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DEFORMATIONS OF FREE AND LINEAR FREE
DIVISORS

by Michele TORIELLI

Abstract. — We study deformations of free and linear free divisors. We in-
troduce a complex similar to the de Rham complex whose cohomology calculates
the deformation spaces. This cohomology turns out to be zero for all reductive
linear free divisors and to be constructible for Koszul free divisors and weighted
homogeneous free divisors.
Résumé. — Nous étudions les déformations de diviseurs libres et linéaires

libres. Nous introduisons un complexe similaire au complexe de de Rham dont la
cohomologie calcule les espaces de déformations. Cette cohomologie s’avère être
zéro pour tous les diviseurs réductifs linéaires libres et être constructible pour les
diviseurs libres de Koszul et les diviseurs libres quasi-homogènes.

1. Introduction

In this article, we develop some ideas of a deformation theory for germs of
free and linear free divisors. Free divisors were introduced by K. Saito in [14]
and linear free divisors by R.-O. Buchweitz and D. Mond in [2]. Free divisors
are quite fundamental in singularity theory, for example, the discriminants
of the versal unfoldings of isolated hypersurfaces and complete intersection
singularities are always free divisors.

A reduced divisor D = V (f) ⊂ Cn is free if the sheaf Der(− logD) :=
{δ ∈ DerCn | δ(f) ∈ (f)OCn} of logarithmic vector fields is a locally free
OCn -module, where DerCn denote the space of vector fields on Cn. It is lin-
ear if, furthermore, Der(− logD) is globally generated by a basis consisting
of vector fields all of whose coefficients, with respect to the standard basis
∂/∂x1, . . . , ∂/∂xn of the space DerCn , are linear functions. The simplest

Keywords: Free divisor, linear free divisor, non-isolated singularity, deformation theory,
logarithmic de Rham cohomology.
Math. classification: 14B07, 13D10, 14F40.
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example is the normal crossing divisor, but the main source of examples,
motivating Saito’s definition, has been deformation theory, where discrim-
inants and bifurcation sets are frequently free divisors.
These objects have been studied for the past 30 years but there is still

a lot to learn and discover about them. One interesting fact is that there
are no examples of linear free divisors in non-trivial family. One possible
approach is to deform this object in such way that each fiber of the de-
formation is a (linear) free divisor and that the singular locus is deformed
flatly. However, not much is known on the behavior of (linear) free divisors
under these kind of deformations.

The aim of this article is to describe the spaces of infinitesimal deforma-
tions and obstructions of a germ of a (linear) free divisor and to perform
calculations for some concrete examples. It turns out that the property of
being a free divisor for a hypersurface D has a strong influence on its de-
formations, in fact all free divisors D ⊂ Cn, with n > 3, are non-isolated
singularities and so their space of first order infinitesimal deformations is
infinite dimensional, but in what follows we will show examples of free
divisors which have a finite dimensional versal deformation space as free
divisors.
We now give an overview on the paper. The first part recalls the notions

of free and linear free divisors, and describes some of their properties. In
the second, we define the notion of (linearly) admissible deformations for a
germ of a (linear) free divisor and we introduce a complex similar to the de
Rham complex whose cohomology calculates deformations spaces. In this
section we also prove our main result:

Theorem A. — All germs of reductive linear free divisors are formally
rigid.

This is equivalent saying that for a germ of a reductive linear free divisor,
there are no non-trivial families, at least on the level of formal power series.

Then, we analyse the weighted homogeneous case and we prove our sec-
ond result:

Theorem B. — If (D, 0) ⊂ (Cn, 0) is a germ of a weighted homogeneous
free divisor, then it has a hull, i.e. it has a formally versal deformation.

In the last part, we describe some properties of this cohomology and we
prove our third result:

Theorem C. — If (D, 0) ⊂ (Cn, 0) is a germ of a Koszul free divisor
such that we can put a logarithmic connection on DerCn and Der(− logD),
then it has a hull.

ANNALES DE L’INSTITUT FOURIER
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This theory owes a lot to the theory of deformations of Lagrangian sin-
gularities as developed in [17], [16] and [18].

The material in this article is part of the author Ph.D. thesis [19].

Acknowledgements. — The author is grateful to Michel Granger, David
Mond, Luis Narváez Macarro, Brian Pike, Miles Reid, Christian Sevenheck
and Duco van Straten for helpful discussions on the subject of this article.
We thank the anonymous referee for a careful reading of our draft versions
and a number of very helpful remarks.

2. Basic notions

Fix coordinates x1, . . . , xn on Cn .

Definition 2.1. — A reduced divisor D = V (f) ⊂ Cn is called free if
the sheaf

Der(− logD) :=
{
δ ∈ DerCn | δ(f) ∈ (f)OCn

}
of logarithmic vector fields is a locally free OCn-module.

Definition 2.2. — Let D = V (f) ⊂ Cn be a reduced divisor. Then for
q = 0, . . . , n, we define the sheaf

Ωq(logD) :=
{
ω ∈ ΩqCn [?D] | fω ∈ ΩqCn , fdω ∈ Ωq+1

Cn
}

of q-forms with logarithmic poles along D.

Note that by definition, Ω0(logD) = Ω0
Cn and Ωn(logD) = 1

f
ΩnCn .

Lemma 2.3 ([14], Lemma 1.6). — By the natural pairing

Derp(− logD)× Ω1
p(logD) −→ OCn,p defined by (δ, ω) 7−→ δ · ω,

each module is the OCn,p-dual of the other.

Corollary 2.4. — Ω1
p(logD) and Derp(− logD) are reflexive OCn,p-

modules. In particular, when n = 2, then Ω1
p(logD) and Derp(− logD) are

free OC2,p-modules.

Definition 2.5. — A free divisor D is linear if there is a basis for
Γ(Cn,Der(− logD)) as C[Cn]-module consisting of vector fields all of whose
coefficients, with respect to the standard basis ∂/∂x1, . . . , ∂/∂xn of the
space DerCn , are linear functions, i.e. they are all homogeneous polynomials
of degree 1.

TOME 63 (2013), FASCICULE 6



2100 Michele TORIELLI

Remark 2.6. — With respect to the standard grading of DerCn , i.e.
deg xi = 1 and deg ∂/∂xi = −1 for every i = 1, . . . , n, such vector fields
have weight zero.

Definition 2.7. — We denote by Der(− logD)0 the finite dimensional
Lie subalgebra of Der(− logD) consisting of the weight zero logarithmic
vector fields.

There is a nice criterion to understand easily if a divisor is free or not:

Proposition 2.8 (Saito’s criterion, [14], Theorem 1.8).
i) The hypersurface D ⊂ Cn is a free divisor in the neighbourhood of

a point p if and only if
∧n Ω1

p(logD) = Ωnp (logD), i.e. if there exist
n elements ω1, . . . , ωn ∈ Ω1

p(logD) such that

ω1 ∧ · · · ∧ ωn = α
dx1 ∧ · · · ∧ dxn

f

where α is a unit. Then the set of forms {ω1, . . . , ωn} form a basis
for Ω1

p(logD). Moreover, we have

Ωqp(logD) =
⊕

i1<···<iq

OCn,pωi1 ∧ · · · ∧ ωiq

for q = 1, . . . , n.
ii) The hypersurface D ⊂ Cn is a free divisor in the neighbourhood of

a point p if and only if there exist germs of vector fields χ1, . . . , χn ∈
Derp(− logD) such that the determinant of the matrix of coefficients
[χ1, . . . , χn], with respect to some, or any, OCn,p-basis of DerCn,p is
a reduced equation for D at p i.e. it is a unit multiple of fp. In this
case, χ1, . . . , χn form a basis for Derp(− logD).

Definition 2.9. — In the notation of Proposition 2.8, the matrix
[χ1, . . . , χn] is called a Saito matrix.

Lemma 2.10 ([14], Lemma 1.9). — Let δi =
∑n
j=1 a

j
i (x)∂/∂xj , i =

1, . . . , n, be a system of holomorphic vector fields at p such that
(1) [δi, δj ] ∈

∑n
k=1OCn,pδk for i, j = 1, . . . , n;

(2) det(aji ) = f defines a reduced hypersurface D.
Then for D = {f(x) = 0}, δ1, . . . , δn belong to Derp(− logD), and hence
{δ1, . . . , δn} is a free basis of Derp(− logD).

There is also an algebraic version of Saito’s criterion that does not refer
to vector fields directly but characterizes the Taylor series of the function f
defining a free divisor:

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.11 ([2], Proposition 1.3). — A formal power series f ∈
R = C[[x1, . . . , xn]] defines a free divisor, if it is reduced, i.e. squarefree,
and there is an n× n matrix A with entries from R such that

det A = f and (∇f)A ≡ (0, . . . , 0) mod f,

where ∇f = (∂f/∂x1, . . . , ∂f/∂xn) is the gradient of f , and the last condi-
tion just expresses that each entry of the vector (∇f)A is divisible by f in
R. The columns of A can then be viewed as the coefficients of a basis, with
respect to the derivations ∂/∂xi, of the logarithmic vector fields along the
divisor f = 0.

Example 2.12. — The normal crossing divisorD = {x1 · · ·xn = 0} ⊂ Cn
is a linear free divisor; Der(− logD) has basis x1∂/∂x1, . . . , xn∂/∂xn. Up
to isomorphism it is the only example among hyperplane arrangements,
see [12], Chapter 4.

Remark 2.13. — Let D ⊂ Cn be a divisor defined by a homogeneous
polynomial f ∈ C[x1, . . . xn] of degree n. Then for each δ ∈ Der(− logD)0,
there is a n× n matrix A with entries in C, such that δ = xA∂t, where ∂t
is the column vector (∂/∂x1, . . . , ∂/∂xn)t.

Remark 2.14. — Let D ⊂ Cn be a free divisor. D is a linear if and only
if Der(− logD) = OCn ·Der(− logD)0.

Definition 2.15. — LetD = V (f) ⊂ Cn be a linear free divisor. Define
the subgroup

GD :=
{
A ∈ GLn(C) | A(D) = D

}
=
{
A ∈ GLn(C) | f ◦A ∈ C · f

}
with identity component G◦D and Lie algebra gD.

Lemma 2.16 ([8], Lemma 2.1). — G◦D is an algebraic subgroup of
GLn(C) and gD = {A | xAt∂t ∈ Der(− logD)0}.

Definition 2.17. — Let D ⊂ Cn be a linear free divisor. We call D
reductive if gD is a reductive Lie algebra.

From §2 of [6], we can deduce the following:

Lemma 2.18. — Let D = V (f) ⊂ Cn be a reductive linear free divi-
sor. Then Aut(f) ⊂ SLn(C). This means that if χ ∈ Ann(D) := {δ ∈
Der(− logD) | δ(f) = 0} then trace(δ) = 0.

Example 2.19.
i) The normal crossing divisor of Example 2.12 is a reductive linear

free divisor because gD = Cn.

TOME 63 (2013), FASCICULE 6



2102 Michele TORIELLI

ii) Consider the divisor D = V ((y2 + xz)z) ⊂ C3. This is a linear free
divisor because we can take the matrix

A =

x 4x −2y
y y z

z −2z 0


as its Saito matrix. Moreover, if we consider σ the second column
of A, i.e. σ = 4x∂/∂x+ y∂/∂y− 2z∂/∂z, we have that σ ∈ Ann(D)
and trace(σ) = 3 and hence by Lemma 2.18, D is a non-reductive
linear free divisor.

Lemma 2.20 ([8], Lemma 3.6, (4)). — Let D ⊂ Cn be a linear free
divisor. If gD is reductive then G◦D is reductive as algebraic group.

Definition 2.21. — Let S be a complex space. Then DerCn×S/S is the
set of vector fields on Cn × S without components in the S direction. It is
a submodule of DerCn×S .

Definition 2.22. — Let S be a complex space and let D ⊂ Cn × S be
a divisor. Then Der(− logD/S) := {δ ∈ Der(− logD) | δ ∈ DerCn×S/S} =
Der(− logD) ∩DerCn×S/S .

Remark 2.23. — DerCn×S/S and Der(− logD/S) are both coherent
sheaves of OCn×S-modules.

3. Deformation theory for free divisors

The aim of this section is to introduce the notion of (linearly) admissible
deformation for germs of (linear) free divisors and then study infinitesimal
ones in order to prove that reductive linear free divisors are formally rigid.

3.1. Admissible and linearly admissible deformations

Definition 3.1. — Let (D, 0) = (V (f), 0) ⊂ (Cn, 0) be a germ of a free
divisor and let (S, s) be a complex space germ. An admissible deformation
of (D, 0) over (S, s) consists of a flat morphism φ : (X,x)→ (S, s) of com-
plex space germs, where (X,x) ⊂ (Cn×S, (0, s)), together with an isomor-
phism from (D, 0) to the central fibre of φ, (D, 0)→ (Xs, x) := (φ−1(s), x),
such that

(3.1) Der(− logX/S)/mS,s Der(− logX/S) = Der(− logD)

ANNALES DE L’INSTITUT FOURIER
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where mS,s is the maximal ideal of OS,s.
Moreover, if (D, 0) is linear, we define a linearly admissible deformation

of (D, 0) over (S, s) as an admissible deformation of (D, 0) over (S, s) such
that there exists a basis of Der(− logX/S) as OCn×S,(0,s)-module consisting
of vector fields all of whose coefficients are linear in x1, . . . , xn.

Definition 3.2. — In Definition 3.1, (X,x) is called the total space,
(S, s) the base space and (Xs, x) ∼= (D, 0) the special fibre of the (linearly)
admissible deformation.

We can write a (linearly) admissible deformation as a commutative dia-
gram

(3.2) (D, 0)

��

� � i // (X,x)

φ

��
{∗} � � // (S, s)

where i is a closed embedding mapping (D, 0) isomorphically onto (Xs, x).
We will denote a (linearly) admissible deformation by

(i, φ) : (D, 0) � � i // (X,x)
φ // (S, s) .

Definition 3.3. — Given two (linearly) admissible deformations (i, φ) :
D ↪→ X → S and (j, ψ) : D ↪→ Y → T , of D over S and T respectively.
A morphism of (linearly) admissible deformations from (i, φ) to (j, ψ) is a
morphism of the diagram (3.2) being the identity on D → {∗}. Hence, it
consists of two morphisms (τ, σ) such that the following diagram commutes

DnN
i

~~}}
}}

}}
}

� o

j

  @
@@

@@
@@

X

φ

��

τ // Y

ψ

��
S

σ // T

Definition 3.4. — Two (linearly) admissible deformations over the
same base space S are isomorphic if there exists a morphism (τ, σ) with τ
an isomorphism and σ the identity map.

We denote by Art the category of local Artin rings with residue field k
and by Set the category of pointed sets with distinguished element ∗.

TOME 63 (2013), FASCICULE 6



2104 Michele TORIELLI

Definition 3.5. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor.
Define the functor FDD : Art→ Set by setting

FDD(A) :=
{

Isomorphism classes of admissible
deformations of (D, 0) over SpecA

}
.

If (D, 0) ⊂ (Cn, 0) is a germ of a linear free divisor, we define similarly the
functor LFDD : Art→ Set by setting

LFDD(A) :=
{

Isomorphism classes of linearly
admissible deformations of (D, 0) over SpecA

}
.

Theorem 3.6. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor. Then
the functor FDD satisfies Schlessinger’s conditions (H1) and (H2) from [15].
Moreover, if (D, 0) is linear, then also the functor LFDD satisfies conditions
(H1) and (H2).

Proof. — Let A′ → A and A′′ → A be maps in Art such that the
latter is a small extension, see Definition 1.2 from [15]. Consider now X ∈
FDD(A), X ′ ∈ FDD(A′) and X ′′ ∈ FDD(A′′). Define Y := (D,OX′ ×OX
OX′′), by [15], Lemma 3.4, it is flat over A′ ×A A′′ and it is an element of
FDD(A′ ×A A′′). Hence the map τA′,A′′,A of (H1) is surjective.
We want to show now that τA′,A′′,A is a bijection in the case A′′ = k[ε]

and A = k. Let W ∈ FDD(A′ ×A A′′) restrict to X ′ and X ′′, then we can
choose immersions q′ : X ′ ↪→ W and q′′ : X ′′ ↪→ W . Since these maps are
all compatible with the immersions from D, they agree with the chosen
maps u′ : X ↪→ X ′ and u′′ : X ↪→ X ′′, since in this case X = D. Now
by the universal property of fibered product of rings, there is a map Y →
W compatible with the above maps. Since Y and W are both flat over
A′×AA′′, and the map becomes an isomorphism when restricted to D, we
find that, by [10], Exercise 4.2, Y is isomorphic to W and hence they are
equal as elements of FDD(A′ ×A A′′).
The previous proof works similarly also for the functor LFDD. �

Proposition 3.7. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor.
Then in any admissible deformation the singular locus of (D, 0) is deformed
in a flat way.

Proof. — Let f ∈ OCn,0 be a defining equation for (D, 0) and let
φ : (X,x) → (S, s) be a admissible deformation of (D, 0). Any element of
Der(− logD) can be seen as a relation among f, ∂f/∂x1, . . . , ∂f/∂xn and
similarly, any element of Der(− logX/S) can be seen as a relation among
F, ∂F/∂x1, . . . , ∂F/∂xn, where F ∈ OCn×S,(0,s) is a defining equation for

ANNALES DE L’INSTITUT FOURIER
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(X,x). The requirement (3.1) of Definition 3.1 implies then that any rela-
tion among f, ∂f/∂x1, . . . , ∂f/∂xn lifts to a relation among F, ∂F/∂x1, . . . ,

∂F/∂xn and this is equivalent to the deformation of the singular locus of
(D, 0) being flat. See [9], Chapter I, Proposition 1.91. �

Proposition 3.8. — In the situation of Definition 3.1, requirement
(3.1) implies that Der(− logX/S) is a locally free OCn×S,(0,s)-module of
rank n.

Proof. — By Proposition 3.7, the singular locus of (D, 0) is deformed
flatly and so OCn×S,(0,s)/I is a flat OS,s-module and represents a de-
formation of OCn,0/I0, where I = (F, ∂F/∂x1, . . . , ∂F/∂xn) and I0 =
(f, ∂f/∂x1, . . . , ∂f/∂xn). Hence, a free resolution of OCn,0/I0 lifts to a free
resolution of OCn×S,(0,s)/I. Because (D, 0) is free, then a free resolution of
OCn×S,(0,s)/I looks like

0 −→ OnCn×S,(0,s) −→ O
n+1
Cn×S,(0,s)

(F,∂F/∂x1,...,∂F/∂xn)−−−−−−−−−−−−−−−→ OCn×S,(0,s)

−→ OCn×S,(0,s)/I −→ 0

But as explained in Proposition 3.7, we can identify Der(− logX/S) with
the syzygy module of (F, ∂F/∂x1, . . . , ∂F/∂xn), and hence, it is locally free
of rank n. �

Remark 3.9. — In our theory, we require more than only that each fiber
is a free divisor. In fact, let (D, 0) ⊂ (Cn, 0) be a singular free divisor with
a quasi-homogeneous equation f . Then we can consider (X, 0) = (V (f −
t), 0) ⊂ (Cn × C, 0) and φ the projection on (C, 0). In this case each fiber
is a free divisor but this is not an admissible deformation of (D, 0).

Proof. — Because f is quasi-homogeneous, we can take χ, σ1, . . . , σn−1
as a basis of Der(− logD), where χ =

∑n
i=1 αixi∂/∂xi with α1, . . . , αn ∈

C is the Euler vector field and σ1, . . . , σn−1 annihilate f . Hence χ(f) =∑n
i=1 αixi∂f/∂xi = f . Notice that because (X, 0) is non-singular, it is a

free divisor in (Cn × C, 0) and so we can take as Saito matrix for (X, 0),
the matrix

A =



1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 1 0

∂f/∂x1 ∂f/∂x2 · · · ∂f/∂xn f − t



TOME 63 (2013), FASCICULE 6
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Let λi be the vector field represented by the i-th column of A. Consider
now the vector fields σ∗i = σi seen as a vector field in Cn × C and τi =
tλi + ∂f/∂xiλn+1 − ∂f/∂xi

∑n
j=1 αjxjλj . Clearly, σ∗i (f − t) = σi(f) = 0

and so σ∗i ∈ Der(− logX/C). Similarly, τi ∈ Der(− logX/C) because τi ∈
Der(− logX) and its coefficient of ∂/∂t is equal to t∂f/∂xi + ∂f/∂xi(f −
t)− ∂f/∂xi

∑n
j=1 αjxj∂f/∂xj = ∂f/∂xi(f − χ(f)) = 0. This implies that

we have an inclusion 〈σ∗1 , . . . , σ∗n−1, τ1, . . . , τn〉 ⊂ Der(− logX/C). However,
because σ1, . . . , σn−1 are the generators of Ann(f) := {δ ∈ Der(− logD) |
δ(f) = 0}, then any element of Der(− logX/C) that is a linear combination
of λ1, . . . , λn is a linear combinations of σ∗1 , . . . , σ∗n−1. Consider now an
element of Der(− logX/C) that can be written as a linear combination of
the λi involving λn+1. Because it is independent of ∂/∂t, then the coefficient
of λn+1 is forced to be in the Jacobian ideal of f . Because t appear only
in λn+1, this implies that, modulo the σ∗i , it is a linear combination of
τ1, . . . , τn. Hence σ∗1 , . . . , σ∗n−1, τ1, . . . , τn generate Der(− logX/C).

Because f is singular, ∂f/∂xi∈(x1, . . . , xn) for all i = 1, . . . , n and so
each τi has weight bigger than zero, i.e. deg(∂f/∂xiαjxj)−deg(xj)>0. This
tells us that the Euler vector field χ/∈Der(− logX/C)/mC,0 Der(− logX/C)
because χ has weight zero and is not a linear combination of σ1, . . . , σn−1.

�

Remark 3.10. — If f is non-singular, then the deformation defined in
the previous Remark is an admissible deformation.

Proof. — We can suppose f = x1 and we can take as Saito matrix
x1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1


By a similar argument as the proof of the previous Remark, Der(− logX/C)
is generated by the columns of the matrix

x1 − t 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0


and hence the requirement (3.1) of the Definition 3.1 is fulfilled. �
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Remark 3.11. — Let (i, φ) : (D, 0) ↪→ (X,x)→ (S, s) be a (linearly) ad-
missible deformation. Then it is a trivial (linearly) admissible deformation
if and only if it is trivial as deformation of (D, 0) as complex space germ.

Definition 3.12. — The complex space Tε consists of one point with
local ring C[ε] = C + ε · C, ε2 = 0, that is, C[ε] = C[t]/(t2), where t is an
indeterminate. Thus Tε = Spec(C[t]/(t2)).

Definition 3.13. — An infinitesimal (linearly) admissible deformation
of a germ of a (linear) free divisor (D, 0) ⊂ (Cn, 0) is a (linearly) admissible
deformation of (D, 0) over Tε.

Definition 3.14. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divi-
sor. Then FT 1(D) := FDD(C[t]/(t2)). Similarly if (D, 0) is linear, then
LFT 1(D) := LFDD(C[t]/(t2)).

Proposition 3.15 ([9], Chapter II, Proposition 1.5). — Consider a
commutative diagram of complex space germs

(X0, x)

f0

��

� � // (X,x)

f

��
(S0, s) � � // (S, s)

where the horizontal maps are closed embeddings. Assume that f0 factors
as

(X0, x) � � i0 // (Cn, 0)× (S0, s)
p0 // (S0, s)

with i0 a closed embedding and p0 the second projection. Then there exists
a commutative diagram

(X0, x)

f0

&&

� _

i0

��

� � // (X,x)

f

ww

� _

i

��
(Cn, 0)× (S0, s)

p0

��

� � // (Cn, 0)× (S, s)

p

��
(S0, s) � � // (S, s)

with i a closed embedding and p the second projection. That is, the em-
bedding of f0 over (S0, s) extends to an embedding of f over (S, s).

Corollary 3.16. — Any (linearly) admissible deformation of (D, 0) =
(V (f), 0) ⊂ (Cn, 0) over a complex space germ (S, s) is of the form
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(X, (0, s)) = (V (F ), (0, s)) ⊂ (Cn × S, (0, s)), for some unfolding F of f
with φ just the projection on (S, s).

Remark 3.17. — Any infinitesimal (linearly) admissible deformation of
(D, 0) = (V (f), 0) ⊂ (Cn, 0) is of the form (X, 0) = (V (f + ε · f ′), 0) ⊂
(Cn × Tε, 0), for some f ′ ∈ OCn,0, where φ is just the projection on Tε.

By Remark 3.11 and Chapter II, 1.4 from [9], we have the following:

Remark 3.18. — An infinitesimal (linearly) admissible deformation
(X, 0) = (V (f + ε · f ′), 0) → Tε is trivial if and only if there is an iso-
morphism

OCn×Tε,0/(f) ∼= OCn×Tε,0/(f + ε · f ′)
which is the identity modulo ε and which is compatible with the inclusion
of OTε in OCn×Tε,0. Such an isomorphism is induced by an automorphism
ϕ of OCn×Tε,0, mapping xj 7→ xj + εσj(x) and ε 7→ ε such that

(ϕ∗f) =
(
f(x+ ε · σ(x))

)
= (f + ε · f ′),

where x = (x1, . . . , xn) and σ =
∑n
j=1 σj∂/∂xj .

We now prove a relative Saito’s Lemma in order to be able to characterise
an (linearly) admissible deformation by logarithmic vector fields.

Lemma 3.19. — Let (S, s) be a complex space germ with an embedding
(S, s) ⊂ (Cr, 0) and let t = (t1, . . . , tr) be coordinates on the ambient space
(Cr, 0). Let (X,x) ⊂ (Cn×S, (0, s)) be a (linearly) admissible deformation
of a germ of a (linear) free divisor (D, 0) ⊂ (Cn, 0) and let hp = 0 be
a reduced equation for (X,x), locally at p = (x0, t0) ∈ (Cn × S, (0, s)).
Suppose δ′i =

∑n
j=1 a

j
i (x, t)∂/∂xj ∈ Derp(− logX/S), ∀ i = 1, . . . , n, then

det(aji ) ∈ (hp)OCn×S,p.

Proof. — Suppose that det(aji ) does not vanish at p, hence it does not
vanish in a small neighbourhood U of p. This implies that δ′1, . . . , δ′n are
linearly independent in U . Consider now the fibre Xt0 . We have that δ̃′i =∑n
j=1 a

j
i (x, t0)∂/∂xj ∈ Der(− logXt0) and are linearly independent, but

this implies that Xt0 is n-dimensional, contradicting the fact that (X,x) is
a flat (linearly) admissible deformation of (D, 0), that is (n−1)-dimensional.

�

Proposition 3.20. — Let (S, s) be a complex space germ with an em-
bedding (S, s) ⊂ (Cr, 0) and let t = (t1, . . . , tr) be coordinates on the
ambient space (Cr, 0). Let (X,x) ⊂ (Cn × S, (0, s)) be a (linearly) ad-
missible deformation of a germ of a (linear) free divisor (D, 0) ⊂ (Cn, 0)
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and let hp = 0 be a reduced equation for (X,x), locally at p = (x0, t0) ∈
(Cn × S, (0, s)). Then there exist δ′1, . . . , δ′n ∈ Derp(− logX/S) with δ′i =∑n
j=1 a

j
i (x, t)∂/∂xj , such that det(aji ) is a unit multiple of hp.

Proof. — By Proposition 3.8, Derp(− logX/S) is a free OCn×S,p-module
of rank n. Since Der(− logX/S) is coherent, there exists a neighbour-
hood U of p such that Der(− logX/S)|U is free. Let δ′1, . . . , δ′n be a ba-
sis of Der(− logX/S)|U with δ′i =

∑n
j=1 a

j
i (x, t)∂/∂xj . By Lemma 3.19,

det(aji ) = ghp, where g is a holomorphic function on U . Since ∂/∂x1, . . . ,

∂/∂xn is a basis for p ∈ U \X, then g does not vanish on U \X. At a smooth
point p ∈ X, we can suppose X = V (x1) and hence, we may choose as a
basis of Der(− logX/S) on Xreg ∩U the vector fields x1∂/∂x1, . . . , ∂/∂xn.
Thus g does not vanish anywhere on U\(U∩Xsing), but because codimU (U∩
Xsing) > 1, then g does not vanish anywhere on U and so it is a unit. �

Lemma 3.21. — Let R be a commutative ring, A and B be two n × n
matrices and a1, . . . , an be the columns of A. Then

n∑
i=1

det
[
a1, . . . , ai−1, Bai, ai+1, . . . , an

]
= trace(B) det(A).

Proof. — It is know that if we consider a n× n matrix C with columns
c1, . . . , cn, then

dA det(C) =
n∑
i=1

det
[
a1, . . . , ai−1, ci, ai+1, . . . , an

]
,

where d is the tangent map. Then we have the following equalities
n∑
i=1

det
[
a1, . . . , ai−1, Bai, ai+1, . . . , an

]
= dA det(BA)

= d

dt

(
det(A+ tBA)

)
|t=0= det(A) d

dt

(
det(I + tB)

)
|t=0

= det(A)dI det(B) = det(A) trace(B).

�

Lemma 3.22. — Let (S, s) be a complex space germ with an embedding
(S, s) ⊂ (Cr, 0) and let t = (t1, . . . , tr) be coordinates on the ambient
space (Cr, 0). Consider (D, 0) = (V (f), 0) ⊂ (Cn, 0) a germ of a (linear)
free divisor such that Derx0(− logD) is generated by δ1, . . . , δn. Let δ′i =∑n
j=1 a

j
i (x, t)∂/∂xj , i = 1, . . . , n, be a system of holomorphic vector fields

at (x0, s) ∈ (Cn × S, (0, s)) such that
(1) δ′i|Cn,x0 = δi for all i = 1, . . . , n;
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(2) [δ′i, δ′j ] ∈
∑n
k=1OCn×S,(x0,s)δ

′
k for i, j = 1, . . . , n;

(3) det(aji ) = h defines a reduced hypersurface X.
Then for X = {h(x, t) = 0}, δ′1, . . . , δ′n belongs to Der(x0,s)(− logX/S),
{δ′1, . . . , δ′n} is a free basis of Der(x0,s)(− logX/S) and X is a (linearly)
admissible deformation of (D, 0) over (S, s).

Proof. — First of all we need to show that each δ′k∈Der(x0,s)(− logX/S).
We have the following equalities

δ′k(h) = δ′k
(
det[δ′1, . . . , δ′n]

)
=

n∑
j=1

det
[
δ′1 . . . , δ

′
j−1, δ

′
k(δ′j), δ′j+1, . . . , δ

′
n

]
=

n∑
j=1

det
[
δ′1 . . . , δ

′
j−1, [δ′k, δ′j ] + δ′j(δ′k), δ′j+1, . . . , δ

′
n

]
=

n∑
j=1

det
[
δ′1 . . . , δ

′
j−1, [δ′k, δ′j ], δ′j+1, . . . , δ

′
n

]
+

n∑
j=1

det
[
δ′1 . . . , δ

′
j−1, δ

′
j(δ′k), δ′j+1, . . . , δ

′
n

]
.

By 2, det
[
δ′1, ..., δ

′
j−1, [δ′k, δ′j ], δ′j+1, ..., δ

′
n

]
∈ (h)OCn×S,(x0,s) for all j=1, ..., n,

and so the first part of the last equality is in (h)OCn×S,(x0,s). Furthermore,
if we consider the matrices A = [δ′1, ..., δ′n] and B = (∂aik/∂xj)i,j=1,...,n, we
can apply Lemma 3.21 and obtain

n∑
j=1

det[δ′1 . . . , δ′j−1, δ
′
j(δ′k), δ′j+1, . . . , δ

′
n] =

n∑
i=1

∂aik
∂xi

h ∈ (h)OCn×S,(x0,s).

This shows that δ′k(h) ∈ (h)OCn×S,(x0,s) and so δ′k ∈ Der(x0,s)(− logX/S),
for all k = 1, . . . , n.
Notice now that by 1 and 3, h|Cn,x0 = f . Moreover, by 1

Derx0(− logD) ⊂ Der(x0,s)(− logX/S)/mS,s Der(x0,s)(− logX/S).

Consider σ ∈ Der(x0,s)(− logX/S) such that σ|Cn,x0 /∈ Derx0(− logD). But
σ(h) = αh for some α ∈ OCn×S,(x0,s). Hence (σ(h))|Cn,x0 = σ|Cn,x0(f) =
α|Cn,x0f and so σ|Cn,x0 ∈ Derx0(− logD), but this is a contradiction. Hence
Derx0(− logD) = Der(x0,s)(− logX/S)/mS,s Der(x0,s)(− logX/S) and soX
is a (linearly) admissible deformation of (D, 0) over (S, s).
Consider σ∈Der(x0,s)(− logX/S). Then we want to prove that σ∈

∑n
i=1

OCn×S,(x0,s)δ
′
i. By Cramer’s rule, h∂/∂xj∈

∑n
i=1OCn×S,(x0,s)δ

′
i for all j =

1, ..., n, hence we can consider hσ =
∑n
i=1 fiδ

′
i, for some fi∈OCn×S,(x0,s). By
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Lemma 3.19, we have that det[δ′1, ..., δ′i−1, σ, δ
′
i+1, ..., δ

′
n]∈(h)OCn×S,(x0,s).

Thus

hdet
[
δ′1, . . . , δ

′
i−1, σ, δ

′
i+1, . . . , δ

′
n

]
= det

[
δ′1, . . . , δ

′
i−1, hσ, δ

′
i+1, . . . , δ

′
n

]
= det

[
δ′1, . . . , δ

′
i−1, fiδ

′
i, δ
′
i+1, . . . , δ

′
n

]
= fi det

[
δ′1, . . . , δ

′
n

]
= fih ∈ (h2)OCn×S,(x0,s).

Thus fi ∈ (h)OCn×S,(x0,s) for all i. This show that σ =
∑n
i=1(fi/h)δ′i ∈∑n

i=1OCn×S,(x0,s)δ
′
i. �

Notice that if we consider S to be a reduced point, then the previous
Lemma is the same statement of Lemma 2.10.
We can now state and prove the main result of the section:

Theorem 3.23. — Let (D, 0) = (V (f), 0) ⊂ (Cn, 0) be a germ of a free
divisor and δ1, . . . , δn a set of generators for Der(− logD). Any element of
FT 1(D) can be represented by n classes δ̃1, . . . , δ̃n ∈ DerCn /Der(− logD)
such that the OCn×Tε,0-module generated by δ′1 = δ1 + ε · δ̃1, . . . , δ

′
n =

δn+ ε · δ̃n is closed under Lie brackets. If the deformation is linearly admis-
sible, then the coefficients of all δ̃i, in any representation of an element of
FT 1(D), must be linear functions too.

Proof. — Let (X,x) ⊂ (Cn × Tε, 0) be an infinitesimal (linearly) admis-
sible deformation of (D, 0). By Remark 3.17, it is of the form (X, 0) =
(V (f + ε · f ′), 0) ⊂ (Cn × Tε, 0). By Proposition 3.20, the fact that (X, 0)
is the total space of an infinitesimal (linearly) admissible deformation of
(D, 0) implies that there exists an n × n matrix A(ε) with coefficients in
C[x1, . . . , xn, ε]/(ε2) such that detA(ε) = (f + ε · f ′). But ε2 = 0 implies
that we can write A(ε) = B + ε · C, where B and C are n × n matrices
with coefficients in C[x1, . . . , xn]. Hence f = detA(0) = detB and so B is
a Saito matrix for (D, 0). We can then take δi as the columns of B and δ̃i
as the columns of C and this proves that the Lie algebra Der(− logX/Tε) is
generated by δ1 + ε · δ̃1, . . . , δn+ ε · δ̃n as required. Because Der(− logX/Tε)
is a Lie algebra, then [δ′i, δ′j ] ∈ Der(− logX/Tε) for all i, j = 1, . . . , n, but
then [δ′i, δ′j ] ∈

∑n
k=1OCn×S,(x0,s)δ

′
k for i, j = 1, . . . , n.

We now consider the classes of δ̃1, . . . , δ̃n modulo Der(− logD), because
if δ̃1, . . . , δ̃n ∈ Der(− logD), then f ′ ∈ (f)OCn,0 and hence, by [9], Chapter
II, 1.4, the deformation is trivial.
On the other hand, let δ̃1, . . . , δ̃n ∈ DerCn /Der(− logD) be n classes of

vector fields such that the OCn×Tε,0-module generated by δ1+ε· δ̃1, . . . , δn+
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ε · δ̃n is closed under Lie brackets. The determinant of the matrix of coeffi-
cients [δ1 +ε · δ̃1, . . . , δn+ε · δ̃n] is equal to f+ε ·f ′ and so by Lemma 3.22 it
is enough to show that this determinant is reduced. First, noticed that for
ε = 0 the determinant is equal to f and hence is reduced. Now, reducedness
is an open property and so the result holds.
The last part of the statement is trivial. �

3.2. The complexes C• and C•0

We recall here the notion of the complex of Lie algebroid cohomology in
the case of Der(− logD), see [13] for the general theory.

Definition 3.24. — Let C• be the complex with modules

Cp := HomOCn

( p∧
Der(− logD),DerCn /Der(− logD)

)
and differentials

(dp(ψ))(δ1 ∧ · · · ∧ δp+1) :=
p+1∑
i=1

(−1)i
[
δi, ψ(δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δp+1)

]
∑

16i<j6p+1
(−1)i+j−1ψ

(
[δi, δj ] ∧ δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δ̂j ∧ · · · ∧ δp+1

)
.

It is a straightforward computation to check that dp+1 ◦ dp = 0, so C• is
a complex.

Remark 3.25. — Notice that

C0 = DerCn /Der(− logD)

and the map d0 is defined by

d0 : C0 −→ HomOCn (Der(− logD),DerCn /Der(− logD))

σ 7−→ (δ 7−→ [δ, σ]).

We recall now the definition of the complex of Lie algebra cohomology
from [11].

Definition 3.26. — Let C•0 be the complex defined by

Cp0 := HomC

( p∧
Der(− logD)0,

(
DerCn /Der(− logD)

)
0

)
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and the differentials

(
dp0(ψ)

)
(δ1 ∧ · · · ∧ δp+1) :=

p+1∑
i=1

(−1)i
[
δi, ψ(δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δp+1)

]
+

∑
16i<j6p+1

(−1)i+j−1ψ
(
[δi, δj ] ∧ δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δ̂j ∧ · · · ∧ δp+1

)
where (DerCn/Der(− logD))0 is the weight zero part of DerCn/Der(− logD).

(C•0 , d•0) is a well defined complex because it has the same differentials
as the complex (C•, d•) and because Der(− logD)0 is a Lie subalgebra of
Der(− logD).

3.3. Infinitesimal admissible deformations

Theorem 3.27. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor.
Then the germ at the origin of the first cohomology sheaf of the complex
C• is isomorphic to FT 1(D), i.e. H1(C•)0 ∼= FT 1(D).

Proof. — To prove that we can identify H1(C•)0 with FT 1(D), two
things have to be checked: we must first identify the elements of ker(d1:
C1 → C2) with admissible deformations of (D, 0). Then, we have to show
that the image of d0 : C0 → C1 is the collection of trivial admissible defor-
mations of (D, 0).
By Proposition 3.23, we are looking for n classes of vector fields δ̃1, . . . ,

δ̃n ∈ DerCn /Der(− logD) such that the OCn×Tε,0-module generated by the
elements δ1 + ε · δ̃1, . . . , δn + ε · δ̃n is closed under Lie brackets.
Take an element ψ ∈ ker(d1), which means that

ψ([δ, ν])− [δ, ψ(ν)] + [ν, ψ(δ)] = 0 in DerCn /Der(− logD)

for all δ, ν ∈ Der(− logD). Then ψ corresponds to the admissible deforma-
tion given by the OCn×Tε,0-module L generated by

δ1 + ε · ψ(δ1), . . . , δn + ε · ψ(δn).

By C-linearity of the Lie brackets, L is closed under Lie brackets if and
only if for any two elements δ + ε · ψ(δ), ν + ε · ψ(ν) ∈ L we have [δ + ε ·
ψ(δ), ν + ε · ψ(ν)] ∈ L, which is equivalent to

F := [δ, ν] + ε · ([δ, ψ(ν)]− [ν, ψ(δ)]) ∈ L.

Consider G := [δ, ν] + ε ·ψ([δ, ν]) which is an element of L, so the condition
F ∈ L is equivalent to G− F ∈ L, that is

ψ([δ, ν])− [δ, ψ(ν)] + [ν, ψ(δ)] ∈ Der(− logD).
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This means exactly that ψ ∈ ker(d1).
Let us consider now an infinitesimal admissible deformation (X, 0) =

(V (f+ε ·f ′), 0). Then by the previous part of the proof, Der(− logX/Tε) =
〈δ1 + ε · ψ(δ1), . . . , δn + ε · ψ(δn)〉 for some ψ ∈ ker(d1). By Remark 3.18,
f + ε · f ′ is trivial if and only if (ϕ∗f) = (f(x + ε · σ(x))) = (f + ε · f ′),
for some ϕ ∈ Aut(Cn × Tε). In this situation, the module of vector fields
generated by ϕ∗(Der(− logD)) is equal to Der(− logX/Tε), i.e.〈

Dϕ−1(x)ϕ(δ1(ϕ−1(x))), . . . , Dϕ−1(x)ϕ(δn(ϕ−1(x)))
〉

=
〈
δ1 + ε · ψ(δ1), . . . , δn + ε · ψ(δn)

〉
,

where for h : X → Y , then Dxh : TxX → Th(x)Y is the tangent map.
Because we can consider each vector field on Cn also as a map from Cn
into itself, we have the following equalities

Dϕ−1(x)ϕ
(
δi(ϕ−1(x))

)
= Dx−ε·σ(x)ϕ(δi(x− ε · σ(x)))
= δi(x− ε · σ(x)) + ε ·Dx−ε·σ(x)σ

(
δi(x− ε · σ(x))

)
= δi(x)− ε ·

(
Dxδi(σ(x))−Dx−ε·σ(x)σ(δi(x))

)
= δi(x) + ε ·

(
Dxσ(δi(x))−Dxδi(σ(x))

)
= δi(x) + ε · [σ, δi](x)

and that tells us that ψ(δi) = [σ, δi], i.e. ψ ∈ image(d0). �

Lemma 3.28. — Let D ⊂ Cn be a free divisor. Then Der(− logD) is
a self-normalising Lie subalgebra of DerCn . That is, if we consider χ ∈
DerCn such that [χ, δ] ∈ Der(− logD) for all δ ∈ Der(− logD), then χ ∈
Der(− logD).

Proof. — By the definition of Der(− logD), it is enough to show that
if we consider p ∈ D a smooth point, then χ(p) ∈ TpD. Without loss of
generality, we can suppose that at p the divisor D is defined by the equation
x1 = 0, that its Saito matrix is

[δ1, · · · , δn] =


x1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1


and that χ(p) =

∑n
i=1 ai∂/∂xi with ai ∈ OCn,p. In this way, we have

reduced the problem to proving that a1 ∈ (x1)OCn,p.
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By hypothesis, [χ, δ] ∈ Derp(− logD) for all δ ∈ Derp(− logD), in par-
ticular

[χ, δ1] = a1∂/∂x1 −
n∑
i=1

x1∂ai/∂x1∂/∂xi

= (a1 − x1∂a1/∂x1)∂/∂x1 −
n∑
i=2

x1∂ai/∂x1∂/∂xi ∈ Derp(− logD).

Hence, (a1 − x1∂a1/∂x1) ∈ (x1)OCn,p and so a1 ∈ (x1)OCn,p as required.
�

In a similar way we can prove the following:

Lemma 3.29. — LetD⊂ Cn be a linear free divisor. Then Der(− logD)0
is a self-normalising Lie subalgebra of (DerCn)0.

Proposition 3.30. — H0(C•) = 0.

Proof. — Consider σ ∈ H0(C•) = ker(d0). Hence, [−, σ] is the zero map,
i.e. for all δ ∈ Der(− logD) we have that [δ, σ] ∈ Der(− logD). Then by
Lemma 3.28, σ ∈ Der(− logD). �

Proposition 3.31. — Let (D, 0) ⊂ (Cn, 0) be a germ of a smooth
divisor. Then FT 1(D) = 0.

Proof. — We can suppose f = x1 and we can take as Saito matrix the
matrix

S = [δ1, . . . , δn] =


x1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

 .
Moreover, we can represent an element of C1 as the column of the n × n
matrix S + ε · T , where T is the matrix

T = [δ̃1, . . . , δ̃n] =


g1 g2 · · · gn
0 0 · · · 0
...

...
...

0 0 · · · 0


and gi = gi(x2, . . . , xn) ∈ OCn,0.

Because [δi, δj ] = 0 for every i, j = 1, . . . , n, then the element S + ε · T
is in the kernel of d1 if and only if gi = −∂g1/∂xi for all i = 2, . . . , n. To
show that this element is zero in cohomology, it is enough to find σ ∈ C0 =
DerCn /Der(− logD) such that [σ, δi] = δ̃i for all i = 1, . . . , n, i.e. S + ε · T
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is in the image of d0. Consider σ = g1∂/∂x1, then it is the element we are
looking for. �

Proposition 3.32. — Let (D, 0) ⊂ (Cn, 0) be the germ of the normal
crossing divisor. Then FT 1(D) = 0.

Proof. — Let f = x1 · · ·xn be a defining equation for D. We can take as
Saito matrix

S = [δ1, . . . , δn] =


x1 0 · · · 0
0 x2 · · · 0
...

...
...

0 0 · · · xn

 .
Moreover, we can represent an element of C1 as columns of the n×n matrix
S + ε · T , where T is the matrix

T = [δ̃1, . . . , δ̃n] =


g1,1 g1,2 · · · g1,n
g2,1 g2,2 · · · g2,n
...

...
...

gn,1 gn,2 · · · gn,n


and gi,j = gi,j(x1, . . . , x̂i, . . . , xn) ∈ OCn .
Because [δi, δj ] = 0 for every i, j = 1, . . . , n, then the element represented

by S + ε · T is in the kernel of d1 if and only if Ai,j = −[δi, δ̃j ] + [δj , δ̃i] ∈
Der(− logD) for all i, j = 1, . . . , n. Let us suppose that i < j, then

Ai,j =



−xi∂g1,j/∂xi
...
gi,j
...

−xi∂gj,j/∂xi
...

−xi∂gn,j/∂xi


+



xj∂g1,i/∂xj
...

xj∂gi,i/∂xj
...
−gj,i
...

xj∂gn,i/∂xj


Now, Ai,j ∈ Der(− logD) for all i, j = 1, . . . , n if and only if Ai,j = 0 if
and only if

T =


g1,1 −x2∂g1,1/∂x2 · · · −xn∂g1,1/∂xn

−x1∂g2,2/∂x1 g2,2 · · · −xn∂g2,2/∂xn
...

...
...

−x1∂gn,n/∂x1 −x2∂gn,n/∂x2 · · · gn,n

 .
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To show that this element is zero in cohomology, it is enough to find σ ∈
C0 = DerCn /Der(− logD) such that [σ, δi] = δ̃i for all i = 1, . . . , n, i.e.
S + ε · T is in the image of d0. Consider

σ =

g1,1
...

gn,n


then it is the element we are looking for. �

Remark 3.33. — There exist free divisors such that FT 1(D) 6= 0.

Proof. — Consider f = xy(x− y)(x+ y) ∈ C[x, y] and the germ of a free
divisor (D, 0) = (V (f), 0) ⊂ (C2, 0) with Saito matrix

A =
[
x 0
y x2y − y3

]
.

To find an infinitesimal admissible deformation for (D, 0) we have to find a
non zero element α ∈ H1(C•)0 = FT 1(D). Let α be defined by the columns
of the following matrix

B =
[
0 0
0 xy2 − y3

]
.

this is an element of H1(C•)0 that describes the infinitesimal admissible
deformation X = V (xy(x − y)(x + (1 + ε)y)) = V (f + ε(x2y2 − xy3)) ⊂
C2× Tε. This infinitesimal admissible deformation is non-trivial because it
is a non-trivial deformation of f as a germ of function because x2y2 − xy3

is not in the Jacobian ideal of f , see [9], Chapter II, 1.4. �

3.4. Infinitesimal linearly admissible deformations

Theorem 3.34. — Let (D, 0) ⊂ (Cn, 0) be a germ of a linear free di-
visor. Then the germ at the origin of the first cohomology sheaf of the
complex C•0 is isomorphic to LFT 1(D), i.e. H1(C•0 )0 ∼= LFT 1(D).

Proof. — This is a consequence of Theorem 3.27 and the second part of
Theorem 3.23. �

Corollary 3.35. — Let (D, 0) ⊂ (Cn, 0) be a germ of a linear free divi-
sor. Then the functor LFDD satisfies Schlessinger condition (H3) from [15].

Proof. — This is a consequence of the previous Theorem and of the fact
that the cohomology of a finite dimensional Lie algebra is finite dimensional.

�
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Corollary 3.36. — Let (D, 0) ⊂ (Cn, 0) be a germ of a linear free
divisor. Then LFDD has a hull.

Proof. — This is a consequence of Theorem 2.11 from [15], Theorem 3.6
and the previous Corollary. �

Proposition 3.37. — H0(C•0 ) = 0.

Proof. — Like the proof of Proposition 3.30 but using Lemma 3.29. �

Definition 3.38. — LetM be a vector space and let g be a Lie algebra.
A representation of g in M is a homomorphism % of g in gl(M).

In what follows, we will refer both to the homomorphism % and to the
vector space M as representations of g.

Remark 3.39. — LFT 1(D) is the first Lie algebra cohomology of
Der(− logD)0 with coefficients in the non-trivial representation (DerCn /
Der(− logD))0.

We collect now some results from [7], [11] and [20] about Lie algebras
and Lie algebra cohomology, that will allow us to compute LFT 1(D) more
easily in the case of germs of reductive linear free divisors.

Proposition 3.40 ([7], Corollary 1.6.4). — Let g be a reductive Lie
algebra and let % be a finite dimensional representation of g. Then the
following condition are equivalent

(1) % is semisimple;
(2) for all a in the centre of g, %(a) is semisimple.

We will use the following celebrated theorem of Hochschild and Serre

Theorem 3.41 ([11], Theorem 10). — Let g be a reductive Lie algebra
of finite dimension over C. Let M be a finite dimensional semisimple rep-
resentation of g such that Mg = (0), where Mg is the submodule of M on
which g acts trivially. Then Hn(g,M) = 0 for all n > 0.

In order to apply the previous theorem, we need the following:

Lemma 3.42. — Let D ⊂ Cn be a reductive linear free divisor. Then
all the elements in the centre of Der(− logD)0 are diagonalizable.

Proof. — By definition gD = {A | xAt∂t ∈ Der(− logD)0} is a reductive
Lie algebra and hence by Lemma 2.20 and by Lemma 3.6, (2) of [8], G◦D
is a reductive Lie group. Hence by definition, the centre ZG◦

D
of G◦D is

composed of semisimple transformations. Moreover, the Lie algebra of the
identity component of ZG◦

D
coincides with ZgD the centre of gD and hence

it is composed of diagonalizable elements. �
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Proposition 3.43. — Let D ⊂ Cn be a reductive linear free divi-
sor. Then the representation of Der(− logD)0 in (DerCn /Der(− logD))0
is semisimple.

Proof. — This is a consequence of Proposition 3.40 and Lemma 3.42. �

Theorem 3.44. — Let (D, 0) ⊂ (Cn, 0) be a germ of a reductive linear
free divisor. Then LFT 1(D) = 0.

Proof. — By Lemma 3.29, (DerCn /Der(− logD))Der(− logD)0
0 = 0 and

hence by Theorem 3.41, LFT 1(D) = 0. �

Corollary 3.45. — Let (D, 0) ⊂ (Cn, 0) be a germ of a reductive
linear free divisor. Then it is formally rigid.

The statement of Theorem 3.44 is false if we consider non-reductive germs
of linear free divisors. In fact, Brian Pike suggested us the following

Example 3.46. — Consider f = x5(x4
4 − 2x5x

2
4x3 + x2

5x
2
3 + 2x2

5x4x2 −
2x3

5x1) ∈ C[x1, . . . , x5] as a defining equation of the germ of a linear free
divisor (D, 0) ⊂ (C5, 0). Then we can consider the Saito matrix

x4 x3 x2 x1 0
x5 x4 0 0 x2
0 x5 2x4 −x3 2x3
0 0 x5 −2x4 3x4
0 0 0 −3x5 4x5

 .
Consider σ = 16x1∂/∂x1 + 11x2∂/∂x2 + 6x3∂/∂x3 +x4∂/∂x4− 4x5∂/∂x5,
then σ ∈ Ann(D) and trace(σ) = 30, hence, by Lemma 2.18, (D, 0) is the
germ of a non-reductive linear free divisor.
To find an infinitesimal linearly admissible deformation for (D, 0) we have

to find a non-zero element α ∈ H1(C•0 )0 = LFT 1(D). Let α be defined by
the columns of the following matrix

0 0 0 0 0
0 0 2x3 0 0
0 0 −2x4 0 0
0 0 0 0 0
0 0 0 0 0

 .
This is an element of H1(C•0 )0 that describes the infinitesimal linearly ad-
missible deformation X = V (x5(x4

4(1 + ε) − 2x5x
2
4x3 + x2

5x
2
3 + 2x2

5x4x2 −
2x3

5x1)) = V (f + ε(x4
4x5)) ⊂ C5× Tε. This infinitesimal linearly admissible

deformation is non-trivial because it is a non-trivial deformation of f as a
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germ of function, in fact x4
4x5 /∈ J(D). Moreover, one can check, via a long

Macaulay 2 computation, that LFT 1(D) is 4-dimensional and this element
is one of its generators. For more details see [19], Appendix C.1.

3.5. The weighted homogeneous case

Proposition 3.47. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free di-
visor defined by a weighted homogeneous polynomial of degree k. Then
an element of FT 1(D) can be represented by f ′ ∈ C[x1, . . . , xn]k, where
C[x1, . . . , xn]k is the space of polynomial of weighted degree k.

Proof. — Let f be a defining equation for (D, 0). Because f is weighted
homogeneous, then there exists χ ∈ Der(− logD) such that χ(f) = f .

Consider (X,x) an infinitesimal admissible deformation of (D, 0). By
Remark 3.17, we can suppose it is defined by the equation f + ε · f ′, where
f ′ ∈ OCn,0. Suppose that f ′ is weighted homogeneous of degree β. Because
(X,x) is admissible, it means that χ lifts and so there exists χ′ ∈ DerCn such
that (χ+ε·χ′)(f+ε·f ′) = (1+ε·α)(f+ε·f ′) and so χ′(f)+χ(f ′) = αf+f ′,
for some α ∈ OCn,0. Because f ′ is weighted homogeneous of degree β, then
χ(f ′) = βf ′. Hence, the previous expression becomes (χ′−α)f = (1−β)f ′.
However, (χ′ − α)f lies in the Tyurina ideal of f which is equal to the
Jacobian ideal of D due to the quasi-homogeneity of f and so (1− β)f ′ is
in the Jacobian ideal of D. If f ′ is in the Jacobian ideal, then the admissible
deformation is trivial, by [9], Chapter II, 1.4, otherwise β = 1 and so f ′ is
of weighted degree k.

If f ′ is not weighted homogeneous, we can apply the previous argument
to each of its weighted homogeneous parts. �

Lemma 3.48. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor defined
by a weighted homogeneous polynomial. Then a basis of FT 1(D) can be
chosen to be made of monomials.

Proof. — This is because we have a good C∗-action. �

Corollary 3.49. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor
defined by a weighted homogeneous polynomial of degree k with non-zero
weights (a1, . . . , an). Then

dimC FT 1(D) 6 dimC C[x1, . . . , xn]k/J(D) ∩ C[x1, . . . , xn]k,

where J(D) is the Jacobian ideal of D.
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Proof. — It is a consequence of Lemma 3.48, Proposition 3.47 and that
J(D) defines only trivial deformations. �

Corollary 3.50. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor
defined by a weighted homogeneous polynomial. Then FDD has a hull.

Proof. — By Corollary 3.49, condition (H3) from [15] is satisfied. Then
the result follows from Theorem 3.6 and Theorem 2.11 from [15]. �

Because each germ of a linear free divisor (D, 0) ⊂ (Cn, 0) is defined by
a homogeneous equation of degree n, we have the following:

Corollary 3.51. — Let (D, 0) ⊂ (Cn, 0) be a germ of a linear free
divisor. Then FDD has a hull.

By Corollary 2.4, every reduced curve is a free divisor. Then:

Theorem 3.52. — Let (D, 0) ⊂ (C2, 0) be a reduced curve germ defined
by a weighted homogeneous polynomial of degree k. Then

FT 1(D) ∼= C[x, y]k/J(D) ∩ C[x, y]k.

Proof. — Let f be a defining equation for (D, 0). Because f is weighted
homogeneous, then there exists χ ∈ DerCn such that χ(f) = f . Let δ =
∂f/∂x∂/∂y− ∂f/∂y∂/∂x. Because D has an isolated singularity, then δ, χ
form a basis of Der(− logD).
By Proposition 3.47, we know that if (X,x) is an infinitesimal admissible

deformation of (D, 0) defined by f + ε · f ′, then f ′ ∈ C[x, y]k.
On the other hand, let f ′ ∈ C[x, y]k, then consider (X, 0) defined by

f + ε · f ′ = F , then it is an infinitesimal admissible deformation because
both δ and χ lift. In fact, we can consider δ′ = ∂F/∂x∂/∂y − ∂F/∂y∂/∂x
and χ as elements of Der(− logX/Tε).
We have to go modulo J(D) ∩ C[x, y]k to avoid trivial admissible defor-

mations. �

Remark 3.53. — The previous Theorem is false in higher dimension.

Proof. — Consider f = 4x3y2 − 16x4z + 27y4 − 144xy2z + 128x2z2 −
256z3 ∈ C[x, y, z]. It is weighted homogeneous of degree 12 with weights
(2, 3, 4) and it defines a germ of a free divisor (D, 0) ⊂ (C3, 0). A Macaulay
2 computation shows that dimC C[x, y, z]12/J(D) ∩ C[x, y, z]12 = 3 but
FT 1(D) = 0. �

Corollary 3.54. — Let (D, 0) ⊂ (C2, 0) be a germ of a free divisor
defined by a homogeneous polynomial of degree k. Then dimC FT 1(D) =
k − 3 if k > 3, and is zero otherwise.
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Proof. — If k = 1, then J(D) = C[x, y] and if k = 2, then J(D) = (x, y)
and so, by Theorem 3.52, in both cases FT 1(D) = 0.
Let us suppose now that k > 3. We have that dimC C[x, y]k = k + 1 and

that J(D)∩C[x, y]k gives us 4 relations: x∂f/∂x, x∂f/∂y, y∂f/∂x, y∂f/∂y.
Because (D, 0) is an isolated singularity, then ∂f/∂x, ∂f/∂y form a regular
sequence and so the Koszul relation generates the relations between the
partial derivative of f . Because the Koszul relation is of degree k − 1 > 1,
then x∂f/∂x, x∂f/∂y, y∂f/∂x, y∂f/∂y are linearly independent. Hence,
dimC C[x, y]k/J(D) ∩ C[x, y]k = k + 1− 4 = k − 3. We conclude by Theo-
rem 3.52. �

Example 3.55.
(1) Consider f = xy(x−y)(x+y) ∈ C[x, y] and let (D, 0) = (V (f), 0) ⊂

(C2, 0). Then FT 1(D) is 1-dimensional and it is generated by x2y2.
(2) Consider f = x5 + y4 ∈ C[x, y] and the germ of a free divisor

(D, 0) = (V (f), 0) ⊂ (C2, 0). A direct computation shows that
FT 1(D) = 0 and so it is formally rigid.

Remark 3.56. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor defined
by a weighted homogeneous polynomial. Then we can compute the coho-
mology of C• degree by degree, because each module and map involved is
degree preserving.

Theorem 3.57. — Let (D, 0) ⊂ (Cn, 0) be a germ of a free divisor de-
fined by a weighted homogeneous polynomial. Then FT 1(D) ∼= (H1(C•)0)0,
where (H1(C•)0)0 is the weight zero part of H1(C•)0.

Proof. — Let f be a defining equation for (D, 0) weighted homogeneous
of degree k and let (X,x) be an infinitesimal admissible deformation of
(D, 0). By Proposition 3.47, we can suppose (X,x) has defining equation
f + ε · f ′, with f ′ weighted homogeneous of degree k.
Because Der(− logD) is a graded module, we can consider δ1, . . . , δn ∈

Der(− logD) a weighted homogeneous basis. By Proposition 3.20,
Der(logX/Tε) is generated by δ1 + ε · δ̃1, . . . , δn + ε · δ̃n such that the deter-
minant of their coefficients is f + ε ·f ′. Because f and f ′ are both weighted
homogeneous of the same degree, then each δ̃i is weighted homogeneous of
the same degree as δi, for all i = 1, . . . , n.
As seen in the proof of Theorem 3.27, there exists ψ ∈ C1 such that

ψ(δi) = δ̃i. So by the previous argument ψ is a weight-preserving map and
so represents an element of (H1(C•)0)0. �

Corollary 3.58. — Let (D, 0) ⊂ (Cn, 0) be a germ of a linear free
divisor. Then FT 1(D) ∼= LFT 1(D).
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Proof. — It is clear that (H1(C•)0)0 = H1(C•0 )0. �

Corollary 3.59. — Let (D, 0) ⊂ (Cn, 0) be a germ of a reductive
linear free divisor. Then it is formally rigid also as free divisor.

Proof. — This is a consequence of Theorem 3.44 and Corollary 3.58. �

4. Properties of the cohomology

4.1. Constructibility of the cohomology

As we have seen in the previous section, the cohomology of the complex
C• plays an important role in the theory of admissible deformations for a
germ of a free divisor. From Schlessinger’s Theorem 2.11 from [15], we know
that the main point in proving the existence of a hull is the finiteness of this
cohomology. The following subsection is devoted to study this problem.

Definition 4.1. — Let X be a n-dimensional complex manifold. We
denote by DX the sheaf of differential operators on X and by GrF•(DX)
the sheaf on T ∗X of graded rings associated with the filtration F • by the
order of σ(P ) the principal symbol of a differential operator P .

Definition 4.2. — Let D ⊂ Cn be a divisor defined by the ideal I. We
define the V-filtration relative to D on DCn by

VDk (DCn) :=
{
P ∈ DCn | P (Ij) ⊂ Ij−k ∀j ∈ Z

}
for all k ∈ Z, where Ij = OCn when j is negative. Similarly, we define

VDk (DCn,x) :=
{
P ∈ DCn,x | P (f j) ⊂ f j−k ∀j ∈ Z

}
,

where f is a local equation for D at x. If there is no confusion, we denote
VDk (DCn) and VDk (DCn,x) simply by Vk(DCn) and Vk(DCn,x), respectively.

Definition 4.3. — A logarithmic differential operator is an element of
V0(DCn).

Remark 4.4. — We have

Der(− logD) = DerCn ∩V0(DCn) = Gr1
F•(V0(DCn)),

and
F 1(V0(DCn)) = OCn ⊕Der(− logD).

Proof. — The first equality comes directly from the definitions. The sec-
ond one is a consequence of the fact that F 1(DCn) = OCn ⊕DerCn . �
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Definition 4.5. — LetM be a OCn -module. A connection onM with
logarithmic poles along D or a logarithmic connection on M, is a homo-
morphism over C

∇ : M−→ Ω1(logD)⊗M,

that verifies Leibniz’s identity

∇(hm) = dh⊗m+ h∇(m)

for any h ∈ OCn and m ∈ M, where d is the exterior derivative over OCn .
For any q ∈ N we will denote Ωq(logD)⊗M by Ωq(logD)(M).

Definition 4.6. — LetM be a OCn -module with ∇ a logarithmic con-
nection. We can define the following left OCn -linear morphism

∇′ : Der(− logD) −→ EndC(M)

δ 7−→ ∇δ
where ∇δ(m) := 〈δ,∇(m)〉.

Remark 4.7. — The morphism ∇′ verifies Leibniz’s condition

∇δ(hm) = δ(h)m+ h∇δ(m)

for any δ ∈ Der(− logD), h ∈ OCn and m ∈M.

Remark 4.8. — Given a left OCn -linear morphism

∇′ : Der(− logD) −→ EndC(M)

verifying Leibniz’s condition, we define

∇ : M−→ Ω1(logD)(M)

with ∇(m) the element of Ω1(logD)(M) = HomOCn (Der(− logD),M)
such that ∇(m)(δ) = ∇′(δ)(m).

Definition 4.9. — A logarithmic connection ∇ is integrable if, for each
δ, δ′ ∈ Der(− logD), it verifies

∇[δ,δ′] = [∇δ,∇δ′ ],

where [ , ] represents the Lie bracket in Der(− logD) and the commutator
in EndC(M).

Example 4.10. — Consider M = DerCn /Der(− logD). Then we can
introduce on M the integrable logarithmic connection defined by ∇δ :=
[δ,−]. If we takeM = Der(− logD) or DerCn , then ∇δ = [δ,−] does not in
general define a connection onM because it is not OCn -linear in δ.
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Proposition 4.11 ([3], Corollary 2.2.6). — Let D ⊂ Cn be a free divi-
sor and letM be a OCn -module. An integrable logarithmic connection on
M gives rise to a left V0(DCn)-module structure onM and vice versa.

We now explain a condition that allows us to put a structure of V0(DCn)-
module on Der(− logD) and DerCn .
Fix D ⊂ Cn a free divisor and δi =

∑n
j=1 aij∂/∂xj , i = 1, . . . , n a

basis for Der(− logD), where aij ∈ OCn for i, j = 1, . . . , n. We know that
Der(− logD) forms a Lie subalgebra of DerCn , hence we can write

[δi, δj ] =
n∑
k=1

bijkδk

where bijk ∈ OCn for all i, j, k = 1, . . . , n and similarly we can write

[δi, ∂/∂xj ] =
n∑
k=1

cijk
∂

∂xk

where cijk ∈ OCn for all i, j, k = 1, . . . , n. In this way we obtain the data of
2n matrices Bi = (bijk) and Ci = (cijk) of holomorphic function on Cn. Let
us write δ · ∂ := [δ, ∂] for any derivation ∂ and any logarithmic derivation
δ. Then we have

δi · δt = Biδ
t, 1 6 i 6 n

and

δi · ∂t = Ci∂
t, 1 6 i 6 n

where δ = (δ1, . . . , δn) and ∂ = (∂/∂x1, . . . , ∂/∂xn).

Lemma 4.12. — For i, j = 1, . . . , n we have that

δi(Cj)− δj(Ci) + [Cj , Ci] =
n∑
k=1

bijkCk

if and only if
n∑
k=1

akr
∂(bijk)
∂xl

= 0, ∀ i, l, r = 1, . . . , n.

Proof. — We first notice that by definition cijk = −∂(aik)/∂xj . The first
equality is an equality between matrices, hence we can check it entry by
entry. Let 1 > l, r > 0. We now check the entry (l, r). In this case the
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expression becomes

− δi(
∂(ajr)
∂xl

) + δj(
∂(air)
∂xl

) +
n∑
k=1

∂(ajk)
∂xl

∂(air)
∂xk

−
n∑
k=1

∂(aik)
∂xl

∂(ajr)
∂xk

= −
n∑
k=1

bijk
∂(akr)
∂xl

.

Consider now the Jacobi identity[
[δi, δj ],

∂

∂xl

]
+
[[
δj ,

∂

∂xl

]
, δi

]
+
[[ ∂
∂xl

, δi
]
, δj

]
= 0.

The coefficient of ∂/∂xr of the previous expression is

δi

(∂(ajr)
∂xl

)
− δj

(∂(air)
∂xl

)
−

n∑
k=1

∂(ajk)
∂xl

∂(air)
∂xk

+
n∑
k=1

∂(aik)
∂xl

∂(ajr)
∂xk

−
n∑
k=1

bijk
∂(akr)
∂xl

−
n∑
k=1

akr
∂(bijk)
∂xl

= 0.

Hence, the first equality is satisfied if and only if
n∑
k=1

akr
∂(bijk)
∂xl

= 0.

�

Proposition 4.13. — We can define a structure of left V0(DCn)-module
on DerCn if

n∑
k=1

akr
∂(bijk)
∂xl

= 0, ∀ i, l, r = 1, . . . , n.

Proof. — To define a structure of left V0(DCn)-module on DerCn , we
define the action of δi on any derivation ∂ by

δi • ∂ := [δi, ∂],

or in other words
δi • ∂t := Ci∂

t, 1 6 i 6 n.
The structure just introduced is a V0(DCn)-module structure if and only if

(δiδj − δjδi) • ∂t =
( n∑
k=1

bijkδk

)
• ∂t.

An easy computation shows us that this is true if and only if

δi(Cj)− δj(Ci) + [Cj , Ci] =
n∑
k=1

bijkCk
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hence we can conclude by Lemma 4.12. �

Remark 4.14. — Notice that the action on DerCn of any logarithmic
derivation δ =

∑n
k=1 βkδk is given by

δ • ∂t =
n∑
k=1

βkCk∂
t.

Lemma 4.15. — For i, j = 1, . . . , n,
n∑
k=1

alk
∂(bijr)
∂xk

= 0, ∀ i, l, r = 1, . . . , n

if and only if

δi(Bj)− δj(Bi) + [Bj , Bi] =
n∑
k=1

bijkBk.

Proof. — This is similar to the proof of Lemma 4.12. �

Proposition 4.16. — We can define a structure of left V0(DCn)-module
on Der(− logD) if

n∑
k=1

alk
∂(bijr)
∂xk

= 0, ∀ i, l, r = 1, . . . , n.

Proof. — As the proof of Proposition 4.13. �

Corollary 4.17. — Let D ⊂ Cn be a linear free divisor. Then DerCn
and Der(− logD) are left V0(DCn)-modules.

Proof. — In this case bijk ∈ C and so the two previous conditions are
trivially fulfilled. �

Corollary 4.18. — LetD ⊂ C2 be a free divisor defined by a weighted
homogeneous equation. Then DerC2 and Der(− logD) are left V0(DC2)-
modules.

Proof. — Because D is defined by f a weighted homogeneous equation
and because Der(− logD) is a free OC2 -module of rank 2, then we can
choose χ, δ as a basis of Der(− logD), where χ is an Euler vector field and
δ(f) = 0. Then [χ, δ] = αδ, where α ∈ C and so all the bijk ∈ C. Hence the
two previous conditions are trivially fulfilled. �

Definition 4.19. — Define the complex

Ω•(logD)
(
DerCn/Der(− logD)

)
:= Ω•(logD)⊗OCn

(
DerCn/Der(− logD)

)
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with differentials

∇p: Ωp(logD)
(
DerCn/Der(− logD)

)
−→ Ωp+1(logD)

(
DerCn/Der(− logD)

)
given by

∇p(ω ⊗ δ) := dω ⊗ δ + (−1)pω ∧∇(δ),

where d is the usual exterior derivative on Ω•(logD) and∇(δ) is the element
of Ω1(logD)⊗OCn (DerCn /Der(− logD)) such that [ν, δ] = ν · ∇(δ) for all
ν ∈ Der(− logD).

Theorem 4.20. — There is an isomorphism of complexes of sheaves
of complex vector spaces between Ω•(logD)(DerCn /Der(− logD)) and C•,
defined by

γp : Ωp(logD)(DerCn /Der(− logD)) −→ Cp

γp(ω1 ∧ · · · ∧ ωp ⊗ δ)(δ1 ∧ · · · ∧ δp) := det(ωi · δj)16i,j6pδ.

Proof. — Applying Theorem 3.2.1 from [3] in our case, we deduce that
there is an isomorphism ψ• between the complex

Ω•(logD)(DerCn /Der(− logD))

and the dual of the logarithmic Spencer complex

HomV0(DCn )(V0(DCn)⊗OCn

•∧
Der(− logD),DerCn /Der(− logD)).

The isomorphism is defined locally by

ψp((ω1 ∧ · · · ∧ ωp)⊗ δ)(P ⊗ (δ1 ∧ · · · ∧ δp)) := P · det(ωi · δj)16i,j6p · δ.

On the other hand, we can write ψp = λp ◦γp, where λp is the isomorphism

λp : Cp −→ HomV0(DCn )

(
V0(DCn)⊗OCn

p∧
Der(− logD),

DerCn /Der(− logD)
)
,

defined by

λp(α)
(
P ⊗ (δ1 ∧ · · · ∧ δp)

)
:= P · α(δ1 ∧ · · · ∧ δp).

A direct computation shows that λp commutes with the differentials and
hence defines an isomorphism of complexes.
Hence, also γp is an isomorphism and commutes with the differentials

and therefore defines an isomorphism of complexes. �
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Definition 4.21. — Let D ⊂ Cn be a divisor. We say that D is a
Koszul free divisor at x if it is free at x and if there exists a basis δ1, . . . , δn of
Derx(− logD) such that the sequence of symbols σ(δ1), . . . , σ(δn) is regular
in GrF•(DCn)x. If D is a Koszul free divisor at every point, we simply say
that it is a Koszul free divisor.

Notice that for a free divisor D, to be Koszul is equivalent to being holo-
nomic in the sense of Definition 3.8 from [14], i.e. the logarithmic stratifi-
cation of D is locally finite. See [8], Theorem 7.4.

Example 4.22.
(1) ([4], Example 2.8, 3) Each reduced divisor D ⊂ C2 is Koszul free.
(2) The normal crossing divisor of Example 2.12 is Koszul free.
(3) ([4], Example 2.8, 5) Consider the free divisor D = V (28z3 −

27x2z2 +24x4z+2432xy2z−22x3y2−33y4) ⊂ C3 with Saito matrix

A = [δ1, δ2, δ3] =

 6y 4x2 − 48z 2x
8z − 2x2 12xy 3y
−xy 9y2 − 16xz 4z

 .
Then the sequence of symbols σ(δ1), σ(δ2), σ(δ3) is regular in
GrF•(DCn).

(4) ([4], Example 4.2) Consider the free divisor D = V (xy(x + y)(y +
xz)) ⊂ C3 with Saito matrixx 4x2 0

y −y2 0
0 −z(x+ y) xz + y


Then D is not Koszul free.

Theorem 4.23. — Let (D, 0) ⊂ (Cn, 0) be a germ of a Koszul free divi-
sor such that

∑n
k=1 akl∂(bijk)/∂xr = 0 for i, j, l, r = 1, . . . , n and∑n

l=1 akl∂(bijr)/∂xl = 0, for i, j, k, r = 1, . . . , n. Then all Hi(C•) are con-
structible sheaves of finite dimensional complex vector spaces.

Proof. — Write E0 = DerCn /Der(− logD), E1 = DerCn and E2 =
Der(− logD). Using the assumptions, we deduce from Proposition 4.13
and 4.16, that we can consider the short exact sequence

0 −→ E2 −→ E1 −→ E0 −→ 0

as a resolution of the V0(DCn)-module E0. By twisting with OCn [D], we
find another V0(DCn)-resolution

0 −→ E2[D] −→ E1[D] −→ E0[D] −→ 0.
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By [5], Proposition 1.2.3, the complexes DCn
L
⊗V0(DCn ) Ei[D], for i =

1, 2 are concentrated in degree zero. Hence, we can compute the complex
DCn

L
⊗V0(DCn ) E0[D] through the above resolution as

DCn ⊗V0(DCn ) E2[D] −→ DCn ⊗V0(DCn ) E1[D].

By [5], Proposition 1.2.3, the above complex is holonomic in each degree
and we deduce that RHomDCn (OCn ,DCn

L
⊗V0(DCn ) E0[D]) is constructible.

By Theorem 4.20 and by noticing that the isomorphism of [5], Corollary
3.1.5, is true for any V0(DCn)-module, we have the following isomorphisms

C• ∼= Ω•(logD)(E0) ∼= RHomDCn (OCn ,DCn
L
⊗V0(DCn ) E0[D])

and hence, we can conclude. �

Corollary 4.24. — Let (D, 0) ⊂ (Cn, 0) be a germ of a Koszul free
divisor such that

∑n
k=1 akl∂(bijk)/∂xr = 0 and

∑n
k=1 alk∂(bijr)/∂xk = 0,

for i, j, l, r = 1, . . . , n. Then FDD has a hull.

Proof. — By Theorem 4.23, condition (H3) from [15] is satisfied. Then
the result follows from Theorem 3.6 and Theorem 2.11 from [15]. �

Corollary 4.25. — Let (D, 0) ⊂ (C2, 0) be a germ of a free divisor
defined by a weighted homogeneous equation. Then FDD has a hull.

Proof. — By Example 4.22, (D, 0) is Koszul. Because (D, 0) is defined
by f a weighted homogeneous equation then we can choose χ, δ as a basis
of Der(− logD), where χ is an Euler vector field and δ(f) = 0. Then
[χ, δ] = αδ, where α ∈ C and so all the bijk ∈ C. Hence all the hypothesis
of previous Corollary are fulfilled. �

Corollary 4.26. — Let (D, 0) ⊂ (Cn, 0) be a germ of a Koszul linear
free divisor. Then all Hi(C•) are constructible sheaves of finite dimensional
complex vector spaces.

Proof. — This follows from Theorem 4.23 and the fact that if (D, 0) is
linear then bijk ∈ C. �

The author is not aware if there exists a subclass of the Koszul free divisor
that fulfil the assumptions of Theorem 4.23. However, we know that not
all Koszul free divisor satisfies them. A direct computation shows that the
last Koszul free divisor described in Example 4.22 does not fulfil them.

Moreover, the author thinks that the approach used to put a logarithmic
connection on DerCn and Der(− logD) is a particular case of the notion of
integrability up to homotopy, see [1].
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4.2. Propagation of Deformations

In this final subsection, we prove a result which highlights the difference
between the theory of admissible deformations and the classical deforma-
tion theory of singularities.

We suppose that (D, 0) ⊂ (Cn, 0) is a germ of a free divisor such that
there exists a germ of a free divisor (D′, 0) ⊂ (Cn−1, 0) such that (D, 0) =
(D′ × C, 0), i.e. there exists a defining equation for D in C[[x1, . . . , xn−1]].

Theorem 4.27 (Corollary 4.37). — There is an isomorphism of sheaves

π−1Hi(C•D′) ∼= Hi(C•D)

where π : (D, 0) → (D′, 0) is the projection on the first factor of (D, 0) =
(D′ × C, 0). In particular, we have

π−1FT 1(D′) ∼= FT 1(D).

Observe that in the ordinary deformation theory of singularities, if
(D, 0) = (D′ × C, 0) and T 1

(D′,0) is non-zero then T 1
(D,0) is infinite dimen-

sional. See [9], Chapter II, 1.4.

Lemma 4.28. — In this situation

Der(− logD) = (Der(− logD′)⊗OCn−1,0
OCn,0)⊕OCn,0

∂

∂xn
and

DerCn /Der(− logD) = DerCn−1 /Der(− logD′)⊗OCn−1,0
OCn,0.

Hence, if δ ∈ Der(− logD), it can be written as δ = (δ′, h∂/∂xn), where
δ′ ∈ Der(− logD′)⊗OCn−1,0

OCn,0 and h ∈ OCn,0.

To distinguish between the complexes for (D, 0) and for (D′, 0) we will
denote them respectively by (C•D, d•D) and (C•D′ , d•D′).

Proposition 4.29. — There is an isomorphism

% :
p∧

Der(− logD) −→
(
OCn,0 ⊗OCn−1,0

p∧
Der(− logD′)

)
⊕
(
OCn,0 ⊗OCn−1,0

p−1∧
Der(− logD′)

)
(δ1 ∧ · · · ∧ δp) =

(
δ′1, h1

∂

∂xn

)
∧ · · · ∧

(
δ′p, hp

∂

∂xn

)
7−→

(
δ′1 ∧ · · · ∧ δ′p,

p∑
k=1

(−1)p−khkδ′1 ∧ · · · ∧ δ̂′k ∧ · · · ∧ δ
′
p

)
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Proof. — This is because
∧pOCn,0 = 0 for p > 2 and because in general,

if R is a commutative ring and A and B are R-modules, then
p∧

(A⊕B) =
⊕
i+j=p

( i∧
A⊗R

j∧
B
)
. �

As a consequence

Corollary 4.30. — With the hypotheses of Proposition 4.29

CpD = HomOCn,0

(
OCn,0 ⊗OCn−1,0

p∧
Der(− logD′),DerCn /Der(− logD)

)
⊕HomOCn

(
OCn,0 ⊗OCn−1,0

p−1∧
Der(− logD′),DerCn /Der(− logD)

)
= CpD′ ⊗OCn−1,0

OCn,0 ⊕ Cp−1
D′ ⊗OCn−1,0

OCn,0.

Remark 4.31. — It is possible to write an element Γ ∈ CpD for p > 0 as

Γ =
(
ψ, φ) =

(∑
i>0

xinψi,
∑
i>0

xinφi

)
=
∑
i>0

xin(ψi, φi
)

with ψi ∈ CpD′ and φi ∈ C
p−1
D′ .

By Remark 4.31, we can describe the differentials

Corollary 4.32. — The differentials have the following expression

d̃p : HomOCn,0

(
OCn,0 ⊗OCn−1,0

p∧
Der(− logD′),DerCn /Der(− logD)

)
−→ HomOCn,0

(
OCn,0 ⊗OCn−1,0

p+1∧
Der(− logD′),DerCn /Der(− logD)

)
where

(d̃p(ψ))(σ1 ∧ · · · ∧ σp+1) :=
∑
i>0

xin(dpD′(ψi))(σ1 ∧ · · · ∧ σp+1).

Proposition 4.33. — The differential on C•D is given by

dpD : CpD −→ C
p+1
D

(ψ, φ) 7−→
(
d̃p(ψ), d̃p−1(φ) + (−1)p+1

[ ∂

∂xn
, ψ(−)

])
.

Proof. — Consider Γ = (ψ, φ) ∈ CpD. We want now to compute dpD(Γ) ∈
Cp+1
D . By Remark 4.31, we need to check it only on Der(− logD′), hence

(4.1) (dpD(Γ))(σ1 ∧ · · · ∧ σp+1, ν1 ∧ · · · ∧ νp)
= (dpD(Γ))(σ1 ∧ · · · ∧ σp+1) + (dpD(Γ))(ν1 ∧ · · · ∧ νp),
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where σi, νj ∈ Der(− logD′).
We now look at the first part of the right hand side of the previous

equality

(dpD(Γ))(σ1 ∧ · · · ∧ σp+1)

=
p+1∑
i=1

(−1)i
[
σi,Γ(σ1 ∧ · · · ∧ σ̂i ∧ · · · ∧ σp+1)

]
+

∑
16i<j6p+1

(−1)i+j−1Γ
(
[σi, σ′j ] ∧ σ1 ∧ · · · ∧ σ̂i ∧ · · · ∧ σ̂j ∧ · · · ∧ σp+1

)
= (d̃p(ψ))(σ1 ∧ · · · ∧ σp+1).

Consider now the second part of equation (4.1) from above. Put νp+1 :=
∂/∂xn. Then we have

%

((
ν1, 0 ·

∂

∂xn

)
∧ · · · ∧

(
νp, 0 ·

∂

∂xn

)
∧
(

0, 1 · ∂

∂xn

))
=
(
0, ν1 ∧ · · · ∧ νp

)
and hence

(dpD(Γ))(ν1 ∧ · · · ∧ νp)
= (dpD(Γ))(ν1 ∧ · · · ∧ νp+1)

=
p+1∑
i=1

(−1)i
[
νi,Γ(ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ νp+1)

]
+

∑
16i<j6p+1

(−1)i+j−1Γ
(
[νi, νj ] ∧ ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ ν̂j ∧ · · · ∧ νp+1

)
.

We now look at the first part of the right hand side of the previous equality,
it is equal to

p+1∑
i=1

(−1)i
[
νi,Γ(ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ νp+1)

]
= (−1)p+1

[ ∂

∂xn
,Γ(ν1 ∧ · · · ∧ νp)

]
+

p∑
i=1

(−1)i
[
νi,Γ

(
ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ νp ∧

∂

∂xn

)]
= (−1)p+1

[ ∂

∂xn
, ψ(ν1 ∧ · · · ∧ νp)

]
+

p∑
i=1

(−1)i
[
νi, φ(ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ νp)

]
.
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Moreover∑
16i<j6p+1

(−1)i+j−1Γ
(
[νi, νj ] ∧ ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ ν̂j ∧ · · · ∧ νp+1

)
=

p∑
i=1

(−1)i+pΓ
([
νi,

∂

∂xn

]
,∧ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ νp

)
+

∑
16i<j6p

(−1)i+j−1Γ
(

[νi, νj ] ∧ ν1 ∧ · · · ∧ ν̂i ∧ · · ·

· · · ∧ ν̂j ∧ · · · ∧ νp ∧
∂

∂xn

)
=

∑
16i<j6p

(−1)i+j−1φ
(
[νi, νj ] ∧ ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ ν̂j ∧ · · · ∧ νp

)
.

Here the important point is that [νi, ∂/∂xn] = 0 because νi ∈ Der(− logD′).
Hence

(dpD(Γ))(ν1 ∧ · · · ∧ νp)

= (−1)p+1
[ ∂

∂xn
, ψ(ν1 ∧ · · · ∧ νp)

]
+

p∑
i=1

(−1)i
[
νi, φ(ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ νp)

]
+

∑
16i<j6p

(−1)i+j−1φ
(
[νi, νj ] ∧ ν1 ∧ · · · ∧ ν̂i ∧ · · · ∧ ν̂j ∧ · · · ∧ νp

)
= (−1)p+1

[ ∂

∂xn
, ψ(ν1 ∧ · · · ∧ νp)

]
+ (d̃p−1(φ))(ν1 ∧ · · · ∧ νp).

�

Proposition 4.34. — We can rewrite the differential as

dpD : CpD −→ C
p+1
D

(ψ, φ) 7−→
∑
i>0

xin
(
dpD′(ψi), d

p−1
D′ (φi) + (−1)p+1(i+ 1)ψi+1

)
.

Definition 4.35. — We define the morphism J to be the inclusion

J : HomOCn−1,0

( p∧
Der(− logD′),DerCn−1 /Der(− logD′)

)
= CpD′ ↪→ C

p
D

= HomOCn,0

(
OCn,0 ⊗OCn−1,0

p∧
Der(− logD′),DerCn /Der(− logD)

)
⊕HomOCn,0

(
OCn,0 ⊗OCn−1,0

p−1∧
Der(− logD′),DerCn /Der(− logD)

)
= CpD′ ⊗OCn−1 OCn,0 ⊕ Cp−1

D′ ⊗OCn−1,0
OCn,0
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ψ 7−→ x0
n(ψ, 0).

All the previous work was devoted proving that in order to compute the
cohomology of D it is enough to compute that of D′:

Theorem 4.36. — The morphism J is a quasi-isomorphism.

Proof. — It is enough to show that the cokernel of J is acyclic. Consider
then

Γ =
∑
i>1

xin(ψi, φi) + (0, φ0) ∈ coker(J)

and suppose that Γ ∈ ker(dpD). Then we have dpD′(ψi) = 0 and dpD′(φi) =
(−1)p(i+ 1)ψi+1 for all i > 0. Define now

Λ :=
∑
i>1

xin( (−1)pφi−1

i
, 0) ∈ Cp−1

D

then we have that

dp−1
D (Λ) =

∑
i>1

xin(dp−1
D′ Λi, (−1)p(i+ 1)Λi+1) = Γ.

Hence, Γ vanishes in cohomology. �

Corollary 4.37. — There is an isomorphism of sheaves

π−1Hi(C•D′) ∼= Hi(C•D)

where π : (D, 0) → (D′, 0) is the projection on the first factor of (D, 0) =
(D′ × C, 0). In particular, we have

π−1FT 1(D′) ∼= FT 1(D).

Proof. — This follows because π−1 is an exact functor. �
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