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REGENERATING HYPERBOLIC CONE 3-MANIFOLDS
FROM DIMENSION 2

by Joan PORTI (*)

Abstract. — We prove that a closed 3-orbifold that fibers over a hyperbolic
polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed
as regenerations of the polygon, provided that the perimeter is minimal.
Résumé. — On prouve qu’une 3-orbifold close qui fibre sur une 2-orbifold

hyperbolique et polygonale admet une famille de structures coniques hyperboliques
qu’on voit comme une régénérescence du polygone, pourvu que son périmètre soit
minimal.

1. Introduction

The space of hyperbolic cone 3-manifolds with fixed topological type and
with cone angles less than π is well understood by [26], but the boundary of
this space is not. The aim of this paper is to establish a regeneration result,
that goes from a hyperbolic 2-orbifold, viewed as a collapsed 3-orbifold, to a
family of hyperbolic cone 3-manifolds with decreasing cone angles, starting
at π. Here, for instance, we determine which hyperbolic 2-orbifold in the
Teichmüller space is obtained as limit of degenerating cone 3-manifolds,
according to the speed of the cone angles.
Let O3 be a closed and orientable 3-orbifold, which is Seifert fibered over

a Coxeter two orbifold P 2:

S1 → O3 → P 2.

Keywords: orbifold, hyperbolic cone 3-manifold, degeneration, hyperbolic polygon,
perimeter.
Math. classification: 57M50, 57N10.
(*) Partially supported by the Spanish Micinn through grant MTM2009-07594 and prize
ICREA ACADEMIA 2008.
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The branching locus of O3 is a link or a trivalent graph ΣO3 . Its edges and
circles are grouped in two, horizontal (if they are transverse to the fibers)
or vertical (if they are fibers):

ΣO3 = ΣhorO3 ∪ ΣvertO3 .

Points in ΣhorO3 project to the mirror and dihedral points of P 2. Assume
that the orbifold fundamental group of P 2 is a hyperbolic Coxeter group,
generated by reflections on a hyperbolic polygon whose angles are π over
an integer. Thus P 2 is a polygon with mirror points at the edges, and
dihedral points at the vertices. We may assume also that P 2 has possibly
a single cone point in its interior. For instance, S3 with branching locus
a Montesinos link, other than a two-bridge link, is an example of such
fibration.
We view the Seifert fibration as a transversely hyperbolic foliation, hence

with a developing map
D0 :Õ3 → H2

that factors through the universal covering of P 2.
According to [23] there is a unique point in the Teichmüller space that

minimizes the perimeter of P 2 (this also follows from Kerckhoff’s proof of
Nielsen conjecture [19]). Let

P 2
min

denote the orbifold equipped with this hyperbolic structure.
The main result of this paper is the following:

Theorem 1.1. — Assume that P 2 has at most one cone point in its
interior. There exists a family of hyperbolic cone manifold structures C(α)
on |O3|, with singular locus ΣO3 and cone angle α ∈ (π−ε, π) on ΣhorO3 and
constant angles (the orbifold ones) on ΣvertO3 , so that

lim
α→π−

C(α) = P 2
min

for the Gromov-Hausdorff convergence. Moreover the developing maps con-
verge to the developing map of the transversely hyperbolic foliation.

This result is generalized in two ways: by allowing vertical angles that
are not integer divisors of 2π and by changing the speed of the horizontal
angles. Regarding the generalization on the vertical angles, choose n I-fibers
of O3,

Σvert = {f1, . . . , fn}
that include all singular I-fibers. Let q1, . . . , qn ∈ N denote their respective
indices in the fibration. In particular qi = 1 if and only if fi is a regular
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I-fiber. Fix angles ϑ1, . . . , ϑn ∈ (0, 2π] so that

ϑi/qi 6 π,

for i = 1, . . . , n. We require that
n∑
i=1

(π − ϑi/(2qi)) > 2π.

This implies that the polygon Q with angles ϑi/(2qi) is hyperbolic.
Regarding the speed of the horizontal angles, we introduce weights. Let k

be the number of circles and edges of the horizontal branching locus Σhor.
Choose weights w1, . . . , wk ∈ R+ = {x ∈ R | x > 0} on these horizontal
components. Those induce weights

W = {w1, . . . , wn}

on the edges of Q, just by adding the two weights of the mirror points of the
fiber of any interior point of the edge, ie. wi = wji +wki . Of course if k = 1
(ie. when Σhor is a circle), then W is the constant weight. If e1, . . . , en are
the edges of Q, with lengths |e1|, . . . , |en|, the W-perimeter is defined as

w1|e1|+ · · ·+ wn|en|.

It follows from the argument in [23] (cf. Proposition 1.5) that in the set of
hyperbolic structures on a polygon with ordered angles ϑ1/2q1, . . . , ϑn/2qn
there is a unique minimizer of the W-perimeter, that we denote QW−min.

Let |O3| denote the underlying manifold of O3, Σhor = ΣhorO and Σvert =
{f1, . . . , fn}.

Theorem 1.2. — There exists a family of hyperbolic cone manifold
structures C(α1, . . . , αk) on |O3|, singular locus Σhor ∪ Σvert, with cone
angles αi = π − wit, for i = 1, . . . , k and t ∈ (0, ε) on Σhor, and constant
angles ϑi on fi ⊂ Σvert, such that

lim
t→0+

C(α1, . . . , αk) = QW−min

for the Gromov-Hausdorff converge.

Theorem 1.1 was stated in Hodgson’s thesis [17] in a more general con-
text. In particular, Hodgson showed that the minimizer of the perimeter
corresponds to a singularity in the variety of representations of O3 r ΣO3 .
However, further work is required to construct a path of representations,
and this is done here in the orbifold context.
The 3-orbifold is Seifert fibered, and those cone manifolds appear in the

proof of the orbifold theorem; however, none of the approaches shows the
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Figure 1.1. Example of fibered orbifold: S3 with branching locus this
link. The base is a quadrilateral.

explicit collapse, as the Seifert fibration is constructed by other methods
[6, 4, 3, 2].

Theorem 1.1 needs to assume that there is at most one cone point in
the interior of the polygon, otherwise O3 \ΣO3 would contain an essential
torus, contradicting the existence of hyperbolic cone structures.
We make the following assumption along the paper:

Remark 1.3. — We may assume that P 2 has no interior cone point: If
the interior of P 2 has one cone point, then we consider the orbifold covering
that unfolds this point and work equivariantly.

Concerning the equivariance, the structure of P 2 that minimizes the
perimeter is unique, hence equivariant. The structure of the hyperbolic cone
manifolds is also equivariant because it is unique, by Weiss’ global rigidity
[27]. Notice that two or more cone points would not produce a polygon
when unfolding, but an orbifold with more complicated underlying space.
Let us show a consequence of Theorem 1.2 for hyperbolic polyhedra. Fix

n positive real numbers

0 < β1, . . . , βn 6 π/2,

satisfying
∑

(π−βi) > π. By Andreev theorem, for any choice of α1, . . . , αn,
α′1, . . . , α

′
n satisfying

0 < αi, α
′
i < π/2, αi + αi+1 > π − βi, and α′i + α′i+1 > π − βi,

there exists a unique hyperbolic polyhedron with the combinatorial type of
a prism with an n-edged polygonal base, with dihedral angles at the “ver-
tical” edges β1, · · · , βn, angles α1, . . . , αn at the respective n “horizontal”
edges of the top face, and α′1, . . . , α′n at the respective n horizontal edges
of the bottom face. They are arranged so that the edges with angles αi, βi,
α′i and βi+1 bound a quadrilateral face. See Figure 1.2.
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Figure 1.2. A hyperbolic prism as in Corollary 1.4.

Now if we choose weights w1, . . . , wn > 0 for the bottom horizontal edges
and w′1, . . . , w′n > 0 for the top ones, assume that

αi = π/2− wit,
α′i = π/2− w′it.

Keep β1, . . . , βn fixed and let t↘ 0 (hence αi, α′i ↗ π/2). Set

W = {w1 + w′1, . . . , wn + w′n}

and recall that the W-perimeter of a polygon is the addition of its edge
lengths multiplied by the weights.

Corollary 1.4. — When t ↘ 0, the prism converges to the n-edged
polygon with angles β1, . . . , βn of minimalW-perimeter, whereW = {w1 +
w′1, . . . , wn + w′n}.

Theorem 1.2 and Corollary 1.4, require the following proposition:

Proposition 1.5. — For W = {w1, . . . , wn}, with wi > 0, the W-
perimeter has a unique minimum among all polygons with given angles
0 < ϑ1, . . . , ϑn 6 π/2 with

∑
(π − ϑi) > 2π.

In addition, this is the only polygon with those angles having a point
p in its interior so that 1

wi
sinh(d(ei, p)) is independent of the edges ei of

the polygon. In particular the (unweighted) perimeter is minimized by the
polygon with an inscribed circle.

Proposition 1.5 is proved in [23] when all weights are constant. The
same proof applies here, noticing that since angles are 6 π/2, the space of
hyperbolic polygons with those given angles has no boundary.
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The proof of Theorem 1.1 has two parts: first to construct a curve of
representations of the smooth part of O3 and second to prove that these
representations are holonomy structures of the cone manifolds by construct-
ing developing maps.
For the construction of the curve, we have to choose the structure that

minimizes the perimeter. Using Goldman’s symplectic structure of the va-
riety of representations of ∂N (ΣO) [12], the Hamiltonian vector field of the
perimeter is essentially the direction to regenerate in the variety of repre-
sentations of ∂N (ΣO). Being a critical point for the perimeter implies that
this direction is induced from deformations of O3 \ N (ΣO).

The construction of the curve of representations is quite involved, be-
cause, in general, the Teichmüller space of the base P 2 and the cone mani-
fold structures may lie in different irreducible components of the variety of
characters, and their intersection gives a singularity.
Once we have the existence of the curve of representations, we construct

developing maps. For this we use the fibration: vertices of the base corre-
spond to rational tangles, edges to I-fibered strips, and the interior points
to regular fibers. We construct the developing map first for the tangles,
then for the strips that connect them, and finally for the regular points. In
particular the union of tangles and neighborhoods of the strips is a solid
torus, and the underlying space of the orbifold is a generalized lens space.
Previous to this construction, we must analyze the infinitesimal deforma-
tion of the fiber, and the corresponding Killing vector field, which happens
to be perpendicular to the developing map of the two dimensional polygon.
Notice that when the orbifold is small the analysis of Paiva-Barreto [1]

applies here, to prove that the limit of cone manifolds is the 2-dimensional
orbifold. We must also remark the recent work of Danciger about the tran-
sition geometry called half-pipe [9]. With his work, one can understand the
transition to anti de Sitter singular structures.

The proof of Theorem 1.2 follows exactly the same scheme as Theo-
rem 1.1, just by adding the weights, and by adapting some arguments from
orbifolds to cone manifolds. To simplify, we discuss first Theorem 1.1, while
the existence of representations for Theorem 1.2 is proved in Section 3.3.

The paper is organized as follows. In Section 2 we state the existence
of the required one parameter deformation of representations, and we give
some preliminary material to prove it in Section 3. The developing maps
corresponding to these representations are constructed in Section 4. Finally,
Appendix A is devoted to some results about infinitesimal isometries, used
mainly in Subsection 4.2.
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2. Varieties of representations

We start with the holonomy representation of the hyperbolic orbifold

hol :π1(P 2)→ PGL2(R) = Isom(H2),

where the elements preserve or reverse the orientation of H2 according to
the sign of the determinant. Notice that

PGL2(R) = PSL2(R) t PSL2(iR) < PSL2(C) = Isom+(H3).

Let

M = |O3| \ N (ΣO3)

denote the smooth part of the orbifold. By [7, 15] the induced representation
on M can be lift to

ρ0 : π1(M)→ SL2(C).

The goal of Sections 2 and 3 is to prove the following result.

Proposition 2.1. — If ρ0 is the holonomy of the perimeter minimizing
polygon, then there exists {ρt}t∈(−ε,ε) an analytic path of representations
of M in SL2(C) such that ρ0 is as above and for each t ∈ (0, ε), ρt of a
vertical meridian is constant, and ρt of a horizontal meridian is a rotation
of angle (independent of the meridian)

π − tr,

for some r ∈ Z, r > 0.

It is convenient to fix the orientation of the singular edges and their
meridians to distinguish a rotation of angle π − tr from π + tr, t > 0.

We prove this proposition in Section 3. It happens that r = 1: in some
cases we shall prove it directly, in general this will follow from the regen-
eration result in Section 4. When we know that r = 1, the regeneration
results of Danciger [9] apply, not only to the regeneration of hyperbolic
cone manifolds but to the regeneration of AdS structures with tachyon
singularities.
In the remainder of the section, we state some properties of the variety

of representations and characters.
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2.1. Preliminaries on representations and characters

For an orbifold or a manifold Z, the variety of representations of π1(Z)
in SL2(C) is

R(Z) = hom(π1(Z), SL2(C)).
This is a complex affine set of SL2(C)n ⊂ C4n defined over Q.
For a representation ρ ∈ R(Z), its character is the map

χρ : π1(Z) → C
γ 7→ Trace(ρ(γ)).

The variety of characters X(Z) is the set of all characters of R(Z), and it
is also a complex affine set over Q. The embedding in CN is given by trace
functions of N elements of π1(Z) [8, 15].
A representation ρ ∈ R(Z) is called irreducible if no proper subspace of

C2 is ρ(π1(Z))-invariant. The representations we are considering are always
irreducible. The set of irreducible representations is Zariski open, and so
is the set of irreducible characters [8]. We denote them by Rirr(Z) and
Xirr(Z) respectively.

Lemma 2.2 ([8]). — The projection

R(Z) → X(Z)
ρ 7→ χρ

is the quotient in geometric invariant theory of the action by conjugation. In
particular it is surjective. Moreover Rirr(Z)→ Xirr(Z) is a local fibration
with fiber the orbit by conjugation.

Since orbifolds have torsion, sometimes we need to work with represen-
tations in PSL2(C), because they may not lift to SL2(C). This does not
make any difference for the local structure of the variety of representations
and characters at the representations we are interested in, cf. [16]. The
varieties of PSL2(C)-representations and characters are denoted by

RPSL2(C)(Z) and XPSL2(C)(Z).

By Weil’s construction [25], the Zariski tangent space to R(Z) at ρ is
naturally identified with the space of cocycles (or crossed morphisms):

Z1(π1(Z), Adρ) = {d : π1(Z)→ sl2(C) | d(γ1γ2) = d(γ1) +Adρ(γ1)d(γ2)
∀γ1, γ2 ∈ π1(Z)},

so that d ∈ Z1(π1(Z), Adρ) corresponds to the infinitesimal deformation

γ 7→ (1 + εd(γ))ρ(γ) + o(ε2), ∀γ ∈ Z.

ANNALES DE L’INSTITUT FOURIER
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Under this identification, the tangent space to the orbit by conjugation
corresponds to the coboundaries (or inner crossed morphisms):

B1(π1(Z), Adρ) = {d : π1(Z)→ sl2(C) | ∃m ∈ sl2(C) s.t.
d(γ) = Adρ(γ)(m)−m, ∀γ ∈ π1(Z)}.

Let H1(π1(Z), Adρ) = Z1/B1 denote the first cohomology group of
π1(Z) with coefficients in the Lie algebra sl2(C) twisted by the adjoint
representation Adρ.

Lemma 2.3 ([25, 20, 16]). — If ρ ∈ R(Z) is irreducible, then

TZarχρ X(Z) ∼= H1(π1(Z), Adρ),

where TZar means the Zariski tangent space as a scheme (not necessarily
reduced).
If ρ ∈ RPSL2(C)(Z) does not preserve a subset of ∂∞H3 of cardinality

6 2, then
TZarχρ XPSL2(C)(Z) ∼= H1(π1(Z), Adρ).

The hypothesis that ρ does not preserve a subset of ∂∞H3 of cardinality
6 2 is equivalent to say that ρ is irreducible and that it does not preserve
any unoriented geodesic. See [8, 15, 12, 16, 20] for more results about the
varieties of representations and characters.

2.2. Relative character variety

Let Z be a compact aspherical 3-manifold with boundary, for instance
the exterior of the singular locus M = O \ N (ΣO). One way to work
with manifolds instead of orbifolds is to use relative character varieties of
manifolds. This is convenient for working also with cone manifolds.

Definition 2.4. — Let Γ = {γ1, . . . , γk} ⊂ π1(Z) be a finite subset.
The relative character variety with respect to the values a1, . . . , ak ∈ C \
{±2} is

X(Z,Γ) = {χ ∈ X(Z) | χ(γi) = ai for γi ∈ Γ}.

The role of the parameters a1, . . . , ak ∈ C \ {±2} is not important, and
they are not included in the notation. Usually, these values are clear from
the context.

Lemma 2.5. — Let χ = χρ ∈ X(Z) be an irreducible character such
that χ(γ) 6= ±2 for γ ∈ Γ.

TOME 63 (2013), FASCICULE 5
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(1) The Zariski tangent space to X(Z,Γ) is:

TZarχ X(Z,Γ) ∼= ker(H1(Z;Adρ)→ ⊕γ∈ΓH
1(γ,Adρ))

∼= Im(H1(Z,Γ;Adρ)→ H1(Z;Adρ)).

(2) The Zariski cotangent space to X(Z,Γ) is:

(TZarχ )∗X(Z,Γ) ∼= H1(Z;Adρ)/ Im(⊕γ∈ΓH1(γ,Adρ))→ H1(Z;Adρ))
∼= Im(H1(Z;Adρ)→ H1(Z,Γ;Adρ)).

The lemma follows from Lemma 2.3 by analyzing tangent and cotangent
induced maps of the morphism induced by inclusion,

X(Z)→ X(γ1)× · · · ×X(γk),

and from the long exact sequence in cohomology of the pair (Z,Γ). See [18,
§8.8] for more results on relative character varieties.

2.3. The symplectic structure of the variety of characters

As in the previous section, Z is a compact aspherical 3-manifold with
boundary. Let X(∂Z) denote the product of character varieties of compo-
nents of ∂Z:

X(∂Z) = X(∂1Z)× · · · ×X(∂rZ),
where ∂Z = ∂1Z ∪ · · · ∪ ∂rZ is the splitting in connected components.

Choose a pants decomposition for the components of ∂Z. This is, a col-
lection of disjoint simple closed curves in ∂Z,

γ1, . . . , γk,

that cut ∂Z into pairs of pants or cylinders, and the family has minimal
cardinality. Here k = − 3

2χ(∂N)+k0, where k0 is the number of components
of ∂Z that are tori.
For j = 1, . . . , k, let µj denote twice the logarithm of the eigenvalue

of the j-th meridian γj , so that µj has real part the translation length
and imaginary part the rotation angle of ρ(γj). Let λj denote the twist
parameter. Algebraically, when we cut along the (non-separating) meridian
and write the fundamental group of the surface as an HNN-extension, λj is
twice the logarithm of the eigenvalue of the element of the extension. (In the
separating case, it is twice the logarithm of the eigenvalue of the conjugating
factor). Notice that λj is only defined after normalization (Cf. [14] fore more
details).

ANNALES DE L’INSTITUT FOURIER
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When γj is the meridian of a cone manifold, by [26], λj can be chosen
so that its real part is the length of the corresponding singular edge. For
representations of M = O \ N (ΣO) that factor through P 2, the real part
of
∑
λj is twice the perimeter of P 2.

Proposition 2.6 (Fenchel-Nielsen local coordinates). — Let χ∈X(∂Z)
be such that χ(γj) 6= ±2, and χ restricted to each pant of ∂Z \ ∪iγi is ir-
reducible. Then the parameters

(µ1, . . . , µk, λ1, . . . , λk)

define local coordinates for X(∂Z) around χ.

Though it is well known, we give a proof in this algebraic setting for
completeness.

Proof of Proposition 2.6. — Since the representation restricted to each
pant is irreducible, it is locally parametrized by the trace of its boundary
curves. Namely, an irreducible character in SL2(C) of a free group with
two generators a and b is parametrized by the traces of a, b and ab (see for
instance [15]), that are precisely the boundary curves of a pair of pants.
We also use that, since χ(γj) 6= ±2, the value of a character at γj is locally
parametrized by µj , because χ(γj) = 2 cosh(µj/2) 6= ±2. When the curve
γi is in a torus, the cutoff of this component is a cylinder, and its conjugacy
class is parametrized by µj . Hence the µ1, . . . , µk are local coordinates for
the restrictions to pants and cylinders. The coordinates are completed by
adding the parameters of amalgamation along the curves γi, namely the
λ1, . . . , λk. �

Definition 2.7. — The tangent vectors {∂µ1 , . . . , ∂µk , ∂λ1 , . . . , ∂λk} are
the coordinate vectors of a parametrization as in Proposition 2.6.

Notice that {∂µ1 , . . . , ∂µk , ∂λ1 , . . . , ∂λk} is a C-basis for H1(∂Z,Adρ).
Consider the pairing that consists in combining the usual cup product

with the Killing form (see Appendix A):

B :sl(2,C)× sl(2,C)→ C,

to get a 2-cocycle with values in C, see [12, 13, 14]. We still denote by ∪
this paring:

∪ : H1(∂Z;Adρ)×H1(∂Z;Adρ)→ H2(∂Z; C)→ C. (2.1)

Here the last arrow is just the composition of the isomorphismH2(∂iZ,C)∼=
C for each boundary component ∂iZ with the addition of the coordinates
C× · · · ×C→ C.

TOME 63 (2013), FASCICULE 5
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Theorem 2.8 (Goldman [12, 13]). — The product (2.1) defines a C-
symplectic structure on X(∂Z). Moreover ∂λj is the Hamiltonian vector
field of µj :

dµj = ∂λj ∪ −.

Corollary 2.9. — Let F be a holomorphic function of an open subset
of X(∂M), and HF ∈ TρX(∂Z) its Hamiltonian, the vector that satisfies
dF = HF ∪ −. Then

dµj(HF ) = − ∂F
∂λj

.

Proof. — By Theorem 2.8,

dµj(HF ) = ∂λj ∪HF = −HF ∪ ∂λj = − ∂F
∂λj

.

�

Theorem 2.10 (Duality Formula). — Let χ ∈ X(Z) and Γ =
{γ1, . . . , γk} ⊂ π1(∂Z) satisfy the hypothesis of Proposition 2.6 and let
a1, . . . , ak ∈ C. There exists a tangent vector v ∈ H1(Z,Adρ) such that

dµi(v) = ai, for i = 1, . . . , k,

if and only if a1dλ1+· · ·+akdλk vanishes in the cotangent space toX(Z,Γ).

Proof. — Assume first that there exists a tangent vector v ∈
H1(Z,Adρ) = TχX(Z) such that dµi(v) = ai, for i = 1, . . . , k. Let i :
∂Z → Z denote the inclusion, and i∗ : TχX(Z) → TχX(∂Z) the induced
map in cohomology. Let F be a function linear in µi and λi such that
i∗(v) = HF at χ. Then by Corollary 2.9

aj = dµj(HF ) = − ∂F
∂λj

.

Hence
F = −a1λ1 − · · · − akλk +

∑
biµi,

for some bi ∈ C.
For every w ∈ TχX(Z),

dF ◦ i∗(w) = HF ∪ i∗(w) = i∗(v) ∪ i∗(w) = 0,

because the image of i∗ is isotropic. Thus i∗(dF ) = 0 in T ∗χρX(Z) and, by
Lemma 2.5 (2), a1dλ1 + · · ·+ akdλk vanishes in the cotangent space

(TZarχρ )∗X(Z,Γ).

To prove the converse, start assuming that a1dλ1 + · · · + akdλk van-
ishes in the cotangent space to X(Z,Γ). Thus i∗(a1dλ1 + · · · + akdλk) ∈
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⊕k
i=1H1(γi;Adρ), by Lemma 2.5 (2). Hence there exist b1, . . . , bk ∈ C such

that

i∗(a1dλ1 + · · ·+ akdλk) = i∗(−b1 dµ1 − · · · − bk dµk) ∈ H1(∂Z;Adρ).

Setting F = −(a1λ1 + · · ·+ akλk + b1µ1 + · · ·+ bkµk) we have i∗(dF ) = 0.
Working in cohomology, consider the image of

i∗ :H1(Z;Adρ)→ H1(∂Z;Adρ)

which is a Lagrangian subspace of H1(∂Z;Adρ), by a standard argument
using Poincaré duality (cf. [17]). Moreover, since i∗(dF ) = 0, dF vanishes
on all infinitesimal deformations of ∂Z induced from deformations of Z:
dF (Im(i∗)) = 0. Let HF ∈ H1(∂Z;Adρ) be the “Hamiltonian vector of F”:

HF ∪ − = dF.

In particular (HF )⊥ = ker dF contains Im(i∗). Since Im(i∗) is Lagrangian
for the symplectic pairing,

HF ∈ Im(i∗),

otherwise Im(i∗)⊕〈HF 〉 would contradict the maximality of Im(i∗) among
isotropic subspaces.
As HF ∈ Im(i∗), there exists v ∈ H1(Z,Adρ) whose restriction to ∂Z is

HF , and therefore, by Corollary 2.9,

dµi(v) = dµi(HF ) = − ∂F
∂λi

= ai,

for i = 1, . . . , k. �

3. Constructing the path of representations

Here we prove Proposition 2.1. We divide the proof in two cases. First
we assume that all singular fibers are in the branching locus; in this case
the variety of characters is smooth. The general case is deduced from this
one by a deformation argument. In general the variety of characters may
be singular, because the holonomies of cone manifold structures and the
Teichmüller space of the polygon may lie in different irreducible compo-
nents.
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3.1. All singular fibers are in the branching locus

In this subsection we make the following assumption, that we will remove
in Subsection 3.2:

Assumption 3.1. — All singular I-fibers are in the branching locus of
O3.

Under this assumption, we have:

Remark 3.2. — The smooth part

H = O3 \ N (ΣO3),

is a handlebody of genus n+ 1.

Consider
Γ = {γ1, . . . , γ3n} ⊂ π1(∂H)

the (oriented) meridian curves for O3, one for each singular arc of ΣO3 . In
particular they give a pants decomposition of ∂H. Order them so that:

• Γhor = {γ1, . . . , γ2n} is the set of horizontal meridians (around
ΣhorO3 ), and

• Γvert = {γ2n+1, . . . γ3n} is the set of vertical meridians (around
ΣvertO3 ).

Lemma 3.3. — We have the following local isomorphisms:

Xirr
PSL2(C)(P 2) ∼=LOC Xirr

PSL2(C)(O3) ∼=LOC

Xirr
PSL2(C)(H,Γ) ∼=LOC Xirr(H,Γ). (3.1)

The first isomorphism follows from the fact that (a power of) the fiber of
O3 is mapped to a central element, and an irreducible representation has no
center. The second isomorphism can be proved easily from the definition of
the relative character variety, by imposing that the meridians are rotations
of the same order as the branching index. Finally, the third isomorphism
follows from the fact that all representations of a free group to PSL2(C)
lift to SL2(C).

Recall that
χ0 ∈ XPSL2(C)(O3)

is the PSL2(C)-character induced by the perimeter minimizing hyperbolic
metric of P 2.

We have an inclusion X(H,Γ) ⊂ X(H,Γvert). There exists a neighbor-
hood of U ⊂ X(H,Γvert) of χ0, so that if we define:

µ = (µ1, . . . , µ2n) : U ⊂ X(H,Γvert)→ C2n,
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where the µi are in Subsection 2.3, then

X(H,Γ) ∩ U = µ−1(πi, . . . , πi).

Lemma 3.4. — (1) The pair (U,X(H,Γ)∩U) is biholomorphic to a
neighborhood of the origin in (C2n,Cn−3).

(2) The tangent map

µ∗ : TχU → T(πi,...,πi)C2n

is injective on the normal bundle to X(H,Γ)∩U , ∀χ ∈ X(H,Γ)∩U .

Proof. — We first prove that U is biholomorphic to an open set of C2n.
The 2-orbifold P ′ = P 2 \ vertices(P 2) obtained by removing the vertices
of P 2 can be deformed by changing the angles of the vertices. This gives
ν1, . . . , νn tangent vectors to the variety of characters of P ′, one for each
cone angle (keeping the other angles fixed). Let ν̄i denote the induced
vectors in the variety of characters of H. The trace functions of γ2n+i
satisfy d Traceγ2n+i(ν̄j) = δij . Thus, viewing X(H,Γvert) as the fiber of
the (local) submersion of the traces of the vertical meridians

(Traceγ2n+1 , . . . ,Traceγ3n) : X(H)→ Cn,

X(H,Γvert) is smooth at χ0 and has dimension 2n.
By Lemma 3.3, X(H,Γ) ∩ U is biholomorphic to an open subset of

XPSL2(C)(P 2), which is the complexification of the the Teichmüller space
of P 2, hence it is biholomorphic to a open subset of Cn−3, cf. [23]. To con-
clude the proof of Assertion 1, we may use the fact that the Teichmüller
space of P 2 is locally parametrized by n−3 length functions: by considering
the corresponding λi1 , · · · , λin−3 defined in Subsection 2.3, we deduce that
the inclusion X(H,Γ) ∩ U ⊂ U is a holomorphic immersion.
The Teichmüller space of P 2 embeds in Rn, with coordinates edge

lengths, and it is a smooth submanifold of codimension 3, cf. [23]. LetWχ ⊂
Rn denote the normal space to the Teichmüller space at χ ∈ X(H,Γ) ∩ U
and Wχ ⊗ C ⊂ Cn be its complexification. Assuming that γi and γn+i
project to the same edge of P 2, i = 1, . . . , n, let

W ′χ = {(a1, . . . , a2n) ∈ C2n | (a1 +an+1, . . . , an+a2n) ∈Wχ⊗C} ∼= Cn+3.

Thus, if (a1, . . . , a2n) ∈ W ′χ, then a1dλ1 + · · · + a2ndλ2n vanishes on the
cotangent space

(TZarχ )∗XPSL2(C)(P 2) ∼= (TZarχ )∗X(H,Γ).

By the duality formula (Thm. 2.10), W ′χ is contained in the image of µ∗ :
TχU → T(πi,...,πi)C2n. Therefore rank(µ∗) > n + 3. Since the dimension
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of Xirr
PSL2(C)(P 2) ∼=LOC Xirr(H,Γ) is n − 3, the rank of µ∗ : TχU →

T(πi,...,πi)C2n is constant equal to n+ 3, showing Assertion 2. �

Let V ⊂ C2n be a neighborhood of µ(χ0) = (πi, . . . , πi). Let Ǔ be the
blow-up of U at the submanifold X(H,Γ)∩U , and V̌ , the blow-up of V at
the point (πi, . . . , πi) ∈ V . The respective exceptional divisors are denoted
by EU ⊂ Ǔ and EV ⊂ V̌ .

Lemma 3.5. — The map µ lifts to the blow-up, so that the following
diagram commutes:

(Ǔ , EU )
µ̌ //

prU

��

(V̌ , EV )

prV

��
(U,X(H,Γ) ∩ U)

µ // (V, (πi, . . . , πi))

Proof. — This is a consequence of Lemma 3.4 (2), that applies to every
χ ∈ X(H,Γ)∩U , because the condition to lift is that µ∗ is injective on the
normal bundle. �

Lemma 3.6. — The character χ0 is an isolated critical point in
XPSL2(C)(P 2) of the complex function λ1 + · · · + λ2n. In addition, for
any choice of local coordinates, the determinant of the Hessian at χ0 does
not vanish.

Proof. — The results in [23] can be extended by using [24, Theorem BdS ]
to prove that the perimeter has a positive definite Hessian at χ0 in the
deformation space of a polygon with given angles. Notice that since χ0
is a critical point, the sign of the Hessian is independent of the coordi-
nates. By complexifying, it follows that it is an isolated critical point in
XPSL2(C)(P 2). �

By using the duality theorem (Thm. 2.10), and since χ0 minimizes the
perimeter of P 2, we can make the following definition:

Definition 3.7. — We denote by v0 ∈ Tχ0X(H,Γvert) a vector that
satisfies

dµi(v0) =
{

1, for i = 1, . . . , 2n (ie. γi ∈ Γhor),
0, for i = 2n+ 1, . . . , 3n (ie. γi ∈ Γvert).

Elements of the exceptional divisor EU ⊂ Ǔ are directions of vectors v
normal to X(H,Γ), denoted by 〈v〉.

Proposition 3.8. — The map µ̌ restricts to a biholomorphism between
a neighborhood of 〈v0〉 in Ǔ and a neighborhood of 〈(1, . . . , 1)〉 in V̌ .
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Proof. — We prove first that µ̌ is a bijection between a neighborhood of
〈v0〉 in the exceptional divisor EU and a neighborhood of 〈(1, . . . , 1)〉 in EV .
Consider ξ = (ξ1, . . . , ξn−3) ∈ Cn−3 local coordinates forX(H,Γ)∩U , write
a = (a1, . . . , a2n) and define, for i = 1, . . . , n− 3, Fi : X(H,Γ)∩U → C as:

Fi(ξ, a) =
2n∑
j=1

aj
∂λj
∂ξi

.

By Lemma 3.6, the determinant of the Hessian of λ1 + · · ·+λ2n : X(H,Γ)∩
U → C at χ0 does not vanish. Hence we may apply the implicit function
theorem to F1 = · · · = Fn−3 = 0, to write ξ as a function of a. Thus for any
(a1, . . . , a2n) ∈ C2n in a neighborhood of (1, . . . , 1), there exists a unique
χ ∈ X(H,Γ) ∩ U such that χ is a critical point of a1dλ1 + · · · + a2ndλ2n.
In particular, by Theorem 2.10 there exists a unique χ ∈ X(H,Γ)∩U such
that its tangent space contains a vector v ∈ TχU with µ∗(v) = (a1, . . . , a2n).
Moreover, this v is unique in the normal bundle, by Lemma 3.4 (2). This
proves that µ̌ is a bijection between neighborhoods in the exceptional divi-
sors EU and EV . By holomorphicity, this implies that µ̌ is a biholomorphism
between the neighborhoods in EU and EV . By construction µ̌∗ is injective
in the normal direction to EU ((prU )∗ is injective in the normal direction),
hence the inverse function theorem applies. �

Corollary 3.9. — There exists an algebraic C-curve C ⊂ X(H,Γvert)
containing χ0, such that µ|C is a biholomorphism between a neighborhood
of χ0 and a neighborhood of the diagonal µ1 = · · · = µ2n.

Remark 3.10. — In this way we obtain a path of representations satis-
fying Proposition 2.1 with r = 1, just by considering the path µ1 = · · · =
µ2n = i(π − t) and lifting it to a deformation of representations ρt.

For every horizontal meridian γi, the deformation of Remark 3.10 satis-
fies, up to conjugation

ρt(γi) = ±
(
eµi(t)/2 0

0 e−µi(t)/2

)
. (3.2)

Remark 3.11. — Replacing t by −t in the previous choice changes the
sign of the trace. This corresponds to changing the orientation because
when we take the complex conjugate, the sign of the trace of ρt(γi) in
Equation (3.2) is changed, but also the sign of

ρ0(γi) = ±
(
eiπ/2 0

0 e−iπ/2

)
,

hence the sign in the relation tr(ρt(γi)) = ±2 cos(αi(t)/2).
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3.2. Constructing a curve of representations of M

The goal of this subsection is to prove Proposition 2.1 without Assump-
tion 3.1. The argument of Subsection 3.1 does not apply here, as the in-
volved character varieties may be singular. Instead, we use a deformation
argument and apply the previous subsection.

Proof of Proposition 2.1. — The case where all singular fibers are con-
tained in ΣO is discussed in the previous section. To simplify, we assume
that ΣO is a link, so that no I-fiber is in the branching locus (ie. ΣvertO = ∅).
We shall reduce to the previous case by deforming the angles on the singular
I-fibers. In the general case we should only deform some of the I-fibers.

Choose a increasing sequence tk ∈ (0, 1), tk ↗ 1, and consider the de-
generate cone manifold C(tk) whose singular locus is the union of ΣO and
the singular I-fibers. The cone angle in the horizontal singular locus is π
and the cone angle in the vertical singular locus is 2πtk. We view it as a
collapsed hyperbolic structure, namely as a hyperbolic polygon with angles
tk times the original angles of the polygon. The character of the hyperbolic
structure with those angles that minimizes the perimeter is denoted by χk.

Set H = C(tk) \ ΣC(tk). Recall that Γvert = {γ2n+1, . . . , γ3n} ⊂ π1(H)
denotes the set of vertical meridians, ie. meridians of the singular compo-
nents of C(tk) corresponding to singular I-fibers, and Γhor = {γ1, . . . γ2n} ⊂
π1(H) denote the set of horizontal ones. In particular

π1(M) ∼= π1(H)
/
〈Γvert〉,

where 〈Γvert〉 denote the subgroup normally span by Γvert.
By Proposition 1.5, χk → χ0 = χρ0 . The character χk satisfies χk(γi) = 0

for i = 1, . . . , 2n (ie. γi ∈ Γhor). The characters of the curve of Corollary 3.9
with all cone angles equal satisfy χ(γi) = ±χ(γj), and the sign depends on
the lift of the holonomy of C(tk) to SL2(C). Namely, a rotation of angle π
that fixes the oriented axis in the upper half space model for H3 that goes
from 0 to ∞ is

±
(

i 0
0 −i

)
= ±

(
eiπ/2 0

0 e−iπ/2

)
.

Thus decreasing the angle π affects differently the sign of the trace: since
we work with half angle, it depends on whether we start with π/2 or 3π/2.
We will assume that, after having extracted a subsequence, for every k, the
deformed representations satisfy χ(γi) = χ(γj), ie. we are able to make the
same choice of lift for for all k. Otherwise, some equalities χ(γi) = χ(γj)
have to be replaced by χ(γi) = −χ(γj).
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Consider the algebraic subset of X(H) defined by the equations:{
χ(γi) = χ(γj) for i, j = 1, . . . 2n, (ie. γi, γj ∈ Γhor);
χ(γ2n+i) = χ(γ2n+j) for i, j = 1, . . . n, (ie. γ2n+i, γ2n+j ∈ Γvert).

By construction, this algebraic subset contains χk and the deformations of
characters of Corollary 3.9. Again up to subsequence, we may assume that
it has an irreducible component S that contains all of them.

Lemma 3.12. — The variety S satisfies:
i) dimC S > 2.
ii) χ0 = χρ0 ∈ S.
iii) {χ ∈ S | χ(γ2n+1) = ±2} is a proper subset of S.
iv) {χ ∈ S | χ(γ1) = 0} is a proper subset of S.

Proof. — Assertion i) follows from the fact that S is a component of an
algebraic subset ofX(H) defined by 3n−2 equations. Since χk → χ0 = χρ0 ,
and χk ∈ S, ii) is clear. To prove Assertion iii), use that χk ∈ S and
χk(γ2n+1) = ±2 cos(2πtk). Finally iv) is a consequence of the fact that S
contains the deformations provided by Corollary 3.9. �

Remark 3.13. — Once we know that the deformations correspond to
hyperbolic cone structures, it will follow from local rigidity results for cone
manifolds, that dimC S = 2, by [28].

Consider E a C-irreducible component of

{χ ∈ S | χ(γ2n+1) = 2}

that contains χ0 = χρ0 .
By Lemma 3.12, E is not the whole S and dim E > 1. Notice that

χ(γ2n+1) = 2 does not imply that χ is the character of a representation ρ
trivial on γ2n+1, because ρ(γ2n+1) could be a parabolic element. Thus we
need the following lemma.

Lemma 3.14. — If ρ ∈ R(H) is a representation close to ρ0 and χρ ∈ E ,
then ρ(γ2n+i) is the identity matrix for all i = 1, . . . , n. In particular it
factors to a representation of M .

Proof. — Let γ2n+1 be a vertical meridian. Each endpoint of this edge
meets the endpoints of two more horizontal singular edges, with respective
meridians ς and ς̃ in π1(H). They satisfy

ςγ2n+1 = ς̃

and ς and ς̃ project both to the same element σ1 in π1(M) (cf. Figure 3.1).
Since ρ is close to ρ0 and ρ0(σ1) is a rotation of angle π, we may assume
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γ2n+1

ς

ς

ς̃

ς̃

Figure 3.1. The loops of π1(H) around a vertical edge

that ρ(ς) and ρ(ς̃) are both conjugate to diagonal matrices with (equal)
eigenvalues λ±1 6= ±1. We write

ρ(ς) =
(
λ 0
0 λ−1

)
and ρ(γ2n+1) =

(
a b

c d

)
,

with ad−bc = 1, a+d = 2. Since χρ ∈ S, aλ+dλ−1 = λ+λ−1 6= ±2. Thus
a = d = 1 and either b or c vanishes. This means that if ρ(γ2n+1) is not
the identity but parabolic, then the fixed point of ρ(γ2n+1) has to be one
of the endpoints of the axis of ρ(ς). Let σ′1 be the meridian of the opposite
edge in the tangle, so that the tangle group is the free group on σ1 and
σ′1. The axis of ρ0(σ1) and ρ0(σ′1) form an angle, hence the endpoints of
their axis are far, and the previous argument for σ′1 instead of σ1 gives a
contradiction with the hypothesis that ρ(γ2n+1) is not the identity. �

Lemma 3.15. — The trace of the meridian γ1 is not constant along E .

Proof. — By contradiction, assume that it is constant, then this trace
is zero. Take a character χ̄ ∈ E close to χ0. Lemma 3.14 implies that χ̄
induces a character of M .

Claim 3.16. — There exists a tangent vector v ∈ Tχ̄X(M) that satisfies

dµj(v) = 1, for j = 1, . . . , 2n.

We continue the proof of Lemma 3.15 assuming Claim 3.16, that we prove
later. By Claim 3.16 and Theorem 2.10, χ̄ is a critical point of λ1 + · · ·+λ2n
in

Xirr(M,Γ′) ∼=LOC Xirr
PSL2(C)(O3) ∼= Xirr

PSL2(C)(P 2),
where Γ′ ⊂ π1(M) is a collection of meridians for the singular components
of O3. This contradicts the analogue of Lemma 3.6, that the perimeter
minimizer is an isolated critical point of λ1+· · ·+λ2n in XPSL2(C)(P 2). �
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End of the proof of Proposition 2.1. By Lemma 3.14, E gives a curve of
representations ofM . In addition, by Lemma 3.15, the trace of the meridian
on this curve is nonconstant. A nonconstant complex map is open, thus by
looking at the inverse image of points with real trace, we find the path of
representations we are looking for. �

Remark 3.17. — Once we have Proposition 4.25 below about regenera-
tion of hyperbolic cone structures, the trace of the meridian on E is a local
diffeomorphism around χ0.

In fact, the trace of the meridian on E cannot be a ramified covering,
because this would contradict global rigidity of hyperbolic cone manifolds.
Namely, we only can have one inverse image of the real line, that gives two
branches, corresponding to the two complex conjugate representations, one
with trace 2 cos(α)Âů and the other one with trace −2 cos(α).
Proof of Claim 3.16. — Let E denote the projection of E to

XPSL2(C)(M). Since we assume E ⊂ {χ ∈ S | χ(γ1) = 0}, we have that
E ⊂ XPSL2(C)(P 2). By Lemma 3.12(iv), S is not contained in {χ ∈ S |
χ(γ1) = 0} and therefore the projection of S to XPSL2(C)(H), S, is not
contained in XPSL2(C)(P ′), where P ′ = P 2 \ vertices(P 2). In particular
there exist a curve that deforms χ̄ in S away from XPSL2(C)(P ′). We lift
this curve from the variety of characters to the variety of representations.
We obtain in this way an analytic path of representations ρ̄s in S, with
ρ̄0 = ρ̄ a representation whose character is χρ̄ = χ̄. Let l > 0 be maximal
such that the power expansion

ρ̄s(γ) = ±(1+sa1(γ)+· · ·+slal(γ)+sl+1al+1(γ)+· · · )ρ̄(γ), ∀γ ∈ π1(H),

is a representation in PSL2(C[s]/(sl+1)) that factors through π1(P ′), but
as a representation in PSL2(C[s]/(sl+2)) does not factor through π1(P ′).
Namely, up to conjugation we may assume that ai : π1(H) → M2(C)

factors through π1(P ′), for i = 1, . . . , l, but al+1 does not factor. Since the
variety of representations of P ′ is smooth, there exists b : π1(H)→M2(C)
such that

γ 7→ (1 + sa1(γ) + · · ·+ slal(γ) + sl+1b(γ))ρ̄(γ)

is a representation of π1(P ′) in PSL2(C[s]/(sl+2)). The compatibility re-
lations to be a representation imply that

d := al+1 − b

is a group cocycle of π1(H) taking values in the Lie algebra sl2(C). In addi-
tion by maximality of l, d = al+1 − b is nontrivial on horizontal meridians,
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and it takes the same value on all of them, because by construction it is
a cocycle tangent to the set of characters χ that are equal on horizontal
meridians. Hence we obtain a cohomology element v := [d] = [al+1 − b] ∈
H1(H;Adρ̄) that satisfies

dµi(v) = 1, for i = 1, . . . , 2n.

Next we want to show that d can be assumed to vanish on all vertical
meridians γ2n+i, i = 1, . . . , n, so that it induces an element of H1(M,Adρ̄).
We claim first that d can be assumed to satisfy

B(d(γ2n+i), d(γ2n+i)) = 0, for i = 1, . . . , n, (3.3)

where B : sl2(C) × sl2(C) → C denotes the C-Killing form (cf. Appen-
dix A). We can add to d any infinitesimal deformation d1 induced by π1(P ′),
because d1 vanishes on horizontal meridians. By deforming the curves of
P ′ that bound an orbifold disk around the missing dihedral vertices, we
may obtain d1 satisfying

d1(γ2n+i) = xiai, (3.4)

for any xi ∈ C, where ai ∈ sl2(C) is an infinitesimal rotation around
the axis of H3 perpendicular to the edges of P 2 that meet at the i-th
vertex. Notice that since ρ0(γ2n+i) is trivial, each coboundary evaluated at
γ2n+i vanishes, hence d1(γ2n+i) is necessarily as Equality (3.4). Since the
Killing form B is C-bilinear and B(ai, ai) 6= 0, xi can be chosen so that,
B((d + d1)(γ2n+i), (d + d1)(γ2n+i)) = 0. Thus we replace d by d + d1, so
that (3.3) is satisfied.
Next we claim that d(γ2n+i) = 0, for i = 1, . . . , n, by using an infini-

tesimal version of Lemma 3.14. Namely, let γ2n+i be a vertical meridian
and ς and ς̃ in π1(H) horizontal meridians as in Lemma 3.14, in particular
they satisfy ςγ2n+i = ς̃. Since we assume χ̄(γ1) = 0 and χ̄(γ2n+i) = 2, by
Lemma 3.14, up to conjugation

ρ̄(ς) = ρ̄(ς̃) =
(
i 0
0 −i

)
, ρ̄(γ2n+i) =

(
1 0
0 1

)
.

Write

d(ς) =
(
x y

z −x

)
and d(γ2n+i) =

(
a b

c −a

)
,

for some x, y, z, a, b, c ∈ C. Using the cocycle relation

d(ς) +Adρ̄(ς)d(γ2n+i) = d(ς̃),

ANNALES DE L’INSTITUT FOURIER



REGENERATING HYPERBOLIC CONE 3-MANIFOLDS 1993

it follows that if Dd denotes the directional derivative in the direction of
the infinitesimal deformation d, then

Dd Traceς = 2ix and Dd Traceς̃ = 2i(x+ a).

Since in S we impose Traceς = Traceς̃ , it follows that a = 0. Moreover,
the vanishing of the Killing form in Equality (3.3) implies bc = 0. Thus
either d(γ2n+i) vanishes, either it is an infinitesimal parabolic transforma-
tion whose fixed point at infinity is fixed by ρ̄(ς). By the same reason as in
Lemma 3.14, it follows that d(γ2n+i) = 0. �

3.3. Weights

To prove Theorem 1.2, we need the following version of Proposition 2.1.

Proposition 3.18. — Under the hypothesis of Theorem 1.2, if ρ0 is
the holonomy of the W-perimeter minimizing polygon, then there exists
{ρt}t∈(−ε,ε) an analytic path of representations of M in SL2(C) such that
ρ0 is as above and for each t ∈ (0, ε), ρt of a vertical meridian is constant,
and ρt of a horizontal meridian is a rotation of angle

π − witr +O(tr+1)

for some r ∈ Z, r > 0, independent of the meridian.

The arguments of Subsection 3.1 work exactly the same, just by replacing
the vector (1, . . . , 1) by (w1, . . . , wn, w

′
1, . . . , w

′
n). In Subsection 3.2 one has

to work with analytic sets instead of algebraic ones, but all results apply.

4. Developing maps

In this section we construct developing maps whose holonomy structures
are the representations given by Proposition 2.1. Firstly, in Subsection 4.1,
we consider the Seifert fibration structure of the orbifold, secondly in Sub-
section 4.2 we prove the existence of a Killing vector field corresponding to
the infinitesimal deformation of the fiber. The developing maps are then
constructed in Subsection 4.3.
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4.1. The fibration of the orbifold

The orbifold O3 is Seifert fibered over P 2:

S1 → O3 p→ P 2.

We distinguish three kinds of points of P 2: interior points of the un-
derlying space |P 2|, interior points of the mirror edges, and vertices. Each
interior point of P 2 has a neighborhood U such that p−1(U) is a fibered
solid torus. By hypothesis, there is at most one cone point in the interior.
Such a point has a neighborhood U ⊂ P 2, such that p−1(U) can have a
singular core, a singular Seifert fibration, or both. By Remark 1.3, we may
assume that there is no such interior cone point. Points in the boundary of
|P 2| have a neighborhood with inverse image an orbifold with topological
underlying space a ball, and with branching locus two unknotted arcs of
order 2, possibly linked by a segment, giving a graph with H-shape. For
points in the interior of the edges, the fibration is nonsingular, but for ver-
tices, the fiber is either singular, or in the branching locus, or both. The
singularity and the branching determine the angle, see [5]. More precisely,
there is a rational number p/q ∈ Q, p, q ∈ Z coprime, describing the sin-
gular fibration, and the angle at the vertex of P 2 is π/(mq), cf. Figure 4.1,
where m > 1 is the branching index (not branched for m = 1).

p3/q3

p2/q2p1/q1

p4/q4

Figure 4.1. Fibration with 4 vertices The pi/qi-tangles around the I-
singular fibers are inside the balls of the picture

We orient the components of ΣhorO3 . The fiber of the interior of each edge of
P 2 contains two subsegments of ΣhorO3 , that project homeomorphically to the
edge. The segments of ΣhorO3 may induce the same or opposite orientations.

Remark 4.1. — The orientations induced by ΣhorO3 can be chosen to be
either compatible for every edge of P 2, or opposite for every edge.
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It suffices to prove this remark when ΣO3 is a link. Notice that when at
least one of the indices qi of the I-singular fibers of the vertices is even,
then the orientations of all pairs of edges are opposite. When all singular
indices are odd and ΣO3 is connected, then the orientations are compatible.
Finally, when all singular indices are odd and ΣO3 is not connected, then
ΣO3 has two components and the orientations can be chosen compatible or
opposite.

Set
M = O3 \ N (ΣO3).

We choose elements and subgroups of the fundamental group of M accord-
ing to the fibration. We fix a base point x0 ∈M that projects to an interior
point of the polygon P 2.
The vertices of P 2 are denoted by v1, . . . , vn, and the edges, e1, . . . , en,

so that the endpoints of ei are vi and vi+1, with coefficients modulo n. We
distinguish the following elements of π1(M,x0):

• Let f ∈ π1(M,x0) be an element represented by the fiber through
x0. In particular f projects to the center of an index two subgroup
of π1(O3).

• For each edge ei of P 2, let ei and e′i denote still the components
of the singular locus of O3 that project to it. We choose meridians
mi and m′i by joining x0 to ei and e′i along a path that projects to
an interior path of P 2, and then turn around the respective axis,
so that mi and m′i differ only in a neighborhood of the I-fiber. We
orient mi and m′i accordingly to the orientation of the edges. Thus,
when the orientations of the edges are compatible, we require that

mim
′
i = f,

(Figure 4.2). When they are opposite,

mi(m′i)−1 = f.

• For each vertex vi of P 2 we choose Vi a neighborhood of the cor-
responding singular I-fiber and we call π1(Vi \ (ΣO ∩ Vi)) the i-th
tangle group. We distinguish two cases.
If the singular I-fiber is not in the branching locus of the orbifold,

then the tangle group is the free group on two meridians σi, σ′i ∈
π1(M). We choose a point in the middle of the singular fiber, and
from there we consider both loops (Figure 4.3 left).
When the singular I-fiber is in the branching locus of the orbifold,

the tangle group is isomorphic to the fundamental group of a sphere

TOME 63 (2013), FASCICULE 5



1996 Joan PORTI

with 4 punctures. We choose generators ςi, ς̄i, ς ′i, ς̄ ′i ∈ π1(Vi \ (ΣO ∩
Vi)) such that ςiς̄−1

i = (ς ′i)−1ς̄ ′i is a meridian for the singular I-fiber.
We choose the loops similarly (Figure 4.3 right).

mi

ei

eimi

x0

Figure 4.2. The loops for the meridians around regular I-fibers (i-th
edge) )

σi

σi

x0

ς̄i

ς̄i

x0

ςi

ςi

Figure 4.3. The loops for the meridians around the i-th tangle. When
the singular I-fiber is smooth in O (on the left) and when it is in the
branching locus (on the right)

For a singular I-fiber, the product σiσ′i (ςiς ′i when the fiber is in the
branching locus) projects in π1(O3) to a root of f±1, but not in π1(M).
On the other hand, if ei and ei+1 are the edges adjacent to the i-th vertex,
then

mi,m
′
i,mi+1,m

′
i+1 ∈ π1(Vi \ (ΣO ∩ Vi)).

For an elliptic element a ∈ Isom+(H3), let A(a) ⊂ H3 denote its fixed
point set (or its axis).
When the I-fiber is not in the branching locus, the angle between the

axis of ρ0(σi) and ρ0(σ′i) is

∠(A(ρ0(σi)),A(ρ0(σ′i))) = pi
qi
π (4.1)

with pi, qi ∈ Z coprime, 0 < pi < qi. This rational number pi/qi describes
the singularity of the fiber, that has order qi. The angle of P 2 at the
corresponding vertex is π/qi.
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When the I-fiber is in the branching locus, the angle between the axis
of ρ0(ςi) and ρ0(ς ′i) is

∠(A(ρ0(ςi)),A(ρ0(ς ′i))) = pi
2qi

ϑi (4.2)

with pi, qi ∈ Z coprime, 0 < pi < qi as above and 0 < ϑi < 2π the cone
angle. (For an orbifold, ϑi = 2π/mi, where mi > 2 is the branching order).
The angle of P 2 at the corresponding vertex is ϑi

2qi .

Definition 4.2. — a) The Euclidean model is the metric orbifold

E(pi/qi) = R3/D∞,

where D∞ is the infinite dihedral group generated by two rotations
of order 2, whose axis are at distance one and have an angle (after
parallel transport) equal to pi

qi
π.

b) The singular Euclidean model is the cone manifold

E(pi/qi, ϑi) = R3(ϑi)/D∞,

where R3(ϑi) = R2(ϑi) × R and R2(ϑi) is the Euclidean plane
with a singular point of angle 0 < ϑi < 2π. Here D∞ is generated
by two rotations of order 2, with axis at distance one perpendicular
to the singular axis of R3(ϑi), and forming an angle (after parallel
transport) equal to pi

2qiϑi.

Remark 4.3. — The orbifold E(pi/qi) and the cone manifold E(pi/qi, ϑi)
have a natural fibration, that gives precisely the fibration of a neighbor-
hood of the i-th singular vertex. This is the fibration by parallel lines of
R3, in the direction of the translation vector of the index two subgroup
Z < D∞.

An alternative way of describing E(pi/qi) is by considering fundamental
domains, cf. Figure 4.4. Consider a region of R3 bounded by two parallel
planes at distance one. On each plane there is a rotation axis, one for each
generator, and E(pi/qi) is obtained from identifying half of each face with
the other half after folding. For E(pi/qi, ϑi), a similar fundamental domain
is constructed in R3(ϑi) = R2(ϑi)×R.
The fibers come from the vertical segments (say the planes are horizon-

tal), the singular I-fiber is the minimizing segment between the rotation
axis. It is its soul, in the Cheeger-Gromoll sense.

Definition 4.4. — A sequence of pointed metric spaces (Xn, xn) con-
verges to (X∞, x∞) for the pointed bi-Lipschitz topology if, ∀R > 0 and ε >
0, there exists n0 such that, for n > n0, B(x∞, R) is (1+ε)-bi-Lipschitz to a
neighborhood U ⊂ Xn of xn that satisfies B(xn, R−ε) ⊆ U ⊆ B(xn, R+ε).
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π

π

Figure 4.4. The model E(pi/qi) via its fundamental domain.

When constructing the developing maps in Subsection 4.3, we will use the
following lemma for the transition between singular and regular I-fibers:

Lemma 4.5. — Let xn be a sequence of points in the singular locus of
E(pi/qi). If xn → ∞, then (E(pi/qi), xn) converges to another Euclidean
model with parallel singular axis, for the pointed bi-Lipschitz topology. In
addition, the distance between the axis is qi, the order of the singular fiber.

The same statement holds true for the cone manifold E(pi/qi, ϑi) and
points in the horizontal singular locus.

Proof. — We prove it for E(pi/qi), the proof for E(pi/qi, ϑi) being sim-
ilar. The lift of the branching locus of E(pi/qi) to the universal covering
(isometric to R3) is a countable family of lines, all of them perpendicular to
a given axis that minimize the distance between any pair of the lines. From
each line, we obtain the next one by a screw motion. This screw motion
has axis the line perpendicular to all the lifts, translation length one and
rotation angle pi

qi
π. In this way, if xn goes to infinity along one of the lines,

the closest singular component will be parallel and at distance qi. Then the
convergence follows easily. �

4.2. The Killing vector field

In this section we prove a result about Killing vector fields that will be
used in the construction of developing maps.

Consider P 2 \ ΣP 2 the smooth part of P 2 (ie. we remove the boundary
of the underlying polygon). Via the developing map of the transversely
hyperbolic foliation, the closure

P = D0(P 2 \ ΣP 2)

is a polygon in H2 ⊂ H3. Let mi,m
′
i ∈ π1(M,x0) be as in Section 4.1,

for i = 1, . . . , n. Let m̃i and m̃′i be the corresponding paths lifted to the
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universal covering. We may assume that the path D0(m̃i) starts at the base
point D0(x̃0) in the interior, crosses the boundary of P, and follows along
ρ0(mi)(P) = D0(miP ) until ρ0(mi)(D0(x̃0)), and similarly for m′i, σj and
σ′j . Recall that

f = mi(m′i)±1,

where the sign of the power (m′i)±1 depends on the compatibility of orien-
tations at a given axis.
By analyticity, if ρt(f) is nontrivial, then there is a natural way to as-

sociate a Killing vector field F to the deformation of ρt(f). Namely, as
ρ0(f) = ± Id,

ρt(f) = ± exp(tsf +O(ts+1))
for some f ∈ sl2(C), f 6= 0. The Killing vector field F associated to the
infinitesimal isometry f is then

Fx = lim
t→0

ρt(f)(x)− x
ts

∀x ∈ H3.

By Proposition 1.5, P has an incenter: a point whose distance to every
edge of the polygon is the same.
The goal of this section is to prove the following:

Proposition 4.6. — The Killing vector field F is a field of infinitesimal
purely loxodromic translations along an axis that meets perpendicularly P
at its incenter. So F is perpendicular to P. In addition, it has the same
orientation as the fiber of the Seifert fibration ofO3 restricted to the interior
of P.

Notice that the interior of P is orientable because the mirror points are
in ∂P, thus it makes sense to talk about the induced orientation of the
fiber in O3 and of the Killing field on H3.

Before proving the proposition, we need to show that ρt(f) is nontrivial.
For a representation ρt, a pseudodeveloping map is a ρt-equivariant map

Dt : M̃ → H3, such that around the singular locus it is like the developing
map around a cone singularity (ie. conical in a tubular neighborhood). This
Dt can be used to define a volume of ρt [11].

Lemma 4.7. — For ρt satisfying the conclusion of Proposition 2.1, there
exists a uniform constant C > 0 such that, for t > 0 close to 0:

Vol(ρt) > Ctr.

Proof. — Schläfli’s formula applied to cone manifolds [22] gives:

Vol(ρt) = −1
2

∫ t

0

∑
e

length(e)dαe,
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where the sum runs over all singular edges or components. In our case, as
the length is bounded below, and the cone angles are π− tr +O(tr+1), the
lemma is straightforward. �

Lemma 4.8. — For small t > 0, ρt(f) is nontrivial.

Proof. — Seeking a contradiction, assume that ρt(f) is trivial. Then,
ρt(m′i) = ρt(mi)±1.

We first claim that for small values of t > 0, ρt of the i-th tangle group is
elliptic, ie. for a tubular neighborhood Vi of the i-th I-fiber, ρt(π1(Vi \(Vi∩
ΣO))) is elliptic. We deal first with the case where the singular I-fiber is
not in the branching locus of the orbifold. Again by contradiction, assume
that the axis of ρt(σi) and ρt(σ′i) are disjoint. Then there is a minimizing
segment between the axis of ρt(σi) and ρt(σ′i), because the axis of ρ0(σi)
and ρ0(σ′i) meet at one point with angle π

qi
. By rescaling the hyperbolic

space in such a way that the length of this segment is one, and by taking
the pointed limit with base point the midpoint of this segment, we look at
the limits of the axis A(ρt(σi)) and A(ρt(σ′i)) after rescaling: we obtain two
Euclidean lines at distance one and forming an angle, as in the Euclidean
model of Definition 4.2. In this model, the axis of themi andm′i are parallel
but different, by Lemma 4.5. This contradicts that ρt(m′i) = ρt(mi)±1, and
hence A(ρt(σi)) and A(ρt(σ′i)) meet at one point. When the singular I-
fiber is in the branching locus of the orbifold, then a similar argument tells
that the segment between A(ρt(ςi)) ∩ A(ρt(ς̄i)) and A(ρt(ς ′i)) ∩ A(ρt(ς̄ ′i))
has length zero.
Construct a pseudodeveloping map Dt : M̃ → H3 as follows. Start by

mapping a tubular neighborhood of the singularity to a tubular neighbor-
hood of the axis of the corresponding elements via ρt. Now, since ρt of
any tangle group is elliptic, the singular I-fiber can be mapped to a neigh-
borhood of this point. Similarly, as A(ρt(mi)) = A(ρt(m′i)), the regular
I-fibers can be mapped to a δ-neighborhood of the axis, for δ > 0 arbi-
trarily small. The boundary of the neighborhood of the I-fibers is a torus,
and since ρt(f) is trivial, this torus can be deformed ρt-equivariantly to a
circle, in a neighborhood of radius 2δ. Extend Dt by collapsing the rest of
the manifold to a disk. Thus ρ(t) has arbitrary small volume, by choosing
δ > 0 small enough, contradicting Lemma 4.7. �

Recall that the Killing vector field F is the corresponding field of the
infinitesimal isometry f ∈ sl2(C), f 6= 0 ,where ρt(f) = ± exp(tsf+O(ts+1)).
By Lemma 4.8, f 6= 0 is well defined.
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Lemma 4.9. — If ρt(f) = exp(tsf+O(ts+1)), and r ∈ N is as in Propo-
sition 2.1, then

s 6 r.

Proof. — By Lemma 4.7, Vol(ρt) > Ctr for some uniform constant C >

0.
On the other hand, the displacement function of ρt(f) in a compact

neighborhood U of P is 6 C0t
s. In particular, the Hausdorff distance be-

tween A(ρt(mi)) ∩ U and A(ρt(m′i)) ∩ U is 6 C1t
s.

We want to construct a pseudodeveloping map with volume 6 C ′ts. We
start by constructing a developing map around the singular locus, by taking
a small radius of the tube, with arbitrarily small volume, say 6 ts. Moreover
as the Hausdorff distance between A(ρt(mi)) ∩ U and A(ρt(m′i)) ∩ U is
6 C1t

s, we can develop a solid torus that is a neighborhood of the I-fibers
with volume 6 C2t

s, and so that the length of the fiber is 6 3C1t
s. The

exterior of this torus in O3 is a solid torus without singularity V , and since
the displacement function of ρt(f) in U is 6 C0t

s, the pseudodeveloping
map can be extended to V with a volume contribution 6 C3t

s. Thus, the
volume of the pseudodeveloping map, and of ρt, is 6 C ′ts. Comparing both
inequalities for the volume:

Ctr 6 Vol(ρt) 6 C ′ts,

for small values of t > 0. Thus s 6 r. �

Before proving Proposition 4.6, we still need a further computation. Let

B : sl2(C)× sl2(C)→ C

denote the complex Killing form, see Appendix A. For a, b ∈ sl2(C),

B(a, b) = Trace(Ada ◦Adb) = 4 Trace(ab).

Definition 4.10. — We say that an infinitesimal isometry a ∈ sl2(C)
has complex length l ∈ C if exp(ta) has complex length t l.

Lemma 4.11. — Let di ∈ sl2(C) denote infinitesimal rotation of com-
plex length πi around the i-the oriented axis of P. Then

B(di, f) =
{

0, if s < r.

4, if s = r.

In particular B(di, f) is independent of i.

We will show later in Lemma 4.13 that only the case B(di, f) = 4 occurs,
in particular s = r.
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Proof. — We can find Ct, C ′t ∈ SL2(C) that depend analytically on t1/2,
t ∈ (0, ε) so that C0 = C ′0 = Id, and that maps the axis at time zero to the
axis at time t:

A(ρt(mi)) = Ct(A(ρ0(mi))) and A(ρt(m′i)) = C ′t(A(ρ0(m′i))).

Those matrices Ct and C ′t are obtained by solving the characteristic poly-
nomials for ρt(mi) and ρt(m′i), hence they are analytic on t1/2.
Assume that the axis of ρ0(mi) is 0∞ in the upper half space model of

H3. If the orientations of mi and m′i are compatible, then.

ρt(mi) = ±Ct
(
eiαi/2 0

0 e−iαi/2

)
C−1
t ,

ρt(m′i) = ±C ′t

(
eiα
′
i/2 0

0 e−iα
′
i/2

)
(C ′t)−1.

Notice that since ρ0(f) = ± Id, if ρt(f) = ± exp(tsf +O(ts+1)), then

C−1
t ρt(f)Ct = ± exp(tsf +O(ts+1)),

hence we may assume Ct = Id (after replacing C ′t by C−1
t C ′t). Let

C ′t =
(

1 + atν btν

ctν 1− atν
)

+O(tν+1/2),

with a, b, c ∈ C, ν ∈ 1
2N. Since αi(t) = α′i(t) = π − tr +O(tr+1),

ρt(f) = ρt(mi)ρt(m′i) = ±
(
−1 + itr 2tνb

2tνc −1− itr
)

+O(tmin(r,ν)+1/2). (4.3)

When mi and m′i have opposite orientation, then

ρt(m′i) = ±C ′t

(
e−iα

′
i/2 0

0 eiα
′
i/2

)
(C ′t)−1,

and since f = mi(m′i)−1, (4.3) also holds true.
Let di be the infinitesimal rotation around the oriented axis of ρ0(mi) of

complex length πi. In this model:

di =
(

i/2 0
0 −i/2

)
.

From (4.3) we distinguish two cases:
1) If ν < r, then s = ν < r and

f =
(

0 −2b
−2c 0

)
. (4.4)
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2) If ν > r, then s = r and

f =
(
−i −2b
−2c i

)
. (4.5)

This includes the case ν > r, with b = c = 0.
Then the formula follows from B(di, f) = 4 Trace(dif). �

Lemma 4.12. — The Killing vector field F is perpendicular to the axis
A(ρ0(mi)).

Proof. — This follows from Equalities (4.4) and (4.5), because in both
cases the real part of the diagonal of f vanishes, and the axis is A(ρ0(mi)) =
0∞. �

Lemma 4.13. — r = s.

Proof. — Assume that s < r, hence B(f, di) = 0 for each i = 1, . . . , n.
Using the formulas of Appendix A, we shall find a contradiction. When f is
non parabolic, let A(f) ⊂ H3 denote the axis of f, which is the minimizing
set for the norm of the Killing vector field |F |. If f is non parabolic, then
by Proposition A.1 the complex distance between A(f) and A(di) is ±π2 i,
hence A(f) must meet perpendicularly all edges of P, which is impossible.
So we assume that f is parabolic. In this case, Proposition A.3 tells that the
point at ∞ fixed by f is an endpoint of all (infinite) geodesics containing
an edge of P, which is again impossible. �

Proof of Proposition 4.6. — By Lemmas 4.13 and 4.11, r = s and
B(f, di) = 4 for each i = 1, . . . , n. We discuss again the possibilities for
f. If f was parabolic, then Corollary A.5 would tell that all (infinite) edges
of P are tangent to a given horosphere, and that their tangent vectors are
parallel in this horosphere, which is again impossible. Hence we are left with
the case that f is nonparabolic and has an axis whose complex distance to
all oriented edges of P is the same (by Proposition A.1).

Notice that by Lemma 4.12, the Killing vector field F is perpendicular
to every edge of P. Hence, at the vertices of P, F is perpendicular to the
plane containing P, and since it is a Killing vector field, F is perpendicular
to P. Thus f is either an infinitesimal rotation with axis coplanar to P or an
infinitesimal translation with axis perpendicular to P. If f is an infinitesimal
rotation then by Remark A.2 (Equation A.1) the complex distance between
A(f) and every oriented axis of P is the same, but this is impossible in a
coplanar configuration. Thus f is an infinitesimal translation, and its axis
meets P perpendicularly and is equidistant to all edges of P.
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Finally, the assertion about orientations follows from the next lemma.
�

Lemma 4.14. — If the cone angles decrease with t, then the orientation
of the Killing vector field F is the same as the orientation of the fiber in
O3.

Proof. — By Lemma 4.7, the volume of the representation is positive,
Vol(ρt) > 0 for t > 0. On the other hand, if the orientation of the Killing
vector field was the wrong one, we would be able to construct a pseudodevel-
oping map with negative volume, following the strategy of Lemma 4.8. �

Corollary 4.15. — For t ∈ (0, ε), ρt(f) is loxodromic (ie. not elliptic
nor parabolic).

Proof. — Assume first that ρ0(f) = Id. Since f is purely loxodromic,
then the first nonzero derivative of the trace of ρt(f) is real positive, in
particular for small values of t > 0 it is not contained in [−2, 2]. A similar
argument applies when ρ0(f) = − Id. �

4.3. Constructing developing maps

Along this subsection, assume that {ρt}t∈[0,ε) is a path of representations
that satisfies the conclusion of Proposition 2.1. The goal is to construct
developing maps with holonomy ρt.
We construct the developing maps in three steps. Firstly, in a neighbor-

hood of the vertices of P 2, that correspond to tangles of the orbifold, or
singular interval fibers. Secondly, on the edges, and finally on the interior.
We start with the vertices of P 2, ie. the tangles of O3.
We assume for the moment that the I-fiber of the i-th vertex is not in the

branching locus of the orbifold. (See Remark 4.20 when it is in the branch-
ing locus of the orbifold). Let σi and σ′i in π1(M) denote the meridians
corresponding to the i-th tangle, as in Subsection 4.1 (Figure 4.2).

Lemma 4.16. — For t > 0,

dist(A(ρt(σi)),A(ρt(σ′i)) > 0.

Moreover, there is a shortest segment νi(t) between both axis that converges
to the i-th vertex of the polygon as t→ 0+.

Proof. — By contradiction, assume that dist(A(ρt(σi)),A(ρt(σ′i))) = 0
for small values of t > 0. Since

∠(A(ρ0(σi)),A(ρ0(σ′i)) = πpi/qi,

ANNALES DE L’INSTITUT FOURIER



REGENERATING HYPERBOLIC CONE 3-MANIFOLDS 2005

〈ρt(σi), ρt(σ′i)〉 is an elliptic group that fixes a point close to the initial ver-
tex in H3. In particular, since mi,m

′
i ∈ 〈σi, σ′i〉, ρt(f±1) = ρt(mi) ρt(m′i)±1

is either trivial or elliptic, which contradicts Corollary 4.15.
The existence of the shortest segment νi(t) comes from the fact that

A(ρ0(σi)) and A(ρ0(σ′i)) meet at one point with angle π piqi , so the distance
function between both axis is a proper convex function on A(ρ0(σi)) ×
A(ρ0(σ′i)) and has a minimum. Therefore, for small t > 0 it is also a proper
convex function on A(ρt(σi))×A(ρt(σ′i)) and has a minimum. �

The idea now is to construct a double roof Ri(t) ⊂ H3 around νi(t) as
follows. Consider an embedding of both axis A(ρt(σi)) and A(ρt(σ′i)) and
the common perpendicular νi(t) in H3. Now consider two sectors, one with
axis A(ρt(σi)) and angle αi(t), another one with axis A(ρt(σ′i)) and angle
α′i(t). (Here αi(t) and α′i(t) are the respective rotation angles of ρt(σi) and
ρt(σ′i)). Choose the sectors so that νi(t) is bisector to both of them, and
consider the intersection (Figure 4.5).

A(ρt(σi))

A(ρt(σi))’νi(t)

Figure 4.5. The double roof. The tubular neighborhood here is Ri(t).

The boundary of these sectors may intersect. Let ri(t) > 0 be the maxi-
mal radius such that the tubular neighborhood Nri(t)(νi(t)) does not meet
the intersection of the sides of the sectors. We denoteRi(t) = Nri(t)/2(νi(t))
the tubular neighborhood of νi(t) in this double roof. Notice that possibly
ri(t)→ 0 as t→ 0+.

Lemma 4.17. —
lim
t→0+

ri(t)
|νi(t)|

= +∞.

Proof. — We cut the double roof along the hyperplane perpendicular
to νi(t) that contains its midpoint, and consider each roof separately. We
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bound below the distance from νi(t) to the intersection of each piece of the
roof with this hyperplane, and it suffices to discuss the argument for one
of the edges, say σi. Let αi(t) denote the cone angle, which is the angle of
the roof. By comparison with the Euclidean right triangle (Figure 4.6):

ri(t)
|νi(t)|/2

> tan αi(t)2 → +∞ as t→ 0+,

because αi(0) = π. �

ri(t)

|νi(t)|/2
αi(t)/2

Figure 4.6. The hyperbolic triangle approximated by a Euclidean one.

Let xi(t) denote the midpoint of νi(t). Let Ri(t) be the result of identi-
fying the sides of each roof of Ri(t) by a rotation around its edge, so that
the edges become interior points.
From Lemma 4.17, we get:

Corollary 4.18. — For the pointed bi-Lipschitz topology:

lim
t→0+

1
|νi(t)|

(Ri(t), xi(t)) = (E(pi/qi), x∞).

Next corollary deals with points of Ri(t) away from the center.

Corollary 4.19. — There exist R0 > 0 and t0 > 0 such that for
0 < t 6 t0 and x ∈ Ri(t) that it is singular and R0|νi(t)| 6 d(x, xi(t)) <
1
2ri(t), the following hold. Let δ(x) be the distance between x and the other
singular component. Then the rescaled ball

1
δ(x)B(x, 10δ(x))

is 3/2-bi-Lipschitz to the corresponding ball in E(0).

Proof. — By Corollary 4.18, it is sufficient to prove it for the Euclidean
models E(pi/qi). Then the corollary follows from Lemma 4.5. �
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Remark 4.20. — When the I-fiber of the i-th vertex is in the branching
locus of the orbifold, then one needs to consider the double roofs Ri(t) and
the corresponding neighborhoods Ri(t) with a singular core νi(t) of cone
angle ϑi. Lemma 4.17 and Corollaries 4.18 and 4.19 apply in this case.

Next we deal with the edges of P 2. We shall construct locally the hyper-
bolic structures in pieces S(q) and study its behavior and compatibility in
Corollary 4.23 and Lemma 4.24. Before that, we need few technical results
about the edges A(ρt(mi)) and A(ρt(m′i)).
To simplify notation, set i = 1. The endpoints of the segment e1 of P2

at time t = 0 are v1 and v2. But for t > 0, we consider two segments e1(t)
and e′1(t) that are contained in A(ρt(m1)) and A(ρt(m′1)), respectively,
and whose endpoints are given by the σ’s or ς’s: ie. the endpoints of the
corresponding conjugates of ν1(t) and ν2(t).
Let p1(t) and p2(t) denote the endpoints of e1(t). For q ∈ e1(t), let q′ ∈

A(ρt(m′1)) be the point that realizes the distance between q and A(ρt(m′1))
(cf. Fig. 4.7). Define, for q ∈ e1:

δt(q) = d(q, q′) = d(q,A(ρt(m′1))).

Lemma 4.21. — Let q ∈ e1(t) and q′ ∈ A(ρt(m′1)) be as above.
(1) The distance δt(q) = d(q, q′) converges to zero uniformly on q ∈

e1(t):
lim
t→0+

sup
q∈e1(t)

δt(q) = 0.

(2) Let vq,t ∈ TqH3 be the parallel transport of the tangent vector to
e′1(t) along the segment q′q. Then

lim
t→0+

sup
q∈e1(t)

∠qe1(t)vq,t = 0.

(3) Let R0 > 0 be as in Corollary 4.19. There exists t0 > 0 such
that, for 0 < t < t0, q ∈ e1(t) satisfies d(q, p1(t)) > R0 |ν1(t)|
and d(q, p2(t)) > R0 |ν2(t)|, then:

q′ ∈ e′1(t).

Proof. — By convexity of the distance function in hyperbolic space, we
have, for q ∈ e1(t):

δt(q) 6 max{δt(p1(t)), δt(p2(t))}, (4.6)

because p1(t) and p2(t) are the endpoints of e1(t). This proves Assertion 1
of the lemma.
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q

q e1(t)

e1(t)
p1(t)p2(t)

Figure 4.7

In order to prove Assertion 3, if d(q, p1(t)) = R0 |ν1(t)| or if d(q, p2(t)) =
R0 |ν2(t)|, then the assertion holds true for these q, because of Corol-
lary 4.19. As those q are extremal, for other q the assertion follows from
Inequality (4.6) and elementary arguments.
Next we prove Assertion 2. Up to permuting p1 with p2, we may assume

that d(q, p1(t)) > 1
3 |e1(0)|, where |e1(0)| denotes the length of e1(0). Let

βq(t) be the angle between vq,t and e1(t). By the triangle inequality in
spherical space, the angle βq(t) satisfies: 0 6 βq(t) 6 β1+β2, where β1 is the
angle between vq,t and qp′1, β2 is the angle between qp′1 and qp1 ⊂ e1(t) ⊂
A(ρt(m1)), and p′1 ∈ A(ρt(m′1)) realizes d(p1,A(ρt(m′1))) = d(p1, p

′
1), cf.

Figure 4.8.

β3 p1

p

β2

vq↪t

q

β1
q

Figure 4.8. Triangles in the proof of Assertion 2 of Lemma 4.21.

Let p′′ ∈ A(ρt(m1)) realize the distance from p′1 to A(ρt(m1)), so that q,
p′1 and p′′ form a triangle with angles β2 at q, and π/2 at p′′. Then

tan β2 = tanh d(p′1, p′′)
sinh d(q, p′′) 6

tanh d(p′1, p′′)
sinh( 1

3 |e1(0)| − d(p1, p′′))

which converges to zero uniformly on q. Consider now the triangle q, q′
and p′1. By the same argument as before the angle β3 of this triangle at p′1
converges to zero. The angles of the triangle satisfy:

(π2 − β1) + π

2 + β3 = π −Area(qq′p′1).
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In addition, the area of this triangle converges to zero uniformly on q, by
Assertion 1 of the lemma. Thus

β1 = β3 + Area(qq′p′1)→ 0, uniformly on q.

�

We define, for 0 < t < t0 as in Assertion 3 of Lemma 4.21:

ê1(t) = {q ∈ e1(t) | d(q, p1(t)) > R0 |ν1(t)| and d(q, p2(t)) > R0 |ν2(t)|} .

Using also Lemma 4.21, construct a double roof from the segment be-
tween q and q′, with edges determined by A(ρt(m1)) and A(ρt(m′1)), and
with dihedral angles the respective rotation angles of ρt(m1) and ρt(m′1),
α1(t) and α′1(t), as before. Let S(q, t) = B(q, s(q, t)/2) be the ball in this
double roof, with s(q, t) maximal such that the sides of the roof do not
meet. As in Lemma 4.17:

Lemma 4.22. —

lim
t→0+

s(q, t)
d(q, q′) = +∞

uniformly on q ∈ ê1(t).

The proof of this limit is the same as Lemma 4.17, using the uniform
limits of Lemma 4.21.

Identifying the sides of S(q, t) by the rotations corresponding to its edges,
we obtain S(q, t). From Lemmas 4.22 and 4.21, we get:

Corollary 4.23. — For any choice of q(t) ∈ ê1(t) and for the pointed
bi-Lipschitz topology:

lim
t→0+

1
δt(q)

(S(q, t), q(t)) = (E(0), q∞),

uniformly on q.

Recall that δt(q) = d(q, q′) = d(q,A(ρt(m′i))).

Lemma 4.24. — Let r ∈ S(q, t) belong to the same connected compo-
nent of the singular locus as q. Let r′ and q′ be the corresponding closest
points in the other singular components. If d(q, r) 6 10δt(q), then the an-
gle between qq′ and rr′ after parallel transport (along any of both singular
components) is 6 γ(t), for some uniform γ(t)→ 0.

This lemma follows easily from the estimates of Lemma 4.21 and elemen-
tary trigonometric arguments.
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Proposition 4.25. — Let ρt be as in Proposition 2.1. There exists
ε > 0 such that for t ∈ (0, ε) there exists Dt : M̃ → H3 the developing
map of a cone structure on (|O3|,ΣO3) with holonomy ρt. In addition,
when t → 0, Dt converges to D0, the developing map of the transverse
hyperbolic foliation.

Proof. — Fix 0 < t < t0, where t0 > 0 is as in Assertion 3 of Lemma 4.21.
The edge ê1(t) is covered by balls B(q, 2δt(q)). Choose a finite covering of
such balls, with centers q in ê1(t). We claim that the model S(q, t) of each
ball matches with the next one: this is a consequence of Lemma 4.24, be-
cause the segments between q and the opposite singular edge vary continu-
ously with q, and they are almost parallel (the difference with the parallel
transport is uniformly small in B(q, 10δt(q))). Notice also that the position
of the singular edges is determined by the isometries ρt(m1) and ρt(m′1).
This gives a metric structure for a neighborhood of the edges.
By Lemma 4.5, when q ∈ ∂ê1(t), then the S(q, t) match with the corre-

sponding Ri(t). In this way we put a geometric structure on a solid torus
that contains the singular locus, made of the union of 0-cells (the Ri(t) for
the singular vertices of the polygon) and 1-cells (the union of S(q, t) for
the edges of the polygon). Let Dt be the corresponding developing map of
this solid torus that contains the singular locus.
Notice that the orientation is globally preserved, by Proposition 4.6, and

because it depends on the displacement of ρt(f).
Recall that we assume that there is no singular fiber in the interior of the

orbifold. Consider the 2-torus that bounds the previous tubular neighbor-
hood of the singularity. Now the developing map of the universal covering of
the 2-torus factors to a map from the 2-torus to the hyperbolic solid torus
H3/ρt(f), (ρt(f) is loxodromic by Corollary 4.15). By Proposition 4.6, this
map is injective on the intersection of the 2-torus and each model S(q, t)
and Ri(t). In addition, the models are either far apart or their intersection
is well understood, by the previous discussion, hence it is an embedding of
the torus.
Since it is not contained in a ball, this 2-torus must bound a solid torus

in H3/ρt(f), with meridian the curve that has trivial holonomy. This 2
torus is fibered over a curve that converges to the singular locus. Thus we
extend Dt to the universal covering of the corresponding solid torus V in
the smooth part of O3. The map Dt restricted to each compact subset of
∂Ṽ converges to ∂P, coherently with the fibration. Then we choose Dt so
that restricted to compact subsets of Ṽ converges to the D0. �
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Appendix A. Appendix: Infinitesimal isometries

The Lie algebra of infinitesimal isometries of H3 is sl2(C). It is naturally
equipped with the complex Killing form

B :sl2(C)× sl2(C)→ C

defined by B(a, b) = Trace(Ada ◦Adb) = 4 Trace(ab). Thus,

B

((
a b

c −a

)
,

(
x y

z −x

))
= 8ax+ 4bz + 4cy.

Let a be an infinitesimal isometry of complex length l (ie. exp(ta) has
complex length t l). Then

l = ± 1√
2
√
B(a, a).

In particular B(a, a) = 0 iff a is trivial or parabolic.
The Killing vector field corresponding to a ∈ sl2(C) is the field tangent

to the orbits of exp(ta), the one-parameter group of diffeomorphism of
H3. We notice that for x ∈ H3, the Killing vector field evaluated at x
is the translational part of a at x. When a is not parabolic, then exp(ta)
has an invariant axis, that it is also the minimizing locus for the norm of
the Killing vector field. This axis is denoted by A(a). The Killing vector
field has nonempty vanishing locus iff a is an infinitesimal rotation, then it
vanishes precisely at A(a).
When a is parabolic, then exp(ta) fixes a point at ∞, that we denote by

A∞(a) ∈ ∂∞H3.
Following Fenchel [10], we denote by dC the complex distance between

two geodesics, ie. the real part is the metric distance and the imaginary
part the rotation angle.

Proposition A.1. — Let a, b∈ sl2(C) be two nonzero and nonparabolic
infinitesimal isometries. Then

B(a, b)2

B(a, a)B(b, b) = cosh2 dC(A(a),A(b)).

Proof. — Notice that B(a, a) = −8 det(a). Thus since traceless matrices
in SL2(C) are π-rotations in H3,√

−8
B(a, a) a ∈ SL2(C)
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is a rotation of angle π around A(a). Hence, the product√
−8

B(a, a) a

√
−8

B(b, b) b = ±8√
B(a, a)B(b, b)

ab

is an isometry of complex length 2dC(A(a),A(b)). Thus

Trace( ±8√
B(a, a)B(b, b)

ab) = ±2 cosh dC(A(a),A(b))

The proposition follows from this formula and B(a, b) = 4 Trace(ab). �

The idea of considering elements of the Lie algebra that are also in
SL2(C) as rotations of angle π is taken from the so called line geometry in
Marden’s book [21, Ch. 7].

Remark A.2. — In the previous proposition, if a, b ∈ sl2(C) are infin-
itesimal rotations of respective angles α and β, and if we have α, β > 0,
then it makes sense to talk about orientation of their axis. In this case we
have:

B(a, b) = −2αβ cosh dC(A(a),A(b)). (A.1)

This remark follows immediately from Proposition A.1 and a continuity
argument, by deforming first β to α and then by moving one of the oriented
edges to the other, because B(a, a) = −2α2.

Given four points z1, z2, z3, z4 ∈ ∂H3 = C ∪∞, the cross ratio is

[z1 : z2 : z3 : z4] = (z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4) ∈ C ∪ {∞}.

Proposition A.3. — Let a, b ∈ sl2(C) be two nonzero infinitesimal
isometries. Assume that a is parabolic and b is not. Then

(1) B(a, b) = 0 iff A∞(a) is an endpoint of A(b).
(2) Let p+, p− ∈ C ∪ {∞} be the endpoints of A(b), and assume that

they are both different from A∞(a). Then
B(a, b)2

B(b, b) = 8
t2

[p+ : eta(p−) : eta(p+) : p−].

Proof. — Up to conjugacy, we may assume that A∞(a) =∞ in the upper
half space model. Then

a =
(

0 a

0 0

)
and b =

(
u v

w −u

)
.

With this expressions, B(a, b) = 4aw, and the first assertion of the propo-
sition follows from the fact that w = 0 iff ∞ is an endpoint of the axis of
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b. To prove Assertion 2, we may assume up to further conjugation that the
axis of b has endpoints p± = ±x ∈ R \ {0}. Hence

a =
(

0 a

0 0

)
and b =

(
0 yx

y/x 0

)
with B(b, b) = 8y2. Thus:

B(a, b)2

B(b, b) = (4ay/x)2

8y2 = 2a
2

x2 .

On the other hand,

[p+ : eta(p−) : eta(p+) : p−] = [x : −x+ t a : x+ t a : −x] = t2a2

4x2 ,

and the formula follows. �

Using Proposition A.3 and the computations in its proof we have the
following remark:

Remark A.4. — Assume a, b ∈ sl2(C) satisfy B(a, b) 6= 0, a is parabolic,
and b is not. The horosphere centered at A∞(a) ∈ ∂∞H3 and tangent to
the axis A(b) has a natural complex structure, up to homothety. Fix a
complex structure in which 1 ∈ C is the unit tangent vector to A(b), and
suppose that tz ∈ C is the translation vector of eta in this horosphere.
Then:

B(a, b)2

B(b, b) = 2z2.

By looking at the homothety factor of the complex structure on different
horospheres with the same center, we get:

Corollary A.5. — Let a, b, c ∈ sl2(C) be three nonzero infinitesimal
isometries. Assume that a is parabolic, but b and c are not. If

B(a, b)2

B(b, b) = B(a, c)2

B(c, c) 6= 0,

then the axis A(b) and A(c) are tangent to the same horosphere centered
at A∞(a) ∈ ∂∞H3. Moreover, their tangent directions are parallel in the
Euclidean structure of the horosphere.

Finally we deal with the case where a and b are both parabolic.

Proposition A.6. — Let a, b ∈ sl2(C) be two nonzero infinitesimal
parabolic isometries, with respective fixed points at infinity A∞(a) and
A∞(b). Then:

(1) B(a, b) = 0 iff A∞(a) = A∞(b).
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(2) When A∞(a) 6= A∞(b),

B(a, b) = 4
t2

[A∞(a) : A∞(b) : etb(A∞(a)) : eta(A∞(b))].

Proof. — The first assertion is an elementary computation, with a proof
analogous to the first statement of Proposition A.3. For the second one,
assume A∞(a) =∞ and A∞(b) = 0. Hence

a =
(

0 x

0 0

)
and b =

(
0 0
y 0

)
.

Then B(a, b) = 4xy. On the other hand, eta(0) = tx and etb(∞) = 1/(ty),
and the formula is straightforward. �
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