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SEMIBOUNDED UNITARY REPRESENTATIONS OF
DOUBLE EXTENSIONS OF HILBERT–LOOP GROUPS

by K. H. NEEB (*)

Abstract. — A unitary representation π of a, possibly infinite dimensional,
Lie group G is called semibounded if the corresponding operators idπ(x) from the
derived representation are uniformly bounded from above on some non-empty open
subset of the Lie algebra g of G. We classify all irreducible semibounded represen-
tations of the groups L̂φ(K) which are double extensions of the twisted loop group
Lφ(K), where K is a simple Hilbert–Lie group (in the sense that the scalar product
on its Lie algebra is invariant) and φ is a finite order automorphism of K which
leads to one of the 7 irreducible locally affine root systems with their canonical
Z-grading. To achieve this goal, we extend the method of holomorphic induction to
certain classes of Fréchet–Lie groups and prove an infinitesimal characterization of
analytic operator-valued positive definite functions on Fréchet–BCH–Lie groups.

This is the first paper dealing with global aspects of Lie groups whose Lie algebra
is an infinite rank analog of an affine Kac–Moody algebra. That positive energy
representations are semibounded is a new insight, even for loops in compact Lie
groups.
Résumé. — Une représentation unitaire π d’un groupe de Lie G est dite semi-

borné, si les opérateurs idπ(x) de la représentation derivée sont semi-bornés uni-
formément sur une partie ouverte de l’algèbre de Lie g de G. Nous déterminons
toutes les représentations irréductibles semi-bornées des groupes L̂φ(K) qui sont
extensions doubles du groupe Lφ(K), où K est un groupe de Lie hilbertien et φ
est une automorphisme de K d’ordre fini qui mène à l’un des 7 systèmes de racines
affines irréductibles localement finis. Pour atteindre cet objectif, nous étendons la
méthode d’induction holomorphe aux certaines classes de groupes de Lie-Fréchet.

Il s’agit du premier papier traitant des aspects globaux des groupes de Lie dont
l’algèbre de Lie est une algèbre de Kac–Moody à rang infini.

Keywords: infinite dimensional Lie group, unitary representation, semibounded repre-
sentation, Hilbert–Lie algebra, Hilbert–Lie group, Kac–Moody group, loop group, double
extension, positive definite function.
Math. classification: 22E65, 22E45.
(*) Supported by DFG-grant NE 413/7-2, Schwerpunktprogramm “Darstellungstheorie”.



1824 K. H. NEEB

Introduction

This paper is part of a project concerned with a systematic approach to
unitary representations of infinite-dimensional Lie groups in terms of semi-
boundedness conditions on spectra in the derived representation ([42]).
For the derived representation to carry significant information, we have
to impose a suitable smoothness condition: Let G be a Lie group with
Lie algebra g and exponential function exp: g → G. A unitary represen-
tation π : G → U(H) is said to be smooth if the subspace H∞ ⊆ H of
smooth vectors is dense. This is automatic for continuous representations
of finite-dimensional Lie groups, but not for Banach–Lie groups ([6]). For
any smooth unitary representation, the derived representation

dπ : g→ End(H∞), dπ(x)v := d

dt t=0
π(exp tx)v

carries significant information in the sense that the closure of the oper-
ator dπ(x) coincides with the infinitesimal generator of the unitary one-
parameter group π(exp tx). We call (π,H) semibounded if the function

sπ : g→ R ∪ {∞}, sπ(x) := sup
(

Spec(idπ(x))
)

is bounded on a neighborhood of some point x0 ∈ g. Then the set Wπ of
all such points x0 is an open Ad(G)-invariant convex cone. We say that
π is bounded if Wπ = g. All finite-dimensional continuous unitary repre-
sentations are bounded and most of the unitary representations appearing
in physics are semibounded or satisfy similar spectral conditions (cf. [57],
[58], [56], [9], [52], [10], [34], [50], [14], [4], [42]).
For finite-dimensional Lie groups, the irreducible semibounded represen-

tations are precisely the unitary highest weight representations and one
has unique direct integral decompositions into irreducible ones [38, X.3/4,
XI.6]. Since the traditional tools to obtain classification results for repre-
sentations of infinite-dimensional groups, such as the group algebra, invari-
ant integration and character theory break down for infinite-dimensional
groups, it is important to specify large and interesting classes of represen-
tations that, on the one hand side contain the representations showing up
in applications, and on the other hand, lead to settings where complete
classification results can be obtained. Semibounded representations form
such a class.

For many interesting classes of groups such as the Virasoro group and
affine Kac–Moody groups (double extensions of loop groups with compact
target groups), the irreducible highest weight representations are semi-
bounded by Theorem 6.1 below, but to prove the converse is more difficult
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SEMIBOUNDED UNITARY REPRESENTATIONS 1825

and requires a thorough understanding of invariant cones in the correspond-
ing Lie algebras as well as of convexity properties of coadjoint orbits ([42,
Sect. 8]). A unifying framework in which semibounded representations can
be constructed from bounded representations is provided by the method of
holomorphic induction. This scheme has been developed in [46] for Banach–
Lie groups, and in Appendix B below we explain under which assumptions
it still works for Fréchet–Lie groups. All these assumptions are satisfied by
groups of smooth loops (Subsection 5.2).
In this paper we study a class of Lie groups whose Lie algebras are nat-

ural infinite rank generalizations of affine Kac–Moody groups [26]. On the
Lie algebra level, the theory of unitary highest weight modules, together
with some classification results, was developed in [43]. Here we develop the
corresponding global picture which fits perfectly into the scheme of semi-
bounded representations. It is amazing that in this context, where neither
root bases nor positive systems and dominance of weights is available, one
can obtain classification results like Theorem 0.1 below whose formulation
formally ressembles the corresponding results for compact Lie algebras and
Kac–Moody algebras. Together with the automorphism groups of symmet-
ric domains whose semibounded representations were classified in [45], the
groups we study here are among the rare examples where one has complete
classification results in a setting where the natural Z-grading on the Lie al-
gebra level has infinite-dimensional grading spaces. One of our guiding mo-
tivations in this project was that, compared to the classical loop groups and
the Virasoro group ([52], [34], [50]), we are dealing here with representations
in Hilbert spaces with Z-gradings by infinite-dimensional subspaces, and it
is an important problem to develop a better understanding for such situa-
tions. Since Z-gradings correspond to T-actions, it is clear that loop groups
with infinite-dimensional targets are the prototypical examples of groups
with such representations. Our present results also constitute another step
towards a more systematic understanding of groups with a smooth one-
parameter group of automorphisms for which irreducible positive energy
representations exist; see [68] for a rather complete theory for Heisenberg
groups, resp., the canonical commutation relations in this context.
The closest infinite-dimensional relatives of compact Lie algebras are

Hilbert–Lie algebras. These are real Lie algebras which are Hilbert spaces
on which the adjoint group acts by isometries (cf. [21, Def. 6.3]). We call
a Lie group K whose Lie algebra k = L(K) is a Hilbert–Lie algebra a
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1826 K. H. NEEB

Hilbert–Lie group.(1) The finite-dimensional Hilbert–Lie algebras are the
compact Lie algebras. The main goal of this paper is the classification of all
semibounded unitary representations of groups which are double extensions
of loop groups with values in a Hilbert–Lie group.
For a Hilbert–Lie groupK, we write Aut(K) for the group of all Lie group

automorphisms acting by isometries with respect to the scalar product 〈·, ·〉
on k. For an automorphism φ ∈ Aut(K) of order N ,

Lφ(K) :=
{
f ∈ C∞(R,K) : (∀t ∈ R) f

(
t+ 2π

N

)
= φ−1(f(t))

}
is called the corresponding twisted loop group. It is a Fréchet–Lie group
with Lie algebra

Lφ(k) :=
{
ξ ∈ C∞(R, k) : (∀t ∈ R) ξ

(
t+ 2π

N

)
= L(φ)−1(ξ(t))

}
([48, App. A]). The subgroup Lφ(K) ⊆ C∞(R,K) is translation invariant,
so that we obtain for each T ∈ R an automorphism of Lφ(K) by

(0.1) αT (f)(t) := f(t+ T ) with L(αT )(ξ)(t) := ξ(t+ T ).

Our assumption φN = id implies that α2π = id, which leads to a smooth
action of the circle group T ∼= R/2πZ on Lφ(K). The Fréchet–Lie algebra
Lφ(k) carries the positive definite form

〈ξ, η〉 := 1
2π

∫ 2π

0
〈ξ(t), η(t)〉 dt,

which is invariant under the R-action (0.1). Therefore the derivation Dξ :=
ξ′ is skew-symmetric and thus

ω(ξ, η) := 〈Dξ, η〉 = 1
2π

∫ 2π

0
〈ξ′(t), η(t)〉 dt

defines a continuous Lie algebra cocycle on Lφ(k) (cf. [48, Sect. 3.2]). Let

L̃φ(k) := R⊕ω Lφ(k)

denote the corresponding central extension and observe that ω is D-inva-
riant, so that we obtain the double extension

g := L̂φ(k) := (R⊕ω Lφ(k)) oD R.

Here we extend D to L̃φ(k) by D(z, ξ) := (0, ξ′) to obtain the Lie bracket
on g:

[(z1, ξ1, t1), (z2, ξ2, t2)] := (〈ξ′1, ξ2〉, t1ξ′2 − t2ξ′1 + [ξ1, ξ2], 0).

(1) In the literature one also finds a weaker concept of a “Hilbert–Lie group,” namely
Lie groups whose Lie algebra is a Hilbert space, but no compatibility between the Lie
bracket and the scalar product is required.
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SEMIBOUNDED UNITARY REPRESENTATIONS 1827

To formulate our main result, we start with a 1-connected simple Hilbert–
Lie group K, i.e., k contains no proper closed ideal. Corresponding twisted
loop groups Lφ(K) and Lψ(K) are isomorphic if φ and ψ define the same
conjugacy class in the group π0(Aut(K)) of connected components of the
Lie group Aut(K). Since every infinite-dimensional simple Hilbert–Lie alge-
bra is isomorphic to the algebra u2(H) of skew-hermitian Hilbert–Schmidt
operators on an infinite-dimensional real, complex or quaternionic Hilbert
space, it is possible to determine Aut(k) explicitly (Theorem 1.15). This in
turn leads to a complete classification of the corresponding twisted loop
groups. We thus obtain four classes of loop algebras: the untwisted loop
algebras L(u2(H)), where H is an infinite-dimensional real, complex or
quaternionic Hilbert space, and a twisted type Lφ(u2(H)), where H is a
complex Hilbert space and φ(x) = σxσ holds for an antilinear isomet-
ric involution σ : H → H (this corresponds to complex conjugation of the
corresponding matrices). Our main result is the classification of the semi-
bounded unitary representations of the 1-connected Lie groups G := L̂φ(K)
corresponding to the respective double extensions g = L̂φ(k).

To describe this classification, we choose a maximal abelian subspace

t ⊆ kφ := {x ∈ k : L(φ)x = x}.

Then tg := R ⊕ t ⊕ R is maximal abelian in g = L̂φ(k). We write TG :=
exp(tg) ⊆ G for the corresponding subgroup and identify its character
group T̂G with a subgroup of it′g, where ′ denotes the topological dual space.
In the following, we assume that the corresponding Z-graded root system
∆g = ∆(g, tg) is one of the seven irreducible locally affine reduced root
systems of infinite rank A(1)

J , B
(1)
J , C

(1)
J , D

(1)
J , B

(2)
J , C

(2)
J or BC(2)

J (cf. Defi-
nition 2.6).

Theorem 0.1. — Irreducible semibounded representations πλ of G =
L̂φ(K) are characterized by their tg-weight set

Pλ = conv(Ŵλ) ∩ (λ+ Q̂) ⊆ it′g with Ext(conv(Pλ)) = Ŵλ,

where Ŵ is the Weyl group of the pair (g, tg) and Q̂ ⊆ it′g the corresponding
root group. The set of occurring extremal weights λ is ±P+, where

P+ := {µ ∈ T̂G : inf(Ŵµ)(d) > −∞} for d := (0, 0,−i) ∈ g.

Let P+
d ⊆P+ denote the set of those elements µ for which

µ(d) = min(Ŵµ)(d).
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1828 K. H. NEEB

For µc := µ(i, 0, 0), the elements µ ∈ P+ contained in P+
d are characterized

by:

µc > 0, |µ(α̌)| 6 2µc
(α, α) , |µ(β̌)| 6 4µc

(β, β) for (α, 1), (β, 0) ∈ ∆g,

where α̌ ∈ it is the associated coroot. The parameter space of the equiva-
lence classes of semibounded representations is given by

±P+/Ŵ ∼= ±P+
d /W,

where W ⊆ Ŵ is the Weyl group of the pair (kφ, t).

In all cases we obtain an explicit description of the set P+
d /W of W

orbits in the set P+
d of d-minimal integral weights which is based on a

characterization of the d-minimal weights (Theorem 4.4) and the quite
elementary classification of W-orbits (Proposition 5.8). The remarkable
observation that the intersection of a Ŵ-orbit with the set P+

d coincides
with a W-orbit is drawn from preliminary work on convex hulls of Weyl
group orbits ([20]).

Structure of the paper. We start in Section 1 with the introduction
of the simple Hilbert–Lie algebras and their root decompositions which
leads to the four locally finite root systems AJ , BJ , CJ and DJ (cf. [29]).
Our first main result is the determination of the full automorphism groups
of the simple Hilbert–Lie algebras (Theorem 1.15). In Section 2 we intro-
duce the double extensions g = L̂φ(k) for the twisted loop algebras Lφ(k),
where we restrict our attention to those automorphisms φ for which the
corresponding root systems ∆g are, as Z-graded root systems, equal to one
of the seven locally affine root systems A(1)

J , B
(1)
J , C

(1)
J , D

(1)
J , B

(2)
J , C

(2)
J or

BC
(2)
J (cf. Definition 2.6). In Section 3 we mount to the global level by

showing that, for every 1-connected simple Hilbert–Lie group K, there ex-
ists a 1-connected Fréchet–Lie group L̂φ(K) which is a central T-extension
L̃φ(K) oα R of Lφ(K) oα R. Section 4 focuses on the action of the Weyl
group Ŵ on the integral weights. Here the main result is the explicit classi-
fication of the d-minimal weights in Theorem 4.4. After these preparations,
we attack our goal of classifying the irreducible semibounded representa-
tions of G = L̂φ(K). The first major step is Theorem 5.2, asserting that for
a semibounded representation (π,H), the operator dπ(d) is either bounded
from below (positive energy representations) or from above. Up to passing
to the dual representation, we may therefore assume that we are in the first
case. Then the minimal spectral value of dπ(d) turns out to be an eigenvalue
and the group ZG(d) acts on the corresponding eigenspace, which leads to

ANNALES DE L’INSTITUT FOURIER



SEMIBOUNDED UNITARY REPRESENTATIONS 1829

a bounded representation (ρ, V ) of this group. To proceed further, we rely
on some general results concerning holomorphic induction. This framework
has been developed for Banach–Lie groups in [46] and in Appendix C we
briefly explain how it can be carried over to certain Fréchet–Lie groups, con-
taining in particular groups such as L̂φ(K). This permits us to conclude
that the representation (ρ, V ) is irreducible and that it determines (π,H)
uniquely. Since an explicit classification of the bounded irreducible repre-
sentations of the groups ZG(d)0 is available from [37, 45] (Theorem 5.9)
in terms of W-orbits of extremal weights, it remains to characterize those
weights λ for which the corresponding representation (ρλ, Vλ) corresponds
to a unitary representation of G. This is achieved in Theorem 5.10, assert-
ing that this is equivalent to λ being d-minimal, and the final step consists
in showing that the irreducible G-representation (πλ,Hλ) corresponding
to a d-minimal weight is actually semibounded (Theorem 6.1). Compared
to related arguments in other contexts (cf. [37, 38, 42]), the argument we
give here is rather direct and does not require any convexity results on
projections of coadjoint orbits, such as [3, 27]. This brings us full circle and
completes the proof of Theorem 0.1.
For untwisted loop groups L̂(K) and compact groups K, the correspond-

ing class of representations is well-known from the context of affine Kac–
Moody algebras (cf. [26], [52]). In this context one thus obtains the class of
positive energy representations (dπ(d) bounded from below), but this re-
quirement is too weak for infinite-dimensional K. We therefore work with
the semiboundedness condition which has the additional advantage that
it is invariant under twisting with arbitrary automorphisms. Compared
with the classical situation where K is finite-dimensional, we thus obtain
the new insight that every positive energy representation is actually semi-
bounded. In various respects our techniques are simpler than the ones used
in the classical case to prove the existence of the unitary representation
(πλ,Hλ) for a d-minimal weight λ (cf. [52], [18], [62]). Instead of using ad
hoc operator estimates for the corresponding Lie algebra representation,
we combine the technique of holomorphic induction and some general re-
sults on analytic positive definite functions (cf. Appendix B) to see that
the d-minimality of λ, which is already known to lead to a unitary Lie
algebra module on the algebraic level ([43]), to integrate to an analytic
representation of the Lie group L̂φ(K). This is done by using the follow-
ing new characterization: An operator-valued function φ : V → B(K), K a
Hilbert space, V an identity neighborhood of any Fréchet–BCH–Lie group
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1830 K. H. NEEB

G, is positive definite in an identity neighborhood if and only if the corre-
sponding linear map U(gC)→ B(K) obtained by derivatives in 1 is positive
definite (Theorem B.6).
Although it does not appear on the surface of our arguments, it is crucial

that we deal with the Fréchet–Lie group L̂φ(K) through its Banach analog
L̂Hφ (K) constructed similarly from H1-maps instead of smooth ones. This
is a topological group which is a Banach manifold and a semidirect product
L̃Hφ (K) oα R, where the factor on the left is a Banach–Lie group but the
translation action of R is not smooth. As a byproduct, our techniques imply
that the representations πλ extend to continuous representations of L̂Hφ (K)
which are analytic on L̃φ(K) in the sense that the space of analytic vectors
is dense (Remark 5.11). For the convenience of the reader, we collect some
basic information on groups of H1-maps in Appendix A, including the
existence of the central Lie group extension L̃Hφ (K).
In view of the classification of semibounded irreducible representations

in terms of extremal weights, it is natural to ask why we first pass to
the double extension of the group Lφ(K) to study unitary representations.
Without the double extension, the representation theory of loop groups is
much less interesting: From Theorem 5.15 it follows that all semibounded
unitary representations of the central extension L̃φ(k) are trivial on the
center and factor through bounded representations of L(k), which in turn
are finite-dimensional and tensor products of evaluation representations
(see [47] for the case of Banach–Lie algebras of maps and [24] for groups
of smooth maps). We also show in Theorem 5.16 that all semibounded
representations of Lφ(K) oα R are trivial on Lφ(K). These two results
clearly demonstrate that the double extension of Lφ(k) is crucial to get
hold of the interesting class of semibounded representations.
To put our results into perspective, it is instructive to recall that if X is a

compact space and K a semisimple compact Lie group, then all irreducible
bounded unitary representations of C(X,K)0 are finite tensor products
of evaluation representations, hence in particular finite-dimensional ([47],
[24]). Other irreducible representations (π,H) of the loop groups L(K)oαR
(twisted loop modules) constructed by Chari and Pressley in [11] have the
property that the spectrum of dπ(d) is unbounded from below and above
and their restrictions to L̃(K) are not irreducible. For any, not necessary
compact, Lie group K, the group C(X,K) has unitary representations ob-
tained as finite tensor products of evaluation representations. However, for
some non-compact groups, such as K = S̃U1,n(C), one even has “continu-
ous” tensor product representations which are irreducible (cf. [22], [7], [12],
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SEMIBOUNDED UNITARY REPRESENTATIONS 1831

[64, 15]). In the algebraic context of loops group, these representations also
appear in [23] which contains a classification of various types of unitary
representations generalizing highest weight representations. In addition to
these representations which actually extend to groups of measurable maps,
there exist irreducible representations of mapping groups defined most nat-
urally on groups of Sobolev H1-maps, the so-called energy representations
(cf. [1], [2]) and certain variants of positive energy representations of gauge
groups of tori (cf. [63]). The problem to classify all smooth (projective)
irreducible unitary representations of gauge groups is still wide open, al-
though the classification of their central extensions by Janssens and Wockel
([25]) is a major step towards this goal. Bounded (projective) unitary rep-
resentations of gauge groups are classified in [24], and the present paper
contributes to this program by the construction of irreducible unitary rep-
resentations of gauge groups for infinite-dimensional structure groups.

Acknowledgments. We thank Stéphane Merigon and Christoph Zellner
for a careful reading of earlier versions of this paper and for a wealth of
invaluable comments.

Notation

We collect some basic notational conventions used below. We write N =
{1, 2, . . .} for the natural numbers.

Hilbert spaces over K ∈ {R,C,H} are mostly denoted H. We write B(H)
for the algebra of all bounded operators on H, B2(H) for the ideal of
Hilbert-Schmidt operators, B1(H) for the ideal of trace class operators and
K(H) for the ideal of compact operators. Accordingly we write

U2(H) := U(H) ∩ (1 +B2(H))

for the Hilbert–Lie group of unitary operators u for which u−1 is Hilbert–
Schmidt.
Let G be a Lie group (modeled on a locally convex space) and unit

element 1. Then we write g = L(G) for its Lie algebra, which is identified
with the tangent space T1(G). The Lie bracket is obtained by identification
with the Lie algebra of left invariant vector fields. A smooth map expG : g→
G is called an exponential function if each curve γx(t) := expG(tx) is a one-
parameter group with γ′x(0) = x. Not every infinite-dimensional Lie group
has an exponential function ([41, Ex. II.5.5]), but exponential functions
are unique whenever they exist, and this is in particular the case for all
Banach–Lie groups.

TOME 64 (2014), FASCICULE 5



1832 K. H. NEEB

1. Hilbert–Lie groups

In this section we briefly introduce the class of Hilbert–Lie algebras, the
closest infinite-dimensional relatives of compact Lie algebras.

1.1. Hilbert–Lie algebras

Definition 1.1. — (a) A Hilbert–Lie algebra k is a real Lie algebra
endowed with the structure of a real Hilbert space such that the scalar
product is invariant under the adjoint action, i.e.,

〈[x, y], z〉 = 〈x, [y, z]〉 for x, y, z ∈ k.

From the Closed Graph Theorem and the Uniform Boundedness Principle
one derives that the bracket k × k → k is continuous with respect to the
norm topology on k (cf. [54, p. 70]). A Hilbert–Lie algebra k is called simple
if {0} and k are the only closed ideals.

Example 1.2. — (a) A finite-dimensional Lie algebra k carries the struc-
ture of a Hilbert–Lie algebra if and only if it is compact.
(b) For any Hilbert space H over K ∈ {R,C,H}, the Lie algebra

u2(H) := {x ∈ B2(H) : x∗ = −x}

is a Hilbert–Lie algebra with respect to the scalar product 〈x, y〉 := trR(xy∗)
= − trR(xy). It is simple if dimH =∞.

Theorem 1.3 (Schue). — Each Hilbert–Lie algebra k is an orthogonal
direct sum k = z(k) ⊕

⊕̂
j∈Jkj , where each kj is a simple ideal. Each sim-

ple infinite-dimensional Hilbert–Lie algebra is isomorphic to u2(H) for an
infinite-dimensional real, complex or quaternionic Hilbert space H.

Proof. — The orthogonal decomposition into center and simple ideals
follows from [54, 1.2, Th. 1]. The classification of the simple Hilbert algebras
k follows immediately from the classification of the complex L∗-algebras
because kC is a complex L∗-algebra. For the separable case, the classification
was obtained in [54, 3.7, Th. 3] under the assumption of the existence of
a root decomposition whose existence was shown in [55]. The classification
was extended to the non-separable case in [13], [49] and [59, Thm. 19.28].

�
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SEMIBOUNDED UNITARY REPRESENTATIONS 1833

Definition 1.4. — If H is a real Hilbert space, then we also write

O(H) := U(H), O2(H) := U2(H), o(H) := u(H), and o2(H) := u2(H).

For a quaternionic Hilbert space H, we write

Sp(H) := U(H), Sp2(H) := U2(H), sp(H) := u(H) and sp2(H) := u2(H).

Theorem 1.5 (cf. [40], Sect. II.4). — For an infinite-dimensional Hilbert
space H, over R, C, resp., H, the homotopy groups of O2(H), U2(H), resp.,
Sp2(H) are given by:

O2(H) U2(H) Sp2(H)
π0 Z/2 {1} {1}
π1 Z/2 Z {1}
π2 {1} {1} {1}
π3 Z Z Z

Remark 1.6. — IfH is infinite-dimensional, Schur’s Lemma implies that
the center of the groups O2(H),U2(H) and Sp2(H) is trivial. Therefore their
fundamental group is isomorphic to the center of the simply connected
covering group, so that

Z(Õ2(H)0) ∼= π1(O2(H)) ∼= Z/2 and Z(Ũ2(H)) ∼= π1(U2(H)) ∼= Z.

1.2. Root decomposition

Our parametrization of irreducible semibounded representations is based
on weights w.r.t. a maximal abelian subalgebra. In this subsection we recall
some basics on roots and root space decompositions.

Definition 1.7. — (a) Let g be a real topological Lie algebra and gC
be its complexification. If σ : gC → gC, z = x+ iy 7→ z = x− iy, denotes the
complex conjugation with respect to g, we write x∗ := −σ(x) for x ∈ gC,
so that g = {x ∈ gC : x∗ = −x}. Let t ⊆ g be a maximal abelian subalgebra
and tC ⊆ gC be its complexification. For a linear functional α ∈ t′C (the
space of C-valued continuous linear functionals on t which is identified
with the space of C-linear continuous functionals on tC),

gαC = {x ∈ gC : (∀h ∈ tC) [h, x] = α(h)x}

is called the corresponding root space, and

∆ := ∆(g, t) := {α ∈ t∗C \ {0} : gαC 6= {0}}
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is the root system of the pair (g, t). We then have g0
C = tC and [gαC, g

β
C] ⊆

gα+β
C , hence in particular [gαC, g

−α
C ] ⊆ tC.

(b) If g is the Lie algebra of a group G with an exponential function,
then we call t elliptic if the subgroup ead t = Ad(exp t) ⊆ Aut(g) is equicon-
tinuous. We then have

(I1) α(t) ⊆ iR for α ∈ ∆, and therefore
(I2) σ(gαC) = g−αC for α ∈ ∆.

Lemma 1.8. — Suppose that t ⊆ g is elliptic. For 0 6= xα ∈ gαC, the
subalgebra gC(xα) := spanC{xα, x∗α, [xα, x∗α]} is σ-invariant and of one of
the following types:

(A) The abelian type: [xα, x∗α] = 0, i.e., gC(xα) is two-dimensional
abelian.

(N) The nilpotent type: [xα, x∗α] 6= 0 and α([xα, x∗α]) = 0, i.e., gC(xα) is
a three-dimensional Heisenberg algebra.

(S) The simple type: α([xα, x∗α]) 6= 0, i.e., gC(xα) ∼= sl2(C). In this case
we distinguish two cases:
(CS) α([xα, x∗α]) > 0, i.e., gC(xα) ∩ g ∼= su2(C), and
(NS) α([xα, x∗α]) < 0, i.e., gC(xα) ∩ g ∼= su1,1(C) ∼= sl2(R).

Proof (cf. [42], App. C). — First we note that, in view of x∗α ∈ g−αC ,
[37, Lemma I.2] applies, and we see that gC(xα) is of one of the three
types (A), (N) and (S). We note that α([xα, x∗α]) ∈ R because of (I2) and
[xα, x∗α] ∈ it. Now it is easy to check that gC(xα)∩ g is of type (CS), resp.,
(NS), according to the sign of this number. �

Definition 1.9. — (a) Assume that gαC = Cxα is one-dimensional and
that gC(xα) is of type (S). Then there exists a unique element α̌ ∈
tC ∩ [gαC, g

−α
C ] with α(α̌) = 2. It is called the coroot of α. The root α ∈ ∆

is said to be compact if, for 0 6= xα ∈ gαC, we have α([xα, x∗α]) > 0 and
non-compact otherwise. We write ∆c for the set of compact roots. With
the notation R+ := [0,∞[, Lemma 1.8 implies that

(1.1) α̌ ∈ R+[xα, x∗α] for α ∈ ∆c.

(b) The Weyl group W = W(g, t) ⊆ GL(tC) is the subgroup generated
by all reflections

(1.2) rα(x) := x− α(x)α̌ for compact roots α ∈ ∆c.

It acts on the dual space t∗C by the dual maps r∗α(β) := β − β(α̌)α.
(c) A linear functional λ ∈ it′ is said to be an integral weight if λ(α̌) ∈ Z

holds for every compact root α ∈ ∆c. We write P = P(g, t) ⊆ it′ for the
group of all integral weights.
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Let k be a Hilbert–Lie algebra and t ⊆ k be a maximal abelian subalgebra.
According to [55], tC ⊆ kC defines a root space decomposition

kC = tC ⊕
⊕̂
α∈∆

kαC

which is a Hilbert space direct sum with respect to the hermitian extension
of the scalar product to kC. We now describe the relevant root data for the
three types of simple Hilbert algebras u2(H), where H is a Hilbert space
over K ∈ {R,C,H}.

Example 1.10 (cf. [45], Ex. C.4 (Root data of unitary Lie algebras)). —
Let H be a complex Hilbert space with orthonormal basis (ej)j∈J and
t ⊆ k := u2(H) be the subalgebra of all diagonal operators with respect to
the ej . Then t is elliptic and maximal abelian, tC ∼= `2(J,C). The set of
roots of kC ∼= gl2(H) with respect to tC is given by the root system

∆ = {εj − εk : j 6= k ∈ J} =: AJ .

Here the operator Ejkem := δkmej is a tC-eigenvector in gl2(H) generating
the corresponding eigenspace and εj(diag(hk)k∈J) = hj . From E∗jk = Ekj
it follows that

(εj − εk )̌ = Ejj − Ekk = [Ejk, Ekj ] = [Ejk, E∗jk],

so that ∆ = ∆c, i.e., all roots are compact.
The Weyl groupW is isomorphic to the group S(J) of finite permutations

of J , acting in the canonical way on tC ∼= `2(J,C). It is generated by the
reflections rjk := rεj−εk corresponding to the transpositions of j 6= k ∈ J .
The Weyl group acts transitively on the set of roots and, in particular, all
roots have the same length 2 w.r.t. the scalar product induced by 〈x, y〉 =
tr(xy∗) on the dual space.

Remark 1.11. — (a) In many situations it is convenient to describe real
Hilbert spaces as pairs (H, σ), where H is a complex Hilbert space and
σ : H → H is a conjugation, i.e., an antilinear isometry with σ2 = idH.
Then we write A> := σA∗σ, which corresponds to the transposition of
matrices with respect to any ONB contained in Hσ.
(b) A quaternionic Hilbert space H can be considered as a complex

Hilbert space HC (the underlying complex Hilbert space), endowed with
an anticonjugation σ, i.e., σ is an antilinear isometry with σ2 = −1.

(c) That all conjugations and anticonjugations on a complex Hilbert
space are conjugate under the unitary group U(H) has been shown in [5]
by describing them in terms of orthonormal bases.
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Example 1.12 (cf. [45], Ex. C.5 (Root data of symplectic Lie algebras)).
For a complex Hilbert spaceH with a conjugation σ, we consider the quater-
nionic Hilbert space HH := H2, where the quaternionic structure is defined
by the anticonjugation σ̃(v, w) := (σw,−σv). Then k := sp2(HH) = {x ∈
u2(H2) : σ̃x = xσ̃} and

sp2(HH)C =
{(

A B

C −A>
)
∈ B2(H2) : B> = B,C> = C

}
.

Let (ej)j∈J be an orthonormal basis of H with σ(ej) = ej for every j, and
t ⊆ k be the subalgebra of all diagonal operators with respect to the basis
elements (ej , 0) and (0, ek) of H2. Then t is elliptic and maximal abelian
in k. Moreover, tC ∼= `2(J,C) consists of diagonal operators of the form
h = diag((hj), (−hj)), and the set of roots of kC with respect to tC is given
by

∆ = {±2εj ,±(εj ± εk) : j 6= k, j, k ∈ J} =: CJ ,

where εj(h) = hj . If we write Ej =
(
Ejj 0
0 −Ejj

)
∈ tC for the element

defined by εk(Ej) = δjk, then the coroots are given by

(1.3) (εj ± εk )̌ = Ej ± Ek for j 6= k and (2εj )̌ = Ej .

Again, all roots are compact, and the Weyl group W is isomorphic to the
group {±1}(J) o S(J), where {±1}(J) is the group of finite sign changes
on `2(J,R). In fact, the reflection rεj−εk acts as a transposition and the
reflection r2εj changes the sign of the jth component. The Weyl group has
two orbits in CJ , the short roots form a root system of type DJ and the
second orbit is the set {±2εj : j ∈ J} of long roots.

Example 1.13 (cf. [45], Ex. C.6 (Root data of orthogonal Lie algebras)).
LetHR be an infinite-dimensional real Hilbert space and k := o2(HR) be the
corresponding simple Hilbert–Lie algebra. Let t ⊆ k be maximal abelian.
The fact that t is maximal abelian implies that the common kernel ker t
is at most one-dimensional. Since t consists of compact skew-symmetric
operators, the Lie algebra tC is diagonalizable on the complexification H :=
(HR)C. We conclude that, on the space (ker t)⊥, we have an orthogonal
complex structure I commuting with t and there exists an orthonormal
subset (ej)j∈J of (ker t)⊥ such that {ej , Iej : j ∈ J} is an orthonormal
basis of (ker t)⊥ and all the planes Rej + RIej are t-invariant. If Ht

R is
non-zero, we write ej0 for a unit vector in this space. For j ∈ J put

fj := 1√
2

(ej − iIej) and f−j := 1√
2

(ej + iIej).

ANNALES DE L’INSTITUT FOURIER



SEMIBOUNDED UNITARY REPRESENTATIONS 1837

If ker t 6= {0}, then we also put fj0 := ej0 . Then the fj form an orthonormal
basis of H consisting of t-eigenvectors.
We conclude that tC is precisely the set of all those elements in kC =

o2(HR)C which are diagonal with respect to the ONB consisting of the fj .
This implies that tC ∼= `2(J,C), where x ∈ tC corresponds to the element
(xj)j∈J ∈ `2(J,C) defined by xfj = xjfj , j ∈ J . Writing εj(x) := xj ,
we see that {±εj : j ∈ J}, together with εj0 if ker t 6= {0}, is the set of
tC-weights of H. Accordingly, the set of roots of kC with respect to tC is
given by

∆ = {±εj ± εk : j 6= k, j, k ∈ J} =: DJ if ker t = {0},

and

∆ = {±εj ± εk : j 6= k, j, k ∈ J} ∪ {±εj : j ∈ J} =: BJ otherwise.

As in Example 1.12, all roots are compact. For BJ we obtain the same
Weyl group {±1}(J) oS(J) as for CJ . For DJ the reflection rεj+εk changes
the sign of the j- and the k-component, so that the Weyl group W is
isomorphic to the group {±1}(J)

even o S(J), where {±1}(J)
even is the group of

finite even sign changes. For DJ the Weyl group acts transitively on the set
of roots and all roots have the same length. For BJ we have two W-orbits,
the roots ±εj are short and the roots ±εj ± εk, j 6= k, are long.

Remark 1.14. — In a simple Hilbert–Lie algebra, two maximal abelian
subalgebras are conjugate under the full automorphism group if and only
if the corresponding root systems are isomorphic (see [59, Prop. 19.24,
Rem. 19.25] and [5]). Up to conjugacy by automorphisms, the classification
of locally finite root systems thus implies that we have only four types of
pairs (k, t) and that they correspond to the root systems AJ , BJ , CJ and
DJ .

For a real Hilbert space H, the Hilbert–Lie algebra o2(H) contains two
conjugacy classes of maximal abelian subalgebras t, distinguished by dimHt

∈ {0, 1}. For the classification purposes in this paper, we only need one
maximal abelian subalgebra to set up the parametrization of the equiv-
alence classes of unitary representations (cf. Theorem 0.1). Passing to a
different conjugacy class of maximal abelian subalgebras leads to a differ-
ent parameter space for the same class of representations.
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1.3. Automorphism groups

For a complex Hilbert space H, we write AU(H) for the group of unitary
or antiunitary isometries of H and

PAU(H) := AU(H)/T1 ∼= PU(H) o {id, σ},

where σ is an anticonjugation of H.

Theorem 1.15. — The automorphism groups of the simple infinite-
dimensional Hilbert algebras are given by

Aut(u2(H)) ∼= PAU(H)

for a complex Hilbert space, and for the real and quaternionic case we have

Aut(o2(H)) ∼= O(H)/{±1} and Aut(sp2(H)) ∼= Sp(H)/{±1}.

Proof. — We know from Schue’s Theorem 1.3 that any simple infinite-
dimensional Hilbert–Lie algebra k is isomorphic to u2(H) for some infinite-
dimensional Hilbert space H ∼= `2(J,K) with K ∈ {R,C,H}. Let t ⊆ k be a
maximal abelian subalgebra and ∆ be the corresponding root system. As
we have seen in Examples 1.10, 1.12 and 1.13, it is of type AJ (for K = C),
CJ (for K = H) or BJ , DJ (for K = R).
For any φ ∈ Aut(k), the subspace φ(t) ⊆ k is also maximal abelian with

isomorphic root system. It follows from [5, Thm. 2] (and its proof) that
for real, complex and quaternionic Hilbert spaces, the group U(H) acts
transitive on the set of all maximal abelian subalgebras of k = u2(H) whose
root system is of a given type (see also [59, Thm. 19.24]). This implies
the existence of ψ ∈ U(H) for which the corresponding automorphism
cψ(x) := ψxψ−1 satisfies cψ(t) = φ(t). Then c−1

ψ ◦ φ fixes t, hence induces
an automorphism of the root system ∆.
For each root system, the automorphism group is known from [60, Props.

5.1-5.4]:

Aut(AJ) ∼= SJ ×{± id}, Aut(BJ) ∼= Aut(CJ) ∼= Aut(DJ) ∼= (Z/2)J oSJ .

From this description it easily follows that, for ∆ of type BJ , CJ or DJ ,
each automorphism of the root system is implemented by conjugation with
an element of the corresponding full group U(H). For AJ , the elements
of SJ are obtained by conjugation with a unitary operator permuting the
elements (ej)j∈J of an orthonormal basis, and − id is obtained by φ(x) =
σxσ, where σ is a conjugation fixing each ej , j ∈ J .
For the realization of sp2(HH) as in Example 1.12, we obtain the elements

of SJ by conjugation with unitary operators of the form
(
U 0
0 U

)
, where
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U ∈ U(H) permutes the elements of the ONB (ej)j∈J . To implement the
sign changes corresponding to the element χ ∈ {±1}J taking the value −1
on the subset M ⊆ J and 1 elsewhere, we consider the projection P on H
with

Pej =
{
ej for j ∈M
0 for j ∈ J \M.

Then conjugation with u :=
(

1− P P

−P 1− P

)
∈ Sp(HH) induces on ∆ =

BJ the automorphism corresponding to χ.
For the realization of o2(HR) as in Example 1.13, we obtain the elements

π ∈ SJ by conjugation with orthogonal operators U satisfying Uej = eπ(j)
for j ∈ J and commuting with the complex structure I. To implement
the sign changes represented by χ ∈ {±1}J as above, we conjugate with
U ∈ O(HR) satisfying Uej = ej for j ∈ J and

UIej =
{
−Iej for j ∈M
Iej for j ∈ J \M.

This reduces the problem to show that every automorphism is given by
conjugation with a unitary (or antiunitary operator in the complex case) to
the special case where it preserves t and induces the trivial automorphism
on ∆. In view of [60, Lemma 6.2(b)], any such automorphism φ satisfies
φ(xα) = χ(α)xα for xα ∈ kαC and a homomorphism χ : Q := 〈∆〉grp → C×.
As φ is supposed to be isometric, we have im(χ) ⊆ T. Conversely, the
orthogonality of the root decomposition of kC implies that every homomor-
phism χ : Q → T occurs. We now show that any such automorphism is
given by conjugation with an element of U ∈ U(H). For ∆ = AJ we pick
an element j0 ∈ J and put

uj0 := 1 and uj := χ(εj − εj0) for j 6= j0

to find the required element U = diag((uj)) ∈ U(H). For CJ we first
extend χ to the Z-span of {εj : j ∈ J} (T is divisible) and put U :=
diag(χ(εj), χ(−εj)). For BJ we use the same element U ∈ U((HR)C), and
for DJ we first extend χ to the Z-span of BJ and proceed with the diagonal
operator U with uj0 = 1 and u±j = χ(εj)±1 for j ∈ J (cf. [60, Sect. 6] for
a similar argument in the algebraic context).
Finally, we note that, if g ∈ U(H) induces the trivial automorphism

cg = id on u2(H), then g ∈ T1 in the complex case and g ∈ {±1} in
the real and quaternionic case. We thus obtain Aut(o2(H)) ∼= O(H)/{±1},
Aut(sp2(H)) ∼= Sp(H)/{±1}, and Aut(u2(H)) ∼= PAU(H). �
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Corollary 1.16. — The automorphism groups of o2(H) and sp2(H)
are connected, whereas the automorphism group of u2(H) (H a complex
Hilbert space), has two connected components.

Proof. — It only remains to recall that the groups O(H), Sp(H) and
U(H) are connected for any infinite-dimensional real, quaternionic, resp.,
complex Hilbert space (cf. [40, Thm. II.6]). �

Remark 1.17. — The preceding corollary implies in particular that for
k = o2(H), sp2(H), each automorphism of k acts trivially on the homotopy
groups πj(K), j ∈ N, for any connected Lie group K with Lie algebra k.

Proposition 1.18. — Let H be a complex Hilbert space and σ be a
conjugation of H. For k = u2(H) and the automorphism φ(x) = σxσ of
U2(H), we then have

π2k−1(φ) = (−1)k id for k ∈ N.

For any connected Lie group K with the Lie algebra k = u2(H), π1(K)
either is trivial or isomorphic to Z, there exists a φK ∈ Aut(K) with
L(φK) = φ, and this automorphism satisfies π1(φK) = − id.

Proof. — We pick an orthonormal basis (ej)j∈J in H fixed pointwise by
σ, and represent operators accordingly as matrices. Then the involution φ
is given by component-wise conjugation φ(xij) = (xij). Using the approx-
imation techniques described in [40, Thm. II.14, Cor. II.15], it suffices to
study the action of φ on the subgroup Un(C), fixing all but n basis vectors.
Therefore it follows from [28, Prop. 19] that π2k−1(φ) = (−1)k id .
If K is a connected Lie group with L(K) ∼= u2(H) which is not simply

connected, then it is a quotient of Ũ2(H) by an infinite cyclic group because
Z(Ũ2(H)) ∼= Z by Remark 1.6. The automorphism φ of u2(H) induces an
automorphism φ̃K of Ũ2(H), and this automorphism preserves the center.
In view of Aut(Z) = {± idZ}, it also preserves all subgroups of the center.
We conclude that it also induces an automorphism φK on K. Since φ̃K acts
on Z(Ũ2(H)) ∼= π1(U2(H)) by inversion, we obtain π1(φK) = − id. �

Combining Remark 1.17 with the preceding proposition, we obtain in
particular

Corollary 1.19. — If K is a Hilbert–Lie group for which k is simple
and φ ∈ Aut(K), then π3(φ) = id.
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2. Double extensions of twisted loop algebras

In this section we introduce the double extensions g = L̂φ(k) for the
twisted loop algebras Lφ(k), where we restrict our attention to those au-
tomorphisms φ for which the corresponding root systems ∆g are, as Z-
graded root systems, equal to one of the seven locally affine root systems
A

(1)
J , B

(1)
J , C

(1)
J , D

(1)
J , B

(2)
J , C

(2)
J or BC(2)

J (cf. Definition 2.6).

2.1. Root decomposition of double extensions

Definition 2.1. — A quadratic (topological) Lie algebra is a pair (g, κ),
consisting of a topological Lie algebra g and a non-degenerate invariant
symmetric continuous bilinear form κ on g. Suppose that t ⊆ g is maximal
abelian and elliptic and that

∑
α g

α
C is dense in gC. We extend κ to a

hermitian form on gC which is also denoted κ. Then the root spaces satisfy
κ(gαC, g

β
C) = {0} for α 6= β (cf. Definition 1.7), and in particular, κ is

non-degenerate on tC = g0
C and all the root spaces gαC. We thus obtain

an injective antilinear map [ : tC → t′C, h 7→ h[, h[(x) := κ(x, h), where t′C
denotes the space of continuous linear functionals on tC. For α ∈ t[C := [(tC)
we put α] := [−1(α) and define a hermitian form on on t[C by

(2.1) (α, β) := κ(β], α]) = α(β]) = β(α]).

For h ∈ tC and xα ∈ gαC we then have

(2.2) α(h)κ(xα, xα) = κ([h, xα], xα) = κ(h, [xα, x∗α]).

Since κ is non-degenerate on gαC, we may choose xα such that κ(xα, xα) 6= 0.
Then the non-degeneracy of κ on tC leads to α ∈ t[C and

(2.3) [xα, x∗α] = κ(xα, xα)α].

This shows that ∆ ⊆ t[C, so that (α, β) is defined for α, β ∈ ∆ by (2.1).

Remark 2.2. — If α is compact and α̌ = [xα, x∗α] (cf. Definition 1.9),
then (2.2) and α(α̌) = 2 imply κ(α̌, α̌) = 2κ(xα, xα), which leads for β ∈ t[C
to

(2.4) α] = 2α̌
κ(α̌, α̌) , (α, α) = 4

κ(α̌, α̌) and (β, α) = 2β(α̌)
κ(α̌, α̌) .
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Definition 2.3 (Double extensions). — Let (g, κ) be a real quadratic
Fréchet–Lie algebra and D ∈ der(g, κ) be a derivation which is skew-
symmetric with respect to κ. Then ωD(x, y) := κ(Dx, y) defines a con-
tinuous 2-cocycle on g, and D extends to a derivation D̃(z, x) := (0, Dx)
of the corresponding central extension R⊕ωD g. The Lie algebra

ĝ := g(κ,D) := (R⊕ωD g) o
D̃
R

with the Lie bracket

[(z, x, t), (z′, x′, t′)] = (κ(Dx, x′), [x, x′] + tDx′ − t′Dx, 0)

is called the corresponding double extension. It carries a non-degenerate
invariant symmetric bilinear form

κ̂((z, x, t), (z′, x′, t)) = κ(x, x′) + zt′ + z′t,

so that (ĝ, κ̂) also is a quadratic Fréchet–Lie algebra (cf. [33]). In terms of
the hermitian extension of κ to gC, the Lie bracket on ĝC is given by

(2.5) [(z, x, t), (z′, x′, t′)] = (κ(Dx, x′), [x, x′] + tDx′ − t′Dx, 0).

Example 2.4. — Let (k, 〈·, ·〉) be a Hilbert–Lie algebra and let t ⊆ k

be a maximal abelian subalgebra, so that k has a root decomposition with
respect to t (cf. [55]) and all roots in ∆(k, t) are compact. We consider the
corresponding loop algebra L(k) of 2π-periodic smooth functions R → k.
Then

〈ξ, η〉 := 1
2π

∫ 2π

0
〈ξ(t), η(t)〉 dt

defines a non-degenerate invariant symmetric bilinear form on L(k). We use
the same notation for the unique hermitian extensions of 〈·, ·〉 to kC and to
L(k)C. Further, Dξ := ξ′ is a 〈·, ·〉-skew symmetric derivation on L(k), so
that we may form the associated double extension

g := L̂(k) := (R⊕ωD L(k)) o
D̃
R,

where ωD(ξ, η) = 〈ξ′, η〉 and D̃(z, ξ) := (0, ξ′) is the canonical extension of
D to the central extension R⊕ωD L(k) (cf. Definition 2.3). This Lie algebra
is called the affinization of the quadratic Lie algebra (k, 〈·, ·〉). Now

κ((z1, ξ1, t1), (z2, ξ2, t2)) := z1t2 + z2t1 + 〈ξ1, ξ2〉

is a continuous invariant Lorentzian symmetric bilinear form on g and tg :=
R⊕ t⊕R is maximal abelian and elliptic in g (cf. Definition 1.7(b)). In the
following we identify t with the subspace {0} × t× {0} of tg. We put

(2.6) c := (i, 0, 0) ∈ ig ⊆ gC, d := (0, 0,−i) and en(t) := eint.
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Then c is central and the eigenvalue of ad d on en ⊗ kC is n. It is now easy
to verify that the set ∆g of roots of (g, tg) can be identified with the set

(∆(k, t)× Z) ∪ ({0} × (Z \ {0})) ⊆ it′ × R,
where (α, n)(z, h, t) := (0, α, n)(z, h, t) = α(h) + itn.

The roots (0, n), 0 6= n ∈ Z, corresponding to the root spaces en⊗tC, n 6= 0,
are of nilpotent type and (∆g)c = ∆(k, t)× Z is the set of compact roots.
For α ∈ ∆(k, t) pick xα ∈ kαC with [xα, x∗α] = α̌, so that we obtain with

equations (2.3) and (2.4) the relation

(2.7) 〈xα, xα〉 = 〈α̌, α̌〉2 = 2
(α, α) ,

which leads with (2.5) to

〈D(en⊗xα), e−n ⊗ x∗α〉 = 〈inen⊗xα,−en⊗xα〉 = −in〈xα, xα〉 = − 2in
(α, α) .

For the corresponding root vectors x(α,n) = en⊗xα ∈ g
(α,n)
C , we thus obtain

with (2.5)

[en ⊗ xα, (en ⊗ xα)∗] = [en ⊗ xα, e−n ⊗ x∗α] =
(
− 2in

(α, α) , α̌, 0
)
.

Since, by definition, (α, n) takes the value 2 on this element, it follows that

(2.8) (α, n)̌ =
(
− 2in

(α, α) , α̌
)

= α̌− 2n
(α, α)c = α̌− n‖α̌‖2

2 c.

For a linear functional λ ∈ it′g ∼= iR×it′×iR and λc := λ(c), we conclude
that λ is an integral weight if and only if

λ
(
(α, n)̌

)
= λ(α̌)− 2n

(α, α)λc ∈ Z for 0 6= n ∈ Z, α ∈ ∆(k, t)

(cf. Definition 1.9(c)). This means that

(2.9) P(g, tg) =
{
λ ∈ it′g : λ|t ∈ P(k, t), (∀α ∈ ∆(k, t)) λc ∈

(α, α)
2 Z

}
.

Example 2.5. — In addition to the setting of the preceding example,
we assume that k is semisimple and let φ ∈ Aut(k) be an automorphism of
order N . Then

Lφ(k) :=
{
ξ ∈ C∞(R, k) : (∀t ∈ R) ξ

(
t+ 2π

N

)
= φ−1(ξ(t))

}
is a closed Lie subalgebra of L(k). Accordingly, we obtain a Lie subalgebra

g := L̂φ(k) := (R⊕ωD Lφ(k)) o
D̃
R ⊆ L̂(k),

called the φ-twisted affinization of (k, 〈·, ·〉).
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Let t ⊆ kφ be a maximal abelian subalgebra, so that tk := zk(t) is maximal
abelian in k by Lemma D.2. Then tg = R⊕t⊕R is maximal abelian in Lφ(k)
and ∆g := ∆(g, tg) can be identified with the set of pairs (α, n), where

(α, n)(z, h, t) := (0, α, n)(z, h, t) = α(h) + itn, n ∈ Z, α ∈ ∆n,

where ∆n ⊆ it′ is the set of t-weights in knC = {x ∈ kC : φ−1(x) = e2πin/Nx}.
For (α, n) 6= (0, 0), the corresponding root space is

g
(α,n)
C = en ⊗ k

(α,n)
C = en ⊗ (kαC ∩ knC), where en(t) = eint.

The discussion in Appendix D implies that

(∆g)c = {(α, n) : 0 6= α ∈ ∆n, n ∈ Z}.

This leads to the N -fold layer structure

(∆g)c =
N−1⋃
n=0

∆×n × (n+NZ), where ∆×n := ∆n \ {0}.

For n ∈ Z and x ∈ k
(α,n)
C with [x, x∗] = α̌ (cf. Appendix D), the element

en ⊗ x ∈ g
(α,n)
C satisfies (en ⊗ x)∗ = e−n ⊗ x∗, which leads to the coroot

[en ⊗ x, (en ⊗ x)∗] = (α, n)̌ =
(
− 2in

(α, α) , α̌, 0
)

= α̌− 2n
(α, α)c.

As (α, n) ∈ ∆g implies (α, n + kN) ∈ ∆g for every k ∈ Z, we obtain the
following description of the integral weights
(2.10)

P(g, tg) =
{
λ ∈ it′g : (∀α ∈ ∆×n , n ∈ Z) λc ∈

(α, α)
2N Z, λ(α̌) ∈ Z+ 2n

(α, α)λc
}
.

Suppose that k is simple. Then Lemma D.3 implies that (∆g)c does not
decompose into two mutually orthogonal proper subsets, so that

L̂φ(k)alg
C := Cc+ Cd+ spanC ∆̌g +

∑
(α,n)∈∆g

g
(α,n)
C

is a locally extended affine Lie algebra in the sense of [43, Def. 1.2] (see
also [35]). Since only the roots of the form (0, n), n ∈ Z, are isotropic, [43,
Prop. 2.5] further implies that (∆g)c is a locally affine root system.

Definition 2.6. — Instead of going into the axiomatics of locally affine
root systems developed in [67], we only recall that a locally affine root
system is in particular a subset ∆ of a vector space V endowed with a
positive semidefinite form. For a reduced locally finite root system ∆ in the
euclidean space V (such as AJ , BJ , CJ or DJ from Examples 1.10, 1.12,
1.13), we put ∆(1) := ∆× Z ⊆ V × R, where the scalar product on V × R
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is defined by ((α, t), (α′, t′)) := (α, α′). According to Yoshii’s classification
([67, Cor. 13]), there exist 7 isomorphy classes of irreducible reduced locally
affine root system of infinite rank: the four untwisted reduced root systems
A

(1)
J , B

(1)
J , C

(1)
J , D

(1)
J , and, for BCJ := BJ ∪ CJ , the three twisted root

systems

B
(2)
J :=

(
BJ × 2Z

)
∪
(
{±εj : j ∈ J} × (2Z + 1)

)
,

C
(2)
J := (CJ × 2Z) ∪

(
DJ × (2Z + 1)

)
(BCJ)(2) := (BJ × 2Z) ∪

(
BCJ × (2Z + 1)

)
.

Remark 2.7. — Let q : V × R → V, (v, t) 7→ v denote the projection.
Then the root systems ∆(2) satisfy q(∆(2)) = ∆, but ∆0 := {α ∈ ∆: (α, 0)∈
∆(2)} may be smaller, as the example BCJ shows. However, in all 7 cases
the subsystem ∆0 ⊆ ∆ contains enough elements to obtain all gener-
ating reflections of the Weyl group of ∆. Hence the subgroup W0 :=
〈r(α,0) : α ∈ ∆0〉 ⊆ Ŵ is isomorphic to the Weyl group W of ∆.

2.2. Three involutive automorphisms

In this subsection we introduce three involutive automorphisms whose
significance lies in the fact that these automorphism lead to the three
twisted affine root systems of infinite rank B

(2)
J , C(2)

J and BC
(2)
J . In the

following we call these three automorphism standard.

Example 2.8. — Consider k = o2(H), where H is a real infinite-dimen-
sional Hilbert space. We consider the automorphism φ(x) :=gxg−1, where g
is the orthogonal reflection in the hyperplane v⊥0 for some unit vector v0∈H.
Then kφ ∼= o2(v⊥0 ) ∼= o2(H) is a simple Hilbert–Lie algebra. Pick

t ⊆ kφ = {x ∈ k : xv0 = 0}

maximal abelian with dim(ker(t) ∩ v⊥0 ) = 1. Then tk = zk(t) is maximal
abelian (Lemma D.2) with ker(tk) = {0} and t is a hyperplane in tk. Hence
the root system ∆(k, tk) is of type DJ , and ∆(kφ, t) is of type BJ0 , where
J0 = J \ {j0} for some j0 ∈ J (cf. Example 1.13). It follows from [43,
Thm. 5.7(ii)] that the set of compact roots of L̂φ(k) is of type B(2)

J (cf.
Example 2.5).

Example 2.9. — To obtain a root system of type C(2)
J , we start with

k = u2(H) for a complex Hilbert space H. We write H as H0 ⊕ H0 for a
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complex Hilbert space H0 endowed with a conjugation σ0 and extend this
conjugation by σ(x, y) := (σ0(x), σ0(y)) to a conjugation of H. Then

φ(g) = S(g>)−1S−1 = SσgσS−1 for S =
(

0 1
−1 0

)
defines an involutive automorphism of U2(H). Let (ej)j∈J be an ONB of
H0, so that {ej , Sej : j ∈ J} is an ONB of H. Let t ⊆ kφ be those elements
which are diagonal with respect to this ONB. Then tk = zk(t) consists of all
elements in u2(H) which are diagonal with respect to this ONB, and from
[43, Thm. 5.7(ii)] we know that the set of compact roots of L̂φ(k) is of type
C

(2)
J . As σ̃ := Sσ = σS is an anticonjugation of H, it defines a quaternionic

structure HH = (H, σ̃). In this sense we have

U2(H)φ = {g ∈ U2(H) : σ̃gσ̃−1 = g} ∼= Sp2(HH).

Example 2.10. — To obtain a root system of type BC(2)
J , we consider

k = u2(H) for a complex Hilbert space H. We write H as H0 ⊕ C ⊕ H0
for a complex Hilbert space H0 endowed with a conjugation σ0 and extend
σ0 by σ(x, y, z) := (σ0(x), y, σ0(z)) to a conjugation of H. We consider the
automorphism

φ(g) = S(g−1)>S−1 for S =

0 0 1
0 1 0
1 0 0

 , g ∈ U2(H).

As S commutes with σ, τ := Sσ is a conjugation on H with φ(g) = τgτ ,
so that

U2(H)φ={x∈U2(H) : S(g−1)>S−1 =g}={x ∈ U2(H) : τgτ=g} ∼= O2(Hτ).

In particular, kφ ∼= o2(H)τ is a simple Hilbert–Lie algebra.
Pick an ONB (ej)j∈J of H0, so that the elements (ej , 0, 0), (0, 0, ej),

j ∈ J , together with (0, 1, 0), form an ONB of H. Let t ⊆ kφ be those
elements which are diagonal with respect to this ONB. Then tk = zk(t)
consists of all elements in u2(H) which are diagonal with respect to this
ONB, and from [43, Thm. 5.7(ii)] we know that the set of compact roots
of L̂φ(k) is of type BC(2)

J .

Remark 2.11. — In Examples 2.9 and 2.10 the operator S is contained in
the identity component of U(H) (Theorem 1.15), so that in both cases, the
involution φ is homotopic to the automorphism x 7→ −x> = σxσ of u2(H).

We now record some topological properties of the subgroup Kφ for the
standard involutions.
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Lemma 2.12. — If K is simply connected, then Kφ is connected for
each of the standard involutions. It is 1-connected in all cases except the
BC

(2)
J -case, in which π1(Kφ) ∼= Z/2.

Proof. — (a) First we consider K := O2(H)0 and φ(k) = gkg−1, where
g ∈ O(H) is the reflection in a hyperplane v⊥0 (Example 2.8). We show that
the group K̃φ̃ of fixed points of the lifted automorphism φ̃ of the 2-fold
covering group qK : K̃ → K is connected.
Let O2(H)± denote the two connected components of O2(H), where 1 ∈

O2(H)+ (Theorem 1.5). The group O2(H)φ ∼= {±1} × O2(v⊥0 ) has four
connected components, two of which lie in O2(H)0, so that

Kφ ∼= ({1} ×O2(v⊥0 )+)× ({−1} ×O2(v⊥0 )−)

has two connected components and (Kφ)0 ∼= O2(v⊥0 )+. We conclude that
π1(Kφ) ∼= Z/2 (Theorem 1.5) and that the inclusion j : (Kφ)0 → K in-
duces an isomorphism of fundamental groups, so that K̃φ̃ has a simply
connected identity component which is the universal covering group of Kφ

0
and contains ker(qK). In particular, q−1

K (Kφ
0 ) is connected. To see that

K̃φ̃ is connected, it therefore suffices to show that qK maps it into Kφ
0 ,

which is equivalent to (−1, r) 6∈ qK(K̃φ̃) for any reflection r : v⊥0 → v⊥0 in
a hyperplane w⊥ of v⊥0 . Let V := spanR{v0, w} ∼= R2. Then the inclusion
j : T ∼= SO(V ) → O2(H) induces a surjection Z ∼= π1(T) → π1(O2(H))
([40]), so that it lifts to an inclusion j̃ : Spin(V ) → K̃, where Spin(V )
denotes the unique 2-fold covering of SO(V ). In Spin(V ) the inverse im-
age of − idV consists of two elements of order 4 which are exchanged by
φ̃. Therefore (−1, r) does not lift to a φ̃-fixed element. This proves the
connectedness of K̃φ̃.
(b) For K = U2(H) and φ(g) = σ̃gσ̃−1 as in Example 2.9, the subgroup

Kφ ∼= Sp(HH) is 1-connected by Theorem 1.5. Since (K̃φ)0 is a covering
of Kφ, this group is also simply connected and isomorphic to Kφ. For the
universal covering qK : K̃ → K we thus obtain

q−1
K (Kφ) ∼= ker qK ×Kφ ∼= Z×Kφ,

and φ̃ acts by − id on π1(K) (Proposition 1.18). Therefore K̃φ̃ ∼= Kφ is
connected and hence 1-connected.
(c) For K = U2(H) and φ(g) = τgτ as in Example 2.10, the group

Kφ ∼= O2(Hτ ) has 2 connected components and satisfies π1(Kφ) ∼= Z/2
(Theorem 1.5). Since the inclusions SOn(R) → Un(C) induces the trivial
homomorphism π1(SOn(R)) ∼= Z/2 → π1(Un(C)) ∼= Z for each n > 2,
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the same holds for the inclusion (Kφ)0 ↪→ K (cf. [40]). In particular, this
inclusion lifts to a homomorphism (Kφ)0 → K̃, so that π1(K̃φ̃) ∼= Z/2.

To see that K̃φ̃ is connected, it suffices to show that, for any reflection
r ∈ O2(Hτ ) in a hyperplane v⊥0 ⊆ Hτ , there is no φ̃-invariant inverse image
under the covering map qK : K̃ → K. Since the homotopy groups of U2(H)
are obtained from the direct limit lim

−→
Un(C) (cf. [40]), it suffices to prove

the corresponding assertion for the case where n := dimH < ∞. Then
Ũn(C) ∼= SUn(C)oR with φ̃(g, t) = (g,−t), so that Ũn(C)φ̃ ∼= SUn(C)φ =
SOn(R) is connected. This implies that K̃φ̃ is connected in the general
case. �

2.3. The adjoint action of twisted loop groups

We claim that the following formula describes the adjoint action of Lφ(K)
on g = L̂φ(k):

(2.11) Adg(g)(z, ξ, t) =
(
z + 〈δl(g), ξ〉 − t

2‖δ
r(g)‖2,Ad(g)ξ − tδr(g), t

)
where δr(g) = g′g−1 ∈ Lφ(k) denotes the right logarithmic derivative
and δl(g) = g−1g′ ∈ Lφ(k) denotes the left logarithmic derivative (cf.
[52, Prop. 4.9.4] for the case where K is compact and a different choice
of sign on the center). In fact, modulo the center, the formula g.(ξ, t) =
(Ad(g)ξ− tδr(g), t) defines a smooth action of Lφ(K) on Lφ(k)oR, whose
derived action is given by

η.(ξ, t) = ([η, ξ]− tDη, 0) = [(η, 0), (ξ, t)]

which implies that it is the adjoint action of the group Lφ(K). The for-
mula for the central component is now obtained from the invariance of the
Lorentzian form on L̂φ(k) under the adjoint action.

Remark 2.13. — Since we need it below, we take a closer look at the
affine action of Lφ(K) on Lφ(k) by

g ∗ ξ := Ad(g)ξ − δr(g) = Ad(g)ξ − g′g−1.

To understand its orbits, for a smooth curve ξ : R → k, let γξ : R → K be
the unique smooth curve with γξ(0) = 1 and δl(γξ) = ξ. We consider the
smooth holonomy maps

Holt : Lφ(k)→ K, Holt(ξ) := γξ(t), t ∈ R.
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If ξ ∈ Lφ(k), then

δl(γξ)t+2π/N = ξ
(
t+ 2π

N

)
= L(φ)−1(ξ(t)) = δl(φ−1 ◦ γξ)t

implies that

(2.12) γξ

(
t+ 2π

N

)
= Hol2π/N (ξ)φ−1(γξ(t)).

From

(2.13) δl(γξg−1) = δl(g−1) + Ad(g)ξ = g ∗ ξ,

we derive the following equivariance property

Hols(g ∗ ξ) = g(0) Hols(ξ)g(s)−1.

For s = 2π/N , we obtain in particular

(2.14) Hol2π/N (g ∗ ξ) = g(0) Hol2π/N (ξ)φ−1(g(0)−1).

Proposition 2.14. — The map Hol2π/N : Lφ(k) → K is equivariant
with respect to the action of Lφ(K) on K for which g acts by cφg(0), where
cφk(k′) := kk′φ−1(k−1) is the φ−1-twisted conjugation map. The fibers of
Hol2π/N coincide with the orbits of the subgroup

Lφ(K)∗ := {g ∈ Lφ(K) : g(0) = 1}

and the image of the Lφ(K)-orbits are the φ−1-twisted conjugacy classes
in K.

Proof. — The asserted equivariance is (2.14). In particular, Hol2π/N is
constant on the orbits of the subgroup Lφ(K)∗. If Hol2π/N(ξ1)=Hol2π/N(ξ2),
then (2.12) implies that the smooth curve g := γ−1

ξ2
γξ1 : R→ K is contained

in Lφ(K)∗. It satisfies γξ2 = γξ1g
−1, so that (2.13) implies g ∗ ξ1 = ξ2. This

completes the proof. �

3. Double extensions of twisted loop groups

In the preceding section we have introduced the double extension L̂φ(k)
of the Fréchet–Lie algebra Lφ(k) of smooth φ-twisted loops. Since its con-
struction involves a central extension, it is not obvious that this extension
is the Lie algebra of a Lie group. In this section we show that such a group
always exists for a simple infinite-dimensional Hilbert–Lie algebra k, in par-
ticular, we obtain a corresponding 1-connected Lie group which we denote
L̂φ(K).
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3.1. The central extension for smooth loops

Remark 3.1. — Let K be a connected Lie group for which k is a simple
Hilbert–Lie algebra and write ev0 : Lφ(K) → K, f 7→ f(0) for the evalua-
tion map. In [48, Prop. 3.5, Rem. 3.6], we have seen that the long exact
homotopy sequence of the Lie group extension

1→ Lφ(K)∗ := ker(ev0)→ Lφ(K) ev0−−−−−−→K → 1

provides crucial information on the homotopy groups of Lφ(K). For each
j > 1, we obtain a short exact sequence

1→ πj(K)φ := πj(K)/ im(πj(φ)− id) ↪→ πj−1(Lφ(K))→→ πj−1(K)φ → 1.

As K is connected, π2(K) vanishes (Theorem 1.5) and π3(φ) = id (Corol-
lary 1.19), we obtain in particular

π0(Lφ(K)) ∼= π1(K)φ, π1(Lφ(K)) ∼= π1(K)φ and π2(Lφ(K)) ∼= π3(K) ∼= Z.

If K is 1-connected, these relations imply that Lφ(K) is also 1-connected.

Definition 3.2. — In the following we shall identify the Lie algebra
L(T) of the circle group T ⊆ C× with iR, so that the exponential function
is given by expT(it) = eit with ker(expT) = 2πiZ.

The following theorem generalizes the corresponding result for compact
target groups which can be found in [52, Sect. 4.4] for the untwisted case.

Definition 3.3. — We say that the scalar product 〈·, ·〉 on the simple
Hilbert–Lie algebra k is normalized if ‖α̌‖2 = 2 holds for the coroots of all
long roots(2) α ∈ ∆(k, tk), where tk ⊆ k is maximal abelian. In view of
(2.4), this is equivalent to (α, α) = 2 for all long roots.

Theorem 3.4. — Let K be a 1-connected simple Hilbert–Lie group and
suppose that the scalar product on k is normalized. Then the central Lie
algebra extension L̃φ(k) defined by the cocycle

ω(ξ, η) = 1
2π

∫ 2π

0
〈ξ′(t), η(t)〉 dt

integrates to a 2-connected central Lie group extension

1→ Z → L̃φ(K)→ Lφ(K)→ 1,

where Z = exp(Ric) and ker(exp |Ric) = 2πNZic.

(2)At most three root lengths occur, the long roots are those of maximal length.
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Proof. — Let ωl ∈ Ω2(Lφ(K),R) denote the left invariant 2-form cor-
responding to the 2-cocycle ω. We derive from Remark 3.1 that Lφ(K) is
1-connected because K is 1-connected. Therefore we can use [39, Thm. 7.9]
to see that the required simply connected Lie group extension L̃φ(K) exists
if and only if the range of the period homomorphism

perω : π2(Lφ(K))→ R, [σ] 7→
∫
S2
σ∗ωl

is discrete and in this case Z ∼= R/ im(perω).
To use the results from [48], where the circle is identified with R/Z, we

have to translate them to our context where S1 ∼= R/ 2π
N Z. So let

L1
φ(K) :=

{
f ∈ C∞(R,K) : (∀t ∈ R) f(t+ 1) = φ−1(f(t))

}
and observe that

Φ: Lφ(K)→ L1
φ(K), Φ(ξ)(t) := ξ(2πt/N)

is an isomorphism of Fréchet–Lie groups. For the cocycle ω1(ξ, η) :=∫ 1
0 〈ξ
′(t), η(t)〉 dt on L1

φ(k) we then obtain

(
L(Φ)∗ω1)(ξ, η) =

∫ 1

0
〈ξ′(2πt/N)2π

N
, η(2πt/N)〉 dt

=
∫ 2π/N

0
〈ξ′(t), η(t)〉 dt = 2π

N
ω(ξ, η).

This implies that im(perω) = N
2π im(perω1).

According to [48, Lemma 3.10], the period homomorphism perω1 of the
restriction of ω1 to the ideal L1

φ(k)∗ coincides with the homomorphism
1
2 perCk

: π2(L1
φ(K)∗) ∼= π3(K) ∼= Z→ R,

where Ck(x, y, z) := 〈[x, y], z〉 is the 3-cocycle defined by the scalar product
on k and

perCk
: π3(K)→ R, [σ] 7→

∫
S3
σ∗Clk

is the period homomorphism of the corresponding closed 3-form Clk on K.
This map can be evaluated quite explicitly as follows. Let α ∈ ∆(k, tk) be a
long root and k(α) ⊆ k be the corresponding su2-subalgebra and α̌ ∈ it be
the corresponding coroot. The associated homomorphism γα : SU2(C) →
K induces an isometric embedding L(γα) : su2(C)→ k with respect to the
normalized scalar products. Hence [48, Ex. 3.11] implies that

1
2 perCk

([γα]) = 1
2
‖α̌‖2

2 8π2 = 4π2.
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Since π2(K) vanishes (Remark 3.1), [48, Thm. 3.12] thus leads to

im(perω) = N

2π im(perω1) = 2πNZ.

As π2(Lφ(K)∗) ∼= Z, the non-zero homomorphism perω is injective. Since
Lφ(K) is 1-connected by Remark 3.1, [39, Rem. 5.12(b)] now implies that,
for Z := R/ im(perω), the group L̃φ(K) is 2-connected. �

Definition 3.5. — Since the rotation action α of R on Lφ(K) lifts
uniquely to a smooth action on the central extension L̃φ(K) [31, Thm. V.9],
we obtain a 2-connected Fréchet–Lie group

L̂φ(K) := L̃φ(K) oα R.

Remark 3.6. — If K is a simple Hilbert–Lie group, then it has a univer-
sal complexification ηK : K → KC which has a polar decomposition, i.e.,
the map

K × k→ KC, (k, x) 7→ k exp ix
is a diffeomorphism (cf. [40]). This property is inherited by the group
Lφ(K), which implies in particular that the inclusion Lφ(K) → Lφ(KC)
induces isomorphisms of all homotopy groups. Hence the cocycle ω and
its complex bilinear extension to Lφ(kC) ∼= Lφ(k)C have the same period
group. Now [39, Thm. 7.9] implies the existence of a central extension of
complex Lie groups

1→ C× → L̃φ(KC)→ Lφ(KC)→ 1

for which the inclusion L̃φ(K) ↪→ L̃φ(KC) is a universal complexification
and a weak homotopy equivalence.

In the preceding theorem we have seen the importance of normalizing
the scalar product. To evaluate the period group in all cases, it is thus
important to identify the normalized scalar products in all cases.

Remark 3.7 (Normalization of the scalar product). — (a) For k = u2(H)
all roots in ∆(k, t) = AJ have the same length and the coroots correspond
to diagonal matrices of the form Ejj − Ekk, so that 〈x, y〉 = tr(xy∗) is a
scalar product with ‖α̌‖2 = 2 for all roots α.

(b) For k = sp2(HH), the long roots are of the form±2εj and their coroots
are diagonal matrices of the form (Ejj ,−Ejj) with respect to the decom-
position of the complex Hilbert space HH = `2(J,C)⊕ `2(J,C). Therefore
〈x, y〉 = trC(xy∗) satisfies ‖α̌‖2 = 2 for all long roots α.

(c) For k = o2(HR) and ∆(k, t) of type BJ or DJ , the long roots are
±εj ± εk, j 6= k. On the complex Hilbert space H := (HR)C their coroots
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correspond to diagonal matrices of the form ±Ejj∓E−j,−j±Ekk∓E−k,−k,
j 6= k (cf. Example 1.13) satisfying

trC((±Ejj ∓ E−j,−j ± Ekk ∓ E−k,−k)2) = 4,

so that 〈x, y〉 = 1
2 trC(xy∗) = 1

2 trR(xy>) satisfies ‖α̌‖2 = 2 for all long
roots α.
(d) In Example 2.8 we have the inclusion kφ ∼= o2(v⊥0 ) ↪→ k = o2(HR),

and (c) shows that this is isometric with respect to the normalized scalar
products.
(e) In Example 2.9 we have for H = H2

0 = (H0)H the inclusion kφ ∼=
sp2((H0)H) ↪→ k = u2(H), so that (a) and (b) imply that it is isometric
with respect to the normalized scalar products.
(f) In Example 2.10 we have the inclusion η : kφ ∼= o2(Hτ ) ↪→ k = u2(H),

so that (c) implies that 〈η(x), η(y)〉 = 2〈x, y〉 for x, y ∈ kφ. In particular,
the roots α = ±εj ± εk ∈ ∆(kφ, t) = BCJ satisfy ‖α̌‖2k = 4. Accordingly we
find ‖εj ± αk‖2 = 1 and ‖2εj‖2 = 2.

At this point we can also make the description of the weight set P(g, t)
from (2.10) more explicit for all 7 locally affine root systems.

Example 3.8. — (a) For the untwisted root systems X(1)
J , we have seen

in (2.9) that λ ∈ it∗g is an integral weight if and only if λc ∈ ‖α‖
2

2 Z for every
root α ∈ XJ and λ|t is a weight of XJ . As ‖α‖2 = 2 for the long roots, the
condition on λc is equivalent to λc ∈ Z.
(b) For B(2)

J we find the condition λc ∈ ‖α‖
2

4 Z for every root α ∈ BJ , i.e.,
λc ∈ 1

2Z, and that λ(α̌) ∈ Z for α ∈ ∆0 = BJ . As ∆1 = {±εj : j ∈ J} ⊆ ∆0
and ‖εj‖ = 1, this implies

λ(α̌) ∈ Z + 2
‖α‖2

λc for α ∈ ∆1.

Therefore
P(g, tg) =

{
λ ∈ it′g : λc ∈ 1

2Z, λ ∈ P(BJ)
}
.

(c) For C(2)
J , the long roots of CJ are of the form ±2εj , j ∈ J , so that

our normalization leads to ‖2εj‖2 = 2 (cf. Remark 3.7(e)), which in turn
implies ‖εj‖2 = 1

2 . The condition λc ∈ ‖α‖
2

4 Z for every root α leads to
λc ∈ 1

2Z. We further obtain λ(α̌) ∈ Z for α ∈ ∆0 = CJ and this already
implies

λ(α̌) ∈ Z + 2
‖α‖2

λc = Z + 2λc for α ∈ ∆1 = DJ .

Therefore
P(g, tg) =

{
λ ∈ it′g : λc ∈ 1

2Z, λ ∈ P(CJ)
}
.
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(d) For BC(2)
J we have seen in Remark 3.7(f) that ‖εj ± εk‖2 = 1 and

‖2εj‖2 = 2. Hence the condition λc ∈ ‖α‖
2

4 Z for every root α ∈ BCJ means
that λc ∈ 1

2Z. We further obtain λ(α̌) ∈ Z for α ∈ ∆0 = BJ which means
that λj ∈ 1

2Z for every j with λj − λk ∈ Z for j 6= k. An integral weight λ
also has to satisfy

λ(α̌) ∈ Z + 2
‖α‖2

λc for α ∈ ∆1 = BCJ .

For α ∈ BJ , this is satisfied because ‖α‖2 ∈ { 1
2 , 1}. For α = ±2εj , it means

that
±λj = λ(α̌) ∈ Z + λc.

Therefore the parity of 2λc equals the parity of 2λj .
If we also take into account that λ should be continuous, i.e., (λj) ∈

`2(J,R), then only finitely many λj are non-zero, which leads to λj ∈ Z
and hence to λc ∈ Z. We therefore have

P(g, tg) =
{
λ ∈ it′g : λc ∈ Z, λ ∈ P(BJ)

}
.

3.2. The topology of the fixed point group L̂(K)γ̃

Let K be a 1-connected simple infinite-dimensional Hilbert–Lie group
and L̂(K) ∼= L̃(K) o R the simply connected Fréchet–Lie group with Lie
algebra L̂(k) from Definition 3.5. Let γ̂ ∈ Aut(L̂(K)) be the automorphism
induced by the automorphism γ of L(K) given by

γ(f)(t) = φ
(
f
(
t+ 2π

N

))
and L(γ̂)(z, ξ, t) = (z,L(γ)ξ, t).

Then L̂(K)γ̂ = L̃(K)γ̂ o R is a Lie subgroup with the Lie algebra
L̃(k)L(γ̂) o R. Here we use that the central extension L̃(K) of the locally
exponential Lie group L(K) is again locally exponential (cf. [16] and also
[41, Thm. IV.2.10]).

Proposition 3.9. — The inclusion L̂φ(k) ↪→ L̂(k) integrates to a Lie
group morphism L̂φ(K) → L̂(K) whose kernel is the subgroup CN :=
{z∈Z ∼= T : zN =1} and whose range is L̂(K)γ̂ . In particular, π1(L̂(K)γ̂) ∼=
CN .

Proof. — With the normal subgroup L(K)∗ := {f ∈ L(K) : f(0) = 1} E
L(K) of based loops, we obtain the semidirect decomposition L(K) ∼=
L(K)∗ o K corresponding to the inclusion K ↪→ L(K) as the constant
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maps. Then L̃(K) ∼= L̃(K)∗oK, where L̃(K)∗ is a simply connected central
T-extension of L(K)∗.
As γ commutes with the translation action of R on L(K), L̂(K)γ̂ ∼=

L̃(K)γ̂ oR, and we have a central extension

1→ T→ L̃(K)γ̂ → L(K)γ → 1.

In Remark 3.1 we have seen that Lφ(K) = L(K)γ is 1-connected, so that
L̃(K)γ̂ is a central T-extension of a 1-connected Lie group. Therefore it is
connected, and its fundamental group is isomorphic to the cokernel of the
corresponding period homomorphism

per : π2(L(K)γ)→ π1(T) ∼= 2πZ

(cf. [39, Rem. 5.12(b)]).
Using Remark 3.1 again, we see that the triviality of π3(φ) (Corol-

lary 1.19) implies that we have a commutative diagram
Z ∼= π3(K) ∼= π2(Lφ(K)∗)

∼=−−−−−−−−−→ π2(Lφ(K))y y
Z ∼= π3(K) ∼= π2(L(K)∗)

∼=−−−−−−−−−→ π2(L(K)).
For the group

Lcφ(K) :=
{
f ∈ C(R,K) : (∀t ∈ R) f

(
t+ 2π

N

)
= φ−1(f(t))

}
of continuous maps, it is easy to see that

Lcφ(K)∗ ∼=
{
f ∈ C(R,K)∗ : (∀t ∈ R) f

(
t+ 2π

N

)
= f(t)

}
,

which coincides with the range of the map

Φ: Lc(K)∗ → Lc(K)∗, Φ(f)(t) := f(Nt).

Since the inclusion of smooth into continuous maps induced isomorphisms
of homotopy groups (cf. [48, Cor. 3.4]), [31, Lemma 1.10] now implies that
the vertical arrows in the above diagram correspond to the endomorphism
Z→ Z, n 7→ Nn. We conclude that coker(per) ∼= Z/NZ and from that the
assertion follows immediately. �

4. d-extremal weights

For g = L̂φ(k), recall its root decomposition and the elements c and d

from (2.6) in Example 2.4. We write Ŵ =W(g, t̂) for the Weyl group of g.
In this section we derive a characterization of the set of those elements
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λ ∈ it∗g (the space of all linear functionals which are not necessarily con-
tinuous) which are d-minimal in the sense that λ(d) = min(Ŵλ)(d). In
Sections 5 and 6 below, we see that these elements parametrize the irre-
ducible semibounded representations of L̂φ(K).

Definition 4.1. — Let Ŵ denote the Weyl group of the pair (g, tg) (cf.
Definition 1.9). We call λ ∈ it∗g is d-minimal if λ(d) = min〈Ŵλ, d〉.

Lemma 4.2 ([20], Lemma 3.8). — If (Ŵλ)(d) is bounded from below,
then λc > 0. If, in addition, λc = 0, then λ is fixed by Ŵ.

Proposition 4.3 ([20] Cor. 3.6, Prop 3.9). — Suppose that (∆g)c is one
of the 7 irreducible locally affine root systems with their natural Z-grading.
For λ ∈ it∗g with λc > 0, the following are equivalent:

(i) λ is d-minimal.
(ii) (∀α ∈ ∆(k, t), n = 1, 2) (α, n) ∈ (∆g)c ⇒ |λ(α̌)| (α,α)

2n 6 λc.
(iii) For α = (α, n) ∈ (∆g)c with n > 0 we have λ(α̌) 6 0.

Theorem 4.4. — For the seven irreducible locally affine root systems
X

(r)
J = (∆g)c ⊆ it′g of infinite rank, a linear functional λ ∈ it∗g with λc > 0

is d-minimal if and only if the following conditions are satisfied by the
corresponding function λ : J → R, j 7→ λj :
(A(1)

J ) max λ−minλ 6 λc.

(B(1)
J ) |λj |+ |λk| 6 λc for j 6= k.

(C(1)
J ) |λj | 6 λc for j ∈ J .

(D(1)
J ) |λj |+ |λk| 6 λc for j 6= k.

(B(2)
J ) |λj | 6 λc for j ∈ J .

(C(2)
J ) |λj |+ |λk| 6 2λc for j 6= k.

(BC(2)
J ) |λj | 6 λc for j ∈ J .

Proof. — In all cases where the normalization of the scalar product
is such that ‖εj‖2 = 1 for every j, this follows immediately from [20,
Thm. 3.10], and this is the case for A(1)

J , B(1)
J and D

(1)
J , where the long

roots are of the form ±εj ± εk, and for B(2)
J it follows from Remark 3.7(d).

In all other cases, the normalization for the scalar product (·, ·)∗ in [20,
Thm. 3.10] by (εj , εj)∗ = 1 is different and we have to take a closer look
at the consequences. For C(1)

J the long roots are of the form ±2εj , which
leads to the normalization ‖εj‖2 = 1

2 . For C
(2)
J and BC

(2)
J we have the

same normalization by Remark 3.7(e),(f), which leads to (·, ·)∗ = 2(·, ·)
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in these 3 cases. The relation |λ(α̌)| (α,α)
2n 6 λc is therefore equivalent to

|λ(α̌)| (α,α)∗
2n 6 2λc. Replacing λc in [20, Thm. 3.10] by 2λc now leads to

the correct inequalities in these 3 cases. �

Remark 4.5. — (a) The preceding theorem implies that d-minimal
weights λ ∈ it∗g define bounded functions λ : J → R and, moreover, that
the boundedness of λ is equivalent to the existence of a λc > 0 such that a
corresponding λ ∈ t∗g is d-minimal.
(b) If λ ∈ it∗g satisfies λ(α̌) ∈ Z for each α ∈ (∆g)c, then the subset

λ + Q̂ ⊆ it∗g, where Q̂ = 〈∆g〉grp is the root group, is invariant under the
Weyl group Ŵ. Therefore (Ŵλ)(d) ⊆ λ(d) + Z. If (Ŵλ)(d) is bounded
from below, we thus obtain the existence of a d-minimal element in Ŵλ.
In particular, we obtain P̂+ = ŴP+

d .

5. Semibounded representations of Hilbert loop groups

After the preparations in the preceding sections, we now approach our
goal of classifying the irreducible semibounded representations of G =
L̂φ(K). The first major step is Theorem 5.2, asserting that for a semi-
bounded representation (π,H), the operator dπ(d) is either bounded from
below (positive energy representations) or from above. Up to passing to the
dual representation, we may therefore assume that we are in the first case.
Then the minimal spectral value of dπ(d) turns out to be an eigenvalue
and the group ZG(d) acts on the corresponding eigenspace, which leads to
a bounded representation (ρ, V ) of this group. We then show that (π,H)
can be reconstructed from (ρ, V ) by holomorphic induction and that ρ is
irreducible if and only if π is. Since an explicit classification of the bounded
irreducible representations of the groups ZG(d)0 can be given in terms of
W-orbits of extremal weights λ (Theorem 5.9), the final step is to charac-
terize those weights λ for which the corresponding representation (ρλ, Vλ)
occurs.

5.1. From semibounded to bounded representations

Note that d = (0, 0,−i) satisfies exp(2πi ·d) ∈ ker Ad = Z(G). Therefore
the following lemma can be used to obtain smooth eigenvectors of dπ(d)
in irreducible representations of G. The assumption of this lemma implies
that π(expRx)T is a torus, so that we know a priori that the Hilbert space
decomposes into eigenspaces of this group.
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Lemma 5.1. — For a unitary representation (π,H) of G and x ∈ g with
π(exp(Tx)) = eiµ1 for some T > 0 and µ ∈ R, the space H∞ of smooth
vectors is invariant under the operators

Pn(v) := 1
T

∫ T

0
e−(2πn+µ)it/Tπ(exp tx)v dt

which are orthogonal projections onto the eigenvectors of −idπ(x) for the
eigenvalues (µ+ 2πn)/T , n ∈ Z.

Proof (cf. the proof of [42, Prop. 4.11]). — For v ∈ H∞, we have

π(g)Pn(v) = 1
T

∫ T

0
e−(2πn+µ)it/Tπ(g exp tx)v dt,

which is an integral of a smooth function on [0, T ] × G over the compact
factor [0, T ], which results in a smooth function on G. �

Theorem 5.2. — Suppose that either φ = idK or that φ is one of the
three standard involutions. If (π,H) is a semibounded unitary representa-
tion of G = L̂φ(K) for which dπ(c) is bounded, then dπ(d) is bounded from
below, resp., above.
If, in addition, π is irreducible, then this is the case and, accordingly,

the minimal/maximal spectral value of dπ(d) is an eigenvalue and the Kφ-
representation on the corresponding eigenspace is bounded.

Proof. — Since αt := et ad i·d defines a continuous circle action on g, the
open invariant convex cone Wπ intersects the fixed point algebra zg(d) of
this circle action. Since [d, (0, ξ, 0)] = −i(0, ξ′, 0), an element (0, ξ, 0) ∈
L̂φ(k) commutes with d if and only if ξ is constant, i.e., its values are
contained in kφ. We thus have

zg(d) = ker(ad id) = Ric⊕ kφ ⊕ Ri · d,

which is a Hilbert–Lie algebra.
Since every open invariant cone in the Hilbert–Lie algebra zg(d) intersects

the center ([36, Prop. A.2]), the non-empty open invariant cone Wπ ∩ zg(d)
actually intersects the subspace Ric⊕ z(kφ)⊕Ri · d. For the three types of
standard involutions we have z(kφ) = {0} (cf. Examples 2.8, 2.9 and 2.10),
so that

Wπ ∩ (Ric+ Ri · d) 6= ∅.
If, in addition, dπ(c) is bounded, then ic + Wπ = Wπ leads to i · d ∈
Wπ ∪ −Wπ. In particular, dπ(d) is bounded from below or above.
Now we assume that π is irreducible and w.l.o.g. that i · d ∈ Wπ. Then

π(exp 2πi · d) ∈ π(Z(G)) ⊆ T1 by Schur’s Lemma and Lemma 5.1 implies
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that the minimal spectral value µ of dπ(d) is an eigenvalue. Let V :=
ker(dπ(d)− µ1) be the corresponding eigenspace. It is invariant under the
subgroup ZG(d) which leads to a unitary representation (ρ, V ) of this group.
The corresponding open convex cone Wρ satisfies

i · d ∈Wπ ∩ zg(d) ⊆Wρ,

but since dρ(d) = µ1, this leads to 0 ∈ Wρ − i · d = Wρ and thus to
Wρ = zg(d), i.e., ρ is bounded. �

Remark 5.3. — (a) Since Z(G)0 ∼= T by Theorem 3.4, any unitary
representation of G is a direct sum of dπ(c)-eigenspaces, so that we can
easily reduce to the situation where dπ(c) ∈ R1.

(b) It is a key point in the proof of Theorem 5.2 that z(kφ) = {0} which
holds for all 3 standard involutions. For any finite order automorphism φ for
which z(kφ) = {0}, the argument in the proof of Theorem 5.2 goes through,
and even Theorem 5.4 below remains valid. This is in particular the case if
k is abelian and kφ = {0}. With automorphisms of the form φ(g) = UgU−1,
where U is unitary of order N with some finite-dimensional eigenspaces,
one obtains examples where z(kφ) 6= {0}.

Our next step is to explain why irreducible semibounded representations
with i · d ∈ Wπ are uniquely determined by the representations on the
minimal eigenspaces of dπ(d). This requires the technique of holomorphic
induction from Appendix C.

5.2. Holomorphic induction for L̂φ(K)

Let gB := L̃Hφ (k) be the central extension of H1-loop algebra LHφ (k) from
Definition A.6 which is a Banach–Lie algebra. According to Theorem A.8,
there exists a corresponding 1-connected Banach–Lie group GB := L̃Hφ (K)
and also a complex group (GB)C = L̃Hφ (KC) (Remark A.10). Then

p±B :=
∑
±n>0

en ⊗ kC

are closed subalgebras of (gB)C. We also put

h := hB := Ric+ kφ and qB := hC n p+
B .

The Fourier expansion of H1-loops implies that gB satisfies the splitting
condition (SC) from Appendix C:

(gB)C = p+
B ⊕ hC ⊕ p−B .
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Therefore all assumption of Example C.4(a) are satisfied.
On GB we now consider the one-parameter group α : R→ Aut(L̃Hφ (K))

defining the translation action (αT f)(t) = f(t+T ) of R. Then p±B , h and qB
are α-invariant, so that Example C.4(b) applies. On the Lie algebra level,
the subspace g ⊆ gB of smooth vectors for α coincides with the Fréchet–
Lie algebra L̃φ(k) defined by smooth loops, and h corresponds to the Lie
subalgebra of α-invariant elements. Therefore the concepts and results from
Appendix C concerning holomorphic induction are now available for the
pair (G,ZG(d)0), resp., the complex homogeneous space

L̂φ(K)/ZG(d)0 ∼= L̃φ(K)/ZL̃φ(K)(d)0 ∼= Lφ(K)/(Kφ)0.

In view of Lemma 2.12 we know that the subgroup Kφ is connected, so that
Lφ(K)/Kφ ∼= Lφ(K)/(Kφ)0 is actually simply connected because Lφ(K)
is 1-connected.

Theorem 5.4. — Every irreducible semibounded unitary representa-
tion (π,H) of L̂φ(K) for which dπ(d) is bounded from below is holomor-
phically induced from the bounded representation (ρ, V ) of H = ZG(d)0
on the minimal eigenspace of dπ(d).

Proof. — We want to apply Theorem C.3. We know from Theorem 5.2
that (ρ, V ) is a bounded representation of H, which implies (HI1). So
we first use Lemma 5.1 to see that the projection P0 : H → V onto the
eigenspace V = ker(dπ(d) − µ1) maps H∞ onto H∞ ∩ V , and since P0 is
continuous and H∞ is dense in H, H∞∩V is dense in V . Let Pn : H → Hn,
n ∈ Z, denote the projections onto the other eigenspaces of exp(Rid) from
Lemma 5.1. As V is the minimal eigenspace of the diagonalizable oper-
ator dπ(d), the fact that dπ(gkC)Hn ⊆ Hn+k for k, n ∈ Z implies that
V ∩ H∞ ⊆ (H∞)p− for p− = p−B ∩ gC. This proves (HI2). Finally (HI3)
follows from the irreducibility of (π,H). �

In view of the preceding theorem, a classification of the irreducible semi-
bounded representations of L̂φ(K) now consists in a classification of the
irreducible bounded representations (ρ, V ) of ZG(d)0 which are inducible
in the sense of Definition C.1. It is easy to pinpoint a necessary condition
for inducibility.

Definition 5.5. — We say that a representation (ρ, V ) of zg(d) is d-
minimal if ρ(tg) is diagonalizable and all tg-weights of ρ are d-minimal.

Proposition 5.6. — For y ∈ gC = p+ ⊕ hC ⊕ p−, we write y =
y+ + y0 + y− for the corresponding decomposition. If a bounded uni-
tary representation (ρ, V ) of H = ZG(d)0 is holomorphically inducible for
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q = p+ o hC, then

(5.1) dρ([z∗, z]0) > 0 for z ∈ p+,

and this implies that it is d-minimal, provided ρ(tg) is diagonalizable.

Proof. — Suppose that (π,H) is obtained from (ρ, V ) by holomorphic
induction. Then V ⊆ (H∞)p− , so that we obtain for v ∈ V and z ∈ p+

〈dρ([z∗, z]0)v, v〉 = 〈dρ([z∗, z])v, v〉 = 〈[dπ(z∗), dπ(z)]v, v〉

= 〈dπ(z∗)dπ(z)v, v〉 = ‖dπ(z)v‖2 > 0.

This proves the necessity of (5.1).
For every weight vector vµ ∈ V with weight µ ∈ it′g and α = (α, n) ∈

(∆g)c with n > 0 we pick x ∈ g
α
C such that [x, x∗] = α̌ (cf. Example 2.5).

Then (5.1) implies µ(α̌) 6 0. In view of Proposition 4.3(iii), this is equiva-
lent to the d-minimality of µ. �

5.3. Bounded representations of Kφ

Remark 5.7. — Let ∆ = ∆(k, t) be a root system of type AJ , BJ , CJ or
DJ . We represent a corresponding integral weight as a function λ : J → R
and observe that

AJ ⊆ DJ = BJ ∩ CJ .
Then the integrality with respect to AJ means that λj − λk ∈ Z for j 6=
k ∈ J . Since J is infinite in our context, the requirement λ ∈ it′ ∼= `2(J,R)
implies that λ is finitely supported with values in Z. This in turn implies
that λ is an integral weight for AJ , BJ , CJ and DJ .

Proposition 5.8 (Classification of W-orbits). — For ∆ = ∆(k, t) of
type AJ , BJ , CJ or DJ the corresponding set of integral weights P(k, t) ⊆
it′ ∼= `2(J,R) coincides with `2(J,Z) ∼= Z(J). For the W-action on this set,
we have the following set of invariants which is complete in the sense that
it separates the W-orbits in P(k, t):

• AJ : mn(λ) := |{j ∈ J : λj = n}| for 0 6= n ∈ Z.
• BJ , CJ and DJ : mn(λ) := |{j ∈ J : |λj | = n}| for n ∈ N.

Proof. — (a) For AJ , the functions mn are constant on the orbits of
W ∼= S(J) and, conversely, if mn(λ) = mn(λ′) for λ, λ′ ∈ P(k, t), then
λ′ ∈ Wλ follows from the finiteness of the support of λ.
(b) For the root systems BJ , CJ and DJ , the functions mn, n ∈ N, are

constant on the W-orbits, and since every λ ∈ P(k, t) is finitely supported,
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its W-orbit contains a non-negative element. Hence mn(λ) = mn(λ′) for
λ, λ′ ∈ P(k, t) and every n ∈ N leads to λ′ ∈ Wλ. �

Theorem 5.9. — Let K be a simple Hilbert–Lie group with Lie alge-
bra k and t ⊆ k maximal abelian with root system ∆ ⊆ it′. Then every
bounded unitary representation of K is a direct sum of irreducible ones.
The irreducible representations (ρλ, Vλ) can be parametrized by their ex-
tremal weights λ ∈ P(k, t) as follows. If Q := 〈∆〉grp ⊆ it′ is the root group,
then the weight set Pλ of ρλ satisfies

Pλ = conv(Wλ) ∩ (λ+Q) and Ext(conv(Pλ)) =Wλ.

We have ρλ ∼ ρµ if and only if µ ∈ Wλ, so that the irreducible bounded uni-
tary representations of K are classified by the set P(k, t)/W of W-orbits in
P(k, t). All these representations factor through the adjoint group K/Z(K).

Proof. — In view of the classification of simple Hilbert–Lie algebras, the
assertion on the classification follows from [37, Thm. III.14] for k = u2(H)
and from [45, Thms. D.5, D.6] for k = o2(H) and sp2(H).
That all these representations factor through the adjoint group is trivial

for k = sp2(H) because in this case the center of the corresponding simply
connected group Sp2(H) is trivial (Theorem 1.5). For k = u2(H) it follows
from [45, Rem. D.2], and for k = o2(H) the description of the corresponding
highest weights (cf. Remark 5.7) implies that they are contained in the root
group Q, and hence that the corresponding representation is trivial on the
center. �

For the 3 standard involutions φ (cf. Examples 2.8-2.10), the Lie algebra
kφ is simple, so that we obtain an explicit description of the bounded irre-
ducible representations of the groups Kφ, resp., ZG(d)0 in all seven cases.
According to Theorem 5.4, any irreducible semibounded representations
of G = L̂φ(K) for which dπ(d) is bounded from below is holomorphically
induced from the representation (ρ, V ) on the minimal eigenspace, hence
uniquely determined by this representation (cf. Definition C.1). It there-
fore remains to identify those bounded representations of ZG(d)0 which are
holomorphically inducible.

5.4. Characterization of the inducible bounded representations

In this subsection we show that any d-minimal bounded representation
(ρ, V ) of ZG(d)0 is inducible.
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Theorem 5.10. — An irreducible bounded unitary representation (ρ,V)
of ZG(d)0 is holomorphically inducible if and only if it is d-minimal.

Proof. — We have already seen in Proposition 5.6 that ρ is d-minimal if
it is holomorphically inducible. Now we assume that (ρ, V ) is a d-minimal
bounded representation of H = ZG(d)0 of extremal weight λ ∈ T̂G =
Hom(TG,T) (recall TG = exp tg). Then λ is d-minimal, so that λ(α̌) > 0
for α = (α, n), n < 0. This means that

pλ := (tg)C +
∑

λ(α])>0

g
α
C ⊇

∑
α∈∆,n>0

g
(α,n)
C .

If λc = 0, then λ vanishes on ∆̌g (Lemma 4.2) which implies that G has
a one-dimensional representation (π,H) for which dπ : gC → End(H) ∼= C
extends λ. We may therefore assume that λc 6= 0.
In view of Theorem C.6, it suffices to show that the corresponding linear

map

β : U(gC)→ B(V )

that vanishes on p+U(gC) + U(gC)p− and satisfies β|U(hC) = dρ for h =
zg(d), is positive definite on the ∗-algebra U(gC) (cf. Definition B.1(c)).
Let talg

C := Ci · d+ spanC ∆̌g and

galg
C := Cd+ 〈gαC : α ∈ (∆g)c〉Lie alg,

and observe that this is a Lie algebra with a root decomposition with
respect to talg

C . It is a coral locally affine complex Lie algebra in the sense
of [43, Def. 3.1] and λ defines an integral weight of galg

C for which λc 6= 0.
Therefore [43, Thm. 4.11] implies the existence of a unitary extremal weight
module (πλ, L(λ)) of gC generated by a pλ-eigenvector vλ of weight λ. Note
that [43, Thm. 5.7] shows that galg

C is a locally extended affine Lie algebra
with root system ∆g in the sense of [35] (see also [43]).
Now Vλ := U(hC)vλ is an hC-module of extremal weight λ, so that we

may identify it with a dense subspace of V . For p±alg := p± ∩ galg
C , the

relation vλ ∈ L(λ)p
−
alg implies that Vλ ⊆ L(λ)p

−
alg , and

L(λ) = U(galg
C )vλ = U(p+

alg)Vλ ⊆ Vλ + p+
algL(λ)

shows that Vλ is the minimal d-eigenspace in L(λ). Let pV : L(λ)→ Vλ ⊆ V
denote the orthogonal projection. Then

γ(D) := pV πλ(D)p∗V
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satisfies p+
algU(galg

C ) + U(galg
C )p−alg ⊆ ker γ and γ|U(halg

C ) = ρλ. Since the
representation πλ on L(λ) is unitary, γ is positive definite. Since all maps

gkC → B(V ), (x1, . . . , xk) 7→ β(x1 · · ·xk)

are continuous and the restriction of β to the subalgebra U(galg
C ) coincides

with γ, it follows that β is also positive definite. Now the assertion follows
from Theorem C.6. �

Remark 5.11. — (a) Consider the Banach–Lie group L̃Hφ (K) from Ap-
pendix A and the subgroup T×Kφ corresponding to the centrally extended
Lie algebra R× kφ ⊆ L̃Hφ (k). Suppose that (ρ, V ) is a bounded representa-
tion of H := T×Kφ which is holomorphically inducible to the Fréchet–Lie
group L̃φ(K). Since L̃φ(k) is dense in L̃Hφ (k), the fact that the conditions
in Theorem C.6 are satisfied for L̃φ(K) immediately implies that they are
also satisfied for the bigger group L̃Hφ (K). Therefore the holomorphically
induced representation (π,H) of L̃φ(K) extends to a holomorphically in-
duced representation of the Banach–Lie group L̃Hφ (K), and we thus obtain
a continuous unitary representation of the topological group L̂Hφ (K).

(b) The preceding argument also shows that, if ρ is irreducible, then the
same holds for the corresponding holomorphically induced representation
of L̃φ(K) resp., L̃Hφ (K).
(c) Assume that φ = id. Then we can also ask about the restriction of π

to the subgroup L := L̃(K)∗ corresponding to functions vanishing in 1. As
L̃(K) = LoK corresponding to functions vanishing in 1, the group L acts
transitively on the complex homogeneous space L(K)/K which implies that
π|L is holomorphically induced from the trivial representation of L ∩K =
{1} on V . This leads to π(L)′ ∼= B(V ) (Theorem C.2(ii)) which implies in
particular that π|L is irreducible if and only if dimV = 1.

5.5. Semibounded representations of one-dimensional extensions

In this subsection we provide a few results supporting the point of view
that, without the double extension, the representation theory of loop groups
is much less interesting. We show that all semibounded unitary represen-
tations of the central extension L̃φ(k) are trivial on the center and factor
through bounded representations of L(k). One can actually show that these
are finite-dimensional and tensor products of evaluation representations.
For those representation extending to the Lie algebra Lc(k) of continuous

ANNALES DE L’INSTITUT FOURIER



SEMIBOUNDED UNITARY REPRESENTATIONS 1865

maps, this follows from [47]. We also show that all semibounded represen-
tations of Lφ(K) oα R are trivial on Lφ(K).

Lemma 5.12. — Let (π,H) be a smooth representation of a Lie group
G. Then the following assertions hold:

(i) Let x, y ∈ g with [x, [x, y]] = 0. If −idπ(y) is bounded from below,
then dπ([x, y]) = 0.

(ii) If g is 2-step nilpotent and π is semibounded, then [g, g] ⊆ ker(dπ).

Proof. — (i) For a smooth unit vector v ∈ H∞, we consider the con-
tinuous linear functional λ(z) := 〈−idπ(z)v, v〉 on g. Then our assump-
tion implies that λ is bounded from below on Ad(G)y which contains
Ad(expRx)y = y + R[x, y]. This leads to λ([x, y]) = 0. We thus obtain
dπ([x, y]) = 0.

(ii) Pick y ∈ Wπ. For every x ∈ g we then have [x, [x, y]] = 0, so that
(i) leads to dπ([x, y]) = 0 and thus [Wπ, g] ⊆ ker(dπ). As Wπ is open, the
assertion follows. �

Proposition 5.13. — Let k be a simple Hilbert–Lie algebra and φ ∈
Aut(k). Then all open invariant cones in Lφ(k) are trivial.

Proof. — Let ∅ 6= W ⊆ Lφ(k) be an open invariant convex cone.
(a) First we consider the case φ = id and show that, for every compact

manifoldM with or without boundary, all open invariant cones in C∞(M, k)
are trivial. Since k = u2(H) for an infinite dimensional real, complex or
quaternionic Hilbert space, and the union of the subalgebras su(HF ), where
HF ⊆ H is a finite-dimensional subspace, is dense in u(H), the union of
the subalgebras C∞(M, su(HF )) is dense in C∞(M, k). Hence there exists
a subspace HF for which ∅ 6= WF := W ∩ C∞(M, su(HF )). Then WF

is invariant under conjugation with the compact group SU(HF ), hence
contains a SU(HF )-fixed point. Since su(HF ) has trivial center, 0 is the only
fixed point, and thus 0 ∈WF ⊆W . This in turn implies that W = L(k).
(b) For the general case, we consider the closed interval I := [−a, a] for

0 < a < π
N . Then we have a continuous restriction map

R : Lφ(k)→ C∞(I, k),

which is also surjective (cf. [66, Cor. III.7]), hence open by the Open Map-
ping Theorem. Therefore R(W ) is an open invariant cone in C∞(I, k), and
(a) implies that 0 ∈ R(W ), which in turn implies that W ∩ kerR 6= ∅.
For b := 2π

N , we have

kerR = {f ∈Lφ(k) : f |[−a,a] = 0} ∼= {f ∈C∞([0, b], k) : f |[0,a] = 0 = f[b−a,b]}.
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For every k ∈ K there exists an element f ∈ Lφ(k) restricting to the
constant function k on [a, b − a], so that W ∩ kerR is invariant under
conjugation with constant functions in K. Passing to a sufficiently large
finite dimensional subalgebra kF ⊆ k and averaging over the action of the
corresponding compact group KF , it follows as in (a) that 0 ∈W ∩kerR ⊆
W , so that W = Lφ(k). �

Corollary 5.14. — If K is a simple Hilbert–Lie group, then all semi-
bounded unitary representations of Lφ(K) are bounded.

Theorem 5.15 (Semibounded representations of central extensions).
If k is a simple Hilbert–Lie algebra, then all semibounded unitary repre-
sentations of the central extension L̃φ(K) are trivial on the center and
bounded.

Proof. — Localization on the center reduces the problem to representa-
tions which are bounded on the center, so that Ric + Wπ = Wπ. Hence
Wπ defines an open invariant cone in Lφ(k) ∼= L̃φ(k)/Ric, which is trivial
by Proposition 5.13. Therefore π is bounded. In particular, the restriction
of π to the 2-step nilpotent group L̃φ(tk) is bounded. Since it is 2-step
nilpotent, dπ is trivial on the commutator algebra (cf. Lemma 5.12(ii)),
and thus dπ(c) = 0. We conclude that dπ(c) vanishes for all semibounded
representations, and hence also that these representations are bounded. �
The preceding result shows that the central extension L̃φ(K) and Lφ(K)

have the same (semi-)bounded representations. In a similar vein, extending
Lφ(K) to the semidirect product defined by the translation actions only
leads to trivial semibounded representations.

Theorem 5.16 (Semibounded representations of semidirect products).
If k is a simple Hilbert–Lie algebra and φ any finite order automorphism of
the corresponding simply connected group K for which z(kφ) = {0}, then
every unitary representation (π,H) of Lφ(K) oα R for which −idπ(0, 1) is
bounded from below is trivial on Lφ(K).

Proof. — For any abelian φ-invariant subalgebra a ⊆ k, we consider
the 2-step solvable Lie algebra Lφ(a) and note that Lφ(a) = [d,Lφ(a)] ⊕
zLφ(a)(d) = [d,Lφ(a)] ⊕ aφ. Therefore Lemma 5.12 implies that Lφ(a) ⊆
aφ + ker(dπ).

Applying this observation to one-dimensional subalgebras a = Rx ⊆ kφ,
we obtain Lφ(kφ) = L(kφ) ⊆ kφ + ker(dπ). As kφ is topologically perfect,
it is contained in the ideal of L(kφ) generated by zd(L(kφ)). This leads to
L(kφ) ⊆ ker(dπ).
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For the abelian subalgebra tk ⊆ k we likewise obtain Lφ(tk) ⊆ t +
ker(dπ) = tk + ker(dπ). Hence t ⊆ kφ ⊆ ker(dπ) enventually yields Lφ(tk) ⊆
ker(dπ). We finally arrive at Lφ(k) ⊆ tk + [t,Lφ(k)] ⊆ ker(dπ). �

6. Semiboundedness of holomorphically
induced representations

We are now ready to complete the picture by showing that the ir-
reducible G-representations (πλ,Hλ) obtained by holomorphic induction
from d-minimal representations (ρλ, Vλ) are semibounded.

Theorem 6.1. — Let K be a 1-connected Hilbert–Lie group and (π,H)
be a unitary representation ofG = L̂φ(K) which is holomorphically induced
from the bounded representation (ρ, V ) of H = ZG(d)0 for which dρ(d) =
µ1 for some µ ∈ R. Then (π,H) is semibounded with i · d ∈Wπ.

Proof. — Recall the subalgebras p±B and p± from Section 5. We note that
the representation adp+ of the Hilbert–Lie algebra h = zg(d) on the Hilbert
space p+

B =
∑
n>0 g

n
C ⊆ (gB)C is unitary, ic acts trivially, d acts by n · id on

gnC = en ⊗ knC, and kφ acts by the adjoint representation on gnC
∼= knC. Hence

an element x = (z, x0, t) ∈ zg(d) satisfies

−i adgnC
(z, x0, t) = tn− i adkC x0 > 0 for every n > 0 if ‖ adx0‖ 6 t.

Therefore the elements x ∈ zg(d) with this property form a closed invariant
cone with non-empty interior C.
For the dπ(d)-eigenspace decomposition

H =
⊕̂

n∈N0
Hn with Hn = ker(dπ(d)− (µ+ n)1),

all subspaces Hn are invariant under ZG(d)0. For every v ∈ V = H0 ⊆ Hω,
the Poincaré–Birkhoff–Witt Theorem shows that

U(gC)v = U(p+)U(hC)U(p−)v = U(p+)U(hC)v ⊆ U(p+)V

is dense in H. Therefore Hn, as a unitary representation of ZG(d)0 con-
taining a dense subspace which is a quotient of of the bounded unitary
representation on the Hilbert space( ⊕

06k6n
(p+
B)⊗̂k

)
n

⊗̂V,
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is a bounded representation of ZG(d)0. For x ∈ C, the spectrum of −ix on
the left hand factor is non-negative, so that

inf(Spec(−idπ(x)) = inf(Spec(−idρ(x)),

resp.,

(6.1) sπ(x) = sup(Spec(idπ(x))) = sρ(x) for x ∈ C.(3)

To see that C ⊆ Wπ, it now remains to see that Ad(G)C has inte-
rior points. Let U± ⊆ k±φ = ker(id∓φ) be open convex symmetric 0-
neighborhoods for which the map

E : U+ × U− → K, (x+, x−) 7→ expx− expx+ expx−
is a diffeomorphism onto an open subset of K. The existence of such a
0-neighborhood follows from the Inverse Function Theorem because the
differential of E in (0, 0) is given by (x+, x−) 7→ x+ + 2x−.
For the φ−1-twisted conjugation action cφk(h) := khφ(k)−1 of K on itself

we have

E(x+, x−) = exp(x−) exp(x+) exp(x−) = cφexp x−(expx+).

Therefore each cφ-orbit meeting im(E) also meets exp(U+).
Next we recall the smooth map Hol2π/N : Lφ(k) → K from Proposi-

tion 2.14 and note that

V := {ξ ∈ Lφ(k) : Hol2π/N (ξ) ∈ im(E)}

is an open 0-neighborhood. From Proposition 2.14 we derive that every
element in V × {1} ⊆ Lφ(k) o R is conjugate under Ad(Lφ(K)) to an
element ξ̃ with Hol2π/N (ξ̃) ∈ exp(U+). As Hol2π/N (x+) = exp

( 2π
N x+

)
for x+ ∈ kφ, this further implies that (ξ, 1) is conjugate to an element in
N
2πU

+ × {1}. We conclude that, for every 0-neighborhood B ⊆ kφ,

Ad(Lφ(K))(R×B × {1})

contains an open subset of the hyperplane R × Lφ(k) × {1} ⊆ L̂φ(k).
Eventually this shows that Ad(G)C has interior points, and hence that
Wπ 6= ∅. �

(3)This is trivial if adx is diagonalizable on V on each gnC . Let πn denote the repre-
sentation of ZG(d)0 on Hn and πxn(t) := πn(exp tx). For the general case, it is instruc-
tive to think of the spectrum of dπn(x) in terms of Arveson’s spectral theory, where
Spec(−idπn(x)) is the minimal closed subset S ⊆ R with the property that, for every
Schwartz function f : R→ R with supp(f)∩S = ∅, we have πxn(f̂) = 0. In this context it
is clear that we obtain the same spectrum from the representation on any dense invariant
subspace, and that equivariant bilinear maps are compatible with addition of spectra
(cf. [46, Prop. A.14]).
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At this point we are ready to prove Theorem 0.1 stated in the introduc-
tion.

Proof of Theorem 0.1. — We have seen in Theorems 5.2 and 5.4 that a
semibounded representation (π,H) for which dπ(d) is bounded from below
(which is always the case for π or its dual representation) is holomorphically
induced from a bounded representation (ρ, V ) of the Hilbert–Lie group
ZG(d)0 whose Lie algebra is Ric⊕ kφ⊕Ri · d, where kφ is a simple Hilbert–
Lie algebra in all 7 cases.
Theorem 5.9 now provides a classification of the bounded irreducible

representations of the simply connected covering group R × K̃φ × R of
ZG(d)0 = Z×Kφ×R in terms of extremal weights λ ∈ P(kφ, t) ⊆ it′. From
Lemma 2.12 we know that Kφ is connected, so that its simply connected
covering group is defined. We even know that Kφ is 1-connected if (∆g)c is
not of type BC(2)

J , and in the latter case π1(Kφ) ∼= Z/2. Next Theorem 5.10
characterizes the weights λ for which (ρλ, Vλ) is holomorphically inducible
as the d-minimal weights and the corresponding G-representation (πλ,Hλ)
is semibounded by Theorem 6.1.
That the tg-weight set Pλ of πλ satisfies

Pλ := conv(Ŵλ) ∩ (λ+ Q̂) with Ext(conv(Pλ)) = Ŵλ

follows from the corresponding result in [43, Thm. 4.10] for the highest
weight module L(λ) of Lφ(k)alg

C . This description implies in particular that
the equivalence of πλ and πµ implies that µ ∈ Ŵλ. We also see that the set
of weights occurring as extremal weights in this context is contained in set
P+ = ŴP+

d of integral weights bounded from below (Remark 4.5). From
[20, Thm. 3.5] we further know that

Ŵλ ∩ P+
d = Ŵdλ =Wλ for λ ∈ P±d ,

where Ŵd
∼=W is the stabilizer of d in Ŵ. This leads to a bijection

P±d /W → P
±/Ŵ, Wλ 7→ Ŵλ.

To complete the proof, it only remains to show that every elements λ ∈
P+
d actually is an extremal weight of a bounded representation (ρλ, Vλ)

of ZG(d)0 ∼= Z × Kφ × R. As λ|t is a weight for ∆0, the existence of the
corresponding unitary representation of Kφ follows from Theorem 5.9. It
therefore remains to verify that Nλc = λ(Nc) ∈ Z (Theorem 3.4). In the
untwisted cases the normalization of the scalar product is such that long
roots α satisfy (α, α) = 2, so that λc ∈ Z follows from (2.9). In the twisted
cases 2λc ∈ Z follows from Example 3.8. �
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Remark 6.2. — Let us take a closer look at the ambiguities arising in our
parametrization of irreducible semibounded unitary representations of G =
L̂φ(K) in terms of bounded representations (ρ, V ) of ZG(d)0 ∼= T×Kφ×R.

If (ρ, V ) is d-minimal, the corresponding representation of G is obtained
by holomorphic induction with q = p+ohC and V = (H∞)p− is the minimal
eigenspace of dπ(d). If (ρ, V ) is d-maximal, then (π,H) is obtained by
holomorphic induction with q = p−o hC, and V = (H∞)p+ is the maximal
eigenspace of dπ(d).
Therefore the only ambiguity in the parametrization of corresponding

irreducible unitary representations of L̂φ(K) arises for representations for
which dπ(d) is bounded, which only happens for one-dimensional represen-
tations, see Proposition 6.3 below. Hence the ambiguity of the parametriza-
tion consists only in twisting with characters of L̂φ(K), resp., representa-
tions vanishing on the codimension 1 subgroup L̃φ(K) of L̂φ(K).

On the level of d-minimal/maximal weights, the corresponding assertion
is that a weight λ ∈ it′g is d-minimal and d-maximal at the same time if
and only if nλ((α, n)̌ ) = 0 holds for every root (α, n) ∈ (∆g)c, but this
implies that the corresponding representation of G is one-dimensional.

Proposition 6.3. — If (π,H) is an irreducible semibounded represen-
tation of L̂φ(K) for which dπ(d) is bounded, then it is one-dimensional.

Proof. — As i · d ∈ Wπ ∪ −Wπ, the boundedness of dπ(d) implies that
0 ∈ Wπ and hence that π is bounded. From Theorem 5.15 we now obtain
that dπ(c) = 0, so that we obtain a positive energy representation of the
semidirect product Lφ(K) o R. From Theorem 5.16 we now derive that
L̃φ(K) ⊆ kerπ, so that the image of π is an abelian group and the assertion
follows from Schur’s Lemma. �

7. Perspectives and open problems

Problem 7.1. — Let k be a simple Hilbert–Lie algebra and φ ∈ Aut(k)
be an automorphism of finite order. Then

Lφ(k) ∼= L1
φ(k) =

{
f ∈ C∞(R, k) : (∀t ∈ R) f(t+ 1) = φ−1(f(t))

}
can be identified with the space of smooth sections of the Lie algebra bundle
Lφ → S1 ∼= R/Z obtained as the quotient of the trivial bundle R× k by the
equivalence relation generated by (t+1, x) ∼ (t, φ(x)). The Lie connections
on this bundle lead to covariant derivatives of the form

DAξ = ξ′ +Aξ with A ∈ L1
cφ

(der(k)), cφ(B) = φ−1Bφ,
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and these operators are continuous derivations on L1
φ(k) which are skew-

symmetric with respect to our scalar product, so that they can all be used
to define double extensions.
A map of the form Γ(ξ)(t) = γ(t)ξ(t) with γ ∈ C∞(R,Aut(k)) defines an

isomorphism L1
φ(k)→ L1

ψ(k) if and only if

γ(t+ 1) = ψ−1γ(t)φ for t ∈ R.

Let γ : R → Aut(k) be the unique smooth curve with δl(γ) = A with
γ(0) = 1. Then A ∈ Lcφ(der(k)) implies that

γ(t+ 1) = γ(1)φ−1γ(t)φ,

so that we obtain for ψ := φγ(1)−1 an isomorphism Γ: L1
φ(k) → L1

ψ(k)
satisfying

D0 ◦ Γ = Γ ◦DA.

This means that, by changing the automorphism, we can transform the
covariant derivative DA into the standard one. This has the advantage
that the corresponding one-parameter group (αAt )t∈R of automorphisms
satisfies

αt ◦ Γ = Γ ◦ αAt for t ∈ R.
We conclude in particular, that αA is periodic if and only if the translation
action on L1

ψ(k) is periodic, which, in view of α1ξ = ψ−1ξ, is equivalent
to the order of ψ being finite. This gives a geometric interpretation for
a preference of finite order automorphisms for the contructions of double
extensions.
It remains to be explored how the representation theory of L̂φ(k) changes

for other finite order (or even general) automorphisms of k. Is it possible to
classify the semibounded representations of L̂φ(k) for any automorphism
φ of finite order? The present paper covers the case φ = id and the three
involutions which lead to the three twisted locally affine root systems.

Problem 7.2. — The proof of Theorem 5.10 shows that, for every d-
minimal integral weight λ ∈ t∗g (continuous or not), we have a unitary
extremal weight representation (πλ, L(λ)) of gC generated by a vector vλ
annihilated by p−. Then the representation (ρλ, Vλ) on the minimal d-
eigenspace Vλ := ker(πλ(d) − λ(d)1) is an extremal weight representation
of the Lie algebra Zg(d) and for the orthogonal projection pV : L(λ)→ Vλ,
we obtain a positive definite linear map

β : U(gC)→ End(Vλ), D 7→ pV πλ(D)p∗V .

However, if λ is not continuous, then all these representations need not
integrate to representations of L̂φ(K), resp., ZG(d).

TOME 64 (2014), FASCICULE 5



1872 K. H. NEEB

To deal with the global aspects of these representations, we need to pass
from ZG(d)0 to a suitable central extension to integrate the representation
ρλ on the completion of Vλ. As the so obtained representation will not
be bounded, we need a further refinement of the method of holomorphic
induction to derive a corresponding unitary representation of L̂φ(K), or a
suitable modification of this group, on the completion Hλ of L(λ) (cf. [36]).
A natural, but certainly not maximal, candidate for a group to which these
representations may integrate is L̂φ(U1(H)) if K = U2(H).

Problem 7.3. — Suppose that K is a 1-connected simple Hilbert–Lie
group. Is every irreducible positive energy representation of G = L̂φ(K)
holomorphically induced? Using similar arguments as for semibounded
representations (cf. Theorem 5.4), we obtain a representation (ρ, V ) of
H = ZG(d) on the minimal eigenspace V 6= {0} for dπ(d), but a priori
we do not know if this representation is bounded, so that holomorphic
induction of (ρ, V ) need not make sense.
In this context it would be interesting if there are (irreducible) unitary

representations of H which are d-minimal in a suitable sense. These rep-
resentations would be natural candidates for a “holomorphic induction”
to a unitary representation of G to make sense. The representations from
Problem 7.2 may lead to interesting examples.

Problem 7.4. — The group Diff(S1) acts naturally by automorphisms
on the group L̃(K). Does it also act on the irreducible semibounded rep-
resentations (πλ,Hλ)? We expect a unitary representation of the Virasoro
group which is positive/negative energy representation because we already
have the action of the generator of the subgroup of rigid rotations.
In this context it is important to observe that the restrictions π̃λ of

the representations πλ to the codimension-one subgroup L̃φ(K) remain
irreducible because they are holomorphically induced from a bounded irre-
ducible representation (cf. Remark 5.11).
The philosophy is that the set {[π̃λ] : λ ∈ Pd} of equivalence classes of

irreducible unitary representations of L̃(K) should be “discrete” and there-
fore fixed pointwise under the action of Diff(S1)0. One way to verify this is
to observe that Diff(S1)0 preserves the class of those representations which
are “semibounded” in the sense that they extend to semibounded represen-
tations of a semidirect product with a compact circle subgroup of Diff(S1).
Then one can try to show that such representations are determined by their
momentum sets, but here one looses information by restricting to L̃φ(k) on
which the representation πλ is not semibounded.
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Appendix A. H1-curves in Hilbert–Lie groups

In this appendix we briefly introduce the Banach–Lie algebra of H1-
curves with values in a Hilbert–Lie algebra and explain how this can be
used to obtain Banach–Lie algebras L̃Hφ (k) whose construction is based on
H1-curves instead of smooth ones. We also obtain corresponding Banach–
Lie groups L̃Hφ (K) in which the groups L̃φ(K) are dense.

A.1. The group of H1-curves

Definition A.1. — Let I = [0, 1] ⊆ R denote the unit interval. We
write H1(I) for the space of absolutely continuous functions f : I → R
with f ′ ∈ L2(I), endowed with the scalar product

〈f, g〉 :=
∫ 1

0
f(t)g(t) + f ′(t)g′(t) dt.

We recall from [51, Cor. 9.7] thatH1(I) is a Hilbert space, that the inclusion
H1(I) → C(I,R) is continuous, and that H1(I) is a Banach algebra with
respect to the pointwise product.
If H is a Hilbert space, then we write H1(I,H) := H1(I)⊗̂H for the

tensor product of Hilbert spaces.

Remark A.2. — (a) Let (ei)i∈I be an orthonormal basis of H and
f ∈ H1(I,H). Then f =

∑
i∈I fiei with fi ∈ H1(I) satisfying ‖f‖2 =∑

i ‖fi‖2 <∞. This implies that for each t ∈ I we have
∑
i∈I |fi(t)|2 <∞,

so that we obtain a well-defined function

f : I → H, f(t) :=
∑
i∈I

fi(t)ei.

The sum on the right hand side is actually countable, so that we have a
series expansion of f , where each finite sum is an H1-function with values
in some finite-dimensional subspace and the range of f lies in a separable
subspace. From the Dominated Convergence Theorem we now derive that f
is continuous. One can further show that f is absolutely continuous and that
f ′ : I → H exists almost everywhere in such a way that the Fundamental
Theorem holds (cf. [65, Sect. 25] for a detailed treatment of H1-spaces with
values in a (separable) Hilbert space).
(b) If, in addition, H carries a continuous bilinear product H×H → H,

then the product rule implies thatH1(I,H) ⊆ C(I,H) is a subalgebra. Now
[40, Lemma A.2] implies that the multiplication on H1(I,H) is continuous,
hence turning it into a Banach algebra.
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Now let K be a Hilbert–Lie group with Lie algebra k. Then C(I,K)
carries the structure of a Banach–Lie group with Lie algebra C(I, k) and
the inclusion H1(I, k) ↪→ C(I, k) is a morphism of Banach–Lie algebras
(cf. Remark A.2). We write

H1(I,K) ⊆ C(I,K)

for the corresponding integral subgroup of C(I,K), so that H1(I,K) is a
Banach–Lie group with Lie algebra H1(I, k) whose underlying set is the
subgroup 〈expH1(I, k)〉 ⊆ C(I,K) (cf. [2, Sect. I.9], [32]).

Then H1(I,K) consists of paths γ : I → K for which the left and right
logarithmic derivative exists almost everywhere and δr(γ), δl(γ) : I → k are
L2-functions (it suffices to verify this for the exponential image of H1(I, k)).

Proposition A.3. — For a Hilbert–Lie group K, the following asser-
tions hold:

(i) AdL2 : H1(I,K) → O(L2(I, k)),AdL2(f)(ξ)(t) = Ad(f(t))ξ(t) de-
fines a bounded representation of the Lie group H1(I,K) on the
real Hilbert space L2(I, k).

(ii) The right logarithmic derivative δr : H1(I,K) → L2(I, k), f 7→ f ′ ·
f−1 is a smooth cocycle whose differential is the Lie algebra cocycle
L(δr)f = f ′.

Proof. — (i) Since the multiplication map H1(I)×L2(I)→ L2(I), (f, g)
7→ fg is continuous, the Lie bracket induces a continuous bilinear map

(A.1) H1(I, k)× L2(I, k)→ L2(I, k), (ξ, η) 7→ [ξ, η],

defining a continuous representation of the Banach–Lie algebra H1(I, k) on
the Hilbert space L2(I, k). This representation integrates to the morphism
AdL2 of Banach–Lie groups.

(ii) First we observe that the cocycle property follows from the product
rule

δr(fg) = δr(f) + Ad(f)δr(g).
Since δr is a cocycle with values in the smooth H1(I,K)-module L2(I, k),
it defines a homomorphism

(δr, id) : H1(I,K)→ L2(I, k) oH1(I,K)

of Banach–Lie groups. Therefore its smoothness follows, once we have
shown that it is continuous. As δr is a cocycle, it suffices to verify its
continuity in an identity neighborhood, so that it suffices to show that the
map

δr ◦ expH1(I,K) : H1(I, k)→ L2(I, k), f 7→ δr(expK ◦f)
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is continuous. Writing κrK for the right Maurer–Cartan form on K, we find

δr(expK ◦f) = (expK ◦f)∗κrK = f∗(exp∗K κrK).

The 1-form κk := exp∗K κrK ∈ Ω1(k, k) ∼= C∞(k, B(k)) is explicitly given by
the analytic function

F : k→ B(k), F (x) := 1− e− ad x

adx =
∞∑
n=0

(−1)n

(n+ 1)! (adx)n,

and we have
δr(expK ◦f)(t) = F (f(t))(f ′(t)).

The evaluation map B(k) × k → k is continuous, it induces a continuous
bilinear map C(I,B(k))×L2(I, k)→ L2(I, k). Further, the map H1(I, k)→
L2(I, k), f 7→ f ′, and the inclusion H1(I, k) → C(I, k) are continuous.
Therefore it remains to observe that the map

C(I, k)→ C(I,B(k)), f 7→ F ◦ f

is continuous, because for each Banach space X, the topology on the space
C(I,X) defined by the sup-norm coincides with the compact open topology.
This completes the proof of the smoothness of δr.
To calculate its derivative in 1, we note that for s ∈ R×, we have

1
s
δr(expK ◦(sf)) =

(
F ◦ (s · f)

)
(f ′).

Therefore lims→0 F ◦ (s · f) = F (0) = idk implies that L(δr)f := T1(δr)f
= f ′. �

Lemma A.4. — If a group G acts by isometries on the metric space
(X, d), then each open G-orbit is also closed. In particular, the action is
transitive if X is connected and G has an open orbit.

Proof (cf. [17]). — Let O = Gx0 be an open orbit and suppose that the
ball Bε(x0) is contained in O. We show that O is also closed. Let y ∈ O.
Then Bε(y) intersects O in some point gx0. Then y ∈ Bε(gx0) = gBε(x0) ⊆
O shows that O is closed. �

The following proposition is well known for the case whereK is a compact
group (cf. [61, p. 23]).

Proposition A.5. — The affine action of the normal subgroup

H1(I,K)∗ := {f ∈ H1(I,K) : f(0) = 1}

of H1(I,K) on L2(I, k) by

τf (ξ) := Ad(f)ξ − δr(f)
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is simply transitive. Each orbit map yields a diffeomorphism H1(I,K)∗ →
L2(I, k). In particular, H1(I,K)∗ is contractible.

Proof. — That τ defines a smooth group action follows from the cocycle
property and the smoothness of δr (Proposition A.3). Moreover, this action
is isometric. Further, the derivative in 1 of the orbit map τ0 of 0 is

H1(I, k)∗ → L2(I, k), f 7→ −f ′,

which is a topological linear isomorphism of Hilbert spaces. It follows from
the Inverse Function Theorem that the orbitO0 of 0 is open and Lemma A.4
implies that O0 = L2(I, k).
Since δr(f) = 0 implies that f is constant, the stabilizer of 0 inH1(I,K)∗

is trivial and the orbit map

τ0 : H1(I,K)∗ → L2(k), f 7→ −δr(f)

is a smooth equivariant bijection. Since its differential in 1 is a topological
isomorphism, the equivariance implies that this is everywhere the case, and
finally the Inverse Function Theorem shows that τ0 is a diffeomorphism.

�

A.2. The H1-version of twisted loop groups

To apply the method of holomorphic induction (cf. Appendix C) to the
group L̂φ(K) constructed in Section 3, we need a Banach version of this
group. Since we shall see that all semibounded representations of L̂φ(K)
extend to various Banach completions of this group (Remark 5.11), it makes
sense to use one which is rather large.
To this effect, we observe that the cocycle ωD(ξ, η) = 〈ξ′, η〉 on Lφ(k)

extends continuously to the Banach–Lie algebra LHφ (k) of twisted loops
of class H1, so that we obtain a central extension L̃Hφ (k) which again is
a Banach–Lie algebra. Below we show that this Lie algebra integrates to
a 1-connected Banach–Lie group L̃Hφ (K) on which we have a continuous
R-action α defined by translations.
The Lie algebra LH(k) of H1-loops is maximal with the property that

the cocycle Dξ := ξ′ defined by the derivative defines a linear functional
on L(k) which is continuous with respect to the L2-norm. This is crucial to
define a corresponding cocycle by ω(ξ, η) = 〈ξ′, η〉. In particular, there are
no non-trivial cocycles for the Lie algebra C(S1, k) of continuous loops (cf.
[30, Cor. 13, Thm. 16]).
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Definition A.6. — For a Hilbert–Lie algebra k and an automorphism
φ ∈ Aut(k) of order N , we write LHφ (k) for the Hilbert space of local H1-
maps f : R→ k satisfying the condition

(∀t ∈ R) f
(
t+ 2π

N

)
= φ−1(f(t)),

endowed with the Hilbert norm defined by

‖ξ‖2H1 := ‖ξ‖22 + ‖ξ′‖22 := 1
2π

∫ 2π

0
‖ξ(t)‖2 + ‖ξ′(t)‖2 dt.

This defines on LHφ (k) the structure of a Banach–Lie algebra. It is NOT a
Hilbert–Lie algebra in the sense of Definition 1.1 because the norm is not
invariant under the adjoint action. Since the derivative defines a continuous
map from H1 to L2,

ωD(ξ, η) = 〈ξ′, η〉 = 1
2π

∫ 2π

0
〈ξ′(t), η(t)〉 dt

defines a continuous 2-cocycle on LHφ (k), and we thus obtain the centrally
extended Banach–Lie algebra

L̃Hφ (k) := R⊕ωD LHφ (k), [(z, ξ), (w, η)] := (ωD(ξ, η), [ξ, η]),

containing the Fréchet–Lie algebra L̃φ(k) = R⊕ωD Lφ(k).

Remark A.7. — Let K be a connected Hilbert–Lie group and φ ∈
Aut(K) be an automorphism of order N . To obtain similar information
as in Remark 3.1 on the topology of the Banach–Lie group

LHφ (K) :=
{
f ∈ H1

loc(R,K) : (∀t ∈ R) f
(
t+ 2π

N

)
= φ−1(f(t))

}
∼=
{
f ∈ H1([0, 2π/N ],K) : f(2π/N) = φ−1(f(0))

}
,

we first claim that the inclusion L(K)→ LH(K) of untwisted loop groups
induces isomorphisms

πk(L(K))→ πk(LH(K)) for k ∈ N0.

Consider the commutative diagram
Lφ(K)∗ → Lφ(K) ev0−−−−−−→ Ky y yidK

LHφ (K)∗ → LHφ (K) ev0−−−−−−→ K

in which both rows describe locally trivial fiber bundles. Let I = [0, a] for
a := 2π

N and Ω(I,K) ⊆ H1
∗ (I,K) denote the kernel of the evaluation map

eva : H1
∗ (I,K)→ K, f 7→ f(a)
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in a. Then eva defines a locally trivial fiber bundle, so that the contractibil-
ity of H1

∗ (I,K) (Proposition A.5) implies the existence of natural isomor-
phisms

πk+1(K)→ πk(Ω(I,K)), k ∈ N0.

Next we observe that restriction to [0, 2π
N ] defines an isomorphism

LHφ (K)∗ → Ω([0, a],K).

Since we also have natural isomorphisms

πk+1(K)→ πk(Lφ(K)∗), k ∈ N0

(cf. [48, Cor. 3.4]), we conclude that the inclusion Lφ(K)∗ → LHφ (K)∗ in-
duces isomorphisms of all homotopy groups. Applying the Five Lemma to
the long exact homotopy sequence corresponding to the rows of the above
diagram, we see that the inclusion Lφ(K) → LHφ (K) also induces isomor-
phisms of all homotopy groups (cf. [40] for more details on this technique).

Theorem A.8. — The assertion of Theorem 3.4 remains true for the
Banach–Lie algebra L̃Hφ (k) defined by H1-maps and the corresponding
group L̃Hφ (K).

Proof. — From Remark A.7 it follows that the period homomorphism
perωD : π2(LHφ (K))→ R has the same range as the period homomorphism
on π2(Lφ(K)), and since LHφ (K) is also 1-connected (Remark A.7), [39,
Thm. 7.9] applies as in the proof of Theorem 3.4 the existence of a cen-
tral T-extension L̃Hφ (K) of LHφ (K) which is compatible with the inclusion
Lφ(K) ↪→ LHφ (K). �

Definition A.9. — It is easy to see that the rotation action of R on
LHφ (K) lifts uniquely to a continuous action on the central extension L̃Hφ (K)
([31, Thm. V.9]), but since the rotation action on LHφ (K) is not differen-
tiable, the corresponding semidirect product group

L̂Hφ (K) := L̃Hφ (K) oR

is a topological group but not a Lie group. This is the main difference to
the smooth setting, where L̂φ(K) = L̃φ(K) oR is a Fréchet–Lie group.

Remark A.10. — As in Remark 3.6, we derive from the polar decompo-
sition KC = K exp(ik) of the universal complexification of K the existence
of a central extension of complex Lie groups

1→ C× → L̃Hφ (KC)→ LHφ (KC)→ 1

for which the inclusion L̃Hφ (K) ↪→ L̃Hφ (KC) is a universal complexification
and a weak homotopy equivalence.
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Appendix B. Analytic operator-valued
positive definite functions

In this appendix we discuss operator-valued positive definite functions
on Lie groups. The main result is Theorem B.6, asserting that, for a Hilbert
space V , analytic B(V )-valued defined in a 1-neighborhood of a Fréchet–
BCH Lie group G are positive definite if the corresponding linear map
β : U(gC)→ B(V ), defined by derivatives in 1, is positive definite.

Definition B.1. — Let X be a set and K be a Hilbert space.
(a) A function Q : X ×X → B(K) is called a B(K)-valued kernel. It is

said to be hermitian if Q(z, w)∗ = Q(w, z) holds for all z, w ∈ X.
(b) A hermitian B(K)-valued kernel K on X is said to be positive

definite if for every finite sequence (x1, v1), . . . , (xn, vn) in X × K
we have

n∑
j,k=1

〈Q(xj , xk)vk, vj〉 > 0.

(c) If (S, ∗) is an involutive semigroup, then a function φ : S → B(K)
is called positive definite if the kernel Qφ(s, t) := φ(st∗) is positive
definite.

(d) Positive definite kernels can be characterized as those for which
there exists a Hilbert space H and a function γ : X → B(H,K)
such that

Q(x, y) = γ(x)γ(y)∗ for x, y ∈ X

(cf. [38, Thm. I.1.4]). Here one may assume that the vectors γ(x)∗v,
x ∈ X, v ∈ K, span a dense subspace of H. Then the pair (γ,H) is
called a realization of K. The map Φ: H → KX ,Φ(v)(x) := γ(x)v,
then realizes H as a Hilbert subspace of KX with continuous point
evaluations evx : H → K. It is the unique Hilbert subspace in KX
with this property for which Q(x, y) = evx ev∗y for x, y ∈ X. We
write HQ ⊆ KX for this subspace and call it the reproducing kernel
Hilbert space with kernel Q.

Definition B.2. — Let K be a Hilbert space, G be a group, and U ⊆ G
be a subset. A function φ : UU−1 → B(K) is said to be positive definite if
the kernel

Qφ : U × U → B(K), (x, y) 7→ φ(xy−1)

is positive definite.
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Definition B.3. — A Lie group G with Lie algebra g is said to be
locally exponential if it has an exponential function for which there is an
open 0-neighborhood U in g mapped diffeomorphically by expG onto an
open subset of G. If, in addition, G is analytic and the exponential function
is an analytic local diffeomorphism in 0, then G is called a BCH–Lie group
(for Baker–Campbell–Hausdorff). Then the Lie algebra g is a BCH–Lie
algebra, i.e., there exists an open 0-neighborhood U ⊆ g such that for
x, y ∈ U the Hausdorff series

x ∗ y = x+ y + 1
2[x, y] + · · ·

converges and defines an analytic function U × U → g, (x, y) 7→ x ∗ y. The
class of BCH–Lie groups contains in particular all Banach–Lie groups [41,
Prop. IV.1.2].

Theorem B.4 (Extension of local positive definite analytic functions
(cf. [45], Thm. A.7). — Let G be a 1-connected Fréchet–BCH–Lie group,
V ⊆ G an open connected 1-neighborhood, K be a Hilbert space and
φ : V V −1 → B(K) be an analytic positive definite function. Then there ex-
ists a unique analytic positive definite function φ̃ : G→ B(K) extending φ.

Definition B.5. — Let U be an open subset of the Lie group G and
E be a locally convex space. Then we obtain for each x ∈ g a differential
operator on C∞(U,E) by

(Lxf)(g) := d

dt t=0
f(g exp tx).

These operators define a representation of the Lie algebra g on C∞(U,E),
so that we obtain a natural extension to a homomorphism

U(g)→ End(C∞(U,E)), D 7→ LD.

We likewise define

(Rxf)(g) := d

dt t=0
f(exp(tx)g)

and note that [Rx, Ry] = R[y,x] for x, y ∈ g.

Theorem B.6 (Infinitesimal characterization of positive definite ana-
lytic functions). — Let G be a Fréchet–BCH–Lie group, V ⊆ G an open
connected 1-neighborhood, K be a Hilbert space and φ : V → B(K) be
an analytic function satisfying φ(1) = 1. Then φ is positive definite on a
1-neighborhood in G if and only if the corresponding linear map

β : U(gC)→ B(K), β(D) := (LDφ)(1)
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is a positive definite linear function on the ∗-algebra U(gC).

Proof.
“⇒”: Suppose first that φ is positive definite in a 1-neighborhood. Then

Theorem B.4 provides an extension of the germ of φ in 1 to an analytic
positive definite function on all of G. We may therefore assume that φ is
defined on G. Then the vector-valued GNS construction provides a unitary
representation (π,H) of G on a Hilbert space H, containing K as a closed
subspace such that the orthogonal projection pK : H → K satisfies

φ(g) = pKπ(g)p∗K for g ∈ G.

This implies that K consists of analytic vectors, and for D ∈ U(gC) we find
the formula

β(D) = pKdπ(D)p∗K.

Any function of this form is easily seen to be positive definite.
“⇐”: Let Ug ⊆ g be an open symmetric 0-neighborhood which is mapped

by exp bianalytically to an open 1-neighborhood of G and such that φ is
defined on exp(Ug). Then φ ◦ exp: Ug → B(V ) is also analytic, and, after
shrinking Ug, we may assume that

φ(expx) =
∞∑
n=0

φn(x),

where φn : g→ B(V ) is a continuous homogeneous polynomial function of
degree n ([8]). Now the relation

φ(exp tx) =
∑
n

tn

n! (L
n
xφ)(1) =

∑
n

tn

n!β(xn) for |t| < ε

implies that φn(x) = β(xn)
n! . In particular,

φ(expx) =
∑
n

1
n!β(xn) for x ∈ Ug,

which implies that β is analytic in the sense of [44, Def. 3.2].
Let βn(x1, . . . , xn) := β(x1 · · ·xn) and

βsn(x1, . . . , xn) := 1
n!
∑
σ∈Sn

β(xσ(1), . . . , xσ(n))

be its symmetrization. For a continuous seminorm p on g, we then define

‖βsn‖p := sup{‖βsn(x1, . . . , xn)‖ : x1, . . . , xn ∈ g, p(xi) 6 1} ∈ [0,∞].
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From [44, Prop. 3.4] we now obtain the existence of a continuous seminorm
p on g with

∑
n

1
n!‖β

s
n‖p <∞. In particular, there exists a constant C > 0

with

(B.1) ‖βsn‖p 6 Cn! for all n ∈ N0.

Let H ⊆ Hom(U(gC),K) be the reproducing kernel Hilbert space corre-
sponding to the positive definite function β : U(gC) → B(K). The corre-
sponding positive definite kernel Q and the corresponding evaluation maps
QD : H → K then satisfy

Q(D1, D2) = β(D1D
∗
2) = QD1Q

∗
D2

and QDf = f(D) for f ∈ H.

We have a ∗-representation of U(gC) on the dense subspace

H0 := span{Q∗Dv : v ∈ K, D ∈ U(gC)}

by
(ρ(D)f)(D′) = f(D′D) for D,D′ ∈ U(gC).

From β(1) = Q1Q
∗
1 = 1 we derive that we may identify K with its image

under the isometric embedding Q∗1 : K → H. For v ∈ K we then have

(ρ(D)v)(D′)=v(D′D)=QD′DQ
∗
1v=β(D′D)v = QD′Q

∗
D∗v = (Q∗D∗v)(D′),

so that
ρ(D)v = Q∗D∗v for D ∈ U(gC).

In view of ‖QD‖2 = ‖QDQ∗D‖ = ‖β(DD∗)‖, we find for the operators
Qxn ∈ B(H,K), x ∈ g, the estimates

1
n!‖Qx

n‖ = 1
n!‖β(x2n)‖1/2 6 p(x)n

n! ‖β
s
2n‖1/2p 6

p(x)n

n!
√
C
√

(2n)!.

In view of limn→∞

√
(2n+2)(2n+1)

n+1 = 2, it follows that∑
n

1
n!‖Qx

n‖ <∞ for p(x) < 1
2 .

We thus obtain an analytic function

η : {x ∈ g : p(x) < 1
2} → B(H,K), η(x) :=

∑
n

1
n!Qx

n .

Now let W ⊆ {x ∈ g : p(x) < 1
2} be an open symmetric 0-neighborhood

such that all BCH products x∗y for x, y ∈W are defined and that we thus

ANNALES DE L’INSTITUT FOURIER



SEMIBOUNDED UNITARY REPRESENTATIONS 1883

obtain an analytic function onW ×W with values in the set {z ∈ g : p(z) <
1
2}. For x, y ∈W we finally derive

φ(expx exp(−y)) = φ(exp(x ∗ (−y))) =
∑
n

1
n!β((x ∗ (−y))n)

=
∑
k,`

1
k!`!β(xk(−y)`) =

∑
k,`

1
k!`!QxkQ

∗
y` = η(x)η(y)∗.

This factorization implies that φ is positive definite on expW expW . This
completes the proof. �

Remark B.7. — If K is one-dimensional, then a linear map β : U(gC)→
B(K) ∼= C is positive definite if and only if it is a positive functional in the
sense that β(DD∗) > 0 for every D ∈ U(gC). For general K, it is shown in
[53, Ex. 11.2.1, Thm. 11.2.2] that β is positive definite if and only if it is
completely positive in the sense that every induced map

Mn(β) : Mn(U(gC))→Mn(B(K)) ∼= B(Kn)

obtained by applying β to all matrix entries maps positive elements to
positive elements.

Appendix C. Holomorphic induction for BCH–Lie groups

Let G be a Lie group andM = G/H be a homogeneous space of G which
carries the structure of a complex manifold so that G acts analytically
by holomorphic maps. In [46] we have developed a theory of holomorphic
induction for bounded unitary representations of H in the context where
G is a Banach–Lie group. To deal with semibounded representations of
Fréchet–Lie groups such as the double extension L̂φ(K) of the Fréchet–
Lie group Lφ(K) of smooth φ-twisted loops, we need an extension of this
theory to certain classes of Fréchet–Lie groups. In this appendix we explain
which properties of Banach–Lie groups were used in [46, Sects. 2,3] and why
L̂φ(K) also has these properties.
Let G be a connected Fréchet–BCH–Lie group with Lie algebra g. We

further assume that there exists a complex BCH–Lie group GC with Lie
algebra gC and a natural map η : G → GC for which L(η) is the inclusion
g ↪→ gC. Let H ⊆ G be a Lie subgroup for which M := G/H carries
the structure of a smooth manifold with a smooth G-action and h ⊆ g be
its Lie algebra. We also assume the existence of closed Ad(H)-invariant
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subalgebras p± ⊆ gC with p± = p∓ for which we have a topological direct
sum decomposition

(SC) gC = p+ ⊕ hC ⊕ p−.

We put
q := p+ o hC and p := g ∩ (p+ ⊕ p−),

so that g = h ⊕ p is a topological direct sum. We assume that there exist
open symmetric convex 0-neighborhoods UgC ⊆ gC, Up ⊆ p ∩ UgC , Uh ⊆
h ∩ UgC , Up± ⊆ p± ∩ UgC and Uq ⊆ q ∩ UgC such that the BCH-product is
defined and holomorphic on UgC×UgC , and the following maps are analytic
diffeomorphisms onto an open subset:
(A1) Up × Uh → g, (x, y) 7→ x ∗ y.
(A2) Up × Uq → gC, (x, y) 7→ x ∗ y.
(A3) Up− × Uq → gC, (x, y) 7→ x ∗ y.
Then (A1) implies the existence of a smooth manifold structure on M =

G/H for which G acts analytically. Condition (A2) implies the existence
of a complex manifold structure on M which is G-invariant and for which
T1H(M) ∼= gC/q. Finally, (A3) makes the proof of [46, Thm. 2.6] work, so
that we can associate to every bounded unitary representation (ρ, V ) of H
a holomorphic Hilbert bundle V := G×H V over the complex G-manifold
M by defining β : q→ gl(V ) by β(p+) = {0} and β|h = dρ. Now it is easy
to check that all results in Sections 2 and 3 of [46] remain valid.

Definition C.1. — We write Γ(V) for the space of holomorphic sec-
tions of the holomorphic Hilbert bundle V → M = G/H on which the
group G acts by holomorphic bundle automorphisms. A unitary represen-
tation (π,H) of G is said to be holomorphically induced from (ρ, V ) if there
exists a G-equivariant linear injection Ψ: H → Γ(V) such that the adjoint
of the evaluation map ev1H : H → V = V1H defines an isometric embed-
ding ev∗1H : V ↪→ H. If a unitary representation (π,H) holomorphically
induced from (ρ, V ) exists, then it is uniquely determined ([46, Def. 3.10])
and we call (ρ, V ) (holomorphically) inducible.

This concept of inducibility involves a choice of sign. Replacing p+ by p−

changes the complex structure on G/H and thus leads to a different class
of holomorphically inducible representations of of H.

Theorem C.2. — If the unitary representation (π,H) of G is holo-
morphically induced from the bounded H-representation (ρ, V ), then the
following assertions hold:

(i) V ⊆ Hω consists of analytic vectors.
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(ii) R : π(G)′ → ρ(H)′, A 7→ A|V is an isomorphism of von Neumann
algebras.

Proof. — (i) follows from [46, Lemma 3.5] and (ii) from [46, Thm. 3.12].
�

Theorem C.3 ([46], Thm. 3.17). — Suppose that (π,H) is a unitary
representation of G and V ⊆ H is an H-invariant closed subspace such that
(HI1) The representation (ρ, V ) of H on V is bounded.
(HI2) V ∩ (H∞)p− is dense in V .
(HI3) π(G)V spans a dense subspace of H.
Then (π,H) is holomorphically induced from (ρ, V ).

Examples C.4. — (a) Let G be a simply connected Banach–Lie group
for which gC also is the Lie algebra of a Banach–Lie group and M =
G/H is a Banach homogeneous space. If the subalgebras p± ⊆ gC satisfy
the splitting condition (SC), then (A1-3) follows directly from the Inverse
Function Theorem. This is the context of [46].
(b) Let GB be a Banach–Lie group with Lie algebra gB , HB ⊆ GB and

MB = GB/HB etc. as in (a). We assume that the splitting condition (SC)
is satisfied. In addition, let α : R→ Aut(GB) be a one-parameter group of
automorphisms defining a continuous R-action on GB and assume that the
subalgebras p±B , qB and h are α-invariant. Then the subgroup

G := {g ∈ GB : R→ GB , t 7→ αt(g) is smooth}

of GB carries the structure of a Fréchet–BCH–Lie group with Lie algebra

g := {x ∈ gB : R→ gB , t 7→ L(αt)x is smooth},

the Fréchet space of smooth vectors for the continuous R-action on the
Banach–Lie algebra gB . Likewise H := G ∩ HB is a Lie subgroup of G
for which M := G/H is a smooth manifold consisting of the elements of
MB = GB/HB with smooth orbit maps with respect to the one-parameter
group of diffeomorphisms induced by α via αt(gHB) = αt(g)HB .
Since the automorphisms L(αt) of g resp., gC are compatible with the

BCH multiplication, it is easy to see with Lemma C.5 below that conditions
(A1-3) are inherited by the closed subalgebras

h = hB ∩ g, p± = p±B ∩ gC and q = qB ∩ gC.

Lemma C.5. — Let V1 and V2 be Banach spaces and (α1
t ), resp., (α2

t )
define continuous R-actions on V1, resp., V2. If U ⊆ V1 is an open invariant
subset and F : U → V2 an equivariant smooth map, then the induced map

F∞ : U∞ := U ∩ V∞1 → V∞2 , v 7→ F (v)
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is a smooth map on the open subset U∞ of the Fréchet space V∞1 .

Proof. — Let Dj := α′j(0) denote the infinitesimal generator of αj . Then
we have to verify that all maps Fk : U∞ → V2, x 7→ Dk

2F (x) are smooth.
Since α1 defines a smooth R-action on U∞, the map

Φ: R× U∞ → V2, (t, x) 7→ F (α1
t (x)) = α2

tF (x)

is smooth. Hence the map Fk(x) = ∂k

∂tk
|t=0Φ(t, x) is also smooth. �

From (A1-3) we derive the existence of open convex symmetric 0-neigh-
borhoods U± ⊆ p± and U0 ⊆ hC for which the BCH-multiplication map

U+ × U0 × U− → gC, (x+, x0, x−) 7→ x+ ∗ x0 ∗ x−
is biholomorphic onto an open 0-neighborhood U of gC. For a bounded
representation (ρ, V ) of H0 we then define a holomorphic map

Fρ : U → B(V ), Fρ(x+ ∗ x0 ∗ x−) := edρ(x0).

For the Banach case the equivalence of (i) and (ii) in the following the-
orem can also be found in [45, Thm. B.1]. Its proof also works without
change in our context. We include it for the sake of completeness.

Theorem C.6. — For a bounded representation (ρ, V ) of H, the fol-
lowing are equivalent:

(i) (ρ, V ) is holomorphically inducible.
(ii) fρ(expx) := Fρ(x) defines a positive definite analytic function on a

1-neighborhood of G.
(iii) The corresponding linear map β : U(gC)→ B(V ), β(D)=(LDfρ)(1)

is positive definite. It is characterized by the property that p+U(gC)
+U(gC)p− ⊆ kerβ and β|U(hC) = dρ.

Proof.
(i) ⇒ (ii): Let (π,H) be the unitary representation of G obtained by

holomorphic induction from (ρ, V ). We identify V with the corresponding
closed subspace of H and write pV : H → V for the corresponding orthog-
onal projection. For v ∈ V ⊆ (Hω)p− (Theorem C.2), we let fvρ : Uv → G

be a holomorphic map on an open convex 0-neighborhood Uv ⊆ U satis-
fying fvρ (x) = π(expx)v for x ∈ Uv ∩ g. Then dπ(p−)v = {0} implies that
Lzf

v
ρ = 0 for z ∈ p−. For w ∈ V and z ∈ p+, we also obtain

〈(Rzfvρ )(x), w〉 = 〈dπ(z)fvρ (x), w〉 = 〈fvρ (x), dπ(z∗)w〉 = 0.

This proves that Rz(pV ◦ fv) = 0. We conclude that, for x± and x0 suffi-
ciently close to 0, we have

pV f
v
ρ (x+ ∗ x0 ∗ x−) = fvρ (x0) = edρ(x0)v = Fρ(x+ ∗ x0 ∗ x−)v.
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Therefore pV ◦ fvρ extends holomorphically to U and

〈π(expx)v, w〉 = 〈Fρ(x)v, w〉 for x ∈ Uv ∩ g, v, w ∈ V.

We conclude that Fρ(x) = pV π(expx)pV holds for x sufficiently close to
0, and hence that fρ(expx) = pV π(expx)pV defines a positive definite
function on a 1-neighborhood of G.
(ii) ⇒ (i): From Theorem B.4 it follows that some restriction of fρ to a

possibly smaller 1-neighborhood in G extends to a global analytic positive
definite function φ. Then the vector-valued GNS construction yields a uni-
tary representation of G on the corresponding reproducing kernel Hilbert
space Hφ ⊆ V G for which all the elements of H0

φ = span(φ(G)V ) are
analytic vectors. In particular, V ⊆ Hωφ consists of smooth vectors, and
the definition of fρ implies that dπ(p−)V = {0}. Therefore Theorem C.3
implies that the representation (π,Hφ) is holomorphically induced from
(ρ, V ).

(ii) ⇔ (iii) follows from Theorem B.6. The relation U(gC)p− ⊆ kerβ fol-
lows from the definition of fρ which does not depend on the x−-component.
In view of fρ(g−1) = fρ(g)∗, we have β(D∗) = β(D)∗ for D ∈ U(gC), and
we thus also obtain p+U(gC) ⊆ kerβ, so that β is determined by its re-
striction to U(hC), where it coincides with dρ. �

Appendix D. Finite order automorphisms
of Hilbert–Lie algebras

In this appendix we generalize some of the results on finite order automor-
phisms of complex, resp., compact semisimple Lie algebras ([19, Sec. X.5])
to Hilbert–Lie algebras.

Let k be a Hilbert–Lie algebra and φ ∈ Aut(k) be an automorphism of
order N .

Lemma D.1. — If k is semisimple and non-zero, then kφ 6= {0}.

Proof. — We also write φ for the complex linear extension of φ to kC and
write

knC := {x ∈ kC : φ−1(x) = e2πin/Nx}.

Assume that kφ = {0}. This means that k0C = (kφ)C = {0}. We show by
induction that kkC = {0} for k = 1, . . . , N − 1. Assume 1 6 k < N and
that kjC = {0} holds for j = 0, 1, . . . , k − 1. Pick x ∈ kkC. For each j ∈ Z,
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there exists an r ∈ N such that j + kr is congruent to one of the numbers
0, . . . , k − 1 modulo N . We then obtain

(adx)rkjC ⊆ kj+rkC = {0},

and conclude that adx is nilpotent. Then adx∗ is also nilpotent. Moreover,
[x, x∗] ∈ [kkC, k

−k
C ] ⊆ k0C = {0} implies that adx and adx∗ = (adx)∗ com-

mute. Thus adx is a normal operator on the complex Hilbert space kC, and
since it is nilpotent, we obtain adx = 0. Now x ∈ z(kC) = {0} completes
our inductive proof of kkC = {0} for k = 0, . . . , N − 1. This contradicts the
assumption that k is non-zero. �

Lemma D.2. — If t ⊆ kφ is maximal abelian, then tk := zk(t) is maximal
abelian in k.

Proof. — Clearly, tk is a closed subalgebra of k invariant under φ, hence
a Hilbert–Lie algebra, endowed with a finite order automorphism φ|tk . Let
s = z(tk)⊥ ∩ tk denote the commutator algebra of tk. Then s is also φ-
invariant and semisimple. If s is non-zero, then Lemma D.1 implies that sφ
is non-zero, but this leads to the contradiction sφ ⊆ zkφ(t) = t. �

Lemmas D.1 and D.2 imply in particular, that there exists a maximal
abelian subalgebra of k which is φ-invariant. According to [55], kC decom-
poses into an orthogonal sum of tk-root spaces, and this implies that kC
decomposes into t-weight spaces kαC, α ∈ t′.
Let ∆ := ∆(k, t) := {α ∈ t′ : kαC 6= {0}} denote the t-weight set of k. As

ad t and φ commute, the weight spaces kαC are φ-invariant, so that we obtain
a simultaneous diagonalization of t and φ by the spaces

k
(α,n)
C := kαC ∩ knC, n ∈ Z, α ∈ ∆.

For x, y ∈ k
(α,n)
C we then have [x, y∗] ∈ k

(0,0)
C = tC, and for h ∈ tC

〈h, [x, y∗]〉 = 〈[h, y], x〉 = α(h)〈y, x〉 = 〈h, 〈x, y〉α]〉,

where α] ∈ tC is the unique element satisfying 〈h, α]〉 = α(h) for h ∈ tC.
This leads to

(D.1) [x, y∗] = 〈x, y〉α] for x, y ∈ k
(α,n)
C .

For ‖x‖ = 1 we obtain in particular [x, x∗] = α] and thus

α([x, x∗]) = α(α]) = ‖α]‖2 > 0 for 0 6= α.

We conclude that

k(α, n) := spanR{x− x∗, i(x+ x∗), i[x, x∗]} ∼= su2(C)
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(cf. Lemma 1.8). For y⊥x in k
(α,n)
C , we obtain [x, y∗] = 0 by (D.1) and thus

0 6 〈[x, y], [x, y]〉 = 〈[x∗, [x, y]], y〉 = 〈[[x∗, x], y], y〉 = −α(α])‖y‖2 6 0,

so that y = 0, which means that

(D.2) dim k
(α,n)
C = 1.

Lemma D.3. — If k is simple, then the weight set ∆× := ∆ \ {0} does
not decompose into two mutually orthogonal non-empty subsets.

Proof. — Suppose that ∆ = ∆1∪̇∆2 is a decomposition into mutually
orthogonal subsets. Then, for α ∈ ∆1, β ∈ ∆2, we have α+ β 6∈ ∆, so that
[kαC, k

β
C] = {0}. Therefore the subalgebra k1 generated by the weight spaces

kαC, α ∈ ∆1, is invariant under brackets with all root spaces and with tk,
hence an ideal. As k is simple and ∆1 6= ∅, it follows that k = k1, and this
leads to ∆2 = ∅. �

BIBLIOGRAPHY

[1] S. Albeverio & R. J. Høegh-Krohn, “The energy representation of Sobolev–Lie
groups”, Composition Math. 36 (1978), no. 1, p. 37-51.

[2] S. A. Albeverio, R. J. Høegh-Krohn, J. A. Marion, D. H. Testard & B. S.
Torrésani, Noncommutative distributions, Monographs and Textbooks in Pure
and Applied Mathematics, vol. 175, Marcel Dekker, Inc., New York, 1993, Unitary
representation of gauge groups and algebras, x+190 pages.

[3] M. F. Atiyah & A. N. Pressley, “Convexity and loop groups”, in Arithmetic and
geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983,
p. 33-63.

[4] B. Bakalov, N. M. Nikolov, K.-H. Rehren & I. Todorov, “Unitary positive-
energy representations of scalar bilocal quantum fields”, Comm. Math. Phys. 271
(2007), no. 1, p. 223-246.

[5] V. K. Balachandran, “Simple L∗-algebras of classical type”, Math. Ann. 180
(1969), p. 205-219.

[6] D. Beltiţă & K.-H. Neeb, “A nonsmooth continuous unitary representation of a
Banach-Lie group”, J. Lie Theory 18 (2008), no. 4, p. 933-936.

[7] F. A. Berezin, “Representations of the continuous direct product of universal cov-
erings of the group of motions of the complex ball”, Trans. Moscow Math. Soc. 2
(1979), p. 281-289.

[8] J. Bochnak & J. Siciak, “Analytic functions in topological vector spaces”, Studia
Math. 39 (1971), p. 77-112.

[9] A. L. Carey, “Infinite-dimensional groups and quantum field theory”, Acta Appl.
Math. 1 (1983), no. 4, p. 321-331.

[10] A. L. Carey & S. N. M. Ruijsenaars, “On fermion gauge groups, current algebras
and Kac-Moody algebras”, Acta Appl. Math. 10 (1987), no. 1, p. 1-86.

[11] V. Chari & A. Pressley, “New unitary representations of loop groups”, Math.
Ann. 275 (1986), no. 1, p. 87-104.

[12] ———, “Unitary representations of the maps S1 → su(N, 1)”, Math. Proc. Cam-
bridge Philos. Soc. 102 (1987), no. 2, p. 259-272.

TOME 64 (2014), FASCICULE 5



1890 K. H. NEEB

[13] J. A. Cuenca Mira, G. M. Amable & C. Martín González, “Structure theory
for L∗-algebras”, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, p. 361-365.

[14] C. J. Fewster & S. Hollands, “Quantum energy inequalities in two-dimensional
conformal field theory”, Rev. Math. Phys. 17 (2005), no. 5, p. 577-612.

[15] I. M. Gel′fand, M. I. Graev & A. M. Veršik, “Representations of the group of
functions taking values in a compact Lie group”, Compositio Math. 42 (1980/81),
no. 2, p. 217-243.

[16] H. Glöckner & K.-H. Neeb, “Infinite dimensional Lie groups, Vol. I, Basic Theory
and Main Examples”, book in preparation.

[17] O. Goertsches, “Variationally complete and hyperpolar actions on compact sym-
metric spaces”, PhD Thesis, Köln, 2003.

[18] R. Goodman & N. R. Wallach, “Erratum to the paper: “Structure and unitary
cocycle representations of loop groups and the group of diffeomorphisms of the
circle” [J. Reine Angew. Math. 347 (1984), 69–133]”, J. Reine Angew. Math. 352
(1984), p. 220.

[19] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and
Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich,
Publishers], New York-London, 1978, xv+628 pages.

[20] G. Hofmann & K.-H. Neeb, “On convex hulls of orbits of Coxeter groups and Weyl
groups”, arXiv:math.RT.1204.2095, to appear in Muenster Journal of Mathematics.

[21] K. H. Hofmann & S. A. Morris, The structure of compact groups, de Gruyter
Studies in Mathematics, vol. 25, Walter de Gruyter & Co., Berlin, 1998, A primer
for the student—a handbook for the expert, xviii+835 pages.

[22] H. P. Jakobsen & V. G. Kac, “A new class of unitarizable highest weight repre-
sentations of infinite-dimensional Lie algebras”, in Nonlinear equations in classical
and quantum field theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., vol.
226, Springer, Berlin, 1985, p. 1-20.

[23] ———, “A new class of unitarizable highest weight representations of infinite-
dimensional Lie algebras. II”, J. Funct. Anal. 82 (1989), no. 1, p. 69-90.

[24] B. Janssens & K.-H. Neeb, “Norm continuous unitary representations of Lie alge-
bras of smooth sections”, arXiv:math.RT.1302.2535.

[25] B. Janssens & C. Wockel, “Universal central extensions of gauge algebras and
groups”, J. Reine Angew. Math. 682 (2013), p. 129-139.

[26] V. G. Kac, Infinite-dimensional Lie algebras, third ed., Cambridge University Press,
Cambridge, 1990, xxii+400 pages.

[27] V. G. Kac & D. H. Peterson, “Unitary structure in representations of infinite-
dimensional groups and a convexity theorem”, Invent. Math. 76 (1984), no. 1,
p. 1-14.

[28] K. Kühn, “Direct limits of diagonal chains of type O, U, and Sp, and their homotopy
groups”, Comm. Algebra 34 (2006), no. 1, p. 75-87.

[29] O. Loos & E. Neher, “Locally finite root systems”, Mem. Amer. Math. Soc. 171
(2004), no. 811, p. x+214.

[30] P. Maier, “Central extensions of topological current algebras”, in Geometry and
analysis on finite- and infinite-dimensional Lie groups (Będlewo, 2000), Banach
Center Publ., vol. 55, Polish Acad. Sci., Warsaw, 2002, p. 61-76.

[31] P. Maier & K.-H. Neeb, “Central extensions of current groups”, Math. Ann. 326
(2003), no. 2, p. 367-415.

[32] B. Maissen, “Lie-Gruppen mit Banachräumen als Parameterräume”, Acta Math.
108 (1962), p. 229-270.

[33] A. Medina & P. Revoy, “Algèbres de Lie et produit scalaire invariant”, Ann. Sci.
école Norm. Sup. (4) 18 (1985), no. 3, p. 553-561.

ANNALES DE L’INSTITUT FOURIER



SEMIBOUNDED UNITARY REPRESENTATIONS 1891

[34] J. Mickelsson, Current algebras and groups, Plenum Monographs in Nonlinear
Physics, Plenum Press, New York, 1989, xviii+313 pages.

[35] J. Morita & Y. Yoshii, “Locally extended affine Lie algebras”, J. Algebra 301
(2006), no. 1, p. 59-81.

[36] K.-H. Neeb, “Projective semibounded representations of doubly extended Hilbert–
Lie groups”, in preparation.

[37] ———, “Holomorphic highest weight representations of infinite-dimensional com-
plex classical groups”, J. Reine Angew. Math. 497 (1998), p. 171-222.

[38] ———, Holomorphy and convexity in Lie theory, de Gruyter Expositions in Math-
ematics, vol. 28, Walter de Gruyter & Co., Berlin, 2000, xxii+778 pages.

[39] ———, “Central extensions of infinite-dimensional Lie groups”, Ann. Inst. Fourier
(Grenoble) 52 (2002), no. 5, p. 1365-1442.

[40] ———, “Classical Hilbert-Lie groups, their extensions and their homotopy groups”,
in Geometry and analysis on finite- and infinite-dimensional Lie groups (Będlewo,
2000), Banach Center Publ., vol. 55, Polish Acad. Sci., Warsaw, 2002, p. 87-151.

[41] ———, “Towards a Lie theory of locally convex groups”, Jpn. J. Math. 1 (2006),
no. 2, p. 291-468.

[42] ———, “Semibounded representations and invariant cones in infinite dimensional
Lie algebras”, Confluentes Math. 2 (2010), no. 1, p. 37-134.

[43] ———, “Unitary highest weight modules of locally affine Lie algebras”, in Quan-
tum affine algebras, extended affine Lie algebras, and their applications, Contemp.
Math., vol. 506, Amer. Math. Soc., Providence, RI, 2010, p. 227-262.

[44] ———, “On analytic vectors for unitary representations of infinite dimensional Lie
groups”, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 5, p. 1441-1476.

[45] ———, “Semibounded representations of Hermitian Lie groups”, in Travaux math-
ématiques. Vol. XXI, Trav. Math., vol. 21, Fac. Sci. Technol. Commun. Univ. Lux-
emb., Luxembourg, 2012, p. 29-109.

[46] ———, “Holomorphic realization of unitary representations of Banach-Lie groups”,
in Lie groups: structure, actions, and representations, Progr. Math., vol. 306,
Birkhäuser/Springer, New York, 2013, p. 185-223.

[47] K.-H. Neeb & H. Seppänen, “Borel-Weil theory for groups over commutative Ba-
nach algebras”, J. Reine Angew. Math. 655 (2011), p. 165-187.

[48] K.-H. Neeb & C. Wockel, “Central extensions of groups of sections”, Ann. Global
Anal. Geom. 36 (2009), no. 4, p. 381-418.

[49] E. Neher, “Generators and relations for 3-graded Lie algebras”, J. Algebra 155
(1993), no. 1, p. 1-35.

[50] J. T. Ottesen, Infinite-dimensional groups and algebras in quantum physics, Lec-
ture Notes in Physics. New Series m: Monographs, vol. 27, Springer-Verlag, Berlin,
1995, viii+218 pages.

[51] R. S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New
York-Amsterdam, 1968, vii+131 pages.

[52] A. Pressley & G. Segal, Loop groups, Oxford Mathematical Monographs, The
Clarendon Press, Oxford University Press, New York, 1986, Oxford Science Publi-
cations, viii+318 pages.

[53] K. Schmüdgen, Unbounded operator algebras and representation theory, Opera-
tor Theory: Advances and Applications, vol. 37, Birkhäuser Verlag, Basel, 1990,
380 pages.

[54] J. R. Schue, “Hilbert space methods in the theory of Lie algebras”, Trans. Amer.
Math. Soc. 95 (1960), p. 69-80.

[55] ———, “Cartan decompositions for L∗ algebras”, Trans. Amer. Math. Soc. 98
(1961), p. 334-349.

TOME 64 (2014), FASCICULE 5



1892 K. H. NEEB

[56] G. Segal, “Unitary representations of some infinite-dimensional groups”, Comm.
Math. Phys. 80 (1981), no. 3, p. 301-342.

[57] I. E. Segal, “Distributions in Hilbert space and canonical systems of operators”,
Trans. Amer. Math. Soc. 88 (1958), p. 12-41.

[58] ———, “The complex-wave representation of the free boson field”, in Topics in
functional analysis (essays dedicated to M. G. Krĕın on the occasion of his 70th
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