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CONTRACTING RIGID GERMS IN HIGHER
DIMENSIONS

by Matteo RUGGIERO

Abstract. — Following Favre, we define a holomorphic germ f : (Cd, 0) →
(Cd, 0) to be rigid if the union of the critical set of all iterates has simple normal
crossing singularities. We give a partial classification of contracting rigid germs in
arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find
new resonance phenomena involving the differential of f and its linear action on
the fundamental group of the complement of the critical set.
Résumé. — En suivant Favre, on dit qu’un germe holomorphe f : (Cd, 0) →

(Cd, 0) est rigide si l’union de l’ensemble critique de tous ses itérés est à croisement
normaux. Nous donnons une classification partielle des germes rigides contractants
en toute dimension à conjugaison holomorphe près. On trouve des nouveaux phé-
nomènes de résonance, entre la différentielle de f et son action linéaire sur le groupe
fondamental du complémentaire de l’ensemble critique.

Introduction

In this paper, we are concerned with the problem of analytic and formal
classifications of contracting holomorphic germs at the origin in Cd, i.e.,
holomorphic germs f : (Cd, 0)→ (Cd, 0) such that every eigenvalue λ of the
differential df0 at 0 satisfies 0 6 |λ| < 1. The case of locally invertible maps
is treated in detail in the literature (see, e.g., [15], [13] or [3, Chapter 4]).
Such a map is not necessarily linearizable, but is analytically conjugated
to a polynomial normal form that involves only resonant monomials. In
particular, the analytic and formal classifications coincide. When the map
is not invertible, the situation is far more complicated since the topological
type of the critical set and its images are formal (hence analytic) invariants
of conjugacy.

Keywords: holomorphic fixed point germs, contracting rigid germs, normal forms, renor-
malization, resonances, critical set.
Math. classification: 37F25.
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To get around this problem, a natural class of maps has been introduced
in [7] and was referred to as rigid germs. A rigid germ f : (Cd, 0) →
(Cd, 0) is a holomorphic germ for which the generalized critical set C(f∞) =⋃
n∈N f

−nC(f), where C(f) denotes the critical set of f , has simple normal
crossing singularities at the origin.
Favre gave a complete classification of contracting rigid germs in dimen-

sion 2 (when C(f∞) is also totally invariant), and proved these germs were
conjugated to a polynomial (or rational) normal form. This classification
has very interesting applications to the study of a special class of non-
Kähler compact complex surfaces: Kato surfaces (see, e.g., [4], [5], [6]). The
importance of this class was further emphasized by the work of [8] and [14],
since any holomorphic two-dimensional germ is birationally conjugated to
a rigid germ.
In this article, we explore the classification of contracting rigid germs in

higher dimensions.
In this setting, we shall exhibit new resonance phenomena involving the

differential of f at 0 and its linear action on the fundamental group of the
complement of the generalized critical set. We shall then give some partial
results on the classification of contracting rigid germs (see Theorem 3.7 and
Theorem 4.1).
We shall also show (see Examples 5.2 and 5.3) how the complexity of the

geometry of the images of C(f∞) by f and its iterates makes it impossible
to get an explicit full classification.
A general motivation for studying contracting rigid germs in higher di-

mensions comes from the close relationship between these objects and spe-
cial non-Kähler manifolds introduced by Kato (see, e.g., [9], [10], [11]). We
shall return to this in a later work.

The first natural invariant for holomorphic germs f : (Cd, 0) → (Cd, 0)
is given by the differential df0 at 0. In particular the number of non-zero
eigenvalues of df0, or equivalently the rank of dfd0 , is also invariant under
iterations.
For contracting rigid germs one can consider a second natural invari-

ant related to the (generalized) critical set. Let W 1, . . . ,W q be the irre-
ducible components of C(f∞): since f is rigid, they are smooth and in-
tersect transversely at 0; moreover, since C(f∞) is backward invariant, for
every k = 1, . . . , q we have

f∗W k =
q∑
l=1

aklW
l
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CONTRACTING RIGID GERMS IN HIGHER DIMENSIONS 1915

for suitable akl ∈ N. We define the internal action of f to be the matrix
A = A(f) := (akl ). It can be understood geometrically since A represents
the action of f on the fundamental group π1(∆d \ C(f∞)), where ∆d is a
small open polydisc centered in 0.

If W k = {uk = 0} is a periodic component for f∗, i.e., (f∗)ηW k = W k

for a suitable η ∈ N∗, then ∂
∂uk

∣∣
0 defines an eigenvector for df0 associated

to a non-zero eigenvalue. These eigenvalues are responsable for (part of)
the classical resonances, given by the Poincaré-Dulac theorem.
For sake of simplicity, assume all periodic components are fixed and the

nilpotent part of df0 vanishes. Observe that this can always be achieved
replacing f by a suitable iterate.

We shall also assume that A is injective. We observe that in dimension
2, one can always semi-conjugate a rigid germ f to another one g satisfying
this condition by [7, Proposition 1.4], [8, Theorem 5.1], [14, Remark 4.8] (see
also Remark 3.11): there exists a (not necessarily invertible) holomorphic
germ Φ : (C2, 0)→ (C2, 0) such that det dΦ0 6≡ 0 and Φ ◦ f = g ◦ Φ.

Classical resonances appear as algebraic relations between the eigenval-
ues of df0. The analysis of these resonances leads to the Poincaré-Dulac
theorem. Studying contracting rigid germs, a second kind of resonances
appears, involving algebraic relations between (non-zero) eigenvalues of df0
and eigenvalues of the internal action A(f).
Let us denote by λ ∈ (D∗)s the vector of non-zero eigenvalues of df0

(where D∗ denotes the punctured unitary disc in C), and pick some coor-
dinates w = (x, ·) such that df0 = Diag(λ, 0).
Set x = (x1, . . . , xs) and let n = (n1, . . . , ns) ∈ Ns be a multi-index with

|n| := n1 + . . .+ ns > 1. Then a monomial xn :=
∏s
k=1(xk)nk is secondary

resonant if and only if λn is an eigenvalue for A.
We can now state our main result.

Theorem A. — Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ
with injective internal action. Suppose that all periodic components of
C(f∞) are fixed, and the nilpotent part of df0 vanishes. Then f is holo-
morphically conjugated to a map of the form

(x, y, z) 7→
(
σPD(x), βxEyD

(
1l + g(x)

)
, h(x, y, z)

)
, (1)

where

• x ∈ Cs, y ∈ Cp, z ∈ Cd−(s+p), β ∈ (C∗)p and 1l = (1, . . . , 1);
• E ∈ M(s× p,N) and D ∈ M(p× p,N) are matrices with detD 6=

0;
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1916 Matteo RUGGIERO

• σPD : (Cs, 0)→ (Cs, 0) is a contracting invertible germ in Poincaré-
Dulac normal form (hence a polynomial), and df0 = d(σPD)0 ⊕ 0;

• {y1l = 0} ⊆ C(f∞) ⊆ {x1ly1l = 0};
• g : (Cs, 0) → (Cp, 0) is a polynomial map that contains only sec-

ondary resonant monomials;
• h : (Cd, 0)→ (Cd−(s+p), 0) is a holomorphic map such that dh0 = 0.

Remark. — Theorem A still holds if we replace C by a (possibly non-
archimedean, not algebraically closed) complete metrized field K of
char(K) = 0, provided that the eigenvalues of df0 belong to K. See Re-
marks 1.1, 1.6, 2.1, 2.16, 3.12, 4.5 for further details.
Notice that Theorem A does not hold over fields of positive characteristic,

already for d = p = 1 (see Remark 3.12 for further details).

To read (1), we set xE =
((
xE
)1
, . . . ,

(
xE
)p) ∈ Cp, with

(
xE
)k =

s∏
l=1

(xl)e
k
l ,

where x = (x1, . . . , xs) and E = (ekl ), and analogously for other similar
expressions. Moreover, if α = (α1, . . . , αp) ∈ Cp and y = (y1, . . . , yp) ∈ Cp,
we shall write

αy = (α1y1, . . . , αpyp) ∈ Cp.
This normal form has several features. The first part x ◦ f depends only

on x, and defines a polynomial biholomorphism σPD : Cs → Cs. The second
part y ◦ f depends only (polynomially) on x and (monomially) on y. We
also get the following corollary.

Corollary B. — Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ
satisfying the hypotheses of Theorem A. Then f preserves (at least) s+ 1
smooth foliations F1, . . . ,Fs, G. The foliation Fk has codimension k for
k = 1, . . . , s, while G has codimention s+ p. Moreover, Fl is a subfoliation
of Fk for every l > k, and G is a subfoliation of Fs.

In the following we shall deal with rigid germs without the assumptions
on the fixed components and the nilpotent part. We shall then prove The-
orem 3.7 as a generalization of Theorem A. We shall also study the special
case of a rigid germ f : (Cd, 0)→ (Cd, 0) with s+ p = d− 1, where s is the
number of non-zero eigenvalues of df0, and p is the number of non-periodic
irreducible components of C(f∞) (see Theorem 4.1). In particular we get
the classifications for rigid germs for which C(f∞) has either (d − 1) or d
irreducible components.

ANNALES DE L’INSTITUT FOURIER



CONTRACTING RIGID GERMS IN HIGHER DIMENSIONS 1917

These results solve the classification of rigid germs in dimension 3, but
for the case s + p = 1. We shall show (see Examples 5.2 and 5.3) how an
explicit classification of rigid germs in this case is not possible.

To prove Theorem A, we first apply Poincaré-Dulac normalization tech-
niques. We then get a germ f : (Cd, 0)→ (Cd, 0) whose first s coordinates
are given by a contracting invertible polynomial σPD : (Cs, 0) → (Cs, 0)
in Poincaré-Dulac normal form. We then use the rigid assumption to get
(1) with g = g(x, y, z) that a priori depends on all coordinates. We finally
conjugate again to get g = g(x) that depends only on x. The study of
resonances in this case will allow us to get g polynomial.

Conjugations that maintain the Poincaré-Dulac normal form are called
renormalizations. See for example [2] for a renormalization process in the
tangent-to-the-identity case, [1] for a general procedure for formal renor-
malizations, or [12] for other techniques to study the convergence of the
Poincaré-Dulac normalization.
At every step, we first deal with the formal conjugacy. To expand in for-

mal power series compositions of maps, we shall need to introduce matrices
of indices. This will allow to fully understand the combinatorial structure of
the formal problem. Dealing with the general case (where the components
of C(f∞) are not necessarily fixed, and df0 has a nilpotent part) will make
the combinatorial structure even more intricate.
Once the formal normal form is achieved, we solve the convergence prob-

lem as in the Poincaré-Dulac result.

This paper is organized as follows. In Section 1 we prove some prepara-
tory lemmas. In Section 2 we prove a generalization of the Poincaré-Dulac
Theorem suited for contracting rigid germs. In Section 3 we define sec-
ondary resonances and prove Theorem A in the general case. In Section
4 we deal with the special case s + p = d − 1. In Section 5 we specify all
results to dimension 3.
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1. Linear Part

Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ, and W 1, . . . ,W q

be the irreducible components of C(f∞). It is natural to choose coordinates
w = (w1, . . . , wd) such that W k = {wk = 0} for k = 1, . . . , q. Moreover,
as anticipated in the introduction, we want to split irreducible components
between periodic and non-periodic ones with respect to the action of f∗. Up
to permuting coordinates, we can then suppose that the matrix A = A(f)
is of the form

A =
(
B C

0 D

)
, (2)

where B ∈ M(r × r,N) for a suitable 0 6 r 6 q is a permutation matrix,
C ∈M(r × p,N) with p = q − r, and D ∈M(p× p,N).

Since C(f∞) is backward f -invariant, in the chosen coordinates we can
write

(u, y, t) 7→
(
αuB

(
1l + θ(u, y, t)

)
, βuCyD

(
1l + g(u, y, t)

)
, k(u, y, t)

)
, (3)

with
• u ∈ Cr, y ∈ Cp and t ∈ Cd−q;
• α ∈ (C∗)r and β ∈ (C∗)p;
• θ : (Cd, 0)→ (Cr, 0), g : (Cd, 0)→ (Cp, 0), k : (Cd, 0)→ (Cd−q, 0);
• C(f∞) = {u1ly1l = 0}.

Remark 1.1. — Observe that this reduction to maps of the form (3) is
also valid over an arbitrary field.

Remark 1.2. — Suppose q = d. If detD 6= 0, the condition C(f∞) =
{u1ly1l = 0} implies that the matrix C = (cji )i,j satisfies c1i + · · · + cpi > 1
for every i = 1, . . . , r. It is easy to check that every germ of the form (3)
with C as above is a rigid germ.
If detD = 0, then every rigid germ can be written in the form (3), but

not every germ of the form (3) is a rigid germ. For example, let us consider
f : (C2, 0)→ (C2, 0), given by

(y1, y2) 7→
(
y1y2(1 + y1), y1y2(1 + y2)

)
.

Here
A = D =

(
1 1
1 1

)
,

hence detD = 0, while det df = y1y2(y1 +y2 + 3y1y2), hence f is not rigid.
When q < d, a germ of the form (3) needs to satisfy suitable additional

conditions (depending on C, k and g if detD = 0) to be rigid.

ANNALES DE L’INSTITUT FOURIER
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Starting from a germ of the form (3), we would like to kill θ (up to
holomorphic conjugacy). This is exactly the result of this section.

Theorem 1.3. — Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ.
Then f is holomorphically conjugated to

(u, y, t) 7→
(
αuB , βuCyD

(
1l + g(u, y, t)

)
, k(u, y, t)

)
, (4)

where
• u ∈ Cr, y ∈ Cp and t ∈ Cd−q;
• α ∈ (C∗)r and β ∈ (C∗)p;
• B ∈ M(r × r,N) is a permutation matrix, C ∈ M(r × p,N) and
D ∈M(p× p,N);

• g : (Cd, 0)→ (Cp, 0), k : (Cd, 0)→ (Cd−q, 0);
• C(f∞) = {u1ly1l = 0}.

Before proving this theorem, we need an easy notation Lemma and a
Proposition.

Lemma 1.4. — Let f = (f1, . . . , fr) : (Cd, 0) → (Cr, 0) be an r-uple of
formal power series, and let D ∈M(r × s,Q). Then we have

log
(
fD
)

= (log f)D,

where log here means that we are taking the log coordinate by coordinate.

Proof. — It easily follows from a direct computation. �

Proposition 1.5. — Let (fn)n be a sequence of r-uples of formal power
series, and let (Dn)n be a sequence of matrices inM(r × s,Q) (with s > 1).
Then ∏

n

(
1l + fn

)Dn
converges if and only if ∑

n

fnDn

does.

Proof. — It follows from Lemma 1.4 and the analogous result in dimen-
sion one, taking the log of the absolute value. �

Proof of Theorem 1.3. — We can suppose that f is of the form (3).
We would like to find a conjugacy between f and a germ f̃ : (Cd, 0) →

(Cd, 0) of the form (4) (with g̃, k̃ replaced by some holomorphic maps g
and k respectively).

TOME 63 (2013), FASCICULE 5



1920 Matteo RUGGIERO

Let us consider a local diffeomorphism of the form

Φ(u, y, t) =
(
u
(
1l + φ(u, y, t)

)
, y, t

)
,

where φ : (Cd, 0)→ (Cr, 0). Set

ΦN (u, y, t) =
(
u
(
1l + φN (u, y, t)

)
, y, t

)
,

with

1l + φN (w) =
N∏
n=1

(
1l + θ ◦ f◦n−1(w)

)
,

where w = (u, y, t). We have

u ◦ ΦN ◦ f = u ◦ f̃ ◦ ΦN+1.

Indeed

u ◦ ΦN ◦ f(w) = αu
(
1l + θ(w)

) N∏
n=1

(
1l + θ ◦ f◦n(w)

)
,

u ◦ f̃ ◦ ΦN+1(w) = αu

N+1∏
n=1

(
1l + θ ◦ f◦n−1(w)

)
,

which are equivalent expressions.
Let us prove that ΦN converges to a holomorphic germ Φ = Φ∞. Thanks

to Proposition 1.5, we just have to prove that
∞∑
n=0

θ ◦ f◦n

converges in a neighborhood of 0. Since θ(0) = 0, we have that there exists
M > 0 such that ‖θ(w)‖ 6M ‖w‖, while being f contracting, there exists
0 < Λ < 1 such that ‖f◦n(w)‖ 6 Λn ‖w‖, both estimates for ‖w‖ small
enough. Then we have∥∥∥∥∥

∞∑
n=0

(
θ ◦ f◦n(w)

)∥∥∥∥∥ 6
∞∑
n=0
‖θ ◦ f◦n(w)‖

6
∞∑
n=0

MΛn ‖w‖ = M

1− Λ ‖w‖ < +∞,

and hence Φ : (Cd, 0) → (Cd, 0) is a holomorphic invertible map, that
satisfies the conjugacy relation

Φ ◦ f = f̃ ◦ Φ (5)

for the first coordinate u.

ANNALES DE L’INSTITUT FOURIER
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We can just define

1l + g̃(w) =
(

1l + g

(1l + φ)C

)
◦ Φ−1(w),

k̃(w) = k ◦ Φ−1(w),

to have (5) satisfied for all coordinates. �

Remark 1.6. — Observe the arguments of the proof of Theorem 1.3 are
also valid over any complete metrized field of characteristic 0.

2. Primary Resonances

2.1. Resonance Relation

Considering the differential df0 at 0 for a map f : (Cd, 0) → (Cd, 0) of
the form (4), we get

df0 =

 Diag(α)BT 0 0
∗ 0 0
∗ ∗ ∂k

∂t

∣∣
0

 ,

where Diag(α) is the diagonal matrix of entries α = (α1, . . . , αr), and T

denotes the transposition.
Some of the non-zero eigenvalues of df0 arise from the block Diag(α)BT ,

but they can arise also from ∂k
∂t

∣∣
0. We can change coordinates to have ∂k

∂t

∣∣
0

in Jordan normal form, and split the coordinate t in (v, z), with v ∈ Ce and
z ∈ Cd−(q+e), to have the diagonal part equal to (µ, 0), where µ ∈ (D∗)e is
the vector of non-zero eigenvalues of df0 that do not arise from Diag(α)BT .
With these new coordinates we can write f as follows:

(u, v, y, z) 7→
(
αuB , µv+ρ(u, v, y, z), βuCyD

(
1l+g(u, v, y, z)

)
, h(u, v, y, z)

)
,

(6)
where

• u ∈ Cr, v ∈ Ce with e = s− r, y ∈ Cp and z ∈ Cd−(s+p);
• α ∈ (C∗)r, µ ∈ (D∗)e and β ∈ (C∗)p;
• B ∈ M(r × r,N) is a permutation matrix, C ∈ M(r × p,N) and
D ∈M(p× p,N);

• ρ : (Cd, 0) → (Ce, 0), g : (Cd, 0) → (Cp, 0) and h : (Cd, 0) →
(Cd−(s+p), 0);

• C(f∞) = {u1ly1l = 0};

TOME 63 (2013), FASCICULE 5



1922 Matteo RUGGIERO

• µ ⊆ Spec(df0) \ {0};
• ρ|{u=y=z=0} and h|{u=v=y=0} have nilpotent linear part.

Remark 2.1. — Over an arbitrary field K, this argument works as soon
as all the eigenvalues of df0 belong to K. In particular, it always works if
K is algebraically closed.

We want now to kill as many coefficients of ρ (expanded in formal power
series) as we can. As in the case of attracting invertible germs, some formal
obstructions appear. We shall call them primary resonances to make a
distinction with secondary resonances, that will be introduced in Definition
3.2 (see also the introduction at page 1915).

Definition 2.2. — Let f : (Cd, 0) → (Cd, 0) be a contracting rigid
germ as in (6), and let η ∈ N∗ be the order of B. A monomial unuvnv
is called primary resonant with respect to the k-th coordinate of v if it
satisfies the Poincaré-Dulac resonance relation for f◦η, i.e., if

ξnuµηnv = (µk)η, (7)

where ξ ∈ (D∗)r is the vector of eigenvalues of
(
u 7→ αuB

)◦η (counted with
multiplicities), and µ = (µ1, . . . , µe).

Remark 2.3. — If η = 1 in Definition 2.2 the resonance relation (7)
becomes

λn = λr+k,
where λ = (λ1, . . . , λs) := (α, µ) ∈ (D∗)s is the vector of non-zero eigenval-
ues for df0, and n = (nu, nv) ∈ Ns.

Remark 2.4. — Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ as
in (6). Let us suppose for example that W k = {uk = 0} for k = 1, . . . , χ
form a cycle of order χ; i.e., the first χ coordinates of f are of the form

(u1, . . . , uχ) 7→ (α1u2, . . . , αχ−1uχ, αχu1).

Taking the χ-th iterate, we get

(u1, . . . , uχ) 7→ (ξu1, . . . , ξuχ), with ξ =
χ∏
k=1

αk.

In particular all ∂
∂uk

∣∣
0 belong to the eigenspace of eigenvalue ξ for dfχ0 , and

ξ will have multiplicity (at least) χ.

The following lemma is a classical result for primary resonances in con-
tracting germs (see, e.g., [3, p. 467]).

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.5. — Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ
written as in (6). Then there are only finitely-many primary resonant mono-
mials.

Remark 2.6. — We notice that periodic non-fixed irreducible compo-
nents of the generalized critical set of a contracting rigid germ f : (Cd, 0)→
(Cd, 0) can appear only for d > 3, and primary resonances for B 6= Id can
appear only for d > 4.

2.2. Main Theorem

Our next goal is to kill all coefficients of ρ in (6) except for primary
resonant monomials.

Theorem 2.7. — Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ.
Then f is analytically conjugated to

(u, v, y, z) 7→
(
αuB , µv + ρ(u, v), βuCyD

(
1l + g(u, v, y, z)

)
, h(u, v, y, z)

)
,
(8)

where
• u ∈ Cr, v ∈ Ce, y ∈ Cp and z ∈ Cd−(s+p);
• α ∈ (C∗)r, µ ∈ (D∗)e and β ∈ (C∗)p;
• B ∈ M(r × r,N) is a permutation matrix, C ∈ M(r × p,N) and
D ∈M(p× p,N);

• ρ : (Cs, 0) → (Ce, 0), g : (Cd, 0) → (Cp, 0) and h : (Cd, 0) →
(Cd−(s+p), 0);

• C(f∞) = {u1ly1l = 0};
• µ ⊆ Spec(df0) \ {0} and h|{u=v=y=0} has nilpotent linear part;
• ρ is a polynomial map with only primary resonant monomials.

Remark 2.8. — For a contracting rigid germ f : (Cd, 0)→ (Cd, 0) writ-
ten as in (6), up to permuting coordinates in v = (v1, . . . , ve), we can order
µ1, . . . , µe such that

1 >
∣∣µ1∣∣ > . . . > |µe| > 0. (9)

In this case a primary resonant monomial for the k-th coordinate is either
of the form:

• unuvnv with nv = (nv1 , . . . , nve) such that nvl = 0 for l > k,
• or vl for a suitable 1 6 l 6 e.
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We shall first take care of the linear part, and then of higher order terms, to
get ρ = (ρ1, . . . , ρe) (strictly) triangular, meaning precisely that ρk depends
only on u and v1, . . . , vk−1 for every k = 1, . . . , e.

Proof. — We first prove in Step 1 the formal counterpart of this theorem,
and then we will deal with the convergence of the formal power series
involved in Step 2.

(Step 1). — First, we can suppose that f is of the form (6). Moreover
we can suppose that (ρ, h)|u=y=0 has lower triangular linear part, and that
µ satisfies (9).
Then, up to linear conjugacy, we can suppose that the linear part of ρ

has only resonant monomials. Indeed, we can consider a linear map of the
form L̂ : (u, v, y, z) 7→ (Lu, v, y, z) that conjugates f with f̂ = L̂ ◦ f ◦ L̂−1

such that u ◦ f̂(u, v, y, z) = α̂u, where α̂ ∈ (D∗)r is a vector of non-zero
eigenvalues for df0. Then there is a linear change of coordinates M̂ that
conjugates f̂ with a map whose linear part is in Jordan normal form, and
L̂−1 ◦ M̂ ◦ L̂ is the wanted linear conjugacy.

Now we want to conjugate f with a map f̃ : (Cd, 0) → (Cd, 0) of the
form (8) (with g̃, ρ̃ and h̃ instead of g, ρ and h respectively).
Set w = (u, v, y, z), and consider a local diffeomorphism Φ : (Cd, 0) →

(Cd, 0) of the form
Φ(w) =

(
u, φ(w), y, z

)
,

with φ : (Cd, 0)→ (Ce, 0) a formal map such that dΦ0 = Idd is tangent to
the identity.
Considering the conjugacy relation Φ ◦ f = f̃ ◦ Φ for the coordinate v,

we have to solve
φ ◦ f(w) = v ◦ Φ ◦ f(w) = v ◦ f̃ ◦ Φ(w) = (µv + ρ̃)

(
u, φ(w)

)
= µφ(w) + ρ̃

(
u, φ(w)

) (10)

for suitable φ and ρ̃. Set

I(w) := φ ◦ f(w), II(w) := µφ(w) + ρ̃
(
u, φ(w)

)
.

We now expand in formal power series (10), and solve it by defining recur-
sively the coefficients of φ and ρ̃. Set

• v = (v1, . . . , ve);
• ρ = (ρ1, . . . , ρe) and µkvk + ρk(w) =

∑
n ρ

k
nw

n for 1 6 k 6 e;
• ρ̃ = (ρ̃1, . . . , ρ̃e) and µkvk + ρ̃k(u, v) =

∑
nu,nv

ρ̃k(nu,nv)u
nuvnv for

1 6 k 6 e;
• φ = (φ1, . . . , φe) and φk(w) =

∑
n φ

k
nw

n for 1 6 k 6 e;
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• I =
(
I1, . . . , Ie

)
and Ik(w) =

∑
n Iknwn for 1 6 k 6 e, and analo-

gously for II;
• g = (g1, . . . , gp) and 1 + gk(w) =

∑
n g

k
nw

n for 1 6 k 6 p;
• h = (h1, . . . , hd−(s+p)) and hk(w) =

∑
n h

k
nw

n for 1 6 k 6 d− (s+
p).

Remark 2.9. — Multi-indices n ∈ Nd, although they are written as
horizontal vectors, are meant to be vertical vectors. We shall always omit
the transposition on multi-indices, but we still use subscripts to indicate
their coordinates, instead of superscripts used for horizontal vectors (as in
the standard notation).
We shall use the notation n = (nu, nv, ny, nz), denoting by u the pro-

jection onto the coordinate u and analogously for the other coordinates, so
that nu ∈ Nr, nv ∈ Ne, ny ∈ Np and nz ∈ Nd−(s+p).
In the following, we shall need some properties of formal power series

and new notations to keep the equations as compact as possible.
Remark 2.10. — Let x = (x1, . . . xr) ∈ Cr, A ∈ M(a× b,N) and B ∈

M(b× c,N). By direct computation we get(
xA
)B = xAB .

Remark 2.11. — Let ψ : (Cc, 0) → Cb be a formal map, and i ∈ Nb a
multi-index. Pick w = (w1, . . . , wc) some coordinates at 0 ∈ Cc. We shall
need to write in formal power series expressions of the form(

ψ(w)
)i ∈ C[[w]].

Set i = (i1, . . . , ib) and ψ = (ψ1, . . . , ψb) with ψk(w) =
∑
n ψ

k
nw

n for
k = 1, . . . , b. Then

(
ψ(w)

)i =
b∏

k=1

(
ψk(w)

)ik =
b∏

k=1

( ∑
nk∈Nc

ψknkw
nk

)ik

=
b∏

k=1

ik∏
l=1

( ∑
nk,l∈Nc

ψknk,lw
nk,l

)
.

Set
Nc(i) :=

{
N = (n1,1, . . . n1,i1 | · · · | nb,1, . . . nb,i

b

) s.t. nk,l ∈ Nc ∀k, l
}

∼=M(c× |i| ,N).

For any N ∈ Nc(i), set

ψN :=
b∏

k=1

ik∏
l=1

ψknk,l ∈ C, |N | :=
b∑

k=1

ik∑
l=1

nk,l ∈ Nc.
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Then we have (
ψ(w)

)i =
∑

N∈Nc(i)

ψNw
|N |.

When c = d, we shall omit the subscript and write Nd(i) = N (i).
Coming back to the proof of Theorem 2.7, by direct computations we

get

Ik =
∑
i∈Nd

[
φki
(
αuB

)iu (
µv + ρ(w)

)iv(
βuCyD

(
1l + g(w)

))iy(
h(w)

)iz]
=
∑
i∈Nd

φki α
iuuBiuβiyuCiyyDiy ∑

I∈N (iv)

ρIw
|I|

∑
J∈N (iy)

gJw
|J|

∑
K∈N (iz)

hKw
|K|

 ,

(11)

IIk =
∑

j∈Nr+e

ρ̃kju
ju
(
φ(w)

)jv =
∑

j∈Nr+e

ρ̃kju
ju

 ∑
H∈N (jv)

φHw
|H|

 , (12)

for k = 1, . . . , e.
Expressing explicitly the coefficients of Ik and IIk written in formal power

series, from (11) and (12) respectively we obtain:

Ikn =
∑
i∈Nd

I∈N (iv),J∈N (iy),K∈N (iz)
Cond1

φki α
iuβiyρIgJhK , IIkn =

∑
j∈Nr+e

H∈N (jv)
Cond2

ρ̃kjφH ,

for k = 1, . . . , e and n ∈ Nd; moreover

Cond1 =


Biu + Ciy + |I|u + |J |u + |K|u = nu
|I|v + |J |v + |K|v = nv
Diy + |I|y + |J |y + |K|y = ny
|I|z + |J |z + |K|z = nz

,

and

Cond2 =


ju + |H|u = nu
|H|v = nv
|H|y = ny
|H|z = nz

.

We want to solve the equation

Ekn := IIkn − Ikn = 0 (13)
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for every k and n, where the unknowns are the coefficients φkn of φ and ρ̃kn
of ρ̃.

To understand the combinatorics of (13), we need a partial order and a
total order on indices in Nd. Set n = (n1, . . . , nd) and m = (m1, . . . ,md).
Partial order �: we say that m � n iff we have mk 6 nk for every k =
1, . . . , d.
Total order 6: we say thatm6n iff (|m| ,m1, . . . ,md)6lex (|n| , n1, . . . , nd),
where 6lex is the lexicographic order (on Nd+1).

For example, for d = 3 we have:

(0, 0, 0) <
(0, 0, 1) < (0, 1, 0) < (1, 0, 0) <
(0, 0, 2) < (0, 1, 1) < (0, 2, 0) < (1, 0, 1) < (1, 1, 0) < (2, 0, 0) <
(0, 0, 3) < (0, 1, 2) < · · · < (2, 1, 0) < (3, 0, 0) <

...

We notice that if m ≺ n then m < n. Moreover if m′ 6 n′ and m′′ 6 n′′

then m′ +m′′ 6 n′ + n′′.
Lemma 2.12. — Let ψ : (Cd, 0) → (Cb, 0), j ∈ Nb and H ∈ N (j).

Take coordinates w = (w1, . . . , wd) ∈ Cd, and set ψ = (ψ1, . . . , ψb) with
ψk(w) =

∑
n ψ

k
nw

n for every k = 1, . . . , b.
For any k = 1, . . . , d, let ek ∈ Nd be the multi-index with 1 in the k-th

coordinate and 0 in all the others. Suppose there exists 0 6 c 6 d − b − 1
such that ψkn = 0 for every n < ec+k, k = 1, . . . , b.
Then ψH = 0 for |H| < (0c, j, 0d−c−b) (where 0c ∈ Nc and 0d−c−b ∈

Nd−c−b). Moreover:
(i) if ψkec+k = 0 for k = 1, . . . , b, then ψH = 0 for |H| 6 (0c, j, 0d−c−b)

if j 6= 0;
(ii) if ψk(w) = ζkwc+k + h. o. t. for k = 1, . . . , b, then ψH 6= 0 only if

one of the following conditions is satisfied:
• |H| = (0c, j, 0d−c−b), and in this caseH is uniquely determined

in N (j) and ψH = ζj , where ζ = (ζ1, . . . , ζb);
• ||H|| > |j|, where ||H|| ∈ N denotes the sum of all elements

of |H| ∈ Nd, and hence the sum of all elements of H ∈
M(d× |j| ,N).

Proof. — Set j = (j1, . . . , jb), and write explicitly

H =
(
h1,1 · · ·h1,j1 h2,1 · · ·h2,j2 · · · hb,1 · · ·hb,jb

)
,

where hk,l ∈ Nd is a multi-index for every k = 1, . . . , b and l = 1, . . . , jk.
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To have ψH 6= 0, we must have ψkhk,l 6= 0 for every k and l.
Thanks to our assumption, ψkhk,l 6= 0 only if hk,l > ec+k. Then we have

that φH 6= 0 only if

|H| =
b∑

k=1

jk∑
l=1

hk,l >
b∑

k=1

jk∑
l=1

ec+k =
b∑

k=1
jke

c+k = (0c, j, 0d−c−b). (14)

(i) Assume that ψkhk,l 6= 0 only if hk,l > ec+k. Since j 6= 0, the sums in
(14) are not empty, and the inequality is strict.

(ii) Since φk(w)−ζkwc+k is at least of order 2, ψkn 6= 0 only if n = ec+k

or |n| > 2.
• If hk,l = ec+k for every k, l, then

|H| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0 · · · 0 0 · · · 0 · · · 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0 · · · 0 · · · 0
1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
...

...
...

0 · · · 0 0 · · · 0 · · · 1 · · · 1
0 · · · 0 0 · · · 0 · · · 0 · · · 0

...
...

...
...

0 · · · 0 0 · · · 0 · · · 0 · · · 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=



0
...
0
j1
j2
...
jb
0
...
0



= (0c, j, 0d−c−b).

In this case,

φH =
b∏

k=1

jk∏
l=1

ψkec+k =
b∏

k=1
(ζk)jk = ζj .

• If there exist k and l such that
∣∣hk,l∣∣ > 2, then to have φH 6= 0

we must have

||H|| =
e∑

k=1

jk∑
l=1

∣∣hk,l∣∣ > e∑
k=1

jk = |j| .

�

Recall that e is the number of components of v, and hence of I and II.
We shall need a weight on indices (k, n) ∈ {1, . . . , e} × Nd.
Definition 2.13. — Let k ∈ {1, . . . , e} be an integer and n be a multi-

index (in Nd or Ns). We call weight of (k, n) the value

weight(k, n) = weight(k, |n|) := |n|+ k

e
∈ N
e
.
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Notice that for every W ∈ N/e, there are only finitely many (k, n) such
that weight(k, n) 6W .
Lemma 2.14. — We have

IIkn = δ0
nyδ

0
nz ρ̃

k
(nu,nv) + µkφ

k
n +Qk,|n|(φlm, ρ̃l(mu,mv)),

where δ denotes the Kronecker’s delta function, and Qk,|n| is a polynomial
in the variables φlm and ρ̃l(mu,mv) satisfying

weight(l,m) < weight(k, |n|).

In order to simplify notations, we shall simply write

IIkn = δ0
nyδ

0
nz ρ̃

k
(nu,nv) + µkφ

k
n + l. o. t.k,|n|(φ, ρ̃), (15)

where l. o. t.k,|n|(φ, ρ̃) stands for a suitable polynomial in the variables φlm
and ρ̃l(mu,mv) satisfying weight(l,m) < weight(k, |n|). We shall also omit ρ̃
when the polynomial does not depend on any coefficient ρ̃l(mu,mv).

Proof. — Set W := weight(k, |n|). From the first equation of Cond2, we
get ju � nu, and in particular |ju| 6 |nu|. From Lemma 2.12.(ii) we can
have two cases when φH 6= 0.

• Either jv = |H|v = nv, and in this case the term ρ̃kj with the biggest
weight is given by ju = nu. Its weight is6W , and the equality holds
only if ny = 0 and nz = 0, when we get the first term of (15).

• Or

|j| = |ju|+ |jv| < |ju|+ ||H|| = |ju|+ |n| − |ju| = |n| ,

and in this case the weight strictly less than W .
Still from Cond2, we get |H| ≺ n. It follows that the only way to have

φH 6= 0 and with some φlm with weight(l,m) > W is to have H made by
just a column in position l > k, given by n. In this case we get jv = el,
φH = φln, and from the first equation of Cond2 we get ju = 0. Since ρ̃kel = 0
for l > k and ρ̃kek = µk, we get the second term of (15). �

Lemma 2.15. — We have

Ikn = δ0
nyδ

0
nzα

B−1nuµnvφk(B−1nu,nv,0,0) + l. o. t.k,|n|(φ). (16)

Proof. — Set W := weight(k, |n|). Thanks to Lemma 2.12 we get that
ρI 6= 0 only if |I| > (0, iv, 0, 0). Thanks to Lemma 2.12.(i) we get that
hK 6= 0 only if |K| > (0, 0, 0, iz) when iz 6= 0.
From the first equation in Cond1 we get Biu � nu, hence iu � B−1nu

and in particular |iu| 6 |nu|. Notice that the equality on modules holds
only if iu = B−1nu. From the third equation we get |iy| < |Diy| 6 |ny| for
iy 6= 0.
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Then we get

|i| = |iu|+ |iv|+ |iy|+ |iz|
6 |iu|+ ||I||+ |iy|+ ||K||
= |n| − ||J || − |Ciy| −

(
|Diy| − |iy|

)
6 |n| ,

where the equality can hold only if iy = 0 and iz = 0.
It follows that terms φki such that weight(k, i) > W appear only when

iy = ny = 0 and iz = nz = 0. In this case, J = K = ∅, and g∅ = h∅ = 1.
The third equation of Cond1 gives |I|y = 0, while the fourth gives |I|z = 0.
The second equation of Cond1 gives |I|v = nv. To have a term φki of weight
W , we need to have then iu = B−1nu, from which it follows |I|u = 0.
Then the second equation of Cond1 gives iv 6 |I|v = nv. But Lemma 2.12
says that ρI = 0 for |I|v > iv. Hence the only term that appears is for
iv = nv. Following the computation of the proof of Lemma 2.12.(ii), we get
ρI = µnv , and the statement. �

Thanks to Lemmas 2.14 and 2.15, Ekn = 0 becomes

µkφkn + δ0
nyδ

0
nz

(
ρ̃k(nu,nv) − α

B−1nuµnvφk(B−1nu,nv,0,0)

)
= l. o. t.k,|n|(φ, ρ̃).

(17)
This affine equation, where the unknowns are φkn and ρ̃k(nu,nv), has always
a solution. At this point we conjugated f to a map f̃ as in (8), but with
ρ̃ : (Cs, 0) → (Ce, 0) a (vector of) formal power series. Next we show that
we can solve the conjugacy relation (13) and get ρ̃ polynomial with only
primary resonant monomials.
We solve Ekn = 0 inductively on weight(k, n) as follows.

For weight(k, n) 6 2, i.e., if |n| 6 1, we set φkn := 1 if n = er+k and 0
otherwise, while ρ̃k(nu,nv) := ρk(nu,nv,0,0). An easy computation shows that
Ekn = 0 holds for these values.
Set 2 < W ∈ N/e, and suppose that we have determined φlm and ρ̃l(mu,mv)
for weight(l,m) < W satisfying Elm = 0 when weight(l,m) < W . We want
to solve (17) for weight(k, n) = W .

Notice that l. o. t.k,|n|(φ, ρ̃) is a polynomial that depend on φlm and
ρ̃l(mu,mv) only for weights strictly less than W . Hence thanks to the in-
duction hypothesis, l. o. t.k,|n|(φ, ρ̃) is a known value in C.

1) Suppose (ny, nz) 6= (0, 0). Then (17) becomes

µkφkn = l. o. t.k,|n|(φ, ρ̃),
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and there exists a unique φkn that solves the equation.
2) Suppose (ny, nz) = (0, 0). Then (17) becomes

− µkφkn + αB
−1nuµnvφk(B−1nu,nv,0,0) = ρ̃k(nu,nv) + l. o. t.k,|n|(φ, ρ̃). (18)

2.1) Suppose that nu = B−1nu: we have two cases.
Suppose µk 6= αnuµnv , i.e., unuvnv is not primary resonant for
the k-th coordinate. Then we can put ρ̃k(nu,nv) = 0 and there
exists a unique φkn that solves the equation.
Suppose µk = αnuµnv , i.e., unuvnv is primary resonant for the
k-th coordinate. Then (18) does not depend on φkn (we put it
equal to 0), and there exists a unique ρ̃k(nu,nv) that solves the
equation.

2.2) In the general case, let η̃ be the smallest number in N∗ such that
nu = Bη̃nu. Set n(l)

u := B−lnu for l = 0, . . . , η̃ − 1. We consider
the equation (18) for nu, n(1)

u , . . . , n
(1−η̃)
u simultaneously (while

we fix nv). In this case we get the following linear system:



φk(nu,nv,0,0)
φk

(n(1)
u ,nv,0,0)

...

...
φk

(n(̃η−1)
u ,nv,0,0)



T 

−µk 0 · · · 0 αnuµnv

αn
(1)
u µnv −µk

. . . . . . 0

0 αn
(2)
u µnv

. . . . . .
...

...
. . . . . . −µk 0

0 · · · 0 αn
(̃η−1)
u µnv −µk



=



ρ̃k(nu,nv)
ρ̃k

(n(1)
u ,nv)
...
...

ρ̃k
(n(̃η−1)
u ,nv)



T

+ l. o. t. , (19)

where

l. o. t. = l. o. t.k,|n|(φ, ρ̃)

for each coordinate, since weight(k, (n(l)
u , nv, 0, 0)) = W for each

l = 0, . . . , η̃ − 1.
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By direct computation, the determinant of the matrix in (19) is
given (up to sign) byη̃−1∏

l=0
αn

(l)
u

µη̃nv − (µk)η̃.

Recall that the η in the definition of primary resonances (7) is the
order of B. In particular, we have η̃ | η. It follows that the linear
system (19) is invertible iff (nu, nv) is not primary resonant.
Notice also that (nu, nv) is primary resonant iff (n(l)

u , nv) is for
every l = 0, . . . , η̃ − 1.
If (nu, nv) is not primary resonant, we can put ρ̃k

(n(l)
u ,nv)

= 0 for
every l = 0, . . . , η̃−1 and there exists a unique (φk

(n(l)
u ,nv,0,0)

) for
l = 0, . . . , η̃ − 1 that solves the linear system (19).
If (nu, nv) is primary resonant, we can put φk

(n(l)
u ,nv,0,0)

= 0 for
every l = 0, . . . , η̃ − 1 and there exists a unique (ρ̃k

(n(l)
u ,nv)

) for
l = 0, . . . , η̃ − 1 that solves the linear system (19).

We have defined the conjugation Φ as an invertible formal map: we can then
define g̃ and h̃ such that the conjugacy relation holds for all coordinates.

(Step 2). — The proof of the convergence of the conjugacy map is
completely analogous to the proof of the Poincaré-Dulac theorem (see, e.g.,
[15], [13] or [3, Chapter 4]).
Pick 0 < Λ < 1 such that Λ > specrad(df0) the spectral radius of

the differential df0 of f at 0, and take N such that ΛN <
∣∣µk∣∣ for every

k = 1, . . . , e.
For proving the formal result, we introduced a weight, and noticed that

for every W ∈ N/e, there are only finitely many (k, n) such that
weight(k, n) 6 W . It follows that there exist M > 0 and a polynomial
(hence holomorphic) change of coordinates that conjugates f with a map
of the form

(u, v, y, z) 7→
(
αuB , µv + ρ(u, v) +R(u, v, y, z), βuCyD

(
1l + g(u, v, y, z)

)
, h(u, v, y, z)

)
,

(20)
with the same conditions as for (8), and R : (Cd, 0)→ (Ce, 0) such that

‖R(w)‖ 6M ‖w‖N

for ‖w‖ small enough, where w = (u, v, y, z) as in the previous step.
Notice that there are no primary resonances unuvnv such that |nu| +

|nv| > N . Indeed, suppose unuvnv is resonant for the k-th coordinate for a
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suitable 1 6 k 6 e. Then from (7) we would have∣∣(µk)η
∣∣ = |ξnuµηnv | < ΛηN <

∣∣µk∣∣η ,
that gives a contradiction.
Set R = (R1, . . . , Re). We now proceed by induction on k = 1, . . . , e and

prove that we can conjugate f with a germ of the form (20), with Rl ≡ 0
for any l 6 k. If k = 0, there is nothing to prove. Suppose that f is of the
form (20), with Rl ≡ 0 for l < k. The induction step will consist in proving
that we can conjugate f with f̃ : (Cd, 0) → (Cd, 0) of the form (20), with
R̃ = (R̃1, . . . , R̃e) instead of R such that R̃l ≡ 0 for l 6 k.

Consider a local diffeomorphism Φ : (Cd, 0)→ (Cd, 0) of the form

Φ(w) = (u, v1, . . . , vk−1, vk + φk(w), vk+1, . . . , ve, y, z),

where φk : (Cd, 0)→ (C, 0) is of order at least 2.
Thanks to Remark 2.8 ρ is strictly triangular, i.e., ρk depends only on

u and v1, . . . , vk−1. Hence, considering the coordinate vk of the conjugacy
relation Φ ◦ f = f̃ ◦ Φ, we get

vk ◦ Φ ◦ f(w) = µkvk + ρk(u, v1, . . . , vk−1) +Rk(w) + φk ◦ f(w),

vk ◦ f̃ ◦ Φ(w) = µkvk + µkφk(w) + ρk(u, v1, . . . , vk−1).

So we have to solve

Rk(w) + φk ◦ f(w) = µkφk(w).

It has an explicit solution, given by

φk(w) =
∞∑
n=1

(µk)−nRk ◦ f◦n−1(w).

Notice that for ‖w‖ small enough we have ‖f◦n(w)‖ 6 Λn ‖w‖. Then we
have∣∣φk(w)

∣∣ 6 ∞∑
n=1

∣∣µk∣∣−n ∣∣Rk ◦ f◦n−1(w)
∣∣ 6 ∞∑

n=0
MΛNn

∣∣µk∣∣−n−1 ‖w‖ ,

that converges since ΛN
|µk| < 1.

�

Remark 2.16. — The arguments of the proof of Theorem 2.7 are also
valid over any complete metrized field K. Indeed, since (17) is a linear
(affine) equation on φkn and ρ̃k(nu,nv), it can be solved as well if K is not
algebraically closed. Moreover, the estimates in Step 2 works as well (or
even better) in the non-archimedean case as in the complex case.
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So Theorem 2.7 holds in general, provided that all eigenvalues of df0
belong to K (see Remark 2.1).

3. Secondary Resonances

3.1. Resonance Relation

Starting from a germ written as in (8), we can define x = (u, v), so that a
contracting rigid germ f : (Cd, 0)→ (Cd, 0) is holomorphically conjugated
to a map of the form

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x, y, z)

)
, h(x, y, z)

)
, (21)

where
• x ∈ Cs, y ∈ Cp, and z ∈ Cd−(s+p);
• γ ∈ (C∗)s and β ∈ (C∗)p;
• P ∈ M(s× s,N) is a permutation matrix, E ∈ M(s× p,N) and
D ∈M(p× p,N);

• σ : (Cs, 0) → (Cs, 0), g : (Cd, 0) → (Cp, 0) and h : (Cd, 0) →
(Cd−(s+p), 0);

• {y1l = 0} ⊆ C(f∞) ⊆ {x1ly1l = 0};
• h|{x=y=0} has nilpotent linear part;
• σ is a polynomial map with only primary resonant monomials.

Remark 3.1. — The relation between equations (8) and (21) is given by
the identities:

P =
(
B 0
0 Ide

)
, E =

(
C 0

)
, γ = (α, µ) and σ = (0, ρ).

The aim of this section is to kill as many coefficients of g (expanded in
formal power series) as possible, under the assumption of detD 6= 0 (i.e.,
injective internal action). New formal obstructions appear: secondary res-
onances.

Definition 3.2. — Let f : (Cd, 0) → (Cd, 0) be a contracting rigid
germ as in (21) with injective internal action, and let η ∈ N∗ be the order
of P . A monomial xn is called secondary resonant if

ληn ∈ Spec(Dη), (22)

where λ ∈ (D∗)s is the vector of non-zero eigenvalues of df0 (counted with
multiplicities).
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Remark 3.3. — If f : (Cd, 0)→ (Cd, 0) is a contracting rigid germ as in
(21), and all the periodic irreducible components of C(f∞) are fixed, then
η = 1 and this definition coincides with the resonance relation given in the
introduction.

Lemma 3.4. — Let f : (Cd, 0) → (Cd, 0) be a contracting rigid germ
written as in (21), with injective internal action. Then there are only
finitely-many secondary resonant monomials.

Proof. — It follows since Dη has only a finite number of eigenvalues µ,
and the secondary resonance relation is perfectly analogous to the primary
resonance relation (7). �

Example 3.5. — Let us see an example of how to compute secondary
resonances. Let f : (C3, 0) → (C3, 0) be a contracting rigid germ, with
internal action A given by

A =

 1 1 2
0 2 1
0 1 0

 ,

where the splitting is according to the notations in (2). Here

D =
(

2 1
1 0

)
,

whose eigenvalues are 1±
√

2.
Set λ the non-zero eigenvalue for df0 and (x1, y1, y2) suitable coordinates

in 0 ∈ C3. Then in this case (x1)n is secondary resonant if

λn = 1−
√

2.

Notice that 1 +
√

2 > 1 gives no resonances, being |λ| < 1.

Remark 3.6. — We notice that secondary resonances for a contracting
rigid germ f : (Cd, 0) → (Cd, 0) can appear only for d > 3; secondary
resonances with periodic non-fixed irreducible components for C(f∞), or
equivalently for η > 2 in (22), can appear only for d > 4. Primary and
secondary resonances can appear in the same germ only for d > 4, and
with η > 2 for d > 5.

3.2. Main Theorem

Here we prove that we can kill all coefficients of g in (21) except for sec-
ondary resonant monomials. This theorem is the generalization of Theorem
A stated in the introduction.
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Theorem 3.7. — Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ
with injective internal action. Then f is analytically conjugated to

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x)

)
, h(x, y, z)

)
, (23)

where
• x ∈ Cs, y ∈ Cp, and z ∈ Cd−(s+p);
• γ ∈ (C∗)s and β ∈ (C∗)p;
• P ∈ M(s× s,N) is a permutation matrix, E ∈ M(s× p,N) and
D ∈M(p× p,N) with detD 6= 0;

• σ : (Cs, 0) → (Cs, 0), g : (Cs, 0) → (Cp, 0) and h : (Cd, 0) →
(Cd−(s+p), 0);

• {y1l = 0} ⊆ C(f∞) ⊆ {x1ly1l = 0};
• h|{x=y=0} has nilpotent linear part;
• σ is a polynomial map with only primary resonant monomials,
• g is a polynomial map with only secondary resonant monomials.

Proof. — We first prove in Step 1 the formal counterpart of this theorem,
and then we will deal with the convergence of the formal power series
involved in Step 2.

(Step 1). — First of all, we can suppose that f is of the form (21), with
h|{x=y=0} that has a nilpotent lower triangular linear part.
We want to conjugate f with a map f̃ : (Cd, 0) → (Cd, 0) of the form

(23) (with g̃ and h̃ instead of g and h respectively).
Let us consider a local diffeomorphism Φ : (Cd, 0)→ (Cd, 0) of the form

Φ(x, y, z) =
(
x, y
(
1l + φ(x, y, z)

)
, z
)
,

with φ : (Cd, 0)→ (Cp, 0) a formal map.
Considering the conjugacy relation Φ ◦ f = f̃ ◦ Φ for the coordinate y,

we get

y ◦ Φ ◦ f(x, y, z) = βxEyD
(
1l + g(x, y, z)

)(
1l + φ ◦ f(x, y, z)

)
,

y ◦ f̃ ◦ Φ(x, y, z) = βxEyD
(
1l + φ(x, y, z)

)D(1l + g̃(x)
)
.

Hence we have to solve(
1l + g(x, y, z)

)(
1l + φ ◦ f(x, y, z)

)
=
(
1l + φ(x, y, z)

)D(1l + g̃(x)
)
. (24)

Let us denote by I and II the left and right hand side of (24) respectively.
We want now to expand in formal power series (24) and to solve it

defining (inductively) the coefficients of φ and g̃. Set w = (x, y, z) and
• x = (x1, . . . , xs);
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• σ = (σ1, . . . , σs) and γkxk + σk(x) =
∑n

σknxx
nx for 1 6 k 6 s;

• φ = (φ1, . . . , φp) and 1 + φk(w) =
∑
n φ

k
nw

n for 1 6 k 6 p;
• I =

(
I1, . . . , Ip

)
and Ik(w) =

∑
n Iknwn for 1 6 k 6 p, and analo-

gously for II;
• g = (g1, . . . , gp) and 1 + gk(w) =

∑
n g

k
nw

n for 1 6 k 6 p;
• g̃ = (g̃1, . . . , g̃p) and 1 + g̃k(x) =

∑
nx
g̃knxx

nx for 1 6 k 6 p;
• h = (h1, . . . , hd−(s+p)) and hk(w) =

∑
n h

k
nw

n for 1 6 k 6 d− (s+
p).

Again, we split multi-indices n = (nx, ny, nz) ∈ Nd, where x is the
projection onto the coordinate x, and similarly for other coordinates. In
particular nx ∈ Ns, ny ∈ Np and nz ∈ Nd−(s+p).

By direct computations (see Remarks 2.10 and 2.11), we get

Ik=
(
1 + gk(w)

) ∑
i∈Nd

[
φki
(
γxP + σ(x)

)ix (
βxEyD

(
1l + g(w)

))iy (h(w))iz
]

=
∑
i∈Nd

φki β
iyxEiyyDiy

 ∑
I∈Ns(ix)

σIx
|I|

∑
J∈N (iy+ek)

gJw
|J|

∑
K∈N (iz)

hKw
|K|

,
(25)

IIk=
(
1l + φ(w)

)Dek ∑
j∈Ns

g̃kj x
j =

∑
H∈N (Dek)

φHw
|H|
∑
j∈Ns

g̃kj x
j , (26)

for k = 1, . . . , p, where ek denotes the vector in Np with 1 in the k-th
position, and 0 elsewhere.

Expressing explicitly the coefficients of Ik and IIk expanded in formal
power series, from (25) and (26) respectively we obtain:

Ikn =
∑
i∈Nd

I∈Ns(ix),J∈N (iy+ek),K∈N (iz)
Cond1

φki β
iyσIgJhK , IIkn =

∑
j∈Ns

H∈N (Dek)
Cond2

g̃kj φH ,

where

Cond1 =


Eiy + |I|+ |J |x + |K|x = nx
Diy + |J |y + |K|y = ny
|J |z + |K|z = nz

,

and

Cond2 =


j + |H|x = nx
|H|y = ny
|H|z = nz

.
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We want to solve the equation

Ekn := IIkn − Ikn = 0 (27)

for every k and n, with respect to the coefficients φkn of φ and g̃knx of g̃.
We recall the partial order and the total order on indices in Nd that we

need to make computations. Set n = (n1, . . . , nd) and m = (m1, . . . ,md).
Partial order �: we say that m � n iff we have mk 6 nk for every k =
1, . . . , d.
Total order6: we say that m6n iff (|m| ,m1, . . . ,md)6lex (|n| , n1, . . . , nd),
where 6lex is the lexicographic order (on Nd+1).
Definition 3.8. — Let k ∈ {1, . . . , p} be an integer and n be a multi-

index (in Nd or Ns). We call weight of (k, n) the value

weight(k, n) := |n| ∈ N.

As in Step 1 of the proof of Theorem 2.7, the notation

l. o. t.|n|(φ, g̃)

stands for a suitable polynomial in φlm and g̃lmx satisfying

weight(l,m) < |n|.

We shall also omit g̃ when the polynomial does not depend on any coeffi-
cient g̃lmx .
Notice that the definition of weight here is slightly different from the one

given by Definition 2.13. Still, we have that for every W ∈ N, there are
only finitely many (k, n) such that weight(k, n) 6W .
Lemma 3.9. — For every k = 1, . . . , p and n 6= 0 we have

IIkn = δ0
nyδ

0
nz g̃

k
nx +

p∑
l=1

dkl φ
l
n + l. o. t.|n|(φ, g̃), (28)

where δ denotes the Kronecker’s delta function and D = (dkl ).
Proof. — SetW = |n|. From the first equation of Cond2 we have j � nx.

Hence the only term of the form g̃kj whose weight is >W is given by j = nx,
when ny = 0 and nz = 0. In this case, |H| = 0, and φH = 1 (being φk0 = 1
for k = 1, . . . p). This gives the first term of (28).
Since |H| � n, the only terms φlm with weight(l,m) > W that appear

are when m = n, and

H =
(

0, . . . , 0︸ ︷︷ ︸
dk1

| · · · | 0, . . . , 0, n, 0, . . . , 0︸ ︷︷ ︸
dk
l

| · · · | 0, . . . , 0︸ ︷︷ ︸
dkp

)
.

Since we have dkl choices for where to put n, (28) follows. �
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Lemma 3.10. — For every k = 1, . . . , p and n 6= 0 we have

Ikn = δ0
nyδ

0
nzγ

P−1nxφk(P−1nx,0,0) + l. o. t.|n|(φ). (29)

Proof. — Thanks to Lemma 2.12, we get that σI 6= 0 only if |I| > ix.
Lemma 2.12.(i) says that hK 6= 0 only if |K| > (0, 0, iz) when iz 6= 0.
Moreover, we have |iy| < |Diy| if iy 6= 0. Then we have

|i| = |ix|+|iy|+|iz| 6 ||I||+|iy|+||K|| = |n|−||J ||−|Eiy|−|Diy|+|iy| 6 |n| ,

where the equality can hold only when iy = 0 and ||J || = 0. Suppose this
is the case; then J is made by just one column (in position k) made by
0’s, and hence gJ = gk0 = 1. From the first equation of Cond1 we also get
that ix 6 |I| � nx. It follows that the only terms φki whose weight is > |n|
appear when |ix| = |nx|, |I| = nx and ny = 0.
In this case (iy = ny = 0, J = 0 ∈ N (ek) and |I| = nx), Cond1 becomes

|K|x = 0
|K|y = 0
|K|z = nz

.

From Lemma 2.12.(i), being |K| = (0, 0, |K|z), it follows that the only term
with weight > |n| appear when in addition iz = nz = 0. In this case K = ∅
and h∅ = 1.
We shall show now that the conditions |I| = nx and σI 6= 0 are satisfied

by a unique I ∈ Ns(ix), and in this case σI = γP
−1nx .

Let us split again x = (u, v), σ = (0, ρ), P = Diag(B, Id) and γ = (α, µ)
as in Remark 3.1. The condition |I| = nx becomes{

Biu = nu
|I|v = nv

and σI = αiuρIv . Then iu = B−1nu, and thanks to Lemma 2.12.(ii) we get
ρIv = µnv .
Writing again with the previous notations, we get the statement. �

Set En := (E1
n, . . . ,Epn), φn := (φ1

n, . . . , φ
p
n) and g̃nx := (g̃1

nx , . . . , g̃
p
nx).

Thanks to Lemmas 3.9 and 3.10, En = 0 becomes

φnD + δ0
nyδ

0
nz

(
g̃nx − γnxφn

)
= l. o. t.|n|(φ, g̃). (30)

This affine equation, where the unknowns are φn and g̃nx , has always a
solution. At this point we conjugated f to a map f̃ as in (23), but with
g̃ : (Cs, 0) → (Cp, 0) a (vector of) formal power series. Next we show
that we can solve (30) and get g̃ polynomial with only secondary resonant
monomials.
We solve En = 0 inductively on |n| as follows.
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If |n| = 0, i.e., if n = 0, we set φ0 := 1l and g̃0x = 1l.
Set 0 < W ∈ N, and suppose that φm and g̃mx are known for |m| < W .
We want to solve (30) for |n| = W .

Notice that l. o. t.|n|(φ, g̃) is a polynomial that depend on φlm and g̃lmx
only for weights strictly less than W . Hence thanks to the induction hy-
pothesis, l. o. t.|n|(φ, g̃) is a known value in Cp.
Suppose (ny, nz) 6= (0, 0). Then (30) becomes

φnD = l. o. t.|n|(φ, g̃).

Being detD 6= 0, there exists a unique φn ∈ Cp that solves the equation.
Suppose (ny, nz) = (0, 0). Then (30) becomes

− φnD + γP
−1nxφ(P−1nx,0,0) = g̃nx + l. o. t.|n|(φ, g̃). (31)

Suppose that nu = P−1nu: we have two cases.
Suppose D − γnxId is invertible, i.e., xnx is not secondary resonant.

Then we can put g̃nx = 0 and there exists a unique φn ∈ Cp that solves
the equation.
Suppose D − γnxId is not invertible, i.e., xnx is secondary resonant.

Then we can put φn = 0 and there exists a unique g̃nx ∈ Cp that solves
the equation.
In the general case, let η̃ be the smallest number in N∗ such that nx =

P η̃nx. Set n(l)
x := P−lnx for l = 0, . . . , η̃−1. We consider the equation (31)

for nx, n(1)
x , . . . , n

(η̃−1)
x simultaneously.

We get the following (block) linear system:

φ(nx,0,0)
φ(n(1)

x ,0,0)
...
...

φ
(n(̃η−1)
x ,0,0)



T


−D 0 · · · 0 γnx Idp

γn
(1)
x Idp −D 0

. . . 0

0 γn
(2)
x Idp

. . . . . .
...

...
. . . . . . −D 0

0 · · · 0 γn
(̃η−1)
x Idp −D



=



g̃nx
g̃
n

(1)
x

...

...
g̃
n

(̃η−1)
x



T

+ l. o. t. , (32)
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where
l. o. t. = l. o. t.|n|(φ, g̃)

for each coordinate.
Let us consider the linear combination of the columns (numbered from

1 to η̃) of the linear system (32), where the l-th column is multiplied by

∆l :=
(
l−1∏
h=1

γn
(h)
x

)
Dη̃−l.

Then we get−Dη̃ +
η̃−1∏
l=0

γn
(l)
x Idp

φ(nx,0,0) =
η̃∑
l=1

∆lg̃n(l−1)
x

+ l. o. t. .

Since detD 6= 0, it follows that the linear system (32) is invertible iff nx is
not secondary resonant.
In this case we can put g̃

n
(l)
x

= 0 for every l = 0, . . . , η̃ − 1, and there
exist (unique) φ(n(l)

x ,0,0) ∈ Cp for l = 0, . . . , η̃ − 1 that satisfy (32).
If nx is secondary resonant we can still set any value for φ(n(l)

x ,0,0) (for
example, all equal to 0), and find unique g̃

n
(l)
x
∈ Cp for every l = 0, . . . , η̃−1

that satisfy (32).
As in the proof of Theorem 2.7, we have defined the conjugation Φ as

an invertible formal map so we can then define h̃ such that the conjugacy
relation (24) holds for all coordinates.

(Step 2). — The following estimations are quite standard. Pick 0 <

Λ < 1 such that Λ > specrad(df0) the spectral radius of the differential df0
of f at 0, and take N big enough such that

∣∣D−1
∣∣ΛN < 1 and no secondary

resonances xn appear for |n| > N .
For proving the formal result, we introduced a weight, and noticed that

for everyW ∈ N, there are only finitely many (k, n) such that weight(k, n) 6
W . It follows that there existM > 0 and a polynomial (hence holomorphic)
change of coordinates that conjugates f with a map of the form

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x) +R(x, y, z)

)
, h(x, y, z)

)
, (33)

with the same conditions as for (23) and R : (Cd, 0)→ (Cp, 0) such that

‖R(w)‖ 6M ‖w‖N

for a suitable M > 0 and ‖w‖ small enough, where w = (x, y, z).
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We can hence suppose that f is of the form (33), and try to kill the map
R: we look for a conjugacy between f and a map f̃ of the form (23) (with
h̃ instead of h).

Let us consider then a local diffeomorphism of the form

Φ(x, y, z) =
(
x, y
(
1l + φ(x, y, z)

)
, z
)
.

Looking at the conjugacy relation Φ◦f = f̃ ◦Φ at the coordinate y, we get

y ◦ Φ ◦ f(x, y, z) = βxEyD
(
1l + g(x) +R(x, y, z)

)(
1l + φ ◦ f(x, y, z)

)
,

y ◦ f̃ ◦ Φ(x, y, z) = βxEyD
(
1l + φ(x, y, z)

)D(1l + g(x)
)
.

Hence we have to solve(
1l + φ(w)

)D =
(
1l + φ ◦ f(w)

)(
1l + e(w)

)
, (34)

where w = (x, y, z) and

e(x, y, z) = R(x, y, z)
1l + g(x) .

In particular we have
‖e(w)‖ 6 K ‖w‖N

for K > 0 big enough and ‖w‖ small enough.
Equation (34) has an explicit solution, given by

1l + φ(w) =
∞∏
n=1

(
1l + e ◦ f◦n−1(w)

)D−n

;

let us show that this product is convergent.
Thanks to Proposition 1.5, we just need to prove that

∞∑
n=1

(
e ◦ f◦n−1(w)

)
D−n

converges for ‖w‖ small enough.
Notice that for ‖w‖ small enough we have ‖f◦n(w)‖ 6 Λn ‖w‖.
Then we have∥∥∥∥∥

∞∑
n=1

(
e ◦ f◦n−1(w)

)
D−n

∥∥∥∥∥ 6
∞∑
n=1

∣∣D−n∣∣ ∥∥e ◦ f◦n−1(w)
∥∥

6
∞∑
n=1

∣∣D−1∣∣nKΛ(n−1)N ‖w‖N ,

that converges being
∣∣D−1

∣∣ΛN < 1.

�
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Remark 3.11. — Let us take a rigid germ that has a non-injective inter-
nal action: we can write it in the form (21), with detD = 0 (suppose also
P = Id for simplicity). We can try to kill, at least formally, as many coef-
ficients of g as possible, as we did in the case of injective internal action.
Proceeding as in the proof of Theorem 3.7, we get an equation to solve
of the form (30). When ny or nz are different from 0, the linear system
becomes

φnD = l. o. t.|n|(φ, g̃),
that is not invertible, being detD 6= 0. So in general, besides the secondary
resonances already described, some other resonances of the form xnxynyznz

with (ny, nz) 6= (0, 0) will appear.

Remark 3.12. — Theorem 3.7 holds over any complete metrized field K
of characteristic 0 (provided that all eigenvalues of df0 belong to K). The
reasons are the same as for Theorem 2.7 (see Remark 2.16). The theorem
fails, already for d = p = 1, over a field of positive characteristic. In fact,
although D is invertible as a matrix with integer (rational) coefficients, it
could not be invertible when seen as a matrix with coefficients in K. If this
is the case, equation (30) could not be solved in general.

4. Rigid Germs with s+ p = d− 1

Theorem 3.7 gives in particular the complete classification of contracting
rigid germs with injective internal action such that s + p = d, where as
before s is the number of non-zero eigenvalues of df0, and p is the number
of non-periodic components of C(f∞).
In this section we shall deal with the case of a contracting rigid germ

with injective internal action such that s+ p = d− 1. Thanks to Theorem
3.7 we can holomorphically conjugate f with a map of the form (23), with
h : (Cd, 0)→ (C, 0) and z ∈ C.

In this case we can say more, and get a similar result of what happens
in the 2-dimensional case (see [7, pp. 491–494]).

Theorem 4.1. — Let f : (Cd, 0)→ (Cd, 0) be a contracting rigid germ
with injective internal action, and such that s + p = d − 1, where s is the
number of non-zero eigenvalues of df0, and p is the number of non-periodic
components of C(f∞). Then f is analytically conjugated to a map of the
form

(x, y, z) 7→
(
γxP + σ(x), βxEyD

(
1l + g(x)

)
, νxlymz + ω(x, y)

)
, (35)

where
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• x ∈ Cs, y ∈ Cp and z ∈ C;
• γ ∈ (C∗)s, β ∈ (C∗)p and ν ∈ C∗;
• P ∈ M(s× s,N) is a permutation matrix, E ∈ M(s× p,N), D ∈
M(p× p,N) and (l,m) ∈ Ns × Np \ {(0, 0)};

• σ : (Cs, 0) → (Cs, 0), g : (Cs, 0) → (Cp, 0) and ω : (Cd−1, 0) →
(C, 0);

• {y1l = 0} ⊆ C(f∞) ⊆ {x1ly1l = 0};
• σ is a polynomial map with only primary resonant monomials;
• g is a polynomial map with only secondary resonant monomials;
• ω is analytic.

For d > 3 we cannot get in general ω polynomial (see Remark 4.4).

Remark 4.2. — Let us suppose that f : (Cd, 0) → (Cd, 0) is a con-
tracting rigid germ as in (23) and satisfying the hypotheses of Theorem
4.1.
Let us split again x = (u, v) (see Remark 3.1), with u ∈ Cr and v ∈ Ce:

then f is of the form

(u, v, y, z) 7→
(
αuB , µv + ρ(u, v), βuCyD

(
1l + g(u, v)

)
, h(u, v, y, z)

)
. (36)

If we compute det df , we get

det df = uayb
∂h

∂z
U(w),

for suitable a ∈ Nr, b ∈ Np and a holomorphic map U : Cd → C with
U(0) 6= 0, where w = (u, v, y, z).
Since C(f∞) = {u1ly1l = 0}, we get

∂h

∂z
= uluymV (w),

with lu ∈ Nr, m ∈ Np and V (0) 6= 0. Integrating, we obtain

h(u, v, y, z) = νuluymz
(
1 + ε(u, v, y, z)

)
+ ω(u, v, y),

with ν ∈ C∗, ε : (Cd, 0)→ (C, 0) and ω : (Cd−1, 0)→ (C, 0) (and (lu,m) 6=
0).

As in Remark 3.1, to simplify notations we use x instead of (u, v); sum-
ming up, we can suppose that f is of the form

(x, y, z) 7→
(
γxP +σ(x), βxEyD

(
1l+g(x)

)
, νxlymz

(
1+ε(x, y, z)

)
+ω(x, y)

)
,

(37)
with the same conditions as in Theorem 4.1 and ε : (Cd, 0)→ (C, 0).

Theorem 4.1 says exactly then that we can kill ε.
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Proof. — Thanks to Remark 4.2, we can suppose that f is of the form
(37). We want to conjugate f with a map f̃ : (Cd, 0)→ (Cd, 0) of the form
(35) (with ω̃ instead of ω).
We shall consider a local diffeomorphism of the form

Φ(w) =
(
x, y, z

(
1 + φ(w)

))
,

where w = (x, y, z), and φ : (Cd, 0)→ (C, 0).
Considering the conjugacy relation Φ ◦ f = f̃ ◦Φ for the last coordinate

z, we get

z ◦ Φ ◦ f(w) = νxlymz
(
1 + ε(w)

)(
1 + φ ◦ f(w)

)
+ ω(x, y)

(
1 + φ ◦ f(w)

)
,

(38)

z ◦ f̃ ◦ Φ(w) = νxlymz
(
1 + φ(w)

)
+ ω̃(x, y).

We want now to split (38) in two parts, one divisible by z, and the other
that depends only on (x, y). Using the equivalence∫ 1

0

d

dτ

(
φ ◦ f(x, y, τz)

)
= φ

(
f(x, y, z)

)
− φ

(
f(x, y, 0)

)
(39)

and by direct computation we get

νxlymz

((
1 + ε(w)

)(
1 + φ ◦ f(w)

)
+ ω(x, y)

∫ 1

0

∂φ

∂z

(
f(x, y, τz)

)(
1 + ζ(x, y, τz)

)
dτ

)
+ ω(x, y)

(
1 + φ ◦ f(x, y, 0)

)
,

where ζ : (Cd, 0)→ (C, 0) is given by

ζ(w) := ε(w) + z
∂ε

∂z
(w).

The conjugacy relation then gives two equations to solve (comparing the
part divisible by z and the one that does not depend on z), with respect
to φ and ω̃:

ε(w) + Tφ(w) = φ(w), (40)
ω(x, y)

(
1 + φ ◦ f(x, y, 0)

)
= ω̃(x, y), (41)

where ψ 7→ Tψ is the functional given by

(Tψ)(w) :=
(
1 + ε(w)

)
ψ ◦ f(w)

+ ω(x, y)
∫ 1

0

∂ψ

∂z

(
f(x, y, τz)

)(
1 + ζ(x, y, τz)

)
dτ . (42)
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Equation (40) has a solution given by

φ(w) =
∞∑
n=0

T ◦nε(w),

we refer to the proof in [7] in the 2-dimensional case for convergence esti-
mates, that rely on Cauchy’s estimates. Once that φ is defined as a holo-
morphic germ that satisfies (40), we can use (41) to define ω̃, and we are
done. �

Remark 4.3. — Theorem 4.1 tells us that, given a rigid germ f : (Cd, 0)→
(Cd, 0) of the form (37), we can change coordinates holomorphically in
order to have that the last coordinate of f is an affine function on z (with
coefficients that depend on the other coordinates x, y).

Remark 4.4. — While studying rigid germs under the hypothesis of The-
orem 4.1, following the argument used in the classification of 2-dimensional
contracting rigid germs (see [7, pp. 494–498]), we should consider change
of coordinates of the form

Φ(x, y, z) =
(
x, y, z + φ(x, y)

)
(43)

(we are using the notations of Theorem 4.1). In dimension 2, one can obtain
(holomorphically) that ω is a polynomial map in (x, y) = w1. This is no
longer true in general, not even formally, in higher dimensions. Indeed, by
computing the coefficients in the conjugacy relation, one can show that
there can be infinitely many coefficients of ω that cannot be killed up to a
change of coordinates of the form (43). It can be also shown that, in order
to maintain the normal form as in (35), one can (basically) consider only
change of coordinates such as (43).

Remark 4.5. — Theorem 4.1 holds over any complete metrized field K
of characteristic 0 (provided as always that all eigenvalues of df0 belong
to K, see Remark 2.1). Indeed, in the whole proof we never take roots of
polynomials, so the argument works also for non-algebraically closed fields.
In the proof of 4.1, we define and estimate an operator T given by (42).

To define T we use integrals, so convergence could fail for the presence
of (big) integers as denominators of the coefficients of the formal power
series involved. But thanks to (39), we can write the integral appearing
in (42) as a difference of convergent formal power series. Moreover, to
prove convergence we use Cauchy’s estimates, that are even stronger in
the non-archimedean setting. It follows that the argument works also for
non-archimedean fields.
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5. Rigid Germs in Dimension 3

With Table 5.1 we summarize the normal forms obtained for a con-
tracting rigid germ f : (C3, 0) → (C3, 0), with the assumption of injective
internal action. We set q the number of irreducible components of C(f∞), r
the number of periodic components, s the number of non-zero eigenvalues
of df0, η ∈ N∗ the order of (the matrix associated to) the periodic com-
ponents of C(f∞). We shall denote by m = 〈x, y, z〉 the maximal ideal of
C[[x, y, z]]. We shall also denote by λ1, λ2, λ3 the eigenvalues of df0 ordered
as following: ∣∣λ1∣∣ > ∣∣λ2∣∣ > ∣∣λ3∣∣ .
Remark 5.1. — By performing another change of coordinates of the

form (x, y, z) 7→ (κ1x, κ2y, κ3z), with κ1, κ2, κ3 ∈ C∗, we can say a little
more on coefficients that arise in the normal forms.

• for q = 2, r = s = 0, we can put 2 coefficients among β1, β2, ν equal
to 1 if the matrix(

d1
1 − 1 d2

1 l

d1
2 d2

2 − 1 m

)
has rank 2 (the ones associated to a 2 × 2 invertible submatrix),
otherwise we can just put one of them equal to 1 (for example
ν = 1).

• for q = 2, r = s = 1, we can put ν = 1 if

det
(

c l

d− 1 m

)
6= 0.

• for q = 2, r = 0, s = 1, or q = 3, r = s = 0, 1, if we put D = (dji ),
then we can put βj = 1 for as many j as the rank of D − Id.

In this classification, two cases are not completely understood: q = 1
and r = s = 0, 1, i.e., when p + s = 1. If we consider the action of f on
C(f∞) = {x = 0}, we can have two behaviors: either f({x = 0}) = 0, or
f({x = 0}) is a (not necessarily smooth) curve in {x = 0}. The following
example will show that this second case can happen for every irreducible
curve in {x = 0}.

Example 5.2. — Let Ψ : (C, 0) → (C2, 0) be the parametrization of a
curve C, of the form

Ψ(t) =
(
tm, ψ(t)

)
,
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Table 5.1. Contracting rigid germs for d = 3.

q r s C(f∞) Normal form

0 0 3 ∅
(
λ1x, λ2y + ρ1(x), λ3z + ρ2(x, y)

)
, the Poincaré-Dulac normal form.

1 0 0 {x = 0}
(
βxd, ?, ?

)
, d > 2, β ∈ C∗.

1 {y = 0}
(
λ1x, yd, νymz + ω(x, y)

)
, d > 2, m > 1, ν ∈ C∗, ω(x, y) − εy ∈ m2

for a suitable ε ∈ {0, 1}.

2 {z = 0}
(
λ1x, λ2y+ρxn, zd

)
, ρ ∈ {0, 1} if (λ1)n = λ2, ρ = 0 otherwise; d > 2.

1 1 {x = 0}
(
λ1x, ?, ?

)
.

2 {x = 0}
(
λ1x, λ2y + ρxn, xlz + ω(x, y)

)
, ρ ∈ {0, 1} if (λ1)n = λ2, ρ = 0

otherwise;

{y = 0}
(
λ1x, λ2y, ylz + ω(x, y)

)
;

in both cases, l > 1, ω ∈ m2.

2 0 0 {xy = 0}
(
β1xd

1
1yd

1
2 , β2xd

2
1yd

2
2 , νxlymz + ω(x, y)

)
, β1, β2 ∈ C∗, d1

1d
2
2 6= d2

1d
1
2,

d2
1 + d2

2 > 2, max{d1
1 − 1, d1

2} > 1, ν ∈ C∗, l +m > 1, ω ∈ m2.

1 {yz = 0}

(
λ1x, β1yd

1
1zd

1
2(1 + gxn), β2yd

2
1zd

2
2
)
, β1, β2 ∈ C∗, d1

1d
2
2 6= d2

1d
1
2,

max{d1
1 − 1, d1

2} > 1, g ∈ {0, 1} if
(
(λ1)n − d1

1
)(

(λ1)n − d2
2
)

= d2
1d

1
2,

g = 0 otherwise.

1 1 {xy = 0}
(
λ1x, xcyd, νxlymz + ω(x, y)

)
, c+ d > 2, l +m > 1, c+ l > 1, d > 1,

d+m > 2, ν ∈ C∗, ω(x, y)− εy ∈ m2 for a suitable ε ∈ {0, 1}.

2 {xz = 0}
(
λ1x, λ2y + ρxn, xczd

)
, ρ ∈ {0, 1} if (λ1)n = λ2, ρ = 0 otherwise;

{yz = 0}
(
λ1x, λ2y, yczd

)
;

in both cases, c > 1, d > 2.

2 2 {xy = 0}

η = 1:
(
λ1x, λ2y, xlymz + ω(x, y)

)
;

η = 2:
(
α1y, α2x, xlymz + ω(x, y)

)
, α1α2 = −λ1λ2;

in both cases, l,m > 1, ω ∈ m2.

3 0 0 {xyz = 0}
(
β1xd

1
1yd

1
2zd

1
3 , β2xd

2
1yd

2
2zd

2
3 , β3xd

3
1yd

3
2zd

3
3
)
, β1, β2, β3 ∈ C∗, D := (dji )

such that detD 6= 0, dj1 + dj2 + dj3 > 2 for j = 1, 2, 3.

1 1 {xyz = 0}

(
λ1x, β1xc1yd

1
1zd

1
2(1 + gxn), β2xc2yd

2
1zd

2
2
)
, β1, β2 ∈ C∗, d1

1d
2
2 6= d2

1d
1
2,

c1 +c2 > 1, dj1 +dj2 > 2 for j = 1, 2, g ∈ {0, 1} if
(
(λ1)n−d1

1
)(

(λ1)n−
d2

2
)

= d2
1d

1
2, g = 0 otherwise.

2 2 {xyz = 0}

η = 1:
(
λ1x, λ2y, xc1yc2zd

)
;

η = 2:
(
α1y, α2x, xc1yc2zd

)
, α1α2 = −λ1λ2;

in both cases, c1, c2 > 1, d > 2.
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where ψ : (C, 0)→ (C, 0) is a holomorphic map with multiplicitym(ψ) > m
at 0.

Consider the map f : (C3, 0)→ (C3, 0) given by

(x, y, z) 7→
(
λxa, xy + zm, xz + xyξ(z) + ψ(z)

)
,

where a > 1, λ ∈ C∗ (and |λ| < 1 if a = 1 to have a contracting germ), and
ξ : (C, 0)→ C is given by

ξ(z) := ψ′(z)
mzm−1 .

Computing the Jacobian, we get

det df = λaxa+1(1 + yξ′(z)
)
,

and hence f is a contracting rigid germ such that f({x = 0}) = C.

Example 5.2 shows how, to study the classification of the missing cases,
we have to take care of the geometry of the images of C(f∞), and maybe
make some additional assumptions to get some classification results.
With the next example, we shall show another phenomenon that can

appear.

Example 5.3. — Consider the map f : (C3, 0)→ (C3, 0) given by

(x, y, z) 7→
(
λxa, x(1 + y2), xyz2),

where a > 1 and λ ∈ C∗ (and |λ| < 1 if a = 1 to have a contracting germ).
Then C(f∞) = {xyz = 0}, while

f(0, y, z) = (0, 0, 0),
f(x, 0, z) = (λxa, x, 0),

f(x, y, 0) =
(
λxa, x(1 + y2), 0

)
,

hence f(C(f∞)) ⊆ {z = 0} ⊂ C(f∞), and f is rigid.
But by direct computation we get that f◦n({y = 0}) =: Cn form a

sequence of distinct curves in {z = 0} ∼= (C2, 0).
The geometry of

⋃
n Cn, or rather of ∆\

⋃
n Cn where ∆ is a small polydisc

centered in 0, should be taken into account to find a classification up to
holomorphic (or even formal) change of coordinates.
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