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COVERS IN p-ADIC ANALYTIC GEOMETRY
AND LOG COVERS I:

COSPECIALIZATION OF THE (p′)-TEMPERED
FUNDAMENTAL GROUP FOR A FAMILY OF CURVES

by Emmanuel LEPAGE

Abstract. — The tempered fundamental group of a p-adic analytic space clas-
sifies covers that are dominated by a topological cover (for the Berkovich topology)
of a finite étale cover of the space. Here we construct cospecialization homomor-
phisms between (p′) versions of the tempered fundamental groups of the fibers of
a smooth family of curves with semistable reduction. To do so, we will translate
our problem in terms of cospecialization morphisms of fundamental groups of the
log fibers of the log reduction and we will prove the invariance of the geometric
log fundamental group of log smooth log schemes over a log point by change of log
point.
Résumé. — Le groupe fondamental tempéré d’un espace analytique p-adique

classifie les revêtements qui sont dominés par un revêtement topologique (pour la
topologie de Berkovich) d’un revêtement étale fini de cet espace. Nous construisons
ici des morphismes de cospécialisation entre les versions (p′) du groupe fondamental
tempéré des fibres d’une famille lisse avec réduction semistable. Pour ce faire, nous
traduisons notre problème en termes de morphismes de cospécialisation de groupes
fondamentaux des fibres logarithmiques de la réduction modulo p et prouvons
l’invariance du groupe fondamental logarithmique géométrique d’un log-schéma
log-lisse au-dessus d’un point logarithmique par changement de base.

Introduction

In general topology, the fundamental group of a connected locally con-
tractible pointed space classifies its (unramified) covers. A. Grothendieck
developed an avatar in abstract algebraic geometry: he attached to any
algebraic variety a profinite fundamental group, which classifies its finite
étale covers. For a complex algebraic variety, Grothendieck’s fundamental

Keywords: fundamental groups, Berkovich spaces, specialization.
Math. classification: 11G20,14H30,14G22.
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group is canonically isomorphic to the profinite completion of the topologic
fundamental group of the corresponding topological space.
Here we are interested in an analog in p-adic geometry. More precisely

we will study the tempered fundamental group of p-adic varieties defined
by Y. André. The profinite completion of the tempered fundamental group
of any smooth p-adic algebraic variety coincides with Grothendieck’s al-
gebraic fundamental group. It also accounts for the usual (infinite) “uni-
formizations” in p-adic analytic geometry such as the uniformization of
Tate elliptic curves, which are historically at the very basis of p-adic rigid
geometry. Such uniformizations give infinite discrete quotients of the tem-
pered fundamental group.
The framework of this paper for non-archimedean analytic geometry will

be Berkovich spaces. The underlying space of the analytification of an affine
algebraic variety SpecA in the sense of Berkovich is the set of multiplicative
seminorms on A with value in R>0 extending the norm of the base field,
endowed with the coarsest topology that makes the evaluation of the norm
of any element f ∈ A continuous. The analytification of a smooth algebraic
variety is locally contractible, which ensures the existence of universal topo-
logical covers. Since the analytification (in the sense of V. Berkovich or of
rigid geometry) of a finite étale cover of a p-adic algebraic variety is not
necessarily a topological cover, André had to consider a category of cov-
ers slightly bigger than just the category of topological covers. He defined
tempered covers, which are (possibly infinite) étale covers in the sense of
A.J. de Jong (that is to say, which are, Berkovich-locally on the base,
direct sums of finite covers) such that, after pulling back by some finite
étale cover, they become topological covers (for the Berkovich topology).
The tempered fundamental group is the prodiscrete group that classifies
those tempered covers. To give a more handful description, if one has a
sequence of pointed finite Galois connected covers ((Si, si))i∈N such that
the corresponding pointed pro-cover of (X,x) is the universal pro-cover of
(X,x), and if (S∞i , s∞i ) is a universal topological cover of Si, the tempered
fundamental group of X can be seen as πtemp

1 (X,x) = lim←−i Gal(S∞i /X).
Therefore, to understand the tempered fundamental group of a variety,
one has to understand the topological behavior of its finite étale covers.
In the case of a curve, the question becomes more concrete since there

is a natural embedding of the geometric realization of the graph of its
stable model into the Berkovich space of the curve which is a homotopy
equivalence.
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COSPECIALIZATION OF TEMPERED GROUPS FOR CURVES 1429

Among applications of tempered fundamental groups, let us cite in pass-
ing the theory of p-adic orbifolds and p-adic triangle groups [2] and a p-adic
version of Grothendieck-Teichmüller theory [1].
In this article we will be interested in the variation of the tempered

fundamental group of the fibers of a family of curves. This article will be
followed by another one [14], in which we will consider higher dimensional
families.

If ȳ1, ȳ2 are to geometric points of a scheme Y , a specialization ȳ2 → ȳ1
is a Y morphism from ȳ2 to the strict localization Y (ȳ1) of Y at ȳ1. Equiv-
alently, a specialization ȳ2 → ȳ1 is a morphism of functors ( )ȳ1 → ( )ȳ2 ,
where ( )ȳ is the functor from the étale topos of Y to the category of
sets that maps an étale sheaf F to its stalk Fȳ. For a proper morphism
of schemes f : X → Y with geometrically connected fibers and a special-
ization ȳ2 → ȳ1 of geometric points of Y , A. Grothendieck has defined al-
gebraic fundamental groups πalg

1 (Xȳi) and a specialization homomorphism
πalg

1 (Xȳ1) → πalg
1 (Xȳ2). Grothendieck’s specialization theorem tells that

this homomorphism is surjective if f is separable and induces an isomor-
phism between the prime-to-p quotients if f is smooth (here, p denotes the
characteristic of ȳ2), cf. [6, cor. X.2.4, cor. X.3.9].
In complex analytic geometry, a smooth and proper morphism is locally

a trivial fibration of real differential manifolds, so that, in particular, all
the fibers are homeomorphic, and thus have isomorphic (topological) fun-
damental groups.

The aim of this paper is to find some analog of the specialization theorem
of Grothendieck in the case of the tempered fundamental group.

In this paper, we will concentrate on the case of curves.

One problem which appears at once in looking for some non archimedean
analog of Grothendieck’s specialization theorems is that there are in general
no non trivial specializations between distinct points of a non archimedean
analytic (Berkovich or rigid) space: for example a separated Berkovich space
has a Hausdorff underlying topological space, so that if there is a cospe-
cialization (for the Berkovich topology, the étale topology. . . ) between two
geometric points of a Berkovich space, the two geometric points must have
the same underlying point. Thus we will assume we have a model over the
ring of integers of our non-archimedean field (with good enough properties)
and we will look at the specializations in the special fiber.

We want to understand how the tempered fundamental group of the geo-
metric fibers of a smooth family varies. Let us for instance consider a family
of elliptic curves. The tempered fundamental group of an elliptic curve over
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1430 Emmanuel LEPAGE

a complete algebraically closed non archimedean closed field is Ẑ2 if it has
good reduction, and Ẑ × Z if it is a Tate curve. In particular, by looking
at a moduli space of stable pointed elliptic curves with level structure(1) ,
the tempered fundamental group (or any reasonable (p′)-version) cannot
be constant.
Moreover, if one looks at the moduli space over Zp, and considers a curve

E1 with bad reduction and a curve E0 with generic reduction (hence good
reduction), there cannot be a morphism πtemp

1 (E0)→ πtemp
1 (E1) which in-

duces Grothendieck’s specialization on the profinite completion, although
the reduction point corresponding to E1 specializes to the reduction point
corresponding to E0. Therefore there cannot be any reasonable specializa-
tion theory.
On the contrary, if one has two geometric points η1 and η2 of the mod-

uli space such that the reduction of η1 specializes to the reduction of η2,
then Eη1 has necessarily better reduction than Eη2 and there is some mor-
phism πtemp

1 (Eη2)→ πtemp
1 (Eη1) that induces an isomorphism between the

profinite completions. Thus we want to look for a cospecialization of the
tempered fundamental group.
The topological behavior of general finite étale covers is too complicated

to hope to have a simple cospecialization theory without adding a (p′)
condition on the covers: for example two Mumford curves over some finite
extension of Qp with isomorphic geometric tempered fundamental group
have the same metrized graph of stable reduction [15]. Thus even if two
Mumford curves have isomorphic stable reduction (and thus the point cor-
responding to their stable reduction is the same), they may not have iso-
morphic tempered fundamental group in general. Thus we will only study
here finite covers that are dominated by a finite Galois cover whose order
is prime to p, where p is the residual characteristic (which can be 0; such a
cover will be called a (p′)-finite cover). Then, it becomes natural to intro-
duce a (p′)-tempered fundamental group which classifies tempered covers
that become topological covers after pullback along some (p′)-finite cover.
It should be remarked that this (p′)-tempered fundamental group cannot
be in general recovered from the tempered fundamental group.
The (p′)-tempered fundamental group of a curve was already studied by

S. Mochizuki in [16]. It can be described in terms of a graph of profinite
groups. From this description, one easily sees that the isomorphism class of
the (p′)-tempered fundamental group of a p-adic curve depends only of the
(1) to avoid stacks. However, the cospecialization homomorphisms we will construct will
be local for the étale topology of the special fiber of the base. Thus, the fact that the
base is a Deligne-Mumford stack is not really a problem.
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stratum of the Knudsen stratification of the moduli space of stable curves
in which the stable reduction lies. Moreover if one has two strata x1 and
x2 in the moduli space of stable curves such that x1 is in the closure of x2,
one can easily construct morphisms from the graph of groups corresponding
to x1 to the graph of groups corresponding to x2 (inducing morphisms of
tempered fundamental groups which induce isomorphisms of the pro-(p′)
completions).

We shall study the following situation. Let OK be a complete discrete
valuation ring, K be its fraction field, k be its residue field and p be its
characteristic (which can be 0). A proper semistable pointed curve (X,D)
over a scheme S is given by a flat and proper morphism X → S with
semistable geometric fibers, and D is a closed subscheme of X which lies
inside the smooth locus of X → S and such that D → S is étale. Let
(X,D) be a proper semistable pointed curve over OK smooth over K and
let U = Xη\Dη. Let us describe the tempered fundamental group of Uan

η̄

in terms of Xs̄ [16].
Let us make sure at first that we can get such a description for the pro-

(p′) completion, i.e., the algebraic fundamental group. One cannot apply
directly Grothendieck’s specialization theorems (even if U = Xη) since the
special fiber is not smooth but only semistable. Indeed, a pro-(p′) geometric
cover of the generic fiber will generally only induce a Kummer cover on
the special fiber. These are naturally described in terms of log geometry,
more precisely in terms of Kummer-étale (két) covers of a log scheme.
One can endow X (and thus Xs too by restriction) with a natural log
structure such that the pro-(p′) fundamental group of U is isomorphic to
a pro-(p′) log fundamental group (as defined in [8]) of Xs̄. One then gets
a description of πalg

1 (Uη̄) by taking the projective limit under tame covers
of K, or equivalently under két covers of s endowed with its natural log
structure: there is an equivalence between finite étale covers of Uη̄ and
“geometric két covers” of Xs̄.
A két cover of X will still be a semistable model of its generic fiber if one

replaces K by some tame extension. Thus, one can describe the topology
of the corresponding cover of Uη̄ in terms of the graph of the corresponding
geometric két cover of Xs̄.
Let us now come back to the problem of cospecialization. Let X → Y

be a semistable curve over OK with X → Y endowed with compatible log
structure (see Definition 2.1).
Let η̄1 (resp. η̄2) be a (Berkovich) geometric point of Y0 := Y an

tr ∩Yη ⊂
Y an
K , where Ytr is the locus of Y where the log structure is trivial and Yη

TOME 63 (2013), FASCICULE 4
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is the generic fiber of the formal completion of Y along its closed fiber (if
Y is proper, then Y0 = Y an

tr ). Let s̄1 (resp. s̄2) be its log reduction in Ys .
To use the previous description of the tempered fundamental group of

Uη̄1 and Uη̄2 in terms of Xs̄1 and Xs̄2 , we have to assume that η̄1 and η̄2
lie over Berkovich points with discrete valuation.
The main result of this paper is the following:

Theorem 0.1 (Th. 3.6). — Let K be a complete discretely valued field.
Let L be a set of primes that does not contain the residual characteristic
of K. Let Y → SpecOK be a morphism of log schemes of finite type.
Let Y0 = Y an

tr ∩ Yη ⊂ Y an where Y is the completion of Y along its
closed fiber. Let X → Y be a proper semistable curve with compatible log
structure. Let U = Xtr. Let η1 and η2 be two Berkovich points of Y0 whose
residue fields have discrete valuation, and let η̄1, η̄2 be geometric points
above them. Let s̄2 → s̄1 be a log specialization of their log reductions
such that there exists a compatible specialization η̄2 → η̄1, then there is
a cospecialization homomorphism πL-temp

1 (Uη̄1)→ πL-temp
1 (Uη̄2). Moreover,

it is an isomorphism if MY,s̄1 →MY,s̄2 is an isomorphism.

Let us come back to our example of the moduli space of pointed stable
elliptic curves with high enough level structure M over OK , and let C be
the canonical stable elliptic curve on M . Let L be a set of primes that does
not contain the residual characteristic of K. If η1 and η2 are two Berkovich
points of Mη, they are in M tr

η if and only if Cη1 and Cη2 are smooth.
C → M , endowed with their natural log-structures over (OK , O∗K), is a
semistable morphism of log schemes. One thus get a cospecialization outer
morphism πL-temp

1 (Cη1) → πL-temp
1 (Cη2) for every specialization s2 → s1,

which is an isomorphism if s1 and s2 are in the same stratum of Ms. Since
the moduli stack of pointed stable elliptic curves over Spec k has only two
strata, one corresponding to smooth elliptic curves M0 and one to singular
curves M1, one gets that πL-temp

1 (E1) ' πL-temp
1 (E2) if E1 and E2 are two

curves with good reduction or two Tate curves (the isomorphism depends
on choices of cospecializations). Since M1 is in the closure of M0 one gets
a morphism from the tempered fundamental group of a Tate curve to the
tempered fundamental group of an elliptic curve with good reduction.
The first thing we need in order to construct the cospecialization homo-

morphism for tempered fundamental groups is a specialization morphism
between the (p′)-log geometric fundamental groups of Xs̄1 and Xs̄2 . Such a
specialization morphism will be constructed by proving that one can extend
any (p′)-log geometric cover ofXs1 to a két cover ofXU where U is some két
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neighborhood of s1. If one has such a specialization morphism, by compar-
ing it to the fundamental groups of Xη̄1 and Xη̄2 and using Grothendieck’s
specialization theorem, we will easily get that it must be an isomorphism.
This specialization morphism is easily deduced from [19] if s1 is a strict
point of Y (i.e., the log structure of s1 is simply the one induced by Y ),
i.e., the log structure of s1 is just the pull back of the log structure of Y ,
but is not straightforward when the log structure is really modified. Thus
we will study the invariance of the log geometric fundamental group by
change of fs base point. The main result we will prove (in any dimension)
is the following :

Theorem 0.2 (Th. 1.15). — Let s′ → s be a morphism of fs log points
with isomorphic algebraically closed underlying fields. Let X → s be a
saturated morphism of log schemes with X noetherian and let X ′ → s′ be
the pull back to s′. Then the map πlog-geom

1 (X ′/s′, x̄′)→ πlog-geom
1 (X/s, x̄)

is an isomorphism.

It is interesting to notice that, in this situation, this is an isomorphism for
the full fundamental group, and not only of the pro-(p′) part. This mainly
comes from the fact that the morphism of underlying schemes X̊ ′ → X̊

is an isomorphism (so that the problem only comes from the logarithmic
structure and not the schematic structure). This result is proved by a local
study on X for the strict étale topology.

Then we have to construct cospecialization topological morphisms for a
semistable curve, more precisely cospecialization morphisms of the graphs
of the geometric fibers. This will be done étale locally. These morphisms are
not morphisms of graphs in the usual sense, since an edge can be contracted
over a vertex, but still give a map between their geometric realizations,
whence a map of homotopy types Uη̄1 → Uη̄2 . This can also be done for
any két cover of Xs̄1 : we thus get such a map of homotopy types for every
(p′)-cover of Uη̄1 . Those maps are compatible, and thus glue together to
give the wanted cospecialization of tempered fundamental groups.

The paper is organized as follows.
In the first section, we will study specialization of fundamental groups.
In the second section, we will construct cospecialization maps of graphs

of the geometric fibers of a semistable curve.
In the last section, we will prove Theorem 0.1.

Acknowledgements. This work is part of a PhD thesis. I would like to
thank my advisor, Yves André, for suggesting me to work on the cospecial-
ization of the tempered fundamental group and taking the time of reading
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and correcting this work. I would also like to thank Luc Illusie and Fu-
miharu Kato for taking interest in my problem about the invariance of
geometric log fundamental groups by base change.

1. Specialisation of log fundamental groups

The main result of this part will be the invariance of the log geomet-
ric fundamental group announced in Theorem 0.2. We will deduce from
it morphisms of specialization for the pro-(p′) log geometric fundamental
group of the fibers of a proper log smooth saturated morphism.

1.1. Log fundamental groups

For a curve with bad reduction, one cannot apply Grothendieck’s special-
ization theorem to describe the geometric fundamental group of the curve
in terms of the fundamental group of its stable reduction since the family
is not smooth. However, such a comparison result exists in the realm of log
geometry. More precisely, if one considers a smooth and proper variety with
semistable reduction, the semistable model can naturally be endowed with
a log structure, and the pro-(p′) fundamental group of the variety is canon-
ically isomorphic to the pro-(p′) log fundamental group of the semistable
reduction. Here we recall the basic definitions and results about log funda-
mental groups.
First, recall some usual notations about monoids and log schemes. All

the monoids we consider are commutative with unit. If P is a monoid, then
P ∗ is the group of invertible elements of P and P gp is the universal group
together with a morphism of monoids P → P gp. A monoid is integral if
P → P gp is injective. A monoid P is sharp if P ∗ is trivial. The sharpification
P/P ∗ is denoted by P . If X is a log scheme, the sheaf of monoids defining
its log structure will usually be denoted byMX , the sharpificationMX/O

∗
X

ofMX will be denoted byMX , the underlying scheme will be denoted by X̊
and the open subset of X̊ where the log structure is trivial will be denoted
Xtr.
A morphism X → Y of log schemes is strict if the log structure on X is

the pullback log structure of the log structure on Y . If MX and MY are
integral, then f : X → Y is strict if and only if, for every geometric point
x̄ of X, MY,f(x̄) →MX,x̄ is an isomorphism.

ANNALES DE L’INSTITUT FOURIER
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If P is a monoid, one denotes by SpecP the set of primes of P . There is
a natural map Spec Z[P ]→ SpecP .

A monoid P fine and saturated (or fs for short) if it is finitely generated,
integral and, for every a ∈ P gp such that there exists a positive integer n
such that an ∈ P , then a ∈ P . A log scheme X is fs if, locally for the étale
topology of X, there is an fs monoid P and a morphism P → MX such
that P a → MX , where P a is the log structure associated to P → OX , is
an isomorphism (P →MX is then called a fs chart modeled on P ). Giving
a chart P → MX is equivalent to giving a strict morphism of log schemes
X → Spec Z[P ].

If K is a complete discretely valued field, S = SpecOK will be endowed
in this paper with the log structure associated to OK\{0} → OK . If π is
a uniformizer of OK , the map α : N → OK defined by α(n) = πn is an fs
chart.
If L is a set of prime numbers, a L-integer is a product of elements of L.

Definition 1.1. — A morphism h : Q → P of fs monoids is Kummer
(resp. L-Kummer) if h is injective and for every a ∈ P , there exists a
positive integer (an L-integer) n such that an ∈ h(Q) (note that if Q→ P

is Kummer, SpecP → SpecQ is an homeomorphism).
A morphism f : X → Y of fs log schemes is said to be Kummer (resp.

exact) if for every geometric point x̄ of X, MY,f(x̄) → MX,x̄ is Kummer
(resp. exact).
A morphism of fs log scheme is Kummer étale (or két for short) if it is

Kummer and log étale.

A morphism f is két if and only if étale locally it is deduced by strict base
change and étale localization from a map Spec Z[P ] → Spec Z[Q] induced
by a Kummer map Q→ P such that nP ⊂ Q for some n invertible on X.

In fact if f : Y → X is két, ȳ is a geometric point of Y , and P →MX is
an exact chart of X at f(ȳ), there is an étale neighborhood U of x̄ and a
Zariski open neighborhood V ⊂ f−1(U) of ȳ such that V → U is isomorphic
to U ×Spec Z[P ] Spec Z[Q] with P → Q a L-Kummer morphism where L is
the set of primes invertible on U ([22, prop. 3.1.4]).
Két morphisms are open and quasi-finite.
The category of két fs log schemes over X (any X-morphism between

two such fs log schemes is then két) where the covering families (Ti → T )
of T are the families that are set-theoretical covering families (being a set-
theoretical covering két family is stable under fs base change) is a site. We
will denote by Xkét the corresponding topos. Any locally constant finite
object of Xkét is representable.

TOME 63 (2013), FASCICULE 4
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Definition 1.2. — A két fs log scheme over X which represents such
a locally constant finite sheaf is called a két cover of X. The category of
két covers of Xkét is denoted by KCov(X).

A log geometric point is a log scheme s such that s̊ is the spectrum of
a separably closed field k and Ms is saturated and multiplication by n on
Ms is an isomorphism for every n prime to the characteristic of k.

A log geometric point ofX is a morphism x : s→ X of log schemes where
s is a log geometric point. A pointed log scheme (X,x) is a log scheme X
endowed with a log geometric point x. A két neighborhood U of x : s→ X

in X is a morphism s → U of X-log schemes where U → X is két. Then
if x is a log geometric point of X, the functor Fx from Xkét to Set defined
by F 7→ lim−→U

F(U) where U runs through the directed category of két
neighborhoods of x is a point of the topos Xkét and any point of this topos
is isomorphic to Fx for some log geometric point and the family of points
(Fx) where x runs through log geometric points of X is a conservative
system of points.

Definition 1.3. — The inverse limit in the category of saturated log
schemes of the két neighborhoods of x is called the log strict specialization,
and is denoted by X(x).
If x and y are log geometric points of x, a specialization of log geometric

points x→ y is a morphism X(x)→ X(y) over X.

A specialization x→ y induces a canonical morphism Fy → Fx of func-
tors.
If there is a specialization x → y of the underlying topological points,

then there is some specialization x→ y of log geometric points.
If X is connected, for any log geometric point x of X, Fx induces a

fundamental functor KCov(X)→ fSet of the Galois category KCov(X).

Definition 1.4. — The két fundamental group πlog
1 (X,x) is the profi-

nite group of automorphisms of the fundamental functor KCov(X)→ fSet.

Strict étale surjective morphisms satisfy effective descent for két covers
([22, prop. 3.2.19]).

If f : S′ → S is an exact morphism of fs log schemes such that f̊ is proper,
surjective and of finite presentation, then f satisfies effective descent for
két covers ([22, th. 3.2.25]).

Proposition 1.5. — Let X → S be a morphism of fs log schemes such
that S̊ is locally noetherian and X̊ → S̊ is of finite type. Let s̃ be a geo-
metric point of S̊ and let S(s̃) be the strict localization of S at s̃ endowed
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with the pullback log structure. Then the functor F : Lim
−→ U

KCov(XU ) →
KCov(XS(s̃)), where U goes through étale neighbrhoods of s̃, is an equiva-
lence of categories.

Proof. — Let YU be a két cover of XU such that, cofinally on V , YV
is connected. Then YU ×U S(s̃) is connected according to [7, prop. 8.4.4].
This proves that F is fully faithful, or equivalently the outer morphism of
fundamental groups of Galois categories is surjective ([6, prop. V.6.10]).
Let Y → XS(s̃) be a két cover. Since one knows that F is fully faithful

for any X and surjective étale morphisms satisfy effective descent for két
covers, one only has to prove the essential surjectivity két locally on X,
so that one may assume that X has a fs chart X → Spec Z[P ]. Let P be
the characteristic of s̃. Then there is a (p′)-Kummer morphism of monoids
P → Q such that YQ := Y ×Spec Z[P ]Spec Z[Q] is strict étale overXS(s̄),Q :=
XS(s̃) ×Spec Z[P ] Spec Z[Q]. There exists a neighborhood U and an étale
cover YU,Q of XU,Q such that YQ = YU,Q ×XU XS(s̃). Thus YQ is in the
essential image of F . This proves that the outer morphism of fundamental
groups corresponding to F is injective ([6, cor. V.6.8]), and therefore F is
an equivalence. �

Let us now state the main results to compare log fundamental groups of
different log schemes (in particular specialization comparisons). According
to [8, th. 7.6], if X is a log regular fs log scheme, KCov(X) is equivalent
to the category of tamely ramified covers of Xtr. If L is a set of primes
invertible on X, by taking the pro-L completion, one gets:

Theorem 1.6. — If X is a log regular fs log scheme and all the primes
of L are invertible on X, then KCov(X)L → Covalg(Xtr)L is an equivalence
of categories.

For example, if X is a regular scheme and D is a normal crossing divisor
and j : U := X\D → X is the open immersion, then MX = OX ∩ j∗O∗X\D
is a log structure on X for which X is log regular and Xtr = U := X\D
(for example, if X = SpecOK where OK is a complete discretely valued
ring and D is the special point of X, then MX = OX ∩ j∗O∗X\D is the
usual log structure of SpecOK). Thus there is an equivalence of categories
KCov(X)L → Covalg(U)L.

Proposition 1.7 ([19, cor. 2.3]). — Let S be a noetherian strictly local
scheme with closed point s and let X be a connected fs log scheme such
that X̊ is proper over S. Then

KCov(X)→ KCov(Xs)
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is an equivalence of categories.

Recall that a strictly local scheme is a henselian scheme such that the
residue field at the closed point is separably closed. One can extend Propo-
sition 1.7 to henselian schemes:

Theorem 1.8. — Let S be a noetherian henselian scheme with closed
point s, and let X be a connected fs log scheme such that X̊ is proper over
S. Then

KCov(X)→ KCov(Xs)
is an equivalence of categories.

Proof. — First assume Xs to be geometrically connected. Let x be a log
geometric point of Xs. Then X is also connected and we have to prove that
πlog

1 (Xs, x) → πlog
1 (X,x) is an isomorphism. Let s be a strict localization

of s and let S be the strict localization of S at s. Let x̄ be a log geometric
point of Xs above x. Let Si be a pointed Galois cover of S, let Gi be its
Galois group and let si = s ×S Si. Then we have a diagram with exact
lines:

1 // πlog
1 (Xsi , x̄) //

��

πlog
1 (Xs, x)

��

// Gi //

��

1

1 // πlog
1 (XSi , x̄) // πlog

1 (X,x) // Gi // 1

By taking the projective limit when Si runs through the category of pointed
Galois cover of S, one gets a diagram with exact lines

1 // lim←−Si π
log
1 (Xsi , x̄) //

��

πlog
1 (Xs, x)

��

// πalg
1 (S, s) //

��

1

1 // lim←−Si π
log
1 (XSi , x̄) // πlog

1 (X,x) // πalg
1 (S, s) // 1

But, according to Proposition 1.5, πlog
1 (XS , x̄) → lim←−Si π

log
1 (XSi , x̄) is an

isomorphism. Similarly πlog
1 (Xs, x)→ lim←−Si π

log
1 (Xsi , x) is an isomorphism.

Thanks to Proposition 1.7, πlog
1 (Xs̄, x) → πlog

1 (XS , x) is an isomorphism.
Thus πlog

1 (Xs, x)→ πlog
1 (X,x) is also an isomorphism.

In the general case, let X → S′ be the Stein factorization of X → S.
For every connected component S′j of S′, let Xj = X ×S′ S′j . Since S′j is
henselian and Xj → S′j has geometrically connected fibers, one gets that
KCov(Xj,s)→ KCov(Xj) is an equivalence of category. Since KCov(X) =
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∏
j KCov(Xj) and KCov(Xs) =

∏
KCov(Xj,s), one gets that KCov(X)→

KCov(Xs) is an equivalence of categories. �

Corollary 1.9. — Let OK be a complete discretely valued ring en-
dowed with its natural log structure and let L a set of prime numbers
invertible in OK . Let X → SpecOK be a proper and log smooth morphism
and let U := Xtr ⊂ Xη. There is a natural equivalence of categories

KCov(Xs)L ' Covalg(U)L.

In particular, if X̊ → SpecOK is a semistable model of Xη, and the
log structure on X is given by MX = OX ∩ j∗O∗Xη where j : Xη → X,
then X → SpecOK is log smooth and Xtr = Xη. We get an equivalence of
categories KCov(Xs)L ' Covalg(Xη)L, and thus an isomorphism

πalg
1 (Xη)L → πlog

1 (Xs)L.

Here we recall basic results about saturated morphisms of fs log schemes.
The main reference on the subject is [23], which is unfortunately unpub-
lished.

Definition 1.10. — A morphism of fs monoids P → Q is integral if, for
any morphism of integral monoids P → Q′, the amalgamated sum Q⊕P Q′
is still integral.
An integral morphism of fs monoids P → Q is saturated if, for any

morphism of fs monoids P → Q′, the amalgamated sum Q⊕P Q′ is still fs.
A morphism f : Y → X of fs log schemes is saturated if for any geometric

point ȳ of Y , M̄X,f(ȳ) → M̄Y,ȳ is saturated.

If Y → X is saturated and Z → X is a morphism of fs log schemes, then
the underlying scheme of Z ×X Y is Z̊ ×X̊ Y̊ .
If P → Q is a local and integral (resp. saturated) morphism of fs monoids

and P is sharp, the morphism Spec Z[Q]→ Spec Z[P ] is flat (resp. separa-
ble, i.e., flat with geometrically reduced fibers, cf. [17, cor. I.4.3.16] and [9,
rem. 6.3.3]).
Let f : X → Y be log smooth, let x̄ be a geometric point of X and

let ȳ be its image in Y . Étale locally on Y , there is a chart Y → SpecP
such that P → MY,ȳ is an isomorphism. Then, according to [11, th. 3.5],
there is étale locally at x a fs chart φ : P → Q of X → Y such that
Y → Spec Z[Q] ×Z[P ] X is étale such that φ is injective and the torsion
part of Coker(φgp) has order invertible on X. Up to localizing Q by the
face corresponding to x̄, one can assume that Q→MX,x̄ is local (and thus
exact according to [17, def. II.2.2.8]). Thus if f is integral (resp. saturated),
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P → Q is a local and integral (resp. saturated) morphism of fs monoids
and P is sharp. Thus f is flat (resp. separable).
If P → Q is an integral morphism of fs monoids, there exists an integer n

such that the pullback Pn → Q′ of P → Q along P n→ P = Pn is saturated
(theorem [9, A.4.2]).
Moreover if P → Q factors through Q0 such that P → Q0 is saturated

and Q0 → Q is L-Kummer, n can be chosen to be an L-integer.
A morphism X → S of fs log schemes is said to be log geometrically sat-

urated if there exists a két covering U → S such that X ×S U is saturated.
For example, if Y → S is a morphism of fs log schemes, with S̊ locally

noetherian and Y̊ → S̊ of finite type, which factors through X such that
X → S is saturated and Y → X is két, then Y → S is log geometrically
saturated.

1.2. Log geometric fundamental groups

Let X → S be a morphism of fs log schemes. Let x̄ be a log geometric
point of X and let s̄ be its image in S. The morphism X → S is said to
be log geometrically connected at s̄ if there exists a cofinal family of két
neighborhoods U of s̄ in S such that XU is connected.
The log geometric fundamental group of X at x̄ to be

πlog-geom
1 (X/(S, s̄), x̄) := lim←−

U

πlog
1 (XU , x̄),

where U runs through két neighborhoods of s̄ in S. If X → S is log geo-
metrically connected, the category πlog-geom

1 (X/(S, s̄), x̄) -fSet of finite sets
endowed with a continuous action of πlog-geom

1 (X/s, x̄) is equivalent to the
category

KCovgeom(X/(S, s̄)) := Lim
−→
U

KCov(XU ).

In particular, πlog-geom
1 (X/(S, s̄), x̄) does not depend on x̄ up to outer iso-

morphism. Therefore, when we work in the category of groups with outer
morphisms, the log geometric fundamental group will simply be denoted
by πlog-geom

1 (X/(S, s̄)).
If s̄′ → s̄ is a specialization of log geometric points of S, there is a natural

morphism of pro-log schemes “ lim←−s̄′∈U ” U → “ lim←−s̄∈V ” V , where U goes
through két neighborhoods of s̄′ and V goes through két neighborhoods of
s̄. This induces a functor, 2-functorially in s̄′ → s̄,

(1.1) KCovgeom(X/(S, s̄))→ KCovgeom(X/(S, s̄′)),
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hence an outer morphism, functorially in s̄′ → s̄,

πlog-geom
1 (X/(S, s̄′))→ πlog-geom

1 (X/(S, s̄)).

Let (S′, s̄′) → (S, s̄) be a morphism of pointed fs log schemes. There
is a natural morphism of pro-log schemes “ lim←−s̄′∈U ” U → “ lim←−s̄∈V ” V ,
where U goes through két neighborhoods of s̄′ in S′ and V goes through
két neighborhoods of s̄ in S. This induces a functor

KCovgeom(X/(S, s̄))→ KCovgeom(X ′/(S′, s̄′))

where X ′ := X × SS′, hence an outer morphism

πlog-geom
1 (X ′/(S′, s̄′))→ πlog-geom

1 (X/(S, s̄)).

Proposition 1.11. — Let X → S be a morphism of fs log schemes
such that S̊ is locally noetherian and X̊ → S̊ is of finite type. Let s̃ be the
geometric point of S̊ defined by s̄ and let S(s̃) be the strict localization of
S at s̃ endowed with the pullback log structure. The morphism

πlog-geom
1 (XS(s̃)/(S(s̃), s̄), x̄)→ πlog-geom

1 (X/(S, s̄), x̄)

is an isomorphism.

Proof. — Let L be the set of primes invertible at s̄. By replacing S by an
étale neighborhood of s̃, one can assume that S has a chart S → Spec Z[P ]
such that the induced map P → MS,s̃ is an isomorphism. Extend the
map P gp → Mgp

s̄,s̃ into a map P gp ⊗ Z[ 1
L ] → Mgp

s̄,s̃: this defines for every
L-két morphism P → Q of sharp fs monoids a morphism s̄-log point of
S(s̃)Q := S(s̃) ×Spec Z[P ] Spec Z[Q]. When P → Q goes through L-két
morphism P → Q of sharp monoids, the family (S(s̃)Q) goes through
neighborhoods of s̄ in S(s̃). One has also πlog-geom

1 (XS(s̃)/(S(s̃), s̄), x̄) =
lim←−P→Q lim←−U π

log
1 (XU , x̄) where P → Q goes through L-két morphisms of

sharp monoids and U goes through étale neighborhoods of s̄ in XQ :=
X ×Spec Z[P ] Spec Z[Q]. Then πlog

1 (XS(s̃)Q , x̄)→ lim←−U π
log
1 (XU , x̄), where U

goes through étale neighborhoods of x̄ in XQ, is an isomorphism according
to Proposition 1.5. Since πlog-geom

1 (X/(S, s̄), x̄) = lim←−Q π
log
1 (XS(s̃)Q , x̄) one

gets the result. �

Assume S̊ to be a henselian local scheme. Let (T, t̄) be a pointed Galois
két cover of (S, s̄). Then one has an exact sequence:

1→ πlog
1 (Xt, x̄t)→ πlog

1 (X, x̄)→ Gal(t/s),

and the right map is onto if Xt is connected. By taking the projective
limit of the previous exact sequence when (t, t̄) runs through the directed
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category of pointed Galois connected covers of (s, s̄), one gets an exact
sequence

1→ πlog-geom
1 (X/(S, s̄), x̄)→ πlog

1 (X, x̄)→ πlog
1 (S, s̄),

and the right map is onto if X → S is log geometrically connected.
Let OK be a complete discretely valued ring endowed with its natural

log structure and let L a set of prime numbers invertible in OK . Let X →
SpecOK be a proper and log smooth morphism and let U := Xtr ⊂ Xη.
There is a geometric analog to the specialization isomorphism πalg

1 (Xη)L →
πlog

1 (Xs)L of Corollary 1.9:

Theorem 1.12 ([12, th. 1.4]). — There is a natural equivalence of cat-
egories

KCovgeom(X/s)L ' Covalg(Uη̄)L.

It can be deduced from Corollary 1.9 thanks to the fact that any algebraic
cover of Uη̄ is already defined over a tamely ramified extension of K ([12,
prop. 1.15]).

1.3. Specialization of log fundamental groups

Let us study specialization of log geometric fundamental groups (that is
the projective limit of the log fundamental groups after taking két exten-
sions of the base log point).

The only result we will need later on is the following:

Proposition 1.13 (cor. 1.17). — LetX → S be a proper and saturated
morphism of log schemes such that S̊ is locally noetherian, and let Y → X

be a két cover. Let (s, s̄) and (s′, s̄′) be two pointed fs log points of S and let
s̄′ → s̄ be a specialization of log geometric points. Let L be a set of primes
that does not contain the characteristic of s. One has a specialization outer
morphism

πlog-geom
1 (Ys′/(s′, s̄′))L → πlog-geom

1 (Ys/(s, s̄))L.

Moreover this morphism factors through πlog-geom
1 (Y/(S, s̄))L.

To prove this, our main result will be the invariance of the log geometric
fundamental group of an fs log scheme X saturated and of finite type over
an fs log point S with separably closed field by fs base change that is an
isomorphism on the underlying scheme. The assumptions implies that our
base change induces an isomorphism of the underlying schemes. Working
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étale locally on this scheme, we are reduced to the case where this scheme is
strictly local, where the log geometric fundamental group can be explicitly
described in terms of the morphism of monoids MX →MS .

Combining this base change invariance result with strict base change in-
variance of the L-log geometric fundamental group and strict specialization
of the L-log geometric fundamental group ([19]), we will get that if X → S

is a proper log smooth saturated morphism, and s2, s1 are fs points of S
and s̄2 → s̄1 is a specialization of log geometric points of S over s2 and s1,
then there is a specialization morphism πlog-geom

1 (Xs2)L → πlog-geom
1 (Xs1)L.

Lemma 1.14. — Let s′ → s be a strict morphism of fs log points such
that s̊′ and s̊ are geometric points. Let L be a set of primes that does not
contain the characteristic of s. Let X → s be a morphism of fs log schemes
such that X̊ → s̊ is of finite type.
Then F : KCov(X)L → KCov(Xs′)L is an equivalence of categories.

Proof. — If T is a connected két cover of X, ˚T ×s s′ → T̊ ×s̊ s̊′ is an
isomorphism since s′ → s is strict. The scheme T̊ ×s̊ s̊′ is connected too, so
we get that the functor F is fully faithful.
As one already knows that F is fully faithful for any X, and as strict

étale surjective morphisms satisfy effective descent for két covers, one may
prove the essential surjectivity étale locally, and thus assume that X has a
global chart X → Spec Z[P ].
Let Y ′ be a L-két cover of Xs′ . Then there exists a L-Kummer morphism

of monoids P → Q such that

Y ′Q := Y ′ ×Spec Z[P ] Spec Z[Q]→ Xs′,Q := Xs′ ×Spec Z[P ] Spec Z[Q]

is strict étale (and surjective).
But, since X̊s′,Q → X̊Q×s̊s̊′ is an isomorphism of schemes, Covalg(X̊s′,Q)L

→ Covalg(X̊Q)L is an equivalence of categories ([20, cor 4.5]). Thus, there
is a strict étale cover YQ of XQ (and thus YQ → X is a két cover) such that
Y ′Q is Xs′,Q-isomorphic to YQ ×s s′.
Thus F is an equivalence of categories. �

Let now s′ → s be a morphism of fs log points, such that the underlying
morphism of schemes s̊′ → s̊ is an isomorphism of geometric points, and
let X → s be a saturated morphism of fs log schemes with X̊ noetherian
and X̊ → s̊ connected. Since X → s is saturated, it is log geometrically
connected.
Let x̄′ be a log geometric point of X ′ = X ×s s′ and let x̄, s̄′ and s̄ be

its image in X, s′ and s respectively.
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Theorem 1.15. — Let s′ → s be a morphism of fs log points, such
that the underlying morphism of schemes is an isomorphism of geometric
points, and let X → s be a saturated morphism of connected noetherian
fs log schemes. The map πlog-geom

1 (X ′/(s′, s̄′), x̄′) → πlog-geom
1 (X/(s, s̄), x̄)

is an isomorphism.

Proof. — Let (si, s̄i)i∈I be a cofinal system of pointed Galois connected
két covers of (s, s̄). Let s̃i be the reduced subscheme of si endowed with
the inverse image log structure. Let us write (Xi, x̄i) = (X ×s s̃i, x̄×s̄ s̄i).
Let (s′j , s̄′j)j∈J be a cofinal system of pointed Galois connected két covers

of (s′, s̄′). Let s̃′j be the reduced subscheme of s′j endowed with the inverse
image log structure. Let us write (X ′j , x̄′j) = (X ×s′ s′j , x̄′ ×s̄′ s̄′j).

One has to prove that

lim←−
j

πlog
1 (X ′j , x̄′j)→ lim←−

i

πlog
1 (Xi, x̄i)

is an isomorphism, or equivalently that

Lim
−→
i

KCov(Xi)→ Lim
−→
j

KCov(X ′j)

is an equivalence of categories.
Since strict étale surjective morphisms satisfy effective descent for két

covers, the injective limits are filtering and X is quasicompact, it is enough
to prove that

Lim
−→
i

KCov(Xi)→ Lim
−→
j

KCov(X ′j)

is an isomorphism locally on the étale topology of X.
According to Proposition 1.5, if x̄ is a geometric point of X̊, then

Lim
−→
x̄∈U

KCov(U)→ KCov(X(x̄)),

where U goes through étale neighborhoods of x̄, is an equivalence of cat-
egories. Since Xi, X ′j and X have equivalent étale topoi, x̄ also defines a
point of the étale topoi of Xi and X ′j . According to [5, cor. III.2.1.5.8], one
only has to prove that

Lim
−→
i

KCov(Xi(x̄))→ Lim
−→

KCov(X ′j(x̄))

for every geometric point x̄ of X.
We are thus reduced to the case where X̊ is a strictly local and noetherian

scheme. But then ([22, prop. 3.1.11]), for X̊ a strictly local and noetherian
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scheme,

lim←−i π
log
1 (Xi,két, x̄i) = lim←−i Hom(Mgp

Xi,xi , Ẑ
(p′))

= Hom(lim−→i
M

gp
Xi,xi , Ẑ

(p′))
= Hom(Coker(Mgp

s →M
gp
X,x), Ẑ(p′)),

and one has a similar result for X ′.
Since MX′,x′ = MX,x ⊕Ms

Ms′ , one has Mgp
X′,x′ = M

gp
X,x ⊕Mgp

s
M

gp
s′ .

Thus, Coker(Mgp
s →M

gp
X,x)→ Coker(Mgp

s′ →M
gp
X′,x′) is an isomorphism.

One thus gets the wanted result. �

Assume now that (s′, s̄′)→ (s, s̄) is a morphism of pointed fs log points,
and that X → s is log geometrically saturated. Recall that this assumption
is satisfied if X → s goes through X0 such that X → X0 is két and X0 → s

is saturated.
Let L be a set of prime that does not contain the characteristic of s.

Corollary 1.16. — The map of profinite groups

πlog-geom
1 (X/(s, s̄), x̄)L → πlog-geom

1 (X ′/(s′, s̄′), x̄′)L

is an isomorphism.

Proof. — By replacing s (resp. s′) by the closed reduced subscheme of a
connected két cover of s (resp. s′), one can assume that X → s is saturated
(X̊ → s̊ will still be of finite type).
If (t, t̄)→ (s, s̄) is a strict étale cover, then

πlog-geom
1 (Xt/t, x̄t)→ πlog-geom

1 (X/s, x̄)

is an isomorphism. Thus, by writing s0 for the separable closure of s
and by taking the projective limit over pointed strict étale covers (since
πlog

1 (Xs0) = lim←−π
log
1 (Xt), where t runs through pointed strict étale covers

of s), one gets that πlog-geom
1 (Xs0/s0, x̄0)→ πlog-geom

1 (X/s, x̄) is an isomor-
phism. One thus may assume that s̊ and s̊′ are geometric points.
Let us consider the fs log scheme s′′ whose underlying scheme is s̊′ and

whose log structure is the inverse image of the log structure of s. Thus,
one has morphisms s′ → s′′ → s, where s′ → s′′ is an isomorphism on the
underlying schemes and s′′ → s is strict. But according to Lemma 1.14,
πlog

1 (Xs′′)L → πlog
1 (X)L and πlog

1 (s′′)L → πlog
1 (s)L are isomorphisms. Thus,

πlog-geom
1 (Xs′′/s

′′)L → πlog-geom
1 (X/s)L

is an isomorphism. By 1.15, πlog-geom
1 (Xs′/s

′)L → πlog-geom
1 (Xs′′/s

′′)L is
also an isomorphism. �
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Corollary 1.17. — Let X → S be a proper log geometrically satu-
rated morphism of fs log schemes such that S̊ is locally noetherian. Let
(s, s̄) and (s′, s̄′) be two pointed fs log points and let s̄′ → s̄ be a specializa-
tion of log geometric points. Let L be a set of primes that does not contain
the characteristic of s. The functor

φs : KCovgeom(X/(S, s̄))L → KCovgeom(Xs/(s, s̄))

is an equivalence. Therefore, there is a pair (ψs/s′ , α), where ψs/s′ is an
exact functor

ψs/s′ : KCovgeom(Xs/(s, s̄))L → KCovgeom(Xs′/(s′, s̄′))L

and a natural 2-isomorphism α

KCovgeom(X/(S, s̄))L
φs/s′ //

φs

��

KCovgeom(X/(S, s̄′))L

φs′

��
KCovgeom(Xs/(s, s̄))L

ψs/s′ //

α

08iiiiiiiiiiiiiiii

iiiiiiiiiiiiiiii
KCovgeom(Xs′/(s′, s̄′))L,

unique in the sense that if (ψ′s/s′ , α′) satisfies the same conditions, there
is a unique 2-isomorphism β : ψs/s′ → ψ′s/s′ such that α′ · (φs ◦ β) = α.
Moreover, if (s′′, s̄′′) is a pointed fs log point and s̄′′ → s̄′ is a specialization,
then there is a unique isomorphism of functors ψs/s′′ ' ψs′/s′′ψs/s′ such
that the following diagram is 2-commutative:

KCovgeom(X/(S, s̄))L //

--\\\\\\\\\\\\\\\\\\\\\\\\\\\\

��

KCovgeom(X/(S, s̄′))L

��

,,YYYYYYYY

KCovgeom(X/(S, s̄′′))L

��
KCovgeom(Xs/(s, s̄))L

--\\\\\\\\\\\\\\\\\\\\\\\\\\\ // KCovgeom(Xs′/(s′, s̄′))L

,,YYYYYYYY

KCovgeom(Xs′′/(s′′, s̄′′))L

Proof. — Let Z be the strictly local scheme of S at s endowed with the
inverse image log structure, and let z be its closed point, endowed with the
inverse image log structure. The three morphisms

πlog-geom
1 (Xs/(s, s̄))L → πlog-geom

1 (Xz/(z, s̄))L,

πlog-geom
1 (Xz/(z, s̄))L → πlog-geom

1 (XZ/(Z, s̄))L,

πlog-geom
1 (XZ/(Z, s̄))L → πlog-geom

1 (X/(S, s̄))L

are isomorphisms according to Corollary 1.16, Theorem 1.7 and Corol-
lary 1.11. Therefore φs is an equivalence. The functor ψs/s′ is then the
composition of φs′φs/s′ with a quasi-inverse of φs and the uniqueness is
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obvious. The exactness of ψs/s′ comes from the exactness of φs/s′ . The
compatibility with composition is a direct consequence of the uniqueness
of ψs/s′′ . �

Let Pt(S) be the category whose objects are pointed fs log points (s, s̄)
of S, and whose morphisms from (s, s̄) to (s′, s̄′) are specialization of log
geometric points s̄ → s̄′. Corollary 1.17 tells us that there is a 2-functor
KCovgeom(X( )) from Pt(S)op to the 2-category of Galois categories where
1-morphisms are exact functors which maps (s, s̄) to KCovgeom(Xs/(s, s̄)).
This 2-functor induces a functor πlog-geom

1 (X( )) from Pt(S) to the cate-
gory of groups with outer morphisms which maps (s, s̄) to πlog-geom

1 (Xs/(s, s̄)).

2. Cospecialization of graphs of semistable curves

2.1. Graphs

A graph G is given by a set of edges E a set of vertices V and for any
e ∈ E a set of branches Be of cardinality 2 and a map ψe : Be → V. A
branch b of e can be thought of as an orientation of e (or a half-edge), and
ψe(b) is to be thought of as the ending of e when e is oriented according
to b.

One can also equivalently replace the data of edges and branches of each
edge by the datum of the set of all branches B =

∐
e Be, with an involution

ι without fixed points (which corresponds heuristically to the reversing of
the orientation given by the branch), and a map ψ : B → V. The set E is
then the set of orbits of branches for ι.

A genuine morphism of graphs φ : G→ G′ is given by a map φE : E → E ′,
a map φV : V → V ′ and for every e ∈ E a bijection φe : Be → B′φE(e) such
that the following diagram commutes:

Be

��

// B′φE(e)

��
V // V ′

Remark that φE and φV are not enough to define φ if G has a loop (i.e.,
an edge whose to branches abut to the same vertex): one can define an
automorphism of G just by inverting the two branches of the loop. Thus,
to know how the branches are mapped is important as soon as G or G′ has
loops.
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The topological cospecialization for semistable curves will be given by
maps of graphs which are not genuine morphisms. A generalized morphism
of graphs φ : G→ G′ will be given by:

• a map φV : V → V ′;
• a map φE : E → E ′

∐
V ′ such that, for any e ∈ E such that φE(e) ∈

V ′ and for any b ∈ Be, φVψ(b) = φE(e);
• for any e ∈ E such that φE(e) ∈ E ′, a bijection φe : Be → B′φE(e)

such that the obvious diagram commutes (it is the same diagram
as in the case of genuine morphisms).

One can replace the last two data by the data of φB : B → B′
∐
V ′ such

that, if φB(b) ∈ B′, then φB(ι(b)) = ι′(φB(b)) and φVψ(b) = ψ′φB(b), and,
if φB(b) ∈ V ′, then φB(ι(b)) = φB(b) = φVψ(b).
In particular, a genuine morphism is a generalized morphism. Genuine

morphisms and generalized morphisms can be composed in an obvious way.
One thus gets a category Graph of graphs with genuine morphisms and

a category GenGraph of graphs with generalized morphisms.
There is a geometric realization functor | | : GenGraph → Top which

maps a graph G to

|G| := Coker
(∐
b∈B

pt1,bqpt2,b ⇒
∐
v∈V

ptv q
∐
b∈B

[1/2, 1]b
)
,

where

• the upper map sends:
– pt1,b to 1/2 in [1/2, 1]b
– pt2,b to 1 in [1/2, 1]b,

• the lower map sends
– pt1,b to 1/2 in [1/2, 1]ι(b)
– pt2,b to ptψ(b).

If φ : G→ G′ is a generalized morphism, |φ| is obtained by mapping

• ptv to ptφV(v),
• [1/2, 1]b to [1/2, 1]φB(b) if φB(b) ∈ B′ (by the identity of [1/2, 1]),
• [1/2, 1]b to ptφB(b) if φB(b) ∈ V ′.

Remark that, if G is just a loop, then the geometric realization of the
morphism induced by inverting the two branches is not homotopic to the
identity: thus φE and φV are not enough in general to characterize the
topological behavior of φ.
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2.2. Semistable log curves

Definition 2.1. — AmorphismX → S of fs log schemes is a semistable
log curve if étale locally on S there is a chart S → SpecP such that one of
the following is satisfied:

• X → S is a strict smooth curve,
• X → S factors through a strict étale morphism X → S ×Spec Z[P ]

Spec Z[Q] with Q = (P ⊕ 〈u, v〉)/(u+ v = p) and p ∈ P ,
• X → S factors through a strict étale morphism X → S ×Spec Z[P ]

Spec Z[P ⊕N].

A semistable log curve is strictly semistable if étale locally on S, there
are such maps locally for the Zariski topology of X.

Proposition 2.2. — A morphism X → S is a semistable log curve if
and only if it is a log smooth and saturated morphism purely of relative
dimension 1.

Proof. — The direct sense is obvious. Let X → S be a saturated log
smooth scheme of pure dimension 1. As the definition of a semistable log
curve is local for the étale topology of X and S, one can assume that S has
a chart S → Spec Z[P ] and X = S×Spec Z[P ] Spec Z[Q] where P → Q is an
injective local and saturated morphism of monoids, P is sharp and Qgp/P gp

is invertible on S. In particular T gp := Q
gp
/P

gp is torsionfree. Since P →
Q is saturated, Spec Z[P ] → Spec Z[Q] is flat and 1 = dim Spec Z[P ] −
dim Spec Z[Q] = rkP gp − rkQgp = rkQgp/P gp > rk T gp. Thus T gp is
{0} or Z. For every x ∈ T , there exists a unique ψ(x) ∈ Q such that
f−1(x) ∪ Q = ψ(x) + P where f : Qgp → T gp ([17, prop. I.4.3.14]). In
particular, if T gp = {0}, then P → Q is bijective, thus X → S is strict and
thus X → S is smooth.
Assume T gp = Z. Then rkQgp/P gp = rk T gp and thus rkQgp = rkQgp.

Since Qgp is a free abelian group, one can choose a splitting Q = Q⊕Q∗.
Since Q∗ ↪→ Qgp/P gp is finite of order invertible on S, X → S ×Spec Z[P ]
Spec Z[Q] is étale. Thus one can assume that Q is sharp. Let T be the
image of Q in T gp. Then T = N or T = Z.

First assume T = N. Then nψ(1) = ψ(n) + p with p ∈ P . Since P → Q

is saturated and p 6 nψ(1), there exists p′ ∈ P such that p 6 np′ and
p′ 6 ψ(1). Thus, by definition of ψ(1), p′ = 0, thus p = 0 and ψ(n) = nψ(1).
Thus Q = P ⊕Nψ(1).
If T = Z, let u = ψ(1) and v = ψ(−1). Since ψ(u+v) = 0, p := u+v ∈ P .

As in the previous case, if n > 0, then ψ(n) = nψ(1) and ψ(−n) = nψ(−1).
Thus Q = P ⊕ 〈u, v〉/(u+ v = p). �
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The underlying morphism of schemes X̊ → S̊ is a semistable curve. In
particular, if S̊ is a geometric point, one can associate to X a graph G(X)
in the following way: the vertices are the irreducible components of X, the
edges are the nodes. If x is a node, then the henselization X(x) of X at x
has two irreducible components: these components are the branches of the
edge corresponding to x. If z is an irreducible component of X(x) and z′ is
the irreducible component of X containing the image of z in X, the branch
corresponding to z abuts to the vertex corresponding to z′ (this graph does
not depend of the log structure).
If X → S is a proper semistable log curve and X ′ → X is a két cover,

then for any log geometric point s̄ of S, there is a két neighborhood U of s̄
such that X ′U → U is saturated. Then X ′U → U is also a semistable curve.

The morphism X̊ ′s̄ → X̊s̄ induces a genuine morphism G(X ′s̄) → G(Xs̄)
of graphs.

2.3. Topological cospecialization of semistable curves

Let f : X → S be a semistable curve such that S is locally noetherian,
and let s̄2 → s̄1 be a specialization of geometric points of S. In this section
we will define a cospecialization map of graphs G(Xs̄1)→ G(Xs̄2).

Proposition 2.3. — Let f : X → S be a strictly semistable curve such
that S is strictly local and noetherian. Let s1 be the closed point of S,
and let s2 be a point of S. Let x be a node or a generic point of Xs1 . Let
X(x) be the localization of X at x. Then X(x)s2 is either contained in the
smooth locus of a geometrically irreducible component, denoted by F (x),
of X(x)s2 or contains a single node, denoted by F (x), of X(x)s2 , which is
rational.

Proof. — Let A be the noetherian strictly local ring such that S =
SpecA. By replacing S by the closure of s2 endowed with the reduced
scheme structure, one can assume that s2 is the generic point of S and S
is integral. Indeed, nonempty closed subschemes of henselian schemes are
henselian ([21, cor. to § 3. prop 2]) and keep the same residue field at the
special point, therefore the closure of s2 is a strictly local scheme.

(i) If x is in the smooth locus of Xs1 , X → S is smooth at x, and
X(x)s2 is geometrically connected by local 0-acyclicity of smooth
morphisms.

(ii) If x is a node, one can assume that f factors through an étale
morphism X → SpecB with B = A[u, v]/(uv − a) and a(s1) = 0.
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If a = 0 let Z = X ×SpecB SpecA where g : B → A is defined by
g(u) = g(v) = 0 (this is the closed subscheme of X defined by the
node; in particular Zs2 is the union of all the nodes of Xs2). The
morphism Z → S is étale and thus Z(x) → S is an isomorphism.
Thus Z(x)s2 is just a rational point F (x).
If a 6= 0, then a(s2) 6= 0 and thus Xs2 is smooth. Since X → S is

a semistable curve, it is separable (i.e., flat with separable geomet-
ric fibers). Let B := OX,x be the noetherian local ring such that
X(x) = SpecB. By applying [7, cor. 18.9.8] to SpecB = X(x) →
SpecA = S, one gets that X(x)s2 is geometrically connected.

�

Let f : X → S be a semistable curve, and let s̄2 → s̄1 be a specialization
of geometric points of S. One can apply Lemma 2.3 to XS(s̄1) → S(s̄1) and
to the Zariski point s2 corresponding to s̄2. Let x be a node or a generic
point of Xs̄1 . If F (x) is a rational node of Xs2 , then it defines an edge
F0(x) of Gs̄2 . If F (x) is a geometrically irreducible component of Xs2 , then
it defines a vertex F0(x) of Gs̄2 .

Lemma 2.4. — Let S′ = SpecA′ → S = SpecA be a local morphism of
noetherian strictly local schemes. Let s′1 be the closed point of S′ and let
s′2 be a point of S′ above s2. Let X ′ = X ×S S′. Let x′ ∈ X ′s′1 be above
x. Let F ′ be defined analogously to F but with the curve X ′ → S′. Then
F (x) is the image of F ′(x′) by the map X ′ → X.

Proof. — Let z be the image of F ′(x′) by the map X ′ → X. Since x′ is
in the closure of F ′(x′), x is in the closure of z, and therefore F (x) is in
the closure of z. One only has to prove that if F (x) is a node, then z is also
a node. One can assume that X → S factors through an étale morphism
X → SpecB with B = A[u, v]/(uv − a) and a(s2) = 0. Then X ′ → S′

factors through the étale map X → SpecB′ with B′ = A′[u, v]/(uv − a′)
with a′(s′2) = 0, and thus F ′(x′) and z are also nodes. �

Lemma 2.5. — If φ : X ′ → X is a quasifinite open morphism of strictly
semistable curves over S which maps nodes to nodes on every fiber, then
φF ′0 = F0φ.

For example, the assumption is satisfied if X ′ → X is étale or if X ′ → X

is a két morphism of strictly semistable log curves.
Proof. — One can assume that S is strictly local with closed point s̄1, so

that one has to prove that φF = Fφ. Since φ(x) is in the closure of φF ′(x),
Fφ(x) is in the closure of φF ′(x). One only has to prove that if Fφ(x) is
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a node, then φF ′(x) is also a node. Let us assume that Fφ(x) is a node of
Xs2 . Let z1 and z2 be the two generic points of the irreducible components
of Xs2 whose closures contain Fφ(x) (and thus also φ(x)). Since φ is open,
there exists z′1 and z′2 in X(x)s2 such that φ(z′1) = z1 and φ(z′2) = z2. Thus
X(x)s2 cannot be in a single irreducible component of Xs2 , and thus F ′(x)
is a node of X ′s2 . By assumption, φF ′(x) is a node of Xs2 . �

Proposition 2.6. — Let S be a locally noetherian scheme and let s̄2 →
s̄1 be a specialization of geometric points. There is a unique way to associate
to every semistable curve X → S a generalized morphism of graphs

ψ : G(Xs̄1)→ G(Xs̄2)

• which is functorial for étale morphisms X ′ → X,
• such that if f : X → S is strictly semistable, ψ(x) = F0(x) for any
node or generic point x of G(Xs̄1).

Proof. — After replacing S by its strict localization at s̄1, one can assume
that S is strictly local and s̄1 is the closed point.
First, let us prove the uniqueness. Let X → S be a semistable curve.

Let x be a node or a vertex of G(Xs̄1). Let X ′ → X be a surjective étale
morphism such thatX ′ → S is strictly semistable. Let x′ be a preimage of x
in G(X ′s̄1). Then, by functoriality, ψ(x) must be the image of F0(x′) by the
map GX′s̄2 → GXs̄2 . Moreover if b is a branch of G(Xs̄1), let b′ be a preimage
in G(X ′s̄1). Since GXs̄2 has no loop, ψ(b′) is uniquely defined by the vertex
it is ending at, ψ(b) is the image of ψ(b′) by the map GX′s̄2 → GXs̄2 . This
proves the uniqueness.
Let us now construct ψ.
Let f : X → S be a strictly semistable curve, and let s̄2 → s̄1 be a

specialization of geometric points of S.
If e is a vertex of G(Xs̄1), then ψ(e) := F0(x) where x is the node of Xs̄1

corresponding to e. If v is a vertex of G(Xs̄1), then ψ(v) := F0(x) where x
is the generic point of the irreducible component of Xs̄1 corresponding to
e. Let b be a branch of an edge e in G(Xs1) that abuts to a vertex v. Then
F (x) ⊂ F (s), where x is the node corresponding to e and s is the generic
point of the irreducible component corresponding to v. If F (x) = F (s),
then ψ(b) := F0(x) = F0(s). Otherwise, ψ(e) is an edge and ψ(v) is a
vertex, and there is a branch b′ of ψ(e) abutting to ψ(v). Since Xs̄2 is
strictly semistable, this branch is unique. Let ψ(b) = b′.
The compatibility with étale morphisms is a direct consequence of Lem-

ma 2.5.
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If X → S is now a general semistable curve, one choses a surjective étale
morphism X ′ → X, and let X ′′ = X ′ ×X X ′.
One has a commutative diagram with genuine lines

(2.1) G(X ′′s̄1)

ψ′′

��

//// G(X ′s̄1) //

ψ′

��

G(Xs̄1)

G(X ′′s̄2) //// G(X ′s̄2) // G(Xs̄2)

such that

VG(Xs̄2 ) = Coker
(
VG(X′′s̄2 ) ⇒ VG(X′s̄2 )

)
and

EG(Xs̄2 ) = Coker
(
EG(X′′s̄2 ) ⇒ EG(X′s̄2 )

)
.

By taking the cokernel one gets maps ψV : VG(Xs̄1 ) → VG(Xs̄2 ) and ψE :
EG(Xs̄1 ) → EG(Xs̄2 )

∐
VG(Xs̄2 ).

Let e be an edge of G(Xs̄1) such that ψE(e) ∈ EG(Xs̄2 ). Let e′ be an edge
of G(Xs̄1) mapping to e. One has bijections Be ← Be′ → Bψ′E(e′) → BψE(e),
hence a bijection ψe : Be → BψE(e). Let e′1 and e′2 be edges of G(Xs̄1)
mapping to e. There exists an edge e′′ ∈ EG(Xs̄2 ) mapping to e′1 and e′2
by the two maps G(X ′′s̄1) → G(X ′s̄1). One gets a commutative diagram of
bijections:

Be′1

~~~~
~~

~~
~~

// Bψ′E(e′1)

$$IIIIIIIII

Be Be′′

��

OO

//oo Bψ′′E (e′′)

��

OO

// BψE(e),

Be′2

``AAAAAAAA
// Bψ′E(e′2)

::uuuuuuuuu

which proves that the bijection ψe does not depend on the choice of e′.
The wanted compatibilities between ψE , ψV and ψe come directly from the
corresponding compatibilities between ψ′E , ψ′V and ψ′e′ . Therefore, there is
a unique generalized morphism of graphs ψ : G(Xs̄1) → G(Xs̄2) making
the diagram (2.1) commutative.
This morphism ψ does not depend of the choice ofX ′. Indeed letX ′1 → X

and X ′2 → X be two surjective étale morphisms such that X ′1 and X ′2 are
strictly semistable. By considering X ′1 ×X X ′2 → X, one can assume that
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there is a X-morphism X ′2 → X ′1. Then one has a diagram

G(X ′2,s̄1) //

��

%%LLLLLLLLLL
G(X ′1,s̄1)

%%LLLLLLLLLL

��

G(X ′2,s̄2) //

��

G(X ′1,s̄2)

��

G(Xs̄1) //

&&LLLLLLLLLL
G(Xs̄1)

&&LLLLLLLLLL

G(Xs̄2) // G(Xs̄2)

where the horizontal maps of the lower square are identities and the front-
ward maps of the lower square are the two versions of ψ defined in terms
of X ′1 and X ′2. Since the upper face and the vertical faces are commutative
and the vertical maps are surjective, the lower square is also commutative.
Therefore ψ does not depend on X ′.
Let us show the functoriality of ψ with respect to étale morphisms. Let

X2 → X1 be an étale morphism. Let X ′1 → X1 be a surjective étale mor-
phism such that X ′2 → S is strictly semistable. Let X ′2 := X ′1 ×X1 X.
Consider the diagram

G(X ′2,s̄1) //

��

%%LLLLLLLLLL
G(X ′1,s̄1)

%%LLLLLLLLLL

��

G(X ′2,s̄2) //

��

G(X ′1,s̄2)

��

G(X2,s̄1) //

&&LLLLLLLLLL
G(X1,s̄1)

&&LLLLLLLLLL

G(X2,s̄2) // G(X1,s̄2).

Since the upper face and the vertical faces are commutative and the vertical
maps are surjective, the lower square is commutative. �

Proposition 2.7. — Let f : S′ → S be a morphism of locally noether-
ian schemes. Let s̄′2 → s̄′1 be a specialization of geometric points of S′, and
let s̄2 → s̄1 be the image in S. Let X → S be a semistable curve and let
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X ′ = X ×S′ S. Then the diagram

(2.2) GX′
s̄′1

ψ′ // GX′
s̄′2

GXs̄1
ψ // GXs̄2 ,

where ψ and ψ′ are the cospecialization maps, is commutative.

Proof. — Up to replacing S′ by its strict localization at s̄′1 and S by its
strict localization at s̄1, one can assume that S′ → S is a local morphism
of strictly local schemes and that s̄′1 and s̄1 are the closed points of S′

and S. Let ψ0 be the composition GXs̄1 = GX′
s̄′1

ψ′→ GX′
s̄′2

= GXs̄2 . Since
ψ′ is compatible with étale morphisms, ψ0 is also compatible with étale
morphisms. Let f : X → S be a strictly semistable morphism and let x be
a node or a vertex of GXs̄1 . Let x

′ be the corresponding node or vertex of
GX′

s̄′1
. Then fF0(x′) = F0(x) according to Lemma 2.4. Therefore ψ0(x) =

fψ′(x′) = fF0(x′) = F0(x). Therefore, by uniqueness in Proposition 2.6,
one has ψ0 = ψ. �

Proposition 2.8. — Let X → S be a semistable curve. Let s̄3 → s̄2
and s̄2 → s̄1 be specializations of geometric points of X. Then the diagram

GXs̄1
ψ12 //

ψ13

##GGGGGGGG
GXs̄2

ψ23

��
GXs̄3 ,

where ψ12, ψ13 and ψ23 are cospecialization maps, is commutative.

Proof. — The morphism ψ23ψ12 : GXs̄1 → GXs̄3 is functorial with re-
spect to étale morphisms X ′ → X. By uniqueness in Proposition 2.6, it is
enough to prove that ψ23ψ12(x) = ψ13(x) for every node or edge x of GXs̄1
assuming that X is strictly semistable. Since ψ23ψ12(x) specializes to x,
ψ13(x) is in the closure of ψ23ψ12(x). Therefore, one only has to prove that
if ψ13(x) is a node, ψ23ψ12(x) is also a node. Then up to étale localization,
one can assume S = SpecA and X → SpecA goes through an étale mor-
phism X → SpecB where B = A[u, v]/(uv − a) with a(s̄3) = 0, in which
case it is obvious. �

Proposition 2.9. — If φ : X ′ → X is a quasifinite open morphism
of semistable curves over S which maps nodes to nodes on every fiber,
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then φψ′ = ψφ, where ψ : GXs̄1 → GXs̄2 and ψ′ : GX′s̄1 → GX′s̄2 are
cospecialization maps.

Proof. — Since the lemma is true if X ′ → X is étale, one only has to
prove it locally on X ′ and X for the étale topology. Therefore one can
assume that X and X ′ are strictly semistable curves over S. According to
Lemma 2.5, for any node or edge x of GX′s̄1 , φψ

′(x) = φF ′0(x) = F0φ(x) =
ψφ(x). Since GX′s̄1 has no loop, this implies that φψ′ = ψφ. �

We want to know when this generalized morphism of graphs is an iso-
morphism.

Proposition 2.10. — Keeping the notations of Proposition 2.6, if ψ :
G(Xs̄1) → G(Xs̄2) is a genuine morphism of graphs and f is proper, then
ψ is an isomorphism.

Proof. — One may assume S = SpecA to be strictly local and integral
with special point s1 and generic point s2. The assumption means that étale
locally on the special fiber (and thus on X by properness), X is isomorphic
to SpecA[u, v]/uv or is smooth.
Let Z ⊂ X be the non smooth locus ofX → S, endowed with the reduced

subscheme structure. Z → S is étale (as can be seen étale locally over X),
and proper. One thus gets that F induces a bijection between nodes of Xs̄1

and Xs̄2 .
Let X̃ be the blowup of X along Z. When X = SpecA[u, v]/(uv), Z is

defined by the ideal generated by u and v, and X̃ = SpecA[u]
∐

SpecA[v].
Thus by looking étale locally over X, one sees that X̃ is smooth over S, and
that X̃s is simply the normalization of Xs. Since we assumed X → S to be
proper, X̃ → S is smooth and proper, thus its Stein factorization induces
a bijection between the connected components of X̃s̄1 and X̃s̄2 , and thus
the map between the irreducible components of Xs̄1 and Xs̄2 is a bijection
too. �

Proposition 2.11. — Let f : X → S be a log semistable curve and let
s̄2 → s̄1 be a specialization of log geometric point.
Assume MS,s̄1 →MS,s̄2 is an isomorphism. Then ψ : G(Xs̄1)→ G(Xs̄2)

is a genuine morphism of graphs.

Proof. — One can assume S to be strictly local, integral with generic
point s2: S = SpecA, with a chart P → A.
To show that it is a genuine morphism, one only has to prove that ψ(e)

is an edge if e is an edge of G(Xs1). This is not changed by an étale
morphism, so that one can simply assume X = SpecA ⊗Z[P ] Z[Q] with
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Q = (P ⊕ 〈u, v〉)/(u + v = p) and p ∈ P , such that the image of p in Ms̄1

is not invertible. Thus the image of p in Ms̄2 is not invertible and thus
X = SpecA[u, v]/(uv = 0), which gives the wanted result. �

2.4. Topological cospecialization and két morphisms

Proposition 2.12. — Let S be a fs log scheme such that S̊ is locally
noetherian. Let (s2, s̄2) and (s1, s̄1) be two pointed fs log points of S and
let s̄2 → s̄1 be a specialization of log geometric points. Let X → S be
a proper semistable log curve and let Ys̄2 be a log geometric két cover of
Xs1/(s1, s̄1). There is a unique morphism of graphs

φ : G(Ys̄1)→ G(Ys̄2),

where Ys̄2 is the image of Ys̄1 by the functor KCov(Xs̄1) → KCov(Xs̄2)
given by Corollary 1.17, such that, if U is a két neighborhood of s̄1 in
S and Z → XU := X ×S U is an extension of Ys̄1 such that Z → U is
saturated (and therefore a semistable log curve), then the diagram

GZs̄1
ψ // GZs̄2

GYs̄1
φ // GYs̄2 ,

where ψ is the cospecialization morphism defined by Proposition 2.6, is
commutative.
Moreover φ is functorial with respect to morphisms Y ′s̄1 → Ys̄1 of log

geometric két covers of Xs1/(s1, s̄1) and with respect to composition of
specializations of log geometric points.
If MS,s1 →MS,s2 is an isomorphism, then φ is an isomorphism.

Proof. — According to Corollary 1.17, there exists a két neighborhood
U of s̄1 and a két cover Z → XU which extends Ys̄2 . Up to replacing U
by a smaller két neighborhood, one can assume that Z → U is saturated.
This proves the uniqueness. One only has to prove that the morphism φ

one gets does not depend on the choice of U and Z → XU . Let U and U ′ be
two két neighborhoods of s̄1 and let Z → XU and Z ′ → XU ′ be két covers
that extend Ys̄2 . Since KCovgeom(Xs1/(s1, s̄1)) → KCovgeom(X/(Z, s̄1)) is
an equivalnce there exists a két neighborhood U ′′ of s̄1 in U ×S U ′ and
an isomorphism Z ′U ′′ ' ZU ′′ . Therefore one can assume that there is a
morphism U ′ → U over S and that Z ′ = ZU ′ . Since the specializations
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maps of Proposition 2.6 are compatible with a base change U ′ → U , U and
U ′ define the same morphism φ. This proves the existence of φ.

Let Y ′s̄1 → Ys̄1 be a morphism of log geometric két covers of Xs1/(s1, s̄1).
There exists a két neighborhood U of s̄1 and extensions Z → XU and
Z ′ → Z of Ys̄1 and of Y ′s̄1 → Ys̄1 such that Z ′ → U is saturated. The
compatibility of φ with Y ′s̄1 → Ys̄1 is equivalent to the compatibility of ψ
with Z ′ → Z, which is given by Proposition 2.9.

Let (s3, s̄3) be a pointed fs log point and let s̄3 → s̄2 be a specialization.
Let U be a két neighborhood of s̄1 and Z → XU be an extension of Ys̄1
such that Z → U is saturated. The compatibility of φ with the composition
of specializations for Ys̄1 is equivalent to the compatibility of ψ with the
composition of specialization for Z, which is given by Lemma 2.8.

If MS,s1 →MS,s2 is an isomorphism, MU,s1 →MU,s2 is still an isomor-
phism, so that one can still apply Proposition 2.11 to an extension Z → U

of Ys̄1 : the morphism φ is a genuine morphism of graphs. According to
Proposition 2.10, φ is an isomorphism. �

If Y ′s̄1 → Ys̄2 is a morphism of log geometric két covers, then the following
diagram is commutative:

G(Y ′s̄1) → G(Y ′s̄2)
↓ ↓

G(Ys̄1) → G(Ys̄2)

If MS,s1 → MS,s2 is an isomorphism, MU,s1 → MU,s2 is still an isomor-
phism, so that one can still apply Proposition 2.11 to Y : the morphism
G(Ys̄1)→ G(Ys̄2) is a genuine morphism of graphs.

3. Cospecialization of tempered fundamental groups

3.1. Tempered fundamental groups

Let K be a complete nonarchimedean field.
Let L be a set of prime numbers (for example, we will denote by (p′) the

set of all primes except the residual characteristic p of K). An L-integer
will be an integer which is a product of elements of L.
If X is a K-algebraic variety, Xan will be the K-analytic space in the

sense of Berkovich associated to X.
A morphism f : S′ → S of analytic spaces is said to be an étale cover if

S is covered by open subsets U such that f−1(U) =
∐
Vj and Vj → U is

étale finite ([10]).
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For example, étale L-finite covers (i.e., finite étale covers that are dom-
inated by a Galois cover S′′ of S such that # Gal(S′′/S) is an L-integer),
also called L-algebraic covers, and covers in the usual topological sense for
the Berkovich topology, also called topological covers, are étale covers.
Then, André defines tempered covers in [2, def. 2.1.1]. We generalize this

definition to L-tempered covers as follows:

Definition 3.1. — An étale cover S′ → S is L-tempered if it is a
quotient of the composition of a topological cover T ′ → T and of a L-finite
étale cover T → S.

This is equivalent to say that it becomes a topological cover after pullback
by some L-finite étale cover.
Let X be a K-analytic space. We denote by CovL-temp(X) (resp.

Covalg(X)L, Covtop(X)) the category of L-tempered covers (resp. L-alge-
braic covers, topological covers) of X (with the obvious morphisms).
A geometric point of a K-analytic space X is a morphism of Berkovich

spaces M(Ω) → X where Ω is an algebraically closed complete isometric
extension of K.
Let x̄ be a geometric point of X. Then one has a functor

FL
x̄ : CovL-temp(X)→ Set

which maps a L-tempered cover S → X to the set Sx̄.
The L-tempered fundamental group of X pointed at x̄ is

πL-temp
1 (X, x̄) = AutFL

x̄ .

WhenX is a smooth algebraicK-variety, CovL-temp(Xan) and πL-temp
1 (Xan,x̄)

will also be denoted simply by CovL-temp(X) and πL-temp
1 (X, x̄).

By considering the stabilizers (StabF L
x̄ (S)(s))S∈CovL-temp(X),s∈F L

x̄ (S) as a
basis of open subgroups of πL-temp

1 (X, x̄), πL-temp
1 (X, x̄) becomes a topolog-

ical group. It is a prodiscrete topological group.
When X is algebraic, K of characteristic zero and has only countably

many finite extensions in a fixed algebraic closure K, πL-temp
1 (X, x̄) has

a countable fundamental system of neighborhood of 1 and all its discrete
quotient groups are finitely generated ([2, prop. III.2.1.7]). When L is the
set of all primes, we often forget it in the notations.
It should be remarked that in general, for a given L, one cannot recover

πL-temp
1 (X, x̄) from πtemp

1 (X, x̄). For example, let us consider an Enriques
surface X over a nonarchimedean field of residual characteristic zero. One
has πalg

1 (X) = Z/2Z and X has a unique nontrivial connected finite cover;
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it is given by a K3 surface Y . The surfaces X and Y have a semistable re-
duction, and according to [4], Xan and Y an are homotopy equivalent to the
dual simplicial sets of their semistable reduction. The possible simplicial
sets are given by [13]. For theK3 surface Y , this dual simplicial set is always
simply connected and therefore πtemp

1 (X) = πalg
1 (X) = Z/2Z. If X is an

Enriques surface with good reduction, π∅-temp
1 (X, x̄) = πtop

1 (X,x) = {1}.
If the reduction of X is totally degenerate, i.e., all the irreducible compo-
nents of a semistable reduction are projective planes, the dual simplicial
set is homotopy equivalent to a real projective plane and π∅-temp

1 (X, x̄) =
πtop

1 (X,x) = Z/2Z. Therefore, two Enriques surface have isomorphic tem-
pered fundamental groups but can have different ∅-tempered fundamental
groups.
If x̄ and x̄′ are two geometric points, then FL

x̄ and FL
x̄′ are (non canoni-

cally) isomorphic ([10, th. 2.9]). Thus, as usual, the tempered fundamental
group depends on the basepoint only up to inner automorphism (this topo-
logical group, considered up to conjugation, will sometimes be denoted
simply πL-temp

1 (X)).
The full subcategory of tempered covers S for which FL

x̄ (S) is L-finite is
equivalent to Covalg(S)L, hence

πL-temp
1 (X, x̄)L = πalg

1 (X, x̄)L

(where ( )L denotes the pro-L completion).
For any morphismX → Y , the pullback defines a functor CovL-temp(Y)→

CovL-temp(X). If x̄ is a geometric point of X with image ȳ in Y , this gives
rise to a continuous homomorphism

πL-temp
1 (X, x̄)→ πL-temp

1 (Y, ȳ)

(hence an outer morphism πL-temp
1 (X)→ πL-temp

1 (Y )).
One has the analog of the usual Galois correspondence:

Theorem 3.2 ([2, th. III.1.4.5]). — FL
x̄ induces an equivalence of cate-

gories between the category of direct sums of L-tempered covers of X and
the category πL-temp

1 (X, x̄) -Set of discrete sets endowed with a continuous
left action of πL-temp

1 (X, x̄).

If S is a L-finite Galois cover of X, its universal topological cover S∞ is
still Galois and every connected L-tempered cover is dominated by such a
Galois L-tempered cover.
If ((Si, s̄i))i∈N is a cofinal projective system (with morphisms fij : Si →

Sj which maps si to sj for i > j) of geometrically pointed Galois L-finite
étale covers of (X, x̄), let ((S∞i , s̄∞i ))i∈N be the projective system of its
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pointed universal topological covers (the transition maps will be denoted
by f∞ij ). It induces a projective system (Gal(S∞i /X))i∈N of discrete groups.
For every i, Gal(S∞i /X) can be identified with FL

x̄ (S∞i ): this gives us com-
patible morphisms πL-temp

1 (X, x̄) → Gal(S∞i /X). Then, thanks to [2, lem.
III.2.1.5],

Proposition 3.3.

πL-temp
1 (X, x̄)→ lim←−Gal(S∞i /X)

is an isomorphism.

In a more categorical way, we have a fibered category Dtop(X) →
Covalg(X), where the fiber Dtop(X)S in an algebraic cover S of X is
Covtop(X).

Since algebraic covers are of effective descent for tempered covers, the full
subcategory of tempered covers T of X such that TS → S is a topological
cover is naturally equivalent to the category DDtempS of descent data in
the fibered category Dtop(X) with respect to S → X.
If “ lim←− ” Si is a universal procover of (X,x), one gets a natural equiva-

lence
Covtemp(X) = Lim

←−
i

DDtempSi

In particular one can recover the tempered fundamental group from the
fibered category Dtop(X)→ Covalg(X).
If S → S is an isomorphism, the induced functor DDtempS → DDtempS

is naturally isomorphic to the identity. Thus if α : “ lim←−i ” Si → “ lim←−i ” Si is
an automorphism of the universal pro-cover, the induced functor
Lim
←− i

DDtempSi → Lim
←− i

DDtempSi is naturally isomorphic to the identity.
Thus the construction does not depend of the choice of the universal pro-
cover.
To give a more stacky and functorial description, let us consider Covalg(X)

with its canonical topology.
Let Dtemp(X) → Covalg(X) be the fibered category whose fiber over U

is the category Covtemp(U) of tempered covers of U . Then Dtemp(X) is a
stack. The fully faithful cartesian functor of fibered categories Dtop(X)→
Dtemp(X) induces a fully faithful cartesian functor of stacks Dtop(X)a →
Dtemp(X) where Dtop(X)a is the stack associated to Dtop(X). Since a tem-
pered cover is a topological cover locally on Covalg(X), this functor is in
fact an equivalence ([5, th. II.2.1.3]).
In a similar way:
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Proposition 3.4. — The stack (Dtop(X)|Covalg(X)L)a is the stack
DL-temp(X) of L-tempered covers on Covalg(X)L.

3.2. Homotopy types of analytic curves

Let K be a complete nonarchimedean field with separably closed residue
field k and let OK be its ring of integers. Let X → OK be a proper
semistable curve with smooth generic fiber. There is a canonical embedding
|G(Xk)| → Xan

η which is a homotopy equivalence ([3, th. 4.3.2]). If K ′ is a
complete isometric extenstion of K with separably closed field k′, then the
following diagram is commutative:

|G(Xk′)|

��

// Xan
K′

��
|G(Xk)| // Xan

K

Moreover, if U is any dense Zariski open subset of Xη, |G(Xk)| is mapped
into Uan and |G(Xk)| → Uan is still a homotopy equivalence.
If X → OK is a semistable log curve and X ′ → X is a két morphism such

that X ′ is still a semistable curve, the following diagram is commutative:
|G(X ′k)| → X ′

an
η

↓ ↓
|G(Xk)| → Xan

η

3.3. Cospecialization of tempered fundamental groups

LetK be a complete discretely valued field. Let OK be the ring of integers
of K. Let S → OK be a morphism of fs log schemes of finite type. Let Str
be the open locus of S where the log structure is trivial (Str ⊂ Sη). Let
S be the completion of S along its closed fiber. Then Sη is an analytic
domain of San. Let S0 = Sη ∩ San

tr ⊂ San.
Let η̃ be a K ′-point of S0 where K ′ is a complete extension of K. One

has a canonical morphism of log schemes SpecOK′ → S where SpecOK′
is endowed with the log structure given by OK′\{0} → OK′ . The log re-
duction s̃ of η̃ is the log point of S corresponding to the special point of
SpecOK′ with the inverse image of the log structure of SpecOK′ . If K ′ has
discrete valuation, then s̃ is a fs log point. If K ′ is algebraically closed, s̃ is
a geometric log point.
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Definition 3.5. — The category P̃t
an

(S) is the category whose objects
are the geometric points η̄ of Y0 such that H(η) is discretely valued (where
η is the underlying point of η̄) and HomPtan(S)(η̄, η̄′) is the set of két spe-
cializations in Sk from the log reduction s̄ of η̄ to the log reduction s̄′ of
η̄′ such that there exists some specialization η̄ → η̄′ of geometric points
in the sense of algebraic étale topology for which the following diagram
commutes:

η̄ //

��

s̄

��
η̄′ // s̄′

The category Ptan
0 (S) is the category obtained from P̃t

an
(S) by inverting

the class of morphisms η̄ → η̄′ such that MS,s̄′ →MS,s̄ is an isomorphism.

Let OutGptop be the category of topological groups with outer mor-
phisms.

Theorem 3.6. — LetOK be a complete discretely valued ring of residue
characteristic p > 0, let L be a set of integers such that p /∈ L. Let S →
SpecOK be a morphism of fs log schemes of finite type and let X → S

be a proper log semistable curve. Let U be the open locus of X where the
log structure is trivial. Then there is a functor πL-temp

1 (U(·)) : Ptan
0 (S)op →

OutGptop sending η̄ to πL-temp
1 (Uη̄).

Proof. — Let η̄2 → η̄1 be a morphism of P̃t
an

(Y ). Let us construct a
cospecialization morphism πL-temp

1 (Uη̄1) → πL-temp
1 (Uη̄2), which is an iso-

morphism if MS,s̄1 →MS,s̄2 is an isomorphism.
One has a cospecialization functor

F : KCovgeom(Xs1/s1)L → KCovgeom(Xs2/s2)L

which factors through KCovgeom(XT /T )L where T is the strict localization
at s1.

The cospecialization functor KCovgeom(Xsi/si)L → Covalg(Uη̄i) is an
equivalence since ηi ∈ ηtr (1.12). If one choses a specialization η̄2 → η̄1
above s̄2 → s̄1, then one can apply [6, cor. XIII.2.9] to UK ⊂ XK → SK : one
gets that the functor Covalg(Uȳi)L → Covalg(Uȳ2)L is also an equivalence.
Thus F is an equivalence.
Let Ys̄1 be a log geometric két cover of Xs1/(s1,s̄1) and let Ys̄2 (resp. Y1,

Y2) be the corresponding log geometric két cover of X(s2,s̄2) (resp. Uη̄1 ,
Uη̄2).
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There are maps (functorially in Y ):

|Y an
s̄1 | ← |G(Ys̄1)| → |G(Ys̄2)| → |Y an

s̄2 |

where the first and third map are the embedding of the skeleton of an
anlytic curve. The first and third map are therefore homotopy equivalences.
One thus gets a morphism of homotopy types |Y an

s̄1 | → |Y
an
s̄2 | functorially

in Y . According to Proposition 2.12, if MS,s̄1 →MS,s̄2 is an isomorphism,
|Y an
s̄1 | → |Y

an
s̄2 | is an isomorphism of homotopy types.

With the notations of Proposition 3.4, one thus gets a functor of fibered
categories:

Dtop(Uη̄2) → Dtop(Uη̄1)
↓ ↓

Covalg(Uη̄2)L ' Covalg(Uη̄1)L

Using Proposition 3.4, this induces a functor of associated stacks:
DL-temp(Uη̄2) → DL-temp(Uη̄1)

↓ ↓
Covalg(Uη̄2)L ' Covalg(Uη̄1)L

By taking the global sections one gets a functor:

CovL-temp(Uη̄2)→ CovL-temp(Uη̄1),

which is an equivalence if MS,s̄1 → MS,s̄2 is an isomorphism. It induces a
cospecialization outer morphism of tempered fundamental groups

πL-temp
1 (Uη̄1)→ πL-temp

1 (Uη̄2),

which is an isomorphism if MS,s̄1 →MS,s̄2 is an isomorphism.
Let η̄3 → η̄2 be a morphism of P̃t

an
(Y ). According to Corollary 1.17, the

diagram

(3.1) KCovgeom(Xs1/(s1, s̄1))L
F12 //

F13

**UUUUUUUUUUUUUUUUU
KCovgeom(Xs2/(s2, s̄2))L

F23

��
KCovgeom(Xs3/(s3, s̄3))L

is 2-commutative. Let Ys̄3 be the log geometric két cover of Xs3/(s3/s̄3)
corresponding to Ys̄2 and let Yη̄3 be the corresponding cover of Xη̄3 . The
diagram

|G(Ys̄1)| //

%%KKKKKKKKKK
|G(Ys̄2)|

��
|G(Ys̄3)|
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is commutative according to 2.12, and therefore the diagram of homotopy
types

|Y an
η̄1
| //

""FFFFFFFF
|Y an
s̄2 |

��
|Y an
s̄3 |

is also commutative. One thus gets a 2-commutative diagram

Dtop(Uη̄3) //

&&MMMMMMMMMM
Dtop(Uη̄2)

��
Dtop(Uη̄1)

of fibered categories above the inverse of (3.1). By taking the global sections
of the associated functor, one gets that the diagram

CovL-temp(Uη̄3) //

((QQQQQQQQQQQQQ
CovL-temp(Uη̄2)

��
CovL-temp(Uη̄1)

is 2-commutative, which proves the functoriality of πL-temp
1 (U(·)). �

Remark 3.7. — Such a functor cannot exist if p 6= 0 and L is the set
of all primes. Consider a moduli space S of stable curves over Spec Z,
endowed with its canonical log structure. By [18, Th. 5.1.7], S classifies
vertical stable log curves. Let C → S be the universal log curve. If s̄ is a
geometric point of S, MS,s̄ can be identified with NI , where I is the set
of double points of Cs̄, in such a way that for any compatible local chart
U = SpecA φ→ Spec Z[NI ] of S at s̄ modeled on NI , locally on the étale
topology around the double point x of Cs̄, the universal curve C → S has
a chart

NI ⊕Nu⊕Nv/(u+ v = ex) // A[uv]/(uv − φ∗(ex))

NI
φ∗ //

OO

A

OO

where ex ∈ NI is defined by (ex)x = 1 and (ex)x′ = 0 if x′ 6= x ∈ I. Let
s̄ be a geometric point in Sk such that the corresponding stable curve is
totally degenerate. Let I be the set of double points of Cs̄. The set I is non
empty and therefore MS,s̄ is nontrivial. Let us choose a local chart φ : U =
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SpecA→ Spec Z[NI ] of S at s̄ compatible with the identification of MS,s̄

with NI mentioned before. Choose two different morphisms a1, a2 : NI →
N such that the preimage of 0 by a1 and a2 is 0. Put on s̄ the log structure
k(s̄)∗⊕N: one gets a log point s0. Given the chart φ, the morphisms a1, a2
define two morphisms of fs log schemes s0 → S: we denote by s1 and s2 the
corresponding fs log points of S. By choosing a uniformizer π of OK , the
morphism of schemes s̄→ SpecOK can be enriched in a morphism of fs log
schemes s0 → SpecOK by sending π to (0, 1) ∈ k(s̄)∗ ⊕N. Thus s1 and s2
are lifted as fs log points of S ×Spec Z SpecOK . Let η1 and η2 be discretely
valued points of San

K whose log reductions are s1 and s2. Then, étale locally
at x, COH(ηi)

is isomorphic to SpecOK [u, v]/(uv−πai(ex)). Since ai(ex) > 0
for every x, Cηi is a smooth curve; since Cs is totally degenerate, Cηi is
a Mumford curve. The length of the corresponding edge of the graph of
Cηi is − logp |π|ai(ex). Since a1 6= a2 the two Mumford curves Cη1 and Cη2

have different metric on the graph of their stable model, and thus have non
isomorphic tempered fundamental groups ([15]). But the two geometric
log points s1 and s2 are isomorphic with respect to specialization for két
topology since they lie above the same Zariski point.

BIBLIOGRAPHY

[1] Y. André, “On a geometric description of Gal(Qp/Qp) and a p-adic avatar of ĜT”,
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