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RATIONAL APPROXIMATION
TO REAL POINTS ON CONICS

by Damien ROY (*)

Abstract. — A point (ξ1, ξ2) with coordinates in a subfield of R of transcen-
dence degree one over Q, with 1, ξ1, ξ2 linearly independent over Q, may have a
uniform exponent of approximation by elements of Q2 that is strictly larger than
the lower bound 1/2 given by Dirichlet’s box principle. This appeared as a sur-
prise, in connection to work of Davenport and Schmidt, for points of the parabola
{(ξ, ξ2) ; ξ ∈ R}. The goal of this paper is to show that this phenomenon extends
to all real conics defined over Q, and that the largest exponent of approximation
achieved by points of these curves satisfying the above condition of linear indepen-
dence is always the same, independently of the curve, namely 1/γ ∼= 0.618 where
γ denotes the golden ratio.
Résumé. — Un point (ξ1, ξ2) à coordonnées dans un sous-corps de R de degré

de transcendance un sur Q, avec 1, ξ1, ξ2 linéairement indépendants sur Q, peut
admettre un exposant d’approximation uniforme par les éléments de Q2 qui soit
strictement plus grand que la borne inférieure 1/2 que garantit le principe des tiroirs
de Dirichlet. Ce fait inattendu est apparu, en lien avec des travaux de Davenport
et Schmidt, pour les points de la parabole {(ξ, ξ2) ; ξ ∈ R}. Le but de cet article est
de montrer que ce phénomène s’étend à toutes les coniques réelles définies sur Q et
que le plus grand exposant d’approximation atteint par les points de ces courbes,
sujets à la condition d’indépendance linéaire mentionnée plus tôt, est toujours le
même, indépendamment de la courbe, à savoir 1/γ ∼= 0.618 où γ désigne le nombre
d’or.

1. Introduction

Let n be a positive integer and let ξ = (ξ1, . . . , ξn) ∈ Rn. The uniform
exponent of approximation to ξ by rational points, denoted λ(ξ), is defined
as the supremum of all real numbers λ for which the system of inequalities

(1.1) |x0| 6 X, max
16i6n

|x0ξi − xi| 6 X−λ

Keywords: algebraic curves, conics, real points, approximation by rational points, expo-
nent of approximation, simultaneous approximation.
Math. classification: 11J13, 14H50.
(*) Research partially supported by NSERC.
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admits a non-zero solution x = (x0, x1, . . . , xn) ∈ Zn+1 for each sufficiently
large real number X > 1. It is one of the classical ways of measuring how
well ξ can be approximated by elements of Qn, because each solution of
(1.1) with x0 6= 0 provides a rational point r = (x1/x0, . . . , xn/x0) with
denominator dividing x0 such that ‖ξ−r‖ 6 |x0|−λ−1, where the symbol ‖ ‖
stands for the maximum norm. We call it a “uniform exponent” following
the terminology of Y. Bugeaud and M. Laurent in [2, §1] because we require
a solution of (1.1) for each sufficiently large X (but note that our notation
is slightly different as they denote it λ̂(ξ)). This exponent depends only
on the Q-vector subspace of R spanned by 1, ξ1, . . . , ξn and so, by a result
of Dirichlet [12, Chapter II, Theorem 1A], it satisfies λ(ξ) > 1/(s − 1)
where s > 1 denotes the dimension of that subspace. In particular we have
λ(ξ) =∞ when ξ ∈ Qn, while it is easily shown that λ(ξ) 6 1 when ξ /∈ Qn
(see for example [2, Prop. 2.1]).
In their seminal work [3], H. Davenport and W. M. Schmidt determine

an upper bound λn, depending only on n, for λ(ξ, ξ2, . . . , ξn) where ξ runs
through all real numbers such that 1, ξ, . . . , ξn are linearly independent
over Q, a condition which amounts to asking that ξ is not algebraic over
Q of degree n or less. Using geometry of numbers, they deduce from this
a result of approximation to such ξ by algebraic integers of degree at most
n + 1. In particular they prove that λ(ξ, ξ2) 6 λ2 := 1/γ ∼= 0.618 for each
non-quadratic irrational real number ξ, where γ = (1 +

√
5)/2 denotes the

golden ratio. It is shown in [7, 9] that this upper bound is best possible
and, in [8], that the corresponding result of approximation by algebraic
integers of degree at most 3 is also best possible. For n > 3, no optimal
value is known for λn. At present the best known upper bounds are λ3 6
(1 + 2γ−

√
1 + 4γ2)/2 ∼= 0.4245 (see [11]) and λn 6 1/dn/2e for n > 4 (see

[5]).
As a matter of approaching this problem from a different angle, we pro-

pose to extend it to the following setting.

Definition 1.1. — Let C be a closed algebraic subset of Rn of di-
mension 1 defined over Q, irreducible over Q, and not contained in any
proper affine linear subspace of Rn defined over Q. Then, we put λ(C) =
sup{λ(ξ) ; ξ ∈ Cli} where Cli denotes the set of points ξ = (ξ1, . . . , ξn) ∈ C
such that 1, ξ1, . . . , ξn are linearly independent over Q.

Equivalently, such a curve may be described as the Zariski closure over
Q in Rn of a point ξ ∈ Rn whose coordinates ξ1, . . . , ξn together with
1 are linearly independent over Q and generate over Q a subfield of R

ANNALES DE L’INSTITUT FOURIER
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of transcendence degree one. In particular Cli is not empty as it con-
tains that point. From the point of view of metrical number theory the
situation is simple since, for the relative Lebesgue measure, almost all
points ξ of C have λ(ξ) = 1/n (see [4]). Of special interest is the curve
Cn := {(ξ, ξ2, . . . , ξn) ; ξ ∈ R} for any n > 2. As mentioned above, we have
λ(C2) = 1/γ and the problem remains to compute λ(Cn) for n > 3. In this
paper, we look at the case of conics in R2 and prove the following result.

Theorem 1.2. — Let C be a closed algebraic subset of R2 of dimension 1
and degree 2. Suppose that C is defined overQ and irreducible overQ. Then,
we have λ(C) = 1/γ. Moreover, the set of points ξ ∈ Cli with λ(ξ) = 1/γ is
countably infinite.

Here the degree of C simply refers to the degree of the irreducible poly-
nomial of Q[x1, x2] defining it. The curve C2 is the parabola of equation
x2 − x2

1 = 0 but, as we will see, other curves are easier to deal with, for
example the curve defined by x2

1 − 2 = 0 which consists of the pair of ver-
tical lines {±

√
2}×R. Note that, for the latter curve, Theorem 1.2 simply

says that any ξ ∈ R \ Q(
√

2) has λ(
√

2, ξ) 6 1/γ, with equality defining
a denumerable subset of R \ Q(

√
2). Our main result in the next section

provides a slightly finer result.
In [6], it is shown that the cubic C defined by x2 − x3

1 = 0 has λ(C) 6
2(9 +

√
11)/35 ∼= 0.7038, but the case of the line 3

√
2×R should be simpler

to solve and could give ideas to determine the precise value of λ(C) for that
cubic C. Similarly, looking at lines (ω2, . . . , ωn) × R where (1, ω2, . . . , ωn)
is a basis over Q of a number field of degree n could provide new ideas to
compute λ(Cn).
This paper is organized as follows. In the next section, we state a slightly

stronger result in projective setting and note that, for curves C which are
irreducible over R and contain at least one rational point, the proof simply
reduces to the known case of the parabola C2. In Section 3, we prove the
inequality λ(C) 6 1/γ for the remaining curves C by an adaptation of
the original argument of Davenport and Schmidt in [3, § 3]. However, the
fact that these curves have at most one rational point brings a notable
simplification in the proof. In Section 4, we adapt the arguments of [9, § 5]
to establish a certain rigidity property for the sequence of minimal points
attached to points ξ ∈ Cli with λ(ξ) = 1/γ, and deduce from it that the set
of these points ξ is at most countable. We conclude in Section 5, with the
most delicate part, namely the existence of infinitely many points ξ ∈ Cli

having exponent 1/γ.

TOME 63 (2013), FASCICULE 6



2334 Damien ROY

2. The main result in projective framework

For each n > 2, we endow Rn with the maximum norm, and identify
its exterior square

∧2 Rn with Rn(n−1)/2 via an ordering of the Plücker
coordinates. In particular, when n = 3, we define the wedge product of two
vectors in R3 as their usual cross-product. We first introduce finer notions
of Diophantine approximation in the projective context.
Let Ξ ∈ Pn(R) and let Ξ = (ξ0, . . . , ξn) be a representative of Ξ in Rn+1.

We say that a real number λ > 0 is an exponent of approximation to Ξ if
there exists a constant c = c1(Ξ) such that the conditions

‖x‖ 6 X and ‖x ∧ Ξ‖ 6 cX−λ

admit a non-zero solution x ∈ Zn+1 for each sufficiently large real number
X. We say that λ is a strict exponent of approximation to Ξ if moreover
there exists a constant c = c2(Ξ) > 0 such that the same conditions admit
no non-zero solution x∈Zn+1 for arbitrarily large values of X. Both prop-
erties are independent of the choice of the representative Ξ, and we define
λ(Ξ) as the supremum of all exponents of approximations to Ξ. Clearly,
when λ is a strict exponent of approximation to Ξ, we have λ(Ξ) = λ.

Let T : Qn+1 → Qn+1 be an invertible Q-linear map. It extends uniquely
to a R-linear automorphism of Rn+1 and then to an automorphism of
Pn(R). This defines an action of GLn+1(Q) on Pn(R). Moreover, upon
choosing an integer m > 1 such that mT (Zn+1) ⊆ Zn+1, any non-zero
point x ∈ Zn+1 gives rise to a non-zero point y = mT (x) ∈ Zn+1 satisfying

‖y‖ 6 cT ‖x‖ and ‖y ∧ T (Ξ)‖ 6 cT ‖x ∧ Ξ‖

for a constant cT > 0 depending only on T . Combined with the above
definitions, this yields the following invariance property.

Lemma 2.1. — Let Ξ ∈ Pn(R) and T ∈ GLn+1(Q). Then we have
λ(Ξ) = λ(T (Ξ)). More precisely a real number λ > 0 is an exponent of
approximation to Ξ, respectively a strict exponent of approximation to Ξ,
if and only if it is an exponent of approximation to T (Ξ), respectively a
strict exponent of approximation to T (Ξ).

We also have a natural embedding of Rn into Pn(R), sending a point
ξ = (ξ1, . . . , ξn) to (1 : ξ) := (1 : ξ1 : · · · : ξn). Identifying Rn with its
image in Pn(R), the above notions of exponent of approximation and strict
exponent of approximation carry back to points of Rn. The next lemma,
whose proof is left to the reader, shows how they translate in this context
and shows moreover that λ(ξ) = λ(1 : ξ), thus leaving no ambiguity as to
the value of λ(ξ).

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.2. — Let ξ = (ξ1, . . . , ξn) ∈ Rn.
(i) A real number λ > 0 is an exponent of approximation to (1 : ξ) if

and only if there exists a constant c = c1(ξ) such that the conditions

|x0| 6 X and max
16i6n

|x0ξi − xi| 6 cX−λ

admit a non-zero solution x = (x0, . . . , xn) ∈ Zn+1 for each suffi-
ciently large X.

(ii) It is a strict exponent of approximation to (1 : ξ) if and only if there
also exists a constant c = c2(ξ) > 0 such that the above conditions
admit no non-zero integer solution for arbitrarily large values of X.

Finally, we have λ(ξ) = λ(1 : ξ).

Our main result is the following strengthening of Theorem 1.2.

Theorem 2.3. — Let ϕ be a homogeneous polynomial of degree 2 in
Q[x0, x1, x2]. Suppose that ϕ is irreducible over Q and that its set of zeros
C in P2(R) consists of at least two points.

(i) For each point Ξ ∈ C having Q-linearly independent homogeneous
coordinates, the number 1/γ is at best a strict exponent of approxi-
mation to Ξ: if it is an exponent of approximation to Ξ, it is a strict
one.

(ii) There are infinitely many points Ξ ∈ C which have Q-linearly inde-
pendent homogeneous coordinates and for which 1/γ is an exponent
of approximation.

(iii) There exists a positive ε, independent of ϕ, such that the set of
points Ξ ∈ C with λ(Ξ) > 1/γ − ε is countable.

To show that this implies Theorem 1.2, let C be as in latter statement.
Then, the Zariski closure C̄ of C in P2(R) is infinite and is the zero set of an
irreducible homogeneous polynomial of degree 2 in Q[x0, x1, x2]. Moreover,
Cli identifies with the set of elements of C̄ with Q-linearly independent
homogeneous coordinates. So, if we admit the above theorem, then, in
view of Lemma 2.2, Part (i) implies that λ(C) 6 1/γ, Part (ii) shows that
there are infinitely many ξ ∈ Cli with λ(ξ) = 1/γ, and Part (iii) shows that
the set of points ξ ∈ C with λ(ξ) > 1/γ − ε is countable. Altogether, this
proves Theorem 1.2.
The proof of Part (iii) in Section 4 will show that one can take ε =

0.005 but the optimal value for ε is probably much larger. In connection to
(iii), we also note that the set of elements of C with Q-linearly dependent
homogeneous coordinates is at most countable because each such point
belongs to a proper linear subspace of P2(R) defined over Q, there are

TOME 63 (2013), FASCICULE 6
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countably many such subspaces, and each of them meets C in at most two
points. So, in order to prove (iii), we may restrict to the points of C with
Q-linearly independent homogeneous coordinates.
Lemma 2.1 implies that, if Theorem 2.3 holds true for a form ϕ, then it

also holds for µ(ϕ◦T ) for any T ∈ GL3(Q) and any µ ∈ Q∗. Thus the next
lemma reduces the proof of the theorem to forms of special types.

Lemma 2.4. — Let ϕ be an irreducible homogeneous polynomial of
Q[x0, x1, x2] of degree 2 which admits at least two zeros in P2(R).

(i) If ϕ is irreducible over R and admits at least one zero in P2(Q), then
there exist µ ∈ Q∗ and T ∈ GL3(Q) such that µ(ϕ◦T )(x0, x1, x2) =
x0x2 − x2

1.
(ii) If ϕ is not irreducible over R, then it admits exactly one zero in

P2(Q) and there exist µ ∈ Q∗ and T ∈ GL3(Q) such that we have
µ(ϕ ◦ T )(x0, x1, x2) = x2

0 − bx2
1 for some square-free integer b > 1.

(iii) If ϕ has no zero in P2(Q), then there exist µ ∈ Q∗ and T ∈ GL3(Q)
such that µ(ϕ ◦T )(x0, x1, x2) = x2

0− bx2
1− cx2

2 for some square-free
integers b > 1 and c > 1.

Proof. — We view (Q3, ϕ) as a quadratic space. We denote by K its
kernel, and by Φ the unique symmetric bilinear form such that Φ(x,x) =
2ϕ(x).

Suppose first that K 6= {0}. Then, by a change of variables over Q, we
can bring ϕ to a diagonal form rx2

0 + sx2
1 with r, s ∈ Q. We have rs 6= 0

since ϕ is irreducible over Q, and furthermore rs < 0 since otherwise the
point (0 : 0 : 1) would be the only zero of ϕ in P2(R). Thus, ϕ is not
irreducible over R, and dimQK = 1.
In the case (i), the above observation shows that Q3 is non-degenerate.

Then, since ϕ has a zero in P2(Q), the space Q3 decomposes as the or-
thogonal direct sum of a hyperbolic plane H and a non-degenerate line
P . We choose bases {v0,v2} for H and {v1} for P such that ϕ(v0) =
ϕ(v2) = 0 and Φ(v0,v2) = −ϕ(v1). Then µ = −1/ϕ(v1) and the linear
map T : Q3 → Q3 sending the canonical basis of Q3 to (v0,v1,v2) have the
property stated in (i).
In the case (iii), we haveK = {0} and so we can writeQ3 as an orthogonal

direct sum of one-dimensional non-degenerate subspaces P0, P1 and P2. We
order them so that the non-zero values of ϕ on P0 have opposite sign to
those on P1 and P2. This is possible since ϕ is indefinite. Let {v0} be a
basis of P0 and put µ = 1/ϕ(v0). For i = 1, 2, we can choose a basis {vi}
of Pi such that µϕ(vi) is a square-free integer. Then µ and the linear map

ANNALES DE L’INSTITUT FOURIER
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T : Q3 → Q3 sending the canonical basis of Q3 to (v0,v1,v2) have the
property stated in (iii).
In the case (ii), the form ϕ factors over a quadratic extension Q(

√
d) of

Q as a product ϕ(x) = ρL(x)L̄(x) where L is a linear form, L̄ its conjugate
over Q, and ρ ∈ Q∗. As ϕ is irreducible over Q, the linear forms L and L̄
are not multiple of each other. Moreover, for a point a ∈ Q3, we have

ϕ(a) = 0 ⇐⇒ L(a) = L̄(a) = 0 ⇐⇒ (L+ L̄)(a) =
√
d(L− L̄)(a) = 0.

Since L+ L̄ and
√
d(L− L̄) are linearly independent forms with coefficients

in Q, this means that the zero set of ϕ in Q3 is a line, and so ϕ has a unique
zero in P2(Q). As Φ(x,y) = ρL(x)L̄(y) + ρL̄(x)L(y), this line is contained
in the kernel K of ϕ, and so is equal to K. By an earlier observation,
this means that, by a change of variables over Q, we may bring ϕ to a
diagonal form rx2

0 + sx2
1 with r, s ∈ Q, rs < 0. We may further choose r

and s so that −s/r is a square-free integer b > 0. Then, the same change
of variables brings r−1ϕ to x2

0 − bx2
1. Finally, we have b 6= 1 since ϕ is

irreducible over Q. �

3. Proof of the first part of the main theorem

Let ϕ and C be as in the statement of Theorem 2.3. Suppose first that ϕ is
irreducible over R and that C∩P2(Q) 6= ∅. Then, by Lemma 2.4, there exists
T ∈ GL3(Q) such that T−1(C) is the zero-set in P2(R) of the polynomial
x0x2−x2

1. Let Ξ be a point of C with Q-linearly independent homogeneous
coordinates. Its image T−1(Ξ) has homogeneous coordinates (1 : ξ : ξ2),
for some irrational non-quadratic ξ ∈ R. Then, by [3, Theorem 1a], the
number 1/γ is at best a strict exponent of approximation to T−1(Ξ), and,
by Lemma 2.1, the same applies to Ξ. This proves Part (i) of the theorem
in that case.
Otherwise, Lemma 2.4 shows that ϕ has at most one zero in P2(Q).

Taking advantage of the major simplification that this entails, we proceed
as Davenport and Schmidt in [3, §3]. We fix a point Ξ ∈ C with Q-linearly
independent homogeneous coordinates (1 : ξ1 : ξ2) and an exponent of
approximation λ > 1/2 for Ξ. Then, by Lemma 2.2, there exists a constant
c > 0 such that, for each sufficiently large X, the system

(3.1) |x0| 6 X, L(x) := max{|x0ξ1 − x1|, |x0ξ2 − x2|} 6 cX−λ

has a non-zero solution x = (x0, x1, x2) ∈ Z3. To prove Part (i) of Theo-
rem 2.3, we simply need to show that λ 6 1/γ and that, when λ = 1/γ,
the constant c cannot be chosen arbitrarily small.

TOME 63 (2013), FASCICULE 6
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To this end, we first note that there exists a sequence of points (xi)i>1
in Z3 such that

(a) their first coordinates Xi form an increasing sequence 1 6 X1 <

X2 < X3 < · · · ,
(b) the quantities Li := L(xi) form a decreasing sequence 1 > L1 >

L2 > L3 > · · · ,
(c) for each x = (x0, x1, x2) ∈ Z3 and each i > 1 with |x0| < Xi+1, we

have L(x) > Li.
Then, each xi is a primitive point of Z3, by which we mean that the gcd
of its coordinates is 1. Moreover, the hypothesis that (3.1) has a solution
for each large enough X implies that

(3.2) Li 6 cX
−λ
i+1

for each sufficiently large i, say for all i > i0. Since ϕ has at most one zero
in P2(Q), we may further assume that ϕ(xi) 6= 0 for each i > i0. Then,
upon normalizing ϕ so that it has integer coefficients, we conclude that
|ϕ(xi)| > 1 for the same values of i.
Put Ξ = (1, ξ1, ξ2) ∈ Q3, and let Φ denote the symmetric bilinear form

for which Φ(x,x) = 2ϕ(x). Then, upon writing xi = XiΞ + ∆i and noting
that ϕ(Ξ) = 0, we find

(3.3) ϕ(xi) = XiΦ(Ξ,∆i) + ϕ(∆i).

As ‖∆i‖ = Li, this yields |ϕ(xi)| 6 c1XiLi for a constant c1 = c1(ϕ,Ξ) > 0.
Using (3.2), we conclude that, for each i > i0, we have 1 6 |ϕ(xi)| 6
cc1XiX

−λ
i+1, and so

(3.4) Xλ
i+1 6 cc1Xi.

We also note that there are infinitely many values of i > i0 for which
xi−1, xi and xi+1 are linearly independent. For otherwise, all points xi with
i large enough would lie in a two dimensional subspace V of R3 defined over
Q. As the products X−1

i xi converge to Ξ when i → ∞, this would imply
that Ξ ∈ V , in contradiction with the hypothesis that Ξ has Q-linearly
independent coordinates. Let I denote the set of these indices i.

For i ∈ I, the integer det(xi−1,xi,xi+1) is non-zero and [3, Lemma 4]
yields

1 6 |det(xi−1,xi,xi+1)| 6 6Xi+1LiLi−1 6 6c2X1−λ
i+1 X

−λ
i ,

thus Xλ
i 6 6c2X1−λ

i+1 . Combining this with (3.4), we deduce that Xλ2

i 6
(6c2)λ(cc1Xi)1−λ for each i ∈ I, thus λ2 6 1−λ and so λ 6 1/γ. Moreover,

ANNALES DE L’INSTITUT FOURIER
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if λ = 1/γ, this yields 1 6 6c2(cc1)1/γ , and so c is bounded below by a
positive constant depending only on ϕ and Ξ.

4. Proof of the third part of the main theorem

The arguments in [9, §5] can easily be adapted to show that, for some
ε > 0 there are at most countably many irrational non-quadratic ξ ∈ R with
λ(1 : ξ : ξ2) > 1/γ−ε. This is, originally, an observation of S. Fischler who,
in unpublished work, also computed an explicit value for ε. The question
was later revisited by D. Zelo who showed in [13, Cor. 1.4.7] that one can
take ε = 3.48 × 10−3, and who also proved a p-adic analog of this result.
More recently, the existence of such ε was established by P. Bel, in a larger
context where Q is replaced by a number field K, and R by a completion of
K at some place [1, Theorem 1.3]. By Lemmas 2.1 and 2.4 (i), this proves
Theorem 2.3 (iii) when ϕ is irreducible over R and has a non-trivial zero
in P2(Q).
We now consider the complementary case. Using the notation and results

of the previous section, we need to show that, when λ is sufficiently close
to 1/γ, the point Ξ lies in a countable subset of C. For this purpose, we
may assume that λ > 1/2. The next two lemmas introduce a polynomial
ψ(x,y) with both algebraic and numerical properties analog to that of the
operator [x,x,y] from [9, §2] (cf. Lemmas 2.1 and 3.1(iii) of [9]).

Lemma 4.1. — For any x,y ∈ Z3, we define

ψ(x,y) := Φ(x,y)x− ϕ(x)y ∈ Z3.

Then, z = ψ(x,y) satisfies ϕ(z) = ϕ(x)2ϕ(y) and ψ(x, z) = ϕ(x)2y.

Proof. — For any a, b ∈ Q, we have ϕ(ax + by) = a2ϕ(x) + abΦ(x,y) +
b2ϕ(y). Substituting a = Φ(x,y) and b = −ϕ(x) in this equality yields
ϕ(z) = ϕ(x)2ϕ(y). The formula for ψ(x, z) follows from the linearity of ψ
in its second argument. �

Lemma 4.2. — Let i, j ∈ Z with i0 6 i < j. Then, the point w =
ψ(xi,xj) ∈ Z3 is non-zero and satisfies

‖w‖ � X2
i Lj +XjL

2
i and L(w)� XjL

2
i .

Here and for the rest of this section, the implied constants depend only
on Ξ, ϕ, λ and c.

TOME 63 (2013), FASCICULE 6



2340 Damien ROY

Proof. — Since xi and xj are distinct primitive elements of Z3, they
are linearly independent over Q. As ϕ(xi) 6= 0, this implies that w =
Φ(xi,xj)xi − ϕ(xi)xj 6= 0. By (3.3), we have

ϕ(xi) = XiΦ(Ξ,∆i) +O(L2
i )

where ∆i = xi −XiΞ. Similarly, for ∆j = xj −XjΞ, we find

Φ(xi,xj)=XjΦ(Ξ,∆i)+XiΦ(Ξ,∆j)+Φ(∆i,∆j)=XjΦ(Ξ,∆i)+O(XiLj).

Substituting these expressions in the formula for w = ψ(xi,xj), we obtain

w =
(
XjΦ(Ξ,∆i) +O(XiLj)

)
(XiΞ + ∆i)

−
(
XiΦ(Ξ,∆i) +O(L2

i )
)
(XjΞ + ∆j)

= O(X2
i Lj +XjL

2
i )Ξ +O(XjL

2
i ),

and the conclusion follows. �

We will also need the following result, where the set I (defined in Sec-
tion 3) is endowed with its natural ordering as a subset of N.

Lemma 4.3. — For each triple of consecutive elements i < j < k in I,
the points xi, xj and xk are linearly independent. We have

Xα
j � Xi � Xθ

j and Li � X−αj where α = 2λ− 1
1− λ and θ = 1− λ

λ
.

Proof. — The fact that i and j are consecutive elements of I implies that
xi,xi+1, . . . ,xj belong to the same 2-dimensional subspace Vi = 〈xi,xi+1〉R
of R3. Similarly, xj ,xj+1, . . . ,xk belong to Vj = 〈xj ,xj+1〉R. Thus xi, xj
and xk span Vi + Vj = 〈xj−1,xj ,xj+1〉R = R3, and so they are linearly
independent. Then, the normal vectors xi ∧ xi+1 to Vi and xj ∧ xj+1 to
Vj are non-parallel and both orthogonal to xj . So, their cross-product is
a non-zero multiple of xj . Since xj is a primitive point of Z3 and since
these normal vectors have integer coordinates, their cross-product is more
precisely a non-zero integer multiple of xj . This yields

Xj 6 ‖xj‖ � ‖xi ∧ xi+1‖ ‖xj ∧ xj+1‖ � (Xi+1Li)(Xj+1Lj)

� (Xi+1Xj+1)1−λ.

If we use the trivial upper bounds Xi+1 6 Xj and Xj+1 6 Xk to eliminate
Xi+1 and Xj+1 from the above estimate, we obtain Xj � Xθ

k . If instead
we use the upper bounds Xi+1 � X

1/λ
i and Xj+1 � X

1/λ
j coming from

(3.4), we find instead Xα
j � Xi. Finally, if we only eliminate Xj+1 using

Xj+1 � X
1/λ
j , we obtain Xα/λ

j � Xi+1 and thus Li � X−λi+1 � X−αj . �
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Proposition 4.4. — Suppose that λ > 0.613. For each integer k > 1,
put yk = xik where ik is the k-th element of I. Then, for each sufficiently
large k, the point yk+1 is a rational multiple of ψ(yk,yk−2).

Proof. — For each integer k > 1, let Yk denote the first coordinate of
yk. Then, according to Lemma 4.3, we have Y αk+1 � Yk � Y θk+1 and
L(yk) � Y −αk+1, with α > 0.5839 and θ 6 0.6314. Put wk = ψ(yk,yk+1).
By Lemma 4.2, the point wk is non-zero, and the above estimates yield

L(wk)� Yk+1L(yk)2 � Y 1−2α
k+1 and ‖wk‖ � Y 2

k L(yk+1)� Y −αk+2Y
2
k

(we dropped the term Yk+1L(yk)2 in the upper bound for ‖wk‖ because it
tends to 0 as k →∞ while ‖wk‖ > 1). Using these estimates, we find

|det(yk−2,yk−1,wk)| � ‖wk‖L(yk−2)L(yk−1) + ‖yk−1‖L(yk−2)L(wk)

� Y −αk+2Y
2−α2−α
k + Y 1−α

k−1 Y
1−2α
k+1 ,

� Y
−α+θ2(2−α2−α)
k+2 + Y

θ2(1−α)+1−2α
k+1 ,

|det(yk−3,yk−2,wk)| � ‖wk‖L(yk−3)L(yk−2) + ‖yk−2‖L(yk−3)L(wk)

� Y −αk+2Y
2−α3−α2

k + Y 1−α
k−2 Y

1−2α
k+1 ,

� Y
−α+θ2(2−α3−α2)
k+2 + Y

θ3(1−α)+1−2α
k+1 .

Thus both determinants tend to 0 as k → ∞ and so, for each sufficiently
large k, they vanish. Since, by Lemma 4.3, yk−3,yk−2,yk−1 are linearly
independent, this implies that, for those k, the point wk is a rational mul-
tiple of yk−2. As Lemma 4.1 gives ψ(yk,wk) = ϕ(yk)2yk+1, we conclude
that yk+1 is a rational multiple of ψ(yk,yk−2) for each large enough k. �
We end this section with two corollaries. The first one gathers properties

of the sequence (yk)k>1 when λ = 1/γ. The second completes the proof of
Theorem 2.3(iii).

Corollary 4.5. — Suppose that λ = 1/γ. Then, the sequence (yk)k>1
consists of primitive points of Z3 such that ψ(yk,yk−2) is an integer mul-
tiple of yk+1 for each sufficiently large k. Any three consecutive points
of this sequence are linearly independent and, for each k > 1, we have
‖yk+1‖ � ‖yk‖γ , L(yk) � ‖yk‖−1 and |ϕ(yk)| � 1.

Proof. — The first assertion simply adds a precision on Proposition 4.4
based on the fact that yk+1 is a primitive integer point. Aside from the esti-
mate for |ϕ(yk)|, the second assertion is a direct consequence of Lemma 4.3
since, for λ = 1/γ, we have α = θ = 1/γ. To complete the proof, we use
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the estimate |ϕ(xi)| � XiLi established in the previous section as a con-
sequence of (3.3). Since ϕ(yk) is a non-zero integer, it yields 1 6 |ϕ(yk)|
� 1. �

Corollary 4.6. — Suppose that λ > 0.613. Then, Ξ belongs to a
countable subset of C.

Proof. — Since each yk is a primitive point of Z3 with positive first
coordinate, the proposition shows that the sequence (yk)k>1 is uniquely
determined by its first terms. As there are countably many finite sequences
of elements of Z3 and as the image of (yk)k>1 in P2(R) converges to Ξ, the
point Ξ belongs to a countable subset of C. �

5. Proof of the second part of the main theorem

By [9, Theorem 1.1], there exist countably many irrational non-quadratic
real numbers ξ for which 1/γ is an exponent of approximation to (1 : ξ : ξ2).
Thus Part (ii) of Theorem 2.3 holds for ϕ = x0x2 − x2

1 and consequently,
by Lemmas 2.1 and 2.4, it holds for any quadratic form ϕ ∈ Q[x0, x1, x2]
which is irreducible over R and admits at least one zero in P2(Q). These
lemmas also show that, in order to complete the proof of Theorem 2.3(ii),
we may restrict to a diagonal form ϕ = x2

0 − bx2
1 − cx2

2 where b > 1
is a square free integer and where c is either 0 or a square-free integer
with c > 1. In fact, this even covers the case of ϕ = x0x2 − x2

1 since
(x0 + x1 + x2)(x0 − x1 − x2)− (x1 − x2)2 = x2

0 − 2x2
1 − 2x2

2.
We first establish four lemmas which apply to any quadratic form ϕ ∈

Q[x0, x1, x2] and its associated symmetric bilinear form Φ with Φ(x,x) =
2ϕ(x). Our first goal is to construct sequences (yi) as in Corollary 4.5. On
the algebraic side, we first make the following observation.

Lemma 5.1. — Suppose that y−1,y0,y1 ∈ Z3 satisfy ϕ(yi) = 1 for
i = −1, 0, 1. We extend this triple to a sequence (yi)i>−1 in Z3 by defin-
ing recursively yi+1 = ψ(yi,yi−2) for each i > 1. We also define ti =
Φ(yi+1,yi) ∈ Z for each i > −1. Then, for any integer i > 1, we have

(a) ϕ(yi−2) = 1,
(b) det(yi,yi−1,yi−2) = (−1)i−1 det(y1,y0,y−1),
(c) ti = Φ(yi+1,yi) = Φ(yi,yi−2),
(d) yi+1 = tiyi − yi−2,
(e) ti+1 = titi−1 − ti−2.

In particular, t−1 = Φ(y0,y−1), t0 = Φ(y1,y0) and t1 = Φ(y1,y−1).
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Proof. — By Lemma 4.1, we have ϕ(yi+1) = ϕ(yi)2ϕ(yi−2) for each
i > 1. This yields (a) by recurrence on i. Then, by definition of ψ, the
recurrence formula for yi+1 simplifies to

(5.1) yi+1 = Φ(yi,yi−2)yi − yi−2 (i > 1),

and so det(yi+1,yi,yi−1) = −det(yi,yi−1,yi−2) for each i > 1, by mul-
tilinearity of the determinant. This proves (b) by recurrence on i. From
(5.1), we deduce that

ti = Φ(yi+1,yi) = Φ(yi,yi−2)Φ(yi,yi)−Φ(yi−2,yi) = Φ(yi,yi−2) (i > 1),

which is (c). Then (d) is just a rewriting of (5.1). Combining (c) and (d),
we find

ti+1 = Φ(yi+1,yi−1) = tiΦ(yi,yi−1)−Φ(yi−2,yi−1) = titi−1−ti−2 (i > 1),

which is (e). Finally, the formulas given for t−1 and t0 are taken from the
definition while the one for t1 follows from (c). �

The next lemma provides mild conditions under which the norm of yi
grows as expected.

Lemma 5.2. — With the notation of the previous lemma, suppose that
1 6 t−1 < t0 < t1 and that 1 6 ‖y−1‖ < ‖y0‖ < ‖y1‖. Then, (ti)i>−1
and (‖yi‖)i>−1 are strictly increasing sequences of positive integers with
ti+1 � tγi and ‖yi+1‖ � ti+2 � ‖yi‖γ .

Here and below, the implied constants are simply meant to be indepen-
dent of i.
Proof. — Lemma 5.1(e) implies, by recurrence on i, that the sequence

(ti)i>−1 is strictly increasing and, more precisely, that it satisfies

(5.2) (ti − 1)ti−1 < ti+1 < titi−1 (i > 1),

which by [10, Lemma 5.2] implies that ti+1 � tγi . In turn, Lemma 5.1(d) im-
plies, by recurrence on i, that the sequence (‖yi‖)i>−1 is strictly increasing
with

(5.3) (ti − 1)‖yi‖ < ‖yi+1‖ < (ti + 1)‖yi‖ (i > 1).

Combining this with (5.2), we find that the ratios ρi = ‖yi‖/ti+1 satisfy

(1− 1/ti)ρi 6 ρi+1 6
1 + 1/ti

1− 1/ti+1
ρi 6

1
(1− 1/ti)2 ρi (i > 1),

and so ρ1c1 6 ρi 6 ρ1/c
2
1 for each i > 1 where c1 =

∏
i>1(1 − 1/ti) > 0

is a converging infinite product because ti tends to infinity with i faster
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than any geometric series. This means that ρi � 1, thus ‖yi‖ � ti+1, and
so ‖yi+1‖ � ti+2 � ‖yi‖γ because ti+2 � tγi+1. �

For any x,y ∈ R3, we denote by 〈x,y〉 their standard scalar product.
When x 6= 0 and y 6= 0, we also denote by [x], [y] their respective classes
in P2(R), and define the projective distance between these classes by

dist([x], [y]) = ‖x ∧ y‖
‖x‖ ‖y‖ .

It is not strictly speaking a distance on P2(R) but it behaves almost like a
distance since it satisfies

dist([x], [z]) 6 dist([x], [y]) + 2 dist([y], [z])

for any non-zero z ∈ R3 (see [10, § 2]). Moreover, the open balls for the
projective distance form a basis of the usual topology on P2(R). We can
now prove the following result.

Lemma 5.3. — With the notation and hypotheses of Lemmas 5.1 and
5.2, suppose that y−1, y0 and y1 are linearly independent. Then there exists
a zero Ξ = (1, ξ1, ξ2) of ϕ in R3 with Q-linearly independent coordinates
such that ‖Ξ ∧ yi‖ � ‖yi‖−1 for each i > 1. Moreover, 1/γ is an exponent
of approximation to the corresponding point Ξ = (1 : ξ1 : ξ2) ∈ P2(R).

Proof. — Our first goal is to show that ([yi])i>1 is a Cauchy sequence in
P2(R) with respect to the projective distance. To this end, we use freely the
estimates of the previous lemma and define zi = yi ∧ yi+1 for each i > 1.
By Lemma 5.1(b), the points yi−1, yi and yi+1 are linearly independent
for each i > 0. Thus, none of the products zi vanish, and so their norm
is at least 1. Moreover, Lemma 5.1(d) applied first to yi+1 and then to yi
yields

(5.4) zi = yi−2 ∧ yi = ti−1yi−2 ∧ yi−1 − yi−2 ∧ yi−3 = ti−1zi−2 + zi−3.

The above equality zi = yi−2 ∧ yi with i replaced by i− 3 implies that

‖zi−3‖ 6 2‖yi−5‖ ‖yi−3‖ � ti−4ti−2 � ti−1t
−1
i−5 6 ti−1t

−1
i−5‖zi−2‖.

In view of (5.4), this means that ‖zi‖ = ti−1(1 +O(t−1
i−5)) ‖zi−2‖, and thus

‖zi‖
ti

= ti−1ti−2

ti
(1 +O(t−1

i−5))‖zi−2‖
ti−2

= (1 +O(t−1
i−5))‖zi−2‖

ti−2

since, by Lemma 5.1(e), we have ti−1ti−2 = ti(1+ti−3t
−1
i ) = ti(1+O(t−1

i−5)).
As the series

∑
i>1 t

−1
i converges, the same is true of the infinite products
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∏
i>i0

(1 + ct−1
i ) for any c ∈ R. Thus the above estimates implies that

‖zi‖ � ti, and so we find

dist([yi], [yi+1]) = ‖zi‖
‖yi‖ ‖yi+1‖

� ti
ti+1ti+2

� t−2
i+1 � ‖yi‖

−2.

As the series
∑
i>1 2it−2

i+1 is convergent, we deduce that ([yi])i>1 forms a
Cauchy sequence in P2(R), and that its limit Ξ ∈ P2(R) satisfies dist([yi],Ξ)
� ‖yi‖−2. In terms of a representative Ξ of Ξ in R3, this means that

(5.5) ‖yi ∧ Ξ‖ � ‖yi‖−1.

To prove that Ξ has Q-linearly independent coordinates, we use the fact
that

‖〈u,yi〉Ξ− 〈u,Ξ〉yi‖ 6 2‖u‖ ‖yi ∧ Ξ‖

for any u ∈ R3 [10, Lemma 2.2]. So, if 〈u,Ξ〉 = 0 for some u ∈ Z3, then,
by (5.5), we obtain |〈u,yi〉| � ‖yi‖−1 for all i. Then, as 〈u,yi〉 is an
integer, it vanishes for each sufficiently large i, and so u = 0 because any
three consecutive yi span R3. This proves our claim. In particular, the first
coordinate of Ξ is non-zero, and we may normalize Ξ so that it is 1. Then,
as i goes to infinity, the points ‖yi‖−1yi converge to ‖Ξ‖−1Ξ in R3 and,
since ϕ(‖yi‖−1yi) = ‖yi‖−2 tends to 0, we deduce that ϕ(Ξ) = 0. Finally,
1/γ is an exponent of approximation to Ξ because, for each X > ‖y1‖,
there exists an index i > 1 such that ‖yi‖ 6 X 6 ‖yi+1‖ and then, by
(5.5), the point x := yi satisfies both

‖x‖ 6 X and ‖x ∧ Ξ‖ � ‖yi‖−1 � ‖yi+1‖−1/γ 6 X−1/γ .

�

The last lemma below will enable us to show that the above process leads
to infinitely many limit points Ξ.

Lemma 5.4. — Suppose that (yi)i>−1 and (y′i)i>−1 are constructed as
in Lemma 5.1 and that both of them satisfy the hypotheses of the three
preceding lemmas. Suppose moreover that their images in P2(R) have the
same limit Ξ. Then there exists an integer a such that y′i = ±yi+a for each
i > max{−1,−1− a}.

Proof. — Let Ξ = (1, ξ1, ξ2) be a representative of Ξ in R3, and for each
x ∈ Z3 define L(x) as in (3.1). The estimates of Lemma 5.3 imply that
L(yi) � ‖yi‖−1 and L(y′i) � ‖y′i‖−1. For each sufficiently large index j, we
can find an integer i > 2 such that ‖yi−1‖3/2 6 ‖y′j‖ 6 ‖yi‖3/2 and the
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standard estimates yield

|det(yi−1,yi,y′j)| � ‖y′j‖L(yi)L(yi−1) + ‖yi‖L(yi−1)L(y′j)

� ‖yi‖3/2‖yi‖−1‖yi−1‖−1 + ‖yi‖ ‖yi−1‖−1‖yi−1‖−3/2

� ‖yi‖1/2−1/γ = o(1),

and similarly |det(yi,yi+1,y′j)| � ‖yi‖−1/(2γ) = o(1). Thus, both deter-
minants vanish when j is large enough and then y′j is a rational multiple of
yi. However, both points are primitive elements of Z3 since ϕ takes value 1
on each of them. So, we must have y′j = ±yi. Since the two sequences
have the same type of growth, we conclude that there exist integers a and
i0 > max{−1,−1 − a} such that y′i = ±yi+a for each i > i0. Choose i0
smallest with this property. If i0 > max{0,−a}, then, using Lemma 4.1,
we obtain

y′i0−1 = ψ(y′i0+1,y′i0+2) = ψ(±yi0+1+a,±yi0+2+a) = ±yi0−1+a

in contradiction with the choice of i0. Thus we must have i0 = max{−1,−1
−a}. �

In view of the remarks made at the beginning of this section, the last
result below completes the proof of Theorem 2.3(ii).

Proposition 5.5. — Let b > 1 be a square-free integer and let c be
either 0 or a square-free integer with c > 1. Then the quadratic form
ϕ = x2

0 − bx2
1 − cx2

2 admits infinitely many zeros in P2(R) which have
Q-linearly independent homogeneous coordinates and for which 1/γ is an
exponent of approximation.

Proof. — The Pell equation x2
0−bx2

1 = 1 admits infinitely many solutions
in positive integers. We choose one such solution (x0, x1) = (m,n). For
the other solutions (m′, n′) ∈ (N∗)2, the quantity mm′ − bnn′ behaves
asymptotically like m′/(m + n

√
b) as m′ → ∞ and thus, we have m <

mm′ − bnn′ < m′ as soon as m′ is large enough. We fix such a solution
(m′, n′). We also choose a pair of integers r, t > 0 such that r2 − ct2 = 1.
Then, the three points

y−1 = (1, 0, 0), y0 = (m,n, 0) and y1 = (rm′, rn′, t)

are Q-linearly independent. They satisfy

‖y−1‖ = 1 < ‖y0‖ = m < rm′ 6 ‖y1‖ and ϕ(yi) = 1 (i = −1, 0, 1).

For such a triple, consider the corresponding sequences (ti)i>−1 and
(yi)i>−1 as defined in Lemma 5.1. The symmetric bilinear form attached
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to ϕ being Φ = 2(x0y0 − bx1y1 − cx2y2), we find

t−1 = 2m < t0 = 2r(mm′ − bnn′) < t1 = 2rm′.

Therefore the hypotheses of Lemmas 5.2 and 5.3 are fulfilled and so the
sequence ([yi])i>−1 converges in P2(R) to a zero Ξ of ϕ which has Q-
linearly independent homogeneous coordinates and for which 1/γ is an
exponent of approximation. To complete the proof and show that there are
infinitely many such points, it suffices to prove that any other choice of
m,n,m′, n′, r, t as above leads to a different limit point. Clearly, it leads to
a different sequence (y′i)i>−1. If [y′i] and [yi] converge to the same point Ξ
as i→∞, then by Lemma 5.4, there exists a ∈ Z such that y′i = ±yi+a for
each i > max{−1,−1− a}. But, in both sequences (yi)i>−1 and (y′i)i>−1,
the first point is the only one of norm 1, and moreover the first three
points have non-negative entries. So, we must have a = 0 and y′i = yi for
i = −1, 0, 1, a contradiction. �
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