the equilibrium of XH . An analogous result
is valid for the stable manifold. More precisely, for r > 0 let D+

r be the
symmetric sector,

D+
r =

{
τ ∈ C | − τ ∈ D−r

}
.

By properly modifying the arguments in the proof of Theorem 3.2, we can
prove that given a formal separatrix Γ̂ there exist r+ > 0 and an analytic
function Γ+ : Th × D+

r+
→ C4 solving the same equation (2.4) such that

Γ+(ϕ, τ) ∼ Γ̂(ϕ, τ) as τ →∞ in D+
r+
.

TOME 63 (2013), FASCICULE 4
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3.2. The difference Γ+ − Γ−

Therefore, equation (2.4) has two analytic solutions Γ± both defined in
symmetric sectors D±r for r = max {r−, r+} whose intersection in the τ -
plane consists of two connected components (see Figure 3.2). Since both
functions have the same asymptotic expansion Γ̂ then,

Γ+(ϕ, τ)− Γ−(ϕ, τ) ∼ 0 as τ →∞ in D+
r ∩D−r .

r
θ

−r

D∧
r

D∨
r

Figure 3.2. The intersection of the domains D±r .

Thus, their difference is said to be beyond all algebraic orders. We shall
obtain a more precise estimate for the difference of the parameterizations
on the lower component of the setD+

r ∩D−r which we denote byD∧r . Similar
considerations work for the upper connected component D∨r . In order to
obtain such estimate we will use the fact that Γ+ −Γ− is approximately a
solution of the variational equation of XH along the unstable solution Γ−.
Therefore, we study the analytic solutions of the variational equation,

(3.3) Du = DXH(Γ−(ϕ, τ))u.

Since both ∂ϕΓ− and ∂τΓ− solve equation (3.3) we shall construct a matrix
solution U of equation (3.3) satisfying the following properties:

(1) The matrix-valued function U : Th × D−r → C4×4 is analytic and
continuous on the closure of its domain.

(2) The third and fourth columns of U are the known solutions ∂ϕΓ−
and ∂τΓ− respectively.

(3) U is symplectic, i.e. UTJU = J where J is the standard symplectic
matrix (1.1).

A matrix U satisfying the above conditions is said to be a normalized
fundamental solution of equation (3.3). We will also construct asymptotic

ANNALES DE L’INSTITUT FOURIER
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expansions for these fundamental solutions as formal solutions of the formal
variational equation,

(3.4) Du = DXH(Γ̂(ϕ, τ))u,

where Γ̂ is a formal separatrix. The existence of such formal solutions is
provided by the next proposition whose proof can be found in Section 4.

Proposition 3.3. — Given a formal separatrix Γ̂, the corresponding
formal variational equation (3.4) has a formal fundamental solution Û of
the following form,

Û =


τ1û1,1 τ2û1,2 τ−2û1,3 τ−3û1,4
τ1û2,1 τ2û2,2 τ−2û2,3 τ−3û2,4
τ2û3,1 τ3û3,2 τ−1û3,3 τ−2û3,4
τ2û4,1 τ3û4,2 τ−1û4,3 τ−2û4,4

 ,

where ûi,j ∈ T[[τ−1]], for i, j = 1, . . . , 4 such that the third and fourth
columns of Û are ∂ϕΓ̂ and ∂τ Γ̂ respectively and ÛTJÛ = J . Moreover
for any other formal fundamental solution ˆ̃U of the same form of Û there
exists C ∈ C2×2 symmetric matrix (CT = C) such that ˆ̃U = ÛEC where,

(3.5) EC =
(

Id 0
C Id

)
.

The existence of a normalized fundamental solution of equation (3.3)
with asymptotic expansion Û is given by the following proposition whose
proof is placed in Section 6.

Proposition 3.4. — Given an unstable parameterization Γ− ∼ Γ̂ and
a formal fundamental solution Û there exists r > 0 such that the variational
equation (3.3) has an unique normalized fundamental solution U : Th ×
D−r → C4×4 such that U ∼ Û as τ →∞ in D−r .

Using these fundamental solutions for the variational equation (3.3) we
obtain an exponentially small estimate for the difference of stable and un-
stable parameterizations.

Theorem 3.5. — Given ε > 0 and a normalized fundamental solution
U there exists a vector Θ− ∈ C4 such that the following asymptotic formula
holds,

(3.6) Γ+(ϕ, τ)− Γ−(ϕ, τ) = e−i(τ−ϕ)U(ϕ, τ)Θ− +O(e−(2−ε)i(τ−ϕ)),

as τ →∞ in D∧r .

TOME 63 (2013), FASCICULE 4
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We prove this theorem is Section 8. As an immediate corollary of Theo-
rem 3.5 and taking into account the asymptotic expansion of U we obtain
the following asymptotic expansion for the difference,

ei(τ−ϕ) (Γ+(ϕ, τ)− Γ−(ϕ, τ)
)
∼ Û(ϕ, τ)Θ− as τ →∞ in D∧r .

Using the leading orders of Û (see Proposition 3.3) it is possible to obtain
an exponentially small upper bound for the difference of stable and unstable
parameterizations in the lower connected component D∧r . Indeed, since for
every τ ∈ D∧r and σ > 0 the vertical segment [τ, τ − iσ] is contained in D∧r
then there exists C > 0 such that for every σ > 0,∣∣Γ+(ϕ, τ)− Γ−(ϕ, τ)

∣∣ 6 Cσ3e−σ,

for all ϕ ∈ Th and τ ∈ D∧r with Imτ < −σ.
As mentioned before, it is possible to use the previous arguments mutatis

mutandis to study the difference Γ+ − Γ− in the upper connected compo-
nent D∨r . Similar to Theorem 3.5 one can prove the existence of Θ+ ∈ C4

such that,

e−i(τ−ϕ) (Γ+(ϕ, τ)− Γ−(ϕ, τ)
)
∼ Û(ϕ, τ)Θ+ as τ →∞ in D∨r .

3.3. Analytic invariants

In this section we use the asymptotic formula of Theorem 3.5 to construct
two analytic invariants for the Hamiltonian H. One of these invariants
measures the splitting distance of the complex manifolds parameterized
by Γ±. This invariant is also related to the Stokes phenomenon which
is observed in solutions of certain differential equations where the same
solution possesses different asymptotic expansions at infinity in different
sectors of the complex plane [3].
In order to define these invariants, let Γ± ∼ Γ̂ be a stable and unstable

parameterization and U ∼ Û a normalized fundamental solution of the
variational equation around Γ−. Moreover, let

∆(ϕ, τ) = Γ+(ϕ, τ)− Γ−(ϕ, τ) .

According to Theorem 3.5 we have the following asymptotics,

(3.7) e∓i(τ−ϕ)∆(ϕ, τ) ∼ Û(ϕ, τ)Θ± as Imτ → ±∞.

We call the first two components of Θ± =
(
Θ±1 ,Θ

±
2 ,Θ

±
3 ,Θ

±
4
)
the normal

components and the last two the tangent components. The following limit
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provides a way to compute the components of the vectors Θ±,

(3.8) Ω(Θ±,v) = lim
Imτ→±∞

Ω(∆(ϕ, τ),U(ϕ, τ)v)e∓i(τ−ϕ), v ∈ C4,

where Ω is the standard symplectic form and the convergence of the limit
is uniform with respect to ϕ ∈ Th. The proof of (3.8) is straightforward.
Indeed, it follows from the asymptotics (3.7) and the fact that ÛTJÛ = J .
Moreover, the previous formula is useful from the computational point of
view, since to compute the normal components of Θ± it only requires know-
ing the stable and unstable parameterizations Γ±. In fact Θ±1 = Ω(Θ±, e3)
where e3 = (0, 0, 1, 0)T . Since Ue3 = ∂ϕΓ− we conclude that,

(3.9) Θ±1 = lim
Imτ→±∞

Ω(∆(ϕ, τ), ∂ϕΓ−(ϕ, τ))e∓i(τ−ϕ).

A similar formula is valid for the normal component Θ±2 , where the tangent
vector field ∂ϕΓ− is replaced by ∂τΓ−. The components of the vector Θ±
are not independent and due to the freedom in the choice of the parame-
terizations they are not uniquely defined.

Lemma 3.6. — Given any stable (resp. unstable) parameterizations
Γ± ∼ Γ̂ and normalized fundamental solution U ∼ Û, the following holds:

(1) Θ±1 + Θ±2 = 0.
(2) If Γ̃± ∼ ˆ̃Γ is another stable (resp. unstable) parameterization with

normalized fundamental solution Ũ ∼ ˆ̃U then there exist (ϕ0, τ0) ∈
C2 and a symmetric matrix C ∈ C2×2 such that

Θ̃± = ECΘ±e±i(τ0−ϕ0)

Proof. — To prove item (1) it is enough to show the equality for the −
case, since the + case is completely analogous.

Note that (3.7) implies,

H(Γ+(ϕ, τ)) = H(Γ−(ϕ, τ)) +∇H(Γ−(ϕ, τ))∆(ϕ, τ) +O(e−(2−ε)i(τ−ϕ)),

as Imτ → −∞ for some ε > 0 arbitrarily small. Due to the conservation of
energy we have that H(Γ±(ϕ, τ)) = 0. Thus,

(3.10) lim
Imτ→−∞

∇H(Γ−(ϕ, τ))∆(ϕ, τ)ei(τ−ϕ) = 0.

Moreover,

∇H(Γ−)∆ = Ω(XH(Γ−),∆)
= Ω(DΓ−,∆)
= −Ω(∆, ∂ϕΓ−)− Ω(∆, ∂τΓ−).

TOME 63 (2013), FASCICULE 4



1380 José Pedro GAIVÃO

Thus, (3.10) implies that,

lim
Imτ→−∞

(
Ω(∆(ϕ, τ), ∂ϕΓ−(ϕ, τ)) + Ω(∆(ϕ, τ), ∂τΓ−(ϕ, τ))

)
ei(τ−ϕ) = 0

which proves the desired equality.
To prove item (2), let ∆̃ = Γ̃+−Γ̃−. Similar to (3.7) there exists Θ̃± ∈ C4

such that,

(3.11) e∓i(τ−ϕ)∆̃(ϕ, τ) ∼ ˆ̃U(ϕ, τ)Θ̃± as Imτ → ±∞.

According to Theorem 3.1 there exists (ϕ0, τ0) ∈ C2 such that ˆ̃Γ(ϕ, τ) =
Γ̂(ϕ+ϕ0, τ + τ0). Thus, the uniqueness of solutions in Theorem 3.2 implies
that Γ̃(ϕ, τ) = Γ(ϕ + ϕ0, τ + τ0). Moreover, since Û(ϕ + ϕ0, τ + τ0) is a
formal normalized fundamental solution of the formal variational equation
around ˆ̃Γ, then by Proposition 3.3 there exists a 2× 2 symmetric matrix C
such that ˆ̃U(ϕ, τ) = Û(ϕ+ϕ0, τ+τ0)EC . Again, by uniqueness of solutions
in Proposition 3.4 we conclude that Ũ(ϕ, τ) = U(ϕ+ϕ0, τ + τ0)EC . Thus,
we can rewrite (3.11) as follows,

e∓i(τ−ϕ)∆(ϕ+ ϕ0, τ + τ0) ∼ Û(ϕ+ ϕ0, τ + τ0)ECΘ̃± as τ → ±i∞,

which is equivalent to,

e∓i(τ+τ0−(ϕ+ϕ0))∆(ϕ+ ϕ0, τ + τ0) ∼ Û(ϕ+ ϕ0, τ + τ0)ECΘ̃±e∓i(τ0−ϕ0),

as τ → ±i∞. On the other hand, taking into account (3.7) we have that,

e∓i(τ+τ0−(ϕ+ϕ0))∆(ϕ+ ϕ0, τ + τ0) ∼ Û(ϕ+ ϕ0, τ + τ0)Θ±,

as τ → ±i∞. Finally, the uniqueness of the asymptotic expansions implies
that Θ± = ECΘ̃±e∓i(τ0−ϕ0). Rearranging terms and noting that E−1

C =
E−C we conclude the proof of the lemma. �

Using this result and the definition of the constants Θ± we construct the
following analytic invariants.

Theorem 3.7 (Analytic Invariants). — The following numbers,

K = Θ+
1 Θ−1 and J = Ω(Θ+,Θ−),

do not depend on the choice of parameterizations and are invariant under
symplectic changes of coordinates fixing the origin. Moreover, if H is real
analytic then

K = −sgn(η)
∣∣Θ−1 ∣∣2 ∈ R and J = −sgn(η)Ω(Θ−,Θ−) ∈ iR.
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Proof. — First, we prove that K and J do not depend on the choice of
the parameterizations. Given two parameterizations Γ± and Γ̃± we know
by Lemma 3.6 that there exist (ϕ0 τ0) ∈ C2 and C ∈ C4×4 (CT = C) such
that Θ̃± = ECΘ±e±i(τ0−ϕ0). Thus,

K̃ = Θ̃+
1 Θ̃−1 = Θ+

1 e
i(τ0−ϕ0)Θ−1 e−i(τ0−ϕ0) = Θ+

1 Θ−1 = K,

and
J̃ = Ω(Θ̃+, Θ̃−) = Ω(ECΘ+ei(τ0−ϕ0), ECΘ−e−i(τ0−ϕ0))

= Ω(ECΘ+, ECΘ−) = Ω(Θ+,Θ−) = J .

Next we prove that K and J are invariant under symplectic changes of
coordinates fixing the origin. Let Ψ : (C4, 0) → (C4, 0) be an analytic
symplectic map. Define

Γ̃±(ϕ, τ) := Ψ(Γ±(ϕ, τ)) and Ũ(ϕ, τ) := DΨ(Γ−(ϕ, τ))U(ϕ, τ).

It is enough to prove that Ω(Θ̃±,v) = Ω(Θ±,v) for all v ∈ C4. Taking into
account (3.7) we can write ∆̃ := Γ̃+ − Γ̃− as follows,

∆̃(ϕ, τ) = DΨ(Γ−(ϕ, τ))∆(ϕ, τ) + g(ϕ, τ),

where g is analytic in Th × (D+
r ∩D−r ) such that,

(3.12) lim
Imτ→±∞

g(ϕ, τ)e∓i(1+µ)(τ−ϕ) = 0,

for any µ > 0 arbitrarily small. Moreover, for v ∈ C4 we have that,

Ω(∆̃, Ũv) = Ω(DΨ(Γ−)∆ + g, DΨ(Γ−)Uv)
= Ω(∆,Uv) + Ω(g, DΨ(Γ−)Uv),

(3.13)

where the last equality follows from the fact that Ψ is symplectic. From the
asymptotics of Γ− and U we know that Γ−(ϕ, τ) = O(τ−1) and U(ϕ, τ) =
O(τ3) as τ →∞ in D−r . Thus, for every µ > 0,

lim
Imτ→±∞

DΨ(Γ−(ϕ, τ))U(ϕ, τ)ve±iµ(τ−ϕ) = 0,

and taking into account (3.12) we get that,

lim
Imτ→±∞

Ω(g(ϕ, τ), DΨ(Γ−(ϕ, τ))U(ϕ, τ)v)e∓i(τ−ϕ) = 0.

Finally, the previous limit and (3.13) gives,

Ω(Θ̃±,v) = lim
Imτ→±∞

Ω(∆̃(ϕ, τ), Ũ(ϕ, τ)v)e∓i(τ−ϕ)

= lim
Imτ→±∞

Ω(∆(ϕ, τ),U(ϕ, τ)v)e∓i(τ−ϕ) = Ω(Θ±,v) .
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To conclude the proof of the theorem suppose that H is real analytic. It
is sufficient to prove that for any v ∈ R4 we have,

(3.14) Ω(Θ−,v) = −sgn(η)Ω(Θ+,v).

Indeed, it follows from the previous equality that Θ− = −sgn(η)Θ+, from
which we obtain

K = −sgn(η)
∣∣Θ−1 ∣∣2 and J = −sgn(η)Ω(Θ−,Θ−).

We prove (3.14) considering η > 0. The η < 0 case is proved analogously.
According to (3.8) we can take τn = −iσn where σn → +∞ is an increasing
sequence of real numbers such that for every v ∈ R4 we have,

(3.15) Ω(Θ−,v) = lim
n→+∞

Ω(∆(0,−iσn),U(0,−iσn)v)eσn .

Remarks 4.5 and 4.10 imply that,

∆(0,−iσn) = ∆(π, iσn) and U(0,−iσn) = U(π, iσn).

Thus, taking complex conjugation in (3.15) we get,

Ω(Θ−,v) = lim
n→+∞

Ω(∆(0,−iσn),U(0,−iσn))eσn

= lim
n→+∞

Ω(∆(π, iσn),U(π, iσn))ei(−iσn−π)e−iπ

= −Ω(Θ+,v),

as we wanted to show. �

The invariant K is known as the Stokes constant. If K does not vanish
then the asymptotic expansion (3.7) provides an exponentially small lower
bound for the splitting distance |Γ+(ϕ, τ)− Γ−(ϕ, τ)|, which implies that
H is non-integrable and the normal form transformation diverges [31].

Corollary 3.8. — If K 6= 0 then H is non-integrable.

3.4. Parameterized families

Let U ⊆ C4 be an open neighborhood of the origin and denote by Dδ ⊆ C
the open disc of radius δ centered at the origin. In this section we consider
analytic one-parameter families of Hamiltonians Hν with a generic 1 : −1
resonance. We say that Hν is an analytic family if,

Hν = −I1 + I2 + ηI2
3 + Fν ,

where ν ∈ Dδ and Fν : U → C is analytic. We also suppose that Fν is
analytic with respect to ν and for each ν ∈ Dδ, Fν contains only monomials
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of order greater or equal than 5. Moreover, the elliptic equilibrium satisfies
the non-degenerate condition η 6= 0.
For each ν ∈ Dδ the Hamiltonian vector field XHν satisfies the assump-

tions of the previous theorems. In particular the function ν 7→ K(ν) is well
defined, where K(ν) is the Stokes constant of the Hamiltonian Hν . The
next result shows that the Stokes constant varies analytically with ν.

Theorem 3.9. — There exist parameterizations Γ±ν and a normalized
fundamental solution Uν both analytic with respect to ν ∈ Dδ such that
Θ± : Dδ → C4 is analytic.

According to the definition of K (see Theorem 3.7) we conclude that
K : Dδ → C is analytic.
Proof of Theorem 3.9. — Tracing the proofs of Theorems 3.1 and 3.3 we

see that there exist formal series Γ̂ν and Ûν such that the coefficients of the
these formal series depend polynomially on a finite number of coefficients
of Hν , which are assumed to be analytic with respect to ν. Thus, the
coefficients of both Γ̂ν and Ûν are analytic with respect to ν. Note that the
theory developed in Section 5 can be generalized to functions that are also
analytic with respect to a parameter. Following the proofs of Theorems 3.2
and 3.4 and the fact that the fundamental matrix U0 defined in (5.17) does
not depend on ν we conclude that there exist a normalized fundamental
solution Uν and analytic parameterizations Γ±ν , all of which are analytic
with respect to ν such that Uν ∼ Ûν and Γ±ν ∼ Γ̂ν . Let ∆ν = Γ+

ν − Γ−ν .
A closer look at the proof of Theorem 3.5 reveals that,

∆ν(ϕ, τ) = Uν(ϕ, τ)cν(τ − ϕ) + Rν(ϕ, τ),

where cν is an analytic 2π-periodic vector-valued function defined in a
lower half complex plane, analytic with respect to ν and cν(z) → 0 as
Im z → −∞. Moreover Rν(ϕ, τ) = O(e−(2−ε)i(τ−ϕ)) where the upper
bound is uniform with respect to ν and ε is an arbitrarily small positive
real number. As in the proof of Theorem 3.5 we can write cν in Fourier
series:

cν(z) = Θ−(ν)e−iz +O(e−2iz), as Im z → −∞,
where again the bound is uniform with respect to ν. The first Fourier
coefficient Θ−(ν) is given by the well known integral,

Θ−(ν) = 1
2π

∫ 2π−iσ

−iσ
cν(s)eisds,

for some σ > 0. Clearly Θ−(ν) is analytic with respect to ν. Arguing in a
similar way one can also prove that Θ+(ν) is analytic. �
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3.4.1. Example

We shall give an example of a Hamiltonian having non-zero Stokes con-
stant. Consider the following analytic family Hν of Hamiltonians,

Hν = −I1 + I2 + ηI2
3 + νq5

2 ,

where η ∈ C∗ and ν ∈ C. Notice that H0 = −I1 + I2 + ηI2
3 is integrable

since I1 is a first integral of H0.
According to Theorem 3.2 there exist r > 0 and analytic parameteriza-

tions Γ±ν : Th×D±r → C4. Following the arguments in the proof of Theorem
3.9 these parameterizations are also analytic with respect to ν. Thus we
can write them as follows,

(3.16) Γ±ν = Γ0 + νξ±0 +O(ν2),

where Γ0 is the parameterization of H0 (see (5.14)) and ξ±0 satisfies the
following equation,

(3.17) Dξ±0 = A0(ϕ, τ)ξ±0 +Xq5
2
(Γ0),

where A0(ϕ, τ) := DXH0(Γ0(ϕ, τ)). For our convenience, let us write (see
(5.14)) the expression for Γ0,

Γ0(ϕ, τ) =
(
κτ−2 cosϕ, κτ−2 sinϕ, κτ−1 cosϕ, κτ−1 sinϕ

)T
.

The homogeneous equation in (3.17) has a fundamental solution U0(ϕ, τ)
given by (5.17) and having the following properties: it is symplectic, i.e.,
UT

0 JU0 = J and its last two columns are ∂ϕΓ0 and ∂τΓ0 respectively.
Thus, by the method of variation of constants we can write some integral
formulae for ξ±0 ,

ξ−0 (ϕ, τ) = U0(ϕ, τ)
∫ 0

−∞
U−1

0 (ϕ+ s, τ + s)Xq5
2
(Γ0(ϕ+ s, τ + s))ds,

ξ+
0 (ϕ, τ) = −U0(ϕ, τ)

∫ +∞

0
U−1

0 (ϕ+ s, τ + s)Xq5
2
(Γ0(ϕ+ s, τ + s))ds.

(3.18)

The integrals above converge uniformly for τ ∈ D±r . Indeed a simple com-
putation shows that,

(3.19) Xq5
2
(Γ0) =

(
0, 0, 0,−5κ4 sin4 ϕ

τ8

)T
.

Taking into account the leading orders of U0 (see (5.17)), we can bound
from above the integral in the first formula of (3.18) using the following
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integral, ∫ 0

−∞

1
|τ + s|2

ds

which converges uniformly with respect to τ ∈ D−r ,. A similar estimate
shows that the second integral in (3.18) converges uniformly.
Our goal is to compute the Stokes constant K(ν) of Hν . According to

the results of the previous section K(ν) is analytic with respect to ν and
by definition K(ν) = Θ−1 (ν)Θ+

1 (ν) where Θ±1 (ν) are defined by the limits,

Θ±1 (ν) = lim
Imτ→±∞

Ω(∆ν(ϕ, τ), ∂ϕΓ−ν (ϕ, τ))e∓i(τ−ϕ),

where ∆ν := Γ+
ν − Γ−ν . Since H0 is integrable we know that K(0) = 0. So

in order to prove that K(ν) is non-zero for a certain ν it is sufficient to
prove that the derivative of Θ±1 (ν) at ν = 0 does not vanish. The following
lemma provides a formula for computing this derivative,

Lemma 3.10. — Let ∆0 = ξ+
0 − ξ

−
0 . Then,

dΘ±1
dν

(0) = lim
Im τ→±∞

Ω(∆0(ϕ, τ), ∂ϕΓ0(ϕ, τ))e∓i(τ−ϕ).

Let us postpone the proof of this lemma. In order to use the formula of
the previous lemma we have to compute the difference ∆0 = ξ+

0 − ξ
−
0 . It

follows from (3.18) that,

∆0(ϕ, τ) = U0(ϕ, τ)
∫ +∞

−∞
F0(ϕ+ s, τ + s)ds,

where F0(ϕ, τ) := −U−1
0 (ϕ, τ)Xq5

2
(Γ0(ϕ, τ)).

(3.20)

Again, taking into account the expressions for U0 and (3.19) a simple
computation shows that,
(3.21)

F0(ϕ, τ)=
(

5κ5 cosϕ sin4 ϕ

τ10 ,−10κ5 sin5 ϕ

τ11 ,−10κ3 cosϕ sin4 ϕ

3τ7 ,
3κ3 sin5 ϕ

τ6

)T
.

Since U0 is symplectic, (3.20) and (3.21) imply that,

Ω(∆0(ϕ, τ), ∂ϕΓ0(ϕ, τ))

= Ω
(

U0(ϕ, τ)
∫ +∞

−∞
F0(ϕ+ s, τ + s)ds, ∂ϕΓ0(ϕ, τ)

)
=
∫ +∞

−∞

5κ5 cos(ϕ+ s) sin4(ϕ+ s)
(τ + s)10 ds .
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Let us denote the integral above by I(ϕ, τ). Using the calculus of residues
to compute this integral we obtain,
(3.22)

I(ϕ, τ) = δ

(
5κ5π

239! e
δi(τ−ϕ) − 3105κ5π

249! e3δi(τ−ϕ) + 510κ5π

249! e5δi(τ−ϕ)
)
,

where δ = sgn(Im τ). Finally, Lemma 3.10 and (3.22) give,

dΘ±1
dν

(0) = lim
Im τ→±∞

Ω(∆0(ϕ, τ), ∂ϕΓ0(ϕ, τ))e∓i(τ−ϕ) = ±5κ5π

239! .

Recall that κ2 = − 2
η . Since η 6= 0, the previous equality implies that

dΘ±1
dν (0) 6= 0. Consequently K(ν) is non-zero for |ν| 6= 0 sufficiently small.
Proof of Lemma 3.10. — We prove the lemma for the − case, omitting

the + case as it is completely analogous. According to the definition of
Θ−1 (ν) we have that,

(3.23) Θ−1 (ν) = lim
Im τ→−∞

Ω(∆ν(ϕ, τ), ∂ϕΓ−ν (ϕ, τ))ei(τ−ϕ),

where ∆ν = Γ+
ν − Γ−ν . Moreover, it follows from (3.22) that,

(3.24) F0 := lim
Im τ→−∞

Ω(∆0(ϕ, τ), ∂ϕΓ0(ϕ, τ))ei(τ−ϕ) <∞.

Define the following auxiliary function,

R(ϕ, τ, ν) =
{

Ω(∆ν(ϕ, τ), ∂ϕΓ−ν (ϕ, τ))−Ω(∆0(ϕ, τ), ∂ϕΓ0(ϕ, τ))ν
}
ei(τ−ϕ).

Note that R is analytic in Th ×D1
r × C and dR

dν (ϕ, τ, 0) = 0. Moreover, it
follows from (3.23) and (3.24) that,

lim
Im τ→−∞

R(ϕ, τ, ν) = Θ−0 (ν)− F0ν.

Due to the uniform convergence of the limit we get at once,

0 = d

dν
lim

Im τ→−∞
R(ϕ, τ, ν)

∣∣∣∣
ν=0

= dΘ−0
dν

(0)− F0.
�

Corollary 3.11. — Let Gν by an analytic family. For every ε > 0
there exists an ε-close analytic family Hν , i.e.,

sup
ν∈Dδ

‖Hν −Gν‖ < ε,

such that the Stokes constant of Hν does not vanish on an open and dense
subset of Dδ.
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Proof. — By assumption Gν is in the general form,

Gν = −I1 + I2 + ηI2
3 + Fν ,

where Fν is analytic and contains only monomials of order greater or equal
than 5. According to Example 3.4.1 there exists ν∗ ∈ Dδ such that the
Stokes constant of the Hamiltonian H∗ = −I1 +I2 +ηI2

3 +ν∗q
5
2 is non-zero.

Let,
Hν,λ = Gν + λ(H∗ −Gν∗), λ ∈ C .

Denote by K(ν, λ) the Stokes constant of Hν,λ. It follows from Theorem
3.9 that K(ν∗, λ) is analytic with respect to λ. Moreover, since Hν∗,1 = H∗
then K(ν∗, 1) 6= 0. Thus, for any ε > 0 we can choose,

γ < ‖H∗ −Gν∗‖
−1
ε,

such that there exists λ∗ ∈ C with |λ∗| < γ and K(ν∗, λ∗) 6= 0. Thus, Hν,λ∗

is the desired family. �

4. Asymptotic series

In this section we prove Theorem 3.1 and Proposition 3.3. These results
deal with formal series, therefore we do not care about the convergence of
the power series involved.

We will look for formal solutions of equation (2.4) in the class of for-
mal power series in the variable τ−1 with coefficients in T. To that end,
it is convenient to transform H into its normal form and compute a for-
mal solution in the normal form coordinates. Then using the normal form
transformation we pullback the formal solution to the original coordinates.
According to Theorem 2.1 there is a formal near identity symplectic

change of variables x = Φ(z) that transforms the Hamiltonian H into its
normal form,

(4.1) H] = H ◦ Φ = −I1 + I2 + ηI2
3 +

∑
3l+2k>5

al,kI
l
1I
k
3 ,

where I1, I2 and I3 are given in (2.1) and al,k ∈ C. Note that the nor-
mal form (4.1) is rotationally symmetric, i.e., it commutes with the one
parameter group of rotations Rϕ,

(4.2) Rϕ =
(
Rϕ 0
0 Rϕ

)
where Rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

In the following we look for formal solutions of,

(4.3) Dz = XH](z),
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in the class of formal power series τ−1T4[[τ−1]] (which is to be understood
as the formal power series in T4[[τ−1]] without the constant term).

Proposition 4.1. — Equation (4.3) has a formal solution Ẑ ∈
τ−1T4[[τ−1]] having the form Ẑ(ϕ, τ) = Rϕξ(τ) where ξ ∈ τ−1C4[[τ−1]].
The components of ξ satisfy,

ξ1(τ) = −∂τr(τ) cos θ(τ), ξ3(τ) = r(τ) cos θ(τ),
ξ2(τ) = −∂τr(τ) sin θ(τ), ξ4(τ) = r(τ) sin θ(τ).

where θ, r ∈ C[[τ−1]] are odd formal power series having the leading orders,

r(τ) = κτ−1 + · · · , θ = −a1,1

η
τ−1 + · · · ,

where κ2 = 2
η . The formal solution Ẑ is unique up to a rotation Rπ, i.e.

Ẑ and RπẐ are the only formal solutions satisfying the properties stated
above. Moreover, for any other formal solution Ŷ ∈ τ−1T4[[τ−1]] there
exist (ϕ0, τ0) ∈ C2 such that Ŷ(ϕ, τ) = Ẑ(ϕ+ ϕ0, τ + τ0).

Proof. — Setting z(ϕ, τ) = Rϕξ(τ) and taking into account that XH]

commutes with Rϕ (which has infinitesimal generator −XI1) then equation
(4.3) reduces to,

(4.4) ∂τξ = XH]+I1(ξ).

It is convenient to change to polar coordinates given by,

(4.5)
ξ1 = R cos θ − Θ

r sin θ, ξ3 = r cos θ,

ξ2 = R sin θ + Θ
r cos θ, ξ4 = r sin θ,

where ξ = (ξ1, ξ2, ξ3, ξ4). Note that I1 = Θ. In these new variables equation
(4.4) takes the form,

∂τθ = −Θ
r2 −

∑
3i+2j>5

iai,j
2j Θi−1r2j , ∂τr = −R, ∂τΘ = 0,(4.6)

∂τR =
(
−Θ2

r3 + ηr3
)

+
∑

3i+2j>5

2jai,j
2j Θir2j−1.(4.7)

We solve these equations formally in C[[τ−1]]. Let us start with the third
equation of (4.6). Taking Θ ∈ C[[τ−1]] and substitute into the equa-
tion we get immediately that Θ(τ) = Θ0 with Θ0 ∈ C. Since Θ(τ) =
ξ2(τ)ξ3(τ) − ξ1(τ)ξ4(τ) and each ξi must be in τ−1C[[τ−1]] we conclude
that Θ ∈ τ−2C[[τ−1]]. Thus Θ(τ) = 0.
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We consider now the second equation of (4.6) and equation (4.7). Setting
Θ = 0, these two equations are equivalent to the following single equation,

(4.8) ∂2
τ r = −ηr3 −

∑
j>2

2(j + 1)a0,j+1

2j+1 r2j+1.

Lemma 4.2. — Equation (4.8) has a non-zero formal solution r having
only odd powers of τ−1. Moreover,

(4.9) r(τ) = κτ−1 − 1
8a0,3κ

5τ−3 + · · · ,

where κ2 = − 2
η . The solution is unique if we fix one of the two values

for κ. Moreover, for any other non-zero formal solution r̃ ∈ τ−1C[[τ−1]] of
equation (4.8) there exists τ0 such that r̃(τ) = ±r(τ + τ0).

Proof. — Let us take a formal series r(τ) =
∑
k>1 rkτ

−k and substitute
into equation (4.8). After collecting terms of the same order in τ−k−2 we
obtain an equation which we can solve for the coefficient rk. Let us present
the details. At order τ−3 we get the following equation for r1,

(4.10) 2r1 = −ηr3
1,

which implies that r2
1 = − 2

η (the other solution is trivially r1 = 0 which
leads to the zero formal solution r = 0). Hence we let r1 = κ where κ2 =
− 2
η . Note that κ can take two distinct values. We choose one value for κ

and move to the next order. At order τ−4 we obtain,

6r2 = −3ηr2
1r2.

Note that this equation is linear with respect to r2. Taking into account that
r1 = κ we can simplify the previous equation and conclude that it holds for
every r2 ∈ C. Hence r2 is a free coefficient. Since we are considering only
odd powers of r we set this coefficient to zero.
At this stage, we have determined r1 = κ and r2 = 0. Now we proceed

by induction on k. First let us determine r3. It is not difficult to write the
equation for r3 which reads,

6r3 = −6
8a0,3r

5
1.

Thus r3 = − 1
8a0,3κ

5. Now suppose that all coefficients rl, 3 6 l 6 k have
been defined uniquely such that for l even we have rl = 0 and for l odd
we have rl = p(κ) where p ∈ C[κ] and contains only odd powers in κ.
Due to the induction hypothesis, at the order τ−k−3 we have the following
equation for rk+1,

((k + 1)(k + 2)− 6)rk+1 = fk+1(r1, . . . , rk)
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where fk+1 is a polynomial depending on a finite number of coefficients
a0,j+1 for j > 2. Note that it is always possible to solve the previous
equation with respect to rk+1 for k > 2 since (k + 1)(k + 2) − 6 = 0 only
if k = 1 or k = −4. Now we have to distinguish two cases. First consider
the case when k+ 1 is even. Since the right hand side of equation (4.8) has
only odd powers of r and according to the induction hypothesis rl = 0 for
even l then fk+1 = 0. Thus rk+1 = 0. On the other hand, when k+1 is odd
then by the same reasoning as above it is not difficult to see that fk+1 is a
polynomial in C[κ], having only odd powers of κ, and rk+1 is determined
uniquely by the formula rk+1 = ((k+ 1)(k+ 2)− 6)−1fk+1. This completes
the induction. Finally let r̃ ∈ τ−1C[[τ−1]] be a non-zero formal solution of
equation (4.8). We can write r̃ =

∑
k>1 r̃kτ

−k. As before, we conclude that
r̃2
1 = κ2 thus, r̃1 = ±κ. Now for τ0 ∈ C we have that,

r(τ + τ0) = κ

τ + τ0
+ · · · = κ

τ
− τ0κ

τ2 + · · · .

is also a formal solution of equation (4.8). Comparing the second order
coefficient −τ0κ with the coefficient r̃2 we conclude by the uniqueness of r
that if τ0 = − r̃2

κ then r̃(τ) = ±r(τ + τ0) and the claim is proved. �

Using the formal solutions Θ(τ) and r(τ) we simplify the first equation
of (4.6) to obtain,

(4.11) ∂τθ = −
∑
j>1

a1,j

2j

∑
k>1

rkτ
−k

2j

.

Note that
(∑

k>1 rkτ
−k
)2j
∈ τ−2jC[[τ−1]] and contains only even powers

in τ−1. Thus equation (4.11) can be further simplified,

∂τθ =
∑
k>1

bkτ
−2k,

where bk depends on a finite number of coefficients of r(τ) and a1,j for
j > 1. Thus,

(4.12) θ(τ) = θ0 +
∑
k>1

bk
−2k + 1τ

−2k+1,

where θ0 ∈ C. We set θ0 = 0. To conclude the proof, we show how to come
back to the variable ξ. First observe that,

cos θ(τ) =
∑
i>0

(−1)i

(2i)!

∑
k>1

bk
−2k + 1τ

−2k+1

2i

,
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and taking into account that the formal series inside the parenthesis of
the right hand side of the previous formula is an even formal series in τ−1

starting with the term τ−2i we conclude that,

(4.13) cos θ(τ) =
∑
k>0

wkτ
−2k,

where wk depends on a finite number of coefficients of θ(τ). A similar
formula holds for the sine which reads,

(4.14) sin θ(τ) =
∑
k>0

zkτ
−2k+1,

where zk depends on a finite number of coefficients of θ(τ). Now according
to the change of variables (4.5) the formal power series Ẑ(τ) := Rϕξ(τ) is
the desired formal solution of equation (4.3) where the components of ξ are
given by,

ξ1(τ) = −∂τr(τ) cos θ(τ), ξ3(τ) = r(τ) cos θ(τ),
ξ2(τ) = −∂τr(τ) sin θ(τ), ξ4(τ) = r(τ) sin θ(τ).

The expressions (4.13) and (4.14) imply that ξi ∈ τ−1C[[τ−1]] for i =
1, . . . , 4, thus proving the first part of the proposition. Any other formal
solution satisfying the same properties of Ẑ (as stated in the proposition)
will have the form,

RϕRθ(τ)+θ0(−∂τr(τ + τ0), 0, r(τ + τ0), 0)T ,

for some τ0, θ0 ∈ C. Clearly for τ0 6= 0, r(τ + τ0) will be no longer an
odd power series in τ−1. Thus τ0 must be zero. Moreover, equation (4.10)
implies that θ0 = 0 or θ0 = π. Therefore, Ẑ is uniquely defined up to a
rotation Rπ. Moreover, if Ŷ ∈ τ−1T4[[τ−1]] is another formal solution then
there exists ξ̃ ∈ τ−1C4[[τ−1]] such that Ŷ(ϕ, τ) = Rϕξ̃(τ). Taking into
account Lemma 4.2 and equation (4.12) we conclude that

ξ̃(τ) = Rθ(τ)+ϕ0(−∂τr(τ + τ0), 0, r(τ + τ0), 0)T ,

for some (ϕ0, τ0) ∈ C2. This completes the proof of the proposition. �

Remark 4.3. — If the Hamiltonian H is real analytic then its normal
form H] is a formal series with real coefficients, i.e. H](z) = H](z). In
particular, the normal form coefficient η is real. Depending on the sign of η
we can say more about the structure of the formal solutions of (4.3). If η < 0
then one can trace the proof of the previous proposition and conclude that
the coefficients of Ẑ are real, i.e., Ẑ(ϕ, τ) = Rϕξ(τ) where ξ ∈ τ−1R4[[τ−1]].
Thus, Ẑ(ϕ, τ) = Ẑ(ϕ, τ) when η < 0. On the other hand, when η > 0 then
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the coefficients of Ẑ are imaginary numbers, i.e. Ẑ(ϕ, τ) = iRϕξ(τ) where
ξ ∈ τ−1R4[[τ−1]]. Thus, Ẑ(ϕ, τ) = Ẑ(ϕ+ π, τ) when η > 0.

Remark 4.4. — The normal form Hamiltonian vector field XH] is time-
reversible with respect to the linear involution,

(4.15) S(q1, q2, p1, p2) = (−q1, q2, p1,−p2).

If the Hamiltonian H is real analytic then the formal solution Ẑ satisfies,

Ẑ(ϕ, τ) = S(Ẑ(−ϕ,−τ)) .

The formal solution Ẑ is said to be symmetric and this condition defines
the solution uniquely (up to a rotation Rπ) in a coordinate independent
way.

4.1. Proof of Theorem 3.1

By the normal form theory there exists a (non-unique) near identity
formal symplectic change of variables x = Φ(z) that transforms the Hamil-
tonian H into its normal form H] = H ◦ Φ. Let z = (q,p) ∈ C2 × C2. For
our purposes, we can suppose that Φ is in the general form,

(4.16) (q,p) 7→

q +
∑

2|i|+|j|>4

ci,jqipj ,p +
∑

2|i|+|j|>3

di,jqipj
 ,

written in multi-index notation, for some ci,j , di,j ∈ C2. According to
Proposition 4.1 there exists a formal series Ẑ ∈ τ−1T4[[τ−1]] such that
DẐ = XH](Ẑ). Thus,

Γ̂(ϕ, τ) := Φ ◦ Ẑ(ϕ, τ)),

is a formal solution of equation (2.4). Note that Ẑ starts with terms of order
τ−1. Thus, Φ ◦ Ẑ belongs to the same class of Ẑ since its coefficients can
be computed from a finite number of coefficients of Ẑ and Φ. Moreover, we
know that Ẑ(ϕ, τ) = Rϕξ(τ) where the components of ξ have the leading
orders,

ξ1(τ) = κτ−2 + · · · , ξ2(τ) = −κa1,1

η
τ−3 + · · · ,

ξ3(τ) = κτ−1 + · · · , ξ2(τ) = −κa1,1

η
τ−2 + · · · .

Taking into account (4.16) we obtain the leading orders of Γ̂ as stated in
the theorem. Moreover, if ˜̂Γ ∈ τ−1T4[[τ−1]] is another formal solution of
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(2.4) then it is clear from Proposition 4.1 that there exist (ϕ0, τ0) ∈ C2

such that ˜̂Γ(ϕ, τ) = Γ̂(ϕ+ ϕ0, τ + τ0). �

Remark 4.5. — If the original Hamiltonian H is real analytic then
Γ̂(ϕ, τ) is also a formal solution of equation (2.2). Indeed,

DΓ̂(ϕ̄, τ̄) = DΓ̂(ϕ̄, τ̄) = XH(Γ̂(ϕ̄, τ̄)) = XH

(
Γ̂(ϕ̄, τ̄)

)
,

where D = ∂ϕ̄ + ∂τ̄ . Moreover, since in the real analytic case the normal
form transformation Φ has real coefficients then Remark 4.3 implies that,

Γ̂(ϕ̄, τ̄) = Φ(Ẑ(ϕ̄, τ̄)) = Φ(Ẑ(ϕ+ π, τ)) = Γ̂(ϕ+ π, τ), for η > 0,

Γ̂(ϕ̄, τ̄) = Φ(Ẑ(ϕ̄, τ̄)) = Φ(Ẑ(ϕ, τ)) = Γ̂(ϕ, τ), for η < 0.

Remark 4.6. — If the original Hamiltonian H is real analytic and XH

is reversible with respect to the involution (4.15) then the normal form
preserves the reversibility. By Remark 4.4 the formal solution Γ̂ uniquely
defined (up to a translation Γ̂(ϕ+ π, τ)) by the following condition,

Γ̂(ϕ, τ) = S(Γ̂(−ϕ̄,−τ̄)).

Remark 4.7. — Let n > 1 and Γn be a partial sum of the formal series
Γ̂ up to order τ−n−1 in the first two components and up to order τ−n in
the last two. Then,
(4.17)
DΓn −XH(Γn) =

(
τ−(n+2)R1,n, τ

−(n+2)R2,n, τ
−(n+1)R3,n, τ

−(n+1)R4,n

)
,

for some Ri,n ∈ T4[[τ−1]], i = 1, . . . , 4. Indeed, for a formal series Γ̂ =∑
k>1 Γkτ−k to solve formally equation (2.4), then the coefficients Γk must

solve the infinite system of equations,

(4.18) ∂ϕΓk −X−I1+I2(Γk) = (k − 1)Γk−1 +Gk(Γ1, . . . ,Γk−2), k ∈ N,

obtained from substituting the formal series into equation (2.4) and col-
lecting terms of the same order in τ−k. The Gk’s are polynomials in k − 2
variables and can be defined in a recursive way.
Since the first n coefficients of the sum Γn solve (4.18) for k = 1, . . . , n

then in order to get (4.17) we consider the equation (4.18) for k = n +
1. Note that the left hand side of equation (4.18) depends only on the
kth coefficient of the formal series Γ̂. Moreover, due to the form of the
vector field X−I1+I2 , the first two components of the expression in the left
hand side of (4.18) only depend on the first two components of Γk. These
observations allow us to conclude (4.17).
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4.2. Formal variational equation

In this subsection we prove Proposition 3.3. Consider the formal varia-
tional equation of XH around the formal separatrix Γ̂,

(4.19) Du = DXH(Γ̂)u.

Our goal is to construct a convenient basis for the space of formal solutions
of equation (4.19). These formal solutions provide asymptotic expansions
for certain analytic solutions of equation (3.3). We know already two formal
solutions of the previous equation: ∂ϕΓ̂ and ∂τ Γ̂. Note that these formal
solutions are linearly independent as formal series in T4[[τ−1]]. Moreover,

(4.20) Ω(∂ϕΓ̂, ∂τ Γ̂) = 0,

where Ω is the standard symplectic form (1.1). The previous equality follows
from a more general fact: if u1 and u2 are two formal solutions of (4.19),
then Ω(u1,u2) ∈ C. To prove this, note that

DΩ(u1,u2) = Ω(Du1,u2) + Ω(u1,Du2)

= Ω(DXH(Γ̂)u1,u2) + Ω(u1, DXH(Γ̂)u2)
= 0.

(4.21)

In particular, DΩ(∂ϕΓ̂, ∂τ Γ̂) = 0. Now we apply the next Lemma to get
the desired equality.

Lemma 4.8. — Let g ∈ τ jT4[[τ−1]] for some j ∈ Z and suppose that
Dg = 0. Then g = g0 ∈ C. In addition, if j 6 −1 then g = 0.

Proof. — Let g =
∑
k6j gkτ

k where gk ∈ T4. Substituting g into the
equation Dg = 0 and collecting terms of the same order in τk we get the
following system of equations,

∂ϕgj = 0,
∂ϕgk + (k + 1)gk+1 = 0, k 6 j − 1.

(4.22)

The first equation of (4.22) implies that gj ∈ C. Now using the second
equation we can solve for gk. Taking into account that gk ∈ T4 we conclude
that (k + 1)gk+1 = 0 for all k 6 j − 1. Note that when k = −1 we have no
restriction on g0 and the lemma follows. �

Proof of Proposition 3.3. — In the proof of Theorem 3.1 we have ob-
tained the formal solution Γ̂ using the normal form Hamiltonian H] by
defining Γ̂ := Φ ◦ Ẑ, where Φ is the normal form transformation and Ẑ is
the formal solution of Proposition 4.1. Also from the same proposition we
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know that Ẑ = Rϕξ where Rϕ is defined in (4.2) and ξ is a formal series
having the form,
(4.23)
ξ(τ) = (−∂τr(τ) cos θ(τ),−∂τr(τ) sin θ(τ), r(τ) cos θ(τ), r(τ) sin θ(τ))T ,

where r and θ are the formal series (4.9) and (4.12) respectively. In the
normal form coordinates equation (4.19) reads,

(4.24) Dv = DXH](Ẑ)v,

where u = DΦ(Ẑ)v. We seek for formal solutions of (4.24) in the form
v = Rϕζ where ζ ∈ τ jC4[[τ−1]] for some j ∈ Z. Similar to the proof of
Proposition 4.1 the formal series ζ must satisfy the equation,

∂τζ = DXH]+I1(ξ)ζ.

Bearing in mind (4.23), we now rewrite the previous equation in polar
coordinates,

∂τw1 = −
∑
l>1

la1,l

2l−1 r
2l−1w2 −

 1
r2 +

∑
l>0

a2,l

2l−1 r
2l

w3, ∂τw2 = −w4,

∂τw3 = 0, ∂τw4 =

3ηr2 +
∑
l>3

l(2l − 1)a0,l

2l−1 r2l−2

w2 +
∑
l>1

la1,l

2l−1 r
2l−1w3,

(4.25)

where ŵ = (wi), ζ = DΛ(θ, r, 0,−∂τr)ŵ and Λ denotes the change of vari-
ables (4.5). Note that Λ is symplectic with multiplier −1, i.e. (DΛ)TJDΛ =
−J . We know already two formal solutions of equation (4.25):

(4.26) ŵ3 = (1, 0, 0, 0)T and ŵ4 =
(
∂τθ, ∂τr, 0,−∂2

τr
)T
.

In the original coordinates, these formal solutions correspond to ∂ϕΓ̂ and
∂τ Γ̂ respectively. We now construct other two formal solutions that are
formally independent of (4.26) and belong to the class of formal series
τ jC[[τ−1]] for some j ∈ Z. Let us consider the second and fourth equations
of (4.25). They are equivalent to the single equation,

(4.27) ∂2
τw2 = −

3ηr2 +
∑
l>3

l(2l − 1)a0,l

2l−1 r2l−2

w2 −
∑
l>1

la1,l

2l−1 r
2l−1w3.

In order to solve the previous equation, we first study the formal solutions
of the homogeneous equation.
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Lemma 4.9. — The linear homogeneous equation,

(4.28) ∂2
τw2 = −

3ηr2 +
∑
l>3

l(2l − 1)a0,l

2l−1 r2l−2

w2,

has two linearly independent formal solutions,

w2,1 ∈ τ−2C[[τ−1]] and w2,2 ∈ τ3C[[τ−1]]

such that w2,1 is an even formal series and w2,2 an odd formal series.
Moreover w2,1 = ∂τr, w2,2 = τ3

5κ + 7
40a0,3κ

3τ + · · · and,

(4.29) w2,2∂τw2,1 − w2,1∂τw2,2 = 1.

Proof. — That ∂τr is a formal solution of the homogeneous equation is
obvious. Moreover its properties follow from the properties of the formal
series r. Now let us determine the second formal solution. It follows from
the fact that the formal series r ∈ τ−1C[[τ−1]] is odd that the right hand
side of the homogeneous equation (4.28) is a formal series of the form
b =

∑
k6−1 bkτ

2k where bk depends on a finite number of coefficients of r
and a0,l for l > 3. Moreover, according to (4.9) we have,

r(τ) = κτ−1 − 1
8a0,3κ

5τ−3 + · · · ,

where κ2 = − 2
η . Using the leading orders of r, we compute the first few

orders of the formal series b for further reference,

(4.30) b−1 = 6 and b−2 = −21a0,3

η2 .

Now we are ready to solve equation (4.28) in the class of formal series. Thus,
substituting the formal series w2,2 =

∑
k61 w2,2,kτ

2k+1 into equation (4.28)
and collecting terms of the same order in τk we obtain the following infinite
system of linear equations,

(2k(2k + 1)− 6)w2,2,k =
−2∑

j=k−2
w2,2,k−j−1bj , k = 1, 0,−1, . . .

For k = 1 we get no condition on the first coefficient, thus w2,2,1 ∈ C. For
k = 0 we obtain w2,2,0 = − 1

6w2,2,1b−2. When k 6 −1, a simple induction
argument shows that we can determine the coefficients w2,2,k (which depend
linearly on the coefficient w2,2,1) in a recursive way by using the previous
formula since (2k(2k + 1)− 6) = 0 only if k = 1 or k = − 3

2 . Finally let us
derive the equality (4.29). Since,

∂τ (w2,2∂τw2,1 − w2,1∂τw2,2) = 0,
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due to the fact that both w2,1 and w2,2 solve the homogeneous equation
(4.28) we have that w2,2∂τw2,1 − w2,1∂τw2,2 is equal to some constant.
Taking into account the leading orders of the formal solutions w2,1 and w2,2
we conclude that w2,2∂τw2,1 − w2,1∂τw2,2 = 5κw2,2,1. As w2,2,1 is a free
coefficient we can define w2,2,1 := 1

5κ and obtain the desired equality. �

Returning to the non-homogeneous equation (4.27), we see that the last
term of the right hand side of the equation depends on w3 from which we
know that ∂τw3 = 0. Thus w3 = w3,0 ∈ C is a constant. Now, taking into
account that r is an odd formal power series we conclude that,

g(τ) :=
∑
l>1

la1,l

2l−1 r
2l−1 ∈ τ−1C[[τ−1]],

is an odd formal series whose coefficients depend on a finite number of
coefficients of r and a1,l for l > 1. Using the well known method of variation
of constants we can write the general formal solution of (4.27) as follows,

(4.31) w2 = c1w2,1 + c2w2,2 + w2,2

∫ τ

w2,1gw3,0 − w2,1

∫ τ

w2,2gw3,0,

where w3,0, c1, c2 ∈ C. Note that the integration in the previous formula
is well defined in the class of formal series C[[τ−1]][[τ ]]. Indeed, it can
be easily checked that w2,1g ∈ τ−3C[[τ−1]] is an odd formal series and
w2,2g ∈ τ2C[[τ−1]] is an even formal series. Hence both integrands do not
contain the term τ−1. Next we define two particular formal solutions of
(4.27),

(4.32) w0
2 := w2,2 and w1

2 := w2,2

∫ τ

w2,1g − w2,1

∫ τ

w2,2g.

The first formal solution corresponds to setting c1 = w3,0 = 0 and c2 = 1
in the general solution (4.31) and the second corresponds to c1 = c2 = 0
and w3,0 = 1. Note that w0

2 ∈ τ3C[[τ−1]] is an odd formal series and
w1

2 ∈ τC[[τ−1]] is also odd formal series.
Now coming back to the first equation of (4.25), we can rewrite it as

follows,
∂τw1 = −gw2 + fw3,0,

where,

f = − 1
r2 −

∑
l>0

a2,l

2l−1 r
2l.

It is not difficult to see that f ∈ τ2C[[τ−1]] is an even formal series. More-
over both gw0

2 ∈ τ2C[[τ−1]] and gw−1
2 ∈ C[[τ−1]] are even formal series.
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These observations allow us to conclude that the following are formal so-
lutions of (4.25),

(4.33) w0
1 = −

∫ τ

gw0
2 and w1

1 = −
∫ τ

gw1
2 +

∫ τ

f,

which are well defined in the class of formal series C[[τ−1]][[τ ]] and moreover
w0

1, w
1
1 ∈ τ3C[[τ−1]] are both odd formal series. Thus we obtain two formal

solutions of (4.25) defined as follows,

ŵ1 :=
(
w1

1, w
1
2, 1,−∂τw1

2
)T and ŵ2 :=

(
w0

1, w
0
2, 0,−∂τw0

2
)T
.

Note that {ŵi}i=1,...,4 is a set of linearly independent formal solutions of
equation (4.25) and that,

Ω(ŵ1, ŵ2) = 0, Ω(ŵ2, ŵ4) = −1, Ω(ŵ1, ŵ4) = 0,
Ω(ŵ2, ŵ3) = 0, Ω(ŵ1, ŵ3) = −1, Ω(ŵ3, ŵ4) = 0.

(4.34)

where Ω is the canonical symplectic form in the polar coordinates, i.e.,
Ω = dθ ∧Θ + dr ∧ dR. The bottom identities of (4.34) are straightforward
to prove using the definition of ŵi. The ones on the top are harder to prove
and so we handle them bellow. First note that similar arguments as in
(4.21) show that ∂τΩ(ŵi, ŵj) = 0 for i, j = 1, . . . , 4. Secondly, it follows
from Lemma 4.9 and from (4.9) that,
(4.35)

w2,2(τ) = τ3

5κ + 7
40a0,3κ

3τ + · · · and r(τ) = κτ−1 − 1
8a0,3κ

5τ−3 + · · · .

Now we compute Ω(ŵ1, ŵ2). Using the definition of both ŵ1 and ŵ2 we
get

Ω(ŵ1, ŵ2) = −w1
0 − w0

2∂τw
1
2 + ∂τw

2
0w

1
2.

Bearing in mind (4.32) and (4.33) we can simplify the previous expression
and rewrite it as follows,

Ω(ŵ1, ŵ2) =
(
1− w2,2∂

2
τ r + ∂τw2,2∂τr

) ∫ τ

gw2,2.

Now using the leading orders (4.35) we conclude that the expression inside
the parenthesis in the previous formula belongs to τ−4C[[τ−1]]. Moreover∫ τ

gw2,2 ∈ τ3C[[τ−1]] and consequently Ω(ŵ1, ŵ2) ∈ τ−1C[[τ−1]]. Apply-
ing Lemma 4.8 we get Ω(ŵ1, ŵ2) = 0 as we wanted to show.
Now we handle Ω(ŵ2, ŵ4). Again, it follows from the definitions (4.32)

that,
Ω(ŵ2, ŵ4) = w2,1∂τw2,2 − w2,2∂τw2,1.

The identity now follows from (4.29).
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At last, let us compute Ω(ŵ1, ŵ4). Again using the definitions of the
power series ŵ1 and ŵ4 we get,

Ω(ŵ1, ŵ4) = ∂τθ + w−1
2 ∂τR+ ∂τr∂τw

−1
2 .

This last expression belongs to τ−2C[[τ−2]] and applying Lemma 4.8 we
obtain the desired result.
Coming back to the coordinates of equation (4.24) we define,

v̂i(ϕ, τ) := RϕDΛ(θ(τ), r(τ), 0,−∂τr(τ))ŵi(τ).

Clearly the matrix V̂ = (v̂i)i=1,...,4 consists of linearly independent formal
solutions of equation (4.24) such that v̂3 = ∂ϕẐ and v̂4 = ∂τ Ẑ. Moreover,
a simple computation shows that,

DΛ(θ, r, 0,−∂τr) =


τ−3Λ1 0 Λ2 Λ3
τ−2Λ4 0 τΛ5 τ−1Λ6
τ−2Λ7 Λ8 0 0
τ−1Λ9 τ−1Λ10 0 0

 ,

where Λi ∈ C[[τ−1]] for i = 1, . . . , 10. Thus, taking into account the defini-
tion of ŵ1 and ŵ2 we conclude that,

v̂1 =
(
τ v̂1,1, τ v̂2,1, τ

2v̂3,1, τ
2v̂4,1

)T
,

v̂2 =
(
τ2v̂1,2, τ

2v̂2,2, τ
3v̂3,2, τ

3v̂4,2
)T
,

for some v̂i,1, v̂i,2 ∈ T[[τ−1]], i = 1, . . . , 4. Since Λ is symplectic with mul-
tiplier −1 and taking into account the identities (4.34) we get,

(4.36) V̂TJV̂ = J.

Finally, pulling back the formal solutions v̂i by the normal form transforma-
tion Φ we obtain the desired formal fundamental solution Û := DΦ(Ẑ)V̂.
Similar to the proof of Theorem 3.1, Û belongs to the same class of formal
series as V̂. Moreover, (4.36) implies that ÛTJÛ = J . In order to conclude
the proof of the proposition, note that by the method of variation of con-
stants a general formal solution of equation (4.19) is of the form Ûc where
c is any formal series in τ jT4[[τ−1]] for some j ∈ Z, such that Dc = 0. It
follows from Lemma 4.8 that c ∈ C4. Thus, if ˆ̃U is another formal funda-
mental solution of (4.19) then there exists a matrix E ∈ C4×4 such that
ˆ̃U = ÛE. Since ˆ̃U and Û are symplectic it also follows that E must be
symplectic. Moreover, as the third and fourth columns of ˆ̃U have to be
the derivatives of Γ̂ then a simple computation shows that one can reduce
the number of entries of E to obtain (3.5). This concludes the proof of the
proposition. �
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Remark 4.10. — Similar to Remark 4.5, one can trace the proof of the
previous proposition and conclude that when H is real analytic then,

Û(ϕ, τ) =
{

Û(ϕ, τ) if η < 0
Û(ϕ+ π, τ) if η > 0

Remark 4.11. — For n > 1 let Un be a partial sum of the formal series
Û up to order τ−n−1 in the first two components (of each column) and up
to order τ−n in the last two components. Similar to Remark 4.7 we have
that,

DUn−DXH(Γn+3)Un =


τ−n−2ξ1,1 τ−n−2ξ1,2 τ−n−2ξ1,3 τ−n−2ξ1,4
τ−n−2ξ2,1 τ−n−2ξ2,2 τ−n−2ξ2,3 τ−n−2ξ2,4
τ−n−1ξ3,1 τ−n−1ξ3,2 τ−n−1ξ3,3 τ−n−1ξ3,4
τ−n−1ξ4,1 τ−n−1ξ4,2 τ−n−1ξ4,3 τ−n−1ξ4,4


for some ξi,j ∈ T[[τ−1]].

5. Linear operators

In this section we define certain complex Banach spaces and study some
linear operators acting on them. The linear operators and motivated by the
study of the solutions of the nonlinear PDE (2.4). These technical results
are at the core of the proofs of the main theorems of this paper.

5.1. Solutions of Du = f

Fix h > 0 and let Th = {ϕ ∈ C/2πZ : |Imϕ| < h}. We consider the
problem of solving the linear PDE,

(5.1) Du = f,

where D = ∂ϕ + ∂τ is a first order linear differential operator and u and f
are analytic complex-valued functions defined in Th × B where B is some
domain of C.
The simplest case is when f = 0. As one would expect, by using the

method of characteristics, a solution of the homogeneous equation Du = 0
must be a function which is constant along the characteristics

ϕ̇ = 1 and τ̇ = 1 .

Thus, u is a function depending on a single variable, say τ − ϕ. The next
result determines such function and its domain of analyticity.

ANNALES DE L’INSTITUT FOURIER



1 : −1 RESONANCE 1401

Lemma 5.1. — Let u : Th × B → C be analytic and suppose that
Du = 0. Then there exists a unique analytic function c :

⋃
τ∈B τ +Th → C

such that u(ϕ, τ) = c(τ − ϕ).

Proof. — Given τ0 ∈ B let

Ωτ0 = {(ϕ, τ) ∈ Th ×B : ϕ− τ + τ0 ∈ Th} .

Note that Ωτ0 is an open and connected set of C2. The initial value problem,

(5.2)
{
Dξ = 0
ξ(ϕ, τ0) = u(ϕ, τ0)

,

has a solution ξ(ϕ, τ) = u(ϕ − τ + τ0, τ0). Hence ξ is an analytic function
of a single variable τ − ϕ and is defined in the translated horizontal strip
τ0 + Th. By the main local existence and uniqueness theorem for analytic
partial differential equations (see [7] for instance) we conclude that u = ξ

on Ωτ0 . Thus u(ϕ, τ) = u(ϕ−τ+τ0, τ0). Taking into account that Th×B =⋃
τ0∈B Ωτ0 and the uniqueness of analytic continuation we get the desired

result. �

When f is non-zero and defined in Th × D±r , where the sets D±r are
depicted in Figure 3.1, then equation (5.1) has two solutions,

u−(ϕ, τ) =
∫ 0

−∞
f(ϕ+s, τ+s)ds and u+(ϕ, τ) =−

∫ +∞

0
f(ϕ+s, τ+s)ds,

provided the integrand in both functions is well defined in the domain of f
and the corresponding integral converges.

Proposition 5.2. — Let r > 1 and f : Th ×D−r → C be analytic and
continuous in the closure of its domain. Moreover, suppose that |f(ϕ, τ)| 6
Kf
|τ |p for some Kf > 0 and p > 2. Then,

u−(ϕ, τ) =
∫ 0

−∞
f(ϕ+ s, τ + s)ds,

defines an analytic function in Th × D−r , continuous in the closure of its
domain. Moreover,

(5.3)
∣∣u−(ϕ, τ)

∣∣ 6 Kp−1Kf

|τ |p−1 ,

for some Kp > 0 independent of r.

In order to prove this proposition we need the following estimate,
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Lemma 5.3. — Let p > 1, τ ∈ D+
r . Then there exists a constant Kp > 0

such that,

(5.4)
∫ 0

−∞

1
|τ + s|p+1 ds 6

Kp

|τ |p
.

Proof. — The proof of this lemma follows from simple estimates. First,
using a suitable change of variables we can write,∫ 0

−∞

ds

|τ + s|p+1 =︸︷︷︸
t= s
|τ|

1
|τ |p

∫ 0

−∞

dt∣∣1 + e−i arg(τ)t
∣∣p+1 .

Now we show that the integral in the right-hand-side of the previous equa-
tion is bounded by a constant which only depends on p and θ (see the
definition of D+

r in (3.2)). To that end we split the integral,∫ 0

−∞

dt∣∣1+e−i arg(τ)t
∣∣p+1 =

∫ 0

−1

dt∣∣1 + e−i arg(τ)t
∣∣p+1+

∫ −1

−∞

dt∣∣1+e−i arg(τ)t
∣∣p+1 ,

and estimate each term separately. Clearly
∣∣1 + e−i arg(τ)t

∣∣ > sin θ for all
t 6 0 and τ ∈ D−r (see Figure 5.1). Thus∫ 0

−1

dt∣∣1 + e−i arg(τ)t
∣∣p+1 6 sup

t∈[−1,0]

1∣∣1 + e−i arg(τ)t
∣∣p+1

6
1

(sin θ)p+1 .

1

θ

Figure 5.1. The set
{

1 + e−i arg(τ)t : t 6 0 and τ ∈ D−r
}
.
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On the other hand,∣∣∣1 + e−i arg(τ)t
∣∣∣2 = 1 + 2t cos(arg(τ)) + t2

> cos2(arg(τ)) + 2t cos(arg(τ)) + t2

= (cos arg(τ) + t)2 .

Thus ∣∣∣1 + e−i arg(τ)t
∣∣∣ > |t+ cos(arg(τ))| , ∀t ∈ R ∀τ ∈ D−r ,

which implies that,∫ −1

−∞

dt∣∣1 + e−i arg(τ)t
∣∣p+1 6

1
p (1− cos(arg(τ)))p

6
1

p (1− cos θ)p
,

and the result follows. �

Proof of Proposition 5.2. — Let f : Th × D−r → C be an analytic
function as defined in the statement of the proposition. Moreover we know
that |f(ϕ, τ)| 6 Kf

|τ |p for some Kf > 0 and p > 2. For N > 0 we have
(ϕ−N, τ −N) ∈ Th ×D−r . Thus,∫ −N

−∞
|f(ϕ+ s, τ + s)| ds 6

∫ 0

−∞
|f(ϕ−N + s, τ −N + s)| ds

6
∫ 0

−∞

Kf

|τ −N + s|p
ds

6
Kp−1Kf

|τ −N |p−1 ,

(5.5)

by Lemma 5.3. Hence, the integral
∫ 0
−N f(ϕ+s, τ+s)ds converges uniformly

in Th ×D−r as N → +∞. We can apply a classical result of analysis (see
for instance [5] on pag. 236) to deduce that,

u−(ϕ, τ) =
∫ 0

−∞
f(ϕ+ s, τ + s)ds,

is an analytic function in Th × D−r . The continuity in the closure of its
domain also follows from the continuity of f and the uniform convergence of
the integral (5.5). The upper bound for u− follows from (5.5) with N = 0.

�

Remark 5.4. — A similar proposition holds for the function,

u+(ϕ, τ) = −
∫ +∞

0
f(ϕ+ s, τ + s)ds,

which is defined in Th ×D+
r .
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Now we consider the problem of solving equation (5.1) but for functions
defined in Th ×D1

r where,

D1
r = D+

r ∩D−r ∩ {τ ∈ C : Im τ < −r} .

Regarding this new domain D1
r we can not repeat the same arguments of

Proposition 5.2 since D1
r does not contain an infinite horizontal segment. In

order to overcome this difficulty, we construct an analytic solution of (5.1)
using a technique similar to the partition of unity, originally developed by
V. F. Lazutkin in [16]. This technique relies on a version of the Cauchy
integral formula for analytic functions which we now describe in detail.
Let L(∂D1

r) denote the set of bounded complex-valued Lipschitz func-
tions χ : ∂D1

r → C with the norm,

‖χ‖ = sup
x
|χ(x)|+ sup

x 6=y

∣∣∣∣χ(x)− χ(y)
x− y

∣∣∣∣ .
Lemma 5.5 (Cauchy integral). — Let χ ∈ L(∂D1

r) and f : Th×D1
r → C

be a bounded analytic function having a continuous extension to the closure
of its domain. Moreover, suppose that

Jf = 1
2π

∫
∂D1

r

|f(ϕ, τ)| |dτ | <∞ , ∀ϕ ∈ Th .

Then

h(ϕ, τ) = 1
2πi

∫
∂D1

r

χ(ξ)f(ϕ, τ)
ξ − τ

dξ

defines two analytic functions hint and hext defined in Th ×D1
r and Th ×

C \ D1
r respectively. Moreover, both functions extend continuously to the

closure of its domains and

|hint,ext(ϕ, τ)| 6 ‖χ‖ (Jf + sup |f |) .

Proof. — This lemma is a parameterized version of Lemma 9.2 in [11].
Its proof is completely analogous and we shall omit the details. �

Remark 5.6. — If supp(χ) ( ∂D1
r then hint = hext on C \ supp(χ)

Proposition 5.7. — Let ε > 0, p > 4 and r > max
{

2, 2 tan θ
1−tan θ

}
. Sup-

pose that f : Th × D1
r → C is analytic, continuous on the closure of its

domain and there exists Kf > 0 such that

|f(ϕ, τ)| 6 Kf∣∣τpeiε(τ−ϕ)
∣∣ , ∀(ϕ, τ) ∈ Th ×D1

r .
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Then equationDu = f has an analytic solution u : Th×D1
r → C, continuous

on the closure of its domain, such that

|u(ϕ, τ)| 6 4KfKp−3

r

1∣∣τp−3eiε(τ−ϕ)
∣∣

Proof. — Following the ideas of [11] we define the domains,

D̃−r = {τ ∈ C : |arg (τ + r)| > θ and Im τ < −r} ,

D̃+
r =

{
τ ∈ C : − τ ∈ D̃−r

}
.

Note that D1
r = D̃+

r ∩ D̃−r . Let µ(ϕ, τ) = τp−2eiε(τ−ϕ) and f̃(ϕ, τ) =
µ(ϕ, τ)f(ϕ, τ). We use the previous lemma on the Cauchy integral to write
the function f̃ as a sum of two functions f̃± analytic in Th×D̃±r respectively.
To that end, we define a partition of unity for the set ∂D1

r as follows. Let
χ : R→ [0, 1] be a smooth function such that χ(t) = 0 for t 6 −1, χ(t) = 1
for t > 1 and |χ′(t)| 6 1 for all t ∈ R. Define two functions χ± : ∂D1

r → [0, 1]
by,

χ+(τ) = χ (Re(τ)) and χ−(τ) = 1− χ+(τ) .

Clearly χ± ∈ L(∂D1
r) and ‖χ±‖ 6 2. Since r > 2 tan θ

1−tan θ (see Figure 5.2),
f̃± : Th × D̃±r → C defined by

f̃±(ϕ, τ) =
∫
∂D1

r

χ±(ξ)f̃(ϕ, ξ)
ξ − τ

dξ

D̃−
r

−r

−r

r(1−tan θ)
tan θ

θ

Figure 5.2. The domain D̃−r
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is analytic, continuous on the closure of its domain. Moreover

f(ϕ, τ) = 1
µ(ϕ, τ)

(
f̃−(ϕ, τ) + f̃+(ϕ, τ)

)
.

Hence,

(5.6) u(ϕ, τ) =
∫ 0

−∞

f̃−(ϕ+ s, τ + s)
µ(ϕ+ s, τ + s) ds−

∫ +∞

0

f̃+(ϕ+ s, τ + s)
µ(ϕ+ s, τ + s) ds

is a solution of equation Du = f provided the integrals in (5.6) converge
uniformly. Let us show that the first integral defines an analytic function
in Th ×D1

r . The second integral can be handled analogously.
Applying Lemma 5.3 and the upper bound from Lemma 5.5 to the first

term of (5.6) we get,∫ 0

−∞

∣∣∣∣ f̃−(ϕ+ s, τ + s)
µ(ϕ+ s, τ + s)

∣∣∣∣ ds 6 ‖χ−‖ (Jf̃ + sup |f̃ |)∣∣eiε(τ−ϕ)
∣∣ ∫ 0

−∞

1
|τ + s|p−2 ds

6
‖χ−‖ (Jf̃ + sup |f̃ |)Kp−3∣∣τp−3eiε(τ−ϕ)

∣∣ .

Clearly ‖χ−‖ 6 2, sup |f̃ | 6 Kf/r
2 and Jf̃ 6

Kf
2πr . Since r > 2 we get,∥∥χ−∥∥ (Jf̃ + sup |f̃ |) 6 2Kf

r
,

which implies that,

(5.7)
∫ 0

−∞

∣∣∣∣ f̃−(ϕ+ s, τ + s)
µ(ϕ+ s, τ + s)

∣∣∣∣ ds 6 2KfKp−3

r

1∣∣τp−3eiε(τ−ϕ)
∣∣ .

Similar to the proof of Proposition 5.2, for p > 4 the integral converges
uniformly in Th×D̃−r . Hence, it defines an analytic function in Th×D̃−r . The
continuity on the closure of Th×D̃−r also follows from uniform convergence
and continuity of f̃−. In an analogous way we conclude that

(ϕ, τ) 7→
∫ +∞

0

f̃−(ϕ+ s, τ + s)
µ(ϕ+ s, τ + s) ds

is analytic in Th×D̃+
r , continuous on the closure of Th×D̃+

r and having the
same upper bound (5.7). Putting these upper bounds together we obtain,

|u(ϕ, τ)| 6 4KfKp−3

r

1∣∣τp−3eiε(τ−ϕ)
∣∣

and the proof is complete. �
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5.2. Linear operator L

Let B ⊂ C be an open set which does not intersect a neighborhood of
the origin. Both sets D±r and their intersection satisfy this condition for
r sufficiently large. Let p ∈ Z and denote by Xp (Th ×B) the space of
analytic functions f = (f1, . . . , f4) : Th × B → C4 which have continuous
extension to the closure of its domain and have finite norm,

‖f‖p = sup
(ϕ,τ)∈Th×B

(∣∣τp+1f1(ϕ, τ)
∣∣ +

∣∣τp+1f2(ϕ, τ)
∣∣

+ |τpf3(ϕ, τ)|+ |τpf4(ϕ, τ)|) <∞.

The space Xp (Th ×B) endowed with the norm ‖·‖p as defined above is a
complex Banach space. When f ∈ Xp (Th ×B) we occasionally write

f(ϕ, τ) = (τ−p−1f1(ϕ, τ), τ−p−1f2(ϕ, τ), τ−pf3(ϕ, τ), τ−pf4(ϕ, τ)),

where the norm of f is now ‖f‖p = sup
(ϕ,τ)

4∑
i=1
|fi(ϕ, τ)|.

For µ > 0 let Yµ(Th × B) be the space of analytic functions ξ =
(ξ1, . . . , ξ4) : Th × B → C4 which have continuous extension to the clo-
sure of its domain and have finite norm,

‖ξ‖µ = sup
(ϕ,τ)∈Th×B

4∑
i=1

∣∣∣eµi(τ−ϕ)ξi(ϕ, τ)
∣∣∣ <∞.

Given two Banach spaces (X, ‖·‖X) and (Y, ‖·‖Y) we define the usual
norm on the space of linear operators L : X→ Y as follows,

‖L‖Y,X = sup
ξ∈X\{0}

‖L(ξ)‖Y
‖ξ‖X

.

To simplify the notation we will not write, when it is clear from the
context, the dependence of the Banach spaces from the domains where the
functions are defined. Moreover, we will write the norm of a linear operator
L : Xp → Xq as ‖L‖q,p and the norm of a linear operator L : Yµ → Yµ′ as
‖L‖µ′,µ.
Let A : Th×B → C4×4 be an analytic matrix-valued function and define

L : Xp → Xp according to,

(5.8) L(ξ)(ϕ, τ) = Dξ(ϕ, τ)−A(ϕ, τ)ξ(ϕ, τ),

where D = ∂ϕ+∂τ is the same differential operator defined in the previous
section. We say that a 4-by-4 matrix-valued function U : Th×B → C4×4 is
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a fundamental matrix of L if L(U) = 0, det(U) = 1 and the columns (ui)i
of U satisfy u1 ∈ X−2, u2 ∈ X−3, u3 ∈ X1 and u4 ∈ X2. We also define,

(5.9) KU := max
{
‖u1‖−2 , ‖u2‖−3 , ‖u3‖1 , ‖u4‖2

}
.

In the following we will be concerned with the problem of solving equation
L(ξ) = f for a given analytic function f : Th × B → C4 with some pre-
scribed behavior. In other words, we want to invert the linear operator L
in the Banach spaces defined above. To that end, knowing a fundamental
matrix U for L we can use the method of variation of constants as follows:
let ξ = Uc where c : Th × B → C4 is analytic. Substituting into L(ξ) we
get,

L(ξ) = D (Uc)−AUc
= (DU)c + UDc−AUc
= (DU−AU) c + UDc
= UDc .

Note that U has determinant equal one, hence invertible. Thus ξ = Uc is
a solution of equation L(ξ) = f provided c satisfies the equation,

(5.10) Dc = U−1f.

A simple computation shows that we can write,

(5.11) U−1 =


τ−1u1,1 τ−1u1,2 τ−2u1,3 τ−2u1,4
τ−2u2,1 τ−2u2,2 τ−3u2,3 τ−3u2,4
τ2u3,1 τ2u3,2 τu3,3 τu3,4
τ3u4,1 τ3u4,2 τ2u4,3 τ2u4,4


for some functions ui,j : Th × B → C, analytic with continuous extension
to the closure of Th ×B. Moreover,

(5.12) KU−1 := max
i,j

{
sup

(ϕ,τ)∈Th×B
|ui,j(ϕ, τ)|

}
<∞ .

Depending on the sets where U and f are analytic we can use Propositions
5.2 and 5.7 to obtain a solution of (5.10), thus constructing a right inverse
for L. Before stating and proving a couple of theorems that make the
previous discussion precise, let us present an example that motivates the
definition of L and its fundamental matrix.
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5.2.1. An example: L0

Here we define a linear operator L0 in the form of (5.8). This linear
operator plays an important role in the perturbation theory developed in
the subsequent sections. Let us consider the following PDE,

(5.13) Dx = XH0(x),

where H0 denotes the leading order of H which we recall for convenience

H0 = −I1 + I2 + ηI2
3 .

A direct computation shows that,

(5.14) Γ0(ϕ, τ) =
(
κτ−2 cosϕ, κτ−2 sinϕ, κτ−1 cosϕ, κτ−1 sinϕ

)T
,

solves equation (5.13) where κ2 = − 2
η . Indeed, using the polar coordinates,

q1 = R cos θ, p1 = r cos θ, q2 = R sin θ, p2 = r sin θ.

we see that equation (5.13) reduces to the following equations,

Dθ = 1, Dr = −R, DR = ηr3.

The last two equations define a second order differential equation D2r =
−ηr3 which has a solution r(ϕ, τ) = κ

τ . Thus R(ϕ, τ) = κ
τ2 . Now using

θ(ϕ, τ) = ϕ as a solution of the first equation we get the desired solution
Γ0. The linearized Hamiltonian vector field A0 := DXH0(Γ0) evaluated at
Γ0 reads,

(5.15) A0(ϕ, τ) =


0 −1 − 1+2 cos2 ϕ

τ2 − sin(2ϕ)
τ2

1 0 − sin(2ϕ)
τ2 − 1+2 sin2 ϕ

τ2

−1 0 0 −1
0 −1 1 0

 .

Note that A0 does not depend on the choice of κ. Moreover A0 : Th×C∗ →
C4×4 is analytic. Define L0 : X1 → X1 by

(5.16) L0(ξ)(ϕ, τ) = Dξ(ϕ, τ)−A0(ϕ, τ)ξ(ϕ, τ) .

It can be checked directly (or using the polar coordinates as before) that,

(5.17) U0(ϕ, τ) =


− 2τ sinϕ

3κ − 3τ2 cosϕ
5κ −κ sinϕ

τ2 − 2κ cosϕ
τ3

2τ cosϕ
3κ − 3τ2 sinϕ

5κ
κ cosϕ
τ2 − 2κ sinϕ

τ3

τ2 sinϕ
3κ

τ3 cosϕ
5κ −κ sinϕ

τ −κ cosϕ
τ2

− τ
2 cosϕ

3κ
τ3 sinϕ

5κ
κ cosϕ
τ −κ sinϕ

τ2

 ,

is a fundamental matrix for the linear operator L0. Moreover, U0(ϕ, τ) is
symplectic for all (ϕ, τ) ∈ Th × C∗. In particular, det(U0) = 1.
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5.2.2. Inverse theorems for the linear operator L

Theorem 5.8. — Let p > 3, r > 1 and suppose that the linear operator
L : Xp(Th × D−r ) → Xp(Th × D−r ) has a fundamental matrix U. Then L
has trivial kernel. Moreover there exists a unique bounded linear operator
L−1 : Xp+1(Th ×D−r )→ Xp(Th ×D−r ) such that LL−1 = Id.

Proof. — Let us prove the first assertion of the theorem: kernel of L
is trivial. To that end, let ξ ∈ Xp(Th × D−r ) such that L(ξ) = 0. Then,
according to (5.10) we have that Dc = 0 where c = U−1ξ. Applying Lemma
5.1 to each component of c we conclude that c(ϕ, τ) = c0(τ − ϕ) where
c0 : C→ C4 is a 2π-periodic entire function. Moreover, since c0 = U−1ξ we
can bound c0 as follows. Let ξ = (τ−p−1ξ1, τ

−p−1ξ2, τ
−pξ3, τ

−pξ4)T . Then
(5.11) implies that,
(5.18)

c0 =
(
τ−p−2

4∑
i=1

u1,iξi, τ
−p−3

4∑
i=1

u2,iξi, τ
−p+1

4∑
i=1

u3,iξi, τ
−p+2

4∑
i=1

u4,iξi

)T
.

It follows from (5.12) that the functions ui,j are bounded. Thus, c0 is
bounded for p > 3. An entire bounded function must be constant by Li-
ouville’s theorem. Moreover, since c0(s) → 0 as Im s → ±∞ we conclude
that c0 = 0, thus proving that the kernel of L is trivial.

Now let us construct an inverse of L, i.e., solve equation L(ξ) = f , where
f ∈ Xp+1(Th ×D−r ). Let ξ = Uc. Then c must satisfy,

(5.19) Dc = U−1f.

Let f = (τ−p−2f1, τ
−p−2f2, τ

−p−1f3, τ
−p−1f4)T and g = U−1f . Taking

into account (5.11) we can write

g =
(
τ−p−3

4∑
i=1

u1,ifi, τ
−p−4

4∑
i=1

u2,ifi, τ
−p

4∑
i=1

u3,ifi, τ
−p+1

4∑
i=1

u4,ifi

)T
.

Bearing in mind that ‖f‖p+1 <∞ and (5.12) we can bound the components
of g as follows,

|g1(ϕ, τ)| 6
KU−1 ‖f‖p+1

|τ |p+3 , |g2(ϕ, τ)| 6
KU−1 ‖f‖p+1

|τ |p+4 ,

|g3(ϕ, τ)| 6
KU−1 ‖f‖p+1

|τ |p
, |g4(ϕ, τ)| 6

KU−1 ‖f‖p+1

|τ |p−1 .

For p > 3 we can apply Proposition 5.2 to each component of equation
(5.19) and conclude that there exists an analytic vector-valued function
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c = (c1, c2, c3, c4) : Th ×D−r → C4, continuous in the closure of Th ×D−r
such that,

|c1(ϕ, τ)| 6
Kp+2KU−1 ‖f‖p+1

|τ |p+2 , |c2(ϕ, τ)| 6
Kp+3KU−1 ‖f‖p+1

|τ |p+3 ,

|c3(ϕ, τ)| 6
Kp−1KU−1 ‖f‖p+1

|τ |p−1 , |c4(ϕ, τ)| 6
Kp−2KU−1 ‖f‖p+1

|τ |p−2 .

Finally, define the linear operator L−1 as L−1(f) = ξ where ξ = Uc.
Using the previous estimates we obtain the following upper bounds for the
components of ξ:

|ξ1(ϕ, τ)| 6 K̄

|τ |p+1 ‖f‖p+1 , |ξ2(ϕ, τ)| 6 K̄

|τ |p+1 ‖f‖p+1 ,

|ξ3(ϕ, τ)| 6 K̄

|τ |p
‖f‖p+1 , |ξ4(ϕ, τ)| 6 K̄

|τ |p
‖f‖p+1 ,

where K̄ = (Kp−1 +Kp+3 +Kp+2 +Kp−2)KUKU−1 . Consequently ‖ξ‖p 6
K̄ ‖f‖p+1 yielding

∥∥L−1
∥∥
p,p+1 6 K̄. Thus

L−1 : Xp+1(Th ×D−r )→ Xp(Th ×D−r )

is a bounded right inverse for L. The uniqueness follows from the kernel of
L being trivial. �

Theorem 5.9. — Let p > 3, r > max
{

2, 2 tan θ
1−tan θ

}
and suppose that

the linear operator L : Xp(Th × D1
r) → Xp(Th × D1

r) has a fundamental
matrix U. Then the kernel of L consists of functions of the form

U(ϕ, τ)c(τ − ϕ)

where c : {s ∈ C : Im s < h− r} → C4 is analytic, 2π-periodic, continuous
in the closure of its domain and c(s)→ 0 as Im s→ −∞. Moreover,

(1) there exists a bounded linear operator L−1 : Xp+3(Th × D1
r) →

Xp(Th ×D1
r) such that LL−1 = Id,

(2) for any 0 < µ′ < µ there exists a bounded linear operator L−1
µ :

Yµ(Th ×D1
r)→ Yµ′(Th ×D1

r) such that LL−1
µ = Id.

Proof. — The proof of the first part of this theorem is almost identical
to the previous one except that the functions are now defined in Th ×D1

r .
As before, if ξ ∈ Xp such that L(ξ) = 0 then by the method of variation of
constants Dc = 0 where c = U−1ξ. Applying Lemma 5.1 to each compo-
nent of the vector function c, we conclude that c(ϕ, τ) = c0(τ − ϕ) where
c0 : {s ∈ C : Im s < h− r} → C4 is an analytic, 2π-periodic vector-valued

TOME 63 (2013), FASCICULE 4



1412 José Pedro GAIVÃO

function. Moreover, as in the proof of the previous theorem we conclude
that c0(s)→ 0 as Im s→ −∞, thus proving the first part of the theorem.
For the second part, let us first prove item (1). We shall construct an in-
verse of L by solving the equation L(ξ) = f where f ∈ Xp+3(Th × D1

r).
Again, we look for a solution using the method of variation of constants.
Let ξ = Uc. As before, c must satisfy

(5.20) Dc = U−1f.

Let f = (τ−p−4f1, τ
−p−4f2, τ

−p−3f3, τ
−p−3f4) and g = U−1f . Taking into

account (5.11) we can write g as follows,

g=
(
τ−p−5

4∑
i=1

u1,ifi, τ
−p−6

4∑
i=1

u2,ifi, τ
−p−2

4∑
i=1

u3,ifi, τ
−p−1

4∑
i=1

u4,ifi

)T
.

Bearing in mind that ‖f‖p+3 <∞ and (5.12) we can bound the components
of g as follows,

|g1(ϕ, τ)| 6
KU−1 ‖f‖p+3

|τ |p+5 , |g2(ϕ, τ)| 6
KU−1 ‖f‖p+3

|τ |p+6 ,

|g3(ϕ, τ)| 6
KU−1 ‖f‖p+3

|τ |p+2 , |g4(ϕ, τ)| 6
KU−1 ‖f‖p+3

|τ |p+1 .

Since r > max
{

2, 2 tan θ
1−tan θ

}
we can apply Proposition 5.7 with ε = 0 and

p > 3 to each component of equation (5.20) and conclude that there exists
a vector-valued function c = (c1, c2, c3, c4) : Th ×D1

r → C4 such that each
ci is an analytic function in Th×D1

r , continuous in the closure of its domain
and satisfying,

|c1(ϕ, τ)| 6
4Kp+2KU−1 ‖f‖p+3

r |τ |p+2 , |c2(ϕ, τ)| 6
4Kp+3KU−1 ‖f‖p+3

r |τ |p+3 ,

|c3(ϕ, τ)| 6
4Kp−1KU−1 ‖f‖p+3

r |τ |p−1 , |c4(ϕ, τ)| 6
4Kp−2KU−1 ‖f‖p+3

r |τ |p−2 .

Finally, as in the proof of the previous theorem, we define the linear oper-
ator L−1 as L−1(f) = ξ where ξ = Uc. If ξi denote the components of ξ
then ξi can be bounded in Th ×D1

r in the following way,

|ξ1(ϕ, τ)| 6 K̄

|τ |p
‖f‖p+3 , |ξ2(ϕ, τ)| 6 K̄

|τ |p+1 ‖f‖p+3 ,

|ξ3(ϕ, τ)| 6 K̄

|τ |p+1 ‖f‖p+3 , |ξ4(ϕ, τ)| 6 K̄

|τ |p
‖f‖p+3 ,
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where K̄ = 4
r (Kp−1 +Kp+3 +Kp+2 +Kp−2)KUKU−1 . Consequently ‖ξ‖p 6

K̄ ‖f‖p+3 yielding
∥∥L−1

∥∥
p,p+3 6 K̄. Thus L−1 : Xp+3(Th×D1

r)→ Xp(Th×
D1
r) is a bounded right inverse of L.
In order to prove item (2) let 0 < µ′ < µ and consider the problem of

solving equation L(ξ) = f but now with f ∈ Yµ(Th ×D1
r) ⊂ Xp(Th ×D1

r)
where the inclusion clearly holds for any p ∈ Z. Again, we look for a solution
using the method of variation of constants. Thus we have to solve equation
(5.20) where f can now be written as f(ϕ, τ) = e−µi(τ−ϕ)f̃(ϕ, τ) where f̃
is a bounded analytic function in Th ×D1

r . Taking into account (5.11) we
can bound the components of g := U−1f in Th ×D1

r as follows,

|gi(ϕ, τ)| 6 sup
(ϕ,τ)∈Th×D1

r

∣∣∣τ9e−(µ−µ′)i(τ−ϕ)
∣∣∣ ‖f‖µKU−1∣∣τ6eµ′i(τ−ϕ)

∣∣ , i = 1, . . . , 4 .

Note that the supremum in the previous estimate is finite since µ−µ′ > 0.
So we can again apply Proposition 5.7 with ε = µ′ and p = 6 to each
component of equation (5.20) and conclude that there exists an analytic
vector-valued function c = (c1, c2, c3, c4) : Th × D1

r → C4, continuous in
the closure of its domain such that,

(5.21) |ci(ϕ, τ)| 6 Kc∣∣τ3eµ′i(τ−ϕ)
∣∣ ‖f‖µ , i = 1, . . . , 4,

where,

Kc =
4 sup(ϕ,τ)∈Th×D1

r

∣∣∣τ9e−(µ−µ′)i(τ−ϕ)
∣∣∣KU−1K3

r
.

As before, we define the linear operator L−1
µ′ as L−1

µ (f) = ξ where ξ = Uc.
Moreover, taking into account the estimate (5.21) the ξi’s can be bounded
in Th ×D1

r as follows,

|ξi(ϕ, τ)| 6 4KUKc∣∣eµ′i(τ−ϕ)
∣∣ ‖f‖µ , i = 1, . . . , 4 .

Consequently ‖ξ‖µ′ 6 16KUKc ‖f‖µ yielding
∥∥L−1

µ

∥∥
µ,µ′
6 16KUKc. Thus

L−1
µ : Yµ → Yµ′ is the desired bounded right inverse of L. �

6. Solutions of a variational equation

Let n > 3, ξ ∈ Xn+4(Th ×D−r ) and consider the following linear PDE,

(6.1) Du = DXH(Γn+3 + ξ)u.

where Γn+3 is a partial sum of the formal separatrix as defined in Remark
4.7. In the following lemma we prove the existence of a fundamental solution
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of equation (6.1) that is close to a partial sum of a formal fundamental
solution Û of the formal variational equation (3.4). We shall use this result
to prove Proposition 3.4 at the end of the present section.

Lemma 6.1. — Let n > 3 and Un be a partial sum of a formal funda-
mental solution Û as defined in Remark 4.11. Then there exists r0 > 0
sufficiently large such that for every r > r0 the equation (6.1) has a
unique analytic fundamental solution U : Th×D−r → C4×4 having contin-
uous extension to the closure of its domain, UTJU = J (symplectic) and
U−Un ∈ X4

n+1(Th ×D−r ).

Proof. — We look for a solution of equation (6.1) in the form,

(6.2) U = Un + V,

where V : Th ×D−r → C4×4 is a 4-by-4 matrix-valued function such that
each column of V belongs to the space Xn (Th ×D−r ) for some r > 0 (to
be chosen later in the proof). Substituting (6.2) into the equation (6.1) we
obtain,

DV = DXH(Γn+3 + ξ)V +DXH(Γn+3 + ξ)Un −DUn.

This last equation can be rewritten in the following form,

(6.3) L0(V) = BV + Rn,

where L0 is defined by formula (5.16). Moreover

B = DXH(Γn+3 + ξ)−A0 and Rn = DXH(Γn+3 + ξ)Un −DUn.

Taking into account the definition of A0 (see (5.15)) we can write the entries
of the matrix B as follows,

(6.4) B =


τ−2b1,1 τ−2b1,2 τ−3b1,3 τ−3b1,4
τ−2b2,1 τ−2b2,2 τ−3b2,3 τ−3b2,4
τ−1b3,1 τ−1b3,2 τ−2b3,3 τ−2b3,4
τ−1b4,1 τ−1b4,2 τ−2b4,3 τ−2b4,4

 ,

where each function bi,j : Th×D−r → C is analytic and bounded in Th×D−r .
Thus, each column of BV belongs to Xn+1. On the other hand, Remark 4.11
implies that each column of Rn also belongs to Xn+1. Thus, BV + Rn ∈
X4
n+1. Since L0 has a fundamental matrix U0 given by (5.17) we can apply

Theorem 5.8 which guarantees the existence of an unique bounded right
inverse L−1

0 : Xn+1 → Xn of L0 for r > 1. Thus, in order to solve (6.3) for
V, it is sufficient to find a fixed point of the following operator,

(6.5) V 7→ L−1
0 (BV) + L−1

0 (Rn) ,
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defined in X4
n+1 (Th ×D−r ) with r > 1. Note that B induces a linear op-

erator B : Xn → Xn+1 naturally defined by B(v) = Bv. Thus, in order to
prove the existence of a fixed point for (6.5) it is enough to show that,

(6.6)
∥∥L−1

0 ◦ B
∥∥
n,n
6

1
2 ,

for r > 1 sufficiently large. Indeed, using the previous upper bound one
can show that the linear operator defined by (6.5) is contracting and an
application of the contraction mapping theorem yields the existence and
uniqueness of a fixed point V ∈ X4

n (Th ×D−r ).
Let us now prove inequality (6.6). Given v ∈ Xn we want to bound

‖Bv‖n+1 from above using ‖v‖n. According to (6.4) we have that,
(6.7)

Bv =
(
τ−n−3

4∑
i=1

b1,ivi, τ
−n−3

4∑
i=1

b2,ivi, τ
−n−2

4∑
i=1

b3,ivi, τ
−n−2

4∑
i=1

b4,ivi

)
,

where v = (τ−n−1v1, τ
−n−1v2, τ

−nv3, τ
−nv4). Note that given r0 >

1
sin θ

for every r > r0 we have that |τ |−k 6 |τ |−1 6 1
r0 sin θ in D−r for k ∈ N (see

Figure 6.1). This observation together with (6.7) yields

‖Bv‖n+1 6
KB

r0 sin θ ‖v‖n ,

where

KB := max
i,j=1,...,4

{
sup

(ϕ,τ)∈Th×D−r
|bi,j(ϕ, τ)|

}
<∞.

D−
r

θ

−r r sin θ

Figure 6.1. Domain D−r .
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This proves that the linear operator B is bounded, ‖B‖n+1,n 6
KB

r0 sin θ . Now
taking into account that L−1

0 is also bounded by Theorem 5.8 we get,∥∥L−1
0 ◦ B

∥∥
n,n
6
∥∥L−1

0
∥∥
n,n+1 ‖B‖n+1,n 6

KB
∥∥L−1

0
∥∥
n,n+1

r0 sin θ .

Therefore if

r0 > max
{

1
sin θ ,

2KB
∥∥L−1

0
∥∥
n,n+1

sin θ0

}
,

then for every r > r0 the inequality (6.6) holds. Finally, note that we can
repeat the previous arguments with n+ 1 instead of n and obtain a unique
Ṽ ∈ X4

n+1
(
Th ×D−r̃

)
for r̃ sufficiently large such that Ũ = Un+1 + Ṽ

solves equation (6.1). It follows that Ũ −Un ∈ X4
n+1

(
Th ×D−r̃

)
and due

to the uniqueness of the fixed point we conclude that Ũ−Un = V. Thus
V ∈ X4

n+1 (Th ×D−r ) for every r sufficiently large. In order to conclude the
proof of the theorem we just need to show that U is in fact symplectic.
This is not difficult, as it follows from Proposition 5.1, ÛTJÛ = J and the
fact that if u and v are columns of U then DΩ(u,v) = 0. �

Now using the previous lemma we can prove Proposition 3.4.
Proof of Proposition 3.4. — According to Lemma 6.1 we know that for

every n > 3 there exists r0 > 0 such that for every r > r0 there exists
a unique fundamental solution U such that U − Un ∈ Xn+1(Th × D−r )
and UTJU = J . The uniqueness of the solution implies that the third
and fourth columns of U are ∂ϕΓ− and ∂τΓ− respectively. Thus U is
a normalized fundamental solution. To complete the proof it remains to
show that U is in fact independent of n. Indeed for every n > 3, we can
trace the proof of Lemma 6.1 and see that, by increasing r if necessary, we
can make ‖U−U3‖3 as small as we want in order to apply the contraction
mapping theorem. Thus, the uniqueness of the fixed point implies that U
is in fact independence of n. �

7. Proof of Theorem 3.2

Let n > 6 and r > 0 (to be chosen later in the proof). We look for a
solution of equation (2.4) of the form,

(7.1) Γ− = Γn + ξ,

where ξ ∈ Xn (Th ×D−r ) and Γn is a partial sum of the formal separatrix
as defined in Remark 4.7. Substituting (7.1) into equation (2.4) we obtain,

Dξ = XH(Γn + ξ)−DΓn.
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Now we rewrite the previous equation as follows,

(7.2) L(ξ) = Q(ξ) + Rn,

where L : Xn → Xn is a linear operator acting by L(ξ) = Dξ −DXH(Γn)ξ
and

Q(ξ) = XH(Γn + ξ)−XH(Γn)−DXH(Γn)ξ, Rn = XH(Γn)−DΓn.

Our goal is to solve equation (7.2) with respect to ξ. To that end we will
invert the linear operator L and obtain a new equation from which we
can apply a fixed point argument to get the desired solution. According to
Theorem 5.8 we can invert L as long as it has a fundamental matrix U.
Since n > 6, the existence of a fundamental matrix follows from Theorem
6.1. Thus, there exists an r0 > 1 such that for every r > r0 the linear
operator L has a fundamental matrix U such that U − Un−3 ∈ X4

n−2.
Hence, we can apply Theorem 5.8 to get a unique bounded linear operator
L−1 : Xn+1 → Xn such that LL−1 = Id.
Now let us prove that given ξ ∈ Xn (Th ×D−r ) the function Q(ξ) + Rn

belongs to Xn+1 (Th ×D−r ) for r sufficiently large. First note that Remark
4.7 implies that Rn ∈ Xn+1 (Th ×D−r ) for any r > 0. So it remains to
show that Q(ξ) ∈ Xn+1 (Th ×D−r ) for r > 0 sufficiently large. Denote
the components of the vector field XH by vi and consider the following
auxiliary functions,

γi(t) = vi(Γn + tξ)− vi(Γn)− t∇vi(Γn)ξ, i = 1, . . . , 4.

Note that γi(0) = 0 for i = 1, . . . , 4 and Q(ξ) = (γ1(1), γ2(1), γ3(1), γ4(1))T .
We can integrate by parts each function γi to obtain,

γi(1) =
∫ 1

0
(1− s)γ′′i (s)ds, i = 1, . . . , 4.

By the intermediate value theorem there exist ti ∈ [0, 1] for i = 1, . . . , 4
such that γi(1) = (1 − ti)γ′′i (ti) where the second derivative of γi can be
easily computed

(7.3) γ′′i (s) = ξT Hess (vi)|Γn+sξ ξ.

Taking into account that ξ ∈ Xn and the fact that XH is analytic we obtain
the following estimate,

|γi(1)| 6 8 ‖H‖C3 |τ |−2n ‖ξ‖2n ,

for r > 1 where ‖·‖C3 is the standard C3-norm. Using the previous upper
bound and the fact that given r1 > max

{
r0,

1
sin θ

}
and every r > r1 we
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have that |τ |−2 6 |τ |−1 for τ ∈ D−r , then we can estimate ‖Q(ξ)‖n+1 in
the following way,

(7.4) ‖Q(ξ)‖n+1 6 25 ‖H‖C3 ‖ξ‖2n sup
τ∈D−r

|τ |−n+2 6
25 ‖H‖C3 ‖ξ‖2n
(r1 sin θ)n−2 ,

where this last estimate holds since n > 6. Thus Q(ξ) ∈ Xn+1 (Th ×D−r )
as we wanted to show. Now in order to solve equation (7.2), it is sufficient
to find a fixed point in Xn (Th ×D−r ) of the following non-linear operator,

ξ 7→ L−1(Q(ξ)) + L−1(Rn).

Let us denote this operator by G. So in order to apply the contraction
mapping theorem we have to check that G is contracting in some invariant
ball

Bρ = {ξ ∈ Xn : ‖ξ‖n 6 ρ} ,
where ρ > 0. First we prove that G(Bρ) ⊆ Bρ for some ρ > 0. Let ρ =
2
∥∥L−1

∥∥
n,n+1 ‖Rn‖n+1 and ξ ∈ Bρ, then (7.4) implies that,

∥∥L−1(Q(ξ))−L−1(Rn)
∥∥
n
6
∥∥L−1∥∥

n,n+1

(
25 ‖H‖C3 ‖ξ‖2n
(r1 sin θ)n−2 +‖Rn‖n+1

)
6 ρ,

provided,

(7.5) r1 >
(26 ‖H‖C3

∥∥L−1
∥∥
n,n+1 ρ)

1
n−2

sin θ .

Thus G leaves invariant a closed ball Bρ. To check that G is contracting in
Bρ we let ξ1, ξ2 ∈ Bρ and consider a segment connecting both points, i.e.,
γt = (1− t)ξ1 + tξ2. Clearly γt ∈ Bρ for all t ∈ [0, 1]. Similar as before we
define the following auxiliary functions,

ψi(t) = vi(Γn + γt)− vi(Γn)−∇vi(Γn)γt, i = 1, . . . , 4.

Note that,

Q(ξ1) = (ψ1(0), ψ2(0), ψ3(0), ψ4(0))T ,

Q(ξ2) = (ψ1(1), ψ2(1), ψ3(1), ψ4(1))T .

By the mean value theorem there exist ti ∈ [0, 1] for i = 1, . . . , 4 such that
ψi(1)− ψi(0) = ψ′i(ti). Differentiating the functions ψi we obtain,

(7.6) ψi(1)− ψi(0) = (∇vi (Γn + γti)−∇vi (Γn)) · (ξ2 − ξ1) .

Thus, we can bound the differences (7.6) as follows,

|ψi(1)− ψi(0)| 6 8 ‖H‖C3 ρ |τ |−2n ‖ξ2 − ξ1‖n ,
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which implies that,

‖Q(ξ2)−Q(ξ1)‖n+1 6
25ρ ‖H‖C3

(r1 sin θ)n−2 ‖ξ2 − ξ1‖n .

Applying the linear operator L−1 and taking into account (7.5) we get,∥∥L−1(Q(ξ2)−Q(ξ1))
∥∥
n
6
∥∥L−1∥∥

n,n+1
25ρ ‖H‖C3

(r1 sin θ)n−2 ‖ξ2 − ξ1‖n

6
1
2 ‖ξ2 − ξ1‖n ,

which proves that ‖G(ξ2)− G(ξ1)‖n 6
1
2 ‖ξ2 − ξ1‖n in Bρ. Thus G is con-

tracting in the ball Bρ provided r > r1 where,

r1 > max

r0,
1

sin θ ,
(26 ‖H‖C3

∥∥L−1
∥∥
n,n+1 ρ)

1
n−2

sin θ

 .

To conclude the proof of the theorem let us check that the unique function
Γ− obtained with n > 6 is in fact independent of n. Increasing r > 0 the
distance ‖Γ− − Γ6‖6 can be made as small as we want in order to apply
the contraction mapping theorem for n = 6. Due to the uniqueness of the
fixed point we conclude that the function Γ− is in fact independent of n.
Finally for every n > 0 there exists r > 0 sufficiently large such that,

Γ− − Γn = Γ− − Γn+1 + Γn+1 − Γn ∈ Xn+1(Th ×D−r ).

Consequently Γ− ∼ Γ̂ and the proof is complete. �

8. Proof of Theorem 3.5

Let ξ∗ = Γ+ − Γ−. Note that since both Γ± have the same asymptotic
expansion Γ̂ then ξ∗ ∈ Xn(Th ×D1

r) for every n ∈ N where,

D1
r = D+

r ∩D−r ∩ {τ ∈ C | Im τ < −r} .

Let us outline the main steps of the proof. In the first step we write an
integral equation for ξ∗ and derive, using a fixed point argument, a sequence
of functions {ξk}k>0 converging to ξ∗. In a second step we prove that the
sequence {ξk}k>0 is uniformly bounded (with respect to k) by a function
that is exponentially small as τ →∞ in D1

r . This is proved by exploiting a
recursive equation that is used to define the sequence of functions. In the
third and final step of the proof we derive the constant Θ− and obtain the
desired asymptotic formula for Γ+ − Γ−, thus completing the proof of the
theorem. So let us start with,
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Step 1. For definiteness let us henceforth suppose that n = 5. We want
to prove the following:

For r > 0 sufficiently large there exists a sequence {ξk}k>0
in X5(Th ×D1

r) such that ξk → ξ∗ as k → +∞.
To prove this we write a fixed point equation for ξ∗ and use the contrac-

tion mapping theorem. Using the fact that both Γ− and Γ+ are solutions
of equation (2.4) we can write,

Dξ∗ −DXH(Γ−)ξ∗ = XH(Γ− + ξ∗)−XH(Γ−)−DXH(Γ−)ξ∗.

Or equivalently,

(8.1) L(ξ∗) = Q(ξ∗),

where L : X5(Th × D1
r) → X5(Th × D1

r) is the linear operator defined by
L(ξ) = Dξ −DXH(Γ−)ξ and

Q(ξ∗) = XH(Γ− + ξ∗)−XH(Γ−)−DXH(Γ−)ξ∗.

Now we construct a right inverse of L. According to Proposition 3.4 there
exists r1 > 0 and a unique normalized fundamental solution U : Th×D1

r1
→

C4×4 such that U ∼ Û. Thus U is a fundamental matrix for L provided
r > r1. For r > max

{
2, 2 tan θ

1−tan θ , r1

}
we can apply Theorem 5.9 which

guarantees the existence of a bounded right inverse L−1 : X8(Th ×D1
r)→

X5(Th × D1
r) of L, i.e., LL−1 = Id. Moreover, similar estimates as in the

proof of Theorem 3.2 (see (7.4)) show that for r > 0 sufficiently large we
have,

(8.2) ‖Q(ξ∗)‖8 6
25 ‖H‖C3 ‖ξ∗‖25

r
.

Thus Q(ξ∗) ∈ X8. Consequently,

(8.3) ξ0 := ξ∗ − L−1(Q(ξ∗)),

belongs to the kernel of L. According to Theorem 5.9 there exists a 2π-
periodic analytic function c0 : Hr−h → C4, continuous in the closure of its
domain, such that ξ0(ϕ, τ) = U(ϕ, τ)c0(τ − ϕ). The domain of c0 is a half
plane,

Hr−h = {s ∈ C : Im(s) < −r + h} .
Thus (8.3) implies that,

ξ∗ = L−1(Q(ξ∗)) + Uc0,

and the function ξ∗ is a fixed point of the nonlinear operator,

(8.4) ξ 7→ L−1(Q(ξ)) + Uc0,
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which is defined in X5(Th ×D1
r). Let ρ := 2 ‖Uc0‖5. Similar estimates as

in the proof of Theorem 3.2 show that the nonlinear operator defined in
(8.4) is contracting in the ball Bρ = {ξ ∈ X5 | ‖ξ‖5 6 ρ} provided,

r > 26 ∥∥L−1∥∥
5,8 ‖H‖C3 ρ.

Thus, by the contraction mapping theorem, the sequence {ξk} defined by,

(8.5) ξk+1 = L−1(Q(ξk)) + Uc0, k > 0,

converges to ξ∗, i.e., ‖ξk − ξ∗‖5 → 0 as k →∞.

Step 2. It is convenient to estimate the functions ξk using the following
sup-norm: given a bounded analytic function g = (g1, . . . , g4) : Th ×D1

r →
C4 let,

(8.6) ‖g‖ = sup
(ϕ,τ)∈Th×D1

r

4∑
i=1
|gi(ϕ, τ)| .

In the following we want to prove:
There exist C∗ > 0 and r > 0 sufficiently large such that
for every k > 0 we have

∥∥ei(τ−ϕ)U−1ξk
∥∥ 6 C∗.

In order to prove this uniform estimate we define a new sequence of
functions:

(8.7) ζk(ϕ, τ) = ei(τ−ϕ)U−1(ϕ, τ)ξk(ϕ, τ), ∀k > 0.

Let Ck := ‖ζk‖. We want to prove that there exists C∗ > 0 and r > 0
sufficiently large such that Ck 6 C∗ for all k > 0.
To that end, we construct another right inverse of L. Fix arbitrary small

positive real numbers ε, ε′ ∈ R+ such that ε < ε′ and define µ := 2− ε and
µ′ := 2− ε′. Since 0 < µ′ < µ we can apply Theorem 5.9 which guarantees
the existence of a bounded right inverse L−1

µ : Yµ(Th×D1
r)→ Yµ′(Th×D1

r)
of L. Using (8.7) and similar estimates as in the proof of the Theorem 3.2
(see (7.3)) show that the components of Q(ξk) can be bounded by,

27 ‖H‖C3 K
2
U

∣∣∣e−2i(τ−ϕ)τ6
∣∣∣C2

k ,

in Th ×D1
r . Thus,

(8.8) ‖Q(ξk)‖µ =
∥∥∥ei(2−ε)(τ−ϕ)Q(ξk)

∥∥∥ 6 29 ‖H‖C3 K
2
Ur

6e(h−r)εC2
k ,

for values of r = O(ε−1). Hence L−1(Q(ξk)) − L−1
µ′ (Q(ξk)) belongs to the

kernel of L and by Theorem 5.9 we know that there exists a 2π-periodic
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analytic function ck : Hr−h → C4, continuous in the closure of its domain
such that,

(8.9) Uck = L−1(Q(ξk))− L−1
µ (Q(ξk)).

Taking into account (8.7) and (8.9) we can rewrite the recursive formula
(8.5) as follows,

(8.10) ζk+1 = ei(τ−ϕ)U−1L−1
µ (Q(ξk)) + ei(τ−ϕ)ck + ei(τ−ϕ)c0.

In the following we estimate the norm of the functions in the right-hand-
side of (8.10). We will also need the norm induced by (8.6) on the space of
4-by-4 matrix-valued functions G = (Gi,j) : Th ×D1

r → C4×4,

‖G‖ = max
j=1,...,4

sup
(ϕ,τ)∈Th×D1

r

4∑
i=1
|Gi,j(ϕ, τ)| .

Note that given an analytic function γ : D1
r → C such that γ(τ) = O(τ−3)

we have,

(8.11)
∥∥γU−1∥∥ 6 4KU−1 sup

τ∈D1
r

∣∣τ3γ(τ)
∣∣ .

Let us start estimating the norm of the first term in (8.10). Taking into
account (8.11) we obtain,∥∥∥ei(τ−ϕ)U−1 L−1

µ (Q(ξk))
∥∥ 6 ∥∥∥e−(µ′−1)i(τ−ϕ)U−1

∥∥∥∥∥∥eµ′i(τ−ϕ)L−1
µ (Q(ξk))

∥∥∥
6 4KU−1 sup

(ϕ,τ)∈Th×D1
r

∣∣∣τ3e−(µ′−1)i(τ−ϕ)
∣∣∣ ∥∥L−1

µ (Q(ξk))
∥∥
µ′
.

Thus, (8.8) implies that

(8.12)
∥∥∥ei(τ−ϕ)U−1L−1

µ (Q(ξk))
∥∥∥ 6M1(r)e− 1

2 (r−h)C2
k ,

where

(8.13) M1(r) = 211KU−1K2
U
∥∥L−1

µ

∥∥
µ′,µ
‖H‖C3 r

9e−( 1
2−(ε′−ε))(r−h).

ClearlyM1(r) = O(1) since ε′−ε > 0 is arbitrarily small. Now we deal with
the second term in equation (8.10). Taking into account (8.9) we write,

(8.14) ck = U−1L−1(Q(ξk))−U−1L−1
µ (Q(ξk)).

Let us estimate each term of (8.14) separately. Using (8.11) we have,∥∥U−1L−1(Q(ξk))
∥∥ 6 ∥∥τ−5U−1∥∥ ∥∥τ5L−1(Q(ξk))

∥∥
6 4KU−1 sup

τ∈D1
r

∣∣τ−2∣∣ ∥∥L−1(Q(ξk))
∥∥

5

6 4KU−1
∥∥L−1∥∥

5,8 ‖Q(ξk)‖8 .

ANNALES DE L’INSTITUT FOURIER



1 : −1 RESONANCE 1423

Moreover, by (8.7) we have that ‖ξk‖5 6 4KUr
9e−(r−h)Ck, which together

with (8.2) imply that,

(8.15) ‖Q(ξk)‖8 6 29 ‖H‖C3 K
2
Ur

17e2he−2rC2
k .

Thus,∥∥U−1L−1(Q(ξk))
∥∥ 6 211 ‖H‖C3 K

2
UKU−1

∥∥L−1∥∥
5,8 r

17e−2(r−h)C2
k .

On the other hand, the second term of (8.14) can be estimate as follows,∥∥U−1L−1
µ (Q(ξk))

∥∥6∥∥∥e−µ′i(τ−ϕ)U−1
∥∥∥∥∥∥eµ′i(τ−ϕ)L−1

µ (Q(ξk))
∥∥∥

6 4KU−1 sup
(ϕ,τ)∈Th×D1

r

∣∣∣τ3e−(2−ε′)i(τ−ϕ)
∣∣∣ ∥∥L−1

µ (Q(ξk))
∥∥
µ′

6 4KU−1r3e−(2−ε′)(r−h) ∥∥L−1
µ

∥∥
µ′,µ
‖Q(ξk)‖µ .

Taking into account (8.8) we get,∥∥U−1L−1
µ (Q(ξk))

∥∥6 211 ‖H‖C3 K
2
UKU−1

∥∥L−1
µ

∥∥
µ′,µ

r9e−(2−(ε′−ε))(r−h)C2
k .

Finally, putting all these estimates together we obtain,

‖ck‖ 6M2(r)e− 3
2 (r−h)C2

k ,

where,

M2(r) = 211 ‖H‖C3 K
2
UKU−1

(∥∥L−1
µ

∥∥
µ′,µ

r9e−( 1
2−(ε′−ε))(r−h)

+
∥∥L−1∥∥

5,8 r
17e−

1
2 (r−h)

)
.

Similar to M1 we conclude that M2(r) = O(1). In order to conclude the
proof of the assertion of this step we need the following simple result.

Lemma 8.1. — Let σ > 0 and f : Hσ → C an analytic function, 2π-
periodic, continuous in the closure of Hσ and f(z) → 0 as Im z → −∞.
Then,

|f(z)| 6 sup
Im z=−σ

|f(z)| eIm z+σ.

Proof. — The proof is a simple application of the maximum modulus
principle for analytic functions. �

Applying the previous result to each component of ck we get,

|ck,i(z)| 6 sup
Im z=−r+h

|ck,i(z)| eIm z+r−h, i = 1, . . . , 4.

Thus,

(8.16)
∥∥∥ei(τ−ϕ)ck

∥∥∥ 6 ‖ck‖ er−h 6M2(r)e− 1
2 (r−h)C2

k
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Regarding the last term in the right-hand-side of equation (8.10) we know
that by definition C0 =

∥∥ei(τ−ϕ)c0
∥∥. Applying Lemma 8.1 we get C0 <∞.

Thus, taking norms in both sides of equation (8.10) and using the estimates
(8.12) and (8.16) we obtain,

(8.17) Ck+1 6 (M1(r) +M2(r)) e− 1
2 (r−h)C2

k + C0.

Since both M1 and M2 are bounded with respect to r we can choose r > 0
sufficiently large such that,

(M1 +M2)C0e
− 1

2 (r−h) 6
1
4 ,

which implies that Ck 6 C∗ for all k > 0 where C∗ := 2C0.

Step 3. In order to finish the proof of the theorem note that the uniform
estimate obtained in the previous step implies that

∥∥ei(τ−ϕ)U−1ξ∗
∥∥ 6 C∗.

Thus, the estimate (8.8) applied to ξ∗ gives that Q(ξ∗) ∈ Yµ(Th × D1
r).

Moreover, as ξ∗−L−1
µ (Q(ξ∗)) ∈ Ker(L) there exists an analytic 2π-periodic

vector-valued function c∗ : Hr−h → C4 such that ξ∗ = Uc∗ +L−1
µ (Q(ξ∗)).

Since c∗(z)→ 0 as Im z → −∞, we can write its Fourier series as follows,

c∗(z) =
∞∑
m=1

c∗,me−imz,

where c∗,m ∈ C4. Moreover, as L−1
µ (Q(ξ∗)) ∈ Yµ′(Th ×D1

r) then,

ξ∗(ϕ, τ) = e−i(τ−ϕ)U(ϕ, τ)Θ− +O
(
e−(2−ε′)i(τ−ϕ)

)
,

where Θ− := c∗,1. This completes the proof of the theorem. �
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