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STRUCTURE OF LEAVES AND THE COMPLEX
KUPKA-SMALE PROPERTY

by Tanya FIRSOVA (*)

Abstract. — We study topology of leaves of 1-dimensional singular holomor-
phic foliations of Stein manifolds. We prove that for a generic foliation all leaves,
except for at most countably many, are contractible, the rest are topological cylin-
ders. We show that a generic foliation is complex Kupka-Smale.
Résumé. — Nous étudions la topologie des feuilles d’un feuilletage holomorphe

singulier de dimension 1 sur des variétés de Stein. Nous prouvons que pour un
feuilletage générique, toutes les feuilles, sauf au plus un nombre dénombrable, sont
contractiles, les autres étant topologiquement des cylindres. Nous montrons aussi
qu’un feuilletage générique est Kupka-Smale complexe.

1. Introduction

Consider a vector field (f1, . . . , fn) in Cn, where f1, . . . , fn ∈ O(Cn). The
phase space Cn, outside the singular locus, is foliated by Riemann surfaces.
The natural question is: what is the topological type of these leaves? For
polynomial foliations of fixed degree this question was asked by Anosov and
still remains unsolved. In general, it can be quite complicated. Consider, for
example, a Hamiltonian foliation of C2: Hn = const, where Hn is a generic
polynomial of degree n. All non-singular leaves are Riemann surfaces with
(n−1)(n−2)

2 handles and n punctures. There are examples of foliations with
dense leaves, having infinitely generated fundamental groups [17].
So one can restrict the question: what is the topological type of leaves

for a generic foliation?

Keywords: holomorphic foliations, complex differential equations, Stein manifolds,
Kupka-Smale property, generic properties.
Math. classification: 37F75, 32M25, 32E10.
(*) The research was partially supported by the grant RFBR/CNRS 10-01-93115-
CNRSL.



1850 Tanya FIRSOVA

The genericity here is understood as follows: the space of holomorphic
foliations can be naturally equipped with the (Baire) topology of uniform
convergence on nonsingular compact sets. We recall the definition of the
topology in Appendix 5.3. We call a foliation generic if it belongs to a
residual set – an intersection of countably many open everywhere dense
sets.

In our paper we describe the topological type of leaves for generic foli-
ations on Cn, and more generally, on arbitrary Stein manifolds. We prove
the following theorem:

Theorem 1.1. — For a generic 1-dimensional singular holomorphic fo-
liation on a Stein manifold X all leaves, except for at most countably many,
are contractible, the rest are topological cylinders.

We consider foliations with singular locus of codimension 2, i.e. foliations
locally determined by holomorphic vector fields [14, Theorem 2.22].
Our technique is applicable in a more general setting. In particular, we

establish the analog of the Kupka-Smale theorem for generic foliations on
Stein manifolds:

Theorem 1.2. — A generic 1-dimensional singular holomorphic folia-
tion on X is complex Kupka-Smale.

Definition 1.3. — A foliation of a complex manifold is called complex
Kupka-Smale if

(1) all its singular points are complex hyperbolic;
(2) all complex cycles are hyperbolic;
(3) strongly invariant manifolds of different singular points intersect

transversally;
(4) invariant manifolds of complex cycles intersect transversally with

each other and with strongly invariant manifolds of singular points.

Let cycle γ be a phase curve of a real vector field, then γ is a loop
on the phase curve of the complexified vector field. A complex cycle by
definition is a free homotopy class of loops on a leaf of a foliation. Recall
that by definition, a real Kupka-Smale vector field has hyperbolic cycles
only. Condition (2) is a generalization of this property.
We review notions of complex hyperbolicity and invariant manifolds in

the Appendix 5.1.
The above definition was suggested by Marc Chaperon in [5]. In this

preprint he studies holomorphic 1-dimensional singular foliations on Stein
manifolds. He shows that the property (1) holds for generic foliations. He
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also gives the proof of the property (3) for generic foliations on Cn and
states the result for generic foliations on Stein manifolds. Our technique
also allows us to prove transversality results for strongly invariant manifolds
of the same singular point:

Theorem 1.4. — For a generic 1-dimensional singular holomorphic fo-
liation:

(1) all singular points are complex hyperbolic.
(2) Let a1 be a complex hyperbolic singular point of the foliation. Let

M1 and M2 be strongly invariant manifolds of the point a1, such
that M loc

1 ∩M loc
2 = a1. Then M1 and M2 intersect transversally

everywhere.

Theorems 1.1, 1.2 for foliations of C2 are proved in [7]. Golenishcheva-
Kutuzova [10] showed that for a generic foliation countable many cylinders
do exist. We expect that for a generic singular holomorphic 1-dimensional
foliation of a Stein manifold there are countably many cylinders.
It is known that any leaf of a generic polynomial foliation of degree n is

hyperbolic [3], [8], [16]. We expect that the same answer is true for generic
foliations of Stein manifolds and that technique from [3], [16], [8] can be
adjusted to attack the problem. See the paper [13] for a vast discussion of
open problems.
Greg Buzzard studied similar genericity questions for analytic automor-

phisms of Cn. He proved that a generic analytic automorphism of Cn is
Kupka-Smale [2].

1.1. Outline of the article

We establish generic properties of foliations by constructing perturba-
tions that eliminate degeneracies. There are at most countably many iso-
lated cycles. (This lemma is proved in [15] for foliations of C2. We in-
cluded the proof for arbitrary Stein manifolds in Section 4.1 to explain our
strategy of simultaneous elimination of degeneracies.) Therefore, once all
nonisolated cycles are removed, all leaves, except for countably many, are
contractible.
To prove that the rest have fundamental group Z, one needs to eliminate

all degeneracies from the following list:
(1) two cycles that belong to the same leaf of the foliation and are not

multiples of the same cycle in the homology group of the leaf;

TOME 63 (2013), FASCICULE 5
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(2) saddle connections;
(3) cycles on a separatrix that are not multiples of the cycle around the

critical point.

Recall that a separatrix is a leaf that can be holomorphically extended
into a singular point and a saddle connection is a common separatrix of
two singular points.

In the smooth category one can remove a degeneracy of a foliation locally.
Say, one can destroy a homoclinic loop by changing the foliation only in a
flow-box around a point on the loop.

In the holomorphic category, a priori, one cannot perturb a foliation in
a flow-box without changing the foliation globally. Our strategy to remove
degeneracies in the holomorphic category is the following:

In Section 2 we construct a family of foliations, that removes degeneracy,
in a neighborhood of a degenerate object, rather than in a flow-box around
a point. We say that a degenerate object is removed in a family of folia-
tions if, roughly speaking, there are no degenerate objects of the same kind
for perturbed foliations. See Definitions 2.6, 2.8, 2.9. A non-isolated cycle,
a non-trivial pair of cycles are examples of degenerate objects. We give a
complete list of degenerate objects in Section 2. All degenerate objects we
consider are curves or collections of curves. Our technique allows us to con-
struct an appropriate family only if a degenerate object is holomorphically
convex. We expect though that it should be possible to carry out for any
degenerate object.

In [7] our approach to construct a family of local foliations in a neighbor-
hood of a degenerate object was to control the derivative of the holonomy
map along the leaf with respect to a perturbation. This approach can not
be adapted to remove a non-transversal intersection of strongly invariant
manifolds. There are no leaf-wise paths, that connect singular points with
a point of non-transversal intersection. Therefore, one cannot control the
intersection of invariant manifolds this way.

In this paper we use a different approach, a more geometric one. First,
we reglue the neighborhood (Subsection 2.3). Then we project the obtained
manifold, together with a new foliation, to the original one. We use the-
orem [18], that states that a Stein manifold has a Stein neighborhood, to
construct the projection.

We give a review of results on the holomorphic hulls of collections of
curves in Section 3. We apply them to give geometric conditions for a
degenerate object to be holomorphically convex. We also review the relevant
results from the Approximation Theory on Stein manifolds and apply them
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to pass from a local family of foliations in a neighborhood of a degenerate
object to a global one.
When we remove a degenerate object, e.g. a complex cycle, we do not con-

trol the foliation outside a neighborhood of the degenerate object. There-
fore, it might happen that eliminating one degenerate object we create
many other in different places. We solve this problem as follows: We find a
countable number of places where degenerate objects can be located. For
each such location we prove that the complement to the set of foliations,
which have the degenerate object at this particular location, is open and
everywhere dense. Then we intersect these sets and get a residual set of fo-
liations without holomorphically convex degenerate objects. We show that
if a foliation has a degenerate object, then it has a holomorphically convex
degenerate object. Therefore, the residual set constructed does not have
degenerate objects. We describe this strategy in detail in Section 4. This
strategy was previously used in [7] and [9].

We give background on the complex foliations in the Appendix 5.1.

1.2. Acknowledgements

The author is grateful to Yulij Ilyashenko for the statement of the prob-
lem, numerous discussions and useful suggestions. We are thankful to Victor
Kleptsyn for the fruitful discussions and to Igors Gorbovickis for editorial
suggestions.

2. Local removal of degenerate objects

2.1. List of degenerate objects

As we pointed out in the introduction one can not eliminate a homo-
clinic saddle connection by changing the foliation only locally in a flow-box.
Rather than that one needs to perturb the foliation in the neighborhood
of the separatrix loop. This leads us to considering degenerate objects.

Below we list degenerate objects. One can check that if a foliation does
not have degenerate objects of type 1− 5, then it satisfies Theorem 1.1. If
all singular points of a foliation are complex hyperbolic and it does not have
degenerate objects of types 1−6 and 8−9, then it is complex Kupka-Smale.
If all singular points of a foliation are complex hyperbolic and a foliation
does not have degenerate objects of type 7, then it satisfies Theorem 1.4.
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In, fact, we can require that there are no degenerate objects that satisfy
additional geometric conditions. We prove these stronger statements in
Theorems 4.11, 4.12.

Definition 2.1. — We say that γ is a degenerate object of a foliation
F if γ is

(1) A non-trivial loop on a leaf L of F , which is a representative of a
non-hyperbolic cycle.

(2) A union of loops γ1, γ2 that belong to the same leaf L of F . We
assume γ1 and γ2 are not multiples of the same cycle. Moreover, γ1,
γ2 are hyperbolic. (See Fig. 2.1.)

γ1
γ1

γ2

γ2

Figure 2.1. A pair of cycles

(3) A path on a saddle connection, that connects two different hyper-
bolic singular points a1 and a2. (See Fig. 2.2).

(4) A loop on a homoclinic saddle connection S (See Fig.2.2):
• a is a hyperbolic singular point;
• S1, S2 are local separatrices of the singular point a; S1 6= S2;
S1, S2 ⊂ S;

• γ ⊂ S passes through the singular point a, starts at S1, ends
along S2.

γ

γ
a1 a2

a

Figure 2.2. A path on a saddle connection and a loop on a homoclinic
saddle connection
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(5) A non-trivial loop γ on a separatrix that passes through a singular
point a.

(6) A union of paths γ1 and γ2 (See Fig. 2.3):
• a1, a2 are hyperbolic singular points of the foliation F , a1 6= a2;
• M1 and M2 are strongly invariant manifolds of a1 and a2 cor-

respondingly;
• p is a point of A non-transversal intersection of M1 and M2;
• γ1 ⊂ M1 and γ2 ⊂ M2 are paths that connect a1 and a2 with
the point p;

• (γ1∪γ2)\(M loc
1 ∪M loc

2 ) ⊂ L, where L is a leaf of the foliation F .

a1

a2

pM1

M2

γ1 γ2

Figure 2.3. A non-transversal intersection of strongly invariant man-
ifolds. The leaf L on the picture is not a separatrix. Hence, it spirals
around singular points a1 and a2.

(7) A loop γ1 ∪ γ2:
• a is a hyperbolic singular point of the foliation F ;
• M1 and M2 are strongly invariant manifolds of the point a;
• M loc

1 ∩M loc
2 = a;

• paths γ1 ⊂M1, γ2 ⊂M2 connect a with p;
• (γ1 ∪ γ2)\(M loc

1 ∪M loc
2 ) ⊂ L, where L is a leaf of the foliation

F .
(8) A union γ1 ∪ γ2 ∪ γ3 ∪ γ4:

• γ1, γ2 are hyperbolic loops on leaves of F ;
• M1,M2 are invariant manifolds of γ1, γ2 correspondingly;
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• γ3 ⊂M1, γ4 ⊂M2 are paths that connect points on γ1,γ2 with
a point of a non-transversal intersection of M1, M2.

• (γ3 ∪ γ4)\
(
M loc

1 ∪M loc
2
)
⊂ L, where L is a leaf of F .

(9) A union γ = γ1 ∪ γ2 ∪ γ3:
• γ1 is a hyperbolic loop on a leaf;
• M1 is an invariant manifold of γ1;
• a is a hyperbolic singular point;
• M2 is a strongly invariant manifold of a;
• γ2 ⊂ M1, γ3 ⊂ M2 are paths on invariant manifolds that
connect a point on γ1 and the point a correspondingly with
the point of a non-transversal intersection of M1 and M2

• (γ2 ∪ γ3)\
(
M loc

1 ∪M loc
2
)
⊂ L, where L is a leaf of the folia-

tion F .

2.2. Local Removal Lemma

In this section we find a neighborhood of a degenerate object and a family
of holomorphic foliations in this neighborhood that removes the degenerate
object in the neighborhood.

Our technique allows us to do that only if the degenerate object is holo-
morphically convex. We expect, though, that it is possible to omit this
assumption.

Let U be a neighborhood of the degenerate object. First, we allow not
only the foliation, but the neighborhood itself to change with the parameter
λ. We get a family of foliations Fλ on manifolds Uλ. Then we find the way
to “project” Uλ to some neighborhood of the degenerate object. Thus, we
produce a family of foliations in the neighborhood of the degenerate object
that removes it.
The following lemma summarizes the results of the following two subsec-

tions.
Let γ be a union of curves on a Stein manifold X, endowed with a

foliation F0. Assume that γ is holomorphically convex. Fix a point p ∈ γ,
assume that p 6∈ Σ(F). Let α ⊂ γ be a small arc, a neighborhood of p
on γ. We assume that α ⊂ L, where L is a leaf of the foliation F0. We
can fix coordinates (z1, . . . , zn−1, t) in a neighborhood of the point p, so
that z-coordinates do not change along the foliation. We can assume that
t is a coordinate in a neighborhood U(α) of α on the leaf L. Consider the
flow-box

V := {|z| < 1} × U(α).

ANNALES DE L’INSTITUT FOURIER
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We rescale z-coordinates if necessary so that V is compactly contained in
the coordinate neighborhood of the point p. Take a pair of points q1, q2 ∈
γ\α, that lie on different sides of α and q1, q2 ∈ U(α). Let T1, T2 be transver-
sal sections to F0 that pass through q1, q2. Functions (z1, . . . , zn−1) work
as coordinates on T1, T2.

U

γ
p

q1 q2
T1 T2

Figure 2.4. γ together with its neighborhood. The flow-box is foliated
by leaves of the foliation F0. The break points of γ on the picture
indicate that γ\α does not necessarily belong to L.

Let Φλ be a family of germs of biholomorphisms, that depends on λ

holomorphically.

Φλ :
(
Cn−1, 0

)
→
(
Cn−1, 0

)
, Φ0 = Id.

Lemma 2.2. — There exist a neighborhood Ũ of γ, that retracts to γ,
and a family of foliations Fλ on Ũ that depends holomorphically on λ

satisfying the following conditions:
(1) in Ũ\V , Fλ is biholomorphic to F0. More precisely, there exists a

holomorphic on λ family of maps πλ :
(
Ũ\V

)
→ X, which are

biholomorphisms to their images, such that πλ maps the leaves of
F0 to the leaves of Fλ, π0 = Id;

(2) The holonomy map inside the flow-box along the foliation Fλ be-
tween T1 and T2 is biholomorphically conjugate to Φλ, more pre-
cisely, in coordinates (z1, . . . , zn−1) on T1, T2 it is (πzλ)−1 ◦Φλ ◦ πzλ,
where πzλ and (πzλ)−1 are first (n − 1) coordinates of πλ and π−1

λ

correspondingly.

This lemma mimics the smooth case, where one can perturb the foliation
only in the flow-box. In the holomorphic case this is not possible. Therefore,
we need to adjust everything by the map πλ. In the following two sections
we describe the regluing and projection techniques. We use these techniques
to prove Lemma 2.2 at the end of Section 2.4.

TOME 63 (2013), FASCICULE 5
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2.3. Regluing

We weaken the restriction on γ for this subsection. We do not assume it
is holomorphically convex.
We start by constructing manifolds Uλ. They are obtained by regluing

U in the flow-box around the point p. First, we describe the procedure
informally and point out the technical difficulties that arise. Then we repeat
the description paying attention to the technical difficulties.
We take a neighborhood U that can be retracted to γ. Let Û be the com-

plex manifold obtained form U by doubling the preimage under retraction
of a small arc α1, p ∈ α1. One can assume that the preimage of α1 is a
flow-box. So Û comes with the natural projection Û → U, which is one-to-
one everywhere except for the two flow-boxes around the preimages of p,
which are glued together by the identity map. Uλ is obtained from Û by
gluing the points in the flow-boxes by using the map (Φλ, Id). The problem
is that (Φλ, Id) is not an isomorphism from the flow-box to itself. Thus,
extra caution is needed to make Uλ Hausdorff. In the rest of the section we
describe these precautions.
First, we choose a bigger neighborhood W that can be retracted to γ.

Let ρ denote the retraction. Let Ŵ be the connected complex manifold
that projects one-to-one to W\ρ−1(α) and two-to-one to ρ−1(α). Let π−1

1 ,

π−1
2 be the the two inverses of the projection Ŵ → W , restricted to the

preimage of ρ−1(α) ⊂W .
We assume that the flow-box V ⊂ ρ−1(α). We can assume that V is small

enough so that (Φλ, Id) is a well-defined map on V and is a biholomorphism
to its image. Let V1 = π−1

1 (V ), V2 = π−1
2 (V ).

Let Tc ⊂W be the tube of points that are at distance less than or equal
to c from γ\α. Let T̂c ⊂ Ŵ be the tube of points that are at distance less
than or equal to c from the preimage of γ\α. Take c small enough.
Take U = Tc ∪ V , Û = V1 ∪ V2 ∪ T̂c. Note that U is obtained from Û by

gluing the points from V1 and V2 that project to the same point in W .
Let V λ2 = π−1

2 ((Φλ, Id)(V ))
Let Ûλ = V1 ∪ T̂c ∪V λ2 . Uλ is a space obtained from Ûλ by gluing V1 and

V λ2 by the map (Φλ, Id). The space Uλ inherits complex structure. If one
takes c and λ small enough, then it is also Hausdorff.
We also consider the total space of reglued manifolds:

Û = {(u, λ) ∈ Ŵ × Λ| u ∈ V1 ∪ Tc ∪ V λ2 , λ ∈ Λ}

U = Û/ ∼, (u, λ) ∼ ((Φλ, Id)(u), λ) , where u ∈ V1, λ ∈ Λ
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Note that both U , Û are complex manifolds. U is embedded into U as a
submanifold, given by {λ = 0}.

2.4. Projection. Siu’s Theorem

In this subsection we prove that for small enough λ, one can take a small
neighborhood of γ in Uλ and project it biholomorphically to a neighborhood
of γ in U .
Assume γ is holomorphically convex. By [11, Theorem 5.16] there is a

neiborhood U1 of γ, U1 ⊂ U , such that U1 is a Stein manifold.
By the theorem, formulated below there is a Stein neighborhood Ũ of U1

in U .

Theorem 2.3. — [18] Suppose X is a complex space and A is a subva-
riety of X. If A is Stein, then there exists an open neighborhood Ω of A in
X such that Ω is Stein.

Fix an embedding of Ũ into CN . We need the following lemma:

Lemma 2.4. — There exists a linear (N − n)-subspace α ⊂ CN such
that the affine subspaces αx ⊂ CN parallel to α passing through points
x ∈ γ are:

a) transverse to U ;
b) pass through only one point on γ.

Proof. — The set of all (N−n)-subspaces of CN is n(N−n)-dimensional
complex manifold Gr(N − n,N).
Elements of Gr(N − n,N) that are not transverse to a given subspace

of complementary dimension form a complex (may be singular) subvariety
of codimension 1. Path γ is a real manifold of dimension 1. Therefore,
subspaces that do not satisfy (a) form a subvariety of Gr(N −n,N) of real
codimension 1.

A couple of points on γ form a real 2-dimensional manifold. Consider
a line that passes through two given points in CN . Linear subspaces of
CN that contain this direction form n(N − n − 1)-dimensional manifold.
Therefore, subspaces that do not satisfy (b) form a submanifold of Gr(N−
n,N) of real codimension 2(n− 1).
Since n > 2, a (N − n)-subspace α, that satisfies conditions (a) and (b),

exists. �

Proof of Lemma 2.2: Take a hyperplane α that satisfies Lemma 2.4.
Let π̃λ be the projection along α from a neighborhood U1 of γ in U to

TOME 63 (2013), FASCICULE 5
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Uλ, given by Lemma 2.4. One can take U1 to be small enough, so that
π̃λ : U1 → Uλ is a biholomorphism to its image for all small λ ∈ Λ1 ⊂ Λ.
Recall that Uλ is obtained from U by regluing in the flow-box V . Therefore,
the natural “inclusion” map iλ : U\V → Uλ is well-defined. We can take
a small enough neighborhood Ũ of γ so that iλ(Ũ\V ) ⊂ πλ(U1) for all
λ ∈ Λ1.

Since U ⊂ X, the inclusion map i′ : U → X is well-defined.
Let πλ = i′ ◦ π̃−1

λ ◦ iλ. By construction, πλ : Ũ\V → X is a biholomor-
phism to its image. The foliation Fλ is the image of F0 under the map πλ.
πλ(T1) and πλ(T2) are cross-sections to Fλ. Consider the holonomy map

hλ : πλ(T1) → πλ(T2) along the foliation Fλ. In coordinates πλ(z) on
πλ(T1), and πλ(T2), hλ = Φλ. Switching back to the original coordinate
space (z1, . . . , zn−1), one gets hλ = (πzλ)−1 ◦ Φλ ◦ πzλ. �

2.5. Removal of a holomorphically convex degenerate object

As we pointed out in the introduction, a degenerate object is removed
by a small perturbation if, roughly speaking, in some neighborhood of the
object, there are no degenerate objects of the same kind for perturbed
foliations.

Let γ be a degenerate object of a foliation F0 on a manifold X.
We say that Fλ is a local holomorphic family for γ if there exists a

neighborhood U of γ, such that Fλ are well-defined in U for all λ ∈ Λ,
where Λ is a neighborhood of the origin; and Fλ depend holomorphically
on λ.

Theorem 2.5. — Let γ be a holomorphically convex degenerate object
of a foliation F0. Then there exists a local holomorphic family of foliations
Fλ that removes γ.

In the following subsections we rigorously define what it means that a
degenerate object is removed in a local holomorphic family of foliations.
We also prove Theorem 2.5 for different types of degenerate objects.

2.6. Removal of a non-hyperbolic cycle

Definition 2.6. — Let γ be a non-hyperbolic cycle of a foliation F0.
We say that it is removed in a local holomorphic family of foliations Fλ if

ANNALES DE L’INSTITUT FOURIER
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(1) there is a transversal section T at a point p ∈ γ to the foliation F0
such that holonomy maps along γ for the foliations Fλ, ∆λ

γ : Dr →
T are well-defined for λ ∈ Λ, where Dr ⊂ T is the disk of radius r
with the center in the point p;

(2) for all λ ∈ Λ\R, ∆λ
γ has a unique fixed point on Dr, where R is

a one (or zero)-dimensional real-analytic set. Moreover, this fixed
point is hyperbolic.

Proof of Theorem 2.5 for type 1:
Take a point p ∈ γ and a transversal section T to F , p ∈ T . Let

∆γ : (T, p) → (T, p) be the corresponding holonomy map. The cycle γ
is hyperbolic by the definition if and only if all the eigenvalues of ∆γ lie
not on the unit circle.
First, we provide a specific perturbation of ∆γ that has hyperbolic fixed

points only.
The following lemma is the standard fact:

Lemma 2.7. — There exists a diagonal n×n matrix D and a ∈ Cn such
that the map ∆γ(z) + λ(Dz + a) is well-defined and has hyperbolic fixed
points only for all λ ∈ V \R, where V is a neighborhood of 0, R is a 1 (or
0)-dimensional real-analytic set, 0 ∈ R.

Take a,D such that Lemma 2.7 is satisfied.
Apply Lemma 2.2 to the cycle γ, the point p and the family of biholomor-

phisms Φλ = Id+λ(Dz+a). The map ∆λ
γ = π−1

λ ◦(∆γ + λ(∆z + a))◦πλ is
the holonomy map along γ for the foliation Fλ. For all λ outside a (possi-
bly empty) one-dimensional real-analytic set R the map ∆λ

γ has hyperbolic
fixed points only on T . �

2.7. Splitting cycles to different leaves

Let γ = γ1 ∪ γ2 be a degenerate object of type 2.

Definition 2.8. — We say that γ is removed in a holomorphic family
of foliations Fλ, λ ∈ Λ, if

(1) there is a transversal section T at a point p ∈ γ1∩γ2 to the foliation
F0 such that holonomy maps ∆λ

γ1
,∆λ

γ2
: Dr → T are well-defined

for all λ ∈ Λ, where Dr ⊂ T is a disk of radius r;
(2) ∆λ

γ1
and ∆λ

γ2
do not have a common fixed point on Dr for λ 6= 0.

Thus, the degenerate object is removed if γ1 and γ2 split to leaves, that are
different, at least in U .
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Proof of Theorem 2.5 for type 2:
Let q ∈ γ1\γ2. Assume, it is not a point of self-intersection of γ1. Apply

Lemma 2.2 to the curve γ, the point q, and the family of biholomorphisms
Φλ = z + λ. Then π−1

λ ◦∆γ2 ◦ πλ is a holonomy map along γ2. Let T1 be
a transversal section to the foliation F0 in the point q. The holonomy map
along γ1 for the foliation F0 can be written as a composition ∆γ1 = ∆2◦∆1,
where ∆1 is a holonomy map from transversal section T to T1, ∆2 is a
holonomy map from T1 to T . Then the holonomy map along γ1 for the
foliation Fλ is π−1

λ ◦∆2 ◦ Φλ ◦∆1 ◦ πλ.
π−1
λ (p) is an isolated fixed point for the holonomy map along γ2 and

is not a fixed point for the holonomy map along γ1. Thus, cycles split to
leaves, that are different at least in the neihgborhood U . �

2.8. Removal of non-transversal intersections of invariant
manifolds and saddle connections

Let a be a hyperbolic singular point. Local strongly invariant manifolds
and separatrices of a exist and depend holomorphically on the perturbation.
See Appendix 5.1.
Let γ be a complex hyperbolic cycle. Local stable and unstable manifolds

of γ exist and depend holomorphically on the perturbation. See Appendix
5.1.
We refer to separatrices, strongly invarint manifolds and stable/unstable

manifolds as invariant manifolds in the sequel.
For each degenerate object γ of a foliation F0 of types 3 − 9, there are

two invariant manifolds that meet nontransversally. Saddle connections are
examples of a non-transversal intersection. We denote the corresponding
local invariant manifolds by M loc

1 and M loc
2 . Let Fλ be a holomorphic

family of foliations in a neighborhood of γ. Let M loc
1 (λ), M loc

2 denote the
perturbations of M loc

1 and M loc
2 .

Note that for the degeneracy of type 5, M loc
1 = M loc

2 .
For degenerate objects of types 3 − 5, we need to fix a point p. We can

take it to be any point in γ\
(
M loc

1 ∪M loc
2
)
.

Notice that for all degenerate objects of type 3− 9, γ\
(
M loc

1 ∪M loc
2
)
⊂

L, where L is a leaf of foliation F0. Therefore, holomorphic extensions
M1(λ) and M2(λ) of M loc

1 (λ) and M loc
2 (λ) along γ are well-defined. We

omit parameter λ for invariant manifolds of F0.
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Definition 2.9. — We say that γ can be eliminated in a holomorphic
family of foliations Fλ if there exists a transversal section T to the foliation
F0, p ∈ T , so that M1(λ) and M2(λ) intersect transversally on T .

Note 2.10. — Note that if M loc
1 and M loc

2 are separatrices, then the
holomorphic family eliminates the saddle connection.

Proof of Theorem 2.5 for types 3-9: Let U be a neighborhood of the
point p. We can assume that M1 ∩ U and M2 ∩ U , are biholomorphically
equivalent to m1 × D, m2 × D, where m1 = M1 ∩ D1, m2 = M2 ∩ D1,
D is a neighborhood of p on the leaf L; D1 is a neighborhood of p on the
transversal section T . Fix coordinates (z1, . . . , zn−1) on T . Apply Lemma
2.2 to the curve γ, the point p and Φλ = z+λa. Assume that points q1 ∈ γ1,
q2 ∈ γ2.
Outside of the flow-box M1(λ) = πλ(M1), M2(λ) = πλ(M2).
In a neighborhood of the point p:

T ∩M2(λ) = πzλ(m2)

T ∩M1(λ) = Φλ ◦ πzλ(m1).
Therefore, by Sard’s Theorem, for almost all a they intersect transversally.

�

3. Construction of a global removal family

In this section we give the geometric conditions for degenerate objects
to be holomorphically convex and show how to pass from a local removal
foliation to a global one.

3.1. Approximation Theory

Working in the category of smooth vector fields one can eliminate a non-
transversality by perturbing the vector field only in a neighborhood of the
non-transversality. In the holomorphic category there are no local perturba-
tions allowed. However, approximation theory gives a way to work locally.
In some cases one can perturb the local picture and then approximate
your perturbation by a global one. In particular, for a holomorphic vector
bundle on a Stein manifold holomorphic sections over a neighborhood of
a holomorphically convex set can be approximated by global holomorphic
sections. This follows from two theorems formulated below.
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Theorem 3.1. — [11, 5.6.2] Let X be a Stein manifold and ϕ a strictly
plurisubharmonic function in X such that Kc = {z : z ∈ X,ϕ(z) 6 c} b X
for every real number c. Let B be an analytic vector bundle over X. Every
analytic section of B over a neighborhood of Kc can then be uniformly
approximated on Kc by global analytic sections of B.

Theorem 3.2. — [11, 5.1.6] Let X be a Stein manifold, K a compact
subset of X and U is an open neighborhood of holomorphic hull of K. Then
there exists a function ϕ ∈ C∞(X) such that

(1) ϕ is strictly plurisubharmonic,
(2) ϕ < 0 in K but ϕ > 0 in X\U,
(3) {z : z ∈ X,ϕ(z) < c} b X for every c ∈ R.

Theorem 3.3. — Let γ be a holomorphically convex degenerate object
of a foliation F0. Then there exists a holomorphic family Fλ of foliations
on X, that removes γ.

Proof. — By Theorem 2.5, there is a family of local holomorphic foli-
ations Fλ that removes γ. By Lemma 5.8, foliations Fλ are determined
by local sections sλ of the analytic bundle TX ⊗ BF . Let λ0 ∈ Λ be a
parameter that does not belong to the exceptional real analytic set. By
Theorems 3.1 and 3.2, there exists a global section Sλ0 that is ε-close to
sλ0 on U ′, where γ b U ′ b U . Therefore, the family of foliations determined
by Sλ = S0 + λ(Sλ0 − S0) removes the degenerate object. �

3.2. Holomorphic convexity of a curve

Definition 3.4. — Let K be a compact subset of a complex manifold
X, the O(X)-hull of K is the set

hX(K) = {u : |f(u)| 6 max{f(x)|x ∈ K} for all f ∈ O(X)},

where O(X) are holomorphic functions on X.

Consider a collection of C1 - smooth real curves γ1, . . . , γm in CN . Their
holomorphic hull is described by Stolzenberg’s Theorem [19]:

Theorem 3.5. — Let γ = γ1 ∪ · · · ∪ γm. Then h(γ)\γ is a (possibly
empty) one-dimensional analytic subset of CN\γ.

Corollary 3.6. — The statement of the theorem is true if one replaces
Cn by a Stein manifold X.

Proof. — The corollary is proved by using a proper embedding of the
Stein manifold X to CN for some large enough N [11, Theorem 5.3.9]. �
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3.3. Holomorphic convexity of a degenerate object

In this subsection we give the geometric conditions for the degenerate
objects to be holomorphically convex. In the sequel we need the following
corollary from the Stolzenberg’s Theorem.

Corollary 3.7. — Let γ1, . . . , γn be piecewise smooth curves, such
that each intersection γi ∩ γj consists of finite number of points. Suppose
that h(γ) 6⊂ γ. Then there exists an arc α ⊂ γi, such that α ⊂ ∂ (h(γ)\γ),
where γ = ∪γi.

Theorem 3.8. — [6, Section 18.5] Let M be a connected (2p − 1)-
dimensional C1-submanifold of a complex manifold Ω. Let A1, A2 be ir-
reducible p-dimensional analytic subsets of Ω\M such that the closure of
each of them contains M . Then either A1 = A2 or A1 ∪ M ∪ A2 is an
analytic subset of Ω.

Lemma 3.9. — Let α ⊂ γ be a real-analytic arc. Assume α ⊂ ∂(h(γ)\γ).
Let C be a holomorphic curve, α ⊂ C. Then there exists a loop γ̃ ⊂ γ, so
that α ⊂ γ̃ ⊂ γ ∩ C and γ̃ is null homologous on C.

Proof. — One can take a neighborhood U ⊂ X of the arc α, such that
(1) U ∩ γ = α;
(2) the connected component of C∩U , that contains α, is a submanifold

in U ;
(3) the arc α separates this connected component into two pieces. Let

Ω1, Ω2 be these pieces.
Let h1 denote the connected component of h(γ)\γ.
Apply Theorem 3.8 to the analytic sets h1 and Ω1, and the arc α. The

closure of h1 in U contains α. The closure of Ω1 also contains α. Therefore,
either h1 = Ω1 or h1 ∪α∪Ω1 is an analytic subset of U . In the second case
h1 = Ω2. Thus, h1 = Ω1 or h1 = Ω2. If two analytic sets coincide locally,
then they coincide globally. Therefore, h1 ⊂ C.

By Maximum Modulus Principle, ∂h(γ) ⊂ γ. Denote γ̃ = ∂h1. Then γ
is a loop and is null-homologous on C. �

Theorem 3.10. — Let γ be a degenerate object of a foliation F from
the Definition 2.1. Then γ is a union of loops and curves. We assume that
each loop and curve is simple and piecewise real-analytic. Moreover, for
types 1, 2, 5, 8, 9 we assume that γ satisfies the following geometric condi-
tions:
type 1 : γ is not null-homologous on the leaf L.
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type 2: (a) γ1 and γ2 have only one common point;
(b) γ1 and γ2 are not null-homologous and are not multiples of the

same cycle in the homology group of L.
type 5: γ is not null-homologous on S.
type 8: γ1 ⊂ L is not null-homologous on L; γ1 and γ2 have only one

common point.
type 9: γ1 ⊂ L1, γ2 ⊂ L2 are not null-homologous on L1, L2 correspond-

ingly; L1 6= L2. Curves γ1 and γ3; γ2 and γ4 have only one common
point.

Then γ is holomorphically convex.

Note 3.11. — If γ satisfies the listed above geometric conditions, then
we say that γ is a geometric degenerate object.

Proof. — Suppose γ is not holomorphically convex.
type 1: Since γ is a simple cycle, by Lemma 3.9, γ is null-homologous on

L, which contradicts the hypothesis of the theorem.
type 2: Since γ1 and γ2 are simple cycles and have only one point of intersec-

tion, there are three possibilities for the boundary of holomorphic
hull of γ : ∂h(γ) = γ1, ∂h(γ) = γ2, ∂h(γ) = γ1 ∪ γ2. Since γ1 is
not null-homologous on L, ∂h(γ) 6= γ1. The same way, ∂h(γ) 6= γ2.
Since γ1 and γ2 are not multiples of the same cycle in the homology
group of the leaf L, h(γ) 6= γ1 ∪ γ2. Contradiction.

type 3: γ is simply connected, therefore, by Lemma 3.9, it bounds a region
on S. This contradicts the hypothesis of the theorem.

type 4: Let S̃ be a surface obtained from S ∪ {a} by splitting the local
components of S at the point a. Let π : S̃ → S be the corresponding
projection. Then π−1(γ) is a simple path on S̃. It does not bound
a region on S̃. Therefore, its image does not bound a region on S.
That contradicts Lemma 3.9.

type 5: The same as for type 1.
type 6: Let α be an arc, given by Corollary 3.7. Let us assume without loss

of generality, α ⊂ γ1. Let C be a curve, given by Lemma 3.9. Then
C is either a saddle connection or C ⊂ M1. Saddle connections
have been treated in (3) and (4). Thus, we may assume, C ⊂ M1.
Therefore, by Lemma 3.9, γ1 bounds a region on C. This contradicts
the hypothesis of the theorem.

type 7: The proof is the same as for type 6.
type 8: Let α be an arc, given by Corollary 3.7. Then α ⊂ γ1, or α ⊂ γ2,

or α ⊂ γ3, or α ⊂ γ4. If α ⊂ γ3, or α ⊂ γ4, then we proceed by
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the same reasoning as for type 6. We may assume α ⊂ γ1, then
by Lemma 3.9, γ1 is null-homologous on L1. This contradicts the
hypothesis of the theorem.

type 9: The proof is the same as for type 8. �

4. Simultaneous removal of degeneracies

Let X be a Stein manifold. Let Φ denote the space of 1-dimensional
singular holomorphic foliations on X.

4.1. Landis-Petrovskii’s Lemma

The idea is to encode degeneracies by countably many objects. To give a
feeling of the method used, we first prove a version of the Landis-Petrovskii’s
Lemma [15] that we need in the sequel.

Lemma 4.1. — There are at most countably many isolated complex
cycles on leaves of the foliation F ∈ Φ.

Proof. — Since the manifold X is Stein, it can be embedded into CN .
Take a cycle γ on a leaf L of the foliation F . Fix coordinates (z1, . . . , zN )
in CN . Let C1, . . . , CN be the coordinate lines,

Ci = {z1, . . . ,= ẑi = · · · = zN = 0}.

Suppose that L does not belong to the hypersurface {zi = c} for any
c ∈ C. By perturbing γ on the leaf L one can assume that there exists a
small neighborhood U ⊃ γ so that πi|U is a biholomorphism to the image
(here πi : CN → Ci, πi(z) = zi is the projection). Then one can perturb
γ inside U so that πi(γ) becomes a piece-wise linear curve with rational
vertices.

Definition 4.2. — We will say that the cycle γ′ lies over the piece-wise
linear curve g′ if there exist a representative of γ′ and its neighborhood U ′,
such that U ′ is projected biholomorphically to its image and the repre-
sentative is projected to g′. Note, that any cycle lies over countably many
piece-wise linear curves.

Take one of the vertices of πi(γ), say with coordinate zi = c. The hyper-
surface {zi = c} intersects X by (k − 1)-dimensional variety, such that for
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any cycle γ′, lying over πi(γ), it is transversal to the foliation in a neigh-
borhood of γ′ ∩{zi = c}. The holonomy map along γ is well-define in some
neighborhood of the intersection {zi = c} ∩ γ. The holonomy map does
not have any other fixed points in some smaller neighborhood. Thus, each
cycle that projects to the same piece-wise linear curve gives a neighbor-
hood on the hyperplane {zi = c} ⊂ CN , so that two neighborhoods for two
different cycles do not intersect each other. Therefore, there are at most
countably many limit cycles that project to the same curve. Since there
are only countably many curves, there are at most countably many limit
cycles. �

Landis-Petrovskii’s Lemma implies that once all non-isolated cycles are
removed, all leaves except for countably many are homeomorphic to disks.

4.2. Simultaneous removal of non-isolated cycles

If there are non-isolated cycles on the leaves of a foliation F , then the
number of the cycles is obviously uncountable. However, the strategy de-
scribed above can be applied. Our idea is to catch the degenerations by a
countable number of holonomy maps.

Theorem 4.3. — There exists a residual set in Φ with no geometric
degenerate objects of type 1.

Proof. — Since X is Stein, it can be embedded into CN . We can restrict
ourselves to the foliations without leaves that belong to the hypersurfaces
{zN = c}, c ∈ C. The set of such foliations is open and dense. We describe
the holonomy maps that catch all the cycles for all foliations.
We introduce the following notations:
• A is a countable, everywhere dense subset in Φ;
• G is the set of all closed piecewise-linear curves with rational vertices

on
{z1 = · · · = zN−1 = 0},

with one marked vertex.
• Let τq = {zn = q} ∩X, where q ∈ Q + iQ.

Let Qq be a countable everywhere dense set on τq.
Q =

⊔
Qq.

Let z = (z1, . . . , zN−1), u = zN .

Consider a 4-tuple α = (F , g, z, r) ∈ (A,G,Qq,Q+). Let q denote the
marked point of g. Take a point z′ in a neighborhood of z on τq. Lift g
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to the leaf, starting from z′. Assume that the end point of the lift of g
belongs to the same neighborhood. This defines a holonomy map for the
foliation F . If the listed above conditions are satisfied, we call a 4-tuple
admissible. One can consider the germ of the holonomy map along the
lifting of g, starting at z, for foliations close to F . Therefore, we think of
∆α as of function of two variables: a foliation close to F , and a point on
the transversal section τq.
Below we fix a specific representative of ∆α. We use the same notation

for the specific representative as for the germ.
Let Vα be the connected component, containing F , of the set of foliations,

for which the holonomy map along g in the point z is well-defined and has
radius of convergence greater than r. The domain of definition of ∆α is

{(F ′, z′)| F ′ ∈ Vα, |z′ − z| < r}.

Note, that Vα is open.
From this point on, we work with fixed representatives, rather than

germs.

Lemma 4.4. — Let γ be a complex cycle of a foliation F . Then there
exists an admissible α, such that γ corresponds to a fixed point of ∆α(F , ·).

Proof. — Let γ be a complex cycle on a leaf L of a foliation F . One can
perturb γ on L so that it projects to some g ∈ G. Let u(g) be one of the
vertices of the projection, and let z ∈ γ be the preimage of u(g). Consider
the holonomy map along γ in a neighborhood of z in the transversal section
C = {u = u(g)}. Take a point z1 ∈ Q such that |z− z1| < rz(F)/4 where
rz(F) is the radius of convergence of the holonomy map in the point z
along γ for the foliation F . Note, that rz1(F) > rz(F)/2. One can take
F1 close to F so that rz1(F1) > rz(F)/2. Denote by α = (F1, g, z1, r),
where r ∈ Q, rz(F)/4 < r < rz(F)/2. Then r < rz1(F1). Also, F ∈ Vα,
because rz1(F) > r. Since r > rz(F)/4, the point z belongs to the domain
of definition of ∆α(F1, ·). �

Lemma 4.5. — Fix ∆α. The set Dα ⊂ Vα of foliations F such that
∆α(F , ·) has a non-hyperbolic fixed point, so that the corresponding cycle
γ is a geometric degenerate object of type 1, is closed and nowhere dense
in Vα.

Proof. — We prove that by a finite number of steps, we can perturb the
foliation F so that ∆α(F̃ , ·) has isolated fixed points only, that correspond
to geometric degenerate cycles, in the domain of definition discussed above.
Assume that A is the set of fixed points of ∆α(F , ·). Let A be k-dimensional.

TOME 63 (2013), FASCICULE 5



1870 Tanya FIRSOVA

As we show in the appendix, one can associate multiplicity m(A) to the
analytic set A. Take a point z that is a generic point of a k-dimensional
stratum Ai. Assume z corresponds to a geometric degenerate object. By
Theorem 3.3, there exists a neighborhood of z and a foliation F̃ , arbitrary
close to F , such that the holonomy map of F̃ along γ has isolated fixed
points only in this neighborhood.
This perturbation destroys the component Ai. Therefore, by Lemma 5.14

it either decreases the dimension of A, or it decreases the multiplicitym(A).
Therefore, after a finite number of steps, only isolated geometric cycles are
left. By the Theorem 3.3, they can be turned into hyperbolic by a finite
number of steps as well. �

Corollary 4.6. — The complement of Dα in Φ contains an open every
where dense set.

The residual set is obtained by intersecting open everywhere dense sets
from the Corollary above. �

4.3. Simultaneous splitting of cycles to different leaves

Theorem 4.7. — There exists a residual set in Φ with no geometric
degenerate objects of type 2.

Proof. — The construction is similar to Section 4.2. The difference is
that one needs to consider pairs of holonomy maps. The analytic condition
is that they do not have a common fixed point. �

4.4. Simultaneous removal of separatrices and non-transversal
intersections of invariant manifolds

Theorem 4.8. — There exists a residual set in Φ with no geometric
degenerate objects of types 3− 9.

Proof. — We outline the proof for strongly invariant manifolds of differ-
ent singular points. For other types of degenerate objects the proof goes
along the same lines.

Since X is a Stein manifold, it can be embedded into CN .
We fix the countable set of data α = (F , a1,M1, a2,M2, g, z1, r).
• F ∈ A, where A is a countable every-where dense set in Φ;
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Foliations with complex hyperbolic singular points only form a residual
set [5]. Therefore, we can assume that all singular points for all the foliations
F ∈ A are complex hyperbolic.

• a1, a2 are complex hyperbolic singular points of F ;
• M1,M2 are strongly invariant manifolds of a1 and a2 correspond-
ingly;

We associate the maximal radius ri to the singular point ai.

Definition 4.9. — The radius ri is the maximal radius, such that Mi

is transversal to ∂Ur(ai) for all r < ri.

Not that maximal radius is a lower semicontinuous function on the space
of foliations.

Let π : X → C be the projection to C = {z1 = · · · = zN−1 = 0},
π(x1, . . . , xN ) = xN .

• g ⊂ C is a piecewise linear curve with rational vertices. Let u1,
u2 be the starting and the ending points of g correspondingly. We
require that u1 ∈ π(Ur1(a1)), u2 ∈ π(Ur2(a2));

• z1 ∈ Qq, where Qq is an everywhere dense set on the transversal
section
τ1 = {zn = u1 = q} ∩X in Ur1(a1);

We require that there is a well-defined lift of g to the leaf L of the foliation
F , that starts from a point z1. The lift is denoted by γ. Let z2 be the lift
of u2. We require that z2 ∈ Ur2(a2)
Let τ2 = {zN = u2} ∩X.
There is a well-defined germ ∆ : τ1 → τ2 of the holonomy map along γ

in the point z1.
As before, we think of ∆ as a function of two variables: a foliation G,

close to F , and a point on the transversal section τ1.
• r ∈ Q+. We require that

(1) r is less than radius of convergence of ∆.
(2) The disk Dr(z1) on the transversal section τ1 of the radius r1

with the center z1 is compactly contained in Ur1(a1).
(3) ∆(Dr(z1)) is compactly contained in Ur2(a2).

We fix a representative ∆α of ∆. Below we describe the neighborhood
Uα of F . G belongs to Uα if

(1) there is a holomorphic family of foliations Fλ, so that F0 = F ,
F1 = G; for all λ ∈ D1 there are unique hyperbolic singular points
aλ1 ∈ Ur1/2(a1) and aλ2 ∈ Ur2/2(a2) of the foliation Fλ;
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Let a′1, a′2 be singular points of G, obtained via holomorphic con-
tinuation. LetM ′1,M ′2 be the corresponding strongly invariant man-
ifolds. Let r′1, r′2 be the maximal radii for (a′1,M ′1), (a′2,M ′2).

(2) z1 ∈ Ur′1(a′1), z′2 ∈ Ur′2(a′2), where z′2 is the lift of u2 along g for G.
(3) Dr(z1) is compactly contained in Ur′1(a′1).
(4) ∆(G, Dr(z1)) is compactly contained in Ur′2(a′2).
The domain of definition of ∆α is Uα ×Dr(z1).

Lemma 4.10. — For any α, the set Dα ⊂ Uα of foliations G ⊂ Uα, for
which there exists a leaf L such that

(1) the lift of u1 to L is in Ur1(a1), the lift of u2 to L is in Ur2(a2);
(2) the lift of g belongs to the strongly invariant manifold M ′1 of the

singular point a′1 of G (a′1 is a holomorphic continuation of a1);
(3) the lift of u2 belongs to the strongly invariant manifold M ′2 of a

singular point a′2 (a′2 is a holomorphic continuation of a2);
(4) the lift of u2 is a point of a non-transversal intersection of M ′1 and

M ′2.
is a closed and nowhere dense set.

Proof. — The proof follows from the local Theorem 3.3 in the same way
as in Lemma 4.5. �

The desired residual set is obtained by intersecting the complements to
closed nowhere dense sets from the previous lemma. �

4.5. Proofs of the main theorems

Theorem 4.11. — A foliation F that does not have geometric degen-
erate objects of types 1− 5 satisfies Theorem 1.1.

Proof. — Assume that L is a non-contractible leaf of the foliation F .
Then there exists a simple loop γ ⊂ L, non-homologous to zero on L.
Consider two cases:

(1) The leaf L has a finitely generated fundamental group. Notice that
L is non compact, since otherwise it would be a compact subman-
ifold of the Stein manifold X. L is homeomorphic to a compact
surface with finitely many punctures. Take γ to be a simple loop
around a puncture. One can choose γ to be piecewise real-analytic.

(2) The leaf L has an infinitely generated fundamental group. Take a
simple cycle α on L. If α is non-homologous to zero, take γ := α.
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If α is null-homologous, then it bounds a compact region K ⊂ L.
Take any simple cycle γ ⊂ K, which is non-homologous to zero on
K. Then γ is non-homologous to zero on L. One can choose γ to
be piecewise real-analytic.

Suppose that γ is not isolated. Then it is a geometric degenerate object
of type 1, which is impossible by the hypothesis of the theorem.

By Lemma 4.1, there are at most countably many isolated cycles. Thus,
there are at most countably many noncontractible leaves.

Let L be a leaf of the foliation F that is not a separatrix. Moreover,
assume that H1(L,Z) 6= 0,Z. By [7, Lemma 6.9], there exists a pair of
cycles γ1, γ2 ⊂ L, that form a geometric degenerate object of type 2. Since
the foliation F does not have geometric degenerate objects of type 2, all
non-separatrix leaves L are either contractible or H1(L,Z) = Z.
Let L be a separatrix of a singular point a. Since the foliation F does

not have geometric degenerate objects of types 3 and 4, L is not a saddle
connection or a homoclinic saddle connection. Since, there are no geometric
degenerate objects of type 2, by [7, Lemma 6.9], the union L ∪ a is either
contractible or H1(L ∪ a,Z) = Z. If H1(L ∪ a) = Z, then there is a simple
piecewise real-analytic generator of H1(L∪a) that passes through the point
a. Let us denote it by γ. Then γ is a geometric degenarate object of type
5. That contradicts the hypothesis of the theorem. Therefore, L ∪ a is
contractible, and L is homeomorphic to a cylinder. �

Proof of Theorem 1.1: By Theorems 4.3, 4.7, 4.8, there are residual sets
R1, R2, R3 ⊂ Φ, with no geometric degenerate objects of types 1, 2, 3 − 5
correspondingly. By Theorem 4.11, any foliation F ⊂ R, where R = R1 ∩
R2 ∩R3 satisfies Theorem 1.1. �

Theorem 4.12. — If all singular points of a foliation F are complex
hyperbolic and it does not have geometric degenerate objects of types 1−6,
8− 9, then it is complex Kupka-Smale.

Proof. — By Theorem 4.11, all leaves of the foliation F are either con-
tractible or cylinders. Since the foliation does not have geometric non-
hyperbolic cycles, all cycles are hyperbolic.
Suppose there is a non-transversal intersection of invariant manifoldsM1

and M2. We assume that M1 and M2 are strongly invariant manifolds of
singular points a1 and a2 correspondingly. The other cases are treated the
same way. Let p be a point of nontransversal intersection of M1 and M2.
Assume p ∈ L, where L is a leaf of the foliation F . We can assume that
L is not a saddle connection. Since L ⊂ M1, there is a path γ′1 ⊂ L that
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connects p with a point q ∈ M loc
1 . Let γ′′1 ⊂ M loc

1 be a path that connects
q and a1. Let γ1 = γ′1∪γ′′1 . We can assume that γ1 is simple and piece-wise
real analytic. The same way, we construct γ2 ⊂M2. Thus, we constructed
a geometric degenerate object of type 6, which contradicts the hypothesis
of the theorem. �

Proof of Theorem 1.2: Consider the set of foliations with complex hy-
perbolic singular points only. This set contains a residual subset R4 [5].
By Theorem 4.8 there is a residual set R5 with no geometric degenerate
objects of types 6, 7, 9. Recall that R, defined in the proof of Theorem 1.1,
is a subset with no geometric degenerate objects of types 1-5. By Theorem
4.12, any foliation F ⊂ R ∩R4 ∩R5 is complex Kupka-Smale. �

Proof of Theorem 1.4 : There is a residual set R4 of foliations with
complex hyperbolic singular points only [5].
Assume that a foliation has a non-transversal intersection of invariant

manifolds of the same singular point. Then, by the same argument as in
the proof of Theorem 4.12, we construct a geometric degenerate object
of type 7. By Theorem 1.4, there is a residual set R6 with no geometric
degenerate objects of type 7. The set R4 ∩R6 is a desired residual set. �

5. Appendix

5.1. Complex foliations

Definitions 5.1-5.5 are from [14]. They are scatted through out the text,
so we provide them here for the convenience of the reader. Definition 5.6,
5.7 can be found in [20],[4] correspondingly.

Definition 5.1. — Let F be a foliation on a complex manifold X. Let
γ : [0, 1]→ X be a path on X. Let T0 and T1 be two transversal sections to
F , passing through γ(0) and γ(1) respectively. Then for any initial point
x ∈ T0, close to γ(0), leaf-wise curves, starting from x, and staying close to
γ, and arriving to T1, arrive at a well defined point ∆γ(x). Thus, we obtain
a map ∆γ(x), which we call the holonomy map. If γ : [0, s]→ X is a closed
curve, and T is a transversal section to F , passing through γ(0). The map
∆γ : T → T is called the holonomy map as well.

Definition 5.2. — A complex cycle is a nontrivial free homotopy class
of loops on a leaf of a foliation. It is called isolated if it corresponds to an
isolated fixed point of its holonomy map. It is hyperbolic if its holonomy map
is hyperbolic, i.e. its linearization is non-degenerate, and the eigenvalues of
the linearization do not belong to the unit circle.
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Definition 5.3. — Let γ be a hyperbolic cycle. By Hadamard-Perron
Theorem, the holonomy map ∆γ has local stable and unstable manifolds
mloc

1 , mloc
2 [14, Theorem 7.1] The union of leaves that pass through mloc

1 ,
mloc

2 are called the stable, unstable manifold of γ correspondingly.

Definition 5.4. — A singular point is called complex hyperbolic if it is
non-degenerate and the ratio of any two eigenvalues is not real.

In this article we work only with complex hyperbolic singular points. So
we reserve the word “hyperbolic” to complex hyperbolicity.

Definition 5.5. — A local complex separatrix of a singular holomorphic
foliation F at a singular point a ∈ Σ(F) is a local leaf L ⊂ (U, a)\Σ, whose
closure L∪a is a germ of an analytic curve. The leaf L is called separatrix.

Definition 5.6. — A saddle connection is a common separatrix of two
singular points. See Fig.2.2

Definition 5.7. — Suppose a is a hyperbolic singular point of the fo-
liation F . Let λ1, . . . , λn be the eigenvalues of a. Let l be a line passing
through the origin in C. Let λ = (λi1 , . . . , λik ) be the eigenvalues of a
that lie on one side of the line l. Let αλ be a subspace spanned by the
eigenspaces of all elements of λ. The local strongly invariant manifold M loc

λ

is a manifold tangent to αλ. The global strongly invariant manifold Mλ is
obtained by taking the union of leaves that belong to the local strongly
invariant manifold.

Strongly invariant manifolds exist [14, Theorem 7.4]. The proof can be
easily modified to show that they depend holomorphically on a foliation.

Suppose that v is a vector field that determines a foliation locally.
Strongly invariant manifolds are stable and unstable manifolds of the time-
one map Φ1

cv of the vector field cv, where c ∈ C∗ is taken so that l becomes
the imaginary axis. If one considers the real flow of the vector field cv,
then locally strongly invariant manifolds coincide with stable and unstable
manifolds [4].

5.2. Holomorphic vector bundle associated to a foliation

Take a 1-dimensional singular holomorphic foliation F of a Stein manifold
M. One can naturally associate a linear bundle BF to F .
Notice that a 1-dimensional holomorphic foliation with singular locus

of codimension 2 is locally determined by a holomorphic vector field [14].
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Consider a covering of a Stein manifold by open contractible sets Ui. On
each set Ui the foliation is determined by a holomorphic vector field vi.
For a pair of intersecting sets Ui and Uj define a function gij = vi/vj .

This function is well-defined on (Ui ∩ Uj) \{vj = 0}. The set {vj = 0} has
codimension 2. Therefore, gij can be extended to Ui ∩ Uj .

The same way gji = vj/vi can be extended to a well-defined function on
Ui ∩ Uj .

gijgji = 1 ⇒ gij
∣∣
Ui∩Uj

6= 0
The set of functions {gij} form a 2-cocycle, therefore, they define a linear
bundle.

Lemma 5.8. — 1-dimensional singular holomorphic foliation F of a
Stein manifold X is determined by a global section of the vector bundle
TX ⊗BF .

Proof. — Lemma follows from the construction of BF . �

If H2(X,Z) = 0, then each foliation on X is determined by a global
vector field. In particular, this holds for foliations on Cn.

5.3. Topology of uniform convergence on compact non-singular
sets

The description of topology on the space of foliations in Cn is given for
example in [9]. Let X be a Stein manifold. We fix its compact exhaustion:

K1 b · · · b Kn · · · b X,

where K1, . . . ,Kn are compact subsets of X, closures of open connected
subsets of X;

∪nKn = X.

Let d1 be a metric on X and d2 be a metric on the projectivization of its
tangent bundle PTX. A basis of neighborhoods of the foliation F is formed
by

Un,ε,δ =
{
G| G is nonsingular in Kε,n = Kn\Uε(Σ(F)) and the tangent
directions to the foliations F and G are ε-close on Kε,n

}
.

Note that the obtained topology does not depend on the choice of compact
exhaustion and the choice of metrics d1 and d2. The set of foliations of X
has countably many connected components, parametrized by Chern classes
of the linear bundles, associated to the foliations.

ANNALES DE L’INSTITUT FOURIER



STRUCTURE OF LEAVES AND THE K-S PROPERTY 1877

The set of sections of TX⊗BF is equipped with the topology of uniform
convergence on compact sets. The map from the space of sections to the
space of foliations is continuous.

5.4. Multiplicity

We consider analytic subsets A of a polydisk D̄n, i.e. we assume that A
is an analytic subset of some neighborhood of Dn. Suppose that A is given
by a system of n equations:

f1 = · · · = fn = 0.

Assume that A is k-dimensional. We define the multiplicity of A that does
not increase under perturbations.

Lemma 5.9. — There are only finitely many strata of A of maximal
dimension.

Proof. — The number of strata is locally finite [6, Section 2.1]. Since A
is an analytic subset of D̄n, it is globally finite. �

Let A1, . . . , Am be the strata of maximal dimension.
Take a smooth point z ∈ Ai. Consider a transversal section T to Ai at

the point z. Let f̃1, . . . , f̃n be the restriction of f1, . . . , fn to T . The point
z is an isolated solution of the system:

f̃1 = · · · = f̃n = 0.

Definition 5.10. — Let z be an isolated point of a system of equations:

f̃1 = · · · = f̃n = 0,

defined in (n − k)-dimensional polydisk Dn−k. The multiplicity m(z) of a
point z is

dimODn−k,z/ < f̃1, . . . , f̃n >,

where ODn−k,z is the local ring of z ∈ Dn−k, i.e. functions, regular in a
neighborhood of z ∈ Dn−k; < f̃1, . . . , f̃n > is the ideal inODn−k,z generated
by f̃1, . . . , f̃n.

Lemma 5.11. — The multiplicity does not increase under perturbations,
i.e. if z′1, . . . , z′m are isolated solutions of a perturbed system in a neighbor-
hood of a point z, then

m∑
i=1

m(z′i) 6 m(z).
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Proof. — In [1, Chapter 2.5.7] it is proved for k = 0. In general case the
proof goes the same way. �

Definition 5.12. — The multiplicity of z ∈ Ai is the multiplicity of
the point z as an isolated solution of f̃1 = · · · = f̃n = 0.

The multiplicity does not depend on the choice of a generic point and a
transversal section T .

Definition 5.13. — The multiplicity of a stratum Ai is the multiplicity
of a generic point. The multiplicity of A is the sum of multiplicities of Ai.

Lemma 5.14. — The multiplicity of A does not increase under pertur-
bations, i.e. let A′1, . . . A′m′ be strata of a perturbed system, then

m′∑
i=1

m(A′i) 6 m(A).

Proof. — Let T1, . . . , Tm be transversal sections to Ai’s at generic points.
Every A′i intersect at least one of the sections T1, . . . , Tm. One can also
assume that Ti’s meet Ai’s transversally. On each transversal section the
result follows from the Lemma 5.11.

�
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