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DEFORMATIONS OF FREE AND LINEAR FREE
DIVISORS

by Michele TORIELLI

ABSTRACT. — We study deformations of free and linear free divisors. We in-
troduce a complex similar to the de Rham complex whose cohomology calculates
the deformation spaces. This cohomology turns out to be zero for all reductive
linear free divisors and to be constructible for Koszul free divisors and weighted
homogeneous free divisors.

RESUME. Nous étudions les déformations de diviseurs libres et linéaires
libres. Nous introduisons un complexe similaire au complexe de de Rham dont la
cohomologie calcule les espaces de déformations. Cette cohomologie s’avere étre
zéro pour tous les diviseurs réductifs linéaires libres et étre constructible pour les
diviseurs libres de Koszul et les diviseurs libres quasi-homogénes.

1. Introduction

In this article, we develop some ideas of a deformation theory for germs of
free and linear free divisors. Free divisors were introduced by K. Saito in [14]
and linear free divisors by R.-O. Buchweitz and D. Mond in [2]. Free divisors
are quite fundamental in singularity theory, for example, the discriminants
of the versal unfoldings of isolated hypersurfaces and complete intersection
singularities are always free divisors.

A reduced divisor D = V(f) C C™ is free if the sheaf Der(—log D) :=
{6 € Dercn | 6(f) € (f)Ocn} of logarithmic vector fields is a locally free
Ocr-module, where Dercn denote the space of vector fields on C”. It is lin-
ear if, furthermore, Der(— log D) is globally generated by a basis consisting
of vector fields all of whose coefficients, with respect to the standard basis
0/0x1,...,0/0x, of the space Dercn, are linear functions. The simplest

Keywords: Free divisor, linear free divisor, non-isolated singularity, deformation theory,
logarithmic de Rham cohomology.
Math. classification: 14B07, 13D10, 14F40.
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example is the normal crossing divisor, but the main source of examples,
motivating Saito’s definition, has been deformation theory, where discrim-
inants and bifurcation sets are frequently free divisors.

These objects have been studied for the past 30 years but there is still
a lot to learn and discover about them. One interesting fact is that there
are no examples of linear free divisors in non-trivial family. One possible
approach is to deform this object in such way that each fiber of the de-
formation is a (linear) free divisor and that the singular locus is deformed
flatly. However, not much is known on the behavior of (linear) free divisors
under these kind of deformations.

The aim of this article is to describe the spaces of infinitesimal deforma-
tions and obstructions of a germ of a (linear) free divisor and to perform
calculations for some concrete examples. It turns out that the property of
being a free divisor for a hypersurface D has a strong influence on its de-
formations, in fact all free divisors D C C", with n > 3, are non-isolated
singularities and so their space of first order infinitesimal deformations is
infinite dimensional, but in what follows we will show examples of free
divisors which have a finite dimensional versal deformation space as free
divisors.

We now give an overview on the paper. The first part recalls the notions
of free and linear free divisors, and describes some of their properties. In
the second, we define the notion of (linearly) admissible deformations for a
germ of a (linear) free divisor and we introduce a complex similar to the de
Rham complex whose cohomology calculates deformations spaces. In this
section we also prove our main result:

THEOREM A. — All germs of reductive linear free divisors are formally
rigid.

This is equivalent saying that for a germ of a reductive linear free divisor,
there are no non-trivial families, at least on the level of formal power series.

Then, we analyse the weighted homogeneous case and we prove our sec-
ond result:

THEOREM B. — If(D,0) C (C",0) is a germ of a weighted homogeneous
free divisor, then it has a hull, i.e. it has a formally versal deformation.

In the last part, we describe some properties of this cohomology and we
prove our third result:

THEOREM C. — If (D,0) C (C",0) is a germ of a Koszul free divisor
such that we can put a logarithmic connection on Dercn and Der(— log D),
then it has a hull.

ANNALES DE L’INSTITUT FOURIER
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This theory owes a lot to the theory of deformations of Lagrangian sin-
gularities as developed in [17], [16] and [18].
The material in this article is part of the author Ph.D. thesis [19].
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Mond, Luis Narvaez Macarro, Brian Pike, Miles Reid, Christian Sevenheck
and Duco van Straten for helpful discussions on the subject of this article.
We thank the anonymous referee for a careful reading of our draft versions
and a number of very helpful remarks.

2. Basic notions

Fix coordinates x1,...,z, on C™ .

DEFINITION 2.1. — A reduced divisor D = V(f) C C" is called free if
the sheaf

Der(—log D) := {§ € Derc- | 6(f) € (f)Ocn }

of logarithmic vector fields is a locally free Ocn-module.

DEFINITION 2.2. — Let D = V(f) C C" be a reduced divisor. Then for
q=0,...,n, we define the sheaf

QI(log D) := {w € QL. [xD] | fw € QL,, fdw € QL'}
of g-forms with logarithmic poles along D.
1

Note that by definition, 2°(log D) = Q2. and Q"(log D) = 7

n
on,.

LeMMA 2.3 ([14], Lemma 1.6). — By the natural pairing
Der,,(—log D) x Q) (log D) — Ocr,, defined by (§,w) — 6w,
each module is the Ocn ,-dual of the other.
COROLLARY 2.4. — Ql(log D) and Der,(—log D) are reflexive Ocn -

modules. In particular, when n = 2, then Qzlj(log D) and Dery,(—log D) are
free Ocz ,-modules.

DEFINITION 2.5. — A free divisor D is linear if there is a basis for
I'(C™, Der(—log D)) as C[C"]-module consisting of vector fields all of whose
coefficients, with respect to the standard basis 0/0x1,...,0/0x, of the
space Dercn , are linear functions, i.e. they are all homogeneous polynomials
of degree 1.

TOME 63 (2013), FASCICULE 6
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Remark 2.6. — With respect to the standard grading of Dercn, i.e.
degx; = 1 and degd/0dx; = —1 for every i = 1,...,n, such vector fields
have weight zero.

DEFINITION 2.7. — We denote by Der(—log D)g the finite dimensional
Lie subalgebra of Der(—log D) consisting of the weight zero logarithmic
vector fields.

There is a nice criterion to understand easily if a divisor is free or not:

PROPOSITION 2.8 (Saito’s criterion, [14], Theorem 1.8).
i) The hypersurface D C C" is a free divisor in the neighbourhood of

a point p if and only if \" Q},(log D) = Qp(log D), i.e. if there exist
n elements wy, ..., w, € Q}(log D) such that

dzy A --- Ndxy,

f
where « is a unit. Then the set of forms {w1,...,w,} form a basis
for Q,,(log D). Moreover, we have

Wi A Nw, =«

Qq (log D) = @ Ocn pwiy A -+ ANw;,
i1 < <iq

forq=1,...,n

ii) The hypersurface D C C™ is a free divisor in the neighbourhood of
a point p if and only if there exist germs of vector fields x1,...,Xn €
Der,(—log D) such that the determinant of the matrix of coefficients
(X1, Xn], With respect to some, or any, Ocn ,-basis of Dercn , is
a reduced equation for D at p i.e. it is a unit multiple of f,. In this
case, X1, - -, Xn form a basis for Der,(—log D).

DEFINITION 2.9. — In the notation of Proposition 2.8, the matrix
[X1,- -y Xn] Is called a Saito matrix.

LEMMA 2.10 ([14], Lemma 1.9). — Let & = Y7, al (2)d/dx;, i =

7=1 a;
1,...,n, be a system of holomorphic vector fields at p such that

(1) [6:,65] € 2221 Ocr p0y, fori,j=1,...,n

(2) det(a}) = f defines a reduced hypersurface D.
Then for D = {f(x) = 0}, 61,...,d, belong to Der,(—log D), and hence
{61,...,0,} is a free basis of Der,(—log D).

There is also an algebraic version of Saito’s criterion that does not refer
to vector fields directly but characterizes the Taylor series of the function f
defining a free divisor:

ANNALES DE L’INSTITUT FOURIER
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PROPOSITION 2.11 ([2], Proposition 1.3). — A formal power series f €
R = C[[z1,...,x,]] defines a free divisor, if it is reduced, i.e. squarefree,
and there is an n X n matrix A with entries from R such that

det A= f and (Vf)A=(0,...,0) mod f,

where Vf = (0f/0x1,...,0f/0x,) is the gradient of f, and the last condi-
tion just expresses that each entry of the vector (V f)A is divisible by f in
R. The columns of A can then be viewed as the coefficients of a basis, with
respect to the derivations 0/0x;, of the logarithmic vector fields along the
divisor f = 0.

Example 2.12. — The normal crossing divisor D = {x - -z, = 0} C C"
is a linear free divisor; Der(—log D) has basis 219/0x1,...,2,0/02,. Up
to isomorphism it is the only example among hyperplane arrangements,

see [12], Chapter 4.

Remark 2.13. — Let D C C" be a divisor defined by a homogeneous
polynomial f € C[zy,...z,] of degree n. Then for each § € Der(—log D)y,
there is a n x n matrix A with entries in C, such that § = 249", where 9°
is the column vector (9/0z1,...,0/0z,)t.

Remark 2.14. — Let D C C™ be a free divisor. D is a linear if and only
if Der(—log D) = Oc¢n - Der(—log D).

DEFINITION 2.15. — Let D = V(f) C C™ be a linear free divisor. Define
the subgroup

Gp:={A€GL,(C)|A(D)=D} ={A€GL,(C)| foAeC-f}

with identity component G, and Lie algebra gp.

LEMMA 2.16 ([8], Lemma 2.1). — G, is an algebraic subgroup of
GL,(C) and gp = {A | zA'9" € Der(—log D)o}

DEFINITION 2.17. — Let D C C" be a linear free divisor. We call D
reductive if gp is a reductive Lie algebra.

From §2 of [6], we can deduce the following:

LEMMA 2.18. — Let D = V(f) C C™ be a reductive linear free divi-
sor. Then Aut(f) C SL,(C). This means that if x € Ann(D) := {§ €
Der(—log D) | 6(f) = 0} then trace(d) = 0.

Example 2.19.

i) The normal crossing divisor of Example 2.12 is a reductive linear
free divisor because gp = C™.

TOME 63 (2013), FASCICULE 6



2102 Michele TORIELLI

ii) Consider the divisor D = V((y? 4+ x2)z) C C3. This is a linear free
divisor because we can take the matrix

r 4dx 2y
A=y vy z
z —2z 0

as its Saito matrix. Moreover, if we consider o the second column
of A, i.e. 0 = 420/9x + yd /0y — 220/0z, we have that o € Ann(D)
and trace(c) = 3 and hence by Lemma 2.18, D is a non-reductive
linear free divisor.

LEMMA 2.20 ([8], Lemma 3.6, (4)). — Let D C C"™ be a linear free
divisor. If gp is reductive then G, is reductive as algebraic group.

DEFINITION 2.21. — Let S be a complex space. Then Dercn g/s is the
set of vector fields on C™ x S without components in the S direction. It is
a submodule of Dercnys.

DEFINITION 2.22. — Let S be a complex space and let D C C™ x S be
a divisor. Then Der(—1log D/S) := {6 € Der(—log D) | 6 € Dercnyg/s} =
Der(—log D) N Dercny g/5-

Remark 2.23. — Dergnyg/s and Der(—logD/S) are both coherent
sheaves of Ocn xs-modules.

3. Deformation theory for free divisors

The aim of this section is to introduce the notion of (linearly) admissible
deformation for germs of (linear) free divisors and then study infinitesimal
ones in order to prove that reductive linear free divisors are formally rigid.

3.1. Admissible and linearly admissible deformations

DEFINITION 3.1. — Let (D,0) = (V(f),0) C (C™,0) be a germ of a free
divisor and let (S, s) be a complex space germ. An admissible deformation
of (D,0) over (S, s) consists of a flat morphism ¢: (X,z) — (5, s) of com-
plex space germs, where (X, z) C (C™ x S, (0, s)), together with an isomor-
phism from (D, 0) to the central fibre of ¢,(D,0) — (X5, z) := (¢ (s),z),
such that

(3.1) Der(—log X/S)/mg, s Der(—log X/S) = Der(—log D)

ANNALES DE L’INSTITUT FOURIER
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where mg , is the maximal ideal of Og .

Moreover, if (D, 0) is linear, we define a linearly admissible deformation
of (D,0) over (S, s) as an admissible deformation of (D, 0) over (S, s) such
that there exists a basis of Der(—log X/S) as O¢n x g,(0,s)-module consisting
of vector fields all of whose coefficients are linear in x1,...,xy.

DEFINITION 3.2. — In Definition 3.1, (X,z) is called the total space,
(S, s) the base space and (X,,z) = (D, 0) the special fibre of the (linearly)
admissible deformation.

We can write a (linearly) admissible deformation as a commutative dia-
gram

(3.2) (D,0) = (X, z)

Lk

{*} —— (S’ 8)

where i is a closed embedding mapping (D, 0) isomorphically onto (X, ).
We will denote a (linearly) admissible deformation by

(4,0): (D,0) —— (X, 2) —> (S, 5) .

DEFINITION 3.3. — Given two (linearly) admissible deformations (i, ¢):
D— X — Sand (j,¢): D =Y — T, of D over S and T respectively.
A morphism of (linearly) admissible deformations from (i, ¢) to (j,v) is a
morphism of the diagram (3.2) being the identity on D — {x}. Hence, it
consists of two morphisms (7, 0) such that the following diagram commutes

N
X—F— Y
‘| |
S— I —>7T

DEFINITION 3.4. — Two (linearly) admissible deformations over the
same base space S are isomorphic if there exists a morphism (7,0) with T
an isomorphism and o the identity map.

We denote by Art the category of local Artin rings with residue field &
and by Set the category of pointed sets with distinguished element .

TOME 63 (2013), FASCICULE 6
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DEFINITION 3.5. — Let (D,0) C (C",0) be a germ of a free divisor.
Define the functor FDp: Art — Set by setting

FDp(4) := {

Isomorphism classes of admissible
deformations of (D,0) over Spec A [~

If (D,0) C (C™,0) is a germ of a linear free divisor, we define similarly the
functor LFDp: Art — Set by setting

LEDp(A) = { Isomorphism classes of linearly } ’

admissible deformations of (D,0) over Spec A

THEOREM 3.6. — Let (D,0) C (C™,0) be a germ of a free divisor. Then
the functor FD p satisfies Schlessinger’s conditions (H1) and (H2) from [15].
Moreover, if (D, 0) is linear, then also the functor LFD p, satisfies conditions
(H1) and (H2).

Proof. — Let A’ — A and A” — A be maps in Art such that the
latter is a small extension, see Definition 1.2 from [15]. Consider now X €
FDp(A), X' e FDp(A') and X” € FDp(A”). Define Y := (D,Oxs x4
Ox), by [15], Lemma 3.4, it is flat over A’ x4 A” and it is an element of
FDp(A' x4 A”). Hence the map 74/ a4 of (H1) is surjective.

We want to show now that 74/ 4 4 is a bijection in the case A” = kle]
and A =k. Let W € FDp (A’ x4 A”) restrict to X’ and X", then we can
choose immersions ¢’ : X’ — W and ¢”: X" — W. Since these maps are
all compatible with the immersions from D, they agree with the chosen
maps v’ : X — X’ and v” : X — X", since in this case X = D. Now
by the universal property of fibered product of rings, there is a map ¥ —
W' compatible with the above maps. Since Y and W are both flat over
A’ x4 A”, and the map becomes an isomorphism when restricted to D, we
find that, by [10], Exercise 4.2, Y is isomorphic to W and hence they are
equal as elements of FDp (A’ x4 A”).

The previous proof works similarly also for the functor LFDp. O

PROPOSITION 3.7. — Let (D,0) C (C™,0) be a germ of a free divisor.
Then in any admissible deformation the singular locus of (D, 0) is deformed
in a flat way.

Proof. — Let f € Ocno be a defining equation for (D,0) and let
¢: (X,z) = (S,s) be a admissible deformation of (D,0). Any element of
Der(—log D) can be seen as a relation among f,df/0x1,...,0f/0x, and
similarly, any element of Der(—log X/S) can be seen as a relation among
F,0F/0xy,...,0F/0xy,, where F' € Ocnyg,(0,s) is a defining equation for

ANNALES DE L’INSTITUT FOURIER
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(X, x). The requirement (3.1) of Definition 3.1 implies then that any rela-
tion among f,0f/0x1,...,0f/0xy, lifts to a relation among F,0F/0x1, ...,
OF /0x,, and this is equivalent to the deformation of the singular locus of
(D, 0) being flat. See [9], Chapter I, Proposition 1.91. |

PROPOSITION 3.8. — In the situation of Definition 3.1, requirement
(3.1) implies that Der(—log X/S) is a locally free Ocn s, (0,s)-module of
rank n.

Proof. — By Proposition 3.7, the singular locus of (D,0) is deformed
flatly and so Ognyxg(0,5)/1 is a flat Og,-module and represents a de-
formation of Og¢n /Iy, where I = (F,0F/0z1,...,0F/dz,) and Iy =
(f,0f/0x1,...,0f/0x,). Hence, a free resolution of Oc¢n /I lifts to a free
resolution of Ocn y g,(0,5)/1. Because (D, 0) is free, then a free resolution of
Ocnx8,(0,5)/ I 1o0ks like

n n+1 (F,0F/0z1,...,0F/0xy)
0 O(C”X&(O,s) OC"xS,(O,s) OC"XS’(OaS)

— Ocnxs,(0,5)/1 — 0

But as explained in Proposition 3.7, we can identify Der(—log X/S) with
the syzygy module of (F,0F/dz1,...,0F/dxy,), and hence, it is locally free
of rank n. O

Remark 3.9. — 1In our theory, we require more than only that each fiber
is a free divisor. In fact, let (D,0) C (C™,0) be a singular free divisor with
a quasi-homogeneous equation f. Then we can consider (X,0) = (V(f —
t),0) C (C™ x C,0) and ¢ the projection on (C,0). In this case each fiber
is a free divisor but this is not an admissible deformation of (D, 0).

Proof. — Because f is quasi-homogeneous, we can take y,o1,...,0,_1
as a basis of Der(—log D), where x = >_"" | o;2;0/0z; with aq,...,q, €
C is the Euler vector field and o1, ...,0,-1 annihilate f. Hence x(f) =
Soi a;0f /0x; = f. Notice that because (X,0) is non-singular, it is a
free divisor in (C™ x C,0) and so we can take as Saito matrix for (X,0),
the matrix

1 0 0
1 0 0
0 0 0

A=
0 0o - 1 0
0f/0x1 Of/dxy -~ Of /0w, f—1t)

TOME 63 (2013), FASCICULE 6
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Let A; be the vector field represented by the i-th column of A. Consider
now the vector fields o} = o, seen as a vector field in C" x C and 7; =
tA\i + Of [0xidpin — Of [0xi Y5 ajajhy. Clearly, of (f —t) = o4(f) = 0
and so of € Der(—log X/C). Similarly, 7; € Der(—log X/C) because 7; €
Der(—log X) and its coefficient of 9/0t is equal to t0f /0x; + Of JOx;(f —
t)—0f/0x; Z?zl a;x;0f/0x; = 0f /0x;(f —x(f)) = 0. This implies that
we have an inclusion (o5,...,0%_1,71,...,Tn) C Der(—log X/C). However,
because o071, ...,0,_1 are the generators of Ann(f) := {0 € Der(—logD) |
d(f) = 0}, then any element of Der(—log X/C) that is a linear combination
of Aj,..., A, is a linear combinations of o7,...,0}_;. Consider now an
element of Der(—log X/C) that can be written as a linear combination of
the \; involving A, ;1. Because it is independent of /0t then the coefficient
of Ap41 is forced to be in the Jacobian ideal of f. Because t appear only
in Ap41, this implies that, modulo the o7, it is a linear combination of

Ti,...,Tn. Hence o5,...,0%_1,71,...,Tn generate Der(—log X/C).
Because f is singular, df/0x;€(x1,...,2,) for all i = 1,...,n and so
each 7; has weight bigger than zero, i.e. deg(0f/0x;a;x;)— deg(x;)>0. This
tells us that the Euler vector field x¢ Der(—log X/C)/m¢ g Der(—log X/C)
because x has weight zero and is not a linear combination of o1,...,0,_1.
O

Remark 3.10. — If f is non-singular, then the deformation defined in
the previous Remark is an admissible deformation.

Proof. — We can suppose f = z; and we can take as Saito matrix

zr 0 0 --- O
0o 10 --- 0
0 0 1 0
0o 00 - 1

By a similar argument as the proof of the previous Remark, Der(— log X/C)
is generated by the columns of the matrix

(21—t 0 0 -+ 0
0 1 0 0
0 o1 --- 0
0 0o 0 --- 1
L0 00 - 0
and hence the requirement (3.1) of the Definition 3.1 is fulfilled. O

ANNALES DE L’INSTITUT FOURIER
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Remark 3.11. — Let (i,¢): (D,0) — (X,z) — (S, s) be a (linearly) ad-
missible deformation. Then it is a trivial (linearly) admissible deformation
if and only if it is trivial as deformation of (D, 0) as complex space germ.

DEFINITION 3.12. — The complex space T, consists of one point with
local ring Cle] = C + ¢ - C,e? = 0, that is, C[e] = C[t]/(t?), where t is an
indeterminate. Thus T. = Spec(C[t]/(?)).

DEFINITION 3.13. — An infinitesimal (linearly) admissible deformation
of a germ of a (linear) free divisor (D,0) C (C™,0) is a (linearly) admissible
deformation of (D, 0) over T..

DEFINITION 3.14. — Let (D,0) C (C™,0) be a germ of a free divi-
sor. Then FT*(D) := FDp(C[t]/(t?)). Similarly if (D,0) is linear, then
LFTHD) := LFDp(C[t]/(t?)).

ProrosITION 3.15 ([9], Chapter II, Proposition 1.5). — Consider a
commutative diagram of complex space germs

(Xo,2) —— (X, 2)
foi if
(So0,8) —(5,3)

where the horizontal maps are closed embeddings. Assume that f, factors
as

(Xo,2) 2> (C",0) x (So,5) —— (S0, 5)
with ig a closed embedding and pg the second projection. Then there exists
a commutative diagram

(Xo,2) > (
'\ x (So,8) & (C",0) x (S,s) |/
\ p‘)i ip e
(S0, 8) (5, 9)

with i a closed embedding and p the second projection. That is, the em-
bedding of fy over (Sy, s) extends to an embedding of f over (S, s).

COROLLARY 3.16. — Any (linearly) admissible deformation of (D,0) =
(V(f),0) c (C™,0) over a complex space germ (S,s) is of the form

TOME 63 (2013), FASCICULE 6
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(X,(0,8)) = (V(F),(0,5)) € (C™* x S,(0,s)), for some unfolding F of f
with ¢ just the projection on (S, s).

Remark 3.17. — Any infinitesimal (linearly) admissible deformation of
(D,0) = (V(f),0) C (C™,0) is of the form (X,0) = (V(f +e€-f),0) C
(C™* x T, 0), for some f’ € Oc¢n o, where ¢ is just the projection on T..

By Remark 3.11 and Chapter II, 1.4 from [9], we have the following;:

Remark 3.18. — An infinitesimal (linearly) admissible deformation
(X,0) = (V(f+€-f),0) = T¢ is trivial if and only if there is an iso-
morphism

Ocrxr.0/(f) = Ocnxr, o/ (f+€- f)

which is the identity modulo € and which is compatible with the inclusion
of Or, in O¢nxr. 0. Such an isomorphism is induced by an automorphism
@ of Ocnxr, 0, mapping x; — x; + €o;(x) and € — € such that

(@ f)=(fl@te o) =(f+e f),

where © = (z1,...,2,) and 0 = 377, 0;0/0z;.

We now prove a relative Saito’s Lemma in order to be able to characterise
an (linearly) admissible deformation by logarithmic vector fields.

LEMMA 3.19. — Let (S, s) be a complex space germ with an embedding
(S,s) C (C",0) and let t = (t1,...,t,) be coordinates on the ambient space
(C,0). Let (X,z) C (C™x S,(0,s)) be a (linearly) admissible deformation
of a germ of a (linear) free divisor (D,0) C (C",0) and let h, = 0 be
a reduced equation for (X, z), locally at p = (zg,tp) € (C" x S,(0, s)).
Suppose 0. = Z?zl al(x,1)0/dx; € Dery(—log X/S),Vi=1,...,n, then

det(a]) € (hy)Ocnxs,p-

Proof. — Suppose that det(a{ ) does not vanish at p, hence it does not
vanish in a small neighbourhood U of p. This implies that d7,...,4d, are
linearly independent in U. Consider now the fibre X;,. We have that gg =
> al(x,t9)0/dx; € Der(—log X;,) and are linearly independent, but
this implies that Xy, is n-dimensional, contradicting the fact that (X, z) is

a flat (linearly) admissible deformation of (D, 0), that is (n—1)-dimensional.
(|

PROPOSITION 3.20. — Let (S, s) be a complex space germ with an em-
bedding (S,s) € (C",0) and let t = (t1,...,t,) be coordinates on the
ambient space (C",0). Let (X,z) C (C™ x S,(0,s)) be a (linearly) ad-
missible deformation of a germ of a (linear) free divisor (D,0) C (C™,0)
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and let h, = 0 be a reduced equation for (X, x), locally at p = (zo,%o) €
(C™ x S,(0,s)). Then there exist ¢}, ...,0, € Dery(—logX/S) with §] =
>iy @l (x,t)9/0x;, such that det(a]) is a unit multiple of hy,.

(2

Proof. — By Proposition 3.8, Der,(—log X/5) is a free Ogn x5 p-module
of rank n. Since Der(—log X/S) is coherent, there exists a neighbour-
hood U of p such that Der(—log X/S)|y is free. Let 41,...,d, be a ba-
sis of Der(—log X/S)|y with §} = Z;;l al(x,t)0/dx;. By Lemma 3.19,
det(a{) = gh,, where g is a holomorphic function on U. Since 9/9z1, ...,
0/0z,, is a basis for p € U\ X, then g does not vanish on U\ X. At a smooth
point p € X, we can suppose X = V(z1) and hence, we may choose as a
basis of Der(—log X/S) on X;eg NU the vector fields x10/0x1,...,0/0xy,.
Thus g does not vanish anywhere on U\ (UNXing ), but because codimy (UN
Xsing) > 1, then g does not vanish anywhere on U and so it is a unit. O

LEMMA 3.21. — Let R be a commutative ring, A and B be two n X n
matrices and aq, ..., a, be the columns of A. Then

Z det [al, cey i1, Bag,a;yq, ... ,an] = trace(B) det(A4).
i=1

Proof. — It is know that if we consider a n x n matrix C with columns
C1,...,Cpn, then

n
dadet(C) = Zdet[al, ey Q1 Ciy Qg 1y e e - an],
i=1
where d is the tangent map. Then we have the following equalities

Zdet[al, coy@i—1, Bag,agyq, ... ,an] = dy det(BA)
i=1

= %(det(A +tBA))|i=0= det(A)% (det(I +tB))i=o

= det(A)d; det(B) = det(A) trace(B).
|

LEMMA 3.22. — Let (S, s) be a complex space germ with an embedding
(S,s) € (C",0) and let t = (t1,...,t.) be coordinates on the ambient
space (C",0). Consider (D,0) = (V(f),0) C (C™,0) a germ of a (linear)
free divisor such that Der,,(—log D) is generated by d1,...,d,. Let &, =
Z?Zl af(x, t)0/0z;, i =1,...,n, be a system of holomorphic vector fields

at (xo,s) € (C™ x S,(0,s)) such that
(1) &lcn zg =0; foralli=1,...,n;
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(2) [5235;] S 22:1 OC"XS,(IO,S)(S;C for Z7.] = 17 ceey g

(3) det(al) = h defines a reduced hypersurface X.
Then for X = {h(x,t) = 0}, d],...,0;, belongs to Der(y, s (—log X/S),
{0%,...,0,} is a free basis of Der(,, s (—log X/S) and X is a (linearly)
admissible deformation of (D,0) over (S, s).

Proof. — First of all we need to show that each d; € Der(,, 5 (—log X/S).
We have the following equalities

5,(h) = & (detld], .., 5,])

= det[8] ..., 8} 1,04(8)), 6y, 6]
j=1

= det[8] ..., 8y, [0, %) + 85 (51), 0fprs -, 00
j=1

- Zdet[ai ) ;’—h [5;“6;]v ;’+17- . ’61/'7,]
j=1 n
+) det[d] .., 851, 85(00), 0 O]
j=1

By 2, det [d], ..., 015 [0%5 0515 05 gqs s 81] € (R)Ocnxs,(xo,5) for all j=1,...,n,
and so the first part of the last equality is in (h)Ocn x5, (2,s)- Furthermore,
if we consider the matrices A = [47,...,8),] and B = (dal,/0x;)i j=1,..n, We

can apply Lemma 3.21 and obtain

n n aai
Z det[di s 75;'—17 6;(5;)7 5;‘-‘,—15 ERRE) 6;] = 6.7,‘k S (h)OC"XS,(IO,s)~
j=1 i=1 v
This shows that &) (h) € (h)Ocn xg,(z,,s) and so 9, € Der(,, o (—1log X/5),
forall k=1,...,n.
Notice now that by 1 and 3, h|cn 4, = f. Moreover, by 1

Derg, (—log D) C Der(g,,)(—log X/S)/ms s Der g, s (—log X/S).

Consider o € Der(,, s (—log X/S) such that o|cn 4, ¢ Derg,(—log D). But
a(h) = ah for some o € Ocnys,(z0,s)- Hence (o(h))|cr e = 0lon 2o (f) =
a|cn o f and 8o olcn 4, € Dery,(—log D), but this is a contradiction. Hence
Derg, (—log D) = Der(y, ) (—log X/S)/mg s Der(y, ) (—log X/S) and so X
is a (linearly) admissible deformation of (D, 0) over (S, s).

Consider o€ Der,, 4 (—log X/S). Then we want to prove that ce 1"
Ocn x8,(z0,5)0;- By Cramer’s rule, hd/dx;€ 31 | Ocn x s, (2,,5)0 for all j =
1,...,n, hence we can consider ho = Y7 | f;0}, for some f;€O¢n x5 (z,,5)- By
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Lemma 3.19, we have that det[0},...,0; 1,0,0;,1,...,0,]€(h)Ocn x5, (z0,s)-
Thus

BACt 5] 80,8l ey 0l] = det [, ., 8]y hoy Sl 8]
= det[‘;/h - '752717fi5£75§+1""’6;’]
= fydet[d],...,d,]
= i € () O x5, an.s)-

Thus fi € (h)Ocnxs,(zo,s) for all i. This show that o = Y1 | (fi/h)d] €
> i1 Ocn xS, (z0,5) 0% O
Notice that if we consider S to be a reduced point, then the previous
Lemma is the same statement of Lemma 2.10.
We can now state and prove the main result of the section:

THEOREM 3.23. — Let (D,0) = (V(f),0) C (C™,0) be a germ of a free
divisor and 61, . ..,0, a set of generators for Der(—log D). Any element of
FTH(D) can be represented by n classes 01, . ..,6, € Dercn /Der(—log D)
such that the Ocnxr, o-module generated by 07 = 61 + € - 51,...,6; =
8, + € 6, is closed under Lie brackets. If the deformation is linearly admis-
sible, then the coefficients of all §;, in any representation of an element of
FT(D), must be linear functions too.

Proof. — Let (X, z) C (C™ x T¢,0) be an infinitesimal (linearly) admis-
sible deformation of (D,0). By Remark 3.17, it is of the form (X,0) =
(V(f+e€-f),0) C (C"x T,0). By Proposition 3.20, the fact that (X,0)
is the total space of an infinitesimal (linearly) admissible deformation of
(D, 0) implies that there exists an n x n matrix A(e) with coefficients in
Clz1,...,7n,€]/(e?) such that det A(e) = (f + € f'). But €2 = 0 implies
that we can write A(e) = B + € - C, where B and C are n x n matrices
with coefficients in C[x1,...,z,]. Hence f = det A(0) = det B and so B is
a Saito matrix for (D,0). We can then take §; as the columns of B and 4;
as the columns of C' and this proves that the Lie algebra Der(—log X/T¢) is
generated by 01 +€-01,...,0, +€-0, as required. Because Der(— log X/T.)

is a Lie algebra, then [d;, 07] € Der(—log X/T) for all i,j = 1,...,n, but

then [07, 0] € Sory OC"’XS,(IO,S)6;C~ for i,];: 1,...,n.
We now consider the classes of 01, .. .,d, modulo Der(—log D), because

if 61,...,0, € Der(—log D), then f’ € (f)Ocn o and hence, by [9], Chapter
II, 1.4, the deformation is trivial.

On the other hand, let d1,...,0, € Dercn /Der(—log D) be n classes of
vector fields such that the Ocn « 7. o-module generated by d; +€'517 ey Ot
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€6, is closed under Lie brackets. The determinant of the matrix of coeffi-
cients [0;+€-01,...,0,+€-0p] is equal to f+e- f and so by Lemma 3.22 it
is enough to show that this determinant is reduced. First, noticed that for
€ = 0 the determinant is equal to f and hence is reduced. Now, reducedness
is an open property and so the result holds.

The last part of the statement is trivial. O

3.2. The complexes C* and C;

We recall here the notion of the complex of Lie algebroid cohomology in
the case of Der(—log D), see [13] for the general theory.

DEFINITION 3.24. — Let C® be the complex with modules

p
CP == Homo ( /\ Der(~log D), Dercn / Der(— log D))

and differentials

p+1
(@ @) O A+ Adpra) == D (=) [0, (1 Ave Ad; Ave Adyyr)]
=1
S DT80 AGLA NG A NG A A ).

1<i<j<p+1

It is a straightforward computation to check that d?™! o d? = 0, so C*® is
a complex.

Remark 3.25. — Notice that
C° = Dercn / Der(—log D)
and the map d° is defined by
d’: C° — Homo.,.,, (Der(—log D), Dercn / Der(— log D))
o+— (§ — [6,0]).

We recall now the definition of the complex of Lie algebra cohomology
from [11].

DEFINITION 3.26. — Let C§ be the complex defined by

Cl := Homc (/\ Der(—log D)o, (Dercn / Der(—log D))O)
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and the differentials

p+1
(d5() (1 A Adppa) =D (=1 [65, (81 Av - Adi A Abpia)]
=1
+ Z (—1) 1 ([0, 6] A ST A== NG Ao A A+ Abpin)

1i<i<p+1
where (Dercn/Der(—log D))y is the weight zero part of Dercn/Der(—log D).

(C§,d3) is a well defined complex because it has the same differentials
as the complex (C*,d*) and because Der(—log D) is a Lie subalgebra of
Der(—log D).

3.3. Infinitesimal admissible deformations

THEOREM 3.27. — Let (D,0) C (C",0) be a germ of a free divisor.
Then the germ at the origin of the first cohomology sheaf of the complex
C* is isomorphic to FT*(D), i.e. H'(C*)o = FT'(D).

Proof. — To prove that we can identify H!(C*)o with F7(D), two
things have to be checked: we must first identify the elements of ker(d':
C! — C?) with admissible deformations of (D, 0). Then, we have to show
that the image of d°: C° — C! is the collection of trivial admissible defor-
mations of (D,0).

By Proposition 3.23, we are looking for n classes of vector fields o1, .. .,
dn € Dergn / Der(—log D) such that the Ocn 1. o-module generated by the
elements 61 + € 01,...,0, + € - 0, is closed under Lie brackets.

Take an element v € ker(d'), which means that

P([6,v]) = [6,v (V)] + [v,%(8)] =0 in Dercn / Der(—log D)

for all §, v € Der(—log D). Then ¢ corresponds to the admissible deforma-
tion given by the Ocn x1. o-module £ generated by

51+€¢(51)775n+€¢(5n)

By C-linearity of the Lie brackets, £ is closed under Lie brackets if and
only if for any two elements 6 + € - ¥ (d),v + € - p(v) € L we have [ + € -
P(9), v+ e-(v)] € L, which is equivalent to

Fi=[v]+e ([0, 9W)] = v y(d)]) € L.
Consider G := [d, V] +€- ([0, v]) which is an element of £, so the condition
F € L is equivalent to G — F € L, that is

¥([0,v]) = 16,4 (¥)] + [v,4(6)] € Der(—log D).
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This means exactly that ¢ € ker(d').

Let us consider now an infinitesimal admissible deformation (X,0) =
(V(f+e€-f'),0). Then by the previous part of the proof, Der(—log X/T.) =
(61 +€-9(61),...,0n + €-1(,)) for some ¢ € ker(d'). By Remark 3.18,
f+e- fis trivial if and only if (¢*f) = (f(z +e-o(x)) = (f+e€- [,
for some ¢ € Aut(C™ x T¢). In this situation, the module of vector fields
generated by ¢*(Der(—log D)) is equal to Der(—log X/T), i.e.

<Dg9*1(x)90(51(§0_1(w)))7 (R 7D<p*1(x)(p(5n(@_l($>))>
= <51 +e- 1/1(51)7 s 7571 +e€- 7/1(5n)>7
where for h: X — Y, then D h: T, X — Tj,)Y is the tangent map.

Because we can consider each vector field on C" also as a map from C™
into itself, we have the following equalities

Dcp_l(w)so(él((pil(l,))) = D;c—ea(a)<p(5l(x —€- O'((E)))
=d;i(x—€e-o(x))+e- Dm—e-o’(w)a'(csi(z —€- O'(ZE)))

=6i(z) — € (Dy6i(0(x)) = Dy c.o(ay 0 (6:(2)))
=6i(z) + € (Dyo(6;(x)) — Dydi(o(x)))
= 8;(z) + € [o,8](x)

and that tells us that ¥(d;) = [, ;] i.e. 1 € image(d°). O

LEMMA 3.28. — Let D C C" be a free divisor. Then Der(—log D) is
a self-normalising Lie subalgebra of Dercn. That is, if we consider x €
Dercn such that [x,d] € Der(—log D) for all 6 € Der(—log D), then x €
Der(—log D).

Proof. — By the definition of Der(—log D), it is enough to show that
if we consider p € D a smooth point, then x(p) € T,D. Without loss of
generality, we can suppose that at p the divisor D is defined by the equation
x1 = 0, that its Saito matrix is

z1 0 0 0
0 1 0 0
[517 7571} = 0 01 0
o 00 --- 1

and that x(p) = D1, a;0/0x; with a; € Ogn . In this way, we have
reduced the problem to proving that a; € (x1)Ocn .
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By hypothesis, [x,d] € Der,(—log D) for all § € Der,(—log D), in par-
ticular

[X, (51] = ala/axl — leaai/(’)xlﬁ/&vi
i=1 n
= (a1 — x10a1/0x1)0/0x1 — leaai/axla/axi € Der,(—log D).
i=2
Hence, (a1 — z10a1/0x1) € (21)Ocn , and so a1 € (21)Ocn p as required.
O

In a similar way we can prove the following:

LEMMA 3.29. — Let D C C™ be a linear free divisor. Then Der(—log D)g
is a self-normalising Lie subalgebra of (Dercn)g.

PROPOSITION 3.30. — H°(C*) = 0.

Proof. — Consider o € H°(C*) = ker(d®). Hence, [—, o] is the zero map,
ie. for all & € Der(—log D) we have that [6,0] € Der(—log D). Then by
Lemma 3.28, o € Der(—log D). O

PROPOSITION 3.31. — Let (D,0) C (C™,0) be a germ of a smooth
divisor. Then FT'(D) = 0.

Proof. — We can suppose f = z7 and we can take as Saito matrix the
matrix

xy 0 0 --- O
o 1.0 --- 0
S=[61,....8,)=[0 0 1 -0
o o0 o0 --- 1

Moreover, we can represent an element of C! as the column of the n x n
matrix S + € - T, where T is the matrix

g1 g2 -+ On

- s o o0 --- 0
T=1[01,...,0n] = )

0 O 0

and ¢; = gi(z2,...,2,) € Ocn .

Because [d;,0;] = 0 for every ¢,j = 1,...,n, then the element S+ ¢ T
is in the kernel of d' if and only if g; = —0g;/0x; for all i = 2,...,n. To
show that this element is zero in cohomology, it is enough to find o € C° =
Dercn / Der(—log D) such that [0,8;] = d; foralli =1,...,n, ie. S+e-T
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is in the image of d°. Consider o = g,0/0x1, then it is the element we are
looking for. g

PROPOSITION 3.32. — Let (D,0) C (C™,0) be the germ of the normal
crossing divisor. Then FT*(D) = 0.

Proof. — Let f = x1---x, be a defining equation for D. We can take as
Saito matrix

1 0 -+ 0
0 z3 -+ 0
S =1[01,...,0n] = .
0 0 - z,

Moreover, we can represent an element of C' as columns of the n x n matrix
S + €T, where T is the matrix

g1 912 " Gin
= = 921 922 " g2n
T=[01,...,0n] = | . . .
In,1 9Gn,2 " 9In,n
and 9ij = gi,j(xl, A ,i‘i, A ,.’L‘n) S O(Cn.
Because [d;,0;] = 0 for every i, = 1,...,n, then the element represented

by S+ €- T is in the kernel of d' if and only if A;; = —[d;,0,] + [6;,0i] €
Der(—log D) for all 4,5 = 1,...,n. Let us suppose that i < j, then

_*Iiagl,j/aﬂii_ _zjﬁglﬂ;/ax]’_

i 1;09;,:/0x;
g~ ; + :
—x;09;,;/0%; —Gj,i

_*magn,y‘/axi_ _ﬂﬂjagn,i/a%’_

Now, A; ; € Der(—logD) for all i, = 1,...,n if and only if A;; = 0 if
and only if

91,1 —x20g1,1/0x2 -+ —xp,0911/0%y
—$1392,2/3$1 92,2 ce —$nag2,2/5’$n
*Ilagn,n/axl *:CQagn,n/aIQ e 9n,n

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF FREE DIVISORS 2117

To show that this element is zero in cohomology, it is enough to find o €
CY = Dercn / Der(—log D) such that [o,8;] = §; for all i = 1,...,n, ie.
S+ ¢€-T is in the image of d°. Consider

911
o=
In,n
then it is the element we are looking for. O

Remark 3.33. — There exist free divisors such that F7* (D) # 0.

Proof. — Consider f = zy(z —y)(z+y) € Clz,y] and the germ of a free
divisor (D, 0) = (V(f),0) C (C?,0) with Saito matrix

x 0
A= ol -
[y a?y — y‘*}
To find an infinitesimal admissible deformation for (D, 0) we have to find a

non zero element a € H'(C*)g = FT (D). Let a be defined by the columns
of the following matrix

0 0
b= [0 xyz—yg} '
this is an element of H!(C*)o that describes the infinitesimal admissible
deformation X = V(zy(z —y)(z + (1 + €)y)) = V(f + e(z®y* — 2y?)) C
C? x T.. This infinitesimal admissible deformation is non-trivial because it
is a non-trivial deformation of f as a germ of function because z2y? — zy>
is not in the Jacobian ideal of f, see [9], Chapter II, 1.4. |

3.4. Infinitesimal linearly admissible deformations

THEOREM 3.34. — Let (D,0) C (C",0) be a germ of a linear free di-
visor. Then the germ at the origin of the first cohomology sheaf of the
complex C3 is isomorphic to LFT (D), i.e. H'(C3)o = LFT (D).

Proof. — This is a consequence of Theorem 3.27 and the second part of
Theorem 3.23. U

COROLLARY 3.35. — Let (D,0) C (C™,0) be a germ of a linear free divi-
sor. Then the functor LFD , satisfies Schlessinger condition (H3) from [15].

Proof. — This is a consequence of the previous Theorem and of the fact
that the cohomology of a finite dimensional Lie algebra is finite dimensional.
O
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COROLLARY 3.36. — Let (D,0) C (C™,0) be a germ of a linear free
divisor. Then LFDp has a hull.

Proof. — This is a consequence of Theorem 2.11 from [15], Theorem 3.6
and the previous Corollary. ]

PROPOSITION 3.37. — H%(C$) = 0.
Proof. — Like the proof of Proposition 3.30 but using Lemma 3.29. O

DEFINITION 3.38. — Let M be a vector space and let g be a Lie algebra.
A representation of g in M is a homomorphism ¢ of g in gl(M).

In what follows, we will refer both to the homomorphism g and to the
vector space M as representations of g.

Remark 3.39. — LFTY(D) is the first Lie algebra cohomology of
Der(—log D)o with coefficients in the non-trivial representation (Dercn /
Der(—log D))o.

We collect now some results from [7], [11] and [20] about Lie algebras
and Lie algebra cohomology, that will allow us to compute £F7 (D) more
easily in the case of germs of reductive linear free divisors.

ProposITION 3.40 ([7], Corollary 1.6.4). — Let g be a reductive Lie
algebra and let ¢ be a finite dimensional representation of g. Then the
following condition are equivalent

(1) o is semisimple;
(2) for all a in the centre of g, o(a) is semisimple.

We will use the following celebrated theorem of Hochschild and Serre

THEOREM 3.41 ([11], Theorem 10). — Let g be a reductive Lie algebra
of finite dimension over C. Let M be a finite dimensional semisimple rep-
resentation of g such that M® = (0), where M? is the submodule of M on
which g acts trivially. Then H"(g, M) = 0 for all n > 0.

In order to apply the previous theorem, we need the following:

LEMMA 3.42. — Let D C C" be a reductive linear free divisor. Then
all the elements in the centre of Der(—log D)q are diagonalizable.

Proof. — By definition gp = {A | zA*9" € Der(—log D)o} is a reductive
Lie algebra and hence by Lemma 2.20 and by Lemma 3.6, (2) of [8], G}
is a reductive Lie group. Hence by definition, the centre Zge of Gf, is
composed of semisimple transformations. Moreover, the Lie algebra of the
identity component of Zgs, coincides with Zg,, the centre of gp and hence
it is composed of diagonalizable elements. (|
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PROPOSITION 3.43. — Let D C C" be a reductive linear free divi-
sor. Then the representation of Der(—log D)y in (Dercn / Der(—log D))g
is semisimple.

Proof. — This is a consequence of Proposition 3.40 and Lemma 3.42. O

THEOREM 3.44. — Let (D,0) C (C",0) be a germ of a reductive linear
free divisor. Then LFT'(D) = 0.

Proof. — By Lemma 3.29, (Dercn /Der(— log D))ODerP1Og Pl — 0 and
hence by Theorem 3.41, LFT(D) = 0. O

COROLLARY 3.45. — Let (D,0) C (C",0) be a germ of a reductive
linear free divisor. Then it is formally rigid.

The statement of Theorem 3.44 is false if we consider non-reductive germs
of linear free divisors. In fact, Brian Pike suggested us the following

Example 3.46. — Consider f = z5(x} — 2z52323 + 2203 + 2220420 —
223x1) € Clxy,...,25) as a defining equation of the germ of a linear free
divisor (D, 0) C (C®,0). Then we can consider the Saito matrix

T4 T3 Xo T 0
Irs T4 0 0 )
0 x5 2x4 —x3 213

0 0 Ts —2x4 374
0 0 0 —3(E5 45E5

Consider o = 16210/0x1 4+ 11290/ + 6230/ 0x5 + £40/0xy — 4250/ D5,
then o € Ann(D) and trace(o) = 30, hence, by Lemma 2.18, (D, 0) is the
germ of a non-reductive linear free divisor.

To find an infinitesimal linearly admissible deformation for (D, 0) we have
to find a non-zero element o € H(C$)o = LFT" (D). Let « be defined by
the columns of the following matrix

0 0 0 0 0
0 0 223 0 O
00 —2z4 0 O
0 0 0 0 0
0 0 0 0 0

This is an element of H!(C3)o that describes the infinitesimal linearly ad-
missible deformation X = V(z5(zi(1 + €) — 2z523ws + 223 + 222x420 —
223x1)) = V(f + e(xjzs)) C C5 x T,. This infinitesimal linearly admissible
deformation is non-trivial because it is a non-trivial deformation of f as a
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germ of function, in fact xjzs ¢ J(D). Moreover, one can check, via a long
Macaulay 2 computation, that LF7 (D) is 4-dimensional and this element
is one of its generators. For more details see [19], Appendix C.1.

3.5. The weighted homogeneous case

PROPOSITION 3.47. — Let (D,0) C (C",0) be a germ of a free di-
visor defined by a weighted homogeneous polynomial of degree k. Then
an element of FT'(D) can be represented by f' € Clzy,..., x|k, where
Clz1, ...,k is the space of polynomial of weighted degree k.

Proof. — Let f be a defining equation for (D, 0). Because f is weighted
homogeneous, then there exists y € Der(—log D) such that x(f) = f.

Consider (X,z) an infinitesimal admissible deformation of (D,0). By
Remark 3.17, we can suppose it is defined by the equation f + €- f’, where
f" € Ocn o. Suppose that f’ is weighted homogeneous of degree 3. Because
(X, x) is admissible, it means that x lifts and so there exists x’ € Dercn such
that (x+e-x)(f+e f') = (14+e-a)(f+e f) and s0 X' (F)+x(f) = af+ 1,
for some o € O¢n o. Because f' is weighted homogeneous of degree §, then
Xx(f") = Bf'. Hence, the previous expression becomes (x' —a)f = (1—75)f".
However, (x' — «)f lies in the Tyurina ideal of f which is equal to the
Jacobian ideal of D due to the quasi-homogeneity of f and so (1 — ) f’ is
in the Jacobian ideal of D. If f’ is in the Jacobian ideal, then the admissible
deformation is trivial, by [9], Chapter II, 1.4, otherwise 5 =1 and so f’ is
of weighted degree k.

If f’ is not weighted homogeneous, we can apply the previous argument
to each of its weighted homogeneous parts. O

LEMMA 3.48. — Let (D,0) C (C™,0) be a germ of a free divisor defined
by a weighted homogeneous polynomial. Then a basis of FT*(D) can be
chosen to be made of monomials.

Proof. — This is because we have a good C*-action. |

COROLLARY 3.49. — Let (D,0) C (C",0) be a germ of a free divisor
defined by a weighted homogeneous polynomial of degree k with non-zero
weights (a1, ...,ay,). Then

dim¢ .FTl(D) < dimg (C[.’I?l, ey Q?n}k/J(D) N (C[.Th .. ,.’L‘n]k,
where J(D) is the Jacobian ideal of D.
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Proof. — It is a consequence of Lemma 3.48, Proposition 3.47 and that
J(D) defines only trivial deformations. O

COROLLARY 3.50. — Let (D,0) C (C",0) be a germ of a free divisor
defined by a weighted homogeneous polynomial. Then FDp has a hull.

Proof. — By Corollary 3.49, condition (H3) from [15] is satisfied. Then
the result follows from Theorem 3.6 and Theorem 2.11 from [15]. g

Because each germ of a linear free divisor (D,0) C (C™,0) is defined by
a homogeneous equation of degree n, we have the following:

COROLLARY 3.51. — Let (D,0) C (C",0) be a germ of a linear free
divisor. Then FDp has a hull.

By Corollary 2.4, every reduced curve is a free divisor. Then:

THEOREM 3.52. — Let (D, 0) C (C2,0) be a reduced curve germ defined
by a weighted homogeneous polynomial of degree k. Then

FTHD) = Clz,ylu/J (D) N Clz, yli.

Proof. — Let f be a defining equation for (D, 0). Because f is weighted
homogeneous, then there exists y € Dercn such that x(f) = f. Let § =
Of /0x0 /0y — O f |Oyd/Ox. Because D has an isolated singularity, then 4, x
form a basis of Der(—log D).

By Proposition 3.47, we know that if (X, z) is an infinitesimal admissible
deformation of (D, 0) defined by f +€- f/, then [’ € Clx, yl.

On the other hand, let f’ € Clz,ylx, then consider (X,0) defined by
f+e-f = F, then it is an infinitesimal admissible deformation because
both § and yx lift. In fact, we can consider §' = 0F/dx0/0y — OF /0yd/0x
and x as elements of Der(—log X/T¢).

We have to go modulo J(D) N Clz, y]x to avoid trivial admissible defor-
mations. O

Remark 3.53. — The previous Theorem is false in higher dimension.

Proof. — Consider f = 4x%y? — 16x%z + 27y* — 1442y%2 + 1282222 —
25623 € Clx,y, 2]. It is weighted homogeneous of degree 12 with weights
(2,3,4) and it defines a germ of a free divisor (D,0) C (C3,0). A Macaulay
2 computation shows that dimc Clz,y, z]12/J(D) N Clz,y, 2zJ12 = 3 but
FTHD) = 0. O

COROLLARY 3.54. — Let (D,0) C (C?,0) be a germ of a free divisor
defined by a homogeneous polynomial of degree k. Then dim¢ F7T* (D) =
k — 3 if k > 3, and is zero otherwise.
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Proof. — If k =1, then J(D) = C[z,y] and if k = 2, then J(D) = (z,y)
and so, by Theorem 3.52, in both cases F7 (D) = 0.

Let us suppose now that & > 3. We have that dim¢ C[z,y]r = k + 1 and
that J(D)NClz, y]x gives us 4 relations: xdf /0x,x0f /0y, ydf/0x,ydf /y.
Because (D, 0) is an isolated singularity, then 0f/9z,df /0y form a regular
sequence and so the Koszul relation generates the relations between the
partial derivative of f. Because the Koszul relation is of degree £ —1 > 1,
then xdf/0x,x0f/0y,y0f/0x,y0f /0y are linearly independent. Hence,
dime Clz, y]x/J(D) N Clz,y]r = k+ 1 —4 =k — 3. We conclude by Theo-
rem 3.52. g

Example 3.55.
(1) Consider f = zy(x—y)(z+y) € Clx,y] and let (D,0) = (V(f),0) C
(C?,0). Then FT*(D) is 1-dimensional and it is generated by 2232
(2) Consider f = x° + y* € C[z,y] and the germ of a free divisor
(D,0) = (V(f),0) C (C2%,0). A direct computation shows that
FTHD) =0 and so it is formally rigid.

Remark 3.56. — Let (D,0) C (C™,0) be a germ of a free divisor defined
by a weighted homogeneous polynomial. Then we can compute the coho-
mology of C*® degree by degree, because each module and map involved is
degree preserving.

THEOREM 3.57. — Let (D,0) C (C™,0) be a germ of a free divisor de-
fined by a weighted homogeneous polynomial. Then FT(D) = (H(C*)o)o,
where (H'(C®)o)o is the weight zero part of H'(C*®)o.

Proof. — Let f be a defining equation for (D, 0) weighted homogeneous
of degree k and let (X,z) be an infinitesimal admissible deformation of
(D,0). By Proposition 3.47, we can suppose (X, z) has defining equation
f+e-f, with f’ weighted homogeneous of degree k.

Because Der(—log D) is a graded module, we can consider d1,...,0, €
Der(—logD) a weighted homogeneous basis. By Proposition 3.20,
Der(log X/T,) is generated by 01 +€-01,...,0, 4+ €- 8, such that the deter-
minant of their coefficients is f +¢- f’. Because f and f’ are both weighted
homogeneous of the same degree, then each 8; is weighted homogeneous of
the same degree as d;, for alli =1,...,n.

As seen in the proof of Theorem 3.27, there exists 1) € C' such that
P(d;) = 8;. So by the previous argument 1 is a weight-preserving map and
so represents an element of (H*(C*)o)o- O

COROLLARY 3.58. — Let (D,0) C (C",0) be a germ of a linear free
divisor. Then FT*(D) = LFT"(D).
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Proof. — 1t is clear that (H1(C*)o)o = H(C3)o- O

COROLLARY 3.59. — Let (D,0) C (C™,0) be a germ of a reductive
linear free divisor. Then it is formally rigid also as free divisor.

Proof. — This is a consequence of Theorem 3.44 and Corollary 3.58. [

4. Properties of the cohomology
4.1. Constructibility of the cohomology

As we have seen in the previous section, the cohomology of the complex
C*® plays an important role in the theory of admissible deformations for a
germ of a free divisor. From Schlessinger’s Theorem 2.11 from [15], we know
that the main point in proving the existence of a hull is the finiteness of this
cohomology. The following subsection is devoted to study this problem.

DEFINITION 4.1. — Let X be a n-dimensional complex manifold. We
denote by Dx the sheaf of differential operators on X and by Grpe(Dx)
the sheaf on T* X of graded rings associated with the filtration F'® by the
order of o(P) the principal symbol of a differential operator P.

DEFINITION 4.2. — Let D C C" be a divisor defined by the ideal I. We
define the V-filtration relative to D on Dc¢n by

VP (Den) = {P € Den | P(I7) C '7F Vj € Z}
for all k € Z, where I’ = Ocn when j is negative. Similarly, we define
VP (Denz) == {P € Deno | P(f7) C f777 Vj €2},

where f is a local equation for D at x. If there is no confusion, we denote
VP(Den) and VP (Den ;) simply by Vi,(Dc») and Vi, (Den ), respectively.

DEFINITION 4.3. — A logarithmic differential operator is an element of

Remark 4.4. — We have
Der(—log D) = Dercn NVo(Den) = Grie (Vo(Den)),

and
F'(Vo(Den)) = Ocn @ Der(—log D).

Proof. — The first equality comes directly from the definitions. The sec-
ond one is a consequence of the fact that F''(Dcn) = Ocn @ Dercn. O
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DEFINITION 4.5. — Let M be a Ocn-module. A connection on M with
logarithmic poles along D or a logarithmic connection on M, is a homo-
morphism over C

V: M — QY(log D) ® M,
that verifies Leibniz’s identity

V(hm) = dh ® m + hV(m)

for any h € Ocn and m € M, where d is the exterior derivative over Ocn.
For any q € N we will denote 2(log D) @ M by Q%(log D)(M).

DEFINITION 4.6. — Let M be a Ocn-module with V a logarithmic con-
nection. We can define the following left Og¢n-linear morphism

V': Der(—log D) — &Endc(M)
6 — Vs
where Vs(m) := (4, V(m)).
Remark 4.7. — The morphism V' verifies Leibniz’s condition
Vs(hm) = §(h)m + hVs(m)
for any ¢ € Der(—log D), h € Ocn and m € M.
Remark 4.8. — Given a left O¢n-linear morphism
V': Der(—log D) — &Endc(M)
verifying Leibniz’s condition, we define
V: M — Q(log D)(M)
with V(m) the element of Q!(log D)(M) = Home,., (Der(—log D), M)
such that V(m)(d) = V'(6)(m).
DEFINITION 4.9. — A logarithmic connection V is integrable if, for each
9,0’ € Der(—log D), it verifies
Vise = 1[Vs, Ve,
where [ , ] represents the Lie bracket in Der(—log D) and the commutator

in Endg(M).

Example 4.10. — Consider M = Dergn / Der(—log D). Then we can
introduce on M the integrable logarithmic connection defined by Vs :=
[0, —]. If we take M = Der(—log D) or Dercn, then Vs = [§, —] does not in
general define a connection on M because it is not O¢n-linear in 9.
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PROPOSITION 4.11 ([3], Corollary 2.2.6). — Let D C C™ be a free divi-
sor and let M be a O¢n-module. An integrable logarithmic connection on
M gives rise to a left Vo(Dcn)-module structure on M and vice versa.

We now explain a condition that allows us to put a structure of Vo(Dcn )-
module on Der(—log D) and Dercn.

Fix D C C" a free divisor and &§; = Y7, a;;0/dxj, i = 1,...,n a
basis for Der(—log D), where a;; € Ocn for i,j = 1,...,n. We know that
Der(—log D) forms a Lie subalgebra of Dercr, hence we can write

[0, ;] Z O

where bé-k € Oc¢n for all 4,5,k =1,...,n and similarly we can write
6:,0/0x;] = i, O
[0:,0/0z;] = ZCjkaT;k
k=1
where c;-k € Oc¢n forall 4,5,k =1,...,n. In this way we obtain the data of

2n matrices B; = (b};,) and C; = (c};) of holomorphic function on C". Let
us write § - 9 := [0, ] for any derivation @ and any logarithmic derivation
0. Then we have

§;-0' =B, 1<i<n
and

50" =Ci0" 1<i<n
where § = (6y,...,0,) and @ = (8/0z1,...,0/0m,).

LEMMA 4.12. — Fori,j5 =1,...,n we have that
5:(Cy) — 6;(Ci) + [C;, Ci Zb’ka
if and only if

(b))
J : _
E Ak B2, =0,Velr=1,....,n

Proof. — We first notice that by definition ¢}, = —d(aix)/d;. The first
equality is an equality between matrices, hence we can check it entry by
entry. Let 1 > I,7 > 0. We now check the entry (I,7). In this case the
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expression becomes

O(a;) & a(ajk) d(ai,)
or ) +65( o2, )+

|y Q) das) _ gy, Olowr)

Consider now the Jacobi identity

0 0 0
(10871 5] + (1852 58] + [0 0] =o.
The coefficient of 0/0x, of the previous expression is
9(ajr) d(air) - I(ajk) O(air)
6l( ox; ) _6'7( Ox; ) _’; ox; Oz
air) Najr) N~ Oaw) <~ O%)
+ v — Qe =0
; 3xl al‘k P ak 6xl ; k 813[
Hence, the first equality is satisfied if and only if
Z bék _
A -
PROPOSITION 4.13. — We can define a structure of left Vo(Dcn )-module
on Dercgn if '
Z =0, Vilr=1,.

Proof. — To define a structure of left Vo(Dcr)-module on Dercn, we

define the action of §; on any derivation 0 by
(Si 00 .= [51', 8],

or in other words
5, 00" :=C;0", 1<i<n.

The structure just introduced is a Vy(Dcn )-module structure if and only if

(6:6; — 0;6,) 8 0 = (Zn: b§k5k) o',
k=1

An easy computation shows us that this is true if and only if

5:(Cy) — 6;(Ci) + [C;, Ci Zb’k(}k
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hence we can conclude by Lemma 4.12. O

Remark 4.14. — Notice that the action on Dercn of any logarithmic
derivation 6 = Y _, B0y is given by

00 =3 BCid"
k=1

LEMMA 4.15. — Fori,j =1,...,n,

- o(bt
Zalk (JT)ZO,Vi,l,TZI,...,TL
el a.%'k

if and only if

8:(B;) — 0;(Bi) + [Bj, Bi] = Y _ b}y, B
k=1

Proof. — This is similar to the proof of Lemma 4.12. O
PROPOSITION 4.16. — We can define a structure of left Vo(Dcn )-module
on Der(—log D) if
" (b,
Zalkiéﬂ) =0, Vil,r=1,...,n.
k=1 Tk
Proof. — As the proof of Proposition 4.13. |
COROLLARY 4.17. — Let D C C™ be a linear free divisor. Then Dercn

and Der(—log D) are left Vo(Dcn )-modules.

Proof. — In this case bék € C and so the two previous conditions are
trivially fulfilled. O

COROLLARY 4.18. — Let D C C? be a free divisor defined by a weighted
homogeneous equation. Then Dercz and Der(—log D) are left Vo(Dcz)-
modules.

Proof. — Because D is defined by f a weighted homogeneous equation
and because Der(—log D) is a free Ocz-module of rank 2, then we can
choose x, 0 as a basis of Der(—log D), where  is an Euler vector field and

5(f) =0. Then [x, d] = ad, where o € C and so all the b;k € C. Hence the
two previous conditions are trivially fulfilled. O

DEFINITION 4.19. — Define the complex

Q°(log D) (Dercn / Der(—log D)) := Q°*(log D) ®0,... (Dercn / Der(—log D))
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with differentials
VP: QP (log D) (Dercn/Der(—log D)) — QP! (log D) (Dercr/Der(—log D))

given by
VP (w® ) :=dw®d+ (—1)Pw A V(d),

where d is the usual exterior derivative on Q°*(log D) and V(0) is the element
of Q' (log D) ®on (Dercn / Der(—log D)) such that [v,8] = v - V(§) for all
v € Der(—log D).

THEOREM 4.20. — There is an isomorphism of complexes of sheaves
of complex vector spaces between *(log D)(Dercn / Der(—log D)) and C®,
defined by

~P: QP (log D)(Dercn / Der(—log D)) — C?
’yp(wl VANRERAN Wp ® 5)(51 VANRERAN 5}0) = det(wi . 5j)1<i,j<p5~

Proof. — Applying Theorem 3.2.1 from [3] in our case, we deduce that
there is an isomorphism * between the complex

Q°(log D)(Dercr / Der(—log D))

and the dual of the logarithmic Spencer complex

Homy, (pen)(Vo(Den) @0 [\ Der(—log D), Dercn / Der(—log D).
The isomorphism is defined locally by
’(/Jp((wl VACERIVAN wp) & (5)(P ® (51 VARERIVAN (51,)) =P det(wi . 6j)1<i,j<p - 0.

On the other hand, we can write Y = AP oyP where AP is the isomorphism

P
AP CP — Homy, (pen) (VO(D@L) ROen /\ Der(—log D),
Dercn / Der(—log D))7
defined by
MN(@)(P® (01 A+ ANby)) i=P -6y A AGp).

A direct computation shows that A’ commutes with the differentials and
hence defines an isomorphism of complexes.

Hence, also 7P is an isomorphism and commutes with the differentials
and therefore defines an isomorphism of complexes. O
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DEFINITION 4.21. — Let D C C™ be a divisor. We say that D is a
Koszul free divisor at x if it is free at x and if there exists a basis d1, . .., 0, of
Der,(— log D) such that the sequence of symbols o (1), ...,0(0,) is regular
in Grpe(Den),. If D is a Koszul free divisor at every point, we simply say
that it is a Koszul free divisor.

Notice that for a free divisor D, to be Koszul is equivalent to being holo-
nomic in the sense of Definition 3.8 from [14], i.e. the logarithmic stratifi-
cation of D is locally finite. See [8], Theorem 7.4.

Example 4.22.
(1) ([4], Example 2.8, 3) Each reduced divisor D C C? is Koszul free.
(2) The normal crossing divisor of Example 2.12 is Koszul free.
(3) ([4], Example 2.8, 5) Consider the free divisor D = V(282% —
273222 4240t 2 4+ 2432 y% 2 — 2223y% — 33y*) C C3 with Saito matrix
6y 422 — 482 2
A= [617 52, 53] = |8z — 2.’1}2 12$y 3y
—zy 9y? — 162z 4z
Then the sequence of symbols ¢(d1),0(d2),0(d3) is regular in
GI'F- (D(Cn).
(4) ([4], Example 4.2) Consider the free divisor D = V(zy(z + y)(y +
xz)) C C? with Saito matrix
T 422 0
y 0
0 —z(x+y) xzz+y
Then D is not Koszul free.

THEOREM 4.23. — Let (D,0) C (C",0) be a germ of a Koszul free divi-
sor such that Y7p_, and(bi)/0x, = 0 for i,j,l,r = 1,...,n and
oy ard(bh,) )0z = 0, for 4, j,k,r = 1,...,n. Then all H'(C*) are con-
structible sheaves of finite dimensional complex vector spaces.

Proof. — Write & = Dergn /Der(—logD), & = Dercn and & =
Der(—log D). Using the assumptions, we deduce from Proposition 4.13
and 4.16, that we can consider the short exact sequence

0—& —&E —&E —0

as a resolution of the Vy(Dcn)-module &. By twisting with Ocn[D], we
find another Vy(Dgn )-resolution

0 — &[D] — &1[D] — &[D] — 0.
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L
By [5], Proposition 1.2.3, the complexes Dcr @y (pen) &i[D], for i =
1,2 are concentrated in degree zero. Hence, we can compute the complex

L
Den @yy(pen) Eo[D] through the above resolution as
D(Cn ®V0(Dc") 52 [D] — D(Cn ®V0(’D¢n) 51 [D]
By [5], Proposition 1.2.3, the above complex is holonomic in each degree

L
and we deduce that RHomp,, (Ocn, Den @y (pen) E0[D)) is constructible.
By Theorem 4.20 and by noticing that the isomorphism of [5], Corollary
3.1.5, is true for any Vy(Dcn )-module, we have the following isomorphisms

L
C* = Q*(log D)(&) = RHomp... (Ocr, Den @vyy(pen) Eo[D])
and hence, we can conclude. O

COROLLARY 4.24. — Let (D,0) C (C",0) be a germ of a Koszul free
divisor such that Y, _, akla(bék)/axT =0and > ;_, alka(bé-r)/@xk =0,
fori,j,l,7r=1,...,n. Then FDp has a hull.

Proof. — By Theorem 4.23, condition (H3) from [15] is satisfied. Then
the result follows from Theorem 3.6 and Theorem 2.11 from [15]. g

COROLLARY 4.25. — Let (D,0) C (C?,0) be a germ of a free divisor
defined by a weighted homogeneous equation. Then FDp has a hull.

Proof. — By Example 4.22, (D,0) is Koszul. Because (D,0) is defined
by f a weighted homogeneous equation then we can choose y,d as a basis
of Der(—log D), where x is an Euler vector field and 6(f) = 0. Then
[x,0] = ad, where a € C and so all the b;k € C. Hence all the hypothesis
of previous Corollary are fulfilled. O

COROLLARY 4.26. — Let (D,0) C (C™,0) be a germ of a Koszul linear
free divisor. Then all H*(C®) are constructible sheaves of finite dimensional
complex vector spaces.

Proof. — This follows from Theorem 4.23 and the fact that if (D,0) is
linear then bj-k eC. g

The author is not aware if there exists a subclass of the Koszul free divisor
that fulfil the assumptions of Theorem 4.23. However, we know that not
all Koszul free divisor satisfies them. A direct computation shows that the
last Koszul free divisor described in Example 4.22 does not fulfil them.

Moreover, the author thinks that the approach used to put a logarithmic
connection on Dercn and Der(— log D) is a particular case of the notion of
integrability up to homotopy, see [1].
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4.2. Propagation of Deformations

In this final subsection, we prove a result which highlights the difference
between the theory of admissible deformations and the classical deforma-
tion theory of singularities.

We suppose that (D,0) C (C™,0) is a germ of a free divisor such that
there exists a germ of a free divisor (D’,0) C (C"*~1,0) such that (D,0) =
(D' x C,0), i.e. there exists a defining equation for D in C[[x1,...,Tp-1]].

THEOREM 4.27 (Corollary 4.37). — There is an isomorphism of sheaves
R UHACh) = H(Ch)
where 7: (D,0) — (D’,0) is the projection on the first factor of (D,0) =
(D' x C,0). In particular, we have
»YFTHD") = FTH(D).
Observe that in the ordinary deformation theory of singularities, if

(D,0) = (D' x C,0) and T(lD, 0) is non-zero then T(lD 0) is infinite dimen-
sional. See [9], Chapter II, 1.4.

LEMMA 4.28. — In this situation

0
O(Cn 70) @ O(Cn 70 -

Der(—log D) = (Der(—log D) ®0 5
T,

cn—10
and
Dercn /Der(—log D) = Dergn-1 / Der(—log D) ®o,_, , Ocn o-
Hence, if 6 € Der(—log D), it can be written as § = (', hd/0x,,), where
§" € Der(—log D') ®0.p 1, Ocn,o and h € Ocn .
To distinguish between the complexes for (D,0) and for (D’,0) we will
denote them respectively by (C},d%,) and (C},d3, ).

PROPOSITION 4.29. — There is an isomorphism

P p
0: /\Der(flog D) — (O(Cni) ®On—1 /\Der(flog D’))
p—1

(&3] (OC",O ®Ocn-1. /\ Der(— log D'))

(1 A Nbp) = (53,]11%)/\---/\(6; h 0 )

) p%
p
— (6{/\-~-/\6;,,kz_:l(—1)p_khk51/\~-~/\6§€/\-~-/\61’,>
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Proof. — This is because A” Ocn o = 0 for p > 2 and because in general,
if R is a commutative ring and A and B are R-modules, then

AAsB) = @ (/\A®R/\ B). O

i+j=p

As a consequence

COROLLARY 4.30. — With the hypotheses of Proposition 4.29
Ct, = Homo,, o (Ocn 0 ®0un-1 /\ Der(—log D'), Dercn / Der(— log D))

@ Homo,n (O@L70 ®o /\ Der(—log D'), Dercn / Der(— log D))

cn—1 9

=Ch ®o Ocro @ C%T ®o Ocn o-

cn—1 cn—10

Remark 4.31. — It is possible to write an element " € C}, for p > 0 as
= (w, 0) = (D win Y whor) = > wh (v qz-)
i>0 i>0 i>0
with ¢; € C?, and ¢; € C%, "
By Remark 4.31, we can describe the differentials

COROLLARY 4.32. — The differentials have the following expression

P
d*: Homo. ((9@70 ®On-1 /\ Der(—log D'), Dercn / Der(— log D))

p+1
— Homoen 4 (O(Cn’o ®On-1, /\ Der(—log D'), Dercn / Der(— log D))

where
(Jp(d’))(gl Ao Nopyr) Z»’C D/ (W) (o1 A= A aptr).
120
PROPOSITION 4.33. — The differential on C}, is given by

dyy: Ch —
(0.0) — (#00).70) + (0 [ 0] ).

Proof. — Consider T' = (¢, ¢) € C},. We want now to compute d¥,(T) €
C%H. By Remark 4.31, we need to check it only on Der(—log D’), hence

(41) (@D)(01 A Apir,vn A= Avy)
— (@) (01 A~ Aopar) + (@)1 A--- ALy),
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where 0;,v; € Der(—log D’).
We now look at the first part of the right hand side of the previous

equality
(dp @) (oL A+ Aopsr)
p+1
_Z U“ 01/\.../\@/\.../\01)+1)]
+ > (V)T ([0, 0 AGL A AGI A NG A A op)
1<i<j<p+1

= (dP(¥)(o1 A+ Aopi1).

Consider now the second part of equation (4.1) from above. Put vy =
0/0x,,. Then we have

Q((Vl,o-(;;)/\---/\(vp,ﬂain)/\(O,l-ain)> :(O,Vl/\~-~/\1/p)

and hence
(dpT) v A Avyp)
= (dp@)) (1 A Avpya)

p+1 )
= S [ DA A AB A Avgi)]
i=1
+ Y (DT (v AL A NG A AT A Avpy).
1<i<j<p+1

We now look at the first part of the right hand side of the previous equality,
it is equal to

p+1

S (1) i, T A= AT A+ Avyya)]
1=1

+Z |:1/“ (1/1/\~~~/\17i/\~~~/\1/p/\%)}

= (- [ w e A Ay

Ln
p

_,'_Z(_l)i[yi’(b(yl/\.../\ﬁi/\.../\yp)]

i=1
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Moreover
S DT (v Avi A AT

I<i<jsp+1

../\,7j/\.../\yp+1)

p
e ([ai])

Z 1)+ 1F([V¢,Vj]/\1/1/\---/\ﬁi/\---
- N2 AN ZWAN 3)
AN A -

J p 656'n

= Y (DTG Avi A AT A NG A A ).

1<i<jsp
Here the important point is that [v;,9/0z,] = 0 because v; € Der(—log D’)

Hence
(dp@) 1 A Avy)
= (-t [i, (A Ay

oz,
p
IS CECY R INa)
1=
+ Z DI ([ ] At A= A A== AT A= A1)
1<i<j<p
[ 0 Fp—1
= () gm0 A A |+ (@@ A M),
O
PROPOSITION 4.34. — We can rewrite the differential as

/4 P Cp Cp+1

(W, 0) — >k (b (1), % () + (—

120
DEFINITION 4.35. — We define the morphism J to be the inclusion

DPF i+ 1)piga).

P
J: Homo,, . , (/\ Der(—log D), Dergn-1 / Der(— log D')) =Ch = Ch

P
= Homogn , (Ocn’o D01 4 /\ Der(—log D'), Dercn / Der(— log D))

p—1
® Homoen (Ocn,o DOn-1 4 /\ Der(—log D'), Dercn / Der(— log D))

el p—1
=Cp @01 Ocr 0 ®Cpr~ @0,y , Ocn o0
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b — z,(1,0).

All the previous work was devoted proving that in order to compute the
cohomology of D it is enough to compute that of D’:

THEOREM 4.36. — The morphism J is a quasi-isomorphism.

Proof. — It is enough to show that the cokernel of .J is acyclic. Consider
then

I'= Z%(d’u @) + (0, ¢p) € coker(J)
i>1
and suppose that I' € ker(d},). Then we have d¥),(1;) = 0 and d¥,, (¢;) =
(=1)P(i + 1)th;41 for all i > 0. Define now

A= ad, ¢’_ ,0)ech !

iz1

then we have that

A A) =)k (dy A (1P (i 4+ 1)Ai) =T

i1
Hence, I" vanishes in cohomology. |
COROLLARY 4.37. — There is an isomorphism of sheaves

T HA(CY) = H(CY)
where 7: (D,0) — (D’,0) is the projection on the first factor of (D,0) =
(D' x C,0). In particular, we have

L FTYD) = FTY(D).

Proof. — This follows because 7! is an exact functor. O
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