

ANNALES

DE

L'INSTITUT FOURIER

Damien ROY

Rational approximation to real points on conics

Tome 63, nº 6 (2013), p. 2331-2348.

http://aif.cedram.org/item?id=AIF_2013__63_6_2331_0

© Association des Annales de l'institut Fourier, 2013, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/

RATIONAL APPROXIMATION TO REAL POINTS ON CONICS

by Damien ROY (*)

ABSTRACT. — A point (ξ_1, ξ_2) with coordinates in a subfield of $\mathbb R$ of transcendence degree one over $\mathbb Q$, with $1, \xi_1, \xi_2$ linearly independent over $\mathbb Q$, may have a uniform exponent of approximation by elements of $\mathbb Q^2$ that is strictly larger than the lower bound 1/2 given by Dirichlet's box principle. This appeared as a surprise, in connection to work of Davenport and Schmidt, for points of the parabola $\{(\xi,\xi^2);\,\xi\in\mathbb R\}$. The goal of this paper is to show that this phenomenon extends to all real conics defined over $\mathbb Q$, and that the largest exponent of approximation achieved by points of these curves satisfying the above condition of linear independence is always the same, independently of the curve, namely $1/\gamma\cong 0.618$ where γ denotes the golden ratio.

RÉSUMÉ. — Un point (ξ_1,ξ_2) à coordonnées dans un sous-corps de $\mathbb R$ de degré de transcendance un sur $\mathbb Q$, avec $1,\xi_1,\xi_2$ linéairement indépendants sur $\mathbb Q$, peut admettre un exposant d'approximation uniforme par les éléments de $\mathbb Q^2$ qui soit strictement plus grand que la borne inférieure 1/2 que garantit le principe des tiroirs de Dirichlet. Ce fait inattendu est apparu, en lien avec des travaux de Davenport et Schmidt, pour les points de la parabole $\{(\xi,\xi^2)\,;\,\xi\in\mathbb R\}$. Le but de cet article est de montrer que ce phénomène s'étend à toutes les coniques réelles définies sur $\mathbb Q$ et que le plus grand exposant d'approximation atteint par les points de ces courbes, sujets à la condition d'indépendance linéaire mentionnée plus tôt, est toujours le même, indépendamment de la courbe, à savoir $1/\gamma\cong 0.618$ où γ désigne le nombre d'or.

1. Introduction

Let n be a positive integer and let $\underline{\xi} = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$. The uniform exponent of approximation to $\underline{\xi}$ by rational points, denoted $\lambda(\underline{\xi})$, is defined as the supremum of all real numbers λ for which the system of inequalities

$$(1.1) |x_0| \leqslant X, \quad \max_{1 \leqslant i \leqslant n} |x_0 \xi_i - x_i| \leqslant X^{-\lambda}$$

Keywords: algebraic curves, conics, real points, approximation by rational points, exponent of approximation, simultaneous approximation.

Math. classification: 11J13, 14H50.

^(*) Research partially supported by NSERC.

admits a non-zero solution $\mathbf{x}=(x_0,x_1,\ldots,x_n)\in\mathbb{Z}^{n+1}$ for each sufficiently large real number X>1. It is one of the classical ways of measuring how well $\underline{\xi}$ can be approximated by elements of \mathbb{Q}^n , because each solution of (1.1) with $x_0\neq 0$ provides a rational point $\mathbf{r}=(x_1/x_0,\ldots,x_n/x_0)$ with denominator dividing x_0 such that $\|\underline{\xi}-\mathbf{r}\| \leq |x_0|^{-\lambda-1}$, where the symbol $\|\ \|$ stands for the maximum norm. We call it a "uniform exponent" following the terminology of Y. Bugeaud and M. Laurent in $[2,\S 1]$ because we require a solution of (1.1) for each sufficiently large X (but note that our notation is slightly different as they denote it $\hat{\lambda}(\underline{\xi})$). This exponent depends only on the \mathbb{Q} -vector subspace of \mathbb{R} spanned by $1,\xi_1,\ldots,\xi_n$ and so, by a result of Dirichlet [12], Chapter II, Theorem 1A], it satisfies $\lambda(\underline{\xi}) \geqslant 1/(s-1)$ where $s\geqslant 1$ denotes the dimension of that subspace. In particular we have $\lambda(\underline{\xi})=\infty$ when $\underline{\xi}\in\mathbb{Q}^n$, while it is easily shown that $\lambda(\underline{\xi})\leqslant 1$ when $\underline{\xi}\notin\mathbb{Q}^n$ (see for example [2], Prop. 2.1]).

In their seminal work [3], H. Davenport and W. M. Schmidt determine an upper bound λ_n , depending only on n, for $\lambda(\xi, \xi^2, \dots, \xi^n)$ where ξ runs through all real numbers such that $1, \xi, \dots, \xi^n$ are linearly independent over \mathbb{Q} , a condition which amounts to asking that ξ is not algebraic over \mathbb{Q} of degree n or less. Using geometry of numbers, they deduce from this a result of approximation to such ξ by algebraic integers of degree at most n+1. In particular they prove that $\lambda(\xi,\xi^2) \leqslant \lambda_2 := 1/\gamma \cong 0.618$ for each non-quadratic irrational real number ξ , where $\gamma = (1+\sqrt{5})/2$ denotes the golden ratio. It is shown in [7, 9] that this upper bound is best possible and, in [8], that the corresponding result of approximation by algebraic integers of degree at most 3 is also best possible. For $n \geqslant 3$, no optimal value is known for λ_n . At present the best known upper bounds are $\lambda_3 \leqslant (1+2\gamma-\sqrt{1+4\gamma^2})/2\cong 0.4245$ (see [11]) and $\lambda_n \leqslant 1/\lceil n/2 \rceil$ for $n \geqslant 4$ (see [5]).

As a matter of approaching this problem from a different angle, we propose to extend it to the following setting.

DEFINITION 1.1. — Let \mathcal{C} be a closed algebraic subset of \mathbb{R}^n of dimension 1 defined over \mathbb{Q} , irreducible over \mathbb{Q} , and not contained in any proper affine linear subspace of \mathbb{R}^n defined over \mathbb{Q} . Then, we put $\lambda(\mathcal{C}) = \sup\{\lambda(\underline{\xi}); \underline{\xi} \in \mathcal{C}^{li}\}$ where \mathcal{C}^{li} denotes the set of points $\underline{\xi} = (\xi_1, \dots, \xi_n) \in \mathcal{C}$ such that $1, \xi_1, \dots, \xi_n$ are linearly independent over \mathbb{Q} .

Equivalently, such a curve may be described as the Zariski closure over \mathbb{Q} in \mathbb{R}^n of a point $\underline{\xi} \in \mathbb{R}^n$ whose coordinates ξ_1, \ldots, ξ_n together with 1 are linearly independent over \mathbb{Q} and generate over \mathbb{Q} a subfield of \mathbb{R}

of transcendence degree one. In particular \mathcal{C}^{li} is not empty as it contains that point. From the point of view of metrical number theory the situation is simple since, for the relative Lebesgue measure, almost all points $\underline{\xi}$ of \mathcal{C} have $\lambda(\underline{\xi}) = 1/n$ (see [4]). Of special interest is the curve $\mathcal{C}_n := \{(\xi, \xi^2, \dots, \xi^n); \xi \in \mathbb{R}\}$ for any $n \geq 2$. As mentioned above, we have $\lambda(\mathcal{C}_2) = 1/\gamma$ and the problem remains to compute $\lambda(\mathcal{C}_n)$ for $n \geq 3$. In this paper, we look at the case of conics in \mathbb{R}^2 and prove the following result.

Theorem 1.2. — Let $\mathcal C$ be a closed algebraic subset of $\mathbb R^2$ of dimension 1 and degree 2. Suppose that $\mathcal C$ is defined over $\mathbb Q$ and irreducible over $\mathbb Q$. Then, we have $\lambda(\mathcal C)=1/\gamma$. Moreover, the set of points $\underline \xi\in\mathcal C^{li}$ with $\lambda(\underline \xi)=1/\gamma$ is countably infinite.

Here the degree of \mathcal{C} simply refers to the degree of the irreducible polynomial of $\mathbb{Q}[x_1,x_2]$ defining it. The curve \mathcal{C}_2 is the parabola of equation $x_2-x_1^2=0$ but, as we will see, other curves are easier to deal with, for example the curve defined by $x_1^2-2=0$ which consists of the pair of vertical lines $\{\pm\sqrt{2}\}\times\mathbb{R}$. Note that, for the latter curve, Theorem 1.2 simply says that any $\xi\in\mathbb{R}\setminus\mathbb{Q}(\sqrt{2})$ has $\lambda(\sqrt{2},\xi)\leqslant 1/\gamma$, with equality defining a denumerable subset of $\mathbb{R}\setminus\mathbb{Q}(\sqrt{2})$. Our main result in the next section provides a slightly finer result.

In [6], it is shown that the cubic \mathcal{C} defined by $x_2 - x_1^3 = 0$ has $\lambda(\mathcal{C}) \leq 2(9 + \sqrt{11})/35 \cong 0.7038$, but the case of the line $\sqrt[3]{2} \times \mathbb{R}$ should be simpler to solve and could give ideas to determine the precise value of $\lambda(\mathcal{C})$ for that cubic \mathcal{C} . Similarly, looking at lines $(\omega_2, \ldots, \omega_n) \times \mathbb{R}$ where $(1, \omega_2, \ldots, \omega_n)$ is a basis over \mathbb{Q} of a number field of degree n could provide new ideas to compute $\lambda(\mathcal{C}_n)$.

This paper is organized as follows. In the next section, we state a slightly stronger result in projective setting and note that, for curves \mathcal{C} which are irreducible over \mathbb{R} and contain at least one rational point, the proof simply reduces to the known case of the parabola \mathcal{C}_2 . In Section 3, we prove the inequality $\lambda(\mathcal{C}) \leq 1/\gamma$ for the remaining curves \mathcal{C} by an adaptation of the original argument of Davenport and Schmidt in [3, § 3]. However, the fact that these curves have at most one rational point brings a notable simplification in the proof. In Section 4, we adapt the arguments of [9, § 5] to establish a certain rigidity property for the sequence of minimal points attached to points $\underline{\xi} \in \mathcal{C}^{li}$ with $\lambda(\underline{\xi}) = 1/\gamma$, and deduce from it that the set of these points $\underline{\xi}$ is at most countable. We conclude in Section 5, with the most delicate part, namely the existence of infinitely many points $\underline{\xi} \in \mathcal{C}^{li}$ having exponent $1/\gamma$.

2. The main result in projective framework

For each $n \ge 2$, we endow \mathbb{R}^n with the maximum norm, and identify its exterior square $\bigwedge^2 \mathbb{R}^n$ with $\mathbb{R}^{n(n-1)/2}$ via an ordering of the Plücker coordinates. In particular, when n = 3, we define the wedge product of two vectors in \mathbb{R}^3 as their usual cross-product. We first introduce finer notions of Diophantine approximation in the projective context.

Let $\Xi \in \mathbb{P}^n(\mathbb{R})$ and let $\underline{\Xi} = (\xi_0, \dots, \xi_n)$ be a representative of Ξ in \mathbb{R}^{n+1} . We say that a real number $\lambda \geqslant 0$ is an exponent of approximation to Ξ if there exists a constant $c = c_1(\underline{\Xi})$ such that the conditions

$$\|\mathbf{x}\| \leqslant X$$
 and $\|\mathbf{x} \wedge \underline{\Xi}\| \leqslant cX^{-\lambda}$

admit a non-zero solution $\mathbf{x} \in \mathbb{Z}^{n+1}$ for each sufficiently large real number X. We say that λ is a *strict* exponent of approximation to Ξ if moreover there exists a constant $c = c_2(\Xi) > 0$ such that the same conditions admit no non-zero solution $\mathbf{x} \in \mathbb{Z}^{n+1}$ for arbitrarily large values of X. Both properties are independent of the choice of the representative Ξ , and we define $\lambda(\Xi)$ as the supremum of all exponents of approximations to Ξ . Clearly, when λ is a strict exponent of approximation to Ξ , we have $\lambda(\Xi) = \lambda$.

Let $T: \mathbb{Q}^{n+1} \to \mathbb{Q}^{n+1}$ be an invertible \mathbb{Q} -linear map. It extends uniquely to a \mathbb{R} -linear automorphism of \mathbb{R}^{n+1} and then to an automorphism of $\mathbb{P}^n(\mathbb{R})$. This defines an action of $\mathrm{GL}_{n+1}(\mathbb{Q})$ on $\mathbb{P}^n(\mathbb{R})$. Moreover, upon choosing an integer $m \geq 1$ such that $mT(\mathbb{Z}^{n+1}) \subseteq \mathbb{Z}^{n+1}$, any non-zero point $\mathbf{x} \in \mathbb{Z}^{n+1}$ gives rise to a non-zero point $\mathbf{y} = mT(\mathbf{x}) \in \mathbb{Z}^{n+1}$ satisfying

$$\|\mathbf{y}\| \leqslant c_T \|\mathbf{x}\|$$
 and $\|\mathbf{y} \wedge T(\underline{\Xi})\| \leqslant c_T \|\mathbf{x} \wedge \Xi\|$

for a constant $c_T > 0$ depending only on T. Combined with the above definitions, this yields the following invariance property.

LEMMA 2.1. — Let $\Xi \in \mathbb{P}^n(\mathbb{R})$ and $T \in GL_{n+1}(\mathbb{Q})$. Then we have $\lambda(\Xi) = \lambda(T(\Xi))$. More precisely a real number $\lambda \geq 0$ is an exponent of approximation to Ξ , respectively a strict exponent of approximation to Ξ , if and only if it is an exponent of approximation to $T(\Xi)$, respectively a strict exponent of approximation to $T(\Xi)$.

We also have a natural embedding of \mathbb{R}^n into $\mathbb{P}^n(\mathbb{R})$, sending a point $\underline{\xi} = (\xi_1, \dots, \xi_n)$ to $(1 : \underline{\xi}) := (1 : \xi_1 : \dots : \xi_n)$. Identifying \mathbb{R}^n with its image in $\mathbb{P}^n(\mathbb{R})$, the above notions of exponent of approximation and strict exponent of approximation carry back to points of \mathbb{R}^n . The next lemma, whose proof is left to the reader, shows how they translate in this context and shows moreover that $\lambda(\underline{\xi}) = \lambda(1 : \underline{\xi})$, thus leaving no ambiguity as to the value of $\lambda(\xi)$.

LEMMA 2.2. — Let $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$.

(i) A real number $\lambda \ge 0$ is an exponent of approximation to $(1 : \underline{\xi})$ if and only if there exists a constant $c = c_1(\xi)$ such that the conditions

$$|x_0| \leqslant X$$
 and $\max_{1 \leqslant i \leqslant n} |x_0 \xi_i - x_i| \leqslant c X^{-\lambda}$

admit a non-zero solution $\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{Z}^{n+1}$ for each sufficiently large X.

(ii) It is a strict exponent of approximation to $(1:\underline{\xi})$ if and only if there also exists a constant $c=c_2(\underline{\xi})>0$ such that the above conditions admit no non-zero integer solution for arbitrarily large values of X.

Finally, we have $\lambda(\xi) = \lambda(1:\xi)$.

Our main result is the following strengthening of Theorem 1.2.

THEOREM 2.3. — Let φ be a homogeneous polynomial of degree 2 in $\mathbb{Q}[x_0, x_1, x_2]$. Suppose that φ is irreducible over \mathbb{Q} and that its set of zeros \mathcal{C} in $\mathbb{P}^2(\mathbb{R})$ consists of at least two points.

- (i) For each point $\Xi \in \mathcal{C}$ having \mathbb{Q} -linearly independent homogeneous coordinates, the number $1/\gamma$ is at best a strict exponent of approximation to Ξ : if it is an exponent of approximation to Ξ , it is a strict one.
- (ii) There are infinitely many points $\Xi \in \mathcal{C}$ which have \mathbb{Q} -linearly independent homogeneous coordinates and for which $1/\gamma$ is an exponent of approximation.
- (iii) There exists a positive ϵ , independent of φ , such that the set of points $\Xi \in \mathcal{C}$ with $\lambda(\Xi) > 1/\gamma \epsilon$ is countable.

To show that this implies Theorem 1.2, let $\mathcal C$ be as in latter statement. Then, the Zariski closure $\bar{\mathcal C}$ of $\mathcal C$ in $\mathbb P^2(\mathbb R)$ is infinite and is the zero set of an irreducible homogeneous polynomial of degree 2 in $\mathbb Q[x_0,x_1,x_2]$. Moreover, $\mathcal C^{li}$ identifies with the set of elements of $\bar{\mathcal C}$ with $\mathbb Q$ -linearly independent homogeneous coordinates. So, if we admit the above theorem, then, in view of Lemma 2.2, Part (i) implies that $\lambda(\mathcal C) \leqslant 1/\gamma$, Part (ii) shows that there are infinitely many $\underline{\xi} \in \mathcal C^{li}$ with $\lambda(\underline{\xi}) = 1/\gamma$, and Part (iii) shows that the set of points $\underline{\xi} \in \mathcal C$ with $\lambda(\underline{\xi}) > 1/\gamma - \epsilon$ is countable. Altogether, this proves Theorem 1.2.

The proof of Part (iii) in Section 4 will show that one can take $\epsilon = 0.005$ but the optimal value for ϵ is probably much larger. In connection to (iii), we also note that the set of elements of \mathcal{C} with \mathbb{Q} -linearly dependent homogeneous coordinates is at most countable because each such point belongs to a proper linear subspace of $\mathbb{P}^2(\mathbb{R})$ defined over \mathbb{Q} , there are

countably many such subspaces, and each of them meets \mathcal{C} in at most two points. So, in order to prove (iii), we may restrict to the points of \mathcal{C} with \mathbb{Q} -linearly independent homogeneous coordinates.

Lemma 2.1 implies that, if Theorem 2.3 holds true for a form φ , then it also holds for $\mu(\varphi \circ T)$ for any $T \in GL_3(\mathbb{Q})$ and any $\mu \in \mathbb{Q}^*$. Thus the next lemma reduces the proof of the theorem to forms of special types.

LEMMA 2.4. — Let φ be an irreducible homogeneous polynomial of $\mathbb{Q}[x_0, x_1, x_2]$ of degree 2 which admits at least two zeros in $\mathbb{P}^2(\mathbb{R})$.

- (i) If φ is irreducible over \mathbb{R} and admits at least one zero in $\mathbb{P}^2(\mathbb{Q})$, then there exist $\mu \in \mathbb{Q}^*$ and $T \in GL_3(\mathbb{Q})$ such that $\mu(\varphi \circ T)(x_0, x_1, x_2) = x_0x_2 x_1^2$.
- (ii) If φ is not irreducible over \mathbb{R} , then it admits exactly one zero in $\mathbb{P}^2(\mathbb{Q})$ and there exist $\mu \in \mathbb{Q}^*$ and $T \in GL_3(\mathbb{Q})$ such that we have $\mu(\varphi \circ T)(x_0, x_1, x_2) = x_0^2 bx_1^2$ for some square-free integer b > 1.
- (iii) If φ has no zero in $\mathbb{P}^2(\mathbb{Q})$, then there exist $\mu \in \mathbb{Q}^*$ and $T \in GL_3(\mathbb{Q})$ such that $\mu(\varphi \circ T)(x_0, x_1, x_2) = x_0^2 bx_1^2 cx_2^2$ for some square-free integers b > 1 and c > 1.

Proof. — We view (\mathbb{Q}^3, φ) as a quadratic space. We denote by K its kernel, and by Φ the unique symmetric bilinear form such that $\Phi(\mathbf{x}, \mathbf{x}) = 2\varphi(\mathbf{x})$.

Suppose first that $K \neq \{0\}$. Then, by a change of variables over \mathbb{Q} , we can bring φ to a diagonal form $rx_0^2 + sx_1^2$ with $r,s \in \mathbb{Q}$. We have $rs \neq 0$ since φ is irreducible over \mathbb{Q} , and furthermore rs < 0 since otherwise the point (0:0:1) would be the only zero of φ in $\mathbb{P}^2(\mathbb{R})$. Thus, φ is not irreducible over \mathbb{R} , and $\dim_{\mathbb{Q}} K = 1$.

In the case (i), the above observation shows that \mathbb{Q}^3 is non-degenerate. Then, since φ has a zero in $\mathbb{P}^2(\mathbb{Q})$, the space \mathbb{Q}^3 decomposes as the orthogonal direct sum of a hyperbolic plane H and a non-degenerate line P. We choose bases $\{\mathbf{v}_0, \mathbf{v}_2\}$ for H and $\{\mathbf{v}_1\}$ for P such that $\varphi(\mathbf{v}_0) = \varphi(\mathbf{v}_2) = 0$ and $\Phi(\mathbf{v}_0, \mathbf{v}_2) = -\varphi(\mathbf{v}_1)$. Then $\mu = -1/\varphi(\mathbf{v}_1)$ and the linear map $T: \mathbb{Q}^3 \to \mathbb{Q}^3$ sending the canonical basis of \mathbb{Q}^3 to $(\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2)$ have the property stated in (i).

In the case (iii), we have $K = \{0\}$ and so we can write \mathbb{Q}^3 as an orthogonal direct sum of one-dimensional non-degenerate subspaces P_0 , P_1 and P_2 . We order them so that the non-zero values of φ on P_0 have opposite sign to those on P_1 and P_2 . This is possible since φ is indefinite. Let $\{\mathbf{v}_0\}$ be a basis of P_0 and put $\mu = 1/\varphi(\mathbf{v}_0)$. For i = 1, 2, we can choose a basis $\{\mathbf{v}_i\}$ of P_i such that $\mu\varphi(\mathbf{v}_i)$ is a square-free integer. Then μ and the linear map

 $T: \mathbb{Q}^3 \to \mathbb{Q}^3$ sending the canonical basis of \mathbb{Q}^3 to $(\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2)$ have the property stated in (iii).

In the case (ii), the form φ factors over a quadratic extension $\mathbb{Q}(\sqrt{d})$ of \mathbb{Q} as a product $\varphi(\mathbf{x}) = \rho L(\mathbf{x})\bar{L}(\mathbf{x})$ where L is a linear form, \bar{L} its conjugate over \mathbb{Q} , and $\rho \in \mathbb{Q}^*$. As φ is irreducible over \mathbb{Q} , the linear forms L and \bar{L} are not multiple of each other. Moreover, for a point $\mathbf{a} \in \mathbb{Q}^3$, we have

$$\varphi(\mathbf{a}) = 0 \iff L(\mathbf{a}) = \bar{L}(\mathbf{a}) = 0 \iff (L + \bar{L})(\mathbf{a}) = \sqrt{d}(L - \bar{L})(\mathbf{a}) = 0.$$

Since $L + \bar{L}$ and $\sqrt{d}(L - \bar{L})$ are linearly independent forms with coefficients in \mathbb{Q} , this means that the zero set of φ in \mathbb{Q}^3 is a line, and so φ has a unique zero in $\mathbb{P}^2(\mathbb{Q})$. As $\Phi(\mathbf{x}, \mathbf{y}) = \rho L(\mathbf{x})\bar{L}(\mathbf{y}) + \rho\bar{L}(\mathbf{x})L(\mathbf{y})$, this line is contained in the kernel K of φ , and so is equal to K. By an earlier observation, this means that, by a change of variables over \mathbb{Q} , we may bring φ to a diagonal form $rx_0^2 + sx_1^2$ with $r, s \in \mathbb{Q}$, rs < 0. We may further choose r and s so that -s/r is a square-free integer b > 0. Then, the same change of variables brings $r^{-1}\varphi$ to $x_0^2 - bx_1^2$. Finally, we have $b \neq 1$ since φ is irreducible over \mathbb{Q} .

3. Proof of the first part of the main theorem

Let φ and \mathcal{C} be as in the statement of Theorem 2.3. Suppose first that φ is irreducible over \mathbb{R} and that $\mathcal{C} \cap \mathbb{P}^2(\mathbb{Q}) \neq \emptyset$. Then, by Lemma 2.4, there exists $T \in \mathrm{GL}_3(\mathbb{Q})$ such that $T^{-1}(\mathcal{C})$ is the zero-set in $\mathbb{P}^2(\mathbb{R})$ of the polynomial $x_0x_2 - x_1^2$. Let Ξ be a point of \mathcal{C} with \mathbb{Q} -linearly independent homogeneous coordinates. Its image $T^{-1}(\Xi)$ has homogeneous coordinates $(1:\xi:\xi^2)$, for some irrational non-quadratic $\xi \in \mathbb{R}$. Then, by [3, Theorem 1a], the number $1/\gamma$ is at best a strict exponent of approximation to $T^{-1}(\Xi)$, and, by Lemma 2.1, the same applies to Ξ . This proves Part (i) of the theorem in that case.

Otherwise, Lemma 2.4 shows that φ has at most one zero in $\mathbb{P}^2(\mathbb{Q})$. Taking advantage of the major simplification that this entails, we proceed as Davenport and Schmidt in [3, §3]. We fix a point $\Xi \in \mathcal{C}$ with \mathbb{Q} -linearly independent homogeneous coordinates $(1:\xi_1:\xi_2)$ and an exponent of approximation $\lambda \geqslant 1/2$ for Ξ . Then, by Lemma 2.2, there exists a constant c>0 such that, for each sufficiently large X, the system

(3.1)
$$|x_0| \leqslant X$$
, $L(\mathbf{x}) := \max\{|x_0\xi_1 - x_1|, |x_0\xi_2 - x_2|\} \leqslant cX^{-\lambda}$

has a non-zero solution $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$. To prove Part (i) of Theorem 2.3, we simply need to show that $\lambda \leq 1/\gamma$ and that, when $\lambda = 1/\gamma$, the constant c cannot be chosen arbitrarily small.

To this end, we first note that there exists a sequence of points $(\mathbf{x}_i)_{i\geqslant 1}$ in \mathbb{Z}^3 such that

- (a) their first coordinates X_i form an increasing sequence $1 \leq X_1 < X_2 < X_3 < \cdots$,
- (b) the quantities $L_i := L(\mathbf{x}_i)$ form a decreasing sequence $1 > L_1 > L_2 > L_3 > \cdots$,
- (c) for each $\mathbf{x} = (x_0, x_1, x_2) \in \mathbb{Z}^3$ and each $i \ge 1$ with $|x_0| < X_{i+1}$, we have $L(\mathbf{x}) \ge L_i$.

Then, each \mathbf{x}_i is a *primitive* point of \mathbb{Z}^3 , by which we mean that the gcd of its coordinates is 1. Moreover, the hypothesis that (3.1) has a solution for each large enough X implies that

$$(3.2) L_i \leqslant cX_{i+1}^{-\lambda}$$

for each sufficiently large i, say for all $i \ge i_0$. Since φ has at most one zero in $\mathbb{P}^2(\mathbb{Q})$, we may further assume that $\varphi(\mathbf{x}_i) \ne 0$ for each $i \ge i_0$. Then, upon normalizing φ so that it has integer coefficients, we conclude that $|\varphi(\mathbf{x}_i)| \ge 1$ for the same values of i.

Put $\underline{\Xi} = (1, \xi_1, \xi_2) \in \mathbb{Q}^3$, and let Φ denote the symmetric bilinear form for which $\Phi(\mathbf{x}, \mathbf{x}) = 2\varphi(\mathbf{x})$. Then, upon writing $\mathbf{x}_i = X_i\underline{\Xi} + \Delta_i$ and noting that $\varphi(\underline{\Xi}) = 0$, we find

(3.3)
$$\varphi(\mathbf{x}_i) = X_i \Phi(\Xi, \Delta_i) + \varphi(\Delta_i).$$

As $\|\Delta_i\| = L_i$, this yields $|\varphi(\mathbf{x}_i)| \leq c_1 X_i L_i$ for a constant $c_1 = c_1(\varphi, \underline{\Xi}) > 0$. Using (3.2), we conclude that, for each $i \geq i_0$, we have $1 \leq |\varphi(\mathbf{x}_i)| \leq cc_1 X_i X_{i+1}^{-\lambda}$, and so

$$(3.4) X_{i+1}^{\lambda} \leqslant cc_1 X_i.$$

We also note that there are infinitely many values of $i > i_0$ for which \mathbf{x}_{i-1} , \mathbf{x}_i and \mathbf{x}_{i+1} are linearly independent. For otherwise, all points \mathbf{x}_i with i large enough would lie in a two dimensional subspace V of \mathbb{R}^3 defined over \mathbb{Q} . As the products $X_i^{-1}\mathbf{x}_i$ converge to Ξ when $i \to \infty$, this would imply that $\Xi \in V$, in contradiction with the hypothesis that Ξ has \mathbb{Q} -linearly independent coordinates. Let I denote the set of these indices i.

For $i \in I$, the integer $det(\mathbf{x}_{i-1}, \mathbf{x}_i, \mathbf{x}_{i+1})$ is non-zero and [3, Lemma 4] yields

$$1 \leqslant |\det(\mathbf{x}_{i-1}, \mathbf{x}_i, \mathbf{x}_{i+1})| \leqslant 6X_{i+1}L_iL_{i-1} \leqslant 6c^2X_{i+1}^{1-\lambda}X_i^{-\lambda},$$

thus $X_i^{\lambda} \leqslant 6c^2 X_{i+1}^{1-\lambda}$. Combining this with (3.4), we deduce that $X_i^{\lambda^2} \leqslant (6c^2)^{\lambda} (cc_1 X_i)^{1-\lambda}$ for each $i \in I$, thus $\lambda^2 \leqslant 1-\lambda$ and so $\lambda \leqslant 1/\gamma$. Moreover,

if $\lambda = 1/\gamma$, this yields $1 \leq 6c^2(cc_1)^{1/\gamma}$, and so c is bounded below by a positive constant depending only on φ and Ξ .

4. Proof of the third part of the main theorem

The arguments in [9, §5] can easily be adapted to show that, for some $\epsilon > 0$ there are at most countably many irrational non-quadratic $\xi \in \mathbb{R}$ with $\lambda(1:\xi:\xi^2) \geqslant 1/\gamma - \epsilon$. This is, originally, an observation of S. Fischler who, in unpublished work, also computed an explicit value for ϵ . The question was later revisited by D. Zelo who showed in [13, Cor. 1.4.7] that one can take $\epsilon = 3.48 \times 10^{-3}$, and who also proved a p-adic analog of this result. More recently, the existence of such ϵ was established by P. Bel, in a larger context where $\mathbb Q$ is replaced by a number field K, and $\mathbb R$ by a completion of K at some place [1, Theorem 1.3]. By Lemmas 2.1 and 2.4 (i), this proves Theorem 2.3 (iii) when φ is irreducible over $\mathbb R$ and has a non-trivial zero in $\mathbb P^2(\mathbb Q)$.

We now consider the complementary case. Using the notation and results of the previous section, we need to show that, when λ is sufficiently close to $1/\gamma$, the point Ξ lies in a countable subset of \mathcal{C} . For this purpose, we may assume that $\lambda > 1/2$. The next two lemmas introduce a polynomial $\psi(\mathbf{x}, \mathbf{y})$ with both algebraic and numerical properties analog to that of the operator $[\mathbf{x}, \mathbf{x}, \mathbf{y}]$ from $[9, \S 2]$ (cf. Lemmas 2.1 and 3.1(iii) of [9]).

LEMMA 4.1. — For any $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^3$, we define

$$\psi(\mathbf{x}, \mathbf{y}) := \Phi(\mathbf{x}, \mathbf{y})\mathbf{x} - \varphi(\mathbf{x})\mathbf{y} \in \mathbb{Z}^3.$$

Then, $\mathbf{z} = \psi(\mathbf{x}, \mathbf{y})$ satisfies $\varphi(\mathbf{z}) = \varphi(\mathbf{x})^2 \varphi(\mathbf{y})$ and $\psi(\mathbf{x}, \mathbf{z}) = \varphi(\mathbf{x})^2 \mathbf{y}$.

Proof. — For any $a, b \in \mathbb{Q}$, we have $\varphi(a\mathbf{x} + b\mathbf{y}) = a^2 \varphi(\mathbf{x}) + ab\Phi(\mathbf{x}, \mathbf{y}) + b^2 \varphi(\mathbf{y})$. Substituting $a = \Phi(\mathbf{x}, \mathbf{y})$ and $b = -\varphi(\mathbf{x})$ in this equality yields $\varphi(\mathbf{z}) = \varphi(\mathbf{x})^2 \varphi(\mathbf{y})$. The formula for $\psi(\mathbf{x}, \mathbf{z})$ follows from the linearity of ψ in its second argument.

LEMMA 4.2. — Let $i, j \in \mathbb{Z}$ with $i_0 \leqslant i < j$. Then, the point $\mathbf{w} = \psi(\mathbf{x}_i, \mathbf{x}_j) \in \mathbb{Z}^3$ is non-zero and satisfies

$$\|\mathbf{w}\| \ll X_i^2 L_j + X_j L_i^2$$
 and $L(\mathbf{w}) \ll X_j L_i^2$.

Here and for the rest of this section, the implied constants depend only on $\underline{\Xi}$, φ , λ and c.

Proof. — Since \mathbf{x}_i and \mathbf{x}_j are distinct primitive elements of \mathbb{Z}^3 , they are linearly independent over \mathbb{Q} . As $\varphi(\mathbf{x}_i) \neq 0$, this implies that $\mathbf{w} = \Phi(\mathbf{x}_i, \mathbf{x}_j) \mathbf{x}_i - \varphi(\mathbf{x}_i) \mathbf{x}_j \neq 0$. By (3.3), we have

$$\varphi(\mathbf{x}_i) = X_i \Phi(\Xi, \Delta_i) + \mathcal{O}(L_i^2)$$

where $\Delta_i = \mathbf{x}_i - X_i \underline{\Xi}$. Similarly, for $\Delta_j = \mathbf{x}_j - X_j \underline{\Xi}$, we find

$$\Phi(\mathbf{x}_i, \mathbf{x}_j) = X_j \Phi(\underline{\Xi}, \Delta_i) + X_i \Phi(\underline{\Xi}, \Delta_j) + \Phi(\Delta_i, \Delta_j) = X_j \Phi(\underline{\Xi}, \Delta_i) + \mathcal{O}(X_i L_j).$$

Substituting these expressions in the formula for $\mathbf{w} = \psi(\mathbf{x}_i, \mathbf{x}_j)$, we obtain

$$\mathbf{w} = (X_j \Phi(\underline{\Xi}, \Delta_i) + \mathcal{O}(X_i L_j)) (X_i \underline{\Xi} + \Delta_i) - (X_i \Phi(\underline{\Xi}, \Delta_i) + \mathcal{O}(L_i^2)) (X_j \underline{\Xi} + \Delta_j) = \mathcal{O}(X_i^2 L_j + X_j L_i^2) \underline{\Xi} + \mathcal{O}(X_j L_i^2),$$

and the conclusion follows.

We will also need the following result, where the set I (defined in Section 3) is endowed with its natural ordering as a subset of \mathbb{N} .

П

LEMMA 4.3. — For each triple of consecutive elements i < j < k in I, the points \mathbf{x}_i , \mathbf{x}_j and \mathbf{x}_k are linearly independent. We have

$$X_j^{\alpha} \ll X_i \ll X_j^{\theta}$$
 and $L_i \ll X_j^{-\alpha}$ where $\alpha = \frac{2\lambda - 1}{1 - \lambda}$ and $\theta = \frac{1 - \lambda}{\lambda}$.

Proof. — The fact that i and j are consecutive elements of I implies that $\mathbf{x}_i, \mathbf{x}_{i+1}, \ldots, \mathbf{x}_j$ belong to the same 2-dimensional subspace $V_i = \langle \mathbf{x}_i, \mathbf{x}_{i+1} \rangle_{\mathbb{R}}$ of \mathbb{R}^3 . Similarly, $\mathbf{x}_j, \mathbf{x}_{j+1}, \ldots, \mathbf{x}_k$ belong to $V_j = \langle \mathbf{x}_j, \mathbf{x}_{j+1} \rangle_{\mathbb{R}}$. Thus $\mathbf{x}_i, \mathbf{x}_j$ and \mathbf{x}_k span $V_i + V_j = \langle \mathbf{x}_{j-1}, \mathbf{x}_j, \mathbf{x}_{j+1} \rangle_{\mathbb{R}} = \mathbb{R}^3$, and so they are linearly independent. Then, the normal vectors $\mathbf{x}_i \wedge \mathbf{x}_{i+1}$ to V_i and $\mathbf{x}_j \wedge \mathbf{x}_{j+1}$ to V_j are non-parallel and both orthogonal to \mathbf{x}_j . So, their cross-product is a non-zero multiple of \mathbf{x}_j . Since \mathbf{x}_j is a primitive point of \mathbb{Z}^3 and since these normal vectors have integer coordinates, their cross-product is more precisely a non-zero integer multiple of \mathbf{x}_j . This yields

$$X_j \leq \|\mathbf{x}_j\| \ll \|\mathbf{x}_i \wedge \mathbf{x}_{i+1}\| \|\mathbf{x}_j \wedge \mathbf{x}_{j+1}\| \ll (X_{i+1}L_i)(X_{j+1}L_j)$$

 $\ll (X_{i+1}X_{j+1})^{1-\lambda}.$

If we use the trivial upper bounds $X_{i+1} \leq X_j$ and $X_{j+1} \leq X_k$ to eliminate X_{i+1} and X_{j+1} from the above estimate, we obtain $X_j \ll X_k^{\theta}$. If instead we use the upper bounds $X_{i+1} \ll X_i^{1/\lambda}$ and $X_{j+1} \ll X_j^{1/\lambda}$ coming from (3.4), we find instead $X_j^{\alpha} \ll X_i$. Finally, if we only eliminate X_{j+1} using $X_{j+1} \ll X_j^{1/\lambda}$, we obtain $X_j^{\alpha/\lambda} \ll X_{i+1}$ and thus $L_i \ll X_{i+1}^{-\lambda} \ll X_j^{-\alpha}$. \square

PROPOSITION 4.4. — Suppose that $\lambda \ge 0.613$. For each integer $k \ge 1$, put $\mathbf{y}_k = \mathbf{x}_{i_k}$ where i_k is the k-th element of I. Then, for each sufficiently large k, the point \mathbf{y}_{k+1} is a rational multiple of $\psi(\mathbf{y}_k, \mathbf{y}_{k-2})$.

Proof. — For each integer $k \ge 1$, let Y_k denote the first coordinate of \mathbf{y}_k . Then, according to Lemma 4.3, we have $Y_{k+1}^{\alpha} \ll Y_k \ll Y_{k+1}^{\theta}$ and $L(\mathbf{y}_k) \ll Y_{k+1}^{-\alpha}$, with $\alpha \ge 0.5839$ and $\theta \le 0.6314$. Put $\mathbf{w}_k = \psi(\mathbf{y}_k, \mathbf{y}_{k+1})$. By Lemma 4.2, the point \mathbf{w}_k is non-zero, and the above estimates yield

$$L(\mathbf{w}_k) \ll Y_{k+1} L(\mathbf{y}_k)^2 \ll Y_{k+1}^{1-2\alpha}$$
 and $\|\mathbf{w}_k\| \ll Y_k^2 L(\mathbf{y}_{k+1}) \ll Y_{k+2}^{-\alpha} Y_k^2$

(we dropped the term $Y_{k+1}L(\mathbf{y}_k)^2$ in the upper bound for $\|\mathbf{w}_k\|$ because it tends to 0 as $k \to \infty$ while $\|\mathbf{w}_k\| \ge 1$). Using these estimates, we find

$$|\det(\mathbf{y}_{k-2}, \mathbf{y}_{k-1}, \mathbf{w}_{k})| \ll ||\mathbf{w}_{k}|| L(\mathbf{y}_{k-2}) L(\mathbf{y}_{k-1}) + ||\mathbf{y}_{k-1}|| L(\mathbf{y}_{k-2}) L(\mathbf{w}_{k})$$

$$\ll Y_{k+2}^{-\alpha} Y_{k}^{2-\alpha^{2}-\alpha} + Y_{k-1}^{1-\alpha} Y_{k+1}^{1-2\alpha},$$

$$\ll Y_{k+2}^{-\alpha+\theta^{2}(2-\alpha^{2}-\alpha)} + Y_{k+1}^{\theta^{2}(1-\alpha)+1-2\alpha},$$

$$|\det(\mathbf{y}_{k-3}, \mathbf{y}_{k-2}, \mathbf{w}_{k})| \ll ||\mathbf{w}_{k}|| L(\mathbf{y}_{k-3}) L(\mathbf{y}_{k-2}) + ||\mathbf{y}_{k-2}|| L(\mathbf{y}_{k-3}) L(\mathbf{w}_{k})$$

$$\ll Y_{k+2}^{-\alpha} Y_{k}^{2-\alpha^{3}-\alpha^{2}} + Y_{k-2}^{1-\alpha} Y_{k+1}^{1-2\alpha},$$

$$\ll Y_{k+2}^{-\alpha+\theta^{2}(2-\alpha^{3}-\alpha^{2})} + Y_{k+1}^{\theta^{3}(1-\alpha)+1-2\alpha}.$$

Thus both determinants tend to 0 as $k \to \infty$ and so, for each sufficiently large k, they vanish. Since, by Lemma 4.3, $\mathbf{y}_{k-3}, \mathbf{y}_{k-2}, \mathbf{y}_{k-1}$ are linearly independent, this implies that, for those k, the point \mathbf{w}_k is a rational multiple of \mathbf{y}_{k-2} . As Lemma 4.1 gives $\psi(\mathbf{y}_k, \mathbf{w}_k) = \varphi(\mathbf{y}_k)^2 \mathbf{y}_{k+1}$, we conclude that \mathbf{y}_{k+1} is a rational multiple of $\psi(\mathbf{y}_k, \mathbf{y}_{k-2})$ for each large enough k. \square

We end this section with two corollaries. The first one gathers properties of the sequence $(\mathbf{y}_k)_{k\geqslant 1}$ when $\lambda=1/\gamma$. The second completes the proof of Theorem 2.3(iii).

COROLLARY 4.5. — Suppose that $\lambda = 1/\gamma$. Then, the sequence $(\mathbf{y}_k)_{k\geqslant 1}$ consists of primitive points of \mathbb{Z}^3 such that $\psi(\mathbf{y}_k, \mathbf{y}_{k-2})$ is an integer multiple of \mathbf{y}_{k+1} for each sufficiently large k. Any three consecutive points of this sequence are linearly independent and, for each $k\geqslant 1$, we have $\|\mathbf{y}_{k+1}\| \approx \|\mathbf{y}_k\|^{\gamma}$, $L(\mathbf{y}_k) \approx \|\mathbf{y}_k\|^{-1}$ and $|\varphi(\mathbf{y}_k)| \approx 1$.

Proof. — The first assertion simply adds a precision on Proposition 4.4 based on the fact that \mathbf{y}_{k+1} is a primitive integer point. Aside from the estimate for $|\varphi(\mathbf{y}_k)|$, the second assertion is a direct consequence of Lemma 4.3 since, for $\lambda = 1/\gamma$, we have $\alpha = \theta = 1/\gamma$. To complete the proof, we use

the estimate $|\varphi(\mathbf{x}_i)| \ll X_i L_i$ established in the previous section as a consequence of (3.3). Since $\varphi(\mathbf{y}_k)$ is a non-zero integer, it yields $1 \leq |\varphi(\mathbf{y}_k)| \ll 1$.

COROLLARY 4.6. — Suppose that $\lambda \geqslant 0.613$. Then, Ξ belongs to a countable subset of C.

Proof. — Since each \mathbf{y}_k is a primitive point of \mathbb{Z}^3 with positive first coordinate, the proposition shows that the sequence $(\mathbf{y}_k)_{k\geqslant 1}$ is uniquely determined by its first terms. As there are countably many finite sequences of elements of \mathbb{Z}^3 and as the image of $(\mathbf{y}_k)_{k\geqslant 1}$ in $\mathbb{P}^2(\mathbb{R})$ converges to Ξ , the point Ξ belongs to a countable subset of \mathcal{C} .

5. Proof of the second part of the main theorem

By [9, Theorem 1.1], there exist countably many irrational non-quadratic real numbers ξ for which $1/\gamma$ is an exponent of approximation to $(1:\xi:\xi^2)$. Thus Part (ii) of Theorem 2.3 holds for $\varphi = x_0x_2 - x_1^2$ and consequently, by Lemmas 2.1 and 2.4, it holds for any quadratic form $\varphi \in \mathbb{Q}[x_0, x_1, x_2]$ which is irreducible over \mathbb{R} and admits at least one zero in $\mathbb{P}^2(\mathbb{Q})$. These lemmas also show that, in order to complete the proof of Theorem 2.3(ii), we may restrict to a diagonal form $\varphi = x_0^2 - bx_1^2 - cx_2^2$ where b > 1 is a square free integer and where c is either 0 or a square-free integer with c > 1. In fact, this even covers the case of $\varphi = x_0x_2 - x_1^2$ since $(x_0 + x_1 + x_2)(x_0 - x_1 - x_2) - (x_1 - x_2)^2 = x_0^2 - 2x_1^2 - 2x_2^2$.

We first establish four lemmas which apply to any quadratic form $\varphi \in \mathbb{Q}[x_0, x_1, x_2]$ and its associated symmetric bilinear form Φ with $\Phi(\mathbf{x}, \mathbf{x}) = 2\varphi(\mathbf{x})$. Our first goal is to construct sequences (\mathbf{y}_i) as in Corollary 4.5. On the algebraic side, we first make the following observation.

LEMMA 5.1. — Suppose that $\mathbf{y}_{-1}, \mathbf{y}_0, \mathbf{y}_1 \in \mathbb{Z}^3$ satisfy $\varphi(\mathbf{y}_i) = 1$ for i = -1, 0, 1. We extend this triple to a sequence $(\mathbf{y}_i)_{i \geqslant -1}$ in \mathbb{Z}^3 by defining recursively $\mathbf{y}_{i+1} = \psi(\mathbf{y}_i, \mathbf{y}_{i-2})$ for each $i \geqslant 1$. We also define $t_i = \Phi(\mathbf{y}_{i+1}, \mathbf{y}_i) \in \mathbb{Z}$ for each $i \geqslant -1$. Then, for any integer $i \geqslant 1$, we have

- (a) $\varphi(\mathbf{y}_{i-2}) = 1$,
- (b) $\det(\mathbf{y}_i, \mathbf{y}_{i-1}, \mathbf{y}_{i-2}) = (-1)^{i-1} \det(\mathbf{y}_1, \mathbf{y}_0, \mathbf{y}_{-1}),$
- (c) $t_i = \Phi(\mathbf{y}_{i+1}, \mathbf{y}_i) = \Phi(\mathbf{y}_i, \mathbf{y}_{i-2}),$
- (d) $\mathbf{y}_{i+1} = t_i \mathbf{y}_i \mathbf{y}_{i-2},$
- (e) $t_{i+1} = t_i t_{i-1} t_{i-2}$.

In particular, $t_{-1} = \Phi(\mathbf{y}_0, \mathbf{y}_{-1})$, $t_0 = \Phi(\mathbf{y}_1, \mathbf{y}_0)$ and $t_1 = \Phi(\mathbf{y}_1, \mathbf{y}_{-1})$.

Proof. — By Lemma 4.1, we have $\varphi(\mathbf{y}_{i+1}) = \varphi(\mathbf{y}_i)^2 \varphi(\mathbf{y}_{i-2})$ for each $i \geq 1$. This yields (a) by recurrence on i. Then, by definition of ψ , the recurrence formula for \mathbf{y}_{i+1} simplifies to

(5.1)
$$\mathbf{y}_{i+1} = \Phi(\mathbf{y}_i, \mathbf{y}_{i-2}) \mathbf{y}_i - \mathbf{y}_{i-2} \quad (i \geqslant 1),$$

and so $\det(\mathbf{y}_{i+1}, \mathbf{y}_i, \mathbf{y}_{i-1}) = -\det(\mathbf{y}_i, \mathbf{y}_{i-1}, \mathbf{y}_{i-2})$ for each $i \ge 1$, by multilinearity of the determinant. This proves (b) by recurrence on i. From (5.1), we deduce that

$$t_i = \Phi(\mathbf{y}_{i+1}, \mathbf{y}_i) = \Phi(\mathbf{y}_i, \mathbf{y}_{i-2})\Phi(\mathbf{y}_i, \mathbf{y}_i) - \Phi(\mathbf{y}_{i-2}, \mathbf{y}_i) = \Phi(\mathbf{y}_i, \mathbf{y}_{i-2}) \ (i \geqslant 1),$$

which is (c). Then (d) is just a rewriting of (5.1). Combining (c) and (d), we find

$$t_{i+1} = \Phi(\mathbf{y}_{i+1}, \mathbf{y}_{i-1}) = t_i \Phi(\mathbf{y}_i, \mathbf{y}_{i-1}) - \Phi(\mathbf{y}_{i-2}, \mathbf{y}_{i-1}) = t_i t_{i-1} - t_{i-2} \ (i \geqslant 1),$$

which is (e). Finally, the formulas given for t_{-1} and t_0 are taken from the definition while the one for t_1 follows from (c).

The next lemma provides mild conditions under which the norm of \mathbf{y}_i grows as expected.

LEMMA 5.2. — With the notation of the previous lemma, suppose that $1 \leqslant t_{-1} < t_0 < t_1$ and that $1 \leqslant \|\mathbf{y}_{-1}\| < \|\mathbf{y}_0\| < \|\mathbf{y}_1\|$. Then, $(t_i)_{i\geqslant -1}$ and $(\|\mathbf{y}_i\|)_{i\geqslant -1}$ are strictly increasing sequences of positive integers with $t_{i+1} \asymp t_i^{\gamma}$ and $\|\mathbf{y}_{i+1}\| \asymp t_{i+2} \asymp \|\mathbf{y}_i\|^{\gamma}$.

Here and below, the implied constants are simply meant to be independent of i.

Proof. — Lemma 5.1(e) implies, by recurrence on i, that the sequence $(t_i)_{i \ge -1}$ is strictly increasing and, more precisely, that it satisfies

$$(5.2) (t_i - 1)t_{i-1} < t_{i+1} < t_i t_{i-1} (i \ge 1),$$

which by [10, Lemma 5.2] implies that $t_{i+1} \approx t_i^{\gamma}$. In turn, Lemma 5.1(d) implies, by recurrence on i, that the sequence $(\|\mathbf{y}_i\|)_{i\geqslant -1}$ is strictly increasing with

(5.3)
$$(t_i - 1) \|\mathbf{y}_i\| < \|\mathbf{y}_{i+1}\| < (t_i + 1) \|\mathbf{y}_i\| \quad (i \ge 1).$$

Combining this with (5.2), we find that the ratios $\rho_i = ||\mathbf{y}_i||/t_{i+1}$ satisfy

$$(1 - 1/t_i)\rho_i \leqslant \rho_{i+1} \leqslant \frac{1 + 1/t_i}{1 - 1/t_{i+1}}\rho_i \leqslant \frac{1}{(1 - 1/t_i)^2}\rho_i \quad (i \geqslant 1),$$

and so $\rho_1 c_1 \leq \rho_i \leq \rho_1/c_1^2$ for each $i \geq 1$ where $c_1 = \prod_{i \geq 1} (1 - 1/t_i) > 0$ is a converging infinite product because t_i tends to infinity with i faster

than any geometric series. This means that $\rho_i \approx 1$, thus $\|\mathbf{y}_i\| \approx t_{i+1}$, and so $\|\mathbf{y}_{i+1}\| \approx t_{i+2} \approx \|\mathbf{y}_i\|^{\gamma}$ because $t_{i+2} \approx t_{i+1}^{\gamma}$.

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, we denote by $\langle \mathbf{x}, \mathbf{y} \rangle$ their standard scalar product. When $\mathbf{x} \neq 0$ and $\mathbf{y} \neq 0$, we also denote by $[\mathbf{x}]$, $[\mathbf{y}]$ their respective classes in $\mathbb{P}^2(\mathbb{R})$, and define the *projective distance* between these classes by

$$\operatorname{dist}([\mathbf{x}],[\mathbf{y}]) = \frac{\|\mathbf{x} \wedge \mathbf{y}\|}{\|\mathbf{x}\| \, \|\mathbf{y}\|}.$$

It is not strictly speaking a distance on $\mathbb{P}^2(\mathbb{R})$ but it behaves almost like a distance since it satisfies

$$\operatorname{dist}([\mathbf{x}], [\mathbf{z}]) \leq \operatorname{dist}([\mathbf{x}], [\mathbf{y}]) + 2 \operatorname{dist}([\mathbf{y}], [\mathbf{z}])$$

for any non-zero $\mathbf{z} \in \mathbb{R}^3$ (see [10, § 2]). Moreover, the open balls for the projective distance form a basis of the usual topology on $\mathbb{P}^2(\mathbb{R})$. We can now prove the following result.

LEMMA 5.3. — With the notation and hypotheses of Lemmas 5.1 and 5.2, suppose that \mathbf{y}_{-1} , \mathbf{y}_0 and \mathbf{y}_1 are linearly independent. Then there exists a zero $\Xi = (1, \xi_1, \xi_2)$ of φ in \mathbb{R}^3 with \mathbb{Q} -linearly independent coordinates such that $\|\Xi \wedge \mathbf{y}_i\| \approx \|\mathbf{y}_i\|^{-1}$ for each $i \geq 1$. Moreover, $1/\gamma$ is an exponent of approximation to the corresponding point $\Xi = (1 : \xi_1 : \xi_2) \in \mathbb{P}^2(\mathbb{R})$.

Proof. — Our first goal is to show that $([\mathbf{y}_i])_{i\geqslant 1}$ is a Cauchy sequence in $\mathbb{P}^2(\mathbb{R})$ with respect to the projective distance. To this end, we use freely the estimates of the previous lemma and define $\mathbf{z}_i = \mathbf{y}_i \wedge \mathbf{y}_{i+1}$ for each $i \geqslant 1$. By Lemma 5.1(b), the points \mathbf{y}_{i-1} , \mathbf{y}_i and \mathbf{y}_{i+1} are linearly independent for each $i \geqslant 0$. Thus, none of the products \mathbf{z}_i vanish, and so their norm is at least 1. Moreover, Lemma 5.1(d) applied first to \mathbf{y}_{i+1} and then to \mathbf{y}_i yields

(5.4)
$$\mathbf{z}_i = \mathbf{y}_{i-2} \wedge \mathbf{y}_i = t_{i-1}\mathbf{y}_{i-2} \wedge \mathbf{y}_{i-1} - \mathbf{y}_{i-2} \wedge \mathbf{y}_{i-3} = t_{i-1}\mathbf{z}_{i-2} + \mathbf{z}_{i-3}.$$

The above equality $\mathbf{z}_i = \mathbf{y}_{i-2} \wedge \mathbf{y}_i$ with i replaced by i-3 implies that

$$\|\mathbf{z}_{i-3}\| \leqslant 2\|\mathbf{y}_{i-5}\| \|\mathbf{y}_{i-3}\| \ll t_{i-4}t_{i-2} \asymp t_{i-1}t_{i-5}^{-1} \leqslant t_{i-1}t_{i-5}^{-1}\|\mathbf{z}_{i-2}\|.$$

In view of (5.4), this means that $\|\mathbf{z}_i\| = t_{i-1}(1 + \mathcal{O}(t_{i-1}^{-1})) \|\mathbf{z}_{i-2}\|$, and thus

$$\frac{\|\mathbf{z}_i\|}{t_i} = \frac{t_{i-1}t_{i-2}}{t_i}(1 + \mathcal{O}(t_{i-5}^{-1}))\frac{\|\mathbf{z}_{i-2}\|}{t_{i-2}} = (1 + \mathcal{O}(t_{i-5}^{-1}))\frac{\|\mathbf{z}_{i-2}\|}{t_{i-2}}$$

since, by Lemma 5.1(e), we have $t_{i-1}t_{i-2} = t_i(1+t_{i-3}t_i^{-1}) = t_i(1+O(t_{i-5}^{-1}))$. As the series $\sum_{i\geqslant 1}t_i^{-1}$ converges, the same is true of the infinite products

 $\prod_{i\geqslant i_0}(1+ct_i^{-1})$ for any $c\in\mathbb{R}$. Thus the above estimates implies that $\|\mathbf{z}_i\| \approx t_i$, and so we find

$$\operatorname{dist}([\mathbf{y}_i],[\mathbf{y}_{i+1}]) = \frac{\|\mathbf{z}_i\|}{\|\mathbf{y}_i\| \|\mathbf{y}_{i+1}\|} \times \frac{t_i}{t_{i+1}t_{i+2}} \times t_{i+1}^{-2} \times \|\mathbf{y}_i\|^{-2}.$$

As the series $\sum_{i\geqslant 1} 2^i t_{i+1}^{-2}$ is convergent, we deduce that $([\mathbf{y}_i])_{i\geqslant 1}$ forms a Cauchy sequence in $\mathbb{P}^2(\mathbb{R})$, and that its limit $\Xi \in \mathbb{P}^2(\mathbb{R})$ satisfies dist $([\mathbf{y}_i], \Xi) \approx ||\mathbf{y}_i||^{-2}$. In terms of a representative $\underline{\Xi}$ of Ξ in \mathbb{R}^3 , this means that

To prove that Ξ has \mathbb{Q} -linearly independent coordinates, we use the fact that

$$\|\langle \mathbf{u}, \mathbf{y}_i \rangle \Xi - \langle \mathbf{u}, \Xi \rangle \mathbf{y}_i \| \leq 2 \|\mathbf{u}\| \|\mathbf{y}_i \wedge \Xi\|$$

for any $\mathbf{u} \in \mathbb{R}^3$ [10, Lemma 2.2]. So, if $\langle \mathbf{u}, \underline{\Xi} \rangle = 0$ for some $\mathbf{u} \in \mathbb{Z}^3$, then, by (5.5), we obtain $|\langle \mathbf{u}, \mathbf{y}_i \rangle| \ll ||\mathbf{y}_i||^{-1}$ for all i. Then, as $\langle \mathbf{u}, \mathbf{y}_i \rangle$ is an integer, it vanishes for each sufficiently large i, and so $\mathbf{u} = 0$ because any three consecutive \mathbf{y}_i span \mathbb{R}^3 . This proves our claim. In particular, the first coordinate of $\underline{\Xi}$ is non-zero, and we may normalize $\underline{\Xi}$ so that it is 1. Then, as i goes to infinity, the points $||\mathbf{y}_i||^{-1}\mathbf{y}_i$ converge to $||\underline{\Xi}||^{-1}\underline{\Xi}$ in \mathbb{R}^3 and, since $\varphi(||\mathbf{y}_i||^{-1}\mathbf{y}_i) = ||\mathbf{y}_i||^{-2}$ tends to 0, we deduce that $\varphi(\underline{\Xi}) = 0$. Finally, $1/\gamma$ is an exponent of approximation to Ξ because, for each $X \geq ||\mathbf{y}_1||$, there exists an index $i \geq 1$ such that $||\mathbf{y}_i|| \leq X \leq ||\mathbf{y}_{i+1}||$ and then, by (5.5), the point $\mathbf{x} := \mathbf{y}_i$ satisfies both

$$\|\mathbf{x}\| \leqslant X$$
 and $\|\mathbf{x} \wedge \underline{\Xi}\| \simeq \|\mathbf{y}_i\|^{-1} \simeq \|\mathbf{y}_{i+1}\|^{-1/\gamma} \leqslant X^{-1/\gamma}$.

The last lemma below will enable us to show that the above process leads to infinitely many limit points Ξ .

LEMMA 5.4. — Suppose that $(\mathbf{y}_i)_{i\geqslant -1}$ and $(\mathbf{y}_i')_{i\geqslant -1}$ are constructed as in Lemma 5.1 and that both of them satisfy the hypotheses of the three preceding lemmas. Suppose moreover that their images in $\mathbb{P}^2(\mathbb{R})$ have the same limit Ξ . Then there exists an integer a such that $\mathbf{y}_i' = \pm \mathbf{y}_{i+a}$ for each $i\geqslant \max\{-1,-1-a\}$.

Proof. — Let $\underline{\Xi} = (1, \xi_1, \xi_2)$ be a representative of Ξ in \mathbb{R}^3 , and for each $\mathbf{x} \in \mathbb{Z}^3$ define $L(\mathbf{x})$ as in (3.1). The estimates of Lemma 5.3 imply that $L(\mathbf{y}_i) \asymp \|\mathbf{y}_i\|^{-1}$ and $L(\mathbf{y}_i') \asymp \|\mathbf{y}_i'\|^{-1}$. For each sufficiently large index j, we can find an integer $i \geqslant 2$ such that $\|\mathbf{y}_{i-1}\|^{3/2} \leqslant \|\mathbf{y}_i'\| \leqslant \|\mathbf{y}_i\|^{3/2}$ and the

standard estimates yield

$$|\det(\mathbf{y}_{i-1}, \mathbf{y}_i, \mathbf{y}_j')| \ll ||\mathbf{y}_j'||L(\mathbf{y}_i)L(\mathbf{y}_{i-1}) + ||\mathbf{y}_i||L(\mathbf{y}_{i-1})L(\mathbf{y}_j')$$

$$\ll ||\mathbf{y}_i||^{3/2}||\mathbf{y}_i||^{-1}||\mathbf{y}_{i-1}||^{-1} + ||\mathbf{y}_i|| ||\mathbf{y}_{i-1}||^{-1}||\mathbf{y}_{i-1}||^{-3/2}$$

$$\ll ||\mathbf{y}_i||^{1/2 - 1/\gamma} = o(1),$$

and similarly $|\det(\mathbf{y}_i, \mathbf{y}_{i+1}, \mathbf{y}'_j)| \ll ||\mathbf{y}_i||^{-1/(2\gamma)} = o(1)$. Thus, both determinants vanish when j is large enough and then \mathbf{y}'_j is a rational multiple of \mathbf{y}_i . However, both points are primitive elements of \mathbb{Z}^3 since φ takes value 1 on each of them. So, we must have $\mathbf{y}'_j = \pm \mathbf{y}_i$. Since the two sequences have the same type of growth, we conclude that there exist integers a and $i_0 \ge \max\{-1, -1 - a\}$ such that $\mathbf{y}'_i = \pm \mathbf{y}_{i+a}$ for each $i \ge i_0$. Choose i_0 smallest with this property. If $i_0 \ge \max\{0, -a\}$, then, using Lemma 4.1, we obtain

$$\mathbf{y}'_{i_0-1} = \psi(\mathbf{y}'_{i_0+1}, \mathbf{y}'_{i_0+2}) = \psi(\pm \mathbf{y}_{i_0+1+a}, \pm \mathbf{y}_{i_0+2+a}) = \pm \mathbf{y}_{i_0-1+a}$$

in contradiction with the choice of i_0 . Thus we must have $i_0 = \max\{-1, -1 - a\}$.

In view of the remarks made at the beginning of this section, the last result below completes the proof of Theorem 2.3(ii).

PROPOSITION 5.5. — Let b>1 be a square-free integer and let c be either 0 or a square-free integer with c>1. Then the quadratic form $\varphi=x_0^2-bx_1^2-cx_2^2$ admits infinitely many zeros in $\mathbb{P}^2(\mathbb{R})$ which have \mathbb{Q} -linearly independent homogeneous coordinates and for which $1/\gamma$ is an exponent of approximation.

Proof. — The Pell equation $x_0^2 - bx_1^2 = 1$ admits infinitely many solutions in positive integers. We choose one such solution $(x_0, x_1) = (m, n)$. For the other solutions $(m', n') \in (\mathbb{N}^*)^2$, the quantity mm' - bnn' behaves asymptotically like $m'/(m + n\sqrt{b})$ as $m' \to \infty$ and thus, we have m < mm' - bnn' < m' as soon as m' is large enough. We fix such a solution (m', n'). We also choose a pair of integers r, t > 0 such that $r^2 - ct^2 = 1$. Then, the three points

$$\mathbf{y}_{-1} = (1, 0, 0), \quad \mathbf{y}_0 = (m, n, 0) \quad \text{and} \quad \mathbf{y}_1 = (rm', rn', t)$$

are \mathbb{Q} -linearly independent. They satisfy

$$\|\mathbf{y}_{-1}\| = 1 < \|\mathbf{y}_{0}\| = m < rm' \le \|\mathbf{y}_{1}\|$$
 and $\varphi(\mathbf{y}_{i}) = 1$ $(i = -1, 0, 1)$.

For such a triple, consider the corresponding sequences $(t_i)_{i \ge -1}$ and $(\mathbf{y}_i)_{i \ge -1}$ as defined in Lemma 5.1. The symmetric bilinear form attached

to φ being $\Phi = 2(x_0y_0 - bx_1y_1 - cx_2y_2)$, we find

$$t_{-1} = 2m < t_0 = 2r(mm' - bnn') < t_1 = 2rm'.$$

Therefore the hypotheses of Lemmas 5.2 and 5.3 are fulfilled and so the sequence $([\mathbf{y}_i])_{i\geqslant -1}$ converges in $\mathbb{P}^2(\mathbb{R})$ to a zero Ξ of φ which has \mathbb{Q} -linearly independent homogeneous coordinates and for which $1/\gamma$ is an exponent of approximation. To complete the proof and show that there are infinitely many such points, it suffices to prove that any other choice of m, n, m', n', r, t as above leads to a different limit point. Clearly, it leads to a different sequence $(\mathbf{y}_i')_{i\geqslant -1}$. If $[\mathbf{y}_i']$ and $[\mathbf{y}_i]$ converge to the same point Ξ as $i \to \infty$, then by Lemma 5.4, there exists $a \in \mathbb{Z}$ such that $\mathbf{y}_i' = \pm \mathbf{y}_{i+a}$ for each $i \geqslant \max\{-1, -1 - a\}$. But, in both sequences $(\mathbf{y}_i)_{i\geqslant -1}$ and $(\mathbf{y}_i')_{i\geqslant -1}$, the first point is the only one of norm 1, and moreover the first three points have non-negative entries. So, we must have a = 0 and $\mathbf{y}_i' = \mathbf{y}_i$ for i = -1, 0, 1, a contradiction.

BIBLIOGRAPHY

- [1] P. Bel, "Approximation simultanée d'un nombre v-adique et de son carré par des nombres algébriques", J. Number Theory, to appear.
- [2] Y. BUGEAUD & M. LAURENT, "Exponents of Diophantine approximation and Sturmian continued fractions", Ann. Inst. Fourier (Grenoble) 55 (2005), no. 3, p. 773-804.
- [3] H. DAVENPORT & W. M. SCHMIDT, "Approximation to real numbers by algebraic integers", Acta Arith. 15 (1968/1969), p. 393-416.
- [4] D. KLEINBOCK, "Extremal subspaces and their submanifolds", Geom. Funct. Anal. 13 (2003), no. 2, p. 437-466.
- [5] M. LAURENT, "Simultaneous rational approximation to the successive powers of a real number", *Indag. Math. (N.S.)* 14 (2003), no. 1, p. 45-53.
- [6] S. LOZIER & D. ROY, "Simultaneous approximation to a real number and to its cube", Acta Arith., to appear.
- [7] D. Roy, "Approximation simultanée d'un nombre et de son carré", C. R. Math. Acad. Sci. Paris 336 (2003), no. 1, p. 1-6.
- [8] —, "Approximation to real numbers by cubic algebraic integers. II", Ann. of Math. (2) 158 (2003), no. 3, p. 1081-1087.
- [9] ——, "Approximation to real numbers by cubic algebraic integers. I", Proc. London Math. Soc. (3) 88 (2004), no. 1, p. 42-62.
- [10] ——, "On two exponents of approximation related to a real number and its square", Canad. J. Math. 59 (2007), no. 1, p. 211-224.
- [11] ——, "On simultaneous rational approximations to a real number, its square, and its cube", Acta Arith. 133 (2008), no. 2, p. 185-197.
- [12] W. M. SCHMIDT, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980, x+299 pages.

[13] D. Zelo, Simultaneous approximation to real and p-adic numbers, ProQuest LLC, Ann Arbor, MI, 2009, Thesis (Ph.D.)—University of Ottawa (Canada), 147 pages.

Manuscrit reçu le 27 janvier 2012, accepté le 3 avril 2012.

Damien ROY Université d'Ottawa Département de Mathématiques 585 King Edward Ottawa, Ontario K1N 6N5 (Canada) droy@uottawa.ca