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ASYMPTOTIC COHOMOLOGY VANISHING AND
A CONVERSE TO THE ANDREOTTI-GRAUERT

THEOREM ON SURFACES

by Shin-ichi MATSUMURA

Abstract. — In this paper, we study relations between positivity of the cur-
vature and the asymptotic behavior of the higher cohomology group for tensor
powers of a holomorphic line bundle. The Andreotti-Grauert vanishing theorem
asserts that partial positivity of the curvature implies asymptotic vanishing of cer-
tain higher cohomology groups. We investigate the converse implication of this
theorem under various situations. For example, we consider the case where a line
bundle is semi-ample or big. Moreover, we show the converse implication holds on
a projective surface without any assumptions on a line bundle.
Résumé. — Dans cet article, nous étudions les relations entre la positivité de

la courbure et le comportement asymptotique de la cohomologie de degré supérieur
des puissances tensorielles d’un fibré en droites holomorphe. Le théorème d’annula-
tion d’Andreotti-Grauert affirme que la positivité partielle de la courbure implique
l’annulation asymptotique de la cohomologie de certains degrés supérieurs. Nous
étudions la réciproque de ce théorème dans plusieurs situations. Par exemple, nous
considérons le cas d’un fibré en droite semi-ample ou gros. De plus, nous mon-
trons que la réciproque du théorème d’Andreotti-Grauert est vraie sur les surfaces
projectives sans aucune hypothèse sur le fibré en droites.

1. Introduction

In complex geometry, the positivity concept plays an important role. In
particular, a positive line bundle is fundamental and important in the the-
ory of several complex variables and algebraic geometry. For this reason, a
positive line bundle has been characterized in various ways. For example,
some positive multiple gives an embedding to the projective space (geomet-
ric characterization), all higher cohomology groups of some positive multi-
ple are zero (cohomological characterization), and the intersection number

Keywords: Asymptotic cohomology groups, partial cohomology vanishing, q-positivity,
hermitian metrics, Chern curvatures.
Math. classification: 14C20, 14F17, 32L15.
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with any subvariety is positive (numerical characterization). The purpose
of this paper is to generalize these characterizations to a q-positive line
bundle.
Throughout this paper, let X be a compact complex manifold of di-

mension n, L a (holomorphic) line bundle on X and q an integer with
0 6 q 6 n− 1. Sometimes we may assume that X is Kähler or projective.
In this paper, we study relations between the q-positivity and the co-

homological q-amplitude of a line bundle. The fundamental relations are
discussed in [9]. Küronya and Totaro investigated the cohomological q-
amplitude of a line bundle in terms of algebraic geometry (see [13], [21]).
We consider a q-ample line bundle in terms of complex geometry. Let us
recall the definition of a q-positive (cohomologically q-ample) line bundle.

Definition 1.1. — (1) A holomorphic line bundle L on X is called
q-positive, if there exists a (smooth) hermitian metric h whose Chern cur-
vature

√
−1Θh(L) has at least (n− q) positive eigenvalues at any point on

X as a (1, 1)-form.
(2) A holomorphic line bundle L on X is called cohomologically q-ample, if
for any coherent sheaf F onX there exists a positive integerm0 = m0(F) >
0 such that

Hi
(
X,F ⊗OX(L⊗m)

)
= 0 for i > q, m > m0.

A 0-positive line bundle is a positive line bundle in the usual sense.
Further, it follows from the Serre vanishing theorem that a cohomologically
0-ample line bundle is an ample line bundle in the usual sense of algebraic
geometry. Thanks to the Kodaira embedding theorem, we know that a
positive line bundle coincides with an ample line bundle. We attend to
generalize this relation to a q-positive line bundle.
Andreotti and Grauert proved that a q-positive line bundle is always q-

ample. (see [1, Théorème 14], [9, Proposition 2.1]). It is of interest to know
whether the converse implication of the Andreotti-Grauert theorem holds.
In this paper, we mainly discuss the following problem.

Problem 1.2. — ([9, Problem 2.2]). Does the converse implication of
the Andreotti-Grauert theorem hold ? That is to say, is a q-ample line
bundle always q-positive ?

This problem was first posed by Demailly, Peternell and Schneider in [9].
Precisely speaking, they consider a uniformly q-ample line bundle. However,
Totaro showed that the uniform q-amplitude is the same concept as the
cohomological q-amplitude (see [21, Theorem 6.2]). When q is zero, this

ANNALES DE L’INSTITUT FOURIER



A CONVERSE TO THE ANDREOTTI-GRAUERT THEOREM 2201

problem is affirmative. Therefore it is a natural question. However it has
been an open problem for a long time, except the case of q = 0.

In Section 2, we study this problem when X is a smooth projective
surface. The main result of this section is an affirmative answer for Problem
1.2 on a surface (Theorem 1.3).

Theorem 1.3. — On a smooth projective surface X, the converse of
the Andreotti-Grauert theorem holds. That is, the following conditions are
equivalent.
(A) L is cohomologically q-ample.
(B) L is q-positive.

For the proof of Theorem 1.3, we establish Theorem 2.1. Theorem 2.1
also leads to Corollary 2.6, which can be seen as a generalization of [12,
Theorem 1]. The idea of the proof of Theorem 2.1 is to use a solution of
the global equation (the Monge-Ampère equation).

In his paper [8], Demailly proved the converse of the holomorphic Morse
inequality under various situations. These results can be seen as a “par-
tial" converse of the Andreotti-Grauert theorem. The original part of this
paper is to give an “exact" converse (see [8] and Section 5 of this paper
for the precise statement). By combining Theorem 1.3 and the result of
[8], the asymptotic behavior of the higher cohomology on a surface can be
interpreted in terms of the curvature.

In Section 3, various characterizations of the q-positivity of a semi-ample
line bundle are given on an arbitrary compact complex manifold. A line
bundle L is called semi-ample, if its holomorphic global sections of some
positive multiple of L have no common zero set. A semi-ample line bundle
induces a holomorphic map to the projective space. (See [14] for more
details on a semi-ample line bundle.)
Theorem 3.1 gives a relation between the fibre dimension of a holomor-

phic map and the q-positivity. When the map is the holomorphic map as-
sociated to a sufficiently large multiple of a semi-ample line bundle L, con-
dition (B) in Theorem 3.1 is equivalent to the cohomological q-amplitude
of L (see [20, Proposition 1.7]). It leads to the following theorem:

Theorem 1.4. — Let L be a semi-ample line bundle on a compact
complex manifold X. Then the following conditions (A), (B) and (C) are
equivalent.
(A) L is q-positive.
(B) The semi-ample fibration of L has fibre dimensions at most q.
(C) L is cohomologically q-ample.

TOME 63 (2013), FASCICULE 6



2202 Shin-ichi MATSUMURA

Further if X is projective, the conditions above are equivalent to condition
(D).
(D) For every subvariety Z with dimZ > q, there exists a curve C on Z
such that the degree of L on C is positive.

Condition (B) (resp. (C), (D)) gives a geometric (resp. cohomological,
numerical) characterization of a q-positive line bundle. In particular, the
converse of the Andreotti-Grauert theorem holds for a semi-ample line bun-
dle on an arbitrary compact complex manifold.
In section 4, we consider the Zariski-Fujita type theorem (Theorem 4.1)

in order to investigate the q-positivity of a big line bundle. In particular,
we know that the converse of the Andreotti-Grauert theorem for a big
line bundle is reduced to the case of varieties of smaller dimension (the
non-ample locus).
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2. The Monge-Ampère equation and (n− 1)-positivity

This section is devoted to prove Theorem 2.1 and its corollaries. Through-
out this section, let L be a line bundle on a compact Kähler manifold X
and ω a Kähler form on X. First we give the proof of Theorem 2.1.

Theorem 2.1. — Let L be a line bundle on a compact Kähler manifold
X and ω a Kähler form on X. Assume that the intersection number

(
L ·

{ω}n−1) is positive. Here {ω} denotes the cohomology class in H1,1(X,R)
which is defined by ω.

ANNALES DE L’INSTITUT FOURIER
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Then L is (n−1)-positive. That is, there exists a smooth hermitian metric
h whose Chern curvature

√
−1Θh(L) has at least 1 positive eigenvalue at

every point on X.

Proof. — The main idea of the proof is to use a solution of the Monge-
Ampère equation. In order to solve the Monge-Ampère equation, we make
use of the following Calabi-Yau type theorem. It is a deep result which was
proved as a special case in [22]. Roughly speaking, it says that the product
of the eigenvalues of a Kähler form (which represents a given Kähler class
) can be controlled.

Theorem 2.2. — ([22]). Let M be a compact Kähler manifold of di-
mension n and ω̃ a Kähler form on M . For a positive smooth (n, n)-form
F > 0 with

∫
M
F =

∫
M
ω̃n, there exists a function ϕ ∈ C∞(M,R) with the

following properties :
(1) (ω̃ + ddcϕ)n = F at every point on M
(2) (ω̃ + ddcϕ) is a Kähler form on M .

Fix a smooth hermitian metric h of L. Then the Chern curvature√
−1Θh(L) represents the first Chern class of L. We want to construct

a real-valued smooth function ϕ on X such that
√
−1Θh(L) + ddcϕ is

(n − 1)-positive (that is, the (1, 1)-form has at least 1 positive eigenvalue
everywhere). If we obtain a function ϕ with the condition above, we can
easily see that L is (n−1)-positive. In fact, the Chern curvature associated
to the metric defined by he−2ϕ is equal to

√
−1Θh(L) + ddcϕ. Therefore

it is sufficient for the proof to construct a function ϕ with the condition
above. To construct such function, we use Theorem 2.2.
Since ω is a positive form, the (1, 1)-form

√
−1Θh(L) + kω is a Kähler

form on X for a sufficiently large constant k > 0. Now we consider the
following Monge-Ampère equation:(√

−1Θh(L) + kω + ddcϕ
)n = Dk

(
kω
)n
,(√

−1Θh(L) + kω + ddcϕ
)
> 0.

Here Dk is a positive constant which depends on k. In order to solve this
equation, we need to define Dk by

Dk :=
∫
X

(√
−1Θh(L) + kω

)n∫
X

(
kω
)n .

WhenDk is defined as above, we can take a solution of the equation, thanks
to Theorem 2.2. In fact, by applying Theorem 2.2 to a Kähler form

ω̃ :=
(√
−1Θh(L) + kω

)
TOME 63 (2013), FASCICULE 6
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and a smooth (n, n)-form F := Dk

(
kω
)n, we can obtain a solution. Note

that the equality
∫
X
ω̃n =

∫
X
F holds by the definition of Dk.

Now we shall show that the constantDk is greater than 1 for a sufficiently
large k > 0. We use the assumption of the theorem only for this argument.
By the definition of Dk we have

Dk =
∫
X

(√
−1Θh(L) + kω

)n∫
X

(
kω
)n

=
(
L+ k{ω}

)n
kn({ω}n)

=
(
Ln
)

+ kn
(
Ln−1 · {ω}

)
+ · · ·+ kn−1n

(
L · {ω}n−1)

kn({ω}n) + 1.

The molecule in the right hand is a polynomial of degree (n − 1) with
respect to k. Further, the coefficient of the highest degree term is equal to
n(L · {ω}n−1). It is positive by the assumption. Therefore the first term in
the right hand is greater than 0 for a sufficiently large k > 0. Hence Dk is
greater than 1.
Finally we show that

√
−1Θh(L)+ddcϕ has at least 1 positive eigenvalue

at every point on X. Here λ1(x) > · · · > λn(x) denote the eigenvalues of(√
−1Θh(L) + kω + ddcϕ

)
with respect to kω at x ∈ X. Then the function λi for i = 1, 2, . . . , n is well-
defined as a function onX. Further λi for i = 1, 2, . . . , n is continuous, since
the j-th symmetric function in λ1, . . . , λn is smooth. Since ϕ is a solution of
the Monge-Ampère equation, the functions λi satisfy the following equality
everywhere:

λ1(x)λ2(x) · · ·λn(x) = Dk > 1, at everypoint x ∈ X.

In addition, λn(x) is positive for any point x ∈ X since(√
−1Θh(L) + kω + ddcϕ

)
is a Kähler (1, 1)-from. Thus we know λ1(x) > 1 at every point on X since
Dk is greater than 1.

Now the eigenvalues of
√
−1Θh(L) + ddcϕ = (

√
−1Θh(L) + kω + ddcϕ)− kω

are (λ1−1), . . . , (λn−1) since all eigenvalues of kω are 1. Thus
(√
−1Θh(L)+

ddcϕ
)
has 1 positive eigenvalue (λ1 − 1) everywhere. It completes the

proof. �
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On the rest of this section, we give the proofs of Theorem 2.3 and Corol-
lary 2.6.

Theorem 2.3. — (=Theorem 1.3). On a smooth projective surface X,
the converse of the Andreotti-Grauert theorem holds. That is, the following
conditions are equivalent.
(A) L is cohomologically q-ample.
(B) L is q-positive.

In the statement of Theorem 2.3, it follows that condition (B) leads to
condition (A) from the Andreotti-Grauert theorem. The converse is an open
problem and a main subject in this paper. Theorem 2.3 claims Problem 1.2
is affirmatively solved on a smooth projective surface.

For the proof of Theorem 2.3, we shall prepare Lemma 2.4 and Lemma
2.5. These lemmata may be known facts. However we give proofs for readers’
convenience. Lemma 2.4 can be proved even if X has singularities. However
for our purpose, we need only the case where X is smooth.

Lemma 2.4. — Let L be a line bundle on a smooth projective variety
X. Then the following conditions are equivalent.
(1) The dual line bundle L⊗−1 is not pseudo-effective.
(2) L is cohomologically (n− 1)-ample.

Proof. — This theorem follows from the Serre duality theorem.
First we confirm that condition (2) implies (1). For a contradiction, we

assume that L⊗−1 is psuedo-effective. Then we can take an ample line
bundle A onX such that A⊗L⊗−m has a non-zero section for every positive
integer m > 0. Note that A does not depend on m. For the coherent sheaf
OX(KX ⊗A⊗−1), we can take a positive integer m such that

hn
(
X,OX(KX ⊗A⊗−1 ⊗ L⊗m)

)
= 0

from condition (2). Here KX denotes the canonical bundle on X. It follows
from the Serre duality theorem that h0(X,OX(A ⊗ L⊗−m)

)
= 0 . This is

a contradiction to the choice of A.
Conversely we show that condition (1) implies (2). Fix an ample line

bundle B on X. For a given coherent sheaf F on X, we can take the
following resolution of F by taking a large integer k > 0:

0 −→ G −→ ⊕Ni=1OX(B⊗−k) −→ F −→ 0.

In fact, F ⊗OX(B⊗k) is globally generated for a sufficient large k since B
is ample. Therefore we obtain a surjective map ⊕Ni=1OX(B⊗−k) −→ F as
a sheaf morphism. We define G to be the kernel of its map.

TOME 63 (2013), FASCICULE 6
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Thus it is sufficient to show that there is a positive integer m0 such that

hn
(
X,OX(B⊗−k ⊗ L⊗m)

)
= 0 for m > m0

In fact, the long exact sequence yields hn
(
X,F ⊗OX(L⊗m)

)
= 0 for m >

m0. It means that L is cohomologically (n− 1)-ample.
Since L⊗−1 is not psuedo-effective, we can take a sufficiently large integer

m0 such that K⊗−1
X ⊗ B⊗k ⊗ L⊗−m is not psuedo-effective for m > m0.

Since this line bundle is not psuedo-effective, we have

h0(X,OX(K⊗−1
X ⊗B⊗k ⊗ L⊗−m)

)
= 0.

Again by using the Serre duality theorem, we have

hn(X,OX(B⊗−k ⊗ L⊗m)) = 0

for m > m0. �

Lemma 2.5. — Let L be a line bundle on a smooth projective variety
X of dimension n. Then the following conditions are equivalent.
(2) L is cohomologically (n− 1)-ample.
(3) There exists a strongly movable curve C on X such that the degree of
L on C is positive.

Here a curve C is called a strongly movable curve if

C = µ∗
(
A1 ∩ · · · ∩An−1

)
for suitable very ample divisors Ai on X̃, where µ : X̃ → X is a birational
morphism. See [4, Definition 1.3] for more details.
Proof. — The deep result proved in [4] yields Lemma 2.5. It follows from

[4, Theorem2.2] that the cone of pseudo-effective line bundles is the dual
cone of strongly movable curves. That is, a line bundle is pseudo-effective
if and only if the degree of the line bundle on every strongly movable curve
is semi-positive. From Lemma 2.4, L is cohomological (n− 1)-ample if and
only if L⊗−1 is not psuedo-effective. Therefore then there exists a strongly
movable curve C such that

(L⊗−1 · C) < 0.

It completes the proof. �

By applying Lemma 2.5 and Theorem 2.1, we shall complete the proof
of Theorem 2.3.

Proof of Theorem 2.3. When X is a projective surface, the closure of the
cone of strongly movable curves coincides with the closure of the cone of

ANNALES DE L’INSTITUT FOURIER
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ample line bundles (that is, the nef cone). Indeed, the dual cone of pseudo-
effective line bundles equals to the closure of the cone of ample line bundles.
Therefore, when L is cohomologically 1-ample, there exists an ample line
bundle H with (L ·H) > 0 by Lemma 2.5.

Since H is ample, the first Chern class of H contains a Kähler form ω.
Since the intersection number (L ·H) equals to (L · {ω}), the line bundle
L satisfies the assumption in Theorem 2.1. Therefore if follows that L is
1-positive from Theorem 2.1. �

At the end of this section, we prove Corollary 2.6, which can be seen
as a generalization of [12, Theorem 1] to a psuedo-effective line bundle.
In [12], in order to show that an effective line bundle is (n − 1)-positive,
Fuse and Ohsawa apply n-convexity of a non-compact complex manifold.
We make use of the Monge-Ampère equation instead of n-convexity of a
non-compact complex manifold.

Corollary 2.6. — Let L be a pseudo-effective line bundle on a com-
pact Kähler manifold X. Assume that the first Chern class of L is not
trivial.
Then L is (n− 1)-positive.

A line bundle is called pseudo-effective if there exists a singular her-
mitian metric h whose curvature current

√
−1Θh(L) is positive on X as

a (1, 1)-current. A pseudo-effective line bundle (which is not numerically
trivial) is cohomologically (n − 1)-ample (see Lemma 2.4). Therefore a
pseudo-effective line bundle should be (n − 1)-positive if the converse of
the Andreotti-Grauert theorem holds. Corollary 2.6 claims that it is affir-
mative on a compact Kähler manifold.

Proof. — Under the assumption of Corollary 2.6, we show that the line
bundle L satisfies the assumption in Theorem 2.1.

Fix a Kähler form ω on X and take an arbitrary smooth (n− 1, n− 1)-
form γ on X. The (n − 1, n − 1)-form ωn−1 is strictly positive. Therefore
there exists a large constant C > 0 such that

−Cωn−1 6 γ 6 Cωn−1.

Here we used the compactness of X. Since L is psuedo-effective, there exists
a singular hermitian metric such that

√
−1Θh(L) is a positive current. Since

TOME 63 (2013), FASCICULE 6
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√
−1Θh(L) is a positive current, the following inequalities hold:

−C
∫
X

√
−1Θh(L) ∧ ωn−1 6

∫
X

√
−1Θh(L) ∧ γ

6 C
∫
X

√
−1Θh(L) ∧ ωn−1.

The positive current
√
−1Θh(L) represents the first Chern class of L. Thus

the integral
∫
X

√
−1Θh(L)∧ωn−1 agrees with the intersection number

(
L ·

{ω}n−1). If the intersection number is zero, it follows from the inequality
above that

∫
X

√
−1Θh(L) ∧ γ is zero for any smooth (n − 1, n − 1)-form

γ. It means that
√
−1Θh(L) is a zero current. This is a contradiction to

the assumption that the first Chern class of L is not trivial. Hence the
intersection number

(
L · {ω}n−1) must be positive. It follows that L is

(n− 1)-positive from Theorem 2.1. �

3. The fiber dimension and q-positivity

The main purpose of this section is to give the proof of Theorem 1.4. For
this purpose, we first consider Theorem 3.1.

Theorem 3.1. — Let Φ : X −→ Y be a holomorphic map (possibly not
surjective) from X to a compact complex manifold Y . Then the following
conditions are equivalent.

(A) Fix a Hermitian form ω (that is, a positive definite (1, 1)-form) on
Y . Then there exists a function ϕ ∈ C∞(X,R) such that the (1, 1)-form
Φ∗ω + ddcϕ is q-positive (that is, the form has at least (n − q) positive
eigenvalues at any point on X as a (1, 1)-form).
(B) The map Φ has fibre dimensions at most q.

Throughout this section, let Φ : X −→ Y be a holomorphic map from
X to a compact complex manifold Y . Fix a hermitian form ω on Y . Set
ω̃ := Φ∗ω, which is a semi-positive (1, 1)-form on X.

First we show that condition (A) implies (B). For a contradiction, we
assume that there is a fibre F of the map Φ with dimF > q. Then by
condition (A), X allows a smooth function ϕ such that ω̃ + ddcϕ is q-
positive. Since F is a fibre, the restriction to F of ω̃ = Φ∗ω is equal to
zero. It implies that the restriction to F of ddcϕ is q-positive. Even if F
has singularities, we can define the q-positivity (see Definition 4.2). Since
the dimension of F is strictly larger than q, the Levi-form of ϕ|F has at
least 1 positive eigenvalue.

ANNALES DE L’INSTITUT FOURIER
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Since F is compact, the function ϕ|F must have the maximum value on
F . Suppose that p ∈ F attains the maximum value of ϕ|F . Then the Levi-
form of ϕ|F at p has no positive eigenvalues. It is a contradiction. Hence
condition (A) leads to (B).

On the rest of this section, we shall show that condition (B) implies (A).
From now on, we assume that the dimension of every fibre of the map Φ
is at most q. Then we want to construct a function ϕ with condition (A).
For this purpose, we define the degenerated locus of a hermitian form by
the pull-back of the map Φ as follows:

Definition 3.2. — The degenerated locus by the pull-back of Φ is de-
fined to be

Bq := { p ∈ X
∣∣ Φ∗ω has at least (q + 1) zero eigenvalues at p}.

Since ω̃ = Φ∗ω is a semi-positive form, ω̃ is q-positive outside Bq. There-
fore if Bq is empty, condition (A) is satisfied by taking ϕ := 0. Thus it is
sufficient to consider the case where Bq is not empty. The following lemma
asserts that the degenerated locus is locally the zero set of finite holomor-
phic functions.

Proposition 3.3. — The degenerated locus Bq is a closed analytic set
on X.

Proof. — First we show that Bq is a closed set inX. Fix a hermitian form
ω on X. We denote by λ1 > · · · > λn > 0, the eigenvalues of ω̃ with respect
to ω. The j-th symmetric function in λ1, . . . , λn are smooth since ω̃ and ω
is smooth forms. Therefore λi for 0 6 i 6 n is a (well-defined) continuous
function on X. Now p is contained in Bq if and only if λn−q(p) = 0. Thus
the degenerated locus is closed since λn−q is a continuous function.
It remains to show that Bq is the zero set of finite holomorphic functions.

Now we take a local coordinate (w1, . . . , wm) on Y . Here m denotes the di-
mension of Y . Then the degenerate locus of ω coincides with the degenerate
locus of

∑m
i=1 dd

c|wi|2. In fact, it follows since we have

(1/C)
m∑
i=1

ddc|wi|2 6 ω 6 C
m∑
i=1

ddc|wi|2

for a sufficiently large constant C > 0.
The holomorphic map Φ can be locally written as

(z1, . . . , zn) 7−→ (f1(z), . . . , fm(z))

for some holomorphic functions fi. Here (z1, . . . , zn) denotes a local co-
ordinate on X. Then Bq is equal to the locus where the hermitian form

TOME 63 (2013), FASCICULE 6
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ddc
∑m
i=1 dd

c|fi(z)|2 has at least (q+1) zero eigenvalues. In general, a semi-
positive hermitian form has at least (q + 1) zero eigenvalues if and only if
j-th symmetric function in the eigenvalues is zero for n− q 6 j 6 n. By a
simple computation, j-th symmetric function σj in λ1, . . . , λn is described
as follows:

σj =
∑

06i1<···<ij6n
det
(〈

Gia ,Gib
〉)

a,b=1,...,n

=
∣∣∣ ∑

06i1<···<ij6n

∑
06α1<···<αj6m

det
(
gαa
ib

)
a,b=1,...,j

∣∣∣2.
Here gαi denotes the differential ∂fα/∂zi, Gi a vector (g1

i , . . . , g
m
i ), and

〈
·, ·
〉

a standard hermitian metric on Cm. Therefore the set defined by σj = 0
(n− q 6 j 6 n) is the zero set of finite holomorphic functions. �

Thanks to Proposition 3.3, we can consider the dimension of Bq. When
the dimension of Bq is less than or equal to q, we can easily see condition
(A) in Theorem 3.1 from Lemma 3.8. When the dimension is greater than
q, we factor Bq to subvarieties of smaller dimension. For this purpose we
need Lemma 3.5. The assumption on fibre dimensions is used in the proof of
this lemma. Later we need to treat an analytic set which may not be closed.
For that reason, Lemma 3.5 is formulated for an analytic set (possibly not
closed).

Definition 3.4. — A subset V inX is called an analytic set, if for every
point p in V there exist a small neighborhood of p and finite holomorphic
functions on the neighborhood such that V is the zero set of these functions.

Note that an analytic set does “not" mean a closed analytic set in this
paper. For example, the set

{
1/n ∈ C

∣∣ n ∈ N
}
is an analytic set, but not

a closed analytic set.

Lemma 3.5. — LetW be an irreducible analytic set (possibly not closed,
singular) on X. Assume that the dimension of W is greater than q.
Then the degenerate locus D defined by

D :=
{
p ∈Wreg

∣∣ The restriction ω̃|Wreg has at least (q + 1) zero eigenvalues at p
}

is a closed analytic set on Wreg and properly contained in Wreg. Here Wreg
denotes the regular locus of W .

Proof. — We have already proved that D is a closed analytic set onWreg
in the proof of Proposition 3.3. It remains to show that D is a properly
contained subset in Wreg. For a contradiction, we assume D = Wreg.
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We take a point p in Wreg such that Φ|W : W −→ Y is a smooth
morphism at p, and a fibre F of Φ containing p. Further we take an open ball
U in W with a local coordinate (z1, . . . , zr) centered at p. We may assume
that the first coordinate (z1, . . . , .zs) also becomes a local coordinate on
Freg. Here r (resp. s) denotes the dimension of W (resp. F ).

Now we consider the restriction f of Φ defined by

f := Φ|F⊥ : F⊥ −→ Y, where F⊥ = { (0, . . . , 0, zs+1, . . . , zr) ∈ U }.

Then the fibre of Φ(p) by f is a zero dimensional analytic set. It implies the
Jacobian of f is not identically zero on some neighborhood of p. Hence the
holomorphic map f gives a local biholomorphic at some point. This means
the restriction of ω̃ to F⊥ has (n − s) positive eigenvalues. Note that s is
less than or equal to q. This is a contradiction to Wreg = D. �

Lemma 3.5 leads to Proposition 3.6. Later we shall apply this proposition
to Bq. The set Bq is a closed analytic set. However we formulate this
proposition for an analytic set to prove Proposition 3.6 with induction
on the dimension. Remark that “dimension " in Proposition 3.6 does not
necessarily mean the pure dimension .

Proposition 3.6. — Let V be an analytic set of dimension k (possibly,
not closed, not irreducible, singular). Then there exist sets D` (0 6 ` 6
k − 1) with following properties:

(1) D` is an analytic set on X.
(2) Dk := V ⊇ Dk−1 ⊇ · · · ⊇ D1 ⊇ D0.
(3) dimD` = ` for ` = 0, 1, 2, . . . , k.
(4) D` \ D`−1 for ` = 1, 2, . . . , k is a disjoint union of non-singular

analytic sets.
(5) For an irreducible component W of D` \D`−1 with dimW > q, the

(1, 1)-form ω̃|W has (dimW − q) positive eigenvalues.

Proof. — We prove this proposition by induction on the dimension k =
dimV . When k is zero, we set D0 = V . Then the properties in Proposition
3.6 hold. From now on, we assume that k is greater than zero.
We consider the decomposition V = Vreg ∪ Vsing. Here Vreg (resp. Vsing)

denotes the regular locus (resp. the singular locus) of V . Note that this
decomposition is a disjoint union. Since the dimension of Vsing is smaller
than k, we obtain D̃` (0 6 ` 6 dimVsing) with the properties in Proposition
3.6 by the induction hypothesis.
Let Vreg =

⋃
i∈I Vi be the irreducible decomposition of Vreg. For an ir-

reducible component Vi, we set Di
dimVi

:= Vi if the dimension of Vi is less
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than or equal to q. Otherwise, we investigate the degenerated locus Di of
Vi defined by

Di := {p ∈ (Vi)reg
∣∣ ω̃|(Vi)reg

has at least (q + 1) zero eigenvalues at p }.

It follows that Di is an analytic set and properly contained in Vi from
Lemma 3.5. In particular, the dimension of Di is smaller than k. Therefore
by applying the induction hypothesis to Di, we obtain Di

` (0 6 ` 6 dimVi)
with the properties in Proposition 3.6.
For each `, we define the set D` to be the union of D̃` and Di

` (i ∈ I).
Then we can easily see that D` has the properties in Proposition 3.6. In
fact, it follows since D̃` and Di

` satisfy the properties in Proposition 3.6
and D` is a disjoint union of them. �

For the proof of Theorem 3.1, we apply Proposition 3.6 to Bq. Then we
obtain D` with the properties in Proposition 3.6. By using these properties,
we shall construct a function ϕ whose Levi-form has (n− dimW ) positive
eigenvalues in the normal direction of an irreducible component W of D` \
D`−1. On the other hand, the restriction ω̃|W has (dimW − q) positive
eigenvalues from property (5) if the dimension ofW is greater than q. Thus
if there is such function ϕ, the (1, 1)-form ω̃ + ddcϕ has at least (n − q)
positive eigenvalues everywhere. To construct such function, we prepare
Proposition 3.7, 3.9. The proofs of these Propositions are similar to the
proof of [6, Theorem 4] (cf. [19]).

Proposition 3.7. — For ` = 0, 1, . . . , k, there exists a function ϕ` ∈
C2(X,R) with the following properties :

(1) Let W be an irreducible component of D` \ D`−1. Then the Levi
form ddcϕ` has (n − dimW ) positive eigenvalues in the normal direction
of W .

(2) The Levi form ddcϕ` is semi-positive at every point in D`.

Here D` denotes the closure of D` in X. Note D` may not be a closed
analytic set. For example, the closure of {(x, y) ∈ C2

∣∣ x = ey} in the 2-
dimensional projective space is not a closed analytic set. In order to show
Proposition 3.7, we prepare the following lemma. If D` for ` = 0, 1, . . . , k
is a closed analytic set, the statement of this lemma is same as that of
Proposition 3.7.

Lemma 3.8. — Let ` be an integer with 0 6 ` 6 k. For every open
neighborhood U of D` \ D`, there exists a function ϕU ∈ C∞(X,R) with
following properties :
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(1) Let W be an irreducible component of D` \ D`−1. Then the Levi
form ddcϕU has (n − dimW ) positive eigenvalues in the normal direction
at every point in W \ U .

(2) The Levi form ddcϕU is semi-positive at every point in D`.

Proof. — For a given U , we take an open covering of X by open balls Uj
(j = 1, 2, . . . , N). Further, we can assume the following properties for this
covering.

(a) The members Uj (j = 1, 2, . . . , s) cover D` \D`−1.
(b) The members Uj (j = 1, 2, . . . , s) are contained in U .
(c) Every Uk which intersects with Uj (j = 1, 2, . . . , s) is also contained

in U .

We denote by IBq , the ideal sheaf associated to a closed analytic set Bq.
For every j = 1, 2, . . . , s, we take holomorphic functions {fj,i}

Nj

i=1 on Uj
such that these functions generate the ideal sheaf IBq

. Further, for every
j = s+ 1, . . . , N , we take holomorphic functions {fj,i}

Nj

i=1 on Uj such that
these functions generate the ideal sheaf ID`

. Note D` is a closed analytic
set on Uj (j = s + 1, . . . , N). Therefore we can define the ideal sheaf ID`

and take its generators.
Let

{
ρj
}N
j=1 be a partition of unity associated to the covering of X. Now

we define ϕU to be

ϕU :=
N∑
j=1

ρj

( Nj∑
i=1
|fj,i|2

)
.

Then ϕU satisfies properties (1), (2). In fact, an easy computation yields

√
−1∂∂ϕU =

N∑
j=1

Nj∑
i=1

{
|fj,i|2

√
−1∂∂ρj +

√
−1fj,i∂fj,i ∧ ∂ρj

+
√
−1fj,i∂ρj ∧ ∂fj,i +

√
−1ρj∂fj,i ∧ ∂fj,i

}
.

By the definition, fj,i is identically zero on D`. (Notice that D` is contained
in Bq.) Therefore the first three terms are zero on D`. Further the last term
is clearly semi-positive. Therefore property (2) is satisfied. For every point
p in W \U , we can take j0 such that Uj0 does not intersect with D` \D`−1
and ρj0(p) 6= 0 by the choice of the covering. Hence the last term has
property (2) since ∂fj0,i ∧ ∂fj0,i has (n− dimW ) positive eigenvalues at p
in the normal direction of W . �

Before the proof of Proposition 3.7, we recall the definition of a C2-norm
‖ · ‖C2 on C2(X,R). We take an open covering of X by open balls Uj
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(j =, 1, 2, . . . , N) with a differential coordinate (xj1, . . . , x
j
2n). Let Vj be a

relatively compact set in Uj such that {Vj}Nj=1 is also an open covering of
X. Then the C2-norm | · |C2 with respect to the open covering is defined
to be

|f |C2 :=
N∑
j=1

2n,2n∑
α,β=1

sup
p∈Vj

∣∣∣∣ ∂2f

∂xjα∂x
j
β

(p)
∣∣∣∣+

N∑
j=1

k∑
α=1

sup
p∈Vj

∣∣∣∣ ∂f∂xjα (p)
∣∣∣∣+ sup

p∈X

∣∣f(p)
∣∣

for every f ∈ C2(X,R). Certainly the norm depends on the choice of an
open covering. However the topology induced by these norms is unique. For
our purpose, we fix the norm. Let us begin the proof of Proposition 3.7.
Proof of Proposition 3.7. Choose a family of open neighborhoods {Ui}∞i=1

of D` \ D`−1 such that
⋂∞
i=1 Ui = D` \ D`−1. For each positive integer i,

we can take a function ϕUi
∈ C∞(X,R) with the properties in Lemma 3.8.

We set
Ai =‖ ϕUi

‖C2 .

Here ‖ · ‖C2 denotes the fixed C2-norm.
Now we define a function ϕ` on X to be

ϕ` :=
∞∑
i=1

1
2iAi

ϕUi
.

By the definition of Ai, the sum in the definition uniformly converges with
respect to the C2-norm. Hence we obtain

ddcϕ` =
∞∑
i=1

1
2iAi

ddcϕUi
.

Properties (1), (2) in Lemma 3.8 and the choice of Ui lead to the properties
in Proposition 3.7. �

Proposition 3.9. — For every integer ` = 0, 1, . . . , k, there exists a
function ϕ̃` ∈ C2(X,R) with property (∗).
(∗) Letm be an integer with 0 6 m 6 ` andW an irreducible component of
Dm\Dm−1. Then the Levi-form ddcϕ̃` has (n−dimW ) positive eigenvalues
in the normal direction of W .

Before the proof of Proposition 3.9, we confirm that Proposition 3.9 and
Proposition 3.6 complete the proof of Theorem 3.1. That is, there is a
smooth function ϕ on X such that the (1, 1)-form ω̃ + ddcϕ is q-positive.

First we obtain {D`}k`=0 with properties in Proposition 3.6 by applying
Proposition 3.6 to Bq. Now we take ϕ̃k with property (∗) in Proposition
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3.9. Recall k is the dimension of Bq. Then we shall show that ω̃ + εddcϕ̃k
is q-positive for a sufficiently small ε > 0.

Now ω̃ is q-positive at x 6∈ Bq. Hence when x is not contained in Bq, the
form ω̃ + εddcϕ̃k is q-positive for a small ε > 0. When x is contained in
Bq, there is a positive integer ` such that x ∈ D` \D`−1. (Otherwise x is
contained in D0. Then the Levi-form of ϕ̃k has n positive eigenvalues at x.)
For an irreducible component W of D` \D`−1 containing x, the (1, 1)-form
ω̃|W has (dimW − q) positive eigenvalues along W . On the other hand,
the Levi-form of ϕ̃k has (n − dimW ) positive eigenvalues in the normal
direction of W (property (∗) in Proposition 3.9). Thus ω̃ + εddcϕ̃k has
(n− q) positive eigenvalues. The function ϕ̃k may not be smooth. However
we can approximate it with smooth functions without the loss of the q-
positivity since it is C2-function (for instance, see [18]). It completes the
proof of Theorem 3.1.
Proof of Proposition 3.9. We prove Proposition 3.9 by induction on `.

When ` is zero, the claim is obvious. Thus we assume ` is greater than 0. By
the induction hypothesis, we obtain a smooth function ϕ̃`−1 with property
(∗). Further we take ϕ` with the properties in Proposition 3.7. We define a
function ϕ̃` to be ϕ` + εϕ̃`−1. Then the function satisfies property (∗) for
a sufficiently small ε > 0. �

Finally we see that it follows Theorem 1.4 from Theorem 3.1.

Theorem 3.10. — (=Theorem 1.4). Let L be a semi-ample line bundle
on a compact complex manifold X. Then the following conditions (A), (B)
and (C) are equivalent.
(A) L is q-positive.
(B) The semi-ample fibration of L has fibre dimensions at most q.
(C) L is cohomologically q-ample.
Further if X is projective, the conditions above are equivalent to condition
(D).
(D) For every subvariety Z with dimZ > q, there exists a curve C on Z
such that the degree of L on C is positive.

Proof. — We can easily confirm the equivalence between condition (B)
and (C) from the standard argument of the spectral sequence (see [20,
Proposition 1.7]).

The equivalence between condition (A) and (B) is directly followed from
Theorem 3.1. Indeed, we apply Theorem 3.1 to the semi-ample fibration
Φ := Φ|L⊗m| : X −→ PNm and ω := ωFS , where ωFS is the Fubini-Study
form. Then Φ∗ωFS+ddcϕ is q-positive for some function ϕ by Theorem 3.1.
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The form represents the Chern class of L⊗m. Therefore condition (B) im-
plies (A). Conversely, if L is q-positive, it is cohomologically q-ample by
the Andreotti-Grauert theorem. Therefore the fibre dimension of the semi-
ample fibration must be at most q.
It remains to show the equivalence between condition (B) and (D). In

this step, we use the assumption that X is projective. Assume that the fibre
dimension of the semi-ample fibration is at most q. Then for any subvariety
Z with dimZ > q, we can take a curve on Z which is not contracted by
Φ. Then the degree of L on the curve is positive by the projection formula.
Conversely, if there exists a fibre F with dimF > q, the degree on every
curve in F is zero. �

4. Zariski-Fujita type theorem for big line bundles

In this section, we prove Theorem 4.1. Theorem 4.1 says that, a big line
bundle is q-positive if and only if the restriction to the non-ample locus of
the line bundle is q-positive. See [10] or [3, Section 3.5] for the definition
and properties of the non-ample locus. (Sometimes, the non-ample locus is
called the augmented base locus or the non-Kähler locus.)

Theorem 4.1. — Let L be a big line bundle on a smooth projective
variety X. Assume that the restriction of L to the non-ample locus B+(L)
is q-positive. Then L is q-positive on X.

Recall that 0-positive is positive in the usual sense (that is, ample). Hence
Theorem 4.1 claims that L is ample on X if the restriction to the non-ample
locus of L is ample. It can be seen as the parallel of the the Zariski-Fujita
theorem (see [23] and [11] for the Zariski-Fujita theorem).
Throughout this section, we denote by X a compact Kähler manifold

and by L a line bundle on X. Moreover fix a smooth hermitian metric h
of L. The Chern curvature

√
−1Θh(L) associated to h represents the first

Chern class c1(L).
In this section, we treat a closed analytic set which may have the sin-

gularities on X. For this purpose, we extend the q-positivity concept from
a manifold to an analytic space. Note the following definition does not
depend on the choice of a hermitian metric h of L.

Definition 4.2. — Let V be a closed analytic set on X. The restriction
L|V to V of L is q-positive if there exists a real-valued continuous function
ϕ on V with the following condition:

ANNALES DE L’INSTITUT FOURIER



A CONVERSE TO THE ANDREOTTI-GRAUERT THEOREM 2217

For every point p on V , there exist a neighborhood U of p on X and a C2-
function ϕ̃ on U such that ϕ̃|V ∩U = ϕ and the (1, 1)-form

√
−1Θh(L)+ddcϕ̃

has at least (n− q)-positive eigenvalues on U .

For the proof of Theorem 4.1, we prepare the following lemma.

Lemma 4.3. — Let V be a closed analytic set (possibly not irreducible)
on X. If the restriction L|V to V of L is q-positive, then X allows a function
ϕV ∈ C∞(X,R) on X such that

√
−1Θh(L) + ddcϕV has at least (n − q)

positive eigenvalues on some neighborhood of V .

Proof. — We take a smooth extension ϕ̃ to X of the potential function
in Definition 4.2. Let V =

⋃
i∈I Vi be the irreducible decomposition. From

the construction of ϕ̃, the restriction to (Vi)reg of
√
−1Θh(L) + ddcϕ̃ has

at least (dimVi− q) positive eigenvalues. Then we can revise the positivity
in the normal direction of V with the same argument as Proposition 3.9.
It leads to Lemma 4.3. �

Proof of Theorem 4.1. By the property of the non-ample locus (see [3,
Theorem 3.17]), there exists a d-closed current T on X with following
properties:
(1) T represents the first Chern class of L.
(2) T has analytic singularities along the non-ample locus of L.
(3) For some hermitian form ω on X, the inequality T > ω holds as a
(1, 1)-current.
From property (1), we obtain an L1-function ϕs on X with

T =
√
−1Θh(L) + ddcϕs.

On the other hand, by applying Lemma 4.3 to the non-ample locus, we
can obtain a function ϕB+ ∈ C∞(X,R) such that

√
−1Θh(L) + ddcϕB+ is

q-positive on some neighborhood U on the non-ample locus.
Then we shall see that ϕs and ϕB can be glued. For a real number C > 0,

we define the function ψC to be ψC := max{ϕB+−C,ϕs}. For a large C > 0,
the function ϕB − C is smaller than ϕs outside some neighborhood UC of
the non-ample locus. By taking a sufficiently large C > 0, we may assume
that UC is relatively compact in U .

On the other hand, the function ϕs has a polar set along the non-ample
locus. That is, ϕs(x) = −∞ for any point x on the non-ample locus. Hence
there exists a neighborhood VC of the non-ample locus such that ϕs is
smaller than ϕB+ − C even if C is large. We may assume VC is relatively
compact in UC .
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Outside UC , the (1, 1)-form

√
−1Θh(L) + ddcψC =

√
−1Θh(L) + ddcϕs

has n positive eigenvalues. On the other hand, inside VC the (1, 1)-form

√
−1Θh(L) + ddcψC =

√
−1Θh(L) + ddcϕB+

has (n − q)-positive eigenvalues. In order to investigate the positivity on
UC \ VC , we prepare the following lemma.

Lemma 4.4. — Let γ be a smooth d-closed (1, 1)-form on X and an L1-
function ϕi (for i = 1, 2) with ddcϕi > γ. Then the function max(ϕ1, ϕ2)
also satisfies ddc max(ϕ1, ϕ2) > γ.

Proof. — Notice that the conclusion is a local property. We can locally
take a smooth potential function of γ since γ is a d-closed form. Thus we
have γ = ddcψ for some function ψ. By the assumption, ddc(ϕi − ψ) is a
positive current. Therefore the Levi form of

max(ϕ1, ψ + ϕ2 − ψ) = max(ϕ1, ϕ2)− ψ

is also a positive current. It implies that ddc max(ϕ1, ϕ2) > γ. �

Since UC is relatively compact in U ,
√
−1Θh(L) + ddcϕB+ is q-positive

on UC . Certainly
√
−1Θh(L) + ddcϕs is q-positive (0-positive) on UC \VC .

Therefore it follows from the lemma above that
√
−1Θh(L) + ddcψC is q-

positive on UC \VC . The function ψC may not be smooth. However we can
approximate it with smooth functions without the loss of the q-positivity
since ψC is continuous. Therefore L is q-positive on X. �

When the dimension of the non-ample locus is smaller q, the assump-
tion in Theorem 4.1 is automatically satisfied. Thus we have the following
corollary.

Corollary 4.5. — Assume the dimension of the non-ample locus of L
is less than or equal to q. Then L is q-positive.

Under the assumption in Corollary 4.5, L is cohomologically q-ample (cf.
[13], [15, Theorem 1.6]). Corollary 4.5 claims that the q-positivity has the
same property.
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5. Relations with the holomorphic Morse inequality

In his paper [8], Demailly proved the converse of the holomorphic Morse
inequality on a surface. This result has the similarity to the converse of
the Andreotti-Grauert theorem. In this section, we explain the difference
between his result and the result (Theorem 1.3) in this paper. First we
recall the holomorphic Morse inequality which is closely related with the
Andreotti-Grauert vanishing theorem.

Definition 5.1. — Let L be a line bundle on a compact complex man-
ifold X. Then the asymptotic q-cohomology of L is defined to be

ĥi(L) := lim sup
m→∞

n!
mn

hi(X,OX(L⊗m)).

In his paper [5], Demailly gave a relation between the dimension of the as-
ymptotic cohomology of a line bundle and certain Monge-Ampère integrals
of the curvature. It is so-called Demailly’s holomorphic Morse inequality.
For simplicity, we assume that X is projective.

Theorem 5.2. — ([5]). For every holomorphic line bundle L on a pro-
jective manifold X, we has the (weak) Morse inequality

ĥi(L) 6 inf
h:hermitian metric on L

∫
X(h,i).

(
√
−1Θh(L))n(−1)i,

where h runs through smooth hermitian metrics on L, and X(h, i) is the
set defined by

X(h, i) :=
{
x ∈ X |

√
−1Θh(L) has a signature (n− i, i) at x.

}
.

The holomorphic Morse inequality would be seen as an asymptotic ver-
sion of the Andreotti-Grauert vanishing theorem. In his paper [7], Demailly
conjectured that the inequality would actually be an equality. The conjec-
ture has the similarity to Problem 1.2. In [8], he showed the converse of
holomorphic Morse inequality holds in the following case:
(1) The case where X is projective surface.
(2) The case where X is an arbitrary projective manifold and i = 0.
Result (2) can be seen as a “partial" converse of the Andreotti-Grauert
theorem. However, Result (2) seems not to lead to Theorem 1.3.
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