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INVERTIBLE POLYNOMIAL MAPPINGS VIA
NEWTON NON-DEGENERACY

by Ying CHEN, Luis Renato G. DIAS,
Kiyoshi TAKEUCHI & Mihai TIBĂR (*)

Abstract. — We prove a sufficient condition for the Jacobian problem in
the setting of real, complex and mixed polynomial mappings. This follows from
the study of the bifurcation locus of a mapping subject to a new Newton non-
degeneracy condition.
Résumé. — On démontre une condition suffisante pour le problème Jacobien

dans le contexte des applications polynomiales réelles, complexes ou mixtes. Ceci
résulte de l’étude de l’ensemble de bifurcation d’une application soumise à une
nouvelle condition de non-dégénérescence par rapport aux polyèdres de Newton à
l’infini.

1. Introduction

Unlike the local setting, the critical locus is not the only obstruction to
produce diffeomorphisms in the global setting. A well-known example by
Pinchuk [27] yields a polynomial mapping R2 → R2 with no singularities
but which is not invertible, thus providing a counter-example to the strong
Jacobian Conjecture over the reals. A natural question, also posed by Bivià-
Ausina for real mappings in [2], would then be: given a polynomial mapping
G : An → An with SingG = ∅, where A = R or C, under what general
enough conditions G becomes a diffeomorphism. For polynomial mappings
over C, being a diffeomorphism (actually “injective” is enough by [1]) en-
sures that G−1 is a polynomial map too (see [13, Proposition 17.9.6] and
[7]), but this fact is no more true over the reals.
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Newton polyhedron, regularity at infinity.
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We obtain here a new sufficient condition for the invertibility of G as a
by-product of the study of the bifurcation locus of a polynomial mapping
F : An → Ak, n > k. This is the minimal set of points B(F ) ⊂ Ak such
that the restriction F| : F−1(Ak \ B(F )) → Ak \ B(F ) is a locally trivial
fibration. One has no complete knowledge over this set unless k = 1 and
n = 2, see [30], [14] [9], [31], [33]. In more variables, one may estimate
B(F ) by some “reasonably good” superset B ⊃ B(F ) by using criteria of
regularity at infinity. This was first done in case of complex polynomial
functions f : Cn → C with conditions like tameness [3], Malgrange regu-
larity [26], ρ-regularity [21], [31], W-equisingularity [34], [29] etc. Each of
these conditions holds over R too and exhibits, in both settings, a finite
subset of “non-regular values” containing the bifurcation set B(F ) (see
e.g. [31], [32]). For k > 1, Rabier [28] considered an asymptotic regularity
derived from a Palais-Smale type condition which extends the Malgrange
regularity. This allows him to define a set of “asymptotically critical val-
ues” K∞(F ) and to prove that B(F ) ⊂ F (SingF ) ∪ K∞(F ). In order to
evaluate K∞(F ), we introduce here a new Newton non-degeneracy condi-
tion at infinity, see Definition 3.4. Besides real and complex polynomial
mappings, we consider mixed mappings, which are mappings Cn → Ck in
variables z and z̄. We first obtain the following bound of the asymptotical
critical locus of F = (f1, . . . , fk), in terms of two subsets of Ak depending
on the Newton polyhedra of the functions fi, denoted by N(F ) and A(F )
(see Definitions 3.5 and 3.8), the first of which is algebraic and the second,
semi-algebraic:

Theorem 1.1. — Let F : An → Ak, n > k, be a real, complex or mixed
polynomial mapping depending effectively on all the variables, such that
F (0) = 0. If F is non-degenerate at infinity then:

K∞(F ) ⊂ N(F ) ∪A(F ).

Using the inclusions B(F ) ⊂ F (SingF ) ∪ S(F ) and S(F ) ⊂ K∞(F )
proved in [8] and discussed here in § 2 and Proposition 2.4, we immediately
get the following bound for the bifurcation locus:

Corollary 1.2. — B(F ) ⊂ F (SingF ) ∪N(F ) ∪A(F ).

By Proposition 2.4, our Theorem 1.1 extends to mappings (real, complex
or mixed) the result for complex polynomial functions proved by Némethi-
Zaharia [20] in the complex setting and more recently by Chen-Tibăr [6,
Theorem 1.1(a)] in the mixed setting. Moreover, when applied to mixed

ANNALES DE L’INSTITUT FOURIER



INVERTIBLE POLYNOMIAL MAPPINGS 1809

mappings F : Cn → Ck, our Theorem 1.1 yields a better result than for
the same underlying real mapping F : R2n → R2k. This is not only trivially
visible in the first term of the union N(F ) ⊂ Ak \ (A∗)k since A = R is
replaced by A = C, but also in the second term since the involved Newton
polyhedra turn out to be different. Moreover, the statement in the mixed
setting cannot be deduced from the one in the real setting; its proofs is
similar but needs specific notations and preliminaries. We give in § 4 the
proof of Theorem 1.1 and show the following significant consequence (cf.
Definitions 3.1 and 3.4):

Corollary 1.3. — Suppose that F is non-degenerate at infinity and
that fi is convenient, for any i = 1, . . . , k. Then K∞(F ) = ∅.

This provides an extension to mappings (which can be real, complex or
mixed) of Broughton’s classical result [3, Proposition 3.4] which tells that
if a complex polynomial function f : Cn → C is convenient and Newton
non-degenerate then F is “tame”, thus K∞(F ) = ∅. The proof of our
Corollary 1.3 will be given in § 4.
With all these preparations, we may state and prove the announced re-

sult:

Theorem 1.4. — Let F : An → An be a C1 real semi-algebraic map-
ping such that SingF = ∅. IfK∞(F ) = ∅ then F is a global diffeomorphism.
In particular, if F = (f1, . . . , fn) is a real, or a mixed, or a complex

polynomial mapping with SingF = ∅, non-degenerate at infinity, and if fi
is convenient for all i = 1, . . . , n, then F is a global diffeomorphism.

Proof. — Let JF denote the set of points at which F is not proper (see
Definition 2.2 and [15, Definition 3.3]). By [17, Proposition 3.1], one has
K∞(F ) = JF . Thus if K∞(F ) = ∅ then F is proper. It is moreover a
submersion since SingF = ∅ by hypothesis. A proper submersion is an open
and closed mapping, a general topological fact. It follows that ImF = An,
therefore F is a covering and it must be one-to-one since its image An is
simply connected. Our first assertion follows. Remark that the final part of
this proof is actually Hadamard’s theorem, see e.g. [10, p. 240]. Our second
assertion then follows by Corollary 1.3. �

One of the new issues of our paper is the non-degeneracy condition at
infinity which appears to be a generic condition (Definition 3.4). This ex-
tends to mappings the definitions of “Newton non-degeneracy at infinity”
for functions, both in the complex setting [18], [3], [4], [20] and in the more
recently developed mixed setting [6]. Moreover, this works over the reals
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too. Our Definition 3.4 is particularly designed to treat the case of non-
convenient polynomial mappings (cf Definition 3.1) since bifurcation values
at infinity appear only in this context, see Corollary 1.3. In the real setting,
Bivià-Ausina considers in [2] a different Newton non-degeneracy condition
for real polynomial mappings F : Rn → Rk and uses it in case each com-
ponent fi is convenient. He proves a result like the second statement of our
Theorem 1.4 in case of a real polynomial mapping F : Rn → Rn. His proof
aims to obtain the properness of F , necessary for the bijectivity of F , via
an interpretation of his non-degeneracy condition in terms of Łojasiewicz
exponents. The author observes in [2, p. 746] that the techniques used in
his paper work only for real polynomial mappings. We show in § 5 that
in the real setting and for n = k, the two definitions are equivalent. How-
ever, Proposition 5.2 and Example 5.3 tell that, whenever n > k and fi is
convenient for every i, our definition is strictly more general than the one
considered in [2]. Our definition of non-degeneracy for mappings is new es-
pecially for mixed and complex mappings and in general for non-convenient
mappings in all settings. The mixed setting is particularly interesting upon
the real one by the fact that a mixed mapping may be convenient without
the underlying real components to be convenient, whereas if all the real
components are convenient then the mixed functions must be also conve-
nient (see Example 5.4).

2. Asymptotic critical values

Let F = (f1, . . . , fk) : An → Ak, n > k, be a C1 real semi-algebraic
mapping with fi 6≡ const., ∀i = 1, . . . , k. The Milnor set of F , denoted by
M(F ), is the critical locus of the mapping (F, ρ), where ρ : An → R>0
denotes the Euclidean distance function. From its definition, it follows that
M(F ) is a closed semi-algebraic subset of An and that, in the case n = k,
M(F ) coincides with the whole An.

Definition 2.1. — Let F : An → Ak be a C1 non-constant real semi-
algebraic mapping. The set of asymptotic non ρ-regular values of F is
defined as

S(F ) :=
{

c∈Ak | ∃ {xl}l∈N ⊂M(F ), lim
l→∞

‖xl ‖=∞ and lim
l→∞

F (xl) = c
}
.

Definition 2.2 ([15], Definition 3.3). — Let F : An → Ak be a contin-
uous mapping. We say that F is proper at a point c ∈ Ak if there exists an
open neighbourhood U of c such that the restriction F|F−1(U) : F−1(U)→

ANNALES DE L’INSTITUT FOURIER



INVERTIBLE POLYNOMIAL MAPPINGS 1811

U is a proper mapping. We denote by JF the set of points at which F is
not proper.

One also has the set of generalised critical values K(F ) := F (SingF ) ∪
K∞(F ), where:

Definition 2.3 ([28], p. 670, [17], p. 68). — The set of asymptotic
critical values of a real semi-algebraic mapping F : An → Ak is defined as:

K∞(F ) := {c ∈ Ak | ∃{xl}l∈N ⊂ An, lim
l→∞

‖xl‖ =∞,

lim
l→∞

F (xl) = c and lim
l→∞

(1 + ‖xl‖)ν(dF (xl)) = 0},

where ν(B) := inf‖ϕ‖=1 ‖B∗(ϕ)‖, for B ∈ L(An,Ak).

In the context of semi-algebraic F : Rn → Rp, Kurdyka, Orro and Simon
showed in [17] that K∞(F ) is a semi-algebraic set of dimension at most
k−1. Gaffney [12] defined a generalised Malgrange condition in the setting
of complex polynomial mappings Cn → Ck and proved that this condition
yields a set AG(F ) of non-regular values such that B(F ) ⊂ F (SingF ) ∪
AG(F ). Then Jelonek [16] showed that the asymptotic conditions employed
in [17] and in [12] are equivalent, i.e., that K∞(F ) = AG(F ).
More recently, [8] proved, in the setting of semi-algebraic mappings, the

inclusion B(F ) ⊂ F (SingF ) ∪ S(F ) and that S(F ) and F (SingF ) ∪ S(F )
are closed semi-algebraic sets of dimension 6 k − 1 (more precisely, [8,
Theorem 5.7] in the case n > k and [17, Theorem 3.1 and Proposition 3.1]
in the case n = k).

From the above definitions we get the inclusions S(F )⊂JF andK∞(F ) ⊂
JF . In the case n = k one has JF = K∞(F ) by [17, Proposition 3.1], hence
S(F ) = JF = K∞(F ).
For n > k, the inclusion S(F ) ⊂ K∞(F ) was shown in [6, Proposi-

tion 2.2] for a mixed polynomial, and in the more general real setting in [8,
Corollary 5.8]. Here we offer a new and direct proof of this inclusion.

Proposition 2.4. — Let F = (f1, . . . , fk) : An → Ak be a C1 non-
constant real semi-algebraic mapping with n > k. Then S(F ) ⊆ K∞(F ).

Proof. — We give the proof over R. Then the statement over C can be
obtained from the one over R by using the identification Cn with R2n.

In the case n = k, as explained just above, we have equality. We concen-
trate in the following to the case n > k.
Let c = (c1, . . . , ck) ∈ S(F ). Since M(F ) is semi-algebraic, one can use

the Curve Selection Lemma at infinity to find an analytic path

TOME 64 (2014), FASCICULE 5
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φ = (φ1, . . . , φn) :]0, ε[→ M(F ) ⊂ Rn such that limt→0 ‖φ(t)‖ = ∞ and
limt→0 F (φ(t)) = c.
Since φ(t) ∈ M(F ) if and only if rank dF (φ(t)) < k + 1, there exist

curves λ(t), b1(t), . . . , bk(t) such that (λ(t), b1(t), . . . , bk(t)) 6= (0, . . . , 0),∀t,
and one has the equality:

(2.1) λ(t)(φ1(t), . . . , φn(t)) = b1(t)∂f1

∂x
(φ(t)) + . . .+ bk(t)∂fk

∂x
(φ(t)),

where ∂fi
∂x (φ(t)) =

(
∂fi
∂x1

(φ(t)), . . . , ∂fi∂xn
(φ(t))

)
, for i = 1, . . . , k.

Consider b(t) = (b1(t), . . . , bk(t)). From the equality (2.1) and by the
statements that (λ(t), b1(t), . . . , bk(t)) 6= (0, . . . , 0), ∀t, and limt→0 ‖φ(t)‖ =
∞, we have b(t) 6= 0,∀t and consequently, from (2.1), we obtain:

(2.2) λ(t)
‖b(t)‖ (φ1(t), . . . , φn(t)) = b1(t)

‖b(t)‖
∂f1

∂x
(φ(t))+ . . .+ bk(t)

‖b(t)‖
∂fk
∂x

(φ(t));

and we will denote λ0(t) := λ(t)
‖b(t)‖ and a(t) := b(t)

‖b(t)‖ . So, ‖a(t)‖ = 1 and
one obtains the following equalities:
(2.3)

k∑
i=1

ai(t)
d
dtfi(φ(t)) =

〈
k∑
i=1

ai(t)
∂fi
∂x

(φ(t)), φ′(t)
〉

= 1
2λ0(t) d

dt‖φ(t)‖2,

where the later follows from (2.2), i.e., from the equality
∑k
i=1 ai(t)

∂fi
∂x (φ(t))

= λ0(t)φ(t).
On the other hand, since limt→0 fi(φ(t))=ci, it follows that ordt( d

dtfi(φ(t)))
> 0, i = 1, . . . , k. This and the equality (2.3) imply:

(2.4) 0 6 ordt
(
λ0(t) d

dt‖φ(t)‖2
)
< ordt(λ0(t)‖φ(t)‖2).

Now, from (2.2) one obtains:

(2.5) ordt

(
‖φ(t)‖‖a1(t)∂f1

∂x
(φ(t)) + . . .+ ak(t)∂fk

∂x
(φ(t))‖

)
= ordt

(
|λ0(t)|‖φ(t)‖2

)
,

which is positive by (2.4). This implies:

lim
t→0
‖φ(t)‖‖a1(t)∂f1

∂x
(φ(t)) + . . .+ ak(t)∂fk

∂x
(φ(t))‖ = 0,

which, in turn, implies limt→0 ‖φ(t)‖ν(dF (φ(t))) = 0. This shows that c ∈
K∞(F ). �
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3. Newton polyhedra and the non-degeneracy at infinity

Let f : An → A be a non-constant polynomial function, A = R or C. We
write:

f(x) =
∑
ν

cνxν ,

where ν = (ν1, · · · , νn) ∈ Nn and xν = xν1
1 · · ·xνnn . In the mixed case, we

write:
f(z, z̄) =

∑
ν,µ

cν,µzν z̄µ,

where ν = (ν1, · · · , νn), µ = (µ1, · · · , µn) ∈ Nn, zν = zν1
1 · · · zνnn and z̄µ

= z̄µ1
1 · · · z̄µnn .

Mixed polynomials is a much larger class than complex polynomials and
have been introduced by Oka, who studied several aspects of their local
topology in [24], [25] and some other more recent articles. In [6] we have
used the mixed Newton polyhedron at infinity of a polynomial function.

Definition 3.1. — Let f : An → A be a non-constant polynomial
function (resp. mixed function) such that f(0) = 0. We call supp (f) =
{ν ∈ Nn | cν 6= 0} (resp. supp (f) = {ν + µ ∈ Nn | cν,µ 6= 0}) the support
of f . We say that f is convenient if the intersection of supp (f) with each
coordinate axis is non-empty. We denote by supp(f) the convex hull of
the set supp(f). The Newton polyhedron of f , denoted by Γ0(f), is the
convex hull of the set {0} ∪ supp(f). The Newton boundary at infinity of
f , denoted by Γ+(f), is the union of the faces of the polyhedron Γ0(f)
which do not contain the origin. By “face” we mean face of any dimension.
Let ∆ be such a face of supp(f). The restriction of f to ∆ ∩ supp(f),
denoted by f∆, is defined as follows f∆(x) :=

∑
ν∈∆∩supp(f) cνxν (resp.

f∆(z, z̄) :=
∑
ν+µ∈∆∩supp(f) cν,µzνzµ).

Let us consider in the following a real, mixed or complex mapping F =
(f1, . . . , fk) : An → Ak, n > k with F (0) = 0.

Definition 3.2. — For some vector p = (p1, . . . , pn) ∈ Zn with p :=
min

16i6n
pi < 0, let lp(v) :=

∑n
i=1 pivi be the linear form defined by p. Let then

∆j
p be the maximal face of Γ0(fj) (maximal with respect to the inclusion

of faces) where lp(v) takes its minimal value on Γ0(fj). We consider the
following equivalence relation on the set of vectors p as above:

p′ ∼ p⇐⇒ ∆j
p′ = ∆j

p, for all 1 6 j 6 k.

TOME 64 (2014), FASCICULE 5
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The equivalent classes yield a partition of Rn \Rn+ into finitely many lo-
cally closed (and not necessarily convex) cones. We may however subdivide
each equivalence class into a finite number of convex polyhedral cones.
Let C(F ) denote the finite set of cones obtained in this way. We call it

the dual subdivision associated to F .

It follows from the above definition that, for any j, the face ∆j
p of Γ0(fj)

is independent of the defining vector p in its equivalence class, thus we
may use the notations ∆j

σ for σ ∈ C(F ), instead of ∆j
p for some p ∈ σ. The

following sets are therefore well defined:

Iσ = {1 6 j 6 k | 0 6∈ ∆j
σ}, Jσ = {1 6 j 6 k | ∆j

σ = {0}}.

Remark 3.3. — Let djp ∈ Z denote the minimum value of the restriction
of lp to supp(f). We have the following relations which follow directly from
the definitions:

a) j ∈ Iσ ⇐⇒ djp < 0 for any p ∈ σ ⇐⇒ ∆j
σ is a face of Γ+(fj).

b) j ∈ Jσ ⇐⇒ Γ0(fj) \ {0} is included into the positive half-space
defined by the hyperplane {lp = 0} in Rn with normal vector p, for
any p ∈ σ.

The following definition of non-degeneracy is inspired from Oka’s work
[23] on complex local complete intersections and from the definition used
by Matsui-Takeuchi [19] and Esterov-Takeuchi [11] in the global setting of
complex polynomials. It was proved in [23] that, in the complex context,
this is a generic condition.

Definition 3.4. — We say that the polynomial mapping F=(f1,...,fk):
An −→ Ak is non-degenerate at infinity if, for any σ ∈ C(F ) such that
Iσ 6= ∅ and Jσ = ∅, the subvariety:

(3.1) Gσ = {x ∈ (A∗)n | f∆j
σ
(x) = 0 for any j ∈ Iσ}

of (A∗)n is a non-degenerate complete intersection (i.e., Sing(f∆j
σ
)j∈Iσ ∩

Gσ = ∅), where f∆j
σ
is a short notation for the restriction of fj to ∆j

σ.

Definition 3.5. — Let C(F )ex := {σ ∈ C(F ) | Jσ 6= ∅} be called the set
of exceptional cones. Let Nσ = {(z1, . . . , zk) ∈ Ak | zj = 0 for any j ∈ Jσ}.
We then define the following algebraic subset of Ak of A-codimension > 1:

N(F ) := ∪σ∈C(F )ex Nσ.

Remark 3.6. — The above definition implies that we have the inclusion
N(F ) ⊂ Ak \ (A∗)k. Whenever k > 2, one can characterise the situations
when this inclusion is strict, as follows. Let Ci denote the set of hyperplanes

ANNALES DE L’INSTITUT FOURIER



INVERTIBLE POLYNOMIAL MAPPINGS 1815

H ⊂ Rn through the origin such that H ∩ Γ0(fi) = {0}. Then: N(F ) (
Ak \ (A∗)k if and only if there exists j ∈ {1, . . . , k} such that Cj ⊂ ∪i6=jCi.
Indeed, the condition Cj ⊂ ∪i 6=jCi is equivalent to the fact that there is
no σ ∈ C(F ) such that Jσ = {j}.

Remark 3.7. — From the definition of N(F ) we immediately get the
equivalence: N(F ) = ∅ ⇐⇒ for any i ∈ {1, . . . , k}, fi is convenient.
If all the cones R+Γ0(fi) coincide but are different from (R>0)n, then

N(F ) = {0}. In particular, in case k = 1 we get N(f) = {0} for any
non-convenient polynomial f . Let us remark that the set {0} appears as a
component in the union of sets which occur as bound for the bifurcation
set of a polynomial map B(f) in the formula by Némethi-Zaharia [20] and
also in the one by Chen-Tibăr [6].

Consider now cones σ ∈ C(F ) \ C(F )ex and let Icσ := {1, 2, . . . , k} \ Iσ.

Definition 3.8. — Let C(F )aty := {σ ∈ C(F ) \ C(F )ex | Icσ 6= ∅} be
called the set of atypical cones. For some ordered set J := {j1, . . . , jr} ⊂
{1, ..., k}, let πJ :Ak→A|J| denote the projection (x1,..., xk) 7→ (xj1 ,..., xjr ).
We consider the following restriction of F :

Fσ :=
(
f∆j

σ

)
j∈Icσ

: Gσ −→ A|I
c
σ|,

its discriminant set DiscFσ⊂A|Icσ| and its inverse image Aσ :=π−1
Icσ

(DiscFσ)
⊂ Ak. We then define the following semi-algebraic subset of Ak, of A-
codimension > 1:

A(F ) := ∪σ∈C(F )atyAσ.

Remark 3.9. — In case k = 1, F = f , one has the notion of “bad faces”
of supp f in [20] and [6]. Let us then remark that the “bad faces” are among
the faces ∆σ ∩ supp f for σ ∈ C(f)aty, and that the σ ∈ C(F )aty such that
∆σ ∩ supp f is not a “bad face” yields Aσ = ∅.

Definition 3.10. — We say that F depends effectively on all the vari-
ables, if for every variable zi there exists some j(i) ∈ {1, . . . , k} such that
fj(i) depends effectively on zi. This condition is natural since if it is not
satisfied then our polynomial map depends on less than n variables.

4. Proof of Theorem 1.1 and some consequences

For I ⊂ {1, . . . , n}, we define AI := {z = (z1, . . . , zn) | zi = 0, i /∈ I},
(A∗)I := {z = (z1, . . . , zn) | zi = 0⇐⇒ i /∈ I} and F I := F|AI , the restric-
tion of F on AI .

TOME 64 (2014), FASCICULE 5
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The proof will be given in the mixed setting only, since the proof in
the real setting follows faithfully the same pattern and only needs adapted
notations.

Let c = (c1, . . . , ck) ∈ K∞(F )\N(F ). We may apply the Curve Selection
Lemma at infinity (see [20] and [6]), namely there exists an analytic path
z(t) = (z1(t), . . . , zn(t)) defined on a small enough interval ]0, ε[, such that
limt→0 ‖z(t)‖ =∞, limt→0 F (z(t), z(t)) = c and

(4.1) lim
t→0
‖z(t)‖‖ν(dF (z(t)))‖ = 0.

We have F : R2n → R2k where zj = xj + iyj , fl = gl + ihl. By the proof
of [6, Lemma 2.1] one has:

(ai + ibi)
∂f̄l
∂zj

+ (ai − ibi)
∂fl
∂zj

= ai
∂gl
∂xj

+ bi
∂hl
∂xj

+ i(ai
∂gl
∂yj

+ bi
∂hl
∂yj

),

which shows that: ν(dF (z)) = inf ‖
∑k
i=1(µidfi(z, z) + µidfi(z, z))‖, for

µi ∈ C with
∑k
i=1 |µi|

2 = 1. Therefore (4.1) yields, for any i ∈ {1, . . . , n}:

(4.2) lim
t→0
‖zi(t)‖‖µ1(t)∂f1

∂zi
(z(t), z(t)) + µ1(t)∂f1

∂zi
(z(t), z(t))

+ · · ·+ µk(t)∂fk
∂zi

(z(t), z(t))‖ = 0,

where µj(t) ∈ C and
∑k
j=1 |µj(t)|

2 = 1, since the left hand side of (4.2) is
less than or equal to ‖z(t)‖‖ν(dF (z(t)))‖. Let L={l∈{1, . . . , n}|zl(t) 66≡ 0}.
Observe that L 6= ∅ since lim

t→0
‖z(t)‖ =∞, and write:

(4.3) zl(t) = zlt
pl + h.o.t., where zl ∈ C∗, pl ∈ Z, ∀l ∈ L.

Consider the expansion of F (z(t), z(t)) for all i = 1, . . . , k, we have either:

fi(z(t), z(t)) ≡ ci
or

(4.4) fi(z(t), z(t)) = ci + h.o.t..

One may assume (eventually after a change of coordinates) that L =
{1, . . . ,m} and p = p1 6 p2 6 · · · 6 pm. Notice that, since limt→0 ‖z(t)‖ =
∞, one has p = mini∈L{pi} < 0, which was an assumed condition in the def-
inition of the set C(F ) in the preceding section. Let z0 :=(z1,..., zm, 0,..., 0)∈
(C∗)L and consider the linear function lp(v) =

∑m
i=1 pivi +

∑n
j=m+1 gvj ,

where p := (p1, . . . , pm, g, . . . , g) ∈ Zn with g ∈ N big enough. Let ∆iL
p

be the maximal face of supp(fLi ) where lp restricted to supp(fLi ) takes its
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minimal value, which we denote by diLp . We observe that, by definition of
the vector p and by definition of fLi , one has ∆iL

p = ∆i
p, diLp = dip, and con-

sequently fLi∆iL
p

= fi∆i
p
(in fact, for any (v1, . . . , vn) ∈ supp(fi) \ supp(f L

i ),
the value of

∑m
i=1 pivi+g

∑n
i=m+1 vi is greater than diLp , ∀i = 1, . . . , k). So

we may denote ∆iL
p (resp. diLp ) only by ∆i

p (resp. dip).
We have:

(4.5) fi(z(t), z(t)) = fLi (z(t), z(t)) = fL∆i
p
(z0, z0)td

i
p + h.o.t.

Since limt→0 F (z(t), z(t)) = c ∈ Ck \ N(F ), one has dip 6 0 for all i =
1, . . . , k. We write:

(4.6) µi(t) = µit
qi + h.o.t., where µi ∈ C∗ and qi > 0.

If µi ≡ 0, we put qi = ∞ in (4.6). Let I =
{
i ∈ {1, . . . , k} | qi + dip =

min
16i6k

(qi + dip)
}
. As

∑k
i=1 ‖ µi(t) ‖2= 1, we have min

16i6k
qi = 0. Hence I 6= ∅

and µi(t) 66≡ 0 for i ∈ I. We therefore conclude qi + dip 6 0, ∀i ∈ I. Then
(4.2) yields, for any l ∈ L:

(4.7)
∑
i∈I

(
µizl

∂fL∆i
p

∂zl
(z0, z0) + µizl

∂fL∆i
p

∂zl

)
(z0, z0)tqi+d

i
p + h.o.t.→ 0.

Comparing the orders of the two sides in the above formula, we obtain,
for any l ∈ L:

(4.8)
∑
i∈I

(
µi
∂fL∆i

p

∂zl
(z0, z0) + µi

∂fL∆i
p

∂zl
(z0, z0)

)
= 0.

Let z1 := (z1, . . . , zm, 1, . . . , 1). By (4.8), by the definitions of the vectors
z0 and z1, and by the equality fL∆i

p
= f∆i

p
explained in the paragraph before

equation (4.5), one concludes that z1 ∈ SingF∆p ∩ (C∗)n. Notice that we
have the equivalence: djp < 0 ⇔ j ∈ Iσ for σ 3 p. By (4.4) and (4.5), and
since djp < 0, we must have f∆j

p
(z1, z1) = 0. Therefore z1 belongs to the set

Sing(f∆j
p
)kj=1∩{z ∈ (C∗)n | f∆j

p
(z, z) = 0,∀j ∈ Iσ} and notice that this set

is equal to SingFσ defined in the preceding section, by the non-degeneracy
Definition 3.4 and since Jσ = ∅. If Icσ = ∅ then SingFσ = ∅ by the same
non-degeneracy condition, and if Icσ 6= ∅ then DiscFσ contributes to the set
A(F ) of Definition 3.8. Indeed, whenever Jσ = ∅, we have the equivalence
i ∈ Icσ ⇔ dip = 0 for σ 3 p, and therefore ci = f∆i

σ
(z1, z1) ∈ f∆i

σ
(SingFσ).

This completes our proof.

Remark 4.1. — In [5] we have proved an inclusion similar to the one in
Theorem 1.1 but for a different definition of non-degeneracy at infinity. The
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first difference is that instead of the set N(F ) above there occurs the larger
set An \ (A∗)n, and the inclusion N(F ) ⊂ An \ (A∗)n might be strict, see
Remarks 3.6 and 3.7. The second difference is between the non-degeneracy
conditions. Our above definition of non-degeneracy concerns a much smaller
number of faces than that in [5]. It yields genericity, therefore it is more
natural.
Here we get however a larger number of “atypical faces” and therefore a

larger set A(F ) than that obtained in [5]. However it is of the same nature
and has the same minimal codimension 1.
Another similar result, obtained recently by Nguyen in the complex set-

ting only [22], appears to be weaker than the one in [5] since it uses an
even stronger definition of non-degeneracy at infinity than [5].

4.1. Proof of Corollary 1.3

Since fi is convenient for every i, we have that N(F ) = ∅ (see Re-
mark 3.7), and moreover C(F )aty = ∅, which implies A(F ) = ∅. Then our
statement follows from Theorem 1.1.

5. Non-degeneracy at infinity and examples

The non-degeneracy condition formulated in the real setting by Bivià-
Ausina’s [2, Definition 3.5] appears to be equivalent to the following:

Definition 5.1. — The mapping F : Rn → Rk is non-degenerate at
infinity if the following condition is satisfied for any p = (p1, . . . , pn) ∈ Zn
such that p = min

16i6n
pi < 0:

(5.1)
{

x ∈ (R∗)n | f∆j
p
(x) = 0, for all j = 1, . . . , k

}
= ∅.

Indeed, in our constructions we have used the minimal value of the linear
function lp(v) =

∑n
i=1 pivi on supp(fi), since we have considered analytic

curves depending on t→ 0, while in [2] the author used the maximal value
of the linear function lp(v) =

∑n
i=1 pivi on supp(fi) since he considered

analytic curves of variable t → ∞. Modulo this difference, the original
definition in [2] coincides to the above.
Let us first prove the relations between our non-degeneracy condition and

Bivià-Ausina’s. Next we give several examples illustrating the fact that our
definition applies to a larger class of mappings.
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Proposition 5.2. — Suppose that F = (f1, . . . , fk) : Rn → Rk, k 6 n

is a polynomial mapping and that fi is convenient, for all i = 1, . . . , k. If F
is non-degenerate at infinity after Bivià-Ausina’s definition Definition 5.1,
then it is also non-degenerate at infinity after our Definition 3.4.
This becomes an equivalence whenever k = n.

Proof. — We use the notations of the previous section. Let us fix a vector
p = (p1, . . . , pn) ∈ Zn with p = min

16i6n
pi < 0. Since fi is convenient for any

i = 1, . . . , k, the minimal value dip of lp(v) must be strictly negative on
supp(fi) and therefore Jσ = ∅ and Iσ = {1, . . . , k} for σ 3 p, in other
words Icσ = ∅. The first conclusion of our proposition follows by comparing
the condition (5.1) with the non-degeneracy condition Definition 3.4.

In the case n = k, let us assume that F is degenerate at infinity under
Definition 5.1. Then there exists x ∈ (R∗)n and a vector p = (p1, . . . , pn) ∈
Zn \ {0} with min

16i6n
pi < 0 such that f∆i

p
(x) = 0, for every i. This means

that Icσ = ∅ and that x ∈ Gσ for σ 3 p.
By the Euler relation for weighted-homogeneous functions, we have

〈df∆i
σ
(x),px〉=dipf∆i

σ
(x) = 0, for i=1, . . . , n, where px :=(p1x1, . . . , pnxn)

6= 0. This implies that (df∆p)ki=1(x) px=0, which yields x∈Sing(df∆p)ki=1.
Thus F is degenerate after Definition 3.4. Together with the first statement
of our Proposition, this establishes the equivalence of the two definitions
in the case n = k. �

The following example shows that the first implication in above propo-
sition is not an equivalence in general.

Example 5.3. — Let f : A2 → A, f(x, y) = x2−y2. Then f is convenient,
f is non-degenerate at infinity after Definition 3.4, but degenerate after
Definition 5.1.

Let us give two types of examples where our Theorem 1.4 applies beyond
the results in [2].

Example 5.4. — Let G = (G1, G2) : C2 → C2, G(z1, z2, z1, z2) = (z1 +
z2, z1 − z2), be a mixed polynomial mapping. Then SingG = ∅, G is non-
degenerate at infinity, and G1, G2 are convenient. Hence Theorem 1.4 ap-
plies showing that G a diffeomorphism (which is already clear since G is
invertible). However, if one considers the associated real mapping of G, one
has G(x1, x2, y1, y2) = (x1 + x2, y1 − y2, x1 − x2, y1 + y2) and consequently
f1, . . . , f4 are not convenient and therefore Bivià-Ausina’s results do not
apply in this situation.
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Example 5.5. — Let F = (f1, f2, f3) : A3 → A3 be a polynomial map-
ping defined by F (x, y, z) = (x + yz + xy2, y, xy + z), where A = R or
A = C. None of the functions fi is convenient. However we find SingF = ∅
and K∞(F ) = ∅ by direct computations, inspite the fact that N(F ) is
not empty. The first part of our Theorem 1.4 applies to show that F is
a diffeomorphism, whereas Bivià-Ausina’s results do not apply in such a
situation.
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