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LOCAL VOLUMES OF CARTIER DIVISORS OVER
NORMAL ALGEBRAIC VARIETIES

by Mihai FULGER

Abstract. — In this paper we study a notion of local volume for Cartier
divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension
greater than one, with a distinguished point. We apply this to study an invariant for
normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces.
We also compare this generalization to a different one arising in recent work of T.
de Fernex, S. Boucksom, and C. Favre.
Résumé. — Dans cet article, nous étudions une notion de volume local pour

les diviseurs de Cartier sur des éclatements arbitraires de variétés algébriques com-
plexes normales de dimension supérieure à un, avec un point distingué. Nous ap-
pliquons cela pour étudier un invariant de singularités isolées normales, en géné-
ralisant un volume défini par J. Wahl dans le cas des surfaces. Nous comparons
également cet invariant à celui obtenu dans les travaux récents de T. de Fernex, S.
Boucksom, et C. Favre.

Introduction

Plurigenera of smooth complex projective varieties have been the object
of much research in complex birational geometry. More recent, local ana-
logues have been studied in [33], [34], [14]. and [21] as invariants of isolated
singularities appearing on normal complex algebraic varieties. For a normal
complex isolated algebraic singularity (X,x) of dimension n at least two,
the plurigenera of (X,x) in the sense of Morales [21] are defined as the
dimensions of skyscraper sheaves:

λm(X,x) =def dim OX(mKX)
π∗OX̃(mK

X̃
+mE) ,

Keywords: Local volumes, Hilbert-Samuel multiplicity, plurigenera, asymptotic invari-
ants, Okounkov body.
Math. classification: 14E05, 14E15, 14B05, 14B15, 32S05.



1794 Mihai FULGER

where π : (X̃, E) → (X,x) is an arbitrary log-resolution. One sees that
λm(X,x) = 0 if x is a smooth point of X or, more generally, if X is
Q−Gorenstein with log-canonical singularities.
The growth rate of λm(X,x) is studied in [14] and [33]. It is shown that

λm(X,x) grows at most likemn. A natural object to study is then the finite
asymptotic limit

vol(X,x) =def lim sup
m→∞

λm(X,x)
mn/n!

that we call the volume of the singularity (X,x). For surfaces, vol(X,x) has
been studied in [32] and shown to be a characteristic number of the link of
the singularity. In particular, its behavior under pullback by ramified maps
was analyzed. The vanishing of vol(X,x) in the two dimensional case is also
well-understood. We will see that many of its other properties generalize
to higher dimension.

We introduce a local invariant that includes the volume of isolated sin-
gularities as a special case. Let X be a normal quasiprojective variety of
dimension n > 2 over C, and let x be a point on X. Fix a projective bira-
tional morphism π : X ′ → X, and let D be a Cartier divisor on X ′. We do
not assume that X ′ is also normal. Define the local volume of D at x to be

volx(D) =def lim sup
m→∞

h1
x(mD)
mn/n! ,

where
h1
x(D) =def dimH1

{x}(X,π∗OX′(D)).

We show that volx(D) is finite. When π : (X̃, E) → (X,x) is a log-
resolution of a normal complex isolated singularity of dimension n, we will
see that

vol(X,x) = volx(K
X̃

+ E).
Drawing parallels between the theory of local volumes and the theory of
asymptotic cohomological functions on projective varieties as presented in
[18] or [19, Ch.2.2.C], we prove:

Theorem. — Under the assumptions above, volx is well defined,
n−homogeneous, and locally Lipschitz continuous on N1(X ′/X)R.

As usual, N1(X ′/X)R denotes the additive group of R−Cartier divisors on
X ′ modulo numerical equivalence on the fibers of π. A difference between
volx and the volume of divisors on projective varieties is that whereas
the latter increases in all effective directions, volx decreases in effective
directions that contract to x and increases in effective directions without

ANNALES DE L’INSTITUT FOURIER



LOCAL VOLUMES 1795

components contracting to x. This behavior proves quite useful. Following
ideas in [20], we present a convex–geometric approach to local volumes that
allows us to prove the following:

Proposition. — Let π : X ′ → X be a projective birational morphism,
and let x be a point on the normal algebraic variety X of dimension n at
least two. For any Cartier divisor D on X ′, we can replace lim sup in the
definition of volx(D) by lim:

volx(D) = lim
m→∞

h1
x(mD)
mn/n! .

In the style of [20, Thm.3.8], we obtain a Fujita approximation type result.
If I is a fractional ideal sheaf on X, following [3] or [2], we define its local
multiplicity at x, also known as ε−multiplicity ([3]) to be:

ĥ1
x(I) =def lim sup

m→∞

dimH1
{x}(Im)

mn/n! .

Theorem. — On X ′, let D be a Cartier divisor such that the graded
family ap = π∗OX′(pD) satisfies ap|X\{x} = bp for some coherent fractional
ideal sheaf b on X \ {x}. Then

volx(D) = lim
p→∞

ĥ1
x(π∗OX′(pD))

pn
.

Two other problems that are well–understood in the projective case are the
vanishing and the log-concavity for volumes of Cartier divisors (see [19,
Ch.2.2.C]). We know that volumes vanish outside the big cone, and that
vol1/n is a concave function on the same big cone. In the local setting we
find analogous results when working with divisors supported on the fiber
over x. Denote by EDx(π) the real vector space spanned by all such divisors.

Proposition. — On X ′, let D be a Cartier divisor supported on the
fiber over x. Then volx(D) = 0 if, and only if, D is an effective divisor.
When D is an arbitrary Cartier divisor, then volx(D) = 0 if, and only if,
h1
x(mD̃) = 0 for all m > 0, where D̃ is the pullback of D to the normaliza-

tion of X ′.

Proposition. — The function vol1/nx is convex on EDx(π), but it may
fail to be so on N1(X ′/X)R.

Returning to the setting of normal complex isolated singularities of dimen-
sion at least two, we generalize to higher dimension some of the properties
established in [32] for local volumes of isolated surface singularities.

TOME 63 (2013), FASCICULE 5



1796 Mihai FULGER

Proposition. — Let f : (X,x) → (Y, y) be a finite map of complex
normal isolated singularities of dimension n with f(x) = y. Then

vol(X,x) > (deg f) · vol(Y, y).

Equality holds if f is unramified outside y.

Corollary. — (i) If f : (X,x)→ (Y, y) is a finite map of normal
isolated singularities and vol(X,x) vanishes, then vol(Y, y) = 0.

(ii) If (X,x) admits an endomorphism of degree at least two, then
vol(X,x) = 0.

Unlike the two dimensional case, we show in Example 2.23 that, in dimen-
sion at least three, vol(X,x) is not a topological invariant of the link of the
singularity. For surfaces, the vanishing of vol(X,x) is equivalent to (X,x)
being log-canonical in the sense of [32, Rem.2.4]. In arbitrary dimension,
as a corollary to [14, Thm.4.2], we show:

Proposition. — If (X,x) is a normal isolated singularity of dimension
n at least two, then vol(X,x) = 0 if, and only if, λm(X,x) = 0 for all
m > 0.

In the Q−Gorenstein case, the conclusion of the previous result is the same
as saying that (X,x) has log-canonical singularities, but by [1] this is not
the case in general. We may construct another notion of volume that is
useful for the study of canonical singularities in the sense of [4]:

volγ(X,x) =def volx(K
X̃

),

where π : X̃ → X is a resolution of a normal isolated singularity (X,x).
We will see that volγ(X,x) is also independent of the resolution.

Proposition. — If (X,x) is a normal complex isolated singularity, then
volγ(X,x) = 0 if, and only if, (X,x) has canonical singularities in the sense
of [4].

On surfaces, we mention that by [32], the volume vol(X,x) can be com-
puted as −P ·P where P is the nef part of the relative Zariski decomposition
of K

X̃
+ E for any good resolution π : (X̃, E) → (X,x). Building on the

theory of b−divisors, this definition is generalized to higher dimension in
[1] to produce another notion of volume for a normal isolated singularity,
denoted volBdFF(X,x). We are able to show

volBdFF(X,x) > vol(X,x).

By [1], the two notions of volume differ in general, but coincide in the
Q−Gorenstein case and we extend this to the numerically Gorenstein case

ANNALES DE L’INSTITUT FOURIER



LOCAL VOLUMES 1797

(cf. [1]). The volume volBdFF(X,x) enjoys similar properties to those of
vol(X,x) concerning the behavior with respect to finite covers and is bet-
ter suited for the study of log-canonical singularities. On the other hand,
volBdFF(X,x) is usually hard to compute because all birational models of
X may influence it as opposed to vol(X,x), which is computed on any
log-resolution of (X,x).

For illustration, consider the case of cone singularities. Let (V,H) be a
nonsingular polarized complex projective variety of dimension n and let
X be the cone Spec

⊕
m>0H

0(V,O(mH)) whose vertex 0 is an isolated
singularity. As in [33, Thm.1.7], we compute

λm(X, 0) =
∑
k>1

dimH0(V,O(mKV − kH)).

We will see that this leads to:

vol(X, 0) = (n+ 1) ·
∫ ∞

0
volV (KV − tH)dt.

The volume under the integral is the volume of line bundles on projective
varieties in the sense of [19, Ch.2.2.C]. All isolated surface singularities
have rational volume, but cone singularities provide examples of isolated
singularities with irrational volume vol(X,x) already in dimension three.
As we will see, combining techniques in [1] with results in our study of volx,
the volume volBdFF(X,x) can also be computed for some cone singularities
and it can also achieve irrational values.

The paper is organized as follows. After the introduction and setting
notation and conventions, section one develops the theory of local volumes,
and we compute several examples in the first subsection, before presenting
a convex geometry approach to local volumes and proving our version of
the Fujita approximation theorem. We next investigate the vanishing and
convexity for vol1/nx . Section two is dedicated to the volume of isolated
singularities associated to the plurigenera in the sense of Watanabe or
Morales, and to volγ(X,x), an asymptotic invariant associated to Knöller’s
plurigenera. We generalize to higher dimension results for surfaces in [32],
translate to volumes some of the results of Ishii [14], and give examples. In
section three, we compare our notion of volume with the one appearing in
[1]. By studying the impact that the theory of volx has on volBdFF(X,x),
we are able to give a non-trivial computation for volBdFF(X,x) that yields
an irrational result. We end with a list of open questions in section four.

TOME 63 (2013), FASCICULE 5
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Notation and conventions

Unless otherwise stated, we work over the field of complex numbers C,
and use the notation of [19]. For a Cartier divisor D on a projective variety
X of dimension n, we consider the asymptotic cohomology functions of [18]:

ĥi(D) =def lim sup
m→∞

hi(X,O(mD))
mn/n! .

When i = 0, we recover the volume function vol(D) from [19, Ch.2.2.C].

The relative setting. Let π : Y → X be a projective morphism of
quasiprojective varieties. A Cartier divisor D on Y is π−trivial if D =
π∗L for some Cartier divisor L on X. Two Cartier divisors D and D′

are π−linearly equivalent if D is linearly equivalent to D′ + π∗L for some
Cartier divisor L on X. A Cartier divisor D on Y is π−numerically trivial
if its restriction to fibers of π is numerically trivial. The set of π−numerical
equivalence classes is an abelian group of finite rank denoted by N1(Y/X).
A divisor D is π−ample (nef) if the restriction to each fiber of π is ample
(nef). We say that D is π−movable if it lies in the closure in N1(Y/X)R of
the cone spanned by divisors whose π−base locus has codimension at least
two in Y .

Resolutions of singularities. In a log-resolution π : (X̃, E) → (X,x)
of a normal isolated singularity, we denote by E the reduced fiber over x.
The divisor E has simple normal crossings. Note that a log-resolution of
(X,x) automatically factors through the blow-up of X at x. We say that
π is a good resolution if it is an isomorphism outside x.

ANNALES DE L’INSTITUT FOURIER
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Coherent fractional ideal sheaves. A coherent subsheaf I of the con-
stant fraction field sheaf of a quasiprojective variety is called a coherent
fractional ideal sheaf. Typical examples are constructed by pushing for-
ward invertible sheaves via projective birational morphisms. For I a coher-
ent fractional ideal sheaf, there exists a Cartier divisor D on X such that
I · OX(D) is an actual ideal sheaf. Using this, the blow-up of I, and the
relative Serre bundle can be defined.

1. Local volumes

This section is devoted to building the theory of local volumes for Cartier
divisors on a relatively projective birational modification of a normal com-
plex quasiprojective variety of dimension at least two with a distinguished
point. We compare many properties of these volumes to their counterparts
in the theory of volumes of Cartier divisors on projective varieties as pre-
sented in [19, Ch.2.2.C]. In the first subsection we define the local volumes,
study them variationally, discus their behavior under finite maps and give
examples. In the second subsection we adapt some of the methods of [20]
to present a convex body approach to local volumes and obtain a Fujita
approximation result. We discuss convexity and vanishing properties for
local volumes in our third subsection.

1.1. Basic properties

Let X be a normal complex quasiprojective variety of dimension n at
least two over the field of complex numbers C. and fix a point x ∈ X. Let
π : X ′ → X be a projective birational morphism, and let D be a Cartier
divisor on X ′. We do not assume that X ′ is also normal. Using cohomology
with supports at x, define

h1
x(D) =def dimH1

{x}(X,π∗OX′(D)). (1.1)

We will see in the course of the proof of Proposition 1.10 that this is a finite
number. See [9] for a detailed introduction to the subject of cohomology
with supports, or see [12, Ex.III.2.3] for a quick introduction that is suffi-
cient to our purposes.

Remark 1.1. — (i) If U is an open subset of X containing x, let F
be the set theoretic fiber of π over x, let V be the preimage of U

TOME 63 (2013), FASCICULE 5



1800 Mihai FULGER

and denote by i : U \{x} → U and j : V \F → V the natural open
embeddings. By abuse, we denote π|VU again by π. An inspection
of the restriction sequence for cohomology with supports, together
with flat base change, reveal

h1
x(D) = dim i∗i

∗(π∗OX′(D)|U )
π∗OX′(D)|U

= dim π∗j∗j
∗(OX′(D)|V )

π∗OX′(D)|U
.

If U is affine, the latter is H0(V \F,OX′ (D))
H0(V,OX′ (D)) .

(ii) If U is affine, X ′ is normal, and E is the divisorial component of
the support of the fiber, then

h1
x(D) = dim

⋃
k>0H

0(π−1U,OX′(D + kE))
H0(π−1U,OX′(D))

as a study of local sections shows.

Definition 1.2. — The local volume of D at x is the asymptotic limit:

volx(D) =def lim sup
m→∞

h1
x(mD)
mn/n! .

We will prove that this quantity is finite in Proposition 1.10. We will also
see in Corollary 1.28 that the lim sup in the definition of volx(D) can be
replaced by lim. The excision property of cohomology with supports shows
that volx is local around x. The term volume is justified by the resemblance
of the definition to that of volumes of divisors on projective varieties. We
shall see that the two notions share many similar properties.

Example 1.3 (Toric varieties). — We use the notation of [7]. Let σ be an
n−dimensional pointed rational cone in NR, where N is a lattice isomorphic
to Zn. Denote M = Hom(N,Z) and let Sσ be the semigroup σ∨ ∩M . Let
X(σ) be the affine toric variety SpecC[Sσ]. The unique torus invariant point
of X(σ) is denoted xσ.

Let Σ be a rational fan obtained by refining σ. It determines a proper
birational toric modification π : X(Σ) → X(σ). Let v1, . . . , vr be the first
non-zero integer coordinate points on the rays that span σ. Let
vr+1, . . . , vr+s be the first non-zero points of N on the rays in Σ that lie in
the relative interior of faces of σ of dimension 2 6 d 6 n − 1 and denote
by vr+s+1, . . . , vr+s+t the first non-zero points from N on the rays of Σ in
the interior of σ. Denote by Di the Weil divisor on X(Σ) associated to the
ray containing vi. A divisor Di lies over xσ exactly when its support is a
complete variety, which is equivalent to vi lying in the interior of σ, i.e.,
when i > r + s.

ANNALES DE L’INSTITUT FOURIER



LOCAL VOLUMES 1801

To D =
∑r+s+t
i=1 aiDi, a T−invariant Cartier divisor on X(Σ), we asso-

ciate the rational convex polyhedra in MR defined by

PD = {u ∈MR : 〈u, vi〉 > −ai for all i}.

P ′D = {u ∈MR : 〈u, vi〉 > −ai for all i 6 r + s}.
By [7, Lem.pag.66], global sections of OX(Σ)(mD) correspond to points of
(mPD) ∩M and sections defined outside the fiber over xσ correspond to
(mP ′D) ∩M . By Remark 1.1,

h1
xσ (mD) = #((mP ′D \mPD) ∩M).

Taking asymptotic limits,

volxσ (D) = n! · vol(P ′D \ PD).

On the right hand side we have the Euclidean volume in MR. Note that
this volume is rational and finite, even though PD and P ′D may be infinite
polyhedra. See Example 1.49 and Figure 1.2 for an explicit computation.

�

The surface case, which was studied in [32] and served as the inspiration
for our work, gives another set of computable examples.

Example 1.4 (Surface case). — Let (X,x) be a normal surface singu-
larity, and let π : (X̃, E) → (X,x) be a good resolution. Any divisor D
on X̃ admits a relative Zariski decomposition D = P + N where P is a
relatively nef and exceptional Q−divisor. See [32, Section 1] for more on
relative Zariski decompositions. From [32, Thm.1.6], we have

volx(D) = −P · P

and this can be computed algorithmically from the intersection numbers
betweenD and components of E, and from the intersection numbers among
the irreducible components of E. �

Lemma 1.5. — As before, let X be a normal quasiprojective variety of
dimension at least two, let x be a point on X and let π : X ′ → X be a
projective birational morphism. Then there exist projective completions X
and X ′ of X and X ′ respectively, together with a morphism π : X ′ → X

extending π and a Cartier divisor D on X ′ such that D|X′ = D.

Proof. — Choose arbitrary projective completions X and Y of X and X ′
respectively. The rational map Y // X induced by π can be extended
by resolving its indeterminacies in Y to π′ : Y ′ → X such that π′|X′ = π.
The Cartier divisor D determines an invertible sheaf OX′(D), which by

TOME 63 (2013), FASCICULE 5
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[12, Exer.II.5.15] extends to a coherent fractional ideal sheaf I on Y ′ and
if we denote by X ′ the blow-up of Y ′ along I, by π : X ′ → X the induced
morphism and by OY (D) the relative Serre bundle of the blow-up, one
notices that D|X′ = D. �

The previous result can be used to reduce questions about the local
volume of one divisor D (or of finitely many) to the case when X and X ′
are projective. We will see that we can reduce the study of the function
volx to X ′ normal, or even nonsingular.

Lemma 1.6. — With notation as above, let F be a torsion free coherent
sheaf on X ′ of rank r. Then

volx(D) = lim sup
m→∞

dimH1
{x}(X,π∗(F(mD)))
r ·mn/n! .

Proof. — By Lemma 1.5, since we can extend coherent torsion free
sheaves to coherent sheaves with the same property, we can assume that
X and X ′ are projective. Let H be sufficiently ample on X so that there
exist short exact sequences

0→ OrX′(−π∗H)→ F → Q→ 0

0→ F → OrX′(π∗H)→ R→ 0

with torsion quotients Q and R. Such H exists because π∗H is a big Cartier
divisor.
If Qm and Rm denote the images of π∗(F(mD)) in π∗(Q(mD)) and of

π∗OrX′(π∗H +mD) in π∗(R(mD)) respectively, then

dimH1
{x}(X,π∗(F(mD))) 6 r · dimH1

{x}(X,π∗OX′(π∗H +mD)))

+ dimH0
{x}(X,Rm), (1.2)

r · dimH1
{x}(X,π∗OX′(−π∗H +mD))) 6 dimH1

{x}(X,π∗(F(mD)))

+ dimH0
{x}(X,Qm).

Since the cohomology of twists of torsion sheaves grows submaximally by
[19, Ex.1.2.33], from the inequality

dimH0
{x}(X,Qm) 6 dimH0(X,Qm)

6 dimH0(X,π∗(Q(mD))) = dimH0(X ′, Q(mD))

together with the corresponding one for R and (1.2), we conclude by the
next easy lemma. �

ANNALES DE L’INSTITUT FOURIER
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Lemma 1.7. — (i) If L is a Cartier divisor on X, then h1
x(D +

π∗L) = h1
x(D).

(ii) In particular, if D and D′ are linearly equivalent on X ′, then
h1
x(D) = h1

x(D′).

Proof. — Cohomology with supports at x is a local invariant by excision.
Choosing an affine neighborhood where OX(L) is trivial yields the result.

�

Corollary 1.8. — If f : Y → X ′ is projective and birational, then
volx(D) = volx(f∗D).

Proof. — This is an immediate consequence of applying Lemma 1.6 for
the torsion free sheaf of rank one F = f∗OY . �

We also deduce a useful result concerning pullbacks by finite maps.

Proposition 1.9. — Let π : X ′ → X and ρ : Y ′ → Y be projective
birational morphisms onto normal quasiprojective varieties of dimension n
at least two. Let y be a point on Y . Assume f : X → Y is a finite morphism
that has a lift to a generically finite morphism f ′ : X ′ → Y ′ and let D be
a Cartier divisor on Y ′. Then

(deg f) · voly(D) =
∑

x∈f−1{y}

volx(f ′∗D).

Note that the index family for the sum is taken set theoretically, not scheme
theoretically.

Proof. — Let i : Y \ {y} → Y and j : X \ f−1{y} be the natural open
embeddings. As a consequence of Remark 1.1,

dim j∗j
∗π∗OX′(f ′∗D)
π∗OX′(f ′∗D) =

∑
x∈f−1{y}

h1
x(f ′∗D).

Looking at global sections and by the finiteness of f ,

dim j∗j
∗π∗OX′(f ′∗D)
π∗OX′(f ′∗D) = dim f∗

(
j∗j
∗π∗OX′(f ′∗D)
π∗OX′(f ′∗D)

)
= dim f∗j∗j

∗π∗OX′(f ′∗D)
f∗π∗OX′(f ′∗D) .

TOME 63 (2013), FASCICULE 5
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Chasing through the diagram

X ′
f ′ //

π

��

Y ′

ρ

��

X ′′
+ �

j′
99ssssssssss f ′′ //

π′

��

Y ′′
, �

i′
;;vvvvvvvvv

ρ′

��

X
f // Y

X \ f−1{y}
+ �

j

99ssssssssss
f ′ // Y \ {y}

- 
 i

;;wwwwwwwww

obtained by restricting outside y and its preimages, and applying flat base
change ([12, Prop. III.9.3]) for the flat open embedding i, one finds that

dim f∗j∗j
∗π∗OX′(f ′∗D)

f∗π∗OX′(f ′∗D) = dim i∗i
∗ρ∗F(D)
ρ∗F(D) ,

with F denoting the torsion free sheaf f ′∗OX′ of rank deg(f) on Y ′. The
result is now a consequence of Lemma 1.6 and of Corollary 1.28. �

We are ready to study local volumes and draw parallels with the theory
of volumes of Cartier divisors on projective varieties.

Proposition 1.10 (Finiteness). — If D is a Cartier divisor on X ′, then
volx(D) is finite.

Proof. — We can assume that X and X ′ are projective. Choose H ample
on X such that π∗H − D is effective. From the restriction sequence for
cohomology with supports,

h1
x(mD) 6 h0(X \ {x}, π∗OX′(mD)) + h1(X,π∗OX′(mD)).

By the choice of H, we have

h0(X \ {x}, π∗OX′(mD)) 6 h0(X \ {x},OX(mH)) = h0(X,OX(mH)).

The last equality holds since X is normal of dimension n > 2. For any
m > 0, we have a short exact sequence

0→ OX′(mD)→ OX′(m · π∗H)→ Qm → 0

that defines Qm. Pushing forward and taking cohomology, one finds

h1(X,π∗OX′(mD)) 6 h0(X ′, Qm) + h1(X,OX(mH)) 6

6 h0(X,OX(mH)) + h1(X ′,OX′(mD)) + h1(X,OX(mH)).
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We conclude that

volx(D) 6 2 · vol(H) + ĥ1(D) + ĥ1(H)

with the right hand side being finite by [18, Rem.2.2]. �

Remark 1.11. — Note the when x is a point on a nonsingular curve,
even dimH1

{x}(OX) is infinite. Therefore the assumption that dimX > 2
is crucial.

Proposition 1.12 (Homogeneity). — With the same hypotheses as be-
fore, volx(mD) = mn · volx(D) for any integer m > 0.

Proof. — Following ideas in [19, Lem.2.2.38] or [18, Prop.2.7], for i ∈
{0, . . . ,m− 1}, let

ai =def lim sup
k→∞

h1
x((mk + i)D)

kn/n! .

It is easy to see that
volx(D) = max

i
{ ai
mn
}.

On the other hand, Lemma 1.6 implies that a0 = . . . = am−1 = volx(mD).
�

Our prototype example, when we can compute local volumes and see
an explicit connection to the theory of volumes of divisors on projective
varieties, is the case of cones over polarized projective varieties.

Example 1.13 (Cone singularities). — Let (V,H) be a nonsingular pro-
jective polarized variety of dimension n− 1. Assume that H is sufficiently
positive so that the vertex 0 is the isolated singularity of the normal variety

X = Spec
⊕
m>0

H0(V,O(mH)).

Blowing-up 0 yields a resolution of singularities for X that we denote Y .
The induced morphism π : Y → X is isomorphic to the contraction of the
zero section E of the geometric vector bundle

SpecOV Sym•OV (H).

Let f : Y → V denote the bundle map. We have f∗OY = Sym•OV (H).
Being the zero section, E is isomorphic to V . Concerning divisors on Y , we
mention the following well–known results:

Pic(Y ) = f∗Pic(V ),
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and divisors on Y are determined, up to linear equivalence, by their restric-
tion to E:

OY (D) = f∗OV (D|E).
The co-normal bundle of E in Y is:

OE(−E) ' OV (H).

Let L be a divisor on V and D = f∗L. Since X is affine, Remark 1.1 implies

h1
{0}(mD) = dim

⋃
k>0H

0(Y,OY (mD + kE))
H0(Y,OY (mD)) =

∑
k>1

h0(OV (mL− kH)).

We aim to show that

vol{0}(D) = n ·
∫ ∞

0
volV (L− tH)dt,

the volume on the right hand side being the volume of Cartier divisors on
the projective variety V . Note that the integral is actually definite, because
H is ample. By homogeneity and a change of variables, we can assume we
are computing the integral over the interval [0, 1]. Since H is ample, the
function t→ volV (L− tH) is decreasing, hence for all k > 0,

1
k
·
k∑
i=1

volV (L− i

k
H) 6

∫ 1

0
volV (L− tH)dt 6 1

k
·
k−1∑
i=0

volV (L− i

k
H).

For any ε > 0, there exists s0 depending on ε and k such that for s > s0,

n

k
·
k−1∑
i=0

volV (L− i

k
H) 6 n!

knsn−1 ·
k−1∑
i=0

h0(skL− siH) + ε =

n!
knsn−1 ·

k∑
i=1

h0(skL− siH) + ε+ h0(skL)− h0(skL− skH)
(sk)n−1 · k/n! 6

6
h1
{0}(skD)
(sk)n/n! + ε+ h0(skL)− h0(skL− skH)

(sk)n−1 · k/n! .

Letting s tend to infinity,

n

k
·
k−1∑
i=0

volV (L− i

k
H) 6

vol{0}(kD)
kn

+ ε+ volV (kL)− volV (kL− kH)
kn−1 · k/n

=

= vol{0}(D) + ε+ volV (L)− volV (L−H)
k/n

,

the equality taking place by the n and n−1 homogeneity properties of vol0
and vol respectively. Taking limits with k and ε, we obtain

n ·
∫ ∞

0
volV (L− tH)dt 6 vol{0}(D).
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The reverse inequality follows in similar fashion. �

We say that the Weil divisor D on X ′ lies over x if π(D) = {x} set
theoretically, or if D = 0. We know that the volume of Cartier divisors on
projective varieties increases in effective directions and variations can be
controlled by a result of Siu (see [19, Thm.2.2.15] and [19, Ex.2.2.23]). As
we shall soon see, volx behaves quite differently depending on whether the
effective divisor lies over x or if it has no components with this property.
Controlling the variation of volumes in effective directions is our key to
proving continuity properties.

Lemma 1.14. — On X ′, let E be an effective Cartier divisor lying over
x. Then for any Cartier divisor D on X ′,

(i) h1
x(D) > h1

x(D + E) and hence volx(D) > volx(D + E).
(ii) h1

x(D)− h1
x(D + E) 6 h0((D + E)|E).

(iii) If E = A−B with A and B two π−ample divisors on X ′, then

volx(D)− volx(D + E) 6 n · vol((D +A)|E),

with the volume in the right–hand side being the volume of divisors
on the projective n− 1 dimensional sub-scheme E of X ′.

Proof. — Denote by i the natural embedding X \{x} ↪→ X and consider
the diagram

π∗OX′(D)� _

��

� � // π∗OX′(D + E)� _

��
i∗i
∗π∗OX′(D) i∗i

∗π∗OX′(D + E)

We get an induced surjection between the cokernels of the vertical maps
and part (i) follows by Remark 1.1. The same remark, together with the
inclusion map

π∗OX′(D + E)
π∗OX′(D) ↪→ π∗OE(D + E)

lead to part (ii). A repeated application of (ii) yields

h1
x(mD)− h1

x(mD +mE) 6
m∑
k=1

h0((mD + kE)|E) 6 m · h0(m(D +A)|E),

with the last inequality following from the assumptions on A and B that
imply the effectiveness of A|E and (A− E)|E . Part (iii) follows by taking
asymptotic limits. �
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Quite opposite behavior is observed for effective divisors without compo-
nents over x. We can control variations in such directions only in the non-
singular case, but we do have the tools to reduce our general questions to
this case.

Lemma 1.15. — Assume X ′ is nonsingular and let F be an effective
divisor without components lying over x. There exists a π−ample divisor
−∆1 −∆2 with ∆1 effective lying over x and ∆2 effective without compo-
nents over x, such that −∆1−∆2−F is π−very ample. Write ∆1 = M−N
with M and N two π−ample divisors. Then for any divisor D,

(i) h1
x(D + F ) > h1

x(D) and volx(D + F ) > volx(D).
(ii) h1

x(D + F )− h1
x(D) 6 h0(D|∆1).

(iii) volx(D + F )− volx(D) 6 n · vol((D +N)|∆1).

Proof. — To justify the existence of ∆1 and ∆2, it is enough to show
that there exists an antieffective (its dual is effective) π−ample divisor. By
[12, Thm.II.7.17], since π is projective birational, X ′ is the blow-up of some
ideal sheaf on X. The relative Serre bundle of the blow-up is both negative
and π−ample.

Let i be the natural open embedding X \ {x} ↪→ X. Examining the
diagram

π∗OX′(D)� _

��

� � // π∗OX′(D + F )� _

��
i∗i
∗π∗OX′(D) � � // i∗i∗π∗OX′(D + F )

we get an induced injective morphism between the cokernels of the vertical
maps if we show that

π∗OX′(D) = π∗OX′(D + F ) ∩ i∗i∗π∗OX′(D),

the intersection taking place in i∗i
∗π∗OX′(D + F ). It is enough to show

this on the level of sections over open neighborhoods of x. Let U be such an
open set on X and let V be its inverse image in X ′. Let E be the divisorial
support of the set theoretic fiber π−1(x). Since X ′ is in particular normal,
we have to show

H0(V,OX′(D)) = H0(V,OX′(D + F )) ∩H0(V \ {E},OX′(D))

inside H0(V \ {E},OX′(D + F )) which is easily checked. Part (i) follows
by Remark 1.1.
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Let A be a divisor without components over x that is π−linearly equiv-
alent to −∆1 −∆2 − F . By part (i) and Lemmas 1.7 and 1.14,
h1
x(D+F )−h1

x(D) 6 h1
x(D+F +A+∆2)− h1

x(D) =h1
x(D−∆1)−h1

x(D)

6 h0(D|∆1).
Consider the telescopic sum as in Lemma 1.14 and the previous estimate:

h1
x(m(D + F ))− h1

x(mD) 6
m∑
k=1

h0((mD − (k − 1)∆1)|∆1)

6 m · h0(m(D +N)|∆1),

because (mN + (k− 1)∆1)|∆1 = ((m− k+ 1)N + (k− 1)M)|∆1 is effective
for any 1 6 k 6 m. Part (iii) follows by taking asymptotic limits. �

We aim to prove that volx(D) depends only on the π−relative numerical
class of D in N1(X ′/X).

Lemma 1.16. — Let T be a π−nef divisor on X ′. Then volx(D + T ) >
volx(D).

Proof. — By Lemma 1.6, we can assume that X ′ is nonsingular. Let then
F be a π−ample divisor on X ′. For any m > 1, there exists km > 0 such
that km(mT + F ) is π−linearly equivalent to an effective divisor without
components lying over x. By Lemmas 1.7 and 1.15 and Proposition 1.12,
we have

volx(m(D + T ) + F )
mn

> volx(D). (1.3)

By part (iii) of Lemma 1.15, with the notation there,

volx(m(D+T ) +F )−volx(m(D+T )) 6 n ·vol((m(D+T )−∆1 +M)|∆1).

Since the support of ∆1 is of dimension n−1, dividing by mn and applying
Proposition 1.12 and the inequality (1.3),

volx(D + T ) = lim
m→∞

volx(m(D + T ) + F )
mn

> volx(D).

�

Corollary 1.17 (Relative numerical invariance). — Let T be a
π−numerically trivial divisor on X ′. Then for any Cartier divisor D on
X ′, we have

volx(D + T ) = volx(D).

Proof. — Both T and −T are π−nef, hence

volx(D) 6 volx(D + T ) 6 volx((D + T ) + (−T )) = volx(D).

�
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By Corollary 1.17, the local volume volx is a well defined function on
N1(X ′/X). From the homogeneity result in Proposition 1.12, it also has a
natural extension to N1(X ′/X)Q. By proving continuity on this space, we
are able to extend to real coefficients.

Proposition 1.18 (Continuity). — Fix a norm | · | on the finite di-
mensional relative numerical real space N1(X ′/X)R. Then there exists a
positive constant C such that for any A and B in the rational vector space
N1(X ′/X)Q we have the Lipschitz–type estimate:

|volx(B)− volx(A)| 6 C · (max(|A|, |B|))n−1 · |A−B|.

Proof. — We show we can assume thatX ′ is nonsingular. Let f : Y → X ′

be a resolution of singularities. Then f∗ induces an injective morphism
N1(X ′/X) ↪→ N1(Y/X) which does not change the values of volx by Corol-
lary 1.7. Hence it is sufficient to prove our estimate for X ′ nonsingular.
We can choose λ1, . . . , λk a basis for N1(X ′/X)R composed of integral

π−very ample divisors without components over x. Relative to this basis,
we can assume that

|(a1, . . . , ak)| = max
16i6k

|ai|.

With notation as in Lemma 1.15, choose ∆1 and ∆2 two effective integral
divisors with the first lying over x whereas the second has no components
over x such that for all i ∈ {1, . . . , k}, the divisor−∆1−∆2−λi is π−linearly
equivalent to one without components lying over x. Write ∆1 = M − N
with M and N two π−ample divisors. Let

A = (a1, . . . , ak), B = (a1 + b1, . . . , ak + bk), N = (α1, . . . , αk)

with all entries being rationals. Since our estimate to prove and volx are
both n−homogeneous, we can further assume that all the entries are inte-
gers. Note that the αi are fixed.

If we denote Bi = (a1, . . . , ai, ai+1 + bi+1, . . . , ak + bk) and set

Ai =
{
Bi−1 + biN, if bi > 0
Bi − biN, if bi 6 0 ,

then

|volx(B)− volx(A)| 6
k∑
i=1
|volx(Bi−1)− volx(Bi)| 6 n ·

k∑
i=1

vol(Ai||bi|∆1)
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by Lemma 1.15. Let
α = max

16i6k
(|αi|).

Since λi||bi|∆1 is ample for all i and vol(D|∆1) = Dn−1 ·∆1 if D is π−ample,

n ·
k∑
i=1

vol(Ai||bi|∆1)

6 n(1 + α)n−1 · max
16i6k

(|ai|+ |bi|)n−1 · ((
k∑
i=1

λi)n−1 ·∆1) ·
k∑
i=1
|bi|.

Setting

C = nk · 2n−1(1 + α)n−1 · ((
k∑
i=1

λi)n−1 ·∆1)

concludes the proof. �

Putting together Propositions 1.12 and 1.18 with Corollary 1.17, we have
proved:

Theorem 1.19. — Let X be a normal complex quasiprojective variety
of dimension n and let x be a point on X. Let π : X ′ → X be a projective
birational morphism. Then volx is a well–defined, n−homogeneous and
continuous function on N1(X ′/X)R.

We say a few words about extending the results in this subsection to
proper birational morphisms and to algebraically closed fields of arbitrary
characteristic.

Remark 1.20. — By working in an affine neighborhood of x ∈ X, we
can remove the assumption that X is quasiprojective.

Remark 1.21 (Proper morphisms). — Using Chow’s lemma
([12, Ex.II.4.10]) and adjusting the proof of Lemma 1.6, we can extend
our results to proper birational morphisms π : X ′ → X.

Remark 1.22 (Generically finite morphisms). — Aiming to remove the
birational assumption in our setting, assume π : X ′ → X is a generically fi-
nite proper morphism. Denote by X̃ the normalization ofX ′, by D̃ the lift of
D and by Ỹ the normalization of the Stein factorization ([12, Cor.III.11.5])
of π. Note that Ỹ is the Stein factorization of the induced morphism X̃ → X

and that the morphism X̃ → Ỹ is birational. Let {y1, . . . , yk} be the set
theoretic preimage of x in Ỹ . Then one can define

volx(D) =def
1

deg π

k∑
i=1

volyi(D̃).
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Proposition 1.9 and Lemma 1.6 make this definition compatible with the
birational case, i.e.,

volx(D) = lim sup
m→∞

dimH1
{x}(X,π∗OX′(mD))
deg(π) ·mn/n! .

Remark 1.23 (Positive characteristic). — We have used characteristic 0
in studying the variational behavior of local volumes in Lemma 1.15 where
we reduced toX ′ being nonsingular, which we could upon replacingX ′ by a
resolution of singularities. In arbitrary characteristic, over an algebraically
closed field, to extend the results of this subsection, one first replaces X ′ by
a regular alteration ([5]) and applies the discussion above for generically
finite proper morphisms to reduce to the case where π is birational and
X ′ is regular. The price to pay is that x is replaced by a finite collection
of points, but this is afforded by Proposition 1.9 via Corollary 1.28 which
extends in characteristic p under the assumption that X ′ is regular.

1.2. Convex bodies and Fujita approximation

Given a projective birational morphism π : X ′ → X onto the complex
normal algebraic variety X of dimension n > 2 and given x ∈ X, and a
Cartier divisor D on X ′, we realize volx(D) as a volume of a not necessarily
convex body arising naturally as the bounded difference of two possibly
unbounded convex nested polyhedra. This approach has proven effective
in [20] in particular for proving that volumes of Cartier divisors are actual
limits and for developing Fujita–type approximation results. By employing
similar techniques, we extend these results to the local setting.
Assume unless otherwise stated that π : (X ′, E) → (X,x) is a log-

resolution of the normal affine (X,x), with x not necessarily an isolated
singularity. Such a resolution factors through the blow-up of X at x. Let
E = E1 + . . . + Ek be the irreducible decomposition of the reduced fiber
over x. Since X is assumed to be affine, for any divisor D on X ′, we have
by Remark 1.1 that

H1
{x}(X,π∗OX′(D)) = H0(X ′ \ E,OX′(D))

H0(X ′,OX′(D)) .

The dimension of the above vector space is h1
x(D) (see 1.1). Spaces of

sections of multiples of line bundles on X ′ are studied in [20] via valuation–
like functions defined with respect to a choice of a complete flag. It is
important to work with line bundles on X ′ and not X ′ \E. In this regard,
the following lemma helps us handle H0(X ′ \ E,OX′(mD)) for all m > 0.
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Lemma 1.24. — In the above setting, for any divisor D on nonsingular
X ′ there exists r > 0 such that for allm > 0 there is a natural identification

H0(X ′ \ E,OX′(mD)) ' H0(X ′,OX′(m(D + rE))).

Proof. — For any divisor L on X ′, identify

H0(X ′,OX′(L)) = {f ∈ K(X) : div(f) + L > 0}. (1.4)

With this identification, recall that

H0(X ′ \ E,OX′(mD)) =
⋃
i>0

H0(X ′,OX′(mD + iE)).

There exists an inclusion OX′(D) ⊆ π∗OX(H) for some effective Cartier
(sufficiently ample) divisor H on X. Since X is normal, rational functions
defined outside subsets of codimension two or more extend and so
H0(X ′ \ E, π∗OX(mH)) = H0(X \ {x},OX(mH))

= H0(X,OX(mH)) = H0(X ′, π∗OX(mH)).

For all non-negative i and m, the following natural inclusions are then
equalities:

H0(X ′,OX′(π∗mH)) ⊆ H0(X ′,OX′(π∗mH + iE))

⊆ H0(X ′ \ E,OX′(π∗mH)).

Choose r so that the order of D + rE along any irreducible component of
E is strictly greater than the order of π∗H along the same component. For
s > r, that div(f) +m(D + sE) is effective implies that

f ∈ H0(X ′,OX′(m(D + sE))) ⊆ H0(X ′,OX′(m(π∗H + sE)))

= H0(X ′,OX′(π∗mH)),

therefore div(f) + π∗mH is also effective. Looking at the orders along
the components of E, because of our choice of r, we actually get f ∈
H0(X ′,OX′(m(D + rE))). �

Consider a complete flag of subvarieties of X ′, i.e., each is a divisor in
the previous subvariety:

Y• : X ′ = Y0 ⊃ E1 = Y1 ⊃ . . . ⊃ Yn = {y}

such that each Yi is nonsingular at y. Recall that E1 is a component of E,
the reduced fiber of π over x. Following [20, 1.1], for any divisor D on X ′,
we construct a valuation like function

ν = νD = (ν1, . . . , νn) : H0(X ′,OX′(D))→ Zn ∪ {∞}
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having the following properties:

(i). ν(s) =∞ if, and only if, s = 0.

(ii). ν(s+ s′) > min{ν(s), ν(s′)} for any s, s′ ∈ H0(X ′,OX′(D)).
(iii). νD1+D2(s1 ⊗ s2) = νD1(s1) + νD2(s2) for any divisors Di on X ′

and any si ∈ H0(OX′(Di)).
Each νi is constructed by studying orders of vanishing along the terms

of the flag Y•. For s ∈ H0(X ′,OX′(D)), define first ν1(s) as the order of
vanishing of s along E1. If f is the rational function corresponding to s via
the identification (1.4), then ν1(s) is the coefficient of E1 in div(f) +D. A
non-unique local equation for Y1 in Y0 then determines a section

s ∈ H0(Y1,OY0(D − ν1(s)Y1)|Y1)

having a uniquely defined order of vanishing along Y2 that we denote ν2(s)
and the construction continues inductively. More details can be found in
[20, 1.1]. Note that the νi assume only non-negative values.

For any divisor D on X ′ and for m > 0, with r given by Lemma 1.24, let

I ′m = νm(D+rE)(H0(X ′,OX′(m(D + rE)))), (1.5)

Im = νm(D+rE)(H0(X ′,OX′(mD))), (1.6)
Bm = I ′m \ Im. (1.7)

By construction, I ′• =
⋃
m>0(I ′m,m) and I• =

⋃
m>0(Im,m) are semi-

groups of Nn+1. We abuse notation in identifying the sets Im and (Im,m).
We will soon prove (Lemma 1.26) that

#Bm = dim H0(X ′,OX′(m(D + rE)))
H0(X ′,OX′(mD)) = h1

x(mD).

Assuming this result, we aim to show that volx(D) is the normalized volume
of the not necessarily convex polytope B obtained as the difference of two
nested polytopes arising as Okounkov bodies of some sub-semigroups of I ′•
and I• respectively, each satisfying the conditions [20, (2.3)-(2.5)]. For a
semigroup Γ• ⊆ Nn+1 with Γm = Γ• ∩ (Nn ×{m}), these conditions are as
follows:

(Strictness): Γ0 = {0}.

(Boundedness): Γ• ⊆ Θ•, for some semigroup Θ• ⊆ Nn+1

generated by the finite set Θ1.

(Denseness): Γ• generates Zn+1 as a group.
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A semigroup Γ• satisfying the above conditions generates the closed convex
cone

Σ(Γ) ⊂ Rn+1
>0 ,

which determines the convex polytope (the associated Okounkov body)

∆(Γ) = Σ(Γ) ∩ (Rn × {1}).

By [20, Prop.2.1], with the volume on Rn normalized so that the volume
of the unit cube is one,

volRn(∆(Γ)) = lim
m→∞

#Γm
mn

.

Our first challenge is to show that Bm (see 1.7) is linearly bounded with m.
With Lemma 1.26 still to prove, we show the following apparently stronger
independent result:

Lemma 1.25. — For a divisor D on nonsingular X ′, with r as in Lemma
1.24, there exists N > 0 such that for all i and m, with valuation like
functions on H0(X ′,OX′(m(D + rE))) as above, we have νi(s) 6 mN for
any s ∈ H0(X ′,OX′(m(D+rE)))\H0(X ′,OX′(mD)), e.g., νm(D+rE)(s) ∈
Bm.

Proof. — Let H be a relatively ample integral divisor on X ′ and assume
we have shown that there exists such a linear bound N1 for ν1. Since Y1 is
projective, as in [20, Lem.1.10], there exists N2 such such that for all real
number 0 6 a < N1

((D + rE − aY1)|Y1 −N2Y2) ·Hn−2 < 0.

This provides the linear bound for ν2 and one iterates this construction for
all i > 1. Letting N be the maximum of all Ni completes the proof. We
still have to construct N1. The idea here is to apply a theorem of Izumi
that shows that a regular function with a high order of vanishing along E1
also vanishes to high order along the other Ei. The technical part is to see
how to apply this to rational functions giving sections of OX′(m(D+ rE)).
Since X is assumed to be affine, there exists a rational function g such that

G =def div(g)−D − rE

is effective on X ′. With the identification in (1.4), for any f in
H0(X ′,OX′(m(D + rE))), the a priori rational function f · gm is regu-
lar on X ′. Let

div(f · gm) = C +
k∑
i=1

ciEi
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with Ei the components of the reduced fiber E over x, with ci > 0 for all i
and C an effective divisor without components over x. There exists R > 1
such that if c1 > 0, then

R >
ci
cj
>

1
R

for all i, j. This is an analytic result of Izumi ([15]), extended to arbitrary
characteristic by Rees ([24]). It follows that even when c1 = 0,

div(f · gm) = C +
k∑
i=1

ciEi > C + c1
R
· E.

If s is the regular section associated to f , i.e., its zero locus is Z(s) =
div(f) +m(D + rE), then the above inequality can be rewritten as

Z(s) = C −mG+
k∑
i=1

ciEi > C −mG+ c1
R
· E.

If ρ is the maximal coefficient of any Ei in G and g1 is the coefficient of
E1, we set N1 = R(r+ρ− g1) and see that when ν1(s) = c1−mg1 > mN1,
then Z(s) > mrE showing that

s ∈ H0(X ′,OX′(mD)) ⊆ H0(X ′,OX′(m(D + rE))).

�

We now prove that Bm has the expected cardinality.

Lemma 1.26. — With notation as above, for allm > 0, we have #Bm =
h1
x(mD).

Proof. — Without loss of generality, we can assume that m = 1. By
Lemma 1.25, the set B1 is bounded and therefore finite. The idea is to
reduce the problem to the projective setting where we apply [20, Lem.1.3].
Recall that X is assumed to be affine. Let π : X ′ → X be a compact-

ification of π such that X \ X is the support of an ample divisor H. By
abuse of notation, we also write H for its pullback, and we use the same
notation for D and its closure in X ′. Note that the pullback of H is big
and semi–ample. For all m > 0, the natural inclusion

H0(X ′,OX′(m(tH +D + rE))) ⊂ H0(X ′,OX′(m(D + rE)))

is compatible with the valuation like functions νm(tH+D+rE) and νm(D+rE)
that we construct when working over X ′ and X ′ respectively with the flag
Y• and the obvious compactification that replaces Y0 = X ′ by X ′ and
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leaves the remaining terms unchanged. We have the same compatibility for
νm(tH+D) and νmD. Note also that

H0(X ′,OX′(D + rE)) =
⋃
t>0

H0(X ′,OX′(tH +D + rE))

and a similar statement holds for D. When t is sufficiently large so that

H1(X,π∗OX′(D)⊗OX(tH)) = 0, (1.8)

excision and the natural cohomology sequence on X show that

H1
{x}(X,π∗OX′(D)) '

H0(X ′,OX′(tH +D + rE))
H0(X ′,OX′(tH +D))

. (1.9)

Note that the r provided by Lemma 1.24 also works to prove

H0(X ′,OX′(tH +D + rE)) = H0(X ′ \ E,OX′(tH +D)).

Denote

W ′t = H0(X ′,OX′(tH +D + rE))

Wt = H0(X ′,OX′(tH +D))

W ′ =
⋃
t>0

W ′t = H0(X ′,OX′(D + rE))

W =
⋃
t>0

Wt = H0(X ′,OX′(D)).

With the intersection taking place in W ′, note that

Wt = W ′t ∩W.

Let t be large enough so that the vanishing (1.8) takes place and such that
ν(W ′t ) contains the set N of all elements in ν(W ′) satisfying the bound in
Lemma 1.25 and such that ν(Wt) contains all elements in ν(W ) ∩ N . We
show that

ν(W ′t ) \ ν(Wt) = ν(W ′) \ ν(W ) = B1.

Since B1 ⊂ N by Lemma 1.25, all its elements are in ν(W ′t ) by the choice of
t and are not in ν(Wt) ⊂ ν(W ). ThereforeB1 ⊆ ν(W ′t )\ν(Wt). Again by the
choice of t, any element in ν(W ′t )\ν(Wt) that is not in B1 is also not in N .
Let σ ∈W ′t such that ν(σ) ∈ (ν(W ′t )\ν(Wt))\B1. Then ν(σ) ∈ ν(W ′t )\N
and again by Lemma 1.25 we obtain σ ∈W , hence σ ∈W ∩W ′t = Wt and
ν(σ) ∈ ν(Wt) which is impossible.
Now #B1 = #(ν(W ′t ) \ ν(Wt)) = #ν(W ′t ) −#ν(Wt) = h1

x(D) by (1.9)
and by [20, Lem.1.3], a result that shows #ν(W ′t ) = dimW ′t and the anal-
ogous result for Wt. �
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We next construct sub-semigroups Γ′• ⊂ I ′• and Γ• ⊂ I•, each satisfying
the properties [20, (2.3)-(2.5)] reviewed on page 18, and such that Bm =
Γ′m \ Γm for all m. With notation as in the proof of Lemma 1.26 and with
t sufficiently large so that tH +D is big, let

Sm = νm(tH+D+rE)(H0(X ′,OX′(m(tH +D)))).

If we pick the flag Y• so that Yn = {y} is not contained in any Ei for i > 1
(1) , then

Sm = translation of νm(tH+D)(H0(X ′,OX′(m(tH +D))))

by (mr, 0, 0 . . . , 0,m) ∈ Nn+1.

That S• satisfies the conditions on page 18 (see also [20, (2.3)-(2.5)]) fol-
lows by [20, Lem.2.2]. By [20, Lem.1.10], there exists a linear bound for
S• in the sense of Lemma 1.25. Let N be the greatest of the two linear
bounds provided by Lemmas 1.25 and [20, Lem.1.10]. If xi denotes the i-th
coordinate on Nn, let

Γm = {(x1, . . . , xn) ∈ Im : xi 6 mN for all 1 6 i 6 n}

and construct Γ′• similarly. By construction, these semigroups satisfy the
strictness ([20, (2.3)]) and boundedness ([20, (2.4)]) conditions. They also
each generate Zn as a group because they contain S• which does. By Lemma
1.25, we have Bm = Γ′m \ Γm. Letting B = ∆(Γ′) \∆(Γ), we prove:

Proposition 1.27. — With notation as above, we have

volx(D) = n! · volRn(B),

where volRn(•) is the Euclidean volume on Rn (normalized so that the
volume of the unit cube is 1).

Proof. —

volx(D) = lim sup
m→∞

h1
x(mD)
mn/n! = n! · lim sup

m→∞

#Bm
mn

= n! · lim sup
m→∞

#Γ′m −#Γm
mn

.

By [20, Prop.2.1], these lim sup can be replaced by lim, and

lim
m→∞

#Γ′m −#Γm
mn

= volRn(∆(Γ′) \∆(Γ)) = volRn(B)

and the conclusion follows. �

As a corollary we obtain that the lim sup in the definition of volx can be
replaced by lim in the general case.

(1)We thank Tommaso de Fernex for suggesting this choice
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Corollary 1.28. — Let π : X ′ → X be a projective birational mor-
phism onto the complex normal algebraic X of dimension n > 2 and let x
be a point on X. Then for any Cartier divisor on X ′, we have

volx(D) = lim
m→∞

h1
x(mD)
mn/n! .

Proof. — Let f : X̃ → X ′ be a projective birational morphism such that
ρ = π ◦ f : X̃ → X is a log-resolution of (X,x). Since volx(D) is local
around x, we can also assume that X is affine. By the proof of Lemma 1.6,
the sequences h1

x(mD) and h1
x(mf∗D) have the same asymptotic behavior.

Therefore we have reduced to the setting of Proposition 1.27 where we saw
that lim can replace lim sup. �

Remark 1.29. — The natural approach to the problem of expressing
volx(D) as a volume of a polytope and replacing lim sup by lim is to write
Bm = Γ′m \Γm with Γ′• and Γ• semigroups constructed on compacfications
of π, in the same style as we did for S•, and then apply [20, Thm.2.13]. This
approach is successful when we have an analogue of [20, Lem.3.9], i.e., when
we can show that, at least asymptotically, the groups H1(X,π∗OX′(mD)⊗
OX(mH)) vanish for some ample divisorH on a projective compactification
π of π. We do not know if such a result holds for any Cartier divisor D on
X ′. We do know it when the graded family am = π∗OX′(mD) is of the form
bm outside x, e.g., when D lies over x, or when D = K

X̃
+ aE with a ∈ Z

on a log-resolution π : (X̃, E)→ (X,x) of a normal isolated singularity.

The content of the classical Fujita approximation statement is that the
volume of a Cartier divisor D on a projective variety X of dimension n

can be approximated arbitrarily closely by volumes vol(A) where A is a nef
Cartier Q−divisor on some blow-up π : X ′ → X, such that A 6 π∗D. In
the local setting, a step forward in proving a similar result is provided by
[20, Thm.3.8], but before discussing it we introduce some notation.

Definition 1.30. — Let X be a quasiprojective variety of dimension n
with a fixed point x. On X, consider a graded sequence of fractional ideal
sheaves a• (i.e. a0 = OX and ak · al ⊆ ak+l) and define its generalized
Hilbert–Samuel multiplicity at x as

ĥ1
x(a•) =def lim sup

p→∞

dimH1
{x}(ap)

pn/n! .

When ap = Ip for all p and for some fixed fractional ideal sheaf I, denote

ĥ1
x(I) =def ĥ

1
x(a•).
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Remark 1.31. — When I is an ideal sheaf in OX , we understand the
local cohomology group H1

{x}(I) as Ĩ/I, where Ĩ is obtained from I by
removing the m−primary components in any primary ideal decomposition,
where m is the maximal ideal associated to the point x. Algebraically,

Ĩ = (I : m∞) =def
⋃
p>0

(I : mp).

By restricting to an affine neighborhood of x,

H1
{x}(I) = H0

{x}(OX/I).

When a• is a graded sequence of m−primary ideals in OX , then ĥ1
x(a•)

coincides with the multiplicity defined in [20, Sec.3.2]. If I is an m−primary
ideal, then ĥ1

x(I) is the Hilbert–Samuel multiplicity of I at m.

Remark 1.32. — Let D be a Cartier divisor on X ′. Write ap for the
coherent fractional ideal sheaf π∗OX′(pD). By definition,

volx(D) = ĥ1
x(a•).

Remark 1.33. — When a is a fractional ideal sheaf on X and O(1)
denotes the relative Serre bundle on the blow-up of X along a, then using
[19, Lem.5.4.24],

ĥ1
x(a) = volx(O(1)).

The Fujita approximation result in [20, Thm.3.8] states that for any graded
sequence a• of m−primary ideals,

ĥ1
x(a•) = lim

p→∞

ĥ1
x(ap)
pn

.

For local volumes, in a particular case, we can remove the m−primary
assumptions.

Theorem 1.34. — Fix D a Cartier divisor on X ′, and assume that
there exists a coherent fractional ideal sheaf b on X \{x} such that ap =def
π∗OX′(pD)|X\{x} = bp for all p > 1. Then

volx(D) = lim
p→∞

ĥ1
x(π∗OX′(pD))

pn
.

Sketch of proof: We can assume that X is projective. By [20, Lem.3.9],
when D lies over x, there exists an ample divisor H on X such that for
every p, k > 0,

H1(X,OX(pkH)⊗ (π∗OX′(pD))k) = 0
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and the subspaces H0(X,OX(pH) ⊗ π∗OX′(pD)) ⊆ H0(X,OX(pH)) de-
termine rational maps

φp : X // PH0(X,OX(pD))

that are birational onto their image for all p > 0. The m−primary hypothe-
sis induced by D lying over x is only used to show that akp

akp1
is supported at

x for all k, p > 0. But this also holds under our assumptions on the graded
family a•.

The proof of our result is then an almost verbatim copy of [20, Thm.3.8],
noting that ãkp = ãpk for all p, k > 0 and using the short exact sequences

0→ akp → ãpk → H1
{x}(akp)→ 0.

Recall that ã is obtained from a by removing any m−primary components
from any primary ideal decomposition. It is the same as i∗i∗a, where i :
X \ {x} → X is the natural open embedding.

Remark 1.35. — Using Remark 1.33 and Lemma 1.7, Theorem 1.34
implies that volx(D) is the limit of local volumes of Q−Cartier, nef over
X divisors on blow-ups of X ′, thus realizing the analogy with the global
version of the Fujita approximation theorem.

Remark 1.36. — The highly restrictive condition on D in our Fujita
approximation result is automatic when π is an isomorphism outside x,
which is the case for good resolutions of normal isolated singularities π :
(X̃, E)→ (X,x). Even when π is only a log-resolution of a normal isolated
singularity, the divisor K

X̃
+E satisfies the condition of Theorem 1.34 since

X \ {x} is nonsingular.

For the rest of the subsection we look at ĥ1
x(I) for I an ideal sheaf on

normal quasiprojective X of dimension n with a fixed point x and com-
pute two examples. This invariant has been studied in some cases in [3],
where an example of an irrational local multiplicity is given, showing that,
unlike the m−primary case, dimH1

{x}(Ip) is generally not asymptotically
a polynomial function in p.

Remark 1.37. — For the graded family ap = Ip, the lim sup in the
definition of ĥ1

x(I) can be replaced by lim and this limit is finite by Remark
1.33 and Proposition 1.10 (compare [3, Thm.1.3] and [2, Thm.1.3]).
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Example 1.38 (Monomial ideals). — Let I be a monomial ideal in
C[X1, . . . , Xn] and let m = (X1, . . . , Xn) be the irrelevant ideal correspond-
ing to the origin 0 of Cn. Then

(Ik : m∞) =
n⋂
i=1

(Ik : X∞i ).

For an arbitrary monomial ideal J , the ideal (J : X∞i ) can be computed
as ϕ−1

i ϕi(J), where

ϕi : C[X1, . . . , Xn]→ C[X1, . . . , X̂i, . . . , Xn]

is the evaluation map determined by ϕi(Xj) = Xj for j 6= i and ϕi(Xi) = 1.
Geometrically, J is determined by the set A(J) of n−tuples of non-negative
numbers (a1, . . . , an) such that Xa1

1 · . . . · Xan
n belongs to J . Then A(J :

X∞i ) is obtained by taking the integer coordinate points in the preimage of
the image of A(J) via the projection onto the coordinate hyperplane that
does not contain the i−th coordinate axis. Subsequently, A(J : m∞) =⋂n
i=1A(J : X∞i ) and

dimH1
{0}(J) = #(A(J : m∞) \A(J)).

Let P (J) denote the convex span of A(J) in Rn and let P̃ (J) be the polyhe-
dron obtained by intersecting the preimages of the images of the projection
of P (J) onto all the coordinate hyperplanes. Then one checks that

ĥ1
{0}(I) = n! · vol(P̃ (I) \ P (I)),

where the volume used in the right hand side is the euclidean one.
Figure 1.1 illustrates the above principle, computing ĥ1

{0}(I) = 6, for
I = (X3, XY 3) ⊂ C[X,Y ].

P(I)\P(I)
~

(1,3)

(1,0)(0,0)

P(I)

y

x(3,0)

Figure 1.1. (X3, XY 3) ⊂ C[X,Y ]
�
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Example 1.39 (Toric ideals). — Let I be a monomial ideal inside the
toric algebra C[Sσ] where Sσ is the semigroup of integral points of a pointed
(i.e contains no lines) rational convex cone σ of dimension n. Let τ1, . . . , τr
be the minimal ray generators for σ. For a subset V of σ and 0 6 i 6 r, let
Vi = σ ∩

⋃
k>0(V − k · τi). Geometrically, this is the trace left by V inside

σ by sliding it in the direction of −τi.
If P (I) is the convex hull of the set A(I) defined as in the monomial case

and if P̃ (I) is the intersection of all P (I)i, then

ĥ1
xσ (I) = n! · vol(P̃ (I) \ P (I)),

where xσ is the torus–invariant point of Spec(C[Sσ]). �

1.3. Vanishing and convexity of local volumes

Our first objective in this subsection is to study the vanishing of local vol-
umes. We begin by recalling a few general facts about exceptional Cartier
divisors. If π : X ′ → X is a projective birational morphism of quasiprojec-
tive varieties with x a point on the normal variety X, the relative numerical
space N1(X ′/X)R contains two interesting subspaces. The first and largest
of the two is the space of π−exceptional divisors that we denote ED(π). An
exceptional divisor is uniquely determined by its relative numerical class,
as proved by the following result appearing as [1, Lem.1.9]:

Lemma 1.40. — Let π : X ′ → X be a proper birational morphism
with X normal and let α ∈ N1(X ′/X)R. Then there exists at most one
exceptional R−Cartier divisor D on X ′ whose relative numerical class over
X is α. In particular, when X ′ is normal and Q−factorial, the numerical
classes of the irreducible π−exceptional divisors form a basis of ED(π).

Proposition 1.41. — Assume that X and X ′ are both normal and
Q−factorial. Then

N1(X ′/X)R = ED(π).

Proof. — We observe that any Cartier divisor D on X ′ is π−linearly
equivalent, over Q, to an exceptional divisor via

D = π∗(π∗D) + (D − π∗π∗D).

The pullback by π is well defined since the Weil divisor π∗D is Q−Cartier
by assumption and D − π∗π∗D is clearly exceptional. �
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A subspace of ED(π) we have seen to be relevant to the study of local vol-
umes is formed by the divisors lying over x. We denote it by EDx(π). Study-
ing the behavior of the local volume function on this space will prove im-
portant in connecting our work to the study of volumes for some b−divisors
as developed in [1]. A particularly useful result, drawing on [16, Lem.1-3-2],
is [4, Lem.4.5]:

Lemma 1.42. — Let π : X ′ → X be a proper birational morphism
from a nonsingular variety X ′ onto the normal variety X. Let P and N be
effective divisors on X ′ without common components and assume that P
is π−exceptional. Then π∗OX′(P −N) = π∗OX′(−N).

It is natural to ask which divisors in N1(X ′/X)R have zero local volume
over x. The answer to this question is well understood for volumes of Cartier
divisors on projective varieties; we know that vol(D) > 0 is equivalent to
D being in the interior of the cone of pseudo-effective divisors (see [19,
Ch.2.2.C]). In the local setting, we start by looking at the fiber over x.

Proposition 1.43. — For D ∈ EDx(π), the vanishing volx(D) = 0 is
equivalent to D being effective.

Proof. — We can assume that X is projective, that π is a log-resolution
and that D is an integral divisor. If D is effective, then π∗OX′(mD) = OX
for all m > 0 and so volx(D) = 0. Using Lemma 1.42, to complete the
proof, it is enough to show that if −D is effective, then volx(D) > 0.
Let m denote the maximal ideal sheaf on X corresponding to x and let

e(I) denote the Hilbert–Samuel multiplicity at x of an m−primary ideal
sheaf I. The idea is to show that there exists r > 0 such that for all m > 1
we have an inclusion

π∗OX′(mD) ⊆ m[m/r],

because then e(π∗OX′(mD)) > e(m[m/r]), leading to volx(D) > e(m)/rn >
0. This is a consequence of a result of Izumi (see [15, Cor.3.5], or the
presentation of Rees in [24]). �

For arbitrary Cartier divisors on X ′ we can also give a precise answer,
but one that does not provide satisfying geometric intuition.

Proposition 1.44. — If D is a Cartier divisor on X ′, then volx(D) = 0
if, and only if, h1

x(mD̃) = 0 for all m > 0, where D̃ is the pullback of D to
the normalization of X ′.

Proof. — Since volx(D) = volx(D̃) and h1
x(mD̃) is invariant under pull-

backs from the normalization of X ′ to another birational model of X, we
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can assume that X ′ is nonsingular and D̃ = D. One implication is clear.
Since volx is n−homogeneous, we can assume without loss of generality that
h1
x(D) 6= 0. This means that D is linearly equivalent to a divisor F+G with
F effective (at least in a neighborhood of E) without components over x
and with G a non-effective divisor lying over x. By Lemmas 1.7, 1.15 and by
Proposition 1.43, we then have volx(D) = volx(F +G) > volx(G) > 0. �

Remark 1.45. — It is a consequence of Lemmas 1.7, 1.15 and 1.42 that if
D is an exceptional divisor (not necessarily effective) without components
lying over x on the nonsingular X ′, then volx(D) = 0.

The conclusion of Proposition 1.44 is not sufficient for understanding the
vanishing of the local volume function on N1(X ′/X)R. We can prove the
following partial result:

Proposition 1.46. — Let Cx denote the open cone in EDx(π) spanned
by effective classes whose support is the entire divisorial component of the
set theoretic fiber π−1{x}. Then there exists an open cone C in N1(X ′/X)R
such that C ∩ EDx(π) = Cx and volx(D) = 0 for any D ∈ C.

Proof. — We can assume that X ′ is nonsingular. Fix E ∈ Cx. We first
show that for any Cartier divisor D on X ′ it holds that volx(D + tE) = 0
for t � 0. By the monotonicity properties in Lemmas 1.14 and 1.15, we
can further assume D is effective without components over x. With the
notation in Lemma 1.15 and by the approximation result there,

volx(D+t∆1) = volx(D+t∆1)−volx(t∆1) 6 vol((t(∆1 +∆2)+N)|∆1) = 0

for t� 0 since (−∆1−∆2)|∆1 is ample and ∆2|∆1 is effective. There exists
positive r such that rE > ∆1. Then volx(D + trE) 6 volx(D + t∆1) by
Lemma 1.14 and we conclude that volx(D + tE) = 0 for t� 0.
Working as in the proof of Proposition 1.18, the result follows. �

We have seen in Theorem 1.19 that volx is continuous and n−homo-
geneous function on N1(X ′/X)R. These properties are shared by volumes
of Cartier divisors on projective varieties (see [19, Ch.2.2.C] or [20]). In the
projective setting, it is known that the volume function is log-concave on
the big cone ([20, Cor.4.12]), meaning that

vol(ξ + ξ′)1/n > vol(ξ)1/n + vol(ξ′)1/n

for any classes ξ and ξ′ with nonzero volume. In our local setting, it is easy
to construct examples of divisors E−E′ lying over x such that volx(E−E′)
and volx(E′−E) are both nonzero and so we cannot expect log-concavity.
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Generalizing [1, Rem.4.17] and [1, Thm.4.15], results developed in the set-
ting of isolated singularities, we show that vol1/nx is convex when we restrict
to divisors lying over x.

Proposition 1.47. — Let π : X ′ → X be a projective birational mor-
phism onto the normal quasiprojective variety X of dimension n > 2 and
let x ∈ X. Then vol1/nx : EDx(π)→ R>0 is convex.

Proof. — The idea is that by the Fujita approximation result in [20,
Thm.3.8], when D lies over x, we can understand volx(D) as an asymp-
totic Hilbert–Samuel multiplicity. Then we apply Teissier’s inequality ([19,
Ex.1.6.9]). Let m denote the maximal ideal corresponding to x ∈ X and
for an m−primary ideal sheaf I on X, denote by e(I) its Hilbert–Samuel
multiplicity.
By the continuity and homogeneity of volx, we can reduce to working

with integral Cartier divisors lying over x. Let D and D′ be two such and
construct the graded families of m−primary ideals am = π∗OX′(mD) and
a′m = π∗OX′(mD′). By [20, Thm.3.8],

volx(D) = lim
m→∞

e(am)
mn

and a similar equality holds for volx(D′). Denoting bm = π∗OX′(m(D +
D′)), one has

am · a′m ⊆ bm,

therefore e(bm) 6 e(am · a′m). Teissier’s inequality in [19, Ex.1.6.9] then
implies

e(bm)1/n 6 e(am · a′m)1/n 6 e(am)1/n + e(a′m)1/n

and the conclusion follows again by [20, Thm.3.8]. �

Remark 1.48. — Note that we did not restrict ourselves to working with
classes having positive volume as was necessary in the projective setting.

When π is an isomorphism outside x and X is Q−factorial, Propositions
1.47 and 1.41 show that volx is log-convex on N1(X ′/X)R. We construct a
toric example showing that this does not hold for general π.

Example 1.49. — Let σ ⊂ R3 be the cone spanned by the vectors
(0, 1, 0), (0, 0, 1) and (1, 0,−2). Let Σ be a refinement obtained by adding
the rays spanned by (1, 1, 1) and (1, 0, 0) such that X(Σ) is Q−factorial.
These determine a proper birational toric morphism π : X(Σ) → X(σ)
that is not an isomorphism outside xσ. Let x = xσ be the torus fixed point
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of X(σ). On X(Σ), let D and E be the torus invariant divisors associated
to the rays (1, 0,−2) and (1, 1, 1) respectively. We show that

volx(2D − 1
2E)1/3 + volx(2D − 3

2E)1/3 < volx(4D − 2E)1/3

= 2 · volx(2D − E)1/3.

The idea is to study the function volx(2D − tE). By Example 1.3, the
volume volx(2D − tE) is computed as the normalized volume of the body

B(t) = {(x, y, z) ∈ R3 : x > 0, y > 0, z > 0, x−2z > −2, x+y+ z 6 t}.

Let S(t) be the simplex generated by (0, 0, 0), (t, 0, 0), (0, t, 0) and (0, 0, t).
We have B(t) = S(t) for 0 6 t 6 1 and B(t) ( S(t) for t > 1. Figure
1.2 shows the polyhedron B(3/2) corresponding to 2D − 3

2E. The desired
inequality follows easily from the linearity of vol(S(t))1/3.

(0,3/2,0)

(3/2,0,0)
(0,0,0)

(1/3,0,7/6)
(0,0,1)

(0,1/2,1)

Figure 1.2. B(3/2)
�

2. Plurigenera and volumes for normal isolated
singularities

In this section we introduce a notion of volume for normal isolated sin-
gularities of dimension at least two. This volume, that we will denote
vol(X,x), is obtained in the first subsection as an asymptotic invariant
associated to the growth rate of the plurigenera in the sense of Morales or
Watanabe. We generalize to higher dimension several results of Wahl ([32])
who introduced this volume on surfaces and translate to our setting several
results of Ishii ([14]). The second subsection studies the Knöller plurigenera
and the associated volume volγ(X,x) that, using results or Ishii ([14]) and
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of de Fernex and Hacon ([4]), relates to the study of canonical singularities.
We end with a series of examples in the third subsection. The results of
this section are the motivation for our work and the foundation has been
laid by the papers of Ishii ([14]) and Wahl ([32]).

2.1. The Morales and the Watanabe plurigenera and vol(X,x)

The geometric genus of a normal complex quasiprojective isolated sin-
gularity (X,x) of dimension n at least 2, is defined as

pg(X,x) =def dimC(Rn−1π∗OX̃)x,

for π : X̃ → X an arbitrary resolution of singularities. Work of S.S.T.
Yau in [34] shows that this invariant of the singularity can be computed
analytically on X as

pg(X,x) = dim H0(U \ {x},OanX (KX))
L2(U \ {x}) ,

where U is a sufficiently small Stein neighborhood of x inX and L2(U \{x})
is the set of all square integrable canonical forms on U \ {x}. Motivated by
this alternate description, in [33], the plurigenera of (X,x) were introduced
as

δm(X,x) =def dim H0(U \ {x},OanX (mKX))
L2/m(U \ {x})

,

with L2/m(U\{x}) now denoting the set of holomorphicm−canonical forms
ω on the sufficiently small U \ {x} that satisfy

∫
U\{x}(ω ∧ ω̄)1/m <∞.

The proofs of [25, Thm.2.1], [25, Thm.1.1] and remarks in [14] provide
an algebro-geometric approach to plurigenera at the expense of working
again on resolutions. Let π : X̃ → X be a log-resolution of (X,x), with E
the reduced fiber over x. Let U be an arbitrary affine neighborhood of x,
and let Ũ be the preimage of U in X̃ via π. Then working in the algebraic
category,

δm(X,x) = dim
H0(Ũ \ E,O

X̃
(mK

X̃
))

H0(Ũ ,O
X̃

(mK
X̃

+ (m− 1)E))

= dim OX(mKX)
π∗OX̃(mK

X̃
+ (m− 1)E) ,

with the last equality holding, for choices of Weil canonical divisors on X
and X̃ such that π∗KX̃

= K
X̃

as Weil divisors, since U is affine. Plurigenera
for isolated surface singularities have been studied in [22], [23], [31]. They
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have proved useful in identifying and in classifying log-canonical surface
singularities.

Definition 2.1. — Generalizing work in [32] for the case of surfaces, the
volume of the normal isolated singularity (X,x) of dimension n is defined
as

vol(X,x) =def lim sup
m→∞

δm(X,x)
mn/n! .

We would like to understand this volume as a local volume of some Cartier
divisor on a log-resolution of (X,x). For this, it turns out that a more
convenient plurigenus is the one introduced by Morales in [21]:

λm(X,x) =def dim
H0(Ũ \ E,O

X̃
(mK

X̃
))

H0(Ũ ,O
X̃

(m(K
X̃

+ E)))
,

for π : X̃ → X a log-resolution with E the reduced fiber over x and Ũ the
inverse image in X̃ via π of an affine neighborhood of x. By Remark 1.1,

λm(X,x) = h1
x(m(K

X̃
+ E)).

By [14, Thm.5.2],

vol(X,x) = lim sup
m→∞

λm(X,x)
mn/n!

and we can conclude that

vol(X,x) = volx(K
X̃

+ E),

independently of the chosen log-resolution.

Remark 2.2. — The classical literature usually requires that we work
with good resolutions, i.e., that π : (X̃, E)→ (X,x) is a log-resolution that
is an isomorphism outside x. To prove that the plurigenera are independent
of the log-resolution, one applies the logarithmic ramification formula in
[13, Thm.11.5], using that any two log-resolutions can be dominated by a
third and that X \ {x} is nonsingular.

Remark 2.3. — If follows from Corollary 1.28 that the lim sup in the
definition of vol(X,x) is an actual limit.

Generalizing a result for the volume of surface singularities (see [32,
Thm.2.8]), we show that volumes of normal isolated singularities satisfy
the following monotonicity property:
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Theorem 2.4. — Let f : (X,x)→ (Y, y) be a finite morphism of normal
isolated singularities i.e. f is finite and set theoretically f−1{y} = {x}.
Then

vol(X,x) > (deg f) · vol(Y, y).

If f is unramified away from x, then the previous inequality is an equality.

Proof. — Let ρ : (Ỹ , F ) → (Y, y) be a log resolution of (Y, y). Let Z
be the normalization of Ỹ in the fraction field of X and let u : (X̃, E) →
(X,x) be a log-resolution factoring through a log-resolution of Z. We have
a diagram:

X̃

π

��+
++

++
++

++
++

++
++

++
++

++ f̃

))SSSSSSSSSSSSSSSSSSSSS

u

��>
>>

>>
>>

>

Z

τ

��

v // Ỹ

ρ

��
X

f // Y

We can assume that f̃ has simple normal crossings for both the branching
and ramification locus. We write the reduced branching locus as F + R,
where R has no components lying over y and similarly write the reduced
ramification locus as E + S with S having no components lying over x.
A local study of forms with log poles at the generic points of each com-

ponent of E + S shows that

K
X̃

+ E + S = f̃∗(K
Ỹ

+ F +R) + T,

where T is an effective divisor that is exceptional for f̃ , hence also excep-
tional for u. Note that f̃∗R − S is effective and write it as P + Q with P
being supported on S and with Q being u−exceptional. Then

K
X̃

+ E = f̃∗(K
Ỹ

+ F ) + P + (Q+ T ).

Since P is supported on S, it has no components over x, so

vol(X,x) = volx(K
X̃

+ E) > volx(f̃∗(K
Ỹ

+ F ) + (Q+ T )),

by Lemma 1.15. Since Q+ T is effective and u−exceptional and since volx
is computed by pushing forward to X,

π∗OX̃(f̃∗(K
Ỹ

+ F ) + (Q+ T )) = τ∗v
∗O

Ỹ
(K

Ỹ
+ F ),
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and hence

volx(f̃∗(K
Ỹ

+ F ) + (Q+ T )) = volx(v∗(K
Ỹ

+ F )).

By Proposition 1.9,

volx(v∗(K
Ỹ

+ F )) = deg(f) · voly(K
Ỹ

+ F ) = deg(f) · vol(Y, y).

When f is unramified outside x, the divisors R, S are zero and and with
T being again u−exceptional we obtain the required equality. �

An immediate consequence of this result is the following

Corollary 2.5. —
(i) If f : (X,x)→ (Y, y) is a finite map of normal isolated singularities

and vol(X,x) vanishes, then vol(Y, y) = 0.
(ii) If (X,x) admits an endomorphism of degree at least two, then

vol(X,x) = 0.

In the surface case, [32, Thm.2.8] shows that vol(X,x) = 0 is equivalent
to saying thatX has log-canonical singularities in the sense of [32, Rem.2.4].
In the Q−Gorenstein case, this coincides with the usual definition of log-
canonical. In higher dimension, as an immediate consequence of Proposition
1.44, or by [14, Thm.4.2] it follows:

Proposition 2.6. — Let (X,x) be a normal complex quasiprojective
normal isolated singularity of dimension n at least two. Then vol(X,x) = 0
if, and only if, for all (any) log-resolutions π : X̃ → X with E the reduced
fiber over x, one has that

π∗OX̃(m(K
X̃

+ E)) = OX(mKX),

for all non-negative m and if, and only if, λm(X,x) = 0 for all non-negative
m.

In the previous result, we understand OX(mKX) as the sheaf of sections
associated to a Weil canonical divisor KX chosen together with a canonical
divisor on X̃ such that π∗KX̃

= KX as Weil divisors.

Remark 2.7. — In the Q-Gorenstein case, the conclusion of Proposition
2.6, as in the case of surfaces, is the same as saying that X is log-canonical.
This result also appears in [27]. In general, following [4], we say X is log-
canonical if there exists an effective Q−boundary ∆ such that the pair
(X,∆) is log-canonical. With this definition, an inspection of [1, Ex.4.20]
and [1, Ex.5.4] shows that there exist non Q−Gorenstein isolated singular-
ities (X,x) that are not log-canonical, but vol(X,x) = 0.
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Another result of Ishii ([14, Thm.5.6]) that we translate to volumes stud-
ies hyperplane sections of normal isolated singularities.

Proposition 2.8. — Let (X,x) be an complex normal quasiprojective
isolated singularity of dimension n at least three. Let (H,x) be a hyperplane
section of (X,x) that is again a normal isolated singularity. If vol(X,x) > 0,
then vol(H,x) > 0.

2.2. The Knöller plurigenera

Another notion of plurigenera for a normal isolated singularity (X,x),
different from δm(X,x) and λm(X,x), was introduced by Knöller in [17]
and can be defined as

γm(X,x) = dim OX(mKX)
π∗OX̃(mK

X̃
)

for π : X̃ → X an arbitrary resolution of singularities. This is again an in-
variant of the singularity (X,x), independent of the chosen resolution. The
asymptotic behavior of γm(X,x) = h1

x(mK
X̃

) is studied in [14]. Denoting

volγ(X,x) =def volx(K
X̃

),

the result in [14, Thm.2.1], or Proposition 1.44 can be rephrased as:

Proposition 2.9. — For a normal algebraic complex isolated singular-
ity (X,x) of dimension at least two, the following are equivalent:

(i) volγ(X,x) = 0
(ii) γm(X,x) = 0 for all non-negative m.

The following remark was kindly suggested by T. de Fernex.

Remark 2.10. — In [4], the authors generalize the notion of canonical
singularities to normal varieties that are not necessarily Q−Gorenstein and
it is a consequence of [4, Prop.8.2] that a normal variety X has canonical
singularities if, and only if, for all sufficiently divisible m > 1 and all (any)
resolution π : X̃ → X, it holds that

π∗OX̃(mK
X̃

) = OX(mKX),

with KX and K
X̃

chosen such that π∗KX̃
= KX as Weil divisors.

When (X,x) is an isolated singularity, since the lim sup in the definition
of volγ(X,x) is replaceable by lim by similar arguments as in the case
of vol(X,x), the vanishing volγ(X,x) = 0 is equivalent to (X,x) being
canonical in the sense of [4].
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Since in any case volγ(X,x) > vol(X,x), we see that vol(X,x) = 0 for
canonical singularities.

We show that volγ does not exhibit the same monotonicity properties
as vol(X,x) with respect to finite maps of normal isolated singularities
by constructing a Q-Gorenstein non-canonical isolated singularity carrying
endomorphisms of arbitrarily high degree.

Example 2.11. — Let (X,x) be the cone over V = Pn−1 corresponding
to the polarization H = OPn−1(n+ 1). By Examples 1.13 and 2.21,

volγ(X,x) = n ·
∫ ∞

0
vol(KV +H − tH)dt = n ·

∫ ∞
0

(1− t(n+ 1))n−1dt

= 1
n+ 1 > 0,

therefore (X,x) is non-canonical and the other requirements are met. �

However, we can prove the opposite to the inequality of Theorem 2.4 in
the unramified case.

Proposition 2.12. — Let f : (X,x) → (Y, y) be a finite morphism of
complex normal isolated singularities of dimension n at least two. Assume
that f is unramified away from x. Then

volγ(X,x) 6 (deg f) · volγ(Y, y).

Proof. — Construct good resolutions π : (X̃, E) → (X,x) and
ρ : (Ỹ , F ) → (Y, y) and a lift f̃ : X̃ → Ỹ for f . Then the ramification
divisor K

X̃
− f̃∗K

Ỹ
is effective. It is also exceptional for π by assumption.

We conclude by Proposition 1.9 and Lemma 1.14. �

Corollary 2.13. — Under the assumptions of the previous proposi-
tion, if (Y, y) has canonical singularities, then (X,x) also has canonical
singularities.

Proof. — The result is an immediate consequence of the proposition and
Remark 2.10. �

Remark 2.14. — In this paper we refer to vol(X,x) and not to volγ(X,x)
as the volume of the isolated singularity (X,x).

2.3. Examples

We begin with a series of examples of normal isolated singularities (X,x)
where the volume is zero. We can usually show this by explicit computation
of plurigenera or by noticing they carry non-invertible endomorphisms.
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Example 2.15 (Q−Gorenstein log-canonical case). — Let (X,x) be a
Q−Gorenstein log-canonical normal isolated singularity of dimension n.
It is a consequence of Proposition 2.6 that vol(X,x) = 0, but we can
also compute explicitly that λm(X,x) = 0 for all non-negative, sufficiently
divisible m. Pick π : X̃ → X a log-resolution with E the reduced fiber over
x. Since π∗KX is defined as a Q−divisor, by Lemma 1.7,

λm(X,x) = h1
x(m(K

X̃
+ E)) = h1

x(m(K
X̃

+ E − π∗KX))

for m divisible enough so that mKX is Cartier. But K
X̃

+ E − π∗KX is
π−exceptional and effective by the log-canonical condition, so h1

x(m(K
X̃

+
E − π∗KX)) = 0 for all sufficiently divisible m. By homogeneity, it follows
that vol(X,x) = 0. �

Example 2.16 (Finite quotient isolated singularities). — Let G be a fi-
nite group acting algebraically on a complex algebraic affine manifold M .
Let X = Spec(C[M ]G) be the quotient and assume it has a normal iso-
lated singularity x. Then by Proposition 1.9 and by the previous example,
following ideas in Theorem 2.4, we obtain vol(X,x) = 0. �

Example 2.17 (Toric isolated singularities). — We use the notation in
Example 1.3. Let σ be an n−dimensional pointed rational cone. The condi-
tion that (X(σ), xσ) be an isolated singularity is the same as saying that all
the faces of non-maximal dimension of σ are spanned as cones by a set of
elements of N that can be extended to a basis. Affine toric varieties carry
Frobenius non-invertible endomorphisms and one checks that they are ac-
tually endomorphisms of the singularity (X(σ), xσ) i.e. totally ramified at
the isolated singularity, so vol(X(σ), xσ) = 0 by Corollary 2.5.

It can be checked that for a toric resolution π : (X(Σ), E)→ (X(σ), xσ),
the divisor KX(Σ) + E is negative without components lying over xσ and
then vol(X,x) = 0 by Lemma 1.15. �

Example 2.18 (Cusp singularities). — Tsuchihashi’s cusp singularities
provide yet another example of isolated singularities (X,x) with vol(X,x) =
0. See [1, 6.3] or [33, Thm.1.16] for explanations and [28] for more on cusp
singularities. �

One of the simplest classes of isolated singularities that may have nonzero
volume are quasihomogeneous singularities.

Example 2.19 (quasihomogeneous singularities). — We follow
[33, Def.1.10]. Let r0, . . . , rn be positive rational numbers. Call a poly-
nomial f(x0, . . . , xn) quasihomogeneous of type (r0, . . . , rn), if it is a linear
combination of monomials xa0

0 · . . . · xann with
∑n
i=0 airi = 1. When such a
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polynomial is sufficiently general, its vanishing locus in Cn+1 has an iso-
lated singularity at the origin. We denote this singularity (X(f), 0) and
r(f) = r0 + . . .+ rn. By [33, Exap.1.15],

vol(X(f), 0) =
{

0, if r(f) > 1
(1−r(f))n
r0·...·rn , if r(f) 6 1 .

�

Example 2.20 (Surface case). — By Example 1.4, the volume of a nor-
mal isolated surface singularity (X,x) can be computed as

vol(X,x) = −P · P,

where K
X̃

+ E = P + N is the relative Zariski decomposition on a good
resolution π : X̃ → X. In [32, Prop.2.3], an algorithm for computing P is
described in terms of the combinatorial data of the dual graph of a good
resolution. �

Although the quasihomogeneous and surface cases provide nonzero exam-
ples, they always provide rational values for the volume of the singularity.
We will see that cone singularities provide irrational volumes already in
dimension three.

Example 2.21 (Cone singularities). — If (X, 0) is a cone singularity con-
structed as

Spec
⊕
m>0

H0(V,OV (mH))

for (V,H) a polarized nonsingular projective variety of dimension n−1, then
by Example 1.13, using that KY + E restricts to KV on E by adjunction,

vol(X, 0) = n ·
∫ ∞

0
vol(KV − tH)dt.

We see right away that vol(X, 0) > 0 if, and only if, V is of general type. �

In similar flavor to an example of Urbinati in [30], following a sugges-
tion of Lazarsfeld, we show that there exist cone singularities yielding an
irrational volume.

Example 2.22 (Irrational volume). — Choose two general integral classes
D and L in the ample cone of E × E, where E is a general elliptic curve.
Then, by the Lefschetz Theorem ([6, Thm.6.8]), 2D is globally generated
and we can construct V , the cyclic double cover (see [19, Prop.4.1.6]) of
E ×E over a general section of 2D. Let g : V → E ×E be the cover map.
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Note that KV = g∗D. The volume of the cone singularity (X, 0) associated
to (V, g∗L) is then

3 ·
∫ ∞

0
vol(g∗(D − tL))dt.

On abelian varieties, pseudo-effective and nef are equivalent notions for
divisors and the volumes of such are computed as self-intersections. Let

m =def max{t : D − tL is nef}.

It can be also characterized as the smallest solution to the equation

(D − tL)2 = 0.

One can compute,

vol(X, 0) = 4D2L2 − 4(DL)2

L2 ·m+ 2(DL)D2

L2 .

The study in [19, Sec.1.5.B] shows that the nef cone of E × E is a round
quadratic cone for general E. Hence general choices for D and L produce
a quadratic irrational m. �

In [32] it is proved that vol(X,x) is a topological invariant of the link of
the surface singularity (X,x). We give an example showing that this may
fail already in dimension three. The idea for the construction comes from
[1, p.36] and [1, Ex.4.23] where, using the Ehresmann-Feldbau theorem, it
is shown that if f : (V,A)→ T is a smooth polarized family of nonsingular
projective varieties, then the links of the cone singularities associated to
(Vt, At) have the same diffemorphism type as t varies in T . This is used
to show that if V is the family of blow-ups of P2 at ten or more points
and if (Ct, 0t) denotes the three dimensional cone singularity over (Vt, At),
for some appropriate polarization A, then the volume volBdFF(Ct, 0t) (that
we discuss in the next section) is positive for very general t, but it does
vanish for particular values of t. Since the Vt’s are all rational surfaces,
vol(Ct, 0t) = 0 for any t, but we can construct an example where vol(Ct, 0t)
is non-constant by passing to double covers of the family of blow-ups of P2

at three distinct points.

Example 2.23. — Let g : S → T be the smooth family of blow-ups of
P2 at the three distinct points. There are line bundles H and E on S such
that for each t ∈ T , the divisor Ht is the pullback of the hyperplane bundle
via the blow-down to P2 and Et = Et,1 + Et,2 + Et,3 is the exceptional
divisor of the blow-up. The geometry of St differs according to whether t
consists of three collinear or non-collinear points, with the latter being the
generic case. In both cases, 3Ht−Et = −KSt is big and globally generated
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and 4Ht−Et is ample and globally generated. It follows by [19, Ex.1.8.23]
that 4(4Ht − Et) is very ample.
Let t0 be a set of collinear points and choose a smooth divisor in the linear

series |4(4Ht0 −Et0)| corresponding to a section st0 . It can be computed
that R1g∗OS(4(4H−E)) vanishes, and so does H1(St0 ,O(4(4Ht0 −Et0))).
By cohomology and base change ([12, Thm.III.12.11.(b)]), the section st0
extends in a neighborhood of t0 to a section s of 4(4H − E). By further
restricting T , we can assume that st vanishes along a smooth divisor for all
t (see [12, Ex.III.10.2]). Let h : V → S be the double cover corresponding to
s. By [19, Prop.4.1.6], the composition f : V → T is again a smooth family.
We endow it with the fiberwise polarization given by A = h∗(40H − 3E).
By results on [1, p.36], the links of the cone singularities (Ct, 0t) associated
to (Vt, At) are all diffeomorphic. We compute vol(Ct, 0t) and show that we
get different answers when the three points to be blown-up are collinear
than when they are non-collinear. Note that

Kt =def KVt = h∗t (KSt + 2(4Ht − Et)) = h∗t (5Ht − Et).

By Example 2.21,

vol(Ct, 0t) = 3 ·
∫ ∞

0
vol(h∗(5Ht − Et − s(40Ht − 3Et)))ds

= 6 ·
∫ ∞

0
vol((5− 40s)Ht − (1− 3s)Et)ds.

We are reduced to working with volumes on P2 blown-up at three distinct
points. For this we can use Zariski decompositions (see [19, Thm.2.3.19,
Cor.2.3.22]) that can be explicitly computed for aHt + bEt with a, b ∈ Z to
show that vol(Ct, 0t) yields different values when t corresponds to collinear
points than when it corresponds to non-collinear points. �

3. An alternative notion of volume due to Boucksom, de
Fernex and Favre

In this section we prove an inequality between our definition of volume
for normal isolated singularities and one other volume, recently introduced
in [1] also as a generalization of Wahl’s work. We assume some familiarity
with the notation of [1].

Let (X,x) be a complex normal quasiprojective isolated singularity of
dimension n. A Weil canonical divisor KX on X induces canonical divisors
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KXπ on all resolutions π : Xπ → X and we form the π−exceptional log-
discrepancy divisor

(AX/X)π =def KXπ + Env(−KX)π + 1Xπ/X ,

where 1Xπ/X is the reduced divisorial component of the full exceptional
locus of π. The envelope of the canonical divisor, Env(−KX)π, is com-
puted as in [1, Def.2.3]. Intuitively, −Env(−KX)π computes the pullback
π∗KX . Pulling-back Weil divisors is a subtle problem, but we mention that
−Env(−KX)π is indeed the pullback of KX when X is Q−Gorenstein,
which should serve as justification for calling (AX/X)π a log-discrepancy
divisor.
As π varies through all possible resolutions π : Xπ → X, the divisors

KXπ , Env(−KX)π, 1Xπ/X and (AX/X)π all glue to form b−divisors over X,
i.e., each is an association of a divisor to every resolution π, an association
that is compatible with push-forwards of Weil classes. b−divisors appear
naturally in the study of divisorial valuations on the fraction field of X and
provide an efficient way of working simultaneously with all the resolutions
of X. We denote by A0

X/X the component lying over x of the b−divisor
AX/X . A consequence of the smoothness of X \ {x} is:

Remark 3.1. — The b−divisorAX/X−A0
X/X is effective and exceptional.

Definition 3.2. — Let (X,x) be a complex normal quasiprojective iso-
lated singularity of dimension n. The volume of (X,x) in the sense of [1]
is

volBdFF(X,x) =def −(Env(A0
X/X))n.

The envelope of a b−divisor D, with a suitable boundedness condition,
is defined in [1, Rem.2.15] as the piecewise infimum of the envelopes of
Dπ. The envelope of the divisor Dπ on Xπ is itself a b−divisor that is,
in a suitable sense, the limit of the Q−multiples Om(1/m) of the relative
Serre bundles Om(1), which exist on the blow-ups of X along the fractional
ideal sheaves π∗OXπ (mD). Intersections of nef b−divisors lying over x are
defined in [1, Def.4.13]. They generalize the intersections D1 · . . . ·Dn if the
Di are all divisors on Xπ with support in the fiber over x.

Remark 3.3. — The volume volBdFF(X,x) is also a generalization of
Wahl’s volume for isolated surface singularities by [1, Prop.5.1], therefore
volBdFF(X,x) = vol(X,x) in dimension two.

In arbitrary dimension, we prove the following inequality:
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Theorem 3.4. — Let (X,x) be a complex normal quasiprojective iso-
lated singularity of dimension n. Then

volBdFF(X,x) > vol(X,x).

Proof. — By [1, Rem.2.15], for any resolution π : Xπ → X, we have
Env(A0

X/X) 6 Env((A0
X/X)π) and the monotonicity property of intersec-

tion numbers in [1, Thm.4.14] shows

volBdFF(X,x) > −(Env((A0
X/X)π))n.

By [1, Rem.4.17], the latter is equal to volx((A0
X/X)π), since volx and en-

velopes both are computed from pushforward sheaves. Remark 3.1 and
Lemma 1.42 yield

volx((A0
X/X)π) = volx((AX/X)π) = volx(KXπ + Env(−KX)π + E),

where now π : (Xπ, E) → (X,x) is a log-resolution. Since vol(X,x) =
volx(KXπ + E), it suffices to prove that

volx((KXπ + E) + Env(−KX)π) > volx(KXπ + E).

By [1, Lem.2.9], Env(−KX)π is π−movable, hence there exists a sequence
of effective divisors Dm on Xπ without components over x, a sequence that
converges to Env(−KX)π in N1(Xπ/X). We conclude by the continuity of
volx and Lemma 1.15. �

Remark 3.5. — When X is Q−Gorenstein, [1, Prop.5.3] shows that
volBdFF(X,x) = vol(X,x).

Aiming to extend this result to the numerically Gorenstein case (see [1,
Def.2.24]), we start with a lemma inspired by the proof or [1, Prop.5.3]
that allows us to compute volBdFF(X,x) on a fixed resolution in a particular
case:

Lemma 3.6. — Let π : (Xπ, E)→ (X,x) be a log-resolution of a normal
isolated singularity of dimension n and assume Env(−KX)π is π−nef. Then

volBdFF(X,x) = volx(KXπ + Env(−KX)π + E).

Proof. — [1, Cor.2.12] proves that Env(−KX) is Cartier, determined on
Xπ. Using [1, Lem.3.2],

AX/X − (AX/X)π
is effective and exceptional over X. The conclusion follows from Lemma
1.42, [1, Cor.2.12], Remark 3.1 and [1, Rem.4.17]. �
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Proposition 3.7. — If X is a numerically Gorenstein i.e. Env(KX) +
Env(−KX) = 0, then

volBdFF(X,x) = vol(X,x).

Proof. — The numerically Gorenstein condition implies that Env(±KX)π
is π−numerically trivial on any nonsingular model Xπ. We conclude using
the numerical invariance of local volumes and Lemma 3.6. �

As [1, Thm.4.21] proves, the volume volBdFF(X,x) satisfies the same mono-
tonicity property with respect to finite covers that vol(X,x) does:

Remark 3.8. — Let f : (X,x)→ (Y, y) be a finite morphism of isolated
singularities. Then

volBdFF(X,x) > (deg f) · volBdFF(Y, y).

Remark 3.9. — Although vol(X,x) and volBdFF(X,x) are equal on sur-
faces and in the numerically Gorenstein case, they may differ in general. [1,
Exap.5.4] provides an example of a cone singularity where volBdFF(X,x) >
vol(X,x) = 0.

One advantage of vol(X,x) is that being determined on any log-reso-
lution, it is usually easy to compute. On the other hand, since every resolu-
tion may bring new information, volBdFF(X,x) is usually hard to compute
when it is nonzero. Lemma 3.6 provides examples when we can realize
volBdFF(X,x) as a local volume volx on a fixed birational model. Applying
this to cone singularities, we give an example of an irrational volBdFF(X,x).

Lemma 3.10. — Let (V,H) be a polarized projective nonsingular va-
riety of dimension n − 1, let (X, 0) be the associated cone singularity
and let π : (Y,E) → (X, 0) be the contraction of the zero section of
SpecOV Sym•OV (H). Let f : Y → V be the vector bundle map. Then

Env(−KX)π = f∗(−KV +M ·H),

with M minimal such that −KV +M ·H is pseudo-effective.

Proof. — Note that π is a good resolution, hence

OX(−mKX) =
⋃
t>0

π∗OY (−mKY + tE)

and by coherence there exists minimal tm such that

OX(−mKX) = π∗OY (−mKY + tmE).

We get an induced inclusion that is actually an equality outside E:

OX(−mKX) · OY → OY (−mKY + tmE).
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Using the defining minimality property of tm and that E is irreducible, one
finds

Z(−mKX)π =def (OX(−mKX) · OY )∨∨ = OY (−mKY + tmE)

Observe that X is affine, therefore the sheaves π∗OY (−mKY + tE) are
determined by their global sections. But by the relations in Example 1.13
and since KY + E = f∗KV by adjunction,

H0(Y,OY (−mKY + tE)) =
⊕
k>0

H0(V,OV (−mKV + (−t−m+ k)H))

and it follows that tm is the maximal t such that OV (−mKV +(−t−m)H)
has sections. Recalling from [1, Def.2.3] that

Env(−KX) = lim
m

(Z(−mKX)/m)

and setting l = limm(tm/m), one finds that

Env(−KX)π = −KY + lE = f∗(−KV − (l + 1)H)

with l maximal such that −(KV + (l+ 1)H) is pseudo-effective. Manifestly
M = −1− l. �

Corollary 3.11. — With the same notation as before, assume that
Env(−KX)π is also π−nef. Then

volBdFF(X, 0) =
{
Mn ·Hn−1 , if M > 0

0 , if M < 0 .

Proof. — Since the negative case follows similarly, we assume M > 0.
By Lemma 3.6, Example 1.13, the preceding result and from the ampleness
of H,

volBdFF(X, 0) = vol0(KY + E + f∗(−KV +M ·H)) = vol0(f∗(M ·H))

= n ·
∫ ∞

0
vol(M ·H − tH)dt = Mnvol(H) = Mn ·Hn−1.

�

Example 3.12. — As in Example 2.21, with notation as in the preceding
lemma, let E be a general elliptic curve. Let D and L be integral ample
divisors on E × E , let g : V → E × E be the double cover over a general
section of OE×E(2D) and denote H = g∗L. Note that KV = g∗D. Then
Env(−KX)π is π−nef because its restriction to E, the only positive dimen-
sional fiber, is isomorphic to −KV +M ·H which is pseudo-effective; and on
V , nef and pseudo-effective are equivalent notions for pullbacks of divisors
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from E ×E e.g from [19, Rem.4.1.7]. By the previous corollary, noting that
M is positive since −KV +M ·H = g∗(−D +M · L),

volBdFF(X, 0) = M3H2.

We find that volBdFF(X, 0) can be irrational by producing an example of
D and L whereM3 is irrational. The same construction as in Example 2.22
works. �

4. Questions

In this section we present some questions that our work has left open.

4.1. The volume of a normal isolated singularity

1. A topological question. In [32], it is shown that the volume
vol(X,x) of a normal surface singularity is a characteristic number, which
means that it is a topological invariant of the link of the singularity and
that it satisfies the monotonicity property of Theorem 2.4. The monotonic-
ity property holds in arbitrary dimension and we have seen that vol(X,x)
is generally not a topological invariant of the link.

Question 4.1. — Let (X,x) be a Gorenstein (or only Q−Gorenstein,
or only numerically Gorenstein as in Proposition 3.7) complex normal alge-
braic isolated singularity of dimension n. Is vol(X,x) a topological invariant
of the link of the singularity?

The question has a negative answer for volBdFF(X,x), as described in [1].

2. Boundedness from below. As illustrated by the cone example 2.21,
one expects a similarity between the theory of volumes of normal isolated
singularities and that of volumes of nonsingular projective varieties. In
the projective setting, it is shown in [29], [26], [10] and improved in [11]
that the volume of varieties of general type of dimension n is bounded from
below by a positive constant depending only on n. For cone singularities, C.
Hacon observed that the formula in Example 2.21 shows that replacing the
polarization by arbitrarily high multiples produces a sequence of volumes
tending to zero. We can ask

Question 4.2. — Given a positive n > 2, does there exists a constant
C(n) > 0 such that vol(X,x) > C(n) for any complex normal isolated
Gorenstein singularity (X,x) of dimension n with positive vol(X,x)?
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The previous question has a positive answer in the surface case by [8].
In arbitrary dimension, it is also open for volBdFF(X,x) according to [1].
Proving boundedness from below for vol(X,x) would imply it as well for
volBdFF(X,x) by Theorem 3.4.

3. An irrational Q−Gorenstein example. We have constructed irra-
tional examples for both vol(X,x) and volBdFF(X,x) by working on cone
singularities. One can check that Q−Gorenstein cone singularities have ra-
tional volume. Our only other familiar examples of nonzero volumes come
from quasihomogeneous singularities (see Example 2.19) and from surfaces,
but we have seen that all these have rational volume as well.

Question 4.3. — Does there exist a Q−Gorenstein normal isolated sin-
gularity whose volume is irrational? Note that in this case volx(X,x) =
volBdFF(X,x).

4.2. Local multiplicities

For a (fractional) ideal sheaf I on a variety X of dimension n with a
distinguished point x, we have defined the local multiplicity

ĥ1
x(I) =def lim sup

p→∞

dimH1
{x}(Ip)

pn/n!
that coincides with the Hilbert–Samuel multiplicity when I is m−primary,
where m is the maximal ideal corresponding to x. In the said m−primary
case, it is known that the Hilbert–Samuel multiplicity can be computed
as the negative of the top self-intersection of the Serre line bundle on the
blow-up of X along I.

By work in [3], there exist (non m−primary) ideal sheaves I whose local
multiplicity is irrational, therefore we cannot expect a simple intersection
theoretic interpretation for ĥ1

x(I).

Question 4.4. — Is there an asymptotic intersection theoretic inter-
pretation for ĥ1

x(I) when I is not necessarily m−primary?

Via Remark 1.33, in the language of local volumes, we can also ask:

Question 4.5. — Let π : X ′ → X be a projective birational morphism
onto a normal n−dimensional quasiprojective varietyX and let x be a point
on X. Given D a π−nef divisor on X, is there an asymptotic intersection
theoretic description for volx(D)?
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Remark 4.6. — The difficulty in these questions lies in that the support
of the Serre line bundle on the blow-up of I and that of D are often
non-proper. Following ideas in [20], when D is actually π−ample and not
just π − nef , small and non-canonical steps can be taken to avoid these
difficulties by writing local volumes as differences of volumes on projective
completions.

Let π : X ′ → X be projective birational with X normal and quasipro-
jective, and take x a point on X. We assume that X ′ is nonsingular. Let
−D = −A − B be a π−ample divisor on X ′ with B effective lying over x
and A effective without components over x.
By picking a completion of X, we can assume it is projective. As in [20,

Thm. 3.8], there exists H sufficiently ample on X such that π∗H − D is
ample on X ′ and

volx(−D) = vol(π∗H −A)− vol(π∗H −D).

Since π∗H − D is ample, vol(π∗H − D) = (π∗H − D)n. Unfortunately,
vol(π∗H − A) is not as accessible to intersection theoretic interpretations
and the local nature of volx is not visible in this picture.

Remark 4.7. — With the notation in the previous question, when (X,x)
is a normal isolated singularity and D is a π−nef Cartier divisor lying over
x, by [1, Rem.4.17],

volx(D) = −Dn.

4.3. Local volumes

1. Fujita approximation. We proved Theorem 1.34 for a particular
class of divisors, for which we were able to carry the arguments in [20].

Question 4.8. — Let π : X ′ → X be a projective birational morphism
onto a normal quasiprojective variety X of dimension n > 2 with a dis-
tinguished point x. Let D be a Cartier divisor on X ′. With notation as in
1.30, is it true that

volx(D) = lim
p→∞

ĥ1
x(π∗OX′(pD))

pn
?

2. Geometric interpretation. The volume of a big divisor on a pro-
jective variety can be computed as an asymptotic moving self-intersection
number (see [19, Thm.11.4.11]), generalizing that volumes of big and nef
divisors are computed as top self-intersection numbers. In the local setting,
we ask the following vague question:
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Question 4.9. — Does there exist a notion of "moving intersection
numbers" that, asymptotically, gives a geometric interpretation to volx(D)
when D is a Cartier divisor on a birational modification of a normal
quasiprojective variety X with a distinguished point x?

Remark 4.10. — For divisors lying over x on modifications π : X ′ →
X of a normal isolated singularity (X,x) of dimension n, we have by [1,
Thm.4.17] that

volx(D) = −(Env(D))n.
In this case, a good notion of "moving self-intersection number" for the
divisor D is, following the definition in [1, Ex.1.3],

−(Z(π∗OX′(D)))n.

As hinted by the previous remark, as well as the proof of
[19, Thm.11.4.11], it is expected that the "moving self-intersection num-
ber" of D depends only on the Serre line bundle on the blow-up of X
along π∗OX′(D). The difficulty is that the support of the latter is often
non-proper.

3. The behavior of volx on N1(X ′/X)R. When vol is the volume
function on N1(X)R for X a projective variety, we know by work in [19,
Ch.2] that the locus where the volume does not vanish is the open convex
cone of big divisors.

Question 4.11. — Given a projective birational morphism π : X ′ → X

onto normal quasiprojective X with a distinguished point x, study the
vanishing of volx on N1(X ′/X)R, or on the space of exceptional divisors
ED(π).
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