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THE RESTRICTION THEOREM FOR FULLY
NONLINEAR SUBEQUATIONS

by F. Reese HARVEY & H. Blaine LAWSON, Jr. (*)

Abstract. — Let X be a submanifold of a manifold Z. We address the ques-
tion: When do viscosity subsolutions of a fully nonlinear PDE on Z, restrict to
be viscosity subsolutions of the restricted subequation on X? This is not always
true, and conditions are required. We first prove a basic result which, in theory,
can be applied to any subequation. Then two definitive results are obtained. The
first applies to any “geometrically defined” subequation, and the second to any
subequation which can be transformed to a constant coefficient (i.e., euclidean)
model. This provides a long list of geometrically and analytically interesting cases
where restriction holds.
Résumé. — Soit X une sous-variété d’une variété Z. On se pose la question :

sous quelles conditions est-il vrai que les sous-solutions de viscosité d’une équation
aux derivées partielles complètement non-linéaires sur Z, restreintes à X, sont des
sous-solutions de viscosité de l’équation induite sur X ? D’abord on démontre un
résultat de base qui s’applique aux équations générales. Ensuite, deux résultats
définitifs sont établis. Le premier s’applique à toutes les équations qui sont “défi-
nies géométriquement” et le deuxième s’applique aux équations qui peuvent être
transformées par jet-équivalence en modèle de coefficients constants (i.e., modèle
euclidien). En conséquence, nous obtenons une longue liste de cas intéressants du
point du vue géométrique et analytique, où la réponse à notre question est positive.

1. Introduction

This paper is concerned with the restrictions of subsolutions of a fully
nonlinear elliptic partial differential equation to submanifolds. In most cases
this topic is uninteresting because the restricted functions satisfy no con-
straints. Moreover, even when there are constraints, this will occur only
on certain submanifolds. Nonetheless, there are cases, in fact many cases,

Keywords: Viscosity solution, viscosity subsolution, nonlinear second-order elliptic equa-
tions, restriction, submanifold, pluripotential theory.
Math. classification: 35J25, 35J70, 32W20, 32U05, 53C38.
(*) The second author was partially supported by the N.S.F.
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where the restriction question is quite interesting. Important classical ex-
amples are the plurisubharmonic functions in several complex variable the-
ory, and their analogues in calibrated geometry. The principle aim of this
paper is to study the foundations of the restriction problem. We prove a
General Restriction Theorem which applies to all cases, but whose “restric-
tion hypothesis” must be verified. We then obtain definitive results in two
general situations, each followed with a series of applications. First, if the
constraints are “determined geometrically”, the applications come from po-
tential theory developed in calibrated and other geometries (cf. [13, 14]). In
the second situation the constraints are locally derivable from a constant
coefficient (euclidean) model. Here the applications come from universal
subequations in riemannian geometry (cf. [9, 15]). Yet another application
will be to the study of the intrinsic potential theory on almost complex
manifolds (without use of a hermitian metric) [10].
We begin with a note about our approach to this problem. Traditionally,

a second-order partial differential equation (or subequation) is a constraint
on the full second derivative (or 2-jet) of a function u imposed by using
a function f(x, u,Du,D2u) and setting f = 0 (or f > 0). We have found
it more enlightening to work directly with the subsets of the 2-jet space
corresponding to these conditions (cf. [19]), and we have systematically
explored this viewpoint in recent papers [12, 15, 16]. (A succinct comparison
of our subset approach with the standard one is given in a Pocket Dictionary
in [17], App. A.) This geometric formulation is often more natural and has
several distinct advantages. To begin, it makes the equation completely
canonical. It clarifies a number of classical conditions, such as the condition
of degenerate ellipticity. It underlines an inherent duality in the subject,
which in turn clarifies the necessary boundary geometry for solving the
Dirichlet problem.
It also simplifies and clarifies certain natural operations, in particular

those of restriction and addition.
To be more concrete, let’s begin with a closed subset F of the space

of 2-jets over a domain Z ⊂ Rn, which we assume to satisfy the very
weak ellipticity condition (2.4) below, called positivity. Such a set will be
called a subequation. Then a function u ∈ C2(Z) is called F -subharmonic
if its 2-jet J2

xu ∈ F for all x. This concept can be extended to upper semi-
continuous functions u by using the following viscosity approach (cf. [7, 8]).
We say that a function ϕ which is C2 near x ∈ Z is a test function for u
at x if u 6 ϕ near x and u(x) = ϕ(x). Then a function u ∈ USC(Z) is
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THE RESTRICTION THEOREM 219

F -subharmonic if for each test function ϕ for u at any x ∈ Z, one has
J2
xϕ ∈ F .
Suppose now that

F ⊂ J2(Z)
is a subequation and i : X ⊂ Z is a submanifold of Z. Then there is a
naturally induced subequation

H ≡ i∗F ⊂ J2(X)

where i∗F is given by the restriction of 2-jets (which is induced by the
restriction of smooth functions). By definition it has the property that for
ϕ ∈ C2(Z)

(1.1) ϕ is F -subharmonic⇒ ϕ
∣∣
X

is i∗F -subharmonic

As mentioned before, for general F and X the induced subequation is
uninteresting. This is because generically i∗F = J2(X), and so no con-
straints are placed on restrictions of F -subharmonic functions. This leads
to two natural problems.

Problem 1. — Identify non-vacuous cases and calculate the induced
subequation i∗F .

Frequently i∗F is closed, but not always (see Examples 5.5 and B.6).
Once Problem 1 is accomplished, we have the second, more difficult task

of determining whether restriction holds.

Problem 2. — Find conditions under which the restriction state
ment (1.1) extends to upper semi-continuous functions.

In the classical case coming from several complex variable theory, the
subequation F is defined by requiring that the complex hermitian part of
the hessian matrix be non-negative. Here the most interesting submanifolds
are the complex curves, and in this case the restricted subequation is the
conformal Laplacian. Thus the prototype of our main result is the theo-
rem which says that a function which is plurisubharmonic in the viscosity
sense is the same as a function whose restriction to every complex curve
is subharmonic. In fact, the corresponding statement has recently been es-
tablished for almost complex manifolds by using one of our main results
Theorem 8.1. This application is presented in a separate paper [10]. (See
Note 1.1 below.)
An even more basic case is the real analogue, which states that a function

is convex in the viscosity sense if and only if its restriction to each affine
line is convex.

TOME 64 (2014), FASCICULE 1



220 F. Reese HARVEY & H. Blaine LAWSON Jr.

These classical cases extend to branches of the homogeneous Monge-
Ampère equation and the concept of q-convexity. The whole story carries
over to the important complex and quaternionic settings where much work
has been done. See Note 1.2 for a more detailed discussion of this and some
generalizations.
There are many other general cases in which the outcome of Problem 1

is known and interesting. Some come from potential theory developed in
calibrated and other geometries (cf. [13, 14]). Others come from universal
subequations in riemannian geometry and on manifolds with topological
G-structures (cf. [9, 15]). These will all be investigated here.
We begin the paper with definitions and a brief review of potential the-

ory for fully nonlinear subequations. In order to introduce and motivate
the restriction problem, we first examine it for “geometrically determined
subequations” in euclidean space. These are subequations FG determined
by the condition trace{D2u

∣∣
W
} > 0 for all p-planesW in a given fixed sub-

set G ⊂ G(p,Rn) of the grassmannian of p-planes in Rn. This, of course,
includes the classical case of plurisubharmonic functions in complex anal-
ysis where G ≡ GC(1,Cn) ⊂ G(2,R2n).
In Section 4 we prove a basic elementary theorem. For a given subequa-

tion F ⊂ J2(Z) and submanifold i : X ⊂ Z, we formulate a restriction
hypothesis and prove the following.

The Restriction Theorem 4.2. — Suppose u ∈ USC(Z). Assume
that F satisfies the restriction hypothesis. Then

u ∈ F (Z)⇒ u
∣∣
X
∈ (i∗F )(X).

The proof parallels a proof of Crandall [7, Lemma 4.1].
This result is then applied throughout the rest of the paper.
In Section 5 we make some immediate but important applications. Two

of them are prototypes for the main restriction theorems in this paper.
The first presented is the following: Suppose F ⊂ J2(Z) is a translation-
invariant, i.e., constant coefficient, subequation on an open set Z ⊂ Rn.
Then for u ∈ USC(Z),

u is F -subharmonic on Z ⇒ u
∣∣
X

is i∗F -subharmonic on X

For the second prototype we establish restriction for G-plurisubharmonic
functions, to affine G-planes (defined below). In addition to these two pro-
totypes we establish restriction for general linear subequations under a
(necessary) linear restriction hypothesis. This result becomes important in
later applications. Finally, we examine restriction for first-order equations.
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In Section 6 we establish our quite general and definitive Restriction The-
orem 6.6. A special case is the following. Let Z be a riemannian manifold
of dimension n and G ⊂ G(p, TZ) a closed subset of the bundle of tangent
p-planes on Z. Assume that G ⊂ G(p, TZ) admits a smooth neighborhood
retraction which preserves the fibres of the projection G(p, TZ)→ Z. Then
G determines a natural subequation F on Z defined by the condition that

trace
{

Hessu
∣∣
W

}
> 0 for all W ∈ G.

where Hessu denotes the riemannian hessian of u. (See (9.3) and [14] for
examples and details.) The corresponding F -subharmonic functions are
again called G-plurisubharmonic functions.
A G-submanifold of Z is defined to be a p-dimensional submanifold

X ⊂ Z such that TxX ∈ G for all x ∈ X.

Theorem 6.4. — Let X ⊂ Z be a G-submanifold which is minimal
(mean curvature zero). Then restriction to X holds for F . In other words,
the restriction of any G-plurisubharmonic function to X is subharmonic in
the induced riemannian metric on X.

In the general result, Theorem 6.6, the submanifold is allowed to have
dimension > p.

In Sections 7 and 8 we formulate a quite different restriction result, based
on the idea of jet equivalence. The notion of jet equivalence of subequations
was introduced in [15, §4], where it greatly extended the applicability of
basic results. This notion is recalled in Section 7 and then refined to the
relative case. We then prove the following for an open subset Z ⊂ RN

containing an embedded submanifold i : X ↪→ Z.

Theorem 8.1. — Suppose that F ⊂ J2(Z) a subequation. Assume that
F is locally jet equivalent modulo X to a constant coefficient subequation
F. Then H ≡ i∗XF is locally jet equivalent to the constant coefficient sube-
quation H ≡ i∗F. Moreover, restriction holds. That is,

u is F -subharmonic on Z ⇒ u
∣∣
X

is H-subharmonic onX

This theorem has a number of interesting applications. One is the fol-
lowing.

Theorem 9.2. — Let Z be a riemannian manifold of dimension N and
F ⊂ J2(Z) a subequation canonically determined by an ON -invariant uni-
versal subequation F ⊂ J2

N (see §8). Then restriction holds for F on any
totally geodesic submanifold X ⊂ Z.

TOME 64 (2014), FASCICULE 1



222 F. Reese HARVEY & H. Blaine LAWSON Jr.

This result extends to subequations defined by G-invariant subsets of
J2
N = R ×RN × Sym2(RN ) on manifolds with topological G-structure.
In contrast to Theorem 6.6, a riemannian metric is not required in The-

orem 8.1.

Note 1.1 (Almost complex manifolds and the Pali conjecture). — An-
other application of Theorem 8.1 is to the study of potential theory on al-
most complex manifolds in the absence of any hermitian metric. In this case
there is still an intrinsically defined subequation, but it is not geometrically
defined in the sense of Section 6. The corresponding subharmonic functions
are proved in [10, Theorem 6.2] to be exactly those upper semi-continuous
functions whose restrictions to complex curves are subharmonic. This is
then used to establish the full version of a conjecture of Nefton Pali [22].
(See Theorem 8.2 of [10].) The Restriction Theorem is central to this work.

Note 1.2 (Branches of the homogeneous Monge-Ampère equation and
q-convexity). — The classical cases of convex and plurisubharmonic func-
tions discussed above can be extended as follows. For A ∈ Sym2(Rn), let
λ1(A) 6 λ2(A) 6 · · · 6 λn(A) denote its ordered eigenvalues. Then the
qth branch of det(D2u) = 0 is the equation λq(D2u) = 0. Its associated
subequation Λq ≡ {A : λq(A) > 0} is the condition of q-convexity. The
u.s.c. Λq-subharmonic functions will be called q-convex. When q = 1 these
are just the convex functions, and the first branch of the homogeneous
Monge-Ampère Equation is the classical one treated by Alexandrov [4].
When q = n the n-convex functions are the subaffine functions introduced
in [12]. (See Def. 2.6 and Prop. 2.7). For general q our restriction results
apply to prove the following for an open set X ⊂ Rn.

Theorem 5.3. — A function u ∈ USC(X) is q-convex if and only if its
restriction to every affine q-plane is subaffine.

This entire story carries over to the complex case in Cn = R2n by
replacing A with its hermitian symmetric part AC ≡ 1

2 (A−JAJ). Here one
studies branches of the homogeneous complex Monge-Ampère equation.
The first branch is the classical one (cf. [6, 5]) and the 1-convex functions
are the plurisubharmonic functions discussed above. At the other end, the
largest branch of n-convex functions can be characterized as those which
are “sub-the-pluriharmonics” (see Def. 5.13 and Prop. 5.14). The case of
general q has received much attention in complex analysis (e.g. [18, 23]).
Our restriction results show that for an open set X ⊂ Cn:

ANNALES DE L’INSTITUT FOURIER



THE RESTRICTION THEOREM 223

Theorem 5.16. — A function u ∈ USC(X) is q-convex (in the complex
sense) if and only if its restriction to every complex affine q-plane is sub-
the-pluriharmonics.

There is also an interesting quaternionic analogue of the Monge-Ampère
equations (cf. [1, 2, 3]) and associated q-convex functions [12, 14, 15]. The
assertions above generalize to this case. Results for inhomogeneous equa-
tions on manifolds are given in Example 9.7.

Remark 1.3. — The restriction hypothesis discussed in Section 4 entails
finding special coordinates in which the hypothesis holds. The conclusion
of the main result (Theorem 4.2) is, however, coordinate free. One could
strengthen the restriction hypothesis so that it is also coordinate free, and
this might make a more pleasing statement. However, it would make ap-
plications needlessly more difficult. In most cases the right choice of coor-
dinates is pretty obvious.

In Appendix A we present some elementary examples where restriction
fails.

In Appendix B certain important algebraic properties of the restriction
of quadratic forms are studied. In particular, Theorem B.3 implies that
in geometric cases (where a subset G of the bundle G(p, TZ) of tangent
p-planes on a riemannian manifold Z determines the subequation FG), if
the submanifold X is totally geodesic, then the restricted subequation H ≡
i∗FG on X is geometrically determined by G(TX), the tangential part of
G along X. That is, H ≡ i∗FG = i∗FG(TX).

In particular, the case G(TX) = ∅ (X is G-free) is exactly the case when
i∗FG = J2(X), which is uninteresting for restriction since i∗FG imposes no
constraint. However, this is the appropriate setting for extension results.
Finally, in Appendix B we give a euclidean example of a subequation

FG ⊂ Sym2(R3) and a plane W ⊂ R3, where i∗FG is not a closed set, so
that i∗FG 6= FG(W ).

Appendix C (Extension theorems). — Intimately related to restriction
is the question of extension, namely, which functions on a submanifold can
be extended to F -subharmonic functions in a neighborhood? In Appendix C
we give conditions under which every C2-function has this property.

2. Nonlinear potential theory

Suppose u is a real-valued function of class C2 defined on an open subset
X ⊂ Rn. The full second derivative or 2-jet of u at a point x ∈ X will

TOME 64 (2014), FASCICULE 1



224 F. Reese HARVEY & H. Blaine LAWSON Jr.

be denoted by

(2.1) Jxu =
(
u(x), Dxu,D

2
xu
)

where Dxu = ( ∂u∂x1
(x), . . . , ∂u∂xn

(x)) and D2
xu = (( ∂2u

∂xi∂xj
(x))). Occasionally

D2
xu is denoted by Hessx u.
In this paper constraints on the full second derivative of a function u ∈

C2(X) will take the form

(2.2) Jxu ∈ Fx

where F ⊂ J2(X) is a subset of the 2-jet space J2(X) = X ×R ×Rn ×
Sym2(Rn) and Fx denotes the fibre of F at x ∈ X. Such functions u will
be called F -subharmonic.
Given an upper semi-continuous function u on X with values in [−∞,∞),

a test function for u at x0 is a C2 function ϕ defined near x0 which
satisfies:

(2.3)
{
u− ϕ 6 0 near x0

= 0 at x0.

Definition 2.1. — An upper semi-continuous function u on X is F -
subharmonic if for all x0 ∈ X

Jx0ϕ ∈ Fx0 for all test functions ϕ for u at x0

Let F (X) denote the space of all F -subharmonic functions on X.

Note that if u(x0) = −∞, then there are no test functions for u at x0.
If ϕ is a test function for u at x0, then so is ψ ≡ ϕ+ 1

2 〈P (x−x0), x−x0〉
for any matrix P > 0. Moreover, Jx0ψ = Jx0ϕ + P . Consequently, F (X)
is empty (except for u ≡ −∞) unless F satisfies the following positivity
condition (P)

(2.4) Fx + P ⊂ Fx for all x ∈ X

where P ≡ {0} × {0} × {P ∈ Sym2(Rn) : P > 0}. We will abuse notation
and also let P denote the subset of Sym2(Rn) of matrices P > 0.
Assuming this condition (P), it is easy to show that each C2-function u

satisfying (2.2) is F -subharmonic on X. (The converse is true without (P)
since ϕ = u is a test function.)
Definition 2.1 can be recast in a more useful form. (See [15, Lemma 2.4

and Prop. A.1 (IV)]).
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Lemma 2.2. — Suppose F ⊂ J2(X) is a closed subset, and let u be
an upper semi-continuous function on X. Then u /∈ F (X) if and only if
∃x0 ∈ X, α > 0 and (r, p, A) /∈ Fx0 with
u(x)−

[
r + 〈p, x−x0〉+ 1

2 〈A(x−x0), x−x0〉
]
6 −α|x−x0|2 near x0 and
= 0 at x0.

Using this Lemma, basic potential theory for F -subharmonic functions
is elementary to establish. See Appendices A and B in [15].

Theorem 2.3. — Let F be an arbitrary closed subset of J2(X).
(A) (Local property) u is locally F -subharmonic if and only if u is glob-

ally F -subharmonic.
(B) (Maximum property) If u, v ∈ F (X), then w = max{u, v} ∈ F (X).
(C) (Coherence property) If u ∈ F (X) is twice differentiable at x ∈ X,

then Jxu ∈ Fx.
(D) (Decreasing sequence property) If {uj} is a decreasing (uj > uj+1)

sequence of functions with all uj ∈ F (X), then the limit u =
limj→∞ uj ∈ F (X).

(E) (Uniform limit property) Suppose {uj} ⊂ F (X) is a sequence which
converges to u uniformly on compact subsets to X, then u ∈ F (X).

(F) (Families locally bounded above) Suppose F ⊂ F (X) is a family
of functions which are locally uniformly bounded above. Then the
upper semicontinuous regularization u = v∗ of the upper envelope

v(x) = sup
f∈F

f(x)

belongs to F (X).

There are certain obvious additional properties (e.g. If F1 ⊂ F2, then
u ∈ F1(X)⇒ u ∈ F2(X)), which will be used without reference.

Although the positivity condition (P) is not needed in the proofs of
either Lemma 2.2 or Theorem 2.3, the fact that without (P) there are no
F -subharmonic functions, other than u ≡ −∞, explains this requirement.

Definition 2.4. — A closed subset F ⊂ J2(X) which satisfies the pos-
itivity condition (P) will be called a subequation.

Note. — This does not agree with the terminology of [15] where sube-
quations were assumed to have two additional properties: a stronger topo-
logical condition (T) and, in order to have a chance of proving uniqueness
in the Dirichlet problem, standard negativity condition (N) on the values of
the dependent variable (cf. [15]). However, these conditions are unnecessary
for the discussion in this paper.

TOME 64 (2014), FASCICULE 1
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The following basic example will be elaborated later in Examples 5.2
and 9.7.

Example 2.5 (The Monge-Ampère equation det(D2u) = 0). — There
are n different subequations (or branches) associated with this equation.
Thus it generates n distinct notions of subharmonic. The qth branch, de-
noted here by Λq, is defined by the inequality λq > 0, where λmin(A) =
λ1(A) 6 · · · 6 λn(A) = λmax(A) are the ordered eigenvalues of A ∈
Sym2(Rn). Equivalently, D2

xu (or D2
xϕ with ϕ a test function for u at x)

is required to have at least n− q + 1 eigenvalues which are > 0. Note that
Λmin = R×Rn×P is the smallest branch. It follows easily from Lemma 2.2
that classical convex functions are Λmin-subharmonic. The converse is also
true, but the proof does require the Restriction Theorem and may be con-
sidered its most elementary application (see Example 3.3).

The largest branch Λmax, where only one eigenvalue is required to be
> 0 is particularly important. The Λmax-subharmonic functions can be
described more concretely using a class of functions introduced in [12].

Definition 2.6. — A function u ∈ USC(X) is said to be subaffine on
X if for each compact subset K ⊂ X and each affine function a,

(2.5) u 6 a on ∂K ⇒ u 6 a on K.

In [12, Remark 4.9], we proved the following.

Proposition 2.7. — Given u ∈ USC(X), the following are equivalent.
(1) u is locally subaffine,
(2) u is Λmax-subharmonic on X,
(3) u is subaffine on X.

For the sake of completeness we give a different, shorter proof here.
Proof that (1) ⇒ (2). — Suppose u is not Λmax-subharmonic on X.

Apply Lemma 2.2. Since λmax(A) > 0 is false if and only if A < 0, it
follows directly that u is not sub-the-affine-function r+ 〈p, x−x0〉 on small
balls about x0. �

Proof that (2) ⇒ (3). — Suppose u is not subaffine on X. Then there
exists a compact set K ⊂ X and an affine function a such that (2.5) fails,
that is, u−a has a strict interior maximum onK. Thus, for ε > 0 sufficiently
small, the function u(x) + ε

2 |x|
2−a(x) also attains its maximum value (say

k) at an interior point x0 of K. Now the function ϕ(x) = a(x)− ε
2 |x|

2 +k is
a test function for u at x0. Since D2

x0
ϕ = −εI, u is not Λmax-subharmonic

on X. �
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3. An introduction to restriction –
The geometric case in Rn.

In this section we describe a special case of our restriction results which
is simple but important. A subequation F is said to be geometrically
determined by a closed subset G of the Grassmannian G(p,Rn) of (un-
oriented) p-planes through the origin in Rn if F ≡ FG is defined by

(3.1) trace
{
D2
xu
∣∣
W

}
> 0 for all W ∈ G

and for all x ∈ X. The upper semi-continuous functions in FG(X) will be
referred to as G-plurisubharmonic on X.

Example 3.1 (Classical subharmonicity). — If p = n and G =
G(n,Rn) = {Rn}, then u is G-plurisubharmonic on the open set X ⊂ Rn

if and only if u is subharmonic (trace(D2u) = ∆u > 0 in the C2-case)
using any of the equivalent classical definitions (u ≡ −∞ on components
of X is allowed). In the case n = 1, subharmonicity is the same as classi-
cal convexity in one variable, expanded to allow u ≡ −∞ as a matter of
convenience.

An affine G-plane is an affine plane in Rn whose translate through the
origin belongs to G.

Restriction Theorem 3.2. — A function u is G-plurisubharmonic on
U ⊂ Rn if and only if

(3.2) u
∣∣
U∩W is subharmonic for each affine G plane W.

Proof. — Half of the proof is trivial. If ϕ is a test function for u at x0 ∈ X
with Jx0ϕ /∈ Fx0 , then by definition of F ≡ FG there exists a W ∈ G with
trW D2

x0
ϕ < 0. Therefore (cf. Ex. 3.1) u

∣∣
X∩(W+x0) is not subharmonic at

x0. The other half, namely the assertion that restrictions of G-psh functions
to affine G-planes are subharmonic is proved in the Section 5. It is a special
case of our general Geometric Restriction Theorem 6.6. �

Example 3.3 (Classical convexity). — If G = G(1,Rn), then this Re-
striction Theorem is precisely the theorem required to establish that the
condition D2u > 0 in the viscosity sense implies that u is convex (or possi-
bly ≡ −∞). Somewhat surprisingly we were unable to find an elementary
viscosity proof of this fact in the literature. Such a proof is essentially given
in [12, Prop. 2.6], and this is the prototype of our proof of the general Re-
striction Theorem.
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Example 3.4 (Plurisubharmonicity in complex analysis). — A function
u ∈ USC(X) with X an open subset of Cn is said to be plurisubharmonic
if the restriction of u to each affine complex line is classically subharmonic.
Our Restriction Theorem 3.2 states that this classical notion is equivalent
to being G-plurisubharmonic where G = GC(1,Cn) ⊂ GR(2,Cn) is the
Grassmannian of complex lines in Cn.

Further examples abound. A wide class (including Examples 3.3 and 3.4)
is given by choosing a calibration φ ∈ ΛpRn and then setting

(3.3) G(φ) ≡
{
W ∈ G(p,Rn) : φ

∣∣
W

is the standard volume form on W
}

for one of the choices of orientation on W .

4. The General Restriction Theorem

Suppose Z is an open subset of RN = Rn ×Rm with coordinates z =
(x, y). Set X = {x ∈ Rn : (x, y0) ∈ Z} for a fixed y0, and let i : X ↪→ Z

denote the inclusion map i(x) = (x, y0). Adopt the notation

r = ϕ(x, y0), p = ∂ϕ

∂x
(x, y0), q = ∂ϕ

∂y
(x, y0), A = ∂2ϕ

∂x2 (x, y0),

B = ∂2ϕ

∂y2 (x, y0), C = ∂2ϕ

∂x∂y
(x, y0)

for the 2-jet Jzϕ of a function ϕ at z = (x, y0). Then the 2-jet of the
restricted function ψ(x) = ϕ(x, y0) is given by Jxψ = (r, p, A). Thus, re-
striction i∗ : J2(Z) −→ J2(X) on 2-jets is given by

(4.1) i∗
(
r, (p, q),

(
A C

Ct B

))
= (r, p, A) at i(x) = z.

If F is a subset of J2(Z), then the restriction i∗XF of F to X is a
subset of J2(X). Each quadratic form P > 0 on Rn is the restriction of a
quadratic form P̃ > 0 on RN . This proves that:

(4.2) If F satisfies condition (P), then i∗F also satisfies (P).

We shall also consider the closure H = i∗F . It is obvious that

(4.3) F satisfies (P)⇒ H satisfies (P)

Thus, H ≡ i∗F is a subequation (Def. 2.4), and it will be referred to as the
restricted subequation.
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Definition 4.1. — We say that restriction to X holds for F if

(4.4) u is F -subharmonic on Z ⇒ u
∣∣
X

is H-subharmonic on X

This is not always the case. Some elementary examples are presented in
Appendix A. Of course, if u ∈ C2(Z) is F -subharmonic, then u

∣∣
X

is H-
subharmonic on X since i∗Ju = Ji∗u. The only issue is with u ∈ USC(Z)
that are not C2. Let J2

n = J2
0 (Rn) = R ⊕Rn ⊕ Sym2(Rn).

The restriction hypothesis

Given x0 ∈ X and (r0, p0, A0) ∈ J2
n and given zε = (xε, yε) and rε for a

sequence of real numbers ε converging to 0,

(4.5) If
(
rε,

(
p0 +A0(xε − x0), yε − y0

ε

)
,

(
A0 0
0 1

εI

))
∈ Fzε

(4.6) and xε → x0,
|yε − y0|2

ε
→ 0, rε → r0,

then
(r0, p0, A0) ∈ Hx0 .

Remark. — If the subequation F is independent of the r-variable, that
is, if Fx can be considered as a subset of the reduced 2-jet space J2

x =
Rn×Sym2(Rn), then the restriction hypothesis can be restated as follows.

Restriction hypothesis (second version — for r-independent
subequations)

Given x0 ∈ X and zε = (xε, yε) converging to z0 = (x0, y0) with 1
ε |yε −

y0|2 → 0, for a sequence of real numbers ε converging to 0, consider the
polynomials

(4.7) ψε(x, y) ≡ r0 + 〈p0, x− x0〉+ 1
2 〈A0(x− x0), x− x0〉+ 1

2ε |y − y0|2.

If Jzε
ψε ∈ Fzε

for all ε, then (p0, A0) ∈ Hz0

This follows since the reduced jet Jzε
ψε equals the jet in (4.5) modulo

rε − r0.

The General Restriction Theorem 4.2. — Suppose u ∈ USC(Z).
Assume the restriction hypothesis. Then with H ≡ i∗F ,

u ∈ F (Z)⇒ u
∣∣
X
∈ H(X).
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Remark 4.3. — See Example B.6 in Appendix B for a case where i∗F
is not closed.

Proof. — If u
∣∣
X
/∈ H(X), then by Lemma 2.2 (since H is closed) there

exists x0 ∈ X, α > 0, and (r0, p0, A0) /∈ Hx0 such that

(4.8) u(x, y0)−Q(x) 6 −α|x− x0|2 near x0 and
= 0 at x0

where

(4.9) Q(x) ≡ r0 + 〈p0, x− x0〉+ 1
2 〈A0(x− x0), x− x0〉.

In the next step we construct zε = (xε, yε) satisfying (4.6) with rε ≡
u(zε). Set

w(x, y) ≡ u(x, y)−Q(x).
Let B(z0) denote a small closed ball about z0 in RN , so that (4.8) holds
on the y0-slice. For each ε > 0 small, let

(4.10) Mε ≡ sup
B(z0)

(
w − 1

2ε |y − y0|2
)
,

and choose zε to be a maximum point. Since the value of this function at
z0 is zero, the maximum value Mε > 0. Furthermore, the Mε decrease to a
limit, say M0. Now

Mε = w(zε)− 1
2ε |yε − y0|2

= w(zε)− 1
4ε |yε − y0|2 − 1

4ε |yε − y0|2

6M2ε − 1
4ε |yε − y0|2,

that is
1
4ε |yε − y0|2 6M2ε −Mε.

Thus

(4.11) 1
ε |yε − y0|2 −→ 0

and in particular yε → y0.
Suppose now that z̄ = (x̄, y0) is a cluster point of {zε}. Then taking a

sequence zε → z̄

(4.12) M0 = lim
ε→0

Mε = lim
ε→0

(w(zε)− 1
2ε |yε − y0|2) = lim

ε→0
w(zε) 6 w(z̄)

by (4.10), (4.11) and the fact that w is upper semi-continuous. By (4.8)
and the fact that ȳ = y0, we have w(z̄) 6 0. Hence, M0 = w(z̄) = 0. Since
w(x, y0) has a strict maximum of 0 at z0 = (x0, y0), and this maximum
value is attained at z̄ = (x̄, y0), we must have x̄ = x0. Thus

(4.13) xε → x0.
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Now by (4.12), we have 0 = limε→0 w(zε) = limε→0
(
u(zε) − Q(zε)

)
=

limε→0 rε − r0, which completes the proof that (4.6) is satisfied.
It remains to verify (4.5). The notation has been arranged so that

(4.14) u− ψε = w − 1
2ε |y − y0|2

where ψε is defined by (4.7). Consequently, (4.10) can be restated as

(4.10)′ u− ψε 6Mε near zε and
= Mε at zε,

that is, ϕε ≡ ψε + Mε is a test function for u at zε. This implies that
Jzε

ϕε ∈ Fzε
. Computing this 2-jet verifies (4.5). The restriction hypothesis

now implies that (r0, p0, A0) ∈ Hx0 , which is a contradiction. �

5. First applications

We now examine some applications of the Restriction Theorem 4.2.

Restriction in the constant coefficient case

Suppose F = Z × F for F ⊂ J2
N . Then F is said to have constant

coefficients on Z. Now consider X = Z ∩ {y = y0} as above. If F has
constant coefficients on Z, then the restriction of 2-jets gives a set H =
i∗F = X ×H with constant coefficients on X.

Theorem 5.1 (Restriction for euclidean subequations). — Suppose
F ⊂ J2(Z) is closed, has constant coefficients and satisfies (P). Then u

is F -subharmonic on Z ⇒ u
∣∣
X

is H-subharmonic on X.

Proof. — In this case the restriction hypothesis is easy to verify. Since(
rε, (pε, qε),

(
A0 0
0 1

εI

))
∈ Fze = F,

we have that the restricted 2-jet (rε, pε, A0) ∈ H even though zε /∈ X. Now
the fact that rε → r0 and pε = p0 +A0(xε−x0)→ p0 is enough to conclude
that (r0, p0, A0) ∈ H = Hz0 . �

There are many subequations for which Theorem 5.1 is interesting. For
one such basic case we continue with Example 2.5.
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Example 5.2 (Branches of the homogeneous Monge-Ampère equation).
The qth branch Λq of the homogeneous Monge-Ampère equation on Rn is
defined by requiring that the qth ordered eigenvalue of the second derivative
be > 0, i.e., the subequation Λq is defined by

(5.1) λq(A) > 0 for A ∈ Sym2(Rn).

Even though this is not one of the geometric cases, the subharmonics can
be characterized via restriction, providing an extension of Proposition 2.7.
Theorem 5.3. — A function u ∈ USC(X) is Λq-subharmonic if and

only if its restriction to each affine q-plane V ⊂ Rn is subaffine (see Defi-
nition 2.6).
Proof. — In order to apply the Restriction Theorem 5.1 to a Λq-

subharmonic function on Rn we must first compute the restricted sube-
quation on an affine q-plane V . We can assume that V is a vector subspace
of Rn. Given A ∈ Sym2(Rn), recall that

(5.2) λq(A) = inf
W
λmax

(
A
∣∣
W

)
where the inf is taken over all q-dimensional subspaces W ⊂ Rn, and
λmax

(
A
∣∣
W

)
= λq

(
A
∣∣
W

)
. It follows that the subequation Λq on Rn restricts

to the subequation Λq on Rp for any p > q. Now on Rq, λq(B) = λmax(B)
so that λq(B) > 0 on Rq if and only if at least one eigenvalue of B is > 0.
Combining the Restriction Theorem 5.1 with Proposition 2.7 completes the
proof in one direction.
If u is not Λq-subharmonic on Rn, then using Lemma 2.2 and some

normalizations, one sees that there exists A with λq(A) < 0 such that
u(x) − 〈Ax, x〉 6 0 near x = 0 with equality at x = 0. Take V to be the
span of the first q ordered eigenvectors of A. Then u

∣∣
V
− A

∣∣
V
6 0 near

x = 0 and A
∣∣
V
< 0, proving that u

∣∣
V

is not subaffine. �

Remark 5.4. — This theorem easily extends to subequations defined by
λq(A) > f(r, |p|) with f(r, s) non-decreasing in s and continuous in r.

Example 5.5 (i∗F not closed). — Define F on R2 by |p||q| > 1. Then
i∗F on {y = 0} is defined by p 6= 0, and H = i∗F is all of J2(R). In
particular, i∗F is not closed. A more interesting (geometrically defined)
example where i∗F is not closed, is given in Appendix B.

The geometric case in Rn.

As in Section 3 suppose that FG is geometrically defined by closed subset
G of the grassmannian G(p,RN ).
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Proof of Theorem 3.2. — It is a special case of Theorem 5.1. To see this
supposeW is an affine G-plane with (constant) tangent planeW ∈ G. Then
for any quadratic form Q at any point of W we have trW i∗WQ = trW Q

which proves that i∗WFG ⊂ F{W}, the classical (subharmonic) subequation
on W (cf. Example 3.1). �

This Restriction Theorem 3.2 can be generalized by considering a sub-
space V ⊂ RN of larger dimension n > p and defining

(5.3) G(V ) ≡ {W ∈ G : W ⊂ V }

to be the space of G-planes which are tangential to V . Since G(V ) is a
closed subset of the grassmannian G(p,RN ), it geometrically determines a
subequation FG(V ) on V by

(5.4) FG(V ) ≡ {A ∈ Sym2(V ∗) : trW A > 0 ∀W ∈ G(V )}

Theorem 5.6. — If u is G-plurisubharmonic on an open subset U ⊂
RN , then for each affine subspace V of RN ,

u
∣∣
U∩V is G(V ) plurisubharmonic.

Theorem 3.2 is the special case where V = W and so G(V ) = {W}.

Remark 5.7. — As in Theorem 3.2 the converse (where one considers
all affine subspaces V of dimension n with n > p) is trivial.

Proof. — Let i∗V denote the restriction of 2-jets from RN to V = Rn.
For W ⊂ V one has trW i∗VQ = trW Q for all quadratic forms Q, which
proves that

(5.5) i∗V FG ⊂ FG(V ).

Therefore i∗V FG ⊂ FG(V ), and so Theorem 5.6 is a special case of Theo-
rem 5.1. �

In Appendix B (Theorem B.3) we prove that in fact FG(V ) is the re-
stricted subequation, i.e.,

i∗V FG = FG(V ).

Subequations which can be defined
using fewer of the variables in RN .

Suppose that F can be defined using fewer of the variables in RN , say
using only the variables in Rn ⊂ RN . This means by definition that there
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exists H ⊂ J2
n with F = (i∗)−1H where i∗ : J2

N → J2
n is the restriction

map.
We shall say that a function u ∈ USC(Z) is horizontally H-subharmonic

on an open set Z ⊂ RN if for each y0 ∈ Rn the function u(x, y0) is of type
H on Z ∩ {y = y0}.

As another special case of Theorem 5.1 we have

Theorem 5.8. — Suppose the constant coefficient subequation F =
(i∗)−1(H) can be defined using the variables Rn ⊂ RN . Then u is F -
subharmonic on Z if and only if u is horizontally H-subharmonic on Z.

Families of subequations

Theorem 5.8 extends to a more general, non constant coefficient situ-
ation. Let F (y) ⊂ J2(X) be a family of subequations parameterized by
points y in an open subset Y ⊂ Rm. Consider the subset F ⊂ J2(Z),
Z ≡ X × Y , defined by

(5.5)′ J2
zϕ(z) ∈ Fz ⇐⇒ J2

xϕ(x, y) ∈ Fx(y) z = (x, y)

Obviously, F satisfies the positivity condition (P). Note that F is a sube-
quation in the sense of Definition 2.4 if and only if F ⊂ J2(Z) is closed. In
this case we say the family {F (y)} is closed.

Theorem 5.9. — Suppose {F (y)} is a closed family of subequations as
above. Then a function u ∈ USC(Z) is F -subharmonic if and only if the
restriction u(x, y0) is F (y0)-subharmonic on X for each y0 ∈ Y .

Proof. — If ϕ(x, y) is a test function for u(x, y) at z0 = (x0, y0), then
ϕ(x, y0) is a test function for u(x, y0) at x0. If u(x, y0) is F (y0)-subharmonic,
then J2

x0
ϕ(x0, y0) ∈ Fx0(y0), or equivalently, J2

z0
ϕ ∈ F .

Conversely, assume u is F -subharmonic on Z. Consider the data in the
restriction hypothesis. By the definition (5.5)′ of F , the condition(4.5) can
be restated as

Jε = (rε, p0 +A0(xε − x0), A0) ∈ Fxε
(yε).

Since zε → z0 and F is closed, this implies that (r0, p0, A0) = lim Jε must
belong to Fx0(y0). The result now follows from Theorem 4.2. �
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Restriction in the linear case

Consider the second-order linear operator with smooth coefficients

L
(
z, r, (p, q),

(
A C

C B

))
≡ 〈a(z), A〉+ 〈α(z), p〉+ γ(z)r + 〈b(z), B〉+ 〈β(z), q〉+ 〈c(z), C〉.

Let L ⊂ Z × J2
N be the subset defined by L > 0. Then, of course, L is a

subequation (i.e., positivity holds) if and only if(
a(z) c(z)
c(z) b(z)

)
> 0,

in which case L will be referred to as a linear subequation. Consider Hx ≡
i∗Lz with z = (x, y0) ∈ X.
We will prove that restriction holds in two cases, which taken together

“essentially” exhaust the linear operators L. In the first case we assume
that at least one of the coefficients β(x0, y0), b(x0, y0) or c(x0, y0) in non-
zero. Restriction locally holds but is completely trivial since Hx = J2

n is
everything for x near x0. If, for example, β(x0, y0) 6= 0, then by choosing q
to be a sufficiently large multiple of β(x0, y0), any jet (r, p, A) can be shown
to lie in Hx.
The second case is much more interesting. We assume the following lin-

ear restriction hypothesis:

(5.6) β(x, y0), b(x, y0), and c(x, y0) vanish identically on X

Define the linear operator

(5.7) LX(x, r, p, A) ≡ 〈a(x, y0), A〉+ 〈α(x, y0), p〉+ γ(x, y0)r

on X. Under this hypothesis H ≡ i∗F is the subset of X × J2
n defined by

the linear inequality LX > 0.

Theorem 5.10. — Assume that L is a linear subequation satisfying the
linear restriction hypothesis. Then

u is L-subharmonic on Z ⇒ u
∣∣
X

is LX -subharmonic on X.

Proof. — Since β vanishes on X, we have |β(x, y)| 6 C|y−y0|. Moreover,
since b vanishes on X and since (P) implies b(z) > 0, b must vanish to
second order, i.e., |b(x, y)| 6 C|y − y0|2. These two facts are enough to
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verify the Restriction Hypothesis. Assume that

0 6 L
(
zε, rε, (p0 +A0(xε − x0), yε−y0

ε ),
(
A0 0
0 1

εI

))
= 〈a(zε), A0〉+ 〈α(zε), p0 +A0(xε − x0)〉+ γ(zε)rε

+ 〈b(zε), 1
εI〉+ 〈β(zε), yε−y0

ε 〉

and that
xε → x0,

|yε − y0|2

ε
→ 0, and rε → r0.

Now ∣∣∣∣〈β(zε),
yε − y0

ε

〉∣∣∣∣ 6 C |yε − y0|2

ε
→ 0

and ∣∣∣∣〈b(zε), 1
ε
I

〉∣∣∣∣ 6 C |yε − y0|2

ε
→ 0.

Hence the RHS converges to

〈a(z0), A0〉+ 〈α(z0), p0〉+ γ(z0)r0 = LX(z0, r0, p0A0)

which proves that (z0, r0, p0, A0) ∈ Hx0 . �

Remark 5.11 (Versions of the linear restriction hypothesis). — The fol-
lowing conditions are equivalent. The first is (5.6) above.

(1) b(x, y0), β(x, y0) and c(x, y0) vanish on X.
(2) H is the subset {LX > 0} of X × J2

n

(3) (Lf)(x, y0) = LX(f(x, y0)) for all smooth functions f on Z.
(3)′ There exists an intrinsic operator L′X on X such that (Lf)(x, y0) =

L′X(f(x, y0)) for all smooth functions f on Z.
(4) Li(x) = (i∗)−1(Hx) ∀x ∈ X.

The proof is left to the reader.

First order restriction

Suppose F is first order, that is, F is a subset of Z × J1
N . By convention

the F -subharmonic functions on Z are the same thing as the subharmonic
functions for the set F × Sym2(Rn) ⊂ J2

N . If for all compact K ⊂ Z and
R > 0,

(5.8) {(x, r, p) ∈ F : x ∈ K, |r| 6 R} is compact,

then F is said to be coercive.
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If i : X ↪→ Z is defined by i(x) = (x, y0), and Hx ≡ i∗F where i∗ is
restriction of 1-jets, then

(5.9) Hx = {(r, p) : ∃q with (r, (p, q)) ∈ Fi(x)}

If F is coercive, then H is coercive.

Theorem 5.12. — If F ⊂ J1(Z) is coercive and i : X ↪→ Z is defined
by i(x) = (x, y0), then

u ∈ F (Z)⇒ u
∣∣
X
∈ H(X).

Proof. — The restriction hypothesis is easy to verify in this case. Given
z0 ∈ X and (r0, p0, A0), if

zε → z0, rε → r0, and (rε, (p0 +A0(xε − x0), 1
ε (yε − y0)) ∈ Fzε

,

then by the coerciveness of F we can extract a subsequence (zε, rε, (pε, qε))
which converges to (z′, r′, (p′, q′)) ∈ Fz0 . (Here pε ≡ p0 + A0(xε − x0) and
qε ≡ 1

ε (yε − y0).) But z′ = z0, r′ = r0, and p′ = p0. Hence (r0, p0) ∈ Hx0 ,
which proves the restriction hypothesis. �

Branches of the complex Monge-Ampère equation

The qth branch ΛC
q of the complex Monge-Ampère equation is defined ex-

actly as in the real case (Examples 2.5 and 5.2) except that the second de-
rivative D2u is replaced by its complex hermitian part ∂2u

∂zi∂z̄j
∈ Herm(Cn).

That is, ΛC
q is the subequation defined by

(5.10) λq(AC) > 0 where AC = 1
2 (A− JAJ) for A ∈ Sym2(R2n).

The analogue of (5.2) is valid.

(5.11) λq(AC) = inf
W
λmax

(
AC
∣∣
W

)
for all AC ∈ Herm(Cn).

where the inf is taken over all complex q-dimensional subspaces of Cn. It
follows that

(5.12) The subequationΛC
q on Cn restricts to the subequation ΛC

q on V

for any complex affine subspace V of dimension > q.
The characterization Theorem 5.3 of the Λmax subharmonics as the “sub”

affine functions, has a natural analogue. The affine functions are the solu-
tions to D2u = 0. The pluriharmonics are defined to be the solutions of
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∂2h
∂z∂z̄ = 0. Recall that for a simply connected open set X ⊂ Cn

(5.13) h is pluriharmonic on X ⇐⇒
h = ReF with F holomorphic on X.

even when h is only assumed to be a distribution solution.

Definition 5.13. — A function u ∈ USC(X) is sub-the-pluriharmo-
nics on X if for each compact subset K ⊂ X and each pluriharmonic
function h on X,

(5.14) u 6 h on ∂K ⇐⇒ u 6 h on K

Proposition 5.14. — A function u ∈ USC(X) with X ⊂ Cn is ΛC
max-

subharmonic ⇐⇒ u is sub-the-pluriharmonics.

Proof. — If u is not ΛC
max-subharmonic on X, then it follows from Lem-

ma 2.2 that there exist z0 ∈ X, a holomorphic polynomial F of degree 2,
with u(z0) = ReF (z0), A ∈ Herm(Cn) with A < 0 such that

(5.15) u(z) < ReF (z) + (A(z − z0), z − z0) for z near z0.

Thus u is not sub-the-pluriharmonic ReF on a small ball about z0. This
proves that if u ∈ USC(X) is locally sub-the-quadratic-pluriharmonics,
then u is ΛC

max-subharmonic.
Now suppose that u is not sub-the-pluriharmonics on X. That is, for

some compact K ⊂ X and pluriharmonic function h on X, we have

u 6 h on ∂K but sup
K

(u− h) > 0.

This remains true with h replaced by h−ε|z|2 if ε is small enough. Suppose
z0 is a maximum point for u− (h−ε|z|2) on K. Adjusting u by subtracting
the maximum value at z0, we have u− (h− ε|z|2) 6 0 on K and equal to
0 at z0. Hence, ϕ ≡ h− ε|z|2 is a test function for u at z0. However, since
∂2ϕ
∂z∂z̄ (z0) = −2εI, u is not ΛC

max-subharmonic on X. This proves that if u
is ΛC

max-subharmonic on X, then u is sub-the-pluriharmonics on X. �

Remark 5.15. — The proof shows that the following are equivalent:
(1) u is locally sub-the-quadratic-pluriharmonics,
(2) u is ΛC

max-subharmonic,
(3) u is sub-the-pluriharmonics,

since (3) ⇒(1) is trivial and we have shown that (1) ⇒(2) ⇒(3).

Combining the Restriction Theorem 5.1 with the calculation (5.12) of
the restricted subequation, and with Proposition 5.14, we have the difficult
half of the next result.
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Theorem 5.16. — A function u∈USC(X) is ΛC
q -subharmonic if and

only if its restriction to each affine complex q-plane V is sub-the-pluriharmo-
nics on X ∩ V .

Proof. — Suppose u is not ΛC
q -subharmonic on X. Then applying

Lemma 2.2 we have (5.15) is true with λC
q (A) < 0. Hence, taking V equal

to the span of the first q eigenvectors we see that A
∣∣
V
< 0, and so u

∣∣
V

is
not sub-the-pluriharmonics on V . �

Similar results hold for branches of the quaternionic Monge-Ampère
Equation. The details are omitted.

6. The geometric restriction theorem

In this section we extend our geometric cases, Theorems 3.2 and 5.6, to
a full level of generality. This is done in three stages delineated as sub-
sections. In the first we treat restriction to minimal submanifolds of Rn

whose tangent planes lie in G. In the next subsection this result is ex-
tended to riemannian manifolds. In the final, most general, case, X ⊂ Z

is a k-dimensional submanifold of a riemannian manifold Z and the sube-
quation F = FG ⊂ J2(Z) is determined by a closed subset G ⊂ G(p, TX)
of the bundle of tangent p-planes on Z where p > k.
In all of these cases, because of the additional hypotheses imposed on

X, the restricted subequation is also geometrically determined, in fact, by
the set G(TX) of G-planes tangent to X. This follows from the algebraic
result Theorem B.3 in Appendix B.

Restriction to minimal G-submanifolds

In this subsection the Restriction Theorem 3.2 will be generalized in two
ways.

First , the “coefficients” of the subequation are allowed to “vary”. That
is, a closed subset G ⊂ X × G(p,Rn) is given with fibres Gx ⊂ G(p,Rn)
defined on an open set X ⊂ Rn. Then the subequation F with fibres Fx is
defined by the condition

(3.1)′ trace
(
A
∣∣
W

)
> 0 for all W ∈ Gx.

As before, we say that F is geometrically determined by G ⊂ X ×
G(p,Rn).
Second, the affine G-planes in the Restriction Theorem 3.2 are replaced

by G-submanifolds with mean curvature zero.
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Definition 6.1. — A p-dimensional submanifold M of X ⊂ Rn is a
G-submanifold if TxM ∈ Gx for each x ∈M .

Theorem 6.2. — Suppose u is a G-plurisubharmonic function on X ⊂
Rn andM is a G-submanifold of X which is minimal. Further assume that
G ⊂ X ×G(p,Rn) has a smooth neighborhood retract which preserves the
fibres {x} ×G(p,Rn). If u is G-plurisubharmonic on X, then u

∣∣
M

is ∆M -
subharmonic, where ∆M is the Laplace-Beltrami operator for the induced
metric on M .

Proof. — The conclusion is local. Choose a local orthonormal frame field
e1, . . . , ep on M and extend it to an orthonormal frame field e1, . . . , ep in
a neighborhood U in Rn. Define

W (x) = ρ (span {e1(x), . . . , ep(x)})

where ρ is the neighborhood retract onto G. Then W (x) defines a linear
operator

(6.1) (Lf)(x) ≡ 〈PW (x),Hessx f〉, for f ∈ C∞(U)

(where PW denotes orthogonal projection onto W ). Since each W (x) ∈ G,
we see that if f is G-plurisubharmonic, then f is L-subharmonic. Since
W (x) = TxM for all x ∈M we have

(Lf)(x) = 〈TxM,Hessx f〉 = (∆Mf)(x) + (HMf)(x) ∀x ∈M

where HM is the mean curvature vector field of M (see [14] for example).
Since M is a minimal submanifold, this proves that

(6.2) (Lf)(x) = (∆Mf)(x) ∀x ∈M and f ∈ C∞(U).

Now make a coordinate change so that M becomes X = Rp × {0} ⊂
Rp × Rn−p. By (3)′ in Remark 5.11 the linear restriction hypothesis is
satisfied. Therefore Theorem 5.10 implies that if an u.s.c. function u is
G-psh, then u

∣∣
M

is ∆M -subharmonic. �

Remark 6.3. — Here we used the obvious fact that F1⊂ F2 ⇒ F1(X) ⊂
F2(X) to conclude that if u isG-plurisubharmonic, then u is L-subharmonic.

Riemannian manifolds

The result of the last subsection can be carried over to a completely gen-
eral version of Theorem 3.2. Let Z be a riemannian manifold of dimension
n and G ⊂ G(p, TZ) a closed subset of the bundle of tangent p-planes
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on Z. We again assume that G ⊂ G(p, TZ) admits a smooth neighbor-
hood retraction which preserves the fibres of the projection G(p, TZ)→ Z.
As before G determines a natural subequation FG on Z defined by the
condition that

trace
{

Hessu
∣∣
W

}
> 0 for all W ∈ G.

where Hessu denotes the riemannian hessian of u. (See [14, 15] for examples
and details.) The corresponding F -subharmonic functions are again called
G-plurisubharmonic functions.
By a G-submanifold of Z we mean a p-dimensional submanifold X ⊂ Z

such that TxX ∈ G for all x ∈ X. The following result generalizes a basic
theorem in [16] (1) for C2-functions to general upper semi-continuous G-
plurisubharmonic functions.

Theorem 6.4. — Let X ⊂ Z be a G-submanifold which is minimal
(mean curvature zero). Then restriction to X holds for FG. In other words,
the restriction of any G-plurisubharmonic function to X is subharmonic in
the induced riemannian metric on X.

Proof. — Choose local coordinates z = (x, y) on a neighborhood of a
fixed point (x0, y0) in Rp × Rq, with q = n − p, so that X corresponds
locally to the affine subspace {y = y0}. Choose a local extension of the G-
plane field TX to a G-plane field P defined on a neighborhood U of (x0, y0)
by taking any local extension and composing it with the neighborhood
retraction to G as in the proof of Theorem 6.2. Consider the linear operator

L(u) ≡ trace
{

Hessu
∣∣
P

}
and note that any function which is G-psh is also L-subharmonic on U . It
will suffice to establish the linear restriction hypothesis for L.
To see this we note that at points of X the operator L can be written as

(6.3) L(u) =
p∑

i,j=1
gij

{
∂2u

∂xi∂xj
−

p∑
k=1

Γkij
∂u

∂xk

}
−

q∑
α=1

p∑
i,j=1

gijΓαij
∂u

∂yα

where gij denotes the inverse metric tensor and Γkij the Christoffel sym-
bols of the riemannian metric in these coordinates. Equation (6.3) can be
rewritten as

L(u) = ∆Xu−H · u

(1)where F was denoted by P+(G).
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where ∆X is the Laplace-Beltrami operator for the induced metric on X

and H is the mean curvature vector field of X. Since H ≡ 0 by hypoth-
esis, the linear restriction hypothesis (Remark 5.11, (3)′) is satisfied and
Theorem 5.10 applies to complete the proof. �

The General Geometric Restriction Theorem

The results of the last two sections can be expanded to a more general
situation. Let Z and G ⊂ G(p, TZ) be as in the previous subsection. Fix a
submanifold X ⊂ Z of dimension m > p and consider the compact subset
G(TX) = {W ∈ G : W ⊂ TX} ⊂ G(p, TX) of G-planes tangent to X.
We say that X is G-regular if each tangent G-plane at a point x can be
extended to a tangent G-plane field in a neighborhood of x in X.

The set G(TX) defines a subequation FG(TX) on X by the requirement
that

trace
{

HessX u
∣∣
W

}
> 0 for all W ∈ G(TX)

for C2-functions u, where as before, HessX denotes the riemannian hessian
on X.
Recall that the second fundamental form B of X is a symmetric bilinear

form on TX with values in the normal bundle NX defined by BV,W =
(∇V W̃ )N where W̃ is any extension of W to a vector field tangent to X
(cf. [20]) For V,W ∈ TxX the ambient Z-hessian and the intrinsic X-
hessian differ by the second fundamental form (cf. [14, 15]), i.e.,

(6.4) (HessZ u)(V,W ) = (HessX u)(V,W ) +BV,Wu

Definition 6.5. — The submanifold X is said to be G-flat if it is G-
regular and

trace
{
B
∣∣
W

}
= 0 for all W ∈ G(TX).

Theorem 6.6 (The Geometric Restriction Theorem). — Let X ⊂ Z

be a G-flat submanifold. Then the restriction of any G-plurisubharmonic
function to X is G(TX)-plurisubharmonic.

Note. — The simplest interesting case occurs when dim(X) = p and X
is a G-manifold. Then X is G-flat if and only if it is minimal (G-regularity
holds automatically). Thus Theorem 6.6 generalizes Theorem 6.4, which in
turn contains Theorem 6.2.
Perhaps the next interesting case is that of a real hypersurface X in

a Kähler manifold Z, where the subset G ⊂ GR(2, TZ) consists of the
complex tangent lines. We leave it to the reader to verify that in this case:
X is G-flat if and only if X is Levi-flat.
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Proof of Theorem 6.6. — From the G regularity of X we have the fol-
lowing elementary fact.

Lemma 6.7. — A function u ∈ USC(X) is G(TX)-psh if and only if
for each tangent G-plane field W defined on an open subset U ⊂ X, the
function u

∣∣
U

is LW -subharmonic, where LW is the linear subequation on
Udefined by LW (v) ≡ trW {HessX v} > 0 for v ∈ C2.

Proof.
(⇐) Let ϕ be a test function for u at x0 ∈ X. FixW0 ∈ G(Tx0X). Extend

W0 to a local G(TX)-plane field W . Then by assumption trW {HessX ϕ} >
0. This proves that trW0{HessX ϕ} > 0 for all W0 ∈ G(Tx0X),
i.e., Hessx0 ϕ ∈ FG(Tx0X).

(⇒) Suppose u is G(TX)-psh, and let W be a tangent G plane field
defined on an open set U ⊂ X. Fix x0 ∈ U and choose a test function
ϕ for u at x0. Since u is G(TX)-psh, we have trW0{HessX ϕ} > 0 for all
W0 ∈ G(Tx0X). Hence u is LW -subharmonic on U . �

The remainder of the proof of Theorem 6.6 now closely follows the argu-
ment given for the proof of Theorem 6.4, by choosing similar coordinates
and extending the intrinsic operators LW into Z. �

Example 6.8 (G-regularity is necessary). — Let G = {x-axis} in R2,
and set X = {(x, y) : y = x4}. Then X has a tangent G-plane only at the
origin. The second fundamental form (i.e., the curvature) is zero at the
origin, however G-regularity clearly fails. Restriction also fails. Consider
the strictly G-psh function u(x, y) = εx2 − |y|

1
2 . Then u

∣∣
X

= u(x, x4) =
−(1−ε)x2 in the parameter x, and one sees easily that for ε small, Hess0 u =
d2u
ds2 (0) < 0 (where s = arc-length parameter).

7. Jet equivalence of subequations

In this section and the next one we suppose that a subequation F is
given on a smooth manifold Z. No riemannian assumption will be made.
In particular, F is a closed subset of the 2-jet bundle J2(Z). The 0-jet
bundle R splits off as J2(Z) = R ⊕ J2

red(Z) leaving the bundle of reduced
2-jets J2

red(Z). The bundle of reduced 1-jets is simply T ∗Z the cotangent
bundle of Z.
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Restriction

If X is a submanifold of Z, let i∗X denote the restriction of 2-jets to
X ⊂ Z. Then

(7.1)

0 −→ Sym2(T ∗Z) −→ J2
red(Z) −→ T ∗Z −→ 0yi∗X yi∗X yi∗X

0 −→ Sym2(T ∗X) −→ J2
red(X) −→ T ∗X −→ 0

is commutative with exact rows. Note that i∗X : Sym2(T ∗Z)→ Sym2(T ∗Z)
is the restriction of quadratic forms on TZ to quadratic forms on TX, and
that the quotient map i∗X : T ∗Z → T ∗X is restriction of 1-forms.

Automorphisms

To begin, an automorphism of the jet bundle J2(Z) = R ⊕ J2
red(Z) is

required to split as the identity on the 0-jet factor R and an automorphism
of the reduced jet bundle J2

red(Z). Hence it suffices to define automorphisms
of the reduced jet bundle.

Definition 7.1. — An automorphism of J2
red(Z) is a bundle iso-

morphism Φ: J2
red(Z) → J2

red(Z) which maps the subbundle Sym2(T ∗Z)
to itself and has the further property that this restricted isomorphism
Φ: Sym2(T ∗Z)→ Sym2(T ∗Z) is induced by a bundle isomorphism

(7.2) h = hΦ : T ∗Z −→ T ∗Z.

This means that for A ∈ Sym2(T ∗Z),

(7.3) Φ(A) = hAht,

that is,
Φ(A)(v, w) = A(htv, htw) for v, w ∈ TZ.

Because of the upper short exact sequence in (7.1) each automorphism
Φ of J2

red(Z) induces a bundle isomorphism

(7.4) g = gΦ : T ∗Z → T ∗Z.

This bundle isomorphism is not required to agree with h in (7.2).

Lemma 7.2. — The automorphisms of J2(Z) form a group. They are
the sections of the bundle of groups whose fibre at z ∈ Z is the group of
automorphisms of J2

z (Z) defined above.
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Proof. — See [15, §4]. �

Proposition 7.3. — With respect to any splitting

J2(Z) = R ⊕ T ∗Z ⊕ Sym2(T ∗Z)

of the upper short exact sequence (7.1), a bundle automorphism has the
form

(7.5) Φ(r, p, A) = (r, gp, hAht + L(p))

where g and h are smooth sections of the bundle End(T ∗Z) and L is a
smooth section of the bundle Hom(T ∗Z,Sym2(T ∗Z)).

Proof. — Obvious. �

Example 1. — The trivial 2-jet bundle on Rn has fibre

J2 = R ×Rn × Sym2(Rn).

with automorphism group

Aut(J2) ≡ GLn×GLn×Hom(Rn,Sym2(Rn))

where the action is given by

Φ(g,h,L)(r, p, A) = (r, gp, hAht + L(p)).

and the group law is

(ḡ, h̄, L̄) · (g, h, L) = (ḡg, h̄h, h̄Lh̄t + L ◦ g).

Example 2. — Given a local coordinate system (x1, . . . , xn) on an open
set U ⊂ Z, the canonical trivialization

(7.6) J2(U) = U ×R ×Rn × Sym2(Rn)

is determined by the coordinate 2-jet Jxu = (u,Du,D2u) evaluated at x.
With respect to this splitting, every automorphism is of the form

(7.7) Φ(u,Du,D2u) = (u, gDu, h ·D2u · ht + L(Du))

where gx, hx ∈ GLn and Lx : Rn → Sym2(Rn) is linear for each point
x ∈ U .
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Jet equivalence

Definition 7.4. — Two subequations F, F ′ ⊂ J2(Z) are jet equiva-
lent if there exists an automorphism Φ: J2(Z)→ J2(Z) with Φ(F ) = F ′.

Definition 7.5. — A subequation F ⊂ J2(Z) is locally jet equiv-
alent to a constant coefficient subequation if each point x has a
distinguished coordinate neighborhood U so that F

∣∣
U
is jet equivalent to a

constant coefficient subequation U ×F in those distinguished coordinates.

Lemma 7.6. — Suppose Z is connected and F ⊂ J2(Z) is locally jet
equivalent to a constant coefficient subequation. Then there is a subequa-
tion F ⊂ J2, unique up to equivalence, such that F is locally jet equivalent
to U × F on every distinguished coordinate chart.

Proof. — In the overlap of any two distinguished charts U1∩U2 choose a
point x. Then the local equivalences Φ1 and Φ2, restricted to Fx, determine
an equivalence from F1 to F2. Thus the local constant coefficient equations
on these charts are all equivalent, and they can be made equal by applying
the appropriate constant equivalence on each chart. �

Remark 7.7. — The notion of jet equivalence arises naturally when con-
sidering the group of germs of diffeomorphisms which fix a point x0, acting
on J2

x0
. Namely, if ϕ is a local diffeomorphism fixing x0, then in local co-

ordinates (as in Example 2 above) the right action on J2
x0
, induced by the

pull-back ϕ∗ on 2-jets, is given by (7.7) where gx0 = hx0 is the transpose
of the Jacobian matrix ((∂ϕ

i

∂xj
)) and Lx0(Du) =

∑n
k=1

∂2ϕk

∂xi∂xj
(x0)uk. Thus

with jet coordinates (r, p, A) at x0

ϕ∗(r, p, A) = (r, gp, gAgt +D2
x0

(ϕ) · p).

Note, however, that this applies only at the fixed point x0.

Cautionary Note. — A local equivalence Φ: F → F ′ does not take F -
subharmonic functions to F ′-subharmonic functions. In fact, for u ∈ C2,
Φ(J2u) is almost never the 2-jet of a function. It happens if and only if
Φ(J2u) = J2u.

Relative automorphisms and relative jet equivalence

Suppose now that i : X ↪→ Z is an embedded submanifold.
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Definition 7.8. — A relative automorphism of J2(Z) with re-
spect to X is an automorphism Φ: J2(Z) → J2(Z) such that on X the
diagram

J2(Z) Φ−→ J2(Z)
i∗
y yi∗

J2(X) ϕ−→ J2(X)

commutes for some automorphism ϕ : J2(X)→ J2(X).

Relative automorphisms with respect to X are a subgroup of the auto-
morphisms of J2(Z).
Fix a splitting J2(Z) = R ⊕ T ∗Z ⊕ Sym2(T ∗Z), and let g, h and L be

associated to an automorphism Φ as in Proposition 7.3. Then one easily
checks that: Φ is a relative automorphism of J2(Z) with respect to X if
and only if

(7.8) gt(TX) ⊂ TX, ht(TX) ⊂ TX and LN∗X,Sym2(T∗X) = 0.

Here LN∗X,Sym2(T∗X) denotes the restriction of L to N∗X followed by the
restriction of quadratic forms in Sym2(T ∗Z) to Sym2(T ∗X).

Definition 7.9. — Two subequations F, F ′ ⊂ J2(Z) are jet equiv-
alent modulo X if F ′ = Φ(F ) for some relative automorphism Φ with
respect to X.

If F, F ′ ⊂ J2(Z) are jet equivalent modulo X, then the induced sube-
quations H = i∗F and H ′ = i∗F ′ are jet equivalent on X.
By an adapted coordinate neighborhood of a point z0 = (x0, y0) ∈ X we

mean a local coordinate system z = (x, y) on a neighborhood U of z0 such
that X ∩ U = {(x, y) : y = y0}.

Definition 7.10. — The subequation F ⊂ J2(Z) is locally jet equiv-
alent modulo X to a constant coefficient subequation if each point
in X has an adapted coordinate neighborhood U so that F

∣∣
U
is jet equiva-

lent modulo X to a constant coefficient subequation U×F in those adapted
coordinates.

Now we examine what this means in more detail. Suppose that z =
(x, y) ∈ RN = Rn×Rm is the adapted coordinate system and Φ: J2(U)→
J2(U) is the jet equivalence modulo X. By Proposition 7.3, Φ acting on a
coordinate 2-jet (u,Du,D2u) must be of the form

(7.9) Φ(J) = Φ(u,Du,D2u) = (u, gDu, hD2uht + L(Du)).
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Moreover, we have

(7.10) J ∈ F ⇐⇒ Φ(J) ∈ F.

With respect to the splitting Rn × Rm into x and y coordinates, each
coordinate 2-jet J can be written as

J =
(
r, (p, q),

(
A C

Ct B

))
, and i∗(J) = (r, p, A).

is the restriction of J to X. The sections g and h can be written in block
form as

(7.11) g =
(
g11 g12
g21 g22

)
and h =

(
h11 h12
h21 h22

)
.

Also L can be decomposed into the sum L = L′ +L′′ where L′ ∈ End(Rn,

Sym2(RN )) and L′′ ∈ End(Rm,Sym2(RN )). Each of L,L′, L′′ can be
blocked into (1,1), (1,2), (2,1) and (2,2) components in Sym2(Rn ⊕Rm),
in analogy with g and h above.
Now we can compute the restriction i∗Φ(J) of Φ(J). Namely,

i∗Φ(J) = (r, g11p+ g12q, h11Ah
t
11 + h12C

tht11(7.12)
+ h11Ch

t
12 + h12Bh

t
12 + L′11(p) + L′′11(q))

In order for Φ to be a jet equivalence modulo X this must agree with an
automorphism ϕ : J2(U ∩X) → J2(U ∩X), which is the case if and only
if on X

(7.13) g12 = 0, h12 = 0, and L′′11 = 0

so that

(7.14) ϕ(r, p, A) =
(
r, g11p, h11Ah

t
11 + L′11(p)

)
Final Note 7.11 (Affine Jet Equivalence). — The above discussion ex-

tends easily to the more general case of affine automorphisms. The affine
automorphism group is an extension of the automorphism group of J2(Z)
via bundle translations by sections of J2(Z). (See [15, §6.3] for details.)

8. The restriction theorem for subequations derivable
from a euclidean model

The next result does not include the Geometric Restriction Theorem 5.6
since the subset G ⊂ G(p, TX) may not even be a subbundle of G(p, TX).
However, it applies to some interesting non-geometric cases, and to some
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cases of a geometric but non-riemannian type. The non-geometric applica-
tion is given in the next Section 9. The non-riemannian application with
a geometric flavor is given in the separate paper [10] where we prove that
restriction holds for the intrinsically defined plurisubharmonic functions on
an almost complex manifold.

Theorem 8.1. — Let i : X ↪→ Z be an embedded submanifold and
F ⊂ J2(Z) a subequation. Assume that F is locally jet equivalent modulo
X to a constant coefficient subequation F. Set H ≡ i∗F. Then H ≡ i∗XF

is locally jet equivalent to the constant coefficient subequation H, and
restriction holds. That is,

u is F subharmonic on Z =⇒ u
∣∣
X

is H subharmonic on X

Proof. — Adopt the notation following Definition 7.10. By hypo-
thesis (7.13) we have that

(8.1) g12(x, y) and h12(x, y) are O(|y−y0|) and L′′11(x, y) = O(|y−y0|).

We now show that F satisfies the restriction hypothesis. Fix
(r0, p0, A0) ∈ J2

x0
(X) and suppose there are sequences zε = (xε, yε) and

rε with

(8.2) Jε =
(
rε,

(
p0 +A0(xε − x0), yε − y0

ε

)
,

(
A0 0
0 1

εI

))
∈ Fzε

and

(8.3) xε → x0,
|yε − y0|2

ε
→ 0, rε → r0,

as ε→ 0. Now (8.2) is equivalent to the fact that

Φzε
(Jε) ∈ F for all ε.

This means that the (1, 1)-component

(8.4) i∗Φzε
(Jε) ∈ i∗F for all ε.

To show that (r0, p0, A0) ∈ Hz0 = i∗XFz0 it will suffice to show that

(8.5) i∗Φzε
(Jε) converges to ϕ(r0, p0, A0) as ε→ 0.

Write
i∗Φzε

(Jε) = (rε, pε, Aε) .

By (7.12)

pε = g11(zε)(p0 +A0(xε − x0)) + g12(zε) 1
ε (yε − y0).
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Now (8.1) and (8.3) imply that pε → g11(z0)p0. Furthermore, by (7.12)

Aε = h11(zε)A0h
t
11(zε) + 1

εh12(zε)ht12(zε)
+ L′11(ze) · (p0 +A0(xε − x0)) + L′′11(ze) · (( 1

ε (yε − y0)).

Again by (8.1) and (8.3) we have Aε → h11(z0)A0h
t
11(z0) + L′11(z0) · p0.

Since ϕz0(r0, p0, A0) = (r0, g11(z0)p0, h11(z0)A0h
t
11(z0) +L′11(z0) · p0), this

completes the proof. �

9. Applications of this last Restriction Theorem

The second Restriction Theorem has a number of interesting applica-
tions. One is to the universally defined subequations on manifolds with
topological G-structure (as in [15]).

We begin with the case of universal riemannian subequations. By a eu-
clidean model we mean a closed subset

(9.1) F ⊂ J2
N = R ×RN × Sym2(RN )

with the properties that:
(1) F + (R− × {0} × P) ⊂ F, where P ≡ {A ∈ Sym2(RN ) : A > 0},
(2) F = Int F, and
(3) F is invariant under the natural action of ON on J2

N .
Let Z be a riemannian manifold of dimension N and recall the canonical
splitting

(9.2) J2(Z) = R × T ∗Z × Sym2(T ∗Z)

given by the riemannian hessian

(9.3) (Hessu)(V,W ) ≡ VWu− (∇VW )u

(for vector fields V and W ; see [15].)

Definition 9.1. — The model subequation F in (9.1) is universal
because it canonically determines a subequation F ⊂ J2(Z) on any rie-
mannian N -manifold Z by the requirement that

(9.4) Juz = (u(z), (du)z,Hessz u) ∈ Fz ⇐⇒ [u(z), (du)z,Hessz u] ∈ F

where [u(z), (du)z,Hessz u] denotes the coordinate representation of
(u(z), (du)z,Hessz u) with respect to any orthonormal basis of TzZ. We
call F the subequation on Z canonically determined by F.
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Theorem 9.2 (Restriction for universal riemannian subequations). —
Let Z be a riemannian manifold of dimension N and F ⊂ J2(Z) a sube-
quation canonically determined by an ON -invariant universal subequation
F ⊂ J2

N as above. Then restriction holds for F to any totally geodesic
submanifold X ⊂ Z.

Proof.

Z ≡ {x = (x′, x′′) ∈ Rn ×Rm : |x′| < 1, |x′′| < 1}, and
X ≡ {x = (x′, 0) ∈ Rn ×Rm : |x′| < 1},

with n+m = N . We may furthermore assume that

(9.5) ∂′i ⊥ ∂′′j along X for all i, j

in the given metric on Z where

∂′i ≡
∂

∂x′i
and ∂′′j ≡

∂

∂x′′j
.

To see this we choose our coordinates as follows. First choose a local co-
ordinate map ϕ : {x′, |x′| 6 1} → X. Fix a basis ν1, . . . , νm of the normal
space to X at ϕ(0) and extend them to normal vector fields ν1, . . . , νm
on X by parallel translation along the curves corresponding to rays from
the origin in the disk {x′, |x′| 6 1}. Applying the exponential map to
x′′1ν1ϕ((x′)) + · · · + x′′mνm(ϕ(x′)) gives the desired coordinates for |x′′| <
some ε. (Of course, one can then renormalize to |x′′| < 1.)
We now choose an orthonormal frame field (e1, . . . , en+m) = (e′1, . . . , e′n,

e′′1 , . . . , e
′′
m) on Z (with respect to the given metric) so that along X

(9.6) e′1, . . . , e
′
n are tangent to X and e′′1 , . . . , e

′′
m are normal to X.

Our subequation F ⊂ J2(Z) is then given explicitly by the condition

(9.7)
(
u, (e1u, . . . , en+mu),Hessu(ei, ej)

)
z
∈ F

for z ∈ Z. We now write

ei =
n+m∑
j=1

hij∂j for i = 1, . . . , n+m

where ∂ ≡ (∂′, ∂′′). From (9.5) we have that the matrix h decomposes as

(9.8) h =
(
h′ 0
0 h′′

)
along X.

We now compute that

eiu =
∑
j

hij∂ju,
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and

(Hessu)(ei, ej) = (Hessu)
(∑

k

hik∂k,
∑
`

hj`∂`

)
=
∑
k,`

hikhj`(Hessu)(∂k, ∂`)

=
∑
k,`

hikhj` {∂k∂`u− (∇∂k
∂`)u}

=
∑
k,`

hikhj`

{
∂k∂`u−

∑
m

Γmk`∂mu
}

where Γ = {Γmk`} are the classical Christoffel symbols. Expressed briefly,
we have that

e · u = hDu and (Hessu)(e∗, e∗) = h(D2u)ht − Γ̃ ·Du

where Γ̃ ≡ hΓht. Thus our condition (9.7) can be rewritten in terms of the
coordinate jets as

(9.9)
(
u, hDu, h(D2u)ht − Γ̃ ·Du

)
∈ F.

This says precisely that our subequation F is jet equivalent to the constant
coefficient subequation F in these coordinates.

We claim that this is an equivalence mod X. For this we must establish
the conditions in (7.13). Note first that in this case g = h and h12 = 0
by (9.8). For the last condition we use the fact that X is totally geodesic.
This means precisely that

∇∂′
i
∂′j =

n∑
k=1

Γkij∂′k along X,

i.e., ∇∂′
i
∂′j has no normal components along X for all 1 6 i, j 6 n. This is

exactly the third condition in (7.13).
Theorem 9.2 now follows from Theorem 8.1. �

Theorem 9.2 can be extended to the case where the riemannian mani-
fold Z has a topological reduction of the structure group to a subgroup

G ⊂ ON .

Such a reduction consists of an open covering {Uα}α of Z and an orthonor-
mal tangent frame field eα = (eα1 , . . . , eαN ) given on each open set Uα with
the property that the change of framings

gαβ : Uα ∩ Uβ −→ G ⊂ ON
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take their values in G.
The local frame fields ea are called admissible. Note that if e on U is

an admissible frame field, one can add to the family of admissible framings,
any frame field of the form ge where g : U → G is a smooth map. We assume
that our G-structure has a maximal family of admissible frame fields.

Definition 9.3. — Suppose Z has a topological G-structure. A sub-
manifold X ⊂ Z is called G-adaptable if for every point z ∈ X there is
an admissible framing e on a neighborhood U of z such that on X ∩ U

(9.10) e1, . . . , en are tangent to X ∩ U
and en+1, . . . , eN are normal to X ∩ U.

Example 9.4. — Suppose G = Um ⊂ O2m. Having a Um-structure on
Z is equivalent to having an orthogonal almost complex structure J : TZ →
TZ, J2 ≡ −I on Z. A Um-adaptable submanifold X ⊂ Z is simply an
almost complex submanifold, i.e., having the property that J(TxX) = TxX

for all x ∈ X.

On a manifold with topological G-structure, we can enlarge the set of
universal subequations by replacing property (3) above with
(3)′ F is invariant under the natural restricted action of G on J2

N .
As above any such set F determines a subequation F on Z.

Theorem 9.5. — Let Z be a riemannian manifold with topological G-
structure, and F ⊂ J2(Z) a subequation canonically determined by a G-
invariant universal subequation F ⊂ J2

N satisfying (1), (2) and (3)′. Then
restriction holds for F to any totally geodesic G-adaptable submanifold
X ⊂ Z.

Proof. — The proof exactly follows the one given for Theorem 9.2. One
merely has to choose the local frame field e with property (9.6) to be an
admissible field (cf. (9.10)). Details are left to the interested reader. �

Note 9.6. — Every almost complex manifold (Z, J) admits many al-
most complex submanifolds of dimension one (pseudo-holomorphic curves)
by a classical result of Nijenhuis and Woolf [21]. In fact there exist pseudo-
holomorphic curves in every complex tangent direction at every point. It
is standard to define an upper semi-continuous function to be plurisub-
harmonic if its restriction to every such curve is subharmonic. Using Theo-
rem 8.1 above, the authors have proved in [10] that this standard definition
of plurisubharmonicity coincides with the viscosity definition coming from
an intrinsically defined subequation F (J) on Z. They also show in [10] that
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the standard plurisubharmonic functions are, in a precise sense, equivalent
to the plurisubharmonic distributions on (Z, J).

Theorem 9.2 asserts that every universal riemannian subequation sat-
isfies restriction to totally geodesic submanifolds. Of course if the sub-
manifold X is too small, this restriction is trivial, i.e., i∗F = J2(X).
One extreme example of this is the Laplace-Beltrami equation given by
F = {(r, p, A) : trA > 0} where all submanifolds (even hypersurfaces) are
too small. Nevertheless, there are also many subequations which have in-
teresting restrictions. One such is the classical F = {(r, p, A) : A > 0} cor-
responding to riemannian convex functions. This branch of Monge-Ampère
falls under the aegis of Geometric Restriction Theorem 6.6, but the other
branches are not covered by previous results. Recall the constant coefficient
case Example 2.5/5.2.

Example 9.7 (The Monge-Ampère equation). — Given A ∈ Sym2(RN ),
let λ1(A) 6 · · · 6 λN (A) denote as before the ordered eigenvalues of A.
Define for µ ∈ R

Λµ
q ≡ {(r, p, A) ∈ J2

N : λq(A) > µ}.

Let Λµq (Z) be the induced subequation on the riemannian manifold Z.
Using (5.2) one computes that for a submanifold i : X ⊂ Z

(9.11) i∗Λµq (Z) = Λµq (X).

This example extends directly to the inhomogeneous subequation

λq(A) > µ(x)

for a continuous function µ(x), by using the local affine jet equivalence
Φ(A) = A+ µ(x) · I to Λ0

q(Z). (See Note 7.11.)

Appendix A. Elementary examples where restriction fails

As noted in Examples 5.5 and 6.8 restriction may fail. Here are two more
elementary examples where restriction, and therefore also the restriction
hypothesis, fail. In these examples the restricted set i∗F is closed and hence
is a subequation.

Example A.1 (First Order). — Define F on R2 by p±yiqj > 0 (where i
and j are positive integers). Then for the x-axis, the restricted subequation
H ≡ i∗F is defined by p > 0.
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Case j > i. Restriction to {y = 0}, and hence the restriction hypothesis,
fails. Consider u(x, y) = −x + 1

α |y|
α with α > 0 small. Then p = −1, and

with the right choice of ± we have ±yiqj = |y|i+jα−j . Thus p ± yiqj =
−1 + |y|β > 0 with β < 0. This proves that u is F -subharmonic if |y| >
0 is small. At points (x, y) = (x, 0) there are no test functions. Thus u
is F -subharmonic. However, the restriction u

∣∣
X

= −x is not H ≡ i∗F -
subharmonic, since H is defined by p > 0.
Case j 6 i. The restriction hypothesis, and hence restriction, holds on
{y = 0}. Assume (4.5) and (4.6). Define pε ≡ p0 + A0(xε − x0) and qε ≡
1
ε (yε − y0) = 1

εyε. By (4.5) we know that pε ± yiεqjε > 0. By (4.6) we have
that pε → p0 and |yiεqjε| = 1

εj |yi+jε | 6 |
y2

ε

ε |
j → 0. This proves p0 > 0.

Example A.2 (Linear second-order and geometrically defined). — Let
Z ≡ R2 with coordinates z = (x, y) and set X = {y = 0}. Given a
sectionW (z) of G(1,R) we can writeW (z) ≡ span{cos θ(z)e1+sin θ(z)e2},
defining θ(z) mod π. Then

PW (z) ≡
(

cos2 θ(z) cos θ(z) sin θ(z)
cos θ(z) sin θ(z) sin2 θ(z)

)
.

The corresponding geometrically defined equation is linear:

Lu = tr
(
D2u

∣∣
W (z)

)
= 〈PW (z), D

2u〉.

Set sin2 θ(z) ≡ |y|α. Then

L = (1− |y|α)D2
xu+ 2|y|α/2(1− |y|α)1/2D2

x,yu+ |y|αD2
yu.

Consider the function

(A.1) u(x, y) ≡ −1
2 |x|

2 + 1
2− β |y|

2−β

with 0 < α < β < 2. At points y = 0 there are no test functions for u.
Otherwise D2

xu = −1, D2
x,yu = 0, and D2

yu = (1− β)|y|−β . Hence

Lu = −(1− |y|α) + 1− β
|y|β−α

.

Since α < β, u is L-subharmonic if |y| is small. However, the restriction
satisfies LXϕ = ϕ′′, and ϕ(x) ≡ u(x, 0) = − 1

2 |x|
2 is not convex. Thus

restriction does not hold for L even though L is linear and L is geometri-
cally defined by the closed subset G ≡ {W (z) : z ∈ R2} ⊂ G(1,R2). The
restriction hypothesis fails here. Comparing with Theorem 6.4, there is no
smooth neighborhood retract onto G; while comparing with Theorem 5.10,
the linear restriction hypothesis is satisfied, but the coefficients are not
smooth, only continuous.
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This counterexample in R2 can be extended to Rn × Rm with u still
defined by (A.1). For simplicity, first consider the following linear equation
even though it is not geometrically defined. The notation is conscripted
from (4.1)

Lϕ = trA+ |y|α trB > 0.
for a constant α > 0. Assume α < β < 2. Note that D2( 1

2−β |y|
2−β) =

|y|−β{I−βŷ◦ŷ} where ŷ = y/|y|. Hence tr{D2( 1
2−β |y|

2−β)} = (m−β)|y|−β .
For y 6= 0 we have Lu = −n+(m−β)|y|α−β > 0. Since α−β < 0, if |y| > 0
is sufficiently small, then we have Lu > 0. As in R2, u is L-subharmonic
for |y| small, as claimed.
The restricted subequation H on {y = 0} is just ∆xu > 0, which fails

in this case. Hence, restriction and therefore also the restriction hypothesis
fail in this case. We leave it to the reader to find a geometrically defined L
with u an L-subharmonic function.

Appendix B. Restriction of sets of quadratic forms
satisfying positivity

In this Appendix we provide the basic linear algebra material used in
our restriction theorems and their applications.

Restriction for geometrically determined subsets of Sym2(T ∗)

Assume that T is an inner product space. Let Sym2(T ∗) denote the
space of quadratic forms on T . Then the trace of A ∈ Sym2(T ∗) is well
defined, and induces an inner product 〈A,B〉 = trace(AB) on Sym2(T ∗).
Let G(p, T ) denote the grassmannian of p-planes in T . By identifying a
subspace a subspace V ⊂ T with orthogonal projection PV onto V we
can consider the grassmannian G(p, T ) to be a subset of Sym2(T ∗). Let
i∗A = A

∣∣
V

denote the restriction of a quadratic form A ∈ Sym2(T ∗) to V .
The V -trace of A ∈ Sym2(T ∗) is defined by

trV A = trace (i∗VA) = 〈PV , A〉.

Definition B.1. — Given a closed subset G of the grassmannian, the
subset FG ⊂ Sym2(T ∗) defined by

(B.1) A ∈ FG ⇐⇒ trV A > 0 ∀V ∈ G

is said to be geometrically determined by G.
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Note that FG is a closed convex cone with vertex at 0. Moreover, A ∈
IntFG ⇐⇒ for some ε > 0, trV A > ε for all V ∈ G. Hence, we have
FG = IntFG. Finally, FG contains no line unless G = ∅, in which case
FG = Sym2(T ∗).

Definition B.2. — Given a closed subset G ⊂ G(p, T ) and a subspace
W ⊂ T of dimension > p, the W -tangential part of G is defined to be

(B.2) G(W ) ≡ {V ∈ G : V ⊂W}

and we say that V ∈ G(W ) is tangential to W .

Theorem B.3. — Suppose that FG is geometrically determined by the
closed subset G ⊂ G(p, T ). Then for each subspace W ⊂ T the closure of
the restriction of FG to W is geometrically determined by the tangential
part of G. That is

(B.3) i∗WFG = FG(W ).

Proof. — It suffices to show that

(B.4) i∗W IntFG = IntFG(W )

since i∗WFG ⊂ FG(W ) and i∗W IntFG ⊂ IntFG(W ) are obvious. (The set
i∗W IntFG is always open, but i∗WFG is not necessarily closed — see Exam-
ple B.6).
Now assume a ∈ IntFG(W ). Then there exists ε > 0 such that trV a > ε

for all V ∈ G(W ). Choose A =
(
a 0
0 0

)
∈ Sym2(T ∗) where the blocking is

induced by the splitting T ≡W ⊕N with N = W⊥. Consider the following
open neighborhood of G(W ) in G

(B.5) N ≡
{
V ∈ G : trV A > ε

2
}
.

Next we use the fact that for all V ∈ G(p, T )

(B.6) 〈PV , PN 〉 > 0 with equality ⇐⇒ V ⊂W.

In particular,

(B.7) inf
V ∈G−N

〈PV , PN 〉 ≡ δ > 0.

Set

(B.8) inf
V ∈G−N

〈PV , A〉 = −M.

Then

(B.9) trV (A+ tPN ) > −M + tδ for V ∈ G−N
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while

(B.10) trV (A+ tPN ) > trV A > ε
2 for V ∈ N .

Thus if t >> 0 so that −M + tδ > 0, then A+ tPN ∈ IntFG, and of course
i∗W (A− tPN ) = i∗WA = a. �

Definition B.4. — The subspaceW is totally G-free if the tangential
part of G is empty (i.e., G(W ) = ∅) or equivalently FG(W ) = Sym2(W ∗).
We say that FG is unconstrained by W if i∗WFG = Sym2(W ∗).

Corollary B.5.

i∗WFG = Sym2(W ∗)

⇐⇒ i∗WFG = Sym2(W ∗) (i.e., FG is unconstrained by W )
⇐⇒ G(W ) = ∅ (i.e., W is totally G-free).

Proof. — Since G(W ) = ∅ ⇐⇒ FG(W ) = Sym2(W ∗), it follows from
(B.3) that i∗WFG = Sym2(W ∗) ⇐⇒ G(W ) = ∅. It remains to show
that the condition i∗WFG = Sym2(W ∗) implies that i∗WFG = Sym2(W ∗).
Since Int Sym2(W ∗) = Sym2(W ∗), if i∗WFG = Sym2(W ∗), then by (B.4)
i∗WFG = Sym2(W ∗). �

Example B.6 (i∗WFG is not closed). — Let V (s) denote the line through
(1, s, s5) ∈ R3, and G ≡ {V (s) : 0 6 s 6 1}. Projection onto the line V (s)
is given by

PV (s) ≡
1

1 + s2 + s10

 1 s s5

s s2 s6

s5 s6 s10

 .

The set FG consists of all A = ((aij)) ∈ Sym2(R3) such that

(B.11) a11 +s2a22 +s10a33 +2sa12 +2s5a13 +2s6a23 > 0 for all 0 6 s 6 1.

Let W ≡ R2 × {0}. Then G(W ) = {V (0)} where V (0) is the line through
e1. Thus FG(W ) consists of all

a ≡
(
a11 a12
a12 a22

)
with a11 > 0.

In particular,

a ≡
(

0 0
0 −1

)
∈ FG(W ).

However, a /∈ i∗WFG because

A ≡

 0 0 a13
0 −1 a23
a13 a23 a33


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cannot satisfy (B.11) for small s > 0.

Restriction for subsets of Sym2(T ∗) satisfying positivity

Let P ⊂ Sym2(T ∗) denote the subset of non-negative quadratic forms.
A subset F ⊂ Sym2(T ∗) is said to satisfy positivity (P) if

(B.12) F + P ⊂ F.

Of course each FG satisfies (P).

Lemma B.7. — If F ⊂ Sym2(T ∗) is a closed set satisfying positivity,
then
(a) F + IntP ⊂ IntF ,
(b) F = IntF ,
(c) IntF + P ⊂ IntF .

If, in addition, F is a cone with vertex at the origin, then
(d) F = Sym2(T ∗) ⇐⇒ ∃A ∈ F with A < 0.

Proof.
(a) Note that A+ IntP is an open subset of F for each A ∈ F .
(b) Pick P ∈ IntP, i.e., P > 0. Then by (a) we have that A ∈ F ⇒

A+ εP ∈ IntF for each ε > 0.
(c) Note that IntF + P is an open subset of F for each P ∈ P.
(d) Suppose F contains a negative definite A < 0. Then for each B ∈

Sym2(T ∗), if t >> 0 is large enough, P ≡ B − tA is positive. Hence,
B = tA+ P ∈ tF + P ⊂ F . �

Theorem B.8. — Suppose that F is a closed subset of Sym2(T ∗) which
is both a cone and satisfies (P). The following conditions on a proper sub-
space W ⊂ T are equivalent.
(1) (W is F -Morse) There exists A ∈ F with i∗WA < 0.
(2) (F is unconstrained by W ) i∗WF = Sym2(W ∗) or equivalently

F + ker i∗W = Sym2(T ∗).
(3) Given B ∈ ker i∗W , if B > 0 and rankB = codimW , then B ∈ IntF .
(3)′ (W has an F -strict complement) There exists B ∈ IntF with

i∗WB = 0.

Remark B.9. — If F is geometrically defined by G ⊂ G(p, T ), then
by Corollary B.5 these conditions are equivalent to the condition that W
contains no G-planes (W is G-free). This justifies the following terminology.
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Definition B.10. — A subspace W satisfying the conditions in Theo-
rem B.8 will be called totally F -free.

Proof. — Conditions (1) and (2) are equivalent by (d) above. Obviously
(3)⇒ (3)′ since B > 0 with i∗WB = 0 and rankB = codimW always exist.

Next we prove that (3)′ ⇒ (1). If B ∈ IntF , then A ≡ B − εP ∈ F with
P > 0 and ε > 0 small. If i∗WB = 0, then i∗WA = −εi∗WP < 0 since the
restriction of a positive definite quadratic form is also positive definite.
Finally we show that (1) ⇒ (3). Choose A ∈ F with i∗WA < 0. Suppose

that B satisfies the hypothesis of (3). Pick N transverse to W with T =
W ⊕N . Then in block form

A ≡
(
−a c

ct b

)
and B ≡

(
0 γ

γt β

)
where a = −i∗WA > 0 and 0 = i∗WB. Since B > 0, it is a standard fact that
γ = 0. Since rankB = dimN , we must have β > 0. Set

P ≡ 1
tB −A =

(
a −c
−ct 1

tβ − b

)
.

Since a, β > 0, one can show that P > 0 if t > 0 is sufficiently small. Hence,
B = tA+ tP ∈ F +IntP ⊂ IntF since F is a cone satisfying positivity. �
Using this algebra one can prove the following topological result which

is a vast generalization of a theorem of Andreotti-Frankel for Stein mani-
folds. Given a subequation F on a domain Ω we define the free dimension
dimfr(F ) of F to be the largest dimension of a tangent subspace W ⊂ TΩ
which is F -free. We say F is conical if each Fx is a cone with vertex at the
origin.

Theorem B.11. — Let F be a conical subequation on a domain Ω in
a manifold Z. If Ω admits a strictly F -subharmonic exhaustion function
(i.e., if Ω is strictly F -convex), then Ω has the homotopy-type of a CW-
complex of dimension 6 dimfr(F ).

Proof. — This follows from Morse theory and Theorem B.8 (1) above
applied to the Hessian of the exhaustion function at its critical points
(cf. [12]). �

Remark B.12. — Let C0 denote the polar of a convex cone C. If F ⊂
Sym2(T ∗) is a closed convex cone with vertex at the origin (not necessarily
geometrically defined), then for each subspace W ⊂ T

(B.13) F + ker i∗W = Sym2(T ∗) ⇐⇒ F 0 ∩ Sym2(W ∗) = {0},
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since the polar of an intersection is the sum of the polars, and ker i∗W and
Sym2(W ∗) are polars of each other. Thus

(B.14) F 0 ∩ Sym2(W ∗) = {0} ⇐⇒ W isF free.

This is useful in the convex cone cases which are not geometric. In the
geometric case F 0

G = ConvexCone(G) is the convex cone on G with vertex
at the origin. This proves that W being G-free can be characterized by
either of the following:

(B.15) G ∩ Sym2(W ∗) = ∅ ⇐⇒ ConvexCone(G) ∩ Sym2(W ) = {0}.

Appendix C. Extension results

Thus far we have not discussed the extension question:
Given a subequation F on Z and a submanifold i : X ⊂ Z, which i∗F -

subharmonic functions onX are (locally) the restrictions of F -subharmonic
functions on Z?
The extreme form of this question arises when i∗F = J2(X), and so every

function is i∗F -subharmonic. We address this question in two geometrically
interesting cases.
Suppose F ⊂ J2(Z) is a subequation each fibre of which is a cone with

vertex at the origin (F has the cone property). Recall the embedding
Sym2(T ∗Z) ⊂ J2(Z) as the 2-jets of functions with critical value zero,
and set F0 ≡ F ∩ Sym2(T ∗Z). In Appendix B we have defined what it
means for a subspace W ⊂ TzZ to be totally F0-free (see Definition B.10).

Definition C.1. — A submanifold X ⊂ Z is said to be totally F -free
if each tangent space TxX is totally F0-free.

Remark C.2. — In the geometric case considered in Section 8, a sub-
manifold is FG-free if it has no tangent G planes.

In Theorems C.3 and C.6 we assume that F satisfies the mild regularity
condition Int(Fx)0 ⊂ IntF for each x ∈ X.

Theorem C.3. — Suppose F is a subequation on Z with the cone prop-
erty and that X ⊂ Z is a closed, totally F -free submanifold. Then every
u ∈ C2(X) is the restriction of a strictly F -subharmonic function ũ on a
neighborhood of X in Z.

Now consider a geometric subequation FG on a riemannian n-manifold
Z determined by G ⊂ G(p, TZ) as in Section 6.
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Definition C.4. — A submanifold X ⊂ Z is strictly G-convex if at
each point x ∈ X there is a unit normal vector n and κ > 0 such that

(C.1) trW {〈B,n〉} > κ for all W ∈ G(TxX)

where B is the second fundamental form of X (cf. §8). (This holds if
G(TxX) = ∅.)

Theorem C.5. — Suppose X ⊂ Z is a strictly G-convex subman-
ifold. Then every u ∈ C2(X) is locally the restriction of a strictly G-
plurisubharmonic function on Z.

The proof of Theorem C.3 is based on the following result which has
other interesting applications.

Theorem C.6. — Suppose that X is a closed submanifold of Z and
that v ∈ C2(Z) satisfies

X = {v = 0}, v > 0, and rank Hessx v = codimX,∀x ∈ X.

ThenX is totally F -free if and only if the function v is strictly F -subharmo-
nic at each point of X (and hence in a neighborhood of X).

Proof. — Fix x ∈ X and set B ≡ Hessx v. Then we have

B > 0, B
∣∣
TxX

= 0 and rankB = codimX.

If X is totally free, then by Property (3) in Theorem B.8 we have B ∈
Int(Fx)0. Now since by assumption we have Int(Fx)0 ⊂ IntF , we con-
clude that v is strictly F -subharmonic at x. Conversely, if v is strictly F -
subharmonic at x, then B ∈ IntFx∩Sym2(T ∗xZ) and B

∣∣
TxX

= 0. Thus con-
dition (3)′ of Theorem B.8 is satisfied, proving that TxX is (Fx)0-free. �
Proof of Theorem C.3. — Pick any C2-extension of u to Z and also

denote it by u. Let v be a function on Z with the properties assumed in
Theorem C.6. We may write v = ρ2 by taking ρ(z) = dist(z,X) near X for
some riemannian metric on Z. Let β : Z → R be a smooth extension of a
given positive function on X, and set ũ ≡ u+ βρ2. Then we compute that
along the submanifold X:

dũ = du and D2ũ = D2u+ βD2(ρ2).

That is, along the submanifold X:

J(ũ) = J(u) + βJ(ρ2).

At each point x ∈ X we have Jx(ρ2) ∈ Int(Fx)0 ⊂ IntF . Therefore by
choosing the positive function β to be sufficiently large at each point x ∈ X,
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we will have J(ũ) ∈ IntF along X, and therefore on a neighborhood of X
in Z. �

Proof of Theorem C.5. — Fix x ∈ X. It is straightforward to see that
by strict G-convexity, there is a smooth unit normal vector field n defined
in a compact neighborhood V of x on X and a κ > 0 so that (C.1) holds
at all points of V .
For simplicity we rename V to be X. For clarity we restrict to the case

where Z is euclidean space Rn Consider the tubular neighborhood

U ≡ {x+ ν ∈ Rn : x ∈ X, ν ∈ Bε(0), ν ⊥ TxX}

for some small ε > 0, and define a function f on U by

f(x+ ν) = 〈n(x), ν〉+ 1
2c|ν|

2

where c > 0 will be determined later. Set ρ(x + ν) = 〈n(x), ν〉. Note that
ρ ≡ 0 on X and therefore

HessX ρ ≡ 0.
From formula (6.4) we see that

(C.2) HessRn ρ
∣∣
TX

= 〈B,n〉 on X.

One easily sees that the Hessian of 1
2 |ν|

2 = dist(•, X)2 is

(C.3) 1
2 HessRn |ν|2 = PN

≡ orthogonal projection on to the normal space to X

It follows that
HessRn f

∣∣
TX

= 〈B,n〉.
Hence, by (C.1) we have

trW {HessRn f} > κ for all W ∈ G(TX),

and therefore there exists a neighborhood N of G(TX) ⊂ G
∣∣
X

so that

trW {HessRn f} > κ/2 for all W ∈ N .

Now for a general W ∈ G
∣∣
X
,

trW {HessRn f} = trW {HessRn ρ}+ c〈PW , PN 〉

and by compactness there exists a > 0 so that

〈PW , PN 〉 > a for all W ∈ G
∣∣
X
−N .

Let
b = inf

W∈G
∣∣

X

trW {HessRn ρ} .
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Then for c > 2|b|/a we have

trW {HessRn f} > |b| for all W ∈ G
∣∣
X
.

It follows that

trW {HessRn f} > |b| for all W ∈ G
∣∣
Nb(X)

where Nb(X) is a neighborhood of X.
Now suppose we are given u ∈ C2(X) and x ∈ X. Pick any C2-extension

of u to a neighborhood of X and denote it also by u. On a small compact
neighborhood V of x in X apply the construction above to produce the
function f on a neighborhood of V . Then for λ sufficiently large, the func-
tion ũ ≡ u+ λf will be strictly G-psh on a neighborhood of V and satisfy
ũ
∣∣
V

= u.
For the case of a general riemannian manifold Z, we use the exponential

map to identify the normal bundle of X with a tubular neighborhood of X
in Z, and do the analogous construction. �
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