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A GENERALIZATION OF THE SELF-DUAL
INDUCTION TO EVERY INTERVAL EXCHANGE

TRANSFORMATION

by Sébastien FERENCZI

Abstract. — We generalize to all interval exchanges the induction algorithm
defined by Ferenczi and Zamboni for a particular class. Each interval exchange
corresponds to an infinite path in a graph whose vertices are certain unions of
trees we call castle forests. We use it to describe those words obtained by coding
trajectories and give an explicit representation of the system by Rokhlin towers.
As an application, we build the first known example of a weakly mixing interval
exchange outside the hyperelliptic and rotations Rauzy classes.
Résumé. — Nous généralisons à tous les échanges d’intervalles l’algorithme

d’induction défini par Ferenczi et Zamboni pour une classe particulière. Chaque
échange d’intervalles correspond à un chemin infini dans un graphe dont les som-
mets sont certaines unions d’arbres que nous appelons des forêts de châteaux. Nous
l’utilisons pour décrire les mots obtenus en codant les trajectoires, et donner une
représentation explicite du système par des tours de Rokhlin. Comme application,
nous construisons le premier exemple connu d’échange d’intervalles faiblement mé-
langeant en-dehors de la classe de Rauzy hyper-elliptique et de celle des rotations.

1. Preliminaries

Interval exchanges were originally introduced by Oseledec [33], following
an idea of Arnold [2], see also Katok and Stepin [26]; an exchange of k inter-
vals, denoted throughout this paper by I, is given by a probability vector
of k lengths together with a permutation π on k letters; the unit interval is
partitioned into k subintervals of lengths α1, . . . , αk which are rearranged
by I according to π. It was Rauzy [35] who first defined an algorithm of
renormalization for interval exchanges, now called Rauzy induction, which
generalizes the Euclid algorithm of continued fraction approximation and
coincides with it for k = 2.

Keywords: Dynamical systems, interval exchanges, symbolic dynamics.
Math. classification: 37B10, 68R15.
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The Rauzy induction, further developed by Veech [38], and modified by
Zorich [43] and more recently by Marmi, Moussa and Yoccoz [31], had a
tremendous success in solving many problems associated with interval ex-
changes. These inductions are also a fundamental tool in the study of the
space of moduli of Riemann surfaces, and the various strata of its unit
tangent bundle, through what has been a basic object of interest for the
last 25 years, the Teichmüller flow on a stratum. Consider the translation
surface obtained by gluing opposite parallel sides of a polygon: to study
the Teichmüller flow applied to this given surface, the Rauzy induction
chooses an initial segment of an horizontal separatrix and follows its ver-
tical separatrix till it intersects this initial segment, in order to obtain an
interval exchange as induced map; then it considers shorter and shorter
initial segments. But a basic flaw is that we only consider one horizontal
separatrix; the da Rocha induction [30] considers all the horizontal separa-
trices and one vertical separatrix, and its duality with the Rauzy induction
appears in the natural extension of the induction process. The trouble with
both procedures is that they destroy the symmetry of the geometrical sit-
uation, by giving a special role to one of the separatrices; because of that,
each foliation admits several descriptions, and the relative position of the
separatrices is not taken into account.
In [20] we describe a new induction algorithm for interval exchanges

(following a preliminary version for three intervals [17] [18] [21]), which is
proved in [11], also [21] for k = 3, to be self-dual for the duality mentioned
above, giving the same role to each horizontal and vertical separatrix (this
notion of duality is defined in [21] and [11] see also [24], but it is indeed
the same as the one defined by Schweiger in Chapter 21 of the book [36]).
At each stage we induce I on a disjoint union of k − 1 intervals, each one
containing a discontinuity of I−1 and having its extremities on negative
orbits of discontinuities of I. This ensures that each of our intervals is the
cylinder of a so-called bispecial word of the trajectories. As in the case of
the other inductions, it is described by an infinite path in a finite graph,
whose vertices are the states of the induction.
Unfortunately, the algorithm in [20] is defined only when the permuta-

tion is the symmetric one, i → k + 1 − i, 1 6 i 6 k, and thus the results
in [20] can be applied only to interval exchanges in the hyperelliptic Rauzy
class. At long last, the present paper gives an algorithm (indeed, several
ones) generalizing the self-dual induction for every interval exchange satis-
fying Keane’s i.d.o.c. condition, whatever its (primitive) permutation. The
aim of the present paper is first to make this general induction work, and
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then to focus on the full information it gives on the word-combinatorial
and dynamical properties of the system. The geometry lying behind the
induction is investigated in [11] for the hyperelliptic case, and is studied in
its full generality in [12], where it is proved, among others, that in general
the self-duality does not work.
As in the hyperelliptic case the new induction is neither unique nor

straightforward to implement; as there is no canonical order between the
parameters to be changed, there will be decisions to make, as in the prob-
lem of induction of a train-track [34], which is not solved in the general
case. Thus we propose several algorithms, which create the same induc-
tion sub-intervals though at different speeds. For the Rauzy induction and
its multiplicative accelerations, the states are defined by permutations; in
our case, each state corresponds to a description of Rokhlin towers for the
induced map, in terms of an abstract object called a castle forest; their
properties allow us to implement the induction, through one of several pos-
sible deterministic algorithms. The fundamental step in the process consists
in surgery on trees to get the castle forest in the next state. The sequence
of castle forests, seen as a path in the graph of graphs, defines inductively
the bispecial words of the trajectories; the constructive sequence of Rokhlin
towers which it describes gives a complete knowledge of the dynamical sys-
tem from the measure-theoretic point of view.
The main interest of the new induction lies in its capacity of building

examples, which has been already exploited in [19], [20], [23], [15], [10], [7];
these examples were by necessity limited to the hyperelliptic class, except
one in Section 5.2 of [20] which indeed anticipated the present paper in a
particular case; it happens that, as far as we know, every interval exchange
built in the literature in order to get some interesting properties belongs to
the hyperelliptic Rauzy class, whatever the way it is built, see for example
the discussion in Section 4.3 below; the other classes seem much more diffi-
cult to study, partially but not only because, except for the less interesting
rotations class, they do not exist for small numbers of intervals. Thus the
present induction algorithm, after being used to generalize some results
known in the hyperelleptic case, such as a partial result on repetitions of
words, and an S-adic presentation, with a characterization of those interval
exchanges whose trajectories are self-similar and generated by a primitive
substitution rule, allows us to break new ground by building explicitly a
family of weakly mixing interval exchanges in the Rauzy class correspond-
ing to he component Hodd(2g − 2) for every g > 3, which constitute to
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our knowledge the first known such examples outside the hyperelliptic and
rotations classes.
This research was partially supported by ANR project GeoDyn. The

author wishes to thank the referee for suggesting substantial improvements
in the presentation.

1.1. Interval exchanges

Throughout the paper, intervals are semi-open as [a, b[. For any question
about interval exchanges, we refer the reader to the surveys [41], [42], [16].

Definition 1.1. — A k-interval exchange I with probability vector
(α1, α2, . . . , αk), and permutation π is defined by

Ix = x+
∑

π−1(j)<π−1(i)

αj −
∑
j<i

αj .

when x is in the interval

∆i =
[∑
j<i

αj ,
∑
j6i

αj

[
.

We denote by βi, 1 6 i 6 k − 1, the i-th discontinuity of I−1, namely
βi =

∑
π−1(j)6π−1(i) αj , while γi is the i-th discontinuity of I, namely

γi =
∑
j6i αj , we define also γ0 = 0, γk = 1. Then ∆i is the interval

[γi−1, γi[ if 1 6 i 6 k.

Warning: Roughly half the texts on interval exchanges re-order the subin-
tervals by π−1; the present definition corresponds to the following ordering
of the I∆i: from left to right, I∆π(1), . . . , I∆π(k).

0

βi

γ1 γ2

0 1

1

β2

I∆3 I∆2 I∆1

∆1 ∆2 ∆3

Figure 1.1. A 3-interval exchange with πi = 3− i.

Definition 1.2. — I satisfies the infinite distinct orbit condition or
i.d.o.c. of Keane [27] if the k−1 negative orbits {I−nγi}n>0, 1 6 i 6 k−1,
of the discontinuities of I are infinite disjoint sets.
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As is proved in [27], the i.d.o.c. condition implies that I has no peri-
odic orbit and is minimal: every orbit is dense. If π is primitive, that is
π({1, . . . , j}) 6= {1, . . . , j} for every 1 6 j 6 k − 1, the i.d.o.c. condition
is (strictly) weaker than the total irrationality, where the only rational
relation satisfied by αi, 1 6 i 6 k, is

∑k
i=1 αi = 1.

Definition 1.3. — For every point x in [0, 1[, its trajectory is the infi-
nite sequence (xn)n∈N defined by xn = i if Inx falls into ∆i, 1 6 i 6 k.

Definition 1.4. — The induced map of a map T on a set Y is the map
y → T r(y)y where, for y ∈ Y , r(y) is the smallest r > 1 such that T ry is in
Y (in all cases considered in this paper, r(y) is finite).

Rauzy classes are equivalence classes of primitive permutations whose
full definition (through the Rauzy induction) is not relevant to the present
paper, and can be found in [41]. Their link with connected components of
strata in the moduli space of abelian differentials is described in [29][44][9].
Among the Rauzy classes of permutations on {1, . . . , k}, two particular
ones are the hyperelliptic class which contains the symmetric permutation
i→ k+ 1− i, 1 6 i 6 k, and the rotations class which contains the circular
permutation 1 → k, i → i − 1, 2 6 i 6 k. These two classes are the same
for k = 3, distinct for k > 4. The class corresponding to the component
Hodd(2g − 2) is defined for 2g = k > 6 and disjoint from the two previous
classes.

1.2. Word combinatorics

We look at finite words on a finite alphabet A = {1, . . . , k}. A word
w1 · · ·wt has length |w| = t (not to be confused with the length of a corre-
sponding interval). The empty word is the unique word of length 0. The
concatenation of two words w and w′ is denoted by ww′.

Definition 1.5. — A word w = w1 · · ·wt occurs at place i in a word
v = v1 · · · vs or an infinite sequence v = v1v2 · · · if w1 = vi, . . . , wt = vi+t−1.
We say that w is a factor of v. The empty word is a factor of any v. Prefixes
and suffixes are defined in the usual way.

Definition 1.6. — A language L over A is a set of words such if w is
in L, all its factors are in L, aw is in L for at least one letter a of A, and
wb is in L for at least one letter b of A.
A language L is minimal if for each w in L there exists n such that w

occurs in each word of L with n letters.
The language L(u) of an infinite sequence u is the set of its finite factors.
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Definition 1.7. — A language L being fixed, for a word w we call
arrival set of w and denote by A(w) the set of all letters x such that xw is
in L, and call departure set of w and denote by D(w) the set of all letters
x such that wx is in L.

A word w is called right special, resp. left special if #D(w) > 1, resp.
#A(w) > 1. If w is both right special and left special, then w is called
bispecial.

Definition 1.8. — The symbolic dynamical system associated to a lan-
guage L is the one-sided shift S(x0x1x2 · · · ) = x1x2 · · · on the subset XL

of AN made with the infinite sequences such that for every t < s, xt · · ·xs
is in L.
For a word w = w1 · · ·ws in L, the cylinder [w] is the set {x ∈ XL;x0 =

w1, . . . , xs−1 = ws}.

If the interval exchange I is minimal, all its trajectories have the same
finite factors, whose set is called the language L(I), and this language
is minimal; the arrival sets, departure sets, special words, depend on the
language and not on the individual trajectories; in the sequel, I being
fixed, all these objects are those defined by any trajectory of I. If there is
no periodic orbit, every word w is a factor of a bispecial word; hence the
bispecial words determine the finite factors of the trajectories, and thus the
symbolic dynamical system XL(I).

The following result will be used throughout the paper:

Lemma 1.9. — For any word w in L(I), [w] is an interval. D(w) is an
integer interval (meaning a set of the form {k, k+ 1, . . . , k+ a}) and A(w)
is the image by π of an integer interval. The sets [wd], d ∈ D(w), resp.
I[π(a)w], a ∈ π−1A(w), constitute a partition of [w] into subintervals,
positioned from left to right according to the increasing order of the d,
resp. a.

Proof. — Suppose w is of length t; then [wd] = [w] ∩ I−t[γd−1, γd[ and
d is in D(w) if and only if this is not empty. Thus we get, by induction on
t, that [w] is an interval of continuity of It, and the result on D(w) as I
and its iterates are growing on their intervals of continuity. As for A(w),
I[aw] = [w] ∩ I[γa−1, γa[= [w] ∩ [βπ−1a−1, βπ−1a[ (with βπ−1a−1 replaced
by 0 if a = π1, βπ−1a replaced by 1 if a = πk), and a is in A(w) if and only
if this is not empty. �
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2. The new induction in the case of alternate
discontinuities

Definition 2.1. — Let I be a k-interval exchange; it has alternate
discontinuities if βi < γi for each 1 6 i 6 k − 1 and γi < βi+1 for each
1 6 i 6 k − 2.

The combinatorial consequence of alternate discontinuities, coming from
the proof of Lemma 1.9, is that in the language, after π1 there is always 1;
after πj, j − 1 or j, 2 6 j 6 k. Thus A(w) and D(w) have at most two
elements, for words of length one hence for every word. The example in
Figure 1.1 above is in this case.

Definition 2.2. — For i 6= π1, we denote by im < ip = im + 1 the
two letters which can follow it. For i 6= k, we denote by i− and i+ the two
letters which can precede it, denoted so that π−1i+ = π−1i− + 1.

2.1. Special intervals

Our aim is to build the bispecial words of the language L(I); to each
of these corresponds an interval [w]. However, we may have w 6= w′ but
[w] = [w′]:

Proposition 2.3. — w is a left special word of length t if and only if
[w] is an interval of continuity of It containing exactly one point βi in its
interior; w is a right special word of length t if and only if [w] is an interval
of continuity of It containing exactly one point I−tγj in its interior; if w
is left special, [w] = [w′] for one bispecial word [w′], which is the longest
word v such that [v] = [w].

Proof. — w is left special if and only if [w] intersects two intervals I∆j

and I∆j′ , thus if and only if [w] contains a βi in its interior. This βi is
unique because of the alternate discontinuities. Similarly, w = w1 · · ·wt is
right special if and only if It[w] intersects two intervals ∆j and ∆j′ , thus
if and only if It[w] has a a γi in its interior, and only one because of the
alternate discontinuities. If w is not right special, then [w] = [w′] for some
w′ of length t+ 1; if there is no right special w′ such that [w] = [w′], then
[w] = [w(n)] for an infinite sequence of non right special words of length
n, thus [w] does not contain any I−sγh in its interior, which contradicts
minimality. As w′ is right special, no [w′a] can be the full interval E, thus
w′ is unique and is indeed the longest possible v. �
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We shall first focus on building those intervals [w] corresponding to left
(or bi-) special words, leaving the building of the words themselves for a
second stage.

Definition 2.4. — An interval E is a special interval if E = [w] for at
least one left special word, or equivalently for one bispecial word.
For a special interval E containing one point βi in its interior, we define
• γ(E) is the first element I−mγj , m > 0, 1 6 j 6 k − 1, which falls
in the interior of E, where I−m′γj′ is after I−mγj if m′ > m,

• E− = E ∩ [0, βi[, E+ = E ∩ [βi, 1[,
• Em = E ∩ [0, γ(E)[, Ep = E ∩ [γ(E), 1[,

A family of special intervals is a family of k− 1 disjoint special intervals
Ei, 1 6 i 6 k − 1, such that βi is in the interior of Ei for each i.

γ(E) exists by minimality; it is unique because of the alternate discon-
tinuities, as E cannot contain more than one I−sγj , 1 6 j 6 k − 1. for a
given s; it is different from βi by the i.d.o.c. condition.

Corollary 2.5. — Let E be a special interval, containing βi in its
interior. Then the maximal special strict subinterval of E is the one of the
two subintervals Em and Ep which contains βi in its interior.

Proof. — This is a consequence of the characterization in Proposition 2.3.
�

At the beginning, our definition of alternate discontinuities ensures that
the words of length one 1, 2, . . . , k−1 are left special, thus we have a family
of special intervals Ei,0 = ∆i, 1 6 i 6 k−1. Corollary 2.5 gives us the recipe
to build further special intervals: we need to build the points where the
negative orbits of the discontinuities of I approximate the discontinuities
of I−1. As there are k−1 discontinuities βi, we shall build a nested sequence
of k− 1 intervals, which, as will be proved in Proposition 2.25, converge to
the βi, namely

Ei,n = [βi − li,n, βi + ri,n[ 1 6 i 6 k − 1,

so that the Ei,n are the intervals containing βi, and whose endpoints are
the successive I−mγj which fall closest to βi. The number n of the stage
will be omitted whenever it is not necessary: when we go from one stage
to the next, Ei,n will be Ei and Ei,n+1 will be E′i, or else “the new Ei”.
li and ri are called the half-lengths of the interval Ei and the induction

will operate on these parameters.
By Corollary 2.5, the smallest possible E′i 6= Ei is the one of the two

intervals Ei,m and Ei,p which contains βi. It will often prove necessary
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to wait before cutting Ei; indeed, at any given stage we shall put E′i =
Ei for all i outside a set defined in Definition 2.13 below and called a
decision. The main problem is indeed to define a sequence of decisions
which makes the induction work and is non-trivial: it is solved in [20] for
some permutations, and will be solved for all permutations in the remainder
of Section 2. There are many possible decisions, which define algorithms
described in Section 2.7; each algorithm is one of the possible ways to build
the sequence of intervals we want. These algorithms are indeed induction
algorithms because the intervals E′i are built from the Ei by using S, the
induced map of I on the set ∪k−1

i=1 Ei. Indeed, all the information about I
is given by the S at all stages; these maps S defined on disjoint unions of
intervals are the effective object of our study, and we can completely forget
the interval exchange I, which could always be retrieved from the initial S
when needed. Note that S′, the induced map of I on ∪k−1

i=1 E
′
i, is also the

induced map of S on ∪k−1
i=1 E

′
i.

2.2. Induction castles and castle forests

A fundamental tool for studying any induced map is the building of
Rokhlin towers.

Definition 2.6. — In a measure-theoretic system (X,T, µ), a Rokhlin
tower of basis Y is a collection of disjoint measurable sets called levels Y ,
TY, . . . , Th−1Y .

Our map S is unusual as I is induced on a disjoint union of intervals;
the appropriate tool for describing its structure is the induction castle in-
troduced in [23]: following [8], we say that a union of towers is a castle (the
Ornstein school used the words stacks and gadgets instead of towers and
castles).

Definition 2.7. — Given a k-interval exchange I, and a family of spe-
cial intervals Ei, let S be the induced map of I on E1 ∪ · · ·Ek−1. The
induction castle of the Ei is the unique partition of [0, 1[ into levels T rYi,t,
1 6 i 6 k − 1, 1 6 t 6 ei, 0 6 r 6 hi,t − 1, where

• each interval Ei is partitioned into ei subintervals Yi,t, 1 6 t 6 ei,
numbered by t from left to right,

• SYi,t is a subinterval of Egi,t
, and on Yi,t S = Ihi,t .

An induction castle is indeed a union of Rokhlin towers, each tower being
made with the levels T rYi,t, 0 6 r 6 hi,t − 1, thus the bases of the towers

TOME 64 (2014), FASCICULE 5
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partition the intervals Ei. The ei are finite by compactness, but in general
each of the k − 1 intervals could be partitioned in many subintervals; only
for interval exchange transformations and the type of intervals chosen shall
we be able to bound these numbers. Note that, by definition, if some of our
intervals Ei are adjacent, the top of the towers have to be split, somewhat
artificially, by the pre-image of the border points, as in the right tower of
Figure 2.1 below.

For our families of special intervals, the induction castles have the fol-
lowing properties:

Lemma 2.8. — The Yi,t, 1 6 t 6 ei, correspond to a partition of Ei
by points of the form I−mγj , m > 0, which can be ordered by increasing
values of m. SYi,t is either Egi,t,− or Egi,t,+ (see Definition 2.4).

Proof. — The towers are made by continuity intervals up to time s, which
at time s+ 1 are split because they meet either a discontinuity or the pre-
image of an endpoint of an Ei; thus on the top of a tower there is an I−mγj ,
thus the endpoints of the Yi,t must also be such points; and the condition of
alternate discontinuities allows to order those which are inside the same Ei.
And the partition of any Eg by the different SYi,t which fall into it must
be by points βj , while there is only one such point inside Eg. �

Example 1. — We consider a three-interval exchange with the symmet-
ric permutation 1→ 3, 2→ 2, 3→ 1, and alternate discontinuities, see Fig-
ure 1.1 above; the special intervals in the initial stage are E1 = [0, γ1[= [1],
E2 = [γ1, γ2[= [2]. The induced map S determines the induction castle in
Figure 2.1 (where we have added the SYi,t as dotted lines above the tow-
ers). The map S is then defined as the map sending each subinterval in the
bottom to the corresponding dotted subinterval in the top, each move from
one level to the next being made by I. A further induction castle will be
shown in Figure 2.10 below.

We shall now describe the induction castles through combinatorial ob-
jects, which constitute a variant of the castle graphs used in [23].

Definition 2.9. — A tree is a connected graph without loops. All trees
we consider, except the trees of relations of Section 2.7, are directed. A leaf
is a vertex with no outgoing edge, a root is a vertex with no incoming edge,
a node is a vertex with at least two outgoing edges. Our directed trees are
pictured in the plane with edges going upward; thus the natural notion
of before, resp. after, is equivalent to below, resp. above. This embedding
defines also natural notions of left and right on edges out of a common
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0 I−1γ2
γ1 γ1 I−1γ1

γ2

β2
γ2 1 β1

γ1 β2

0 β1

Y1,1 Y1,2 Y2,1 Y2,2

IY1,2

SY1,2

SY1,1

Figure 2.1. Induction castle 1.0.

node; then we say that a leaf is left of another leaf if it is after the left edge
issuing from the last common node of the paths from the root to the two
leaves. An edge is single if it does not start from a node. The roots, edges
and leaves may be labeled, the label of a path is the concatenation of the
labels of its successive edges.

Definition 2.10. — A castle forest G is the disjoint union of k − 1
directed trees, numbered from 1 to k − 1, with the following properties:

• all vertices are roots, nodes or leaves, a root may also be a node;
each tree has one root,

• there are 2k − 2 leaves labeled by lj and rj , 1 6 j 6 k − 1,
• a node has two issuing edges, denoted as the left and right one,
• a tree whose root is not a node has one single edge,
• in a tree with nodes, a leaf lj , resp rj , is at the end of a right, resp.
left, edge,

• there is no strict subset J of {1, . . . , k − 1} such that the trees i,
i ∈ J , have only leaves lj or rj , j ∈ J .

The parenthesized train-track equalities ofG are the equalities expressing
that, for 1 6 i 6 k − 1, li + ri is the sum of the labels of the leaves of the
tree i, with parentheses around the sum of the leaves which are after each
node except the root.
For a castle forest G, the subset ΩG of R2k−2 consists of the vectors of

0 < li < 1, 0 < ri < 1, 1 6 i 6 k− 1, satisfying the train-track equalities of
G. An allowed castle forest G is a castle forest such that ΩG is nonempty.

The parenthesized train-track equalities give a complete description of
the castle forest; its actual description as a forest will become useful when
we put labels on the edges and roots, see Section 2.4 below. Note that the
labels li and ri of the leaves are formal parameters, which shall later be
associated to half-lengths of intervals.
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Definition 2.11. — The castle forest of a family of special intervals is
built from their induction castle in the following way:

• whenever ei = 1, the tree i has one single edge,
• each node in the tree i corresponds to one of the points I−mγj

partitioning Ei (excluding the endpoints of Ei),
• if ei > 1, the root of the tree i corresponds to the first (in the
increasing order of m) of the points I−mγj partitioning Ei,

• from each node I−m0γj0 in the tree i, there is a left edge, going
to the first (in the increasing order of m) node for which the point
I−mγj lies (strictly) left of the point I−m0γj0 , or to a leaf if there
is no such node,

• from each node I−m0γj0 in the tree i, there is a right edge, going
to the first (in the increasing order of m) node for which the point
I−mγj lies (strictly) right of the point I−m0γj0 , or to a leaf if there
is no such node,

• the t-th leaf from the left in the tree i receives the label lg, resp. rg,
if SYi,t is Eg,−, resp. Eg,+.

Thus the induction castle over each subinterval has as many towers as
leaves in the corresponding tree. The castle forest for Example 1 will be
built, together with its labels, in Section 2.4, and is in Figure 2.6 below,
but let us consider a more convoluted example, though it was not actually
built from an interval exchange.

Example 2. — If the part of the induction castle lying over E1 is as in
Figure 2.2, then the castle tree 1 is shown in Figure 2.3, where for each
node we have mentioned to which point it corresponds. The corresponding
parenthesized train-track equality is l1 + r1 = r7 + ((r8 + l9) + l2).

More examples will be found in Section 2.4 below.

Proposition 2.12. — The castle forest of a family of k − 1 special in-
tervals is an allowed castle forest, and its train-track equalities are satisfied
by the actual half-lengths of the Ei.

Proof. — We have to prove all the properties in Definition 2.10. Some of
them are included in Definition 2.11 taking into account Lemma 2.8. We
look at the remaining ones.

The points corresponding to nodes determine the partition of Ei into
subintervals Yi,t, which are associated with leaves of the tree i: they are
intervals of continuity of S, sent by S onto some Ej,−, or Ej,+.
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I−2γ1 I−3γ2 I−−8γ3 I−5γ5 I−1γ6

β2

β7

β8

β9

Y1,1 Y1,2 Y1,3 Y1,4

IY1,1

I2Y1,1

SY1,1

Figure 2.2. Induction castle 2.0 over E1.

r7

(I−3γ2)

(I−5γ5)

(I−8γ3) l2

r8 l9

Figure 2.3. Tree 1 in castle forest 2.0.

The forest is allowed as the vector of half-lengths li and ri is in ΩG: these
satisfy the train-track equalities, as we consider the partitions of Ei into
intervals of continuity of S−1 and S.
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By definition of the castle forest, each li or ri is the label of only one leaf.
Thus if we make the sum of the k − 1 train-track equalities, every li and
ri, which appear on the left and are nonzero (because βi is in the interior
of Ei), must appear on the right. Thus there are 2k − 2 leaves.
The last property in the definition of castle forests is satisfied by mini-

mality.
As for the last but one property, suppose a leaf lj is the end of a left

edge; then the endpoints of the associated subinterval are I−s1γt1 to the
left, I−s2γt2 to the right, with s2 > s1, while this interval is sent by some It
onto an interval with endpoints I−s3γt3 to the left, βj to the right, and this
contradicts the i.d.o.c. condition. A similar reasoning works in the opposite
case. �

2.3. Induction step, choices and decisions
At the initial stage, as we have seen Ei,0 = ∆i, 1 6 i 6 k−1. We can now

define the initial castle forest; there are two situations, for which examples
can be found in castle forests 1.0 and 3.0 below:

• if π−1k = 1: in tree πi, 2 6 i 6 k − 1, from the root there is a left
edge to a leaf ri−1, and a right edge to a leaf li; in tree 1, from the
root there is a left edge to a leaf rk−1, and a right edge to a leaf l1;

• if π−1k = j 6= 1, in the initial castle forest: in tree πi, 2 6 i 6 k−1,
i 6= j, from the root there is a left edge to a leaf ri−1, and a right
edge to a leaf li; in tree πk, from the root there is a left edge to
a leaf rk−1, and a right edge to a node, from which there is a left
edge to a leaf rj−1, and a right edge to a leaf lj ; in tree π1, there is
a single edge to a leaf l1.

We suppose that at some stage we have a family of special intervals Ei,
with half-lengths li, ri, and its castle forest.

Definition 2.13. — At any given stage, the greedy decision is the set
H of i such that the root of tree i is a node. An allowed decision is any
nonempty subset of H. If i is in F , the new special interval E′i is the one
of the intervals Ei,m and Ei,p which contains βi; if i is not in F , E′i = Ei.

The greedy decision is the maximal set of i such that Ei can be cut at
that stage; it corresponds to the i such that some I−mγj appears inside Ei
in the induction castle of the Ei at that stage. For others i, of course some
I−mγj exists inside Ei by minimality, but there is not enough information
in the picture to determine it, and for cutting Ei we have to wait until it
is synchronized again with the others.
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Definition 2.14. — For a castle forest, let H be the greedy decision.
A choice is an application c of H into {−,+}. A choice c and an allowed
decision F define a linear map CF from R2k−2 to itself by CF (li, ri, 1 6 i 6
k − 1) = (l′i, r′i, 1 6 i 6 k − 1) with

• if i ∈ F and c(i) = −, l′i = li, r′i = ri − Ui,2,
• if i ∈ F and c(i) = +, l′i = li − Ui,1, r′i = ri,
• if i 6∈ F , l′i = li, r′i = ri,

where Ui,1, resp. Ui,2, is the sum of the labels of the leaves which are after
the left (resp. right) edge out of the root of tree i.

Proposition 2.15. — For a family of special intervals, for any i in the
greedy decision H, we define the choice c(i) to be + if li − Ui,1 = Ui,2 − ri
is positive, − otherwise, for Ui,j defined as above. Then βi is in Ei,p, resp.
Ei,m, if and only if c(i) = +, resp. −. For any allowed decision F , the
half-lengths of the corresponding E′i are given by (l′i, r′i, 1 6 i 6 k − 1) =
CF (li, ri, 1 6 i 6 k − 1).

Proof. — From the definition of the castle forest, the first I−sγt which
falls into Ei is the one which creates a decomposition of Ei according to
the first node, if there is one. Thus for i in H, this node is the root, the
length of Ei,m is Ui,1 and the length of Ei,p is Ui,2, while by definition the
length of Ei,− is li and the length of Ei,+ is ri, hence the result; note that
li − Ui,1 = Ui,2 − ri is not zero by the i.d.o.c. condition. �

Corollary 2.16. — The choice c defined above is allowed, which
means that CH(ΩG) has a nonempty intersection with the positive open
cone of R2k−2.

Proof. — This comes from Proposition 2.15, using the i.d.o.c. condition.
�

Proposition 2.17. — The castle forest of the E′i built as in Proposi-
tion 2.15 with an allowed decision F is built from the castle forest of the
Ei by making for all i in F , successively in any order, the surgery on trees
detailed below if c(i) = −, the surgery deduced from the one detailed below
by exchanging left and right, l and r, if c(i) = +.

Let n be the node or leaf at the end of the left edge out of the root of
tree i;

• if n is a node, the part of the former tree i beyond n becomes the
new tree i, including n which becomes its root; the part of the tree
i lying below n or right of the root is cut away, and put on top of
leaf ri, which is in a tree h (if h = i, the new tree i). The vertex n
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is duplicated: in the new tree h, the former node n (in the added
part) becomes a leaf labeled ri, and the former leaf ri becomes a
node;

• if n is a leaf labeled rj , a new tree i is made with a single edge and
a leaf labeled rj , while the whole former tree i is put on top of leaf
ri in its tree h (if h = i, the new tree i). In the new tree h the
former leaf ri becomes a node, and the former leaf rj (in the added
part) is re-labeled ri.

In both cases, if the former leaf rj was the only leaf in tree h, then in
the new tree h the single edge leading to it is deleted, and the new node
becomes the root.

Proof. — When i is in F and c(i) = −, Ei is cut to become E′i = Ei,m,
the part of the induction castle which lies above Ei,p is cut and pasted
on top of the tower such that SYh,t = Ei,+, and the surgery on trees just
mimics the effects of this cut and paste operation, translated by Defini-
tion 2.11. Note that, as c(i) = −, Ei,+ is strictly longer than Ei,p, thus,
as S is measure-preserving, the leaf ri cannot be in the part of the former
tree i which has just been cut away. �

From this construction, we see that single edges may disappear or be
created, but non-single edges are conserved by the induction step, though
they may be displaced. Thus their numbers is always the same as in the
initial state, namely 2k − 2.

Another way to build the new castle forest, possibly more “algorithmic”
or efficient, would be to work only on parenthesized train-track equalities:
by building the new r′i and l′i with Proposition 2.15, then expressing the ri
and li in function of the r′i and l′i and inputting these values into the old
train-track equalities, we get all the new ones simultaneously.

Evolution of Example 2. — We look at the example in Figures 2.2–2.3;
then 1 is in the greedy decision. Suppose first that β1 is in Y1,t, for t = 2, 3
or 4. Then c(1) = +, and take any decision containing 1; we are in the first
case above, with left and right exchanged; suppose the leaf l1 is in tree 4,
and is not its single leaf; then Figure 2.4 shows the new tree 1 and what is
added to tree 4, with the former leaf l1 shown between parentheses.

Suppose now β1 is in Y1,1, and take any decision containing 1. Then
c(1) = −, we are in the second case above; suppose the leaf r1 is in tree 5,
and is its single leaf; then Figure 2.5 shows the new trees 1 and 5, with the
former leaf r1 shown between parentheses.
Again, we refer the reader to Section 2.4 for more examples.
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(l1)

r7 l1

l2

r8 l9

Figure 2.4. Trees 1 and 4 in castle forest 2.1.a.

r7 r1

(r1)

l2

r8 l9

Figure 2.5. Trees 1 and 5 in castle forest 2.1.b.

2.4. Induction families and bispecial words

We shall now build the actual bispecial words.

Proposition 2.18. — For every t and every 1 6 i 6 k − 1 there is one
left special word w of length t beginning with i, which is a prefix of Oi, the
positive trajectory of βi, 1 6 i 6 k − 1. Then the shortest bispecial word
containing w as a prefix is the longest of all the possible words v such that
[v] = [w].

Proof. — This comes from the proof of Proposition 2.3. �

By Proposition 2.3, each Ei we have built defines uniquely a bispecial
word wi such that Ei = [wi]; unfortunately, when we build the family
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Ei,n, we are not able to retrieve immediately the corresponding family of
bispecial words. This is due to the usual synchronization problem: if one
Ei,n is much smaller

than another Ej,n, the corresponding wj,n will be a factor of wi,n, and
this is an obstacle in building the next wi,n+1. The non-trivial algorithm
of [20] managed to produce at each stage a family of words wi which were
bispecial and not factors of one another. Here, for a general permutation,
we achieve a somewhat weaker result: at each stage, we are able to produce
some wi,n which are (at least) left special, and achieve some degree of
synchronization.

Definition 2.19. — An induction family W is a family of k− 1 words
in L(I), wi with first letter i, 1 6 i 6 k − 1, such that

• if wi is a factor of wj for i 6= j, wi is a strict suffix of wj ,
• the wi are left special,
• the wi which do not have any wj as a strict factor are right special,
• there are no right special factors strictly sandwiched between a wi
and a wj .

To see what it means, look at the initial state when π1 = h 6= k, see castle
forest 3.0 below for a picture. Then, because of the alternate discontinuities,
the words 1, 2, . . . , k− 1 are left special, and all of them except h are right
special; the only word extending h to the left is h1. Thus wi = i do not
constitute an induction family, but if we put wh = h1 instead of wh = h,
we do get an induction family: at this stage we don’t know if wh is right
special, but as it contains w1 as a suffix, it is allowed (though not obliged)
to be only left special. Note that now no way of extending wh or any wi
while keeping the same Ei is apparent from our knowledge.

Getting back to our family of Ei,n built by induction, the corresponding
bispecial wi,n will be built inductively by using return words.

Definition 2.20. — Given a family of q different words W =
{w1, . . . , wq}, a (suffix) return word of W is any (possibly empty) word
v such that

• either wiv = v′wj , for some i and j and a nonempty word v′, and
wiv contains no words of W except as factors of its prefix wi or its
suffix wj ,

• or wiv is a strict suffix of wj , and wiv contains no words of W
except as factors of its prefix wi.

Note that the relation wiv = v′wj defines a suffix return word v, but
also a prefix return word v′. For an induction family W , the second item
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of Definition 2.20 applies to words wi which are strict suffixes of wj , thus,
when applicable, produces only the empty word as a return word v, and
indeed if we delete from W the words wj which contain words wi as strict
suffixes, the return words of the smaller family are deduced from those of
W by deleting the empty one (if it is there).
What we shall do now recursively is to build induction families Wn =

{w1,n, . . . , wk−1,n} such that Ei,n = [wi,n]. For that, we shall label the
castle forests. Namely, the edges of the castle trees are labeled with words
which will give the return words of W after the labels of edges are concate-
nated into labels of paths. Also, for convenience we shall label the root of
tree i, in the castle forest of the Ei, with the word wi.

Proposition 2.21. — While we build inductively family of special in-
tervals Ei, we can build by the same process induction families W , and
labels on the edges of the castle forest of the Ei such that

• Ei = [wi],
• the tree i has one single edge whenever wi contains some wj in W
as a strict suffix, and then this edge has an empty label; the only
edges with empty labels are single edges;

• if a node in tree i has a path from the root with label v, the last
letter of v being z, then in the induction castle it corresponds to
the point I−sγt in Ei, where s is the length of wiv, and γt is the
point separating ∆zm

and ∆zp
(see Definition 2.2); then wiv is right

special, the left, resp. right edge from the node has a label beginning
with zm, resp. zp,

• v is the (possibly empty) label of a path from the root of tree i
to a leaf lj , resp rj , if and only if v is a return word of W where
wiv = v′wj , v′ ends with the letter j−, resp j+, and wj is the longest
word wh for which wiv = v′′wh for a nonempty v′′.

The bispecial words themselves do not appear in general in the labels of
paths, see castle forest 1.3 below, the canonical way to get them is to build
them inductively using the return words as in Proposition 2.22 below. Note
also that the labels of paths are not exactly the codings of the successive
levels hit by points along the towers, see Section 2.5 below.

Example 1 again. — This is the very case which is described in full
details in Section 2.3 of [20]: in the words of the language L(I), after 3
there is always 1; after 2, 1 or 2; after 1, 2 or 3; thus 1 and 2 are the
bispecial words at the initial stage. This defines the labeled castle forest in
Figure 2.6, with train-track equalities l1 + r1 = r2 + l1, l2 + r2 = r1 + l2.
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r2 l1 r1

2

l2

1

2
31

1
2

Figure 2.6. Labeled castle forest 1.0.

We check that indeed the labels on the edges are the (suffix) return words
of the family of words {1, 2}: from 1 these are 2, leading to 2, and 31 leading
to 1, which correspond respectively to E1,m being sent by S onto E2,+, E1,p
being sent by S onto E1,−.
We proceed now to do the building in the general case. In the initial

state, the left special words of length 1 are all the letters except k;
• if π−1k = 1: the initial induction family is W0 = {1, . . . , k − 1}; in
tree πi, 2 6 i 6 k − 1, the left edge is labeled (πi)m = i − 1, and
the right edge, is labeled (πi)p = i; in tree 1, the left edge is labeled
k − 1, and the right edge is labeled k1;

• if π−1k = j 6= 1, π1 = h 6= k the initial induction familyW0 is made
with wi = i, 1 6 i 6 k−1, i 6= h, wh = h1; in tree πi, 2 6 i 6 k−1,
πi 6= j, the left edge is labeled i − 1 if i − 1 6= h, h1 if i − 1 = h,
and the right is labeled i if i 6= h, h1 if i = h; in tree πk, the left
edge is labeled k− 1, and the right edge is labeled k; from the node
following that edge, the left edge is labeled j − 1 if j − 1 6= h, h1 if
j − 1 = h, and the right edge is labeled j if j 6= h, h1 if j = h; in
tree h, the single edge has an empty label.

Example 3. — We consider now a case with which the algorithms of [20],
[21] cannot deal: a three-interval exchange with permutation 1→ 2, 2→ 3,
3→ 1 and alternate discontinuities. In the language, after 2 there is always
1; after 3, 1 or 2; after 1, 2 or 3; thus 1 and 2 are left special words. At the
initial stage E1 = [0, α1[= [1], E2 = [α1, α1 + α2[= [2]. The castle forest is
in Figure 2.7.

The train-track equalities are l1 + r1 = r2 + (r1 + l2), l2 + r2 = l1.
We turn back to the general case. We check that the initial induction

families and labels do satisfy the properties of Proposition 2.21. We make
the recursion hypothesis that this is still true at some stage, for a family
of special intervals Ei and an induction family W .
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r1

r2

l2

21

l1

1

21
3

1
21

Figure 2.7. Labeled castle forest 3.0.

Proposition 2.22. — Let F be an allowed decision. We modify the wi
and the labels of the edges of the castle forest of the Ei by making, for all
i in F , successively in any order, the changes detailed below if c(i) = −,
the changes deduced from those detailed below by exchanging l and r, left
edge and right edge, if c(i) = +:

• wi, and every wj which contains wi, as a strict suffix, are extended
to the right by the label v of the left edge from the root of tree i,

• the labels of the edge leading to the leaf li, and of every edge leading
to a leaf lj or rj where wj contains wi a strict suffix, are extended
to the right by v,

• when an edge is displaced by Proposition 2.17, it keeps the same
label, possibly extended as in the previous item.

Then the new family W is an induction family corresponding to the
family E′i built in Proposition 2.17; together with the new edge labels, they
satisfy the properties of Proposition 2.21. Moreover, there is no bispecial
word strictly sandwiched between the old and new wi for 1 6 i 6 k − 1.

Proof. — Suppose i is in F and c(i) = −. Then wiv is left special, where
v is the label of the edge from the root wi to the first node strictly on its
left, or to the leaf on the left if there is no such node, but also, if v′ is the
label of the path arriving to the leaf li from a root wj , then wjv′ is not right
special, and can only be extended to the right by v. The other properties
follow from the definitions. �

Thus we get the recursion hypothesis at the next stage, which achieves
the proof of Proposition 2.21.
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Evolution of Example 1. — The greedy decision is {1, 2}; we suppose
l1 > r1, l2 < r2, thus c(1) = +, c(2) = −. We take F = {1, 2}, though in
the same situation in [20] [21], we would have taken F = {1}.

We follow Proposition 2.17: we make first the surgery determined by
2 ∈ F , being in the second case of the proposition. We get the intermediate
castle forest in Figure 2.8, which is also the castle forest we would get by
the decision {2}: in the new induction family w1 = 1, w2 = 21, and the
labels of the edges are built as in Proposition 2.22.

l1

r2 l2

21

r1

1

2
31

1
21

Figure 2.8. Labeled castle forest 1.1.

Then we make the surgery determined by 1 ∈ F , thus w1 is extended to
131, and also w2 to 2131 as it contained w1.

l1

r2 l2

2131

r1

131

2
31

131

2131

Figure 2.9. Labeled castle forest 1.2.

The new castle forest is again in the second case of Proposition 2.17, with
left and right exchanged, but with h = i = 1: the tree 1 is first reduced to
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a single edge leading to a leaf l1, then the whole former tree 1 is put on top
of this leaf, and the single edge deleted, thus we get exactly the same tree
1, but with new labels. The train-track equalities for both castle forests 1.1
and 1.2 are l1 + r1 = (r2 + l2) + l1, l2 + r2 = r1.
The return words of the familyW = {131, 2131} are the empty word (be-

cause 131 is a suffix of 2131), 2131, 22131 and 31; note that the nonempty
ones form the return words of the family W = {131}. The edge from the
root of tree 2 to the leaf r1 still indicates that SE2 = E1,+ but its label
is the empty word. We see that, while 131 is a bispecial word, 2131 is left
special but at this stage we do not know whether it is right special or
not. This example illustrates the last part of the last condition in Proposi-
tion 2.21: the paths labeled 2131 and 22131 from the root w1 lead to a leaf
corresponding to a subinterval of [w2], and not [w1].
Note that if we had made first the surgery determined by 1 and then by

2, we would have arrived to the same castle forest, with an intermediate
one equal to castle forest 1.0, with different labels and w1 = 131, w2 = 2.

I−4γ1I−1γ2 I−3γ2
γ1 γ1 I−1γ1

γ2 1 β1
γ1

0 I−1γ2 β1

I−1γ1β2
γ2

γ1 β2

Figure 2.10. Induction castle 1.2.

Figure 2.10 shows the actual induction castle of the new family E′1 =
[131], E′2 = [2131]. In the interval E2 at this stage appear no point I−sγj ,
though some must be there by minimality.

Further evolution of Example 1. — We suppose now that for our new
intervals r1 > l1. The greedy decision is {1}, c(1) = −. We have to take
F = {1}. Then the new w1 is 1312 and the new castle forest, using the
second case of Proposition 2.17, is in Figure 2.11.
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r2 l2 r1

2131

l1

1312

131

2131

2
312

Figure 2.11. Labeled castle forest 1.3.

Thus 2131 was indeed bispecial (but it would not have been so if for the
new intervals we had l1 > r1), and we are in a situation reached by the
algorithms of [20] [21], though we got there in a different way. Note that
the bispecial word 1312, which labels the root of tree 2 by convention, does
not appear as a label of any edge or path in the castle forest.

Evolution of Example 3. — γ(E1) is I−1γ2, the order between it and
β1 is given by the sign of l1 − r2 = r1 + l2 − r1 > 0, thus c(1) = + without
any extra assumption. We take F = {1}, the greedy decision, and the new
castle forest is in Figure 2.12.

r1 l2 r2

21

l1

13

13
21

21
3

Figure 2.12. Labeled castle forest 3.1.

We arrive in a situation which can be dealt with by the algorithms
of [20] [21], which reflects the fact that our permutation is in the same
Rauzy class as the symmetric permutation.

2.5. Names of Rokhlin towers

The labels on the castle forest give extra information on Rokhlin towers,
as they are linked to the coding of the levels by the partition into ∆i.

Definition 2.23. — If X is equipped with a partition P such that each
level T rY is contained in one atom Pw(r), the name of the tower is the word
w(0) · · ·w(h− 1).
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However, there is a technical problem with the towers used in Section 2.2;
to understand it, look at Figures 2.9 and 2.10. Starting from the induction
castle 1.2, we want to discard the tower of basis E2, corresponding to a tree
with a single edge and empty label, and to an empty return word by the
remarks after Definition 2.20; this is done by pasting it on top of the other
towers; we get three towers over E1, and we check their names are, from
left to right, 1312, 13122 and 13; these names do not appear as labels of
paths in castle forest 1.2 as they are the prefix return words of the family
of words {131}, see the remarks after Definition 2.20. In [23] we actually
used the names of these towers; here, as we have been working with suffix
return words, which are necessary to build the special words by successive
extensions to the right, we prefer to change the towers so that their names
are suffix return words, this will be done by using the cylinders for I−1,
which amounts to replace each [wi] by a translate I |wi|−1[wi]. Then we
split the towers so that their names are labels of edges instead of paths.
Namely

Proposition 2.24. — At any stage, the 2k− 2 nonempty labels of the
edges in the castle forest are the names, for the partition P of [0, 1[ into
{∆1, . . . ,∆k}, of 2k − 2 disjoint Rokhlin towers in the system ([0, 1[, I, µ)
(for any invariant probability µ), filling the whole space, and whose levels
are intervals.

Proof. — At any given stage, let H be the greedy decision, vi,j , i ∈ H,
1 6 j 6 si, the labels of all the paths from the root of tree i, i ∈ H, to the
leaves. Then, each word wivi,j , i ∈ H, 1 6 j 6 si, has only two factors of
the form wh for h ∈ H, one as a prefix and one as a suffix. Thus, if we denote
by x̄ the word x read backwards, by looking in each trajectory of I−1 at
the occurrences of the w̄i, i ∈ H, we get

∑
i∈H si disjoint Rokhlin towers

for I−1 whose bases are the cylinders [v̄i,jw̄i], i ∈ H, 1 6 j 6 si; they form
an induction castle thus their levels are intervals, and their names are the
v̄i,j . By reversing the order of the levels, we get

∑
i∈H si disjoint Rokhlin

towers for I whose names are the vi,j . Then vi,j = v′i,j,1 · · · v′i,j,t(i,j), where
the v′i,j,h, i ∈ H, 1 6 j 6 si, 1 6 h 6 t(i, j), are all the nonempty labels
of edges, and thus

∑
i∈H,16j6si

t(i, j) = 2k − 2. Then we cut each tower
with name vi,j into t(i, j) disjoint towers with names v′i,j,h, proving our
proposition. �

The nonempty labels of edges in the castle forest at stage n + 1 are
concatenations of the nonempty labels at stage n; this concatenation is
made as in Proposition 2.22 (this would not be the case for labels of paths,
and that is why we split the towers). By a standard ergodic argument,
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the towers at stage n + 1 are made by cutting and stacking following the
recursion rules giving their names by concatenating names of towers at
stage n.

2.6. Structure theorem

We are now ready to consider infinite iterations of the induction. We
check first that no decision can block the process, or equivalently that, at
each stage we reach, there exists a nonempty decision. Indeed the greedy
decision is nonempty as we know from Proposition 2.12 that there is always
at least one tree with a node. Thus, whatever the allowed (thus nonempty)
decision we take, we can iterate the induction infinitely many times.

Proposition 2.25. — By our induction, through any sequence of al-
lowed decisions Fn, I generates an infinite sequence of allowed castle forests
and allowed choices (Gn, cn, n ∈ N), such that

(i) G0 is defined in Section 2.3,
(ii) Gn+1 is deduced from Gn and cn as in Proposition 2.17, with deci-

sion Fn,
(iii) cn+1(i) = cn(i) whenever i is not in Fn,
(iv) or each i, i is in Fn with cn(i) = +, resp. −, for infinitely many n.

The half-lengths li,n and ri,n of the special intervals Ei,n built by Defini-
tion 2.13 at each stage tend to zero when n goes to infinity.

Proof. — We just have to prove item iv and the last assertion. Suppose
first that i is in Fn at infinitely many stages; then by construction, the left
and right endpoints of Ei,n are respectively I−a(n)γb(n) and I−a′(n)γb′(n),
and there is no point I−xγj inside Ei,n for 1 6 x 6 a(n) ∨ a′(n), with
a(n) ∨ a′(n) → +∞. By minimality this implies that both half-lengths of
Ei,n tend to zero, and that c(i) is + and − infinitely many times.

Let now J be the set of i which are in Fn at infinitely many stages; J is
nonempty as the Fn are nonempty. After some stage N only the i in J are
in Fn, and after some stage N ′ > N no subtree of a tree i for i in J , can be
pasted on a tree j for j in Jc (as there is a finite number of these subtrees,
and they could not be pasted again on a tree i for i in J). Then if at stage
N ′ some lj , resp. rj , for j in Jc, is a leaf of a tree i for i in J , at further
stages this leaf can only be transferred between trees i for i in J , and at
infinitely many stages it will be a leaf of the tree i0 for some i0 in J ; but
then the train-track equalities imply that at infinitely many stages n > N ′

li0,n + ri0,n > lj,n = lj,N , resp. li0,n + ri0,n > rj,n = rj,N , which contradicts
the last paragraph.
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Thus at stage N ′ the trees i, for i in J , have only leaves lj or rj for j
in J , and thus J = {1, . . . , k − 1} by Proposition 2.12. �

Corollary 2.26. — The system ([0, 1[, I, µ) is of rank at most 2k− 2
by intervals, see [14]: namely, for each f in L2([0, 1[) and each ε > 0 there
exists N(ε) such that for all k > N(ε) there exists fk, which satisfies∫
‖f − fk‖dµ < ε and is constant on each level of each of the 2k − 2

Rokhlin tower of Proposition 2.24 at stage n.

Proof. — These levels are intervals, whose lengths at stage n tend to
zero, thus the σ-algebras generated by the levels of the towers at stage n
converge to the full σ-algebra when n tends to infinity. �

This result is not optimal as the rank by intervals is known to be at
most k [14], but our towers are completely explicit and will be used in
Section 4.3 below.

We have seen that given the map I, the sequence of decisions, and thus
the sequences of castle forests and choices, are not unique. But, for a given
interval Ei, the first strict subinterval to be generated by Definition 2.13
is the same, independently of the decisions; as each interval is cut at in-
finitely many stages, every sequence of allowed decisions gives the same
subintervals, though possibly not at the same stages; however, what a par-
ticular sequence of allowed decisions determines are the relations between
the half-lengths of Ei,n at the same stage n for different 1 6 i 6 k − 1,
and thus the sequence of castle forests depends strongly on the sequence of
decisions.
We can now tell which words in an induction family are bispecial, though

this needs information which will be available only at further stages of the
process.

Proposition 2.27. — A word wi in an induction family W is bispecial
if and only if it satisfies the two equivalent conditions

• if (j1, . . . , js) is the unique sequence such that j1 = i, the tree jh
has a single edge going to a leaf xh+1 = ljh+1 or xh+1 = rjh+1 for
1 6 h 6 s− 1, and the root of tree js is a node, then wjh

is in the
greedy decision with c(i) = +, resp. −, whenever xh = ljh

, resp.
xh = rjh

, for 2 6 h 6 s,
• there exists a further stage of the induction such that w′i = wi and
the root of tree i is a node.

All the bispecial words of L(I) are the words wi,n defined by the induc-
tion in Section 2.4.
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Proof. — If the second condition is satisfied, wi = w′i is bispecial as it is
already left special. If the first condition is not satisfied, at some further
stage wi is extended to the right in a unique way, and thus is not right
special. The last assertion follows because of Proposition 2.22. �

We can now show the converse of Proposition 2.25.

Theorem 2.28. — Any infinite sequence of castle forests, allowed
choices and allowed decisions, satisfying items i to iv in Proposition 2.25,
defines at least one k-interval exchange with permutation π and alternate
discontinuities, satisfying the i.d.o.c. condition, which generates it as in
Proposition 2.25.

Proof. — The proofs follows exactly the proof of Theorem 2.9 in [20].
Given the castle forests Gn, the choices cn and the decisions Fn, we build
words wi,n, 1 6 i 6 k−1, n > 0, and labels for each edge, as in Section 2.4.
By following the steps of the induction, we get that indeed the families Wn

satisfy the conditions defining induction families, have the required castle
forests, and thus, if the language L is the set of all the finite factors of the
wi,n, its bispecial words are given by Proposition 2.27.

We shall now show that L satisfies the conditions of Theorem 2 of [22].
Translated into the simpler context of alternate discontinuities, this states
that a language L is the language of a k-interval exchange with permutation
π and alternate discontinuities, satisfying the i.d.o.c. condition, if (and only
if) it is minimal (meaning that for each m, there exists n such that every
word of length m of L occurs in every word of length n of L), the words
with two letters are π11, πi(i− 1), πii, 2 6 i 6 k, and, if w is a nonempty
bispecial word, there exist a and b such that A(w) = {πa, π(a+1)},D(w) =
{b, b+ 1}, there are three words of the form xwy for letters x, y and these
are πawb, π(a+ 1)w(b+ 1) and either π(a+ 1)wb or πaw(b+ 1).

Our language L satisfies the condition on words with two letters, and
the condition on bispecial words. by construction, as can be checked on the
castle forests.
The nontrivial condition to satisfy is minimality, and this is shown ex-

actly as in [20]. The words of L are the factors of the wi,n, or of the k − 1
infinite sequences Oi which begin with wi,n for all n. Let w be a word of L:
w must be a suffix of infinitely many words of L, because every word of L
can be extended infinitely many times to the left, thus w occurs infinitely
often in at least one Oi; hence all the prefixes of Oi occur infinitely often
in at least one Oj , and if j 6= i, then we can drop Oi and use only the
others Oj to generate L. Thus L is the union of the L(Vi) for d 6 k − 1
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one-sided infinite sequences Vi which are recurrent: each factor of Vi occurs
at infinitely many places in Vi.
Let now L′ = ∪di=2L(Vi); suppose there exist words w1 in L(V1) \L′ and

w′ in L′ \ L(V1); suppose w′ is in L(Vt): we check that L(V1) and L(Vt)
have at least a one-letter word in common, otherwise this contradicts the
condition on the words of length 2 of L; take a nonempty word w0 in
L(V1)∩L(Vt); by the recurrence property, we can find a word w1v1w0v

′
1w1

in L1 ⊂ L, and a word w′v2w0v
′
2w
′ in L′ ⊂ L; but no word w1vw2 or w2vw1

is in L, as such a word is neither in L(V1) nor in L′, and this implies that
there is a bispecial word of L, w3, such that two of the four possible words
xw3y are not in L, and this contradicts the condition on bispecial words.
Hence either L′ ⊂ L(V1), thus L = L(V1), or L(V1) ⊂ L′, and then we can
drop V1; by iterating the process, we get that L = L(V ) for one recurrent
infinite sequence V .

Let now w be a factor of V ; we look at the possible words v such that wv
is right special; if two different such words v and v′ have a common suffix z,
then there exist two different words such that v1z and v2z are right special,
and we find a bispecial word w4 with four possible xw4y, which contradicts
the condition on bispecial words. Thus there is at most one such possible
v with last letter i, 1 6 i 6 k − 1 (and none with last letter k), and thus
there are at most k ways of going from one occurrence of w in V to the
next one. Hence any factor w occurs in V at infinitely many places with
bounded gaps, and L = L(V ) is minimal.

Thus we have found I such that L = L(I), and, by following again
the steps of the induction, we check the required sequence of castle forests,
choices and decisions is one of the possible such sequences defined by I. �

Given the castle forests Gn, the choices cn, and the decisions Fn, it fol-
lows from the above proof and [22] that a vector of lengths for an associated
I is given by (µ[1], . . . , µ[k]) for any invariant probability µ on the sym-
bolic dynamical system XL. Thus for one sequence there may be several
corresponding k-interval exchanges I with permutation π. The solution
I is unique if and only if I is uniquely ergodic (it has a unique invari-
ant probability measure); a famous result of Veech [39] and Masur [32]
states that the set of (α1, . . . , αk) in R+k for which I defined by the vector
( α1
α1+···+αk

, . . . , αk

α1+···+αk
) is uniquely ergodic has full Lebesgue measure; a

mainly combinatorial proof of this result, quite in the spirit of the present
paper, can be deduced from [5] and [4], see [16]. When the solutions are
non uniquely ergodic the analysis has been made in [28]: the possible vec-
tors of lengths lies in a convex set S, with extremal points α1, . . . , αd,
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d 6
[
k
2
]
[25], [38]; each αi defines, by µi[j] = (αi)j , an ergodic invariant

measure µi for every I with vector of lengths α ∈ S and permutation π; for
such an I, all its invariant ergodic probabilities are the µi. For a given solu-
tion I of vector of lengths α, the Lebesgue measure is such that µ[j] = αj ;
the Lebesgue measure will be ergodic if and only if α is one of the αi.
To know whether a choice c is allowed, the only way we know is by trial

and error: we make the induction by following the rules of Propositions 2.15
and 2.17 with choice c and the greedy decision, getting a new castle forest
G′, and check whether G′ is allowed. For example, starting from the castle
forest 1.3 above, we suppose that c(1) = + and c(2) = −. This is clearly
not allowed as this implies l1 > r2 and r2 > l1, but we can also check that
in that case G′ has the parenthesized relations r1 + l1 = l2, r2 + l2 = r1,
thus G′ has just two trees with a single edge and is not allowed.

2.7. Algorithms
If we want to make the induction process, we can define the decision

as we want at each stage; however, it is better to be deterministic, in the
sense that for a given castle forest and a given choice the decision is always
the same. Thus an algorithm of induction is a way to associate a decision
to each castle forest and choice. When we fix an algorithm, each map I
defines a unique sequence of castle forests, choices and decisions.
The greedy algorithm consists in taking the greedy decision at each stage.

It works for every map I with alternate discontinuities (this condition will
be lifted in Section 3): we change all the i for which we have the necessary
information.
The trees of relations algorithms comprise the one described extensively

in [20], and two further variants used in [15] and [10], we give here a quick
summary. A tree of relations (not to be confused with a castle tree) is a
non-oriented and non-rooted tree with k−1 vertices labeled i, 1 6 i 6 k−1,
and edges labelled +̂, −̂, or =̂, such that two adjacent edges never have the
same label. A tree of relations defines three bijections s, p, m, by

• s(i) is the only j such that there is a =̂ edge between i and j, or
s(i) = i if there is no such edge,

• p(i) is the only j such that there is a +̂ edge between s(i) and j, or
p(i) = s(i) if there is no such edge,

• m(i) is the only j such that there is a −̂ edge between s(i) and j,
or m(i) = s(i) if there is no such edge.

This defines a castle forest by the parenthesized train-track equalities li +
ri = rm(i)+lp(i), 1 6 i 6 k−1. In this sense a tree of relations is a tree which
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hides a forest: for example castle forest 1.0 in Figure 2.6 is associated with
the tree of relations 1−̂2, while castle forest 1.3 in Figure 2.11 is associated
to 1=̂2, and castle forest 4.2 in Figure 3.4 below to 1=̂3+̂2.

What is shown (though in other terms) in [20] is that, if at one stage
of an induction process we reach a castle forest associated to a tree of
relations, then there exist decisions such that the castle forest at the next
stage is associated to a tree of relations, and thus our castle forests can
stay associated to trees of relations at all further stages (hence every root
is a node, every tree has two edges); in particular, if π is the symmetric
permutation, the initial castle forest has this property. There are several
possible such decisions: the ones used in [20] are not the greedy decisions
of Definition 2.13, but indeed the greediest ones allowing to stay associated
with trees of relations, and define what we call the greedy-hyperelliptic
algorithm, while both the decisions in [15] and [10] are slightly slower;
all these algorithms are slower than the greedy one, but create less castle
forests, see Section 2.8 below. This stems from the fact that they correspond
to special cases, namely interval exchanges which come from cross-sections
of Veech translation surfaces linear flows, and hence belong to a set which
is invariant under renormalization and therefore described by less castle
graphs.

The loops variant is a possible modification from any given algorithm, for
example the greedy one, as follows: for a given castle forest G and choice
c, let H ′ be the set of i such that the root of tree i is a node, and, if
c(i) = +, resp. −, at the end of the right, resp. left, edge out of this root,
there is a leaf li, resp. ri. If H ′ is empty, we just use the given algorithm;
if H ′ is nonempty, we order H ′, lexicographically for example, and take
the decision {i1}, where i1 is the lowest element in H ′. Then at the next
stage we have the same castle forest G, and we iterate the process a finite
number of times, until the choice of i1 becomes the opposite to its previous
choice; then we change i2, etc., until we reach a choice where H ′ is empty.
Thus, in Example 1 of Section 2.3, starting from the castle forest 1.0, we
take decision {1} once as c(1) = +, coming to the same castle forest (with
different labels), then c(1) = − and we take whatever decision is allowed
by our original algorithm, in that case {1, 2} for either the greedy or the
greedy-hypelliptic one; we arrive at castle forest 1.3.
In every case, for a given castle forest and choice, we have complete

freedom to choose the decision we want, and thus mix several algorithms.
In Section 2.8 we give examples where we choose to minimize the number
of possible castle forests; we use the greedy-hyperelliptic algorithm (with
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the loops variant) wherever it is possible, and this corresponds exactly to
permutations in the hyperelliptic Rauzy class; in other cases, we generally
use the greedy algorithm with the loops variant, but use also some local
ad hoc variants. It is not clear whether one can use less castle forests, as
happens with the trees of relations algorithms, if starting from a general
interval exchange.
All the above algorithms are additive, each interval being changed at

most one time at each step; multiplicative algorithms can then be build by
gluing several steps together, as is done for three intervals in [18], [21].

2.8. Graphs of graphs

Let an algorithm be given. Inspired by [20], we call graph of graphs the
oriented graph whose vertices are all the possible allowed castle forests on
{1, . . . , k − 1} which can be reached from the castle forest G0 defined by
a finite sequence of inductions associated to allowed choices and decisions
determined by the algorithm; from a castle forest G, each choice c deter-
mines an edge from G to the new castle forest built with the decision F

associated to G and c by the algorithm. This edge is called a move and
is labelled by c′(1) · · · c′(k − 1) where c′(i) = c(i) if i is in F , c′(i) = 0
otherwise. Then the sequence of allowed castle forests in Proposition 2.25
and Theorem 2.28 corresponds to a path in the graph of graphs. Note that
for the graphs of graphs in [20], their vertices were labeled by trees of rela-
tions, in contrast with castle forests in the present paper, but as the name
is still appropriate we keep it, the second “graph” word referring either to
castle forests or their underlying tree of relations if there is one; similarly,
the castle forests can be replaced by the castle graphs of [23].
We proceed now to describe a graph of graphs for each exchange of

up to 4 intervals with alternate discontinuities, that is βi < γi for each
1 6 i 6 k− 1 and γi < βi+1 for each 1 6 i 6 k− 2. The opposite situation,
where γi < βi for each 1 6 i 6 k − 1 and βi < γi+1 for each 1 6 i 6 k − 2,
can be deduced of it, after renumbering the Ei, by reversing the orientation
(this means conjugation with the map x→ 1− x); other situations will be
dealt with in Section 3 below.
We apologize to the reader: by lack of space we do not draw actual

graphs of graphs; to define a castle forest, we use its parenthesized train-
track equalities in an abbreviated form by listing their second members
from 1 to k − 1. Thus castle forest 1.0 above becomes r2 + l1, r1 + l2 as a
shorter form of l1 + r1 = r2 + l1, l2 + r2 = r1 + l2.
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For k = 2 the new induction coincides with the Rauzy induction, as
mentioned in [20].
For k = 3 there are three primitive permutations. The most studied is

1 → 3, 2 → 2, 3 → 1. With either the greedy or the greedy-hyperelliptic
algorithm, both with the loops variant, the graph of graphs we get is made
with the three recurrent states (as indicated by the edges) of Figure 2.13, as
in [21]; the initial state is the left one. The greedy-hyperelliptic algorithm
without the loops variant would give the same states with two more loops,
−− and ++; the greedy algorithm without the loops variant would give 7
recurrent castle forests (including castle forest 1.1 or 1.2 above).

r1 + l2, r2 + l1r2 + l2, r1 + l1r2 + l1, r1 + l2 r2 + (r1 + l2), l1

−−

−−

++

++ +0

+0

0+

−0

0−

Figure 2.13. The graph of graphs for three intervals.

The permutation 1 → 3, 2 → 1, 3 → 2, with the greedy-hyperelliptic
algorithm and loops variant, gives the same graph of graphs and the same
moves, with r1 + l2, r2 + l1 as initial state.
For 1 → 2, 2 → 3, 3 → 1, the initial castle forest is the transient one

on the right and the graph of graphs is the full Figure 2.13; we use the
greedy-hyperelliptic algorithm, with the loops variant, after having left the
transient state.
For k = 4 there are 13 primitive permutations, belonging to two Rauzy

classes, the hyperelliptic class and the rotations class; we begin by the
much-studied hyperelliptic class, for which we draw the graph in Figure 2.14
(which is not an actual graph of graphs, as will be seen below): it has nine
recurrent and four transient states.
For the symmetric permutation 1 → 4, 2 → 3, 3 → 2, 4 → 1, with the

greedy-hyperelliptic algorithm and the loops variant, the graph of graphs,
as described in [20] using trees of relations, and in [23] using castle graphs,
consists of the nine recurrent castle forests of G; the initial state is in the
middle of the middle (or third) row of G.
For other permutations, we use always the greedy-hyperelliptic algorithm

(with the loops variant) as soon as we are in a castle forest associated to a
tree of relations. Thus 1 → 4, 2 → 1, 3 → 3, 4 → 2 and 1 → 4, 2 → 2, 3 →
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r1 + l2, r3 + l3, r2 + l1 r1 + l2, r3 + l1, r2 + l3 r3 + l2, r1 + l1, r2 + l3

r3 + l2, r2 + l3, r1 + l1 r3 + l1, r2 + l3, r1 + l2 r3 + l1, r1 + l3, r2 + l2

r2 + l2, r1 + l3, r3 + l1 r2 + l3, r1 + l2, r3 + l1 r3 + l3, r1 + l2, r2 + l3

r1 + l2, r3 + (r2 + l3), l1r1 + (r3 + l2), r2 + l3, l1 r3 + (r2 + l3), r1 + l2, l1

r3 + (r1 + l2), l1, r2 + l3

−00

−000− 0

0− 0

00− 00−

00+ 00+

+00 0 + 0

0 + 0

00+

−00

0−−

0−−

−− 0

−− 0

+ + 0

+ + 0

+0+

+0+

−0−

−0−

0 + +

0 + +

−−−

−−−+++

+++

0 + 0

+00

+00

−−−+++

+00

Figure 2.14. The graph G.

1, 4→ 3 give also the recurrent part of G with initial states respectively in
the middle of the second and fourth row of G.
For 1 → 3, 2 → 1, 3 → 4, 4 → 2, the initial state is in the middle of the

fifth row of G; from this state, we choose the algorithm which imposes the
decision {2} (with the only allowed choice c(2) = +), going to the state on
its left, in which we impose the decision {1}; we get the possible moves in
the picture, the graph of graphs is made with the nine recurrent states of
G and two transient states.
For 1 → 3, 2 → 2, 3 → 4, 4 → 1, we have the initial castle forest in

the top row of G. From this state, by imposing the decision {1} (with the
only allowed choice c(1) = +), we get the possible moves in the picture:
the graph of graphs is made with the nine recurrent states of G and one
transient state.
For 1 → 2, 2 → 4, 3 → 3, 4 → 1, we have the initial castle forest in the

right of the fifth row of G. From this state, by imposing the decision {1}
(with the only allowed choice c(1) = +), we get the possible moves in the
picture: the graph of graphs is made with the nine recurrent states of G
and one transient state.
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Finally for 1→ 2, 2→ 4, 3→ 1, 4→ 3, we have a transient initial castle
forest r2 + l3, l1, r3 + (r1 + l2). From this state, we impose the decision
{3}; this gives a loop 00−, and a move 00+ to another transient castle
forest r2 + (r3 + l3), l1, r1 + l2. From that state, by imposing again the
decision {1} (with the only allowed choice c(1) = +), we go to the castle
forest r3 + l3, r2 + l1, r1 + l2, which is one of the nine recurrent states of
the graph of graphs deduced from G by exchanging the letters 2 and 3,
with corresponding moves (this is the renumbering we get by reversing the
orientation). Thus we have again nine recurrent and two transient states,
but not those of G.

r1 + l2, r2 + l3, r3 + l1 r3 + l2, r1 + l3, r2 + l1 r3 + l1, r1 + l2, r2 + l3

r2 + l2, r3 + l3, r1 + l1 r3 + l3, r1 + l1, r2 + l2

r2 + l1, r3 + l2, r1 + l3 r2 + l3, r3 + l1, r1 + l2 r1 + l3, r2 + l1, r3 + l2

112

111

110

14

15

16

17

19

18

12

13

11

24 25 26 27 28 29

21 22 23 210 211 212

−00 0−0

00−

−00 0−0

00−

+00 0+0

00+

+00 0+0

00+

−−−

−−−

+++

++++++

+++

+++

+++

−−+

−+−
+−−

−++

+−+

++−

−−+

−+−

+−−

−++

+−+

++−

+00 0+0 00+
00− −00 0−0

00+ +00
0+0

−00 0−0 00−

−−−

−−−

−−−

−−−

Figure 2.15. The central part of G′.

We look now at the rotations class. We give here the full graph of graphs
G′ for 1 → 4, 2 → 3, 3 → 1, 4 → 2, for the greedy algorithm, with the
loops variant and a local variant detailed below for states 21 to 212. In the
initial stage, we have the castle forest r2 + l3, r3 + l1, r1 + l2.; the eight castle
forests where each tree has two edges, and all the moves concerning them,
are shown in Figure 2.15.
There are 108 castle forests where some trees do not have two edges; we

name them 1j to 9j , 1 6 j 6 12; this terminology reflects the fact that
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the graph of graphs is invariant by all permutations on {1, 2, 3} and by the
exchange between l and r, thus, for each x in {1, 9} x2, resp. x3, x4, x5,
x6 are deduced from x1 by replacing, on both sides of each parenthesized
relations, (1, 2, 3) by (2, 3, 1), resp. (3, 1, 2), (3, 2, 1), (1, 3, 2), (2, 1, 3), then
x6+i is deduced from xi by exchanging l and r. We have

11 = l3, (r3 + (r1 + l2)) + l1, r2,

21 = l3, r3 + l1, r2 + (r1 + l2),
31 = r3, l1, (r2 + (r1 + l3)) + l2,

41 = r3, (r2 + (r1 + l3)) + l1, l2,

51 = (r2 + (r1 + l2)) + l3, r3, l1,

61 = l3, r3 + (r1 + l2), r2 + l1,

71 = l3, r3, (r2 + (r1 + l2)) + l1,

81 = l3, (r3 + l1) + (r1 + l2), r2,

91 = l3, r1 + (r3 + l2), r2 + l1.

Here are now the allowed moves between forests where some trees do not
have two edges, up to permutations on {1, 2, 3} and exchanges on l and r
(and thus on + and −):

from 11, 0− 0 leads to 61,
from 21, 0 − − leads to 61; when c(3) = + we impose decision {3},
getting the move in Figure 2.15,
from 31, 00− leads to 92,
from 41, 0 + 0 leads to 31, 0− 0 to 87,
from 51, −00 leads to 310, +00 to 71,
from 61, 0−− leads to 21, 0−+ to 51, 0 +− to 47, 0 + + to 64,
from 71, 00− leads to I21, 00+ to 51,
from 81, 0− 0 leads to 21, 0 + 0 to 47,
from 91, 0−− leads to 37, 0−+ to 74, 0 +− to 81, 0 + + to 94.
If we look now at other permutations in the rotations class, with the

greedy algorithm and the same variants:
1 → 4, 2 → 1, 3 → 2, 4 → 3, has G′ as graph of graphs, with initial
castle forest r1 + l2, r2 + l3, r3 + l1,
1 → 4, 2 → 2, 3 → 3, 4 → 1, has G′ as graph of graphs, with initial
castle forest r3 + l1, r1 + l2, r2 + l3,
1 → 2, 2 → 3, 3 → 4, 4 → 1, has G′ as graph of graphs, with initial
castle forest 22,
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1 → 3, 2 → 4, 3 → 1, 4 → 2, has G′ as graph of graphs, with initial
castle forest 94.

For 1 → 3, 2 → 4, 3 → 2, 4 → 1, we have the initial castle forest Z =
r3 + (r2 + l3), r1 + l2, l1; then we impose the decision {1} (with the only
allowed choice c(1) = +), the move +00 leads to r1 + l2, r2 + l3, r3 + l1,
and we get as graph of graphs the union of G′ and the initial transient
castle forest Z. If we use the loops variant from the initial Z, with decision
{2} as long as c(2) = −, we get one more transient castle forest, Z ′ =
r1 + (r2 + l2), l3, r3 + l1, and arrive in G′ through r2 + l2, r3 + l3, r1 + l1.

3. Induction without alternate discontinuities

3.1. Decompositions of intervals

Without the condition of alternate discontinuities, the situation is much
more complicated in the initial stages, though, by minimality, after a finite
number of stages we are back in a situation similar to those in Section 2,
as will be explained in Section 3.4.

Namely, see Figure 3.1, an interval E = [w] with a left special w may
contain in its interior several consecutive discontinuities βj , i(E) 6 j 6
i(E) + a(E) − 2 which cut it into a(E) subintervals, a(E) > 2, denoted
from left to right by EA,t, 1 6 t 6 a(E), where in the previous notations
E− = EA,1, E+ = EA,a(E). EA,t is also I[π(x+t−1)w], where the set A(w)
of Definition 1.7 is {π(x) · · ·π(x + a(E) − 1)} (A(w) must have this form
because of Lemma 1.9). If E is the interval Ei at a stage of the induction,
then the numbering will be made so that i(Ei) = i and the respective
lengths of the subintervals are denoted by ui,t, 1 6 t 6 ai, or equivalently
by the notations li = ui,1, ri = ui,ai

, ui,t = ui+t−2 for 2 6 t 6 ai−1, where
ui is the distance from βi to βi+1; the ui,t are the partial lengths of Ei and
will constitute the parameters of the induction.

βi

I−qγs+1

βi+2

I−qγs

βi+1

I−qγs+2 I−qγs+3

li ui ui+1 ri

Ui,1 Ui,2 Ui,3 Ui,4 Ui,5

Figure 3.1. Decompositions of an interval Ei.
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An interval E = [w] with a right special w may contain in its interior
several discontinuities I−sγj for the same minimal s, which cut it into
d(E) subintervals, d(E) > 2, denoted from left to right by ED,t, 1 6 t 6
d(E), where in the previous notations Em = ED,1, Ep = ED,d(E). ED,t is
also the cylinder [w(x′ + t − 1)], where the set D(w) of Definition 1.7 is
{x′, . . . , x′+ d(E)− 1} (D(w) must have this form because of Lemma 1.9).
If E is the interval Ei at a stage of the induction, the respective lengths
of these intervals are denoted by Ui,t, 1 6 t 6 di; the Ui,t will be deduced
from the parameters of the induction. Note that all these I−sγj are different
from all points βi, 1 6 i 6 k − 1, because of the i.d.o.c. condition.
However, the distance between two different βi or two different I−sγj

for the same s has a strictly positive lower bound; thus as soon as the
length of the interval [w] is small enough, A(w) and D(w) have at most
two elements, like in the case of alternate discontinuities.

3.2. More general induction families and castle forests

We shall now formalize our induction in this general case; rather than
re-writing a whole tedious theory which nobody would read, we shall stress
the differences with the case of alternate discontinuities. The proofs are
straightforward, using the methods of Sections 2.2 and 2.3.

Families of special intervals are indexed by i ∈ K, for a set K ⊂
{1, . . . , k−1}, depending on the stage of the induction, where the set K in-
creases along the stages, and is equal to {1, . . . , k−1} after a finite number
of stages; at a given stage we have #K special intervals, and the notation
we adopt throughout this section is to number by i the interval Ei which
contains the points βj for i 6 j 6 i′. Thus in general K is not an integer
interval; of course other systems of notation are possible.
Definition 2.10 of a castle forest stays the same except that
• there are at most 2k − 2 leaves, labeled by uj,t, j ∈ K, 1 6 t 6 aj ;
• a node has at least two issuing edges, ordered from left to right;
• in a tree with nodes, a leaf lj , resp rj , is not at the end of the
leftmost, resp. rightmost, edge issuing from a node.

In Lemma 2.8, the I−mγj are not totally ordered, and SYi,t is some
Eg(i,t),A,r(i,t). Thus Definition 2.11 has to be replaced by

Definition 3.1. — The castle forest of a family of special intervals is
deduced from its induction castle in the following way

• whenever ei = 1, the tree i has one single edge,
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• each node in the tree i corresponds to one or several points I−mγj
partitioning Ei (excluding the endpoints of Ei) for one value of m,

• if ei > 1, the root of the tree i corresponds to all these points I−mγj
with the smallest m,

• from each node in the tree i corresponding to I−m0γjt , 1 6 t 6
s, there are s + 1 edges, ordered from left to right by the order
of the points I−m0γjt

; the t-th edge from the left goes to a node
corresponding to all the points I−mγj lying between I−m0γjt−1 and
I−m0γjt

, (resp. left of I−m0γj1 if t = 1, right of I−m0γjs
if t = s+1)

for which m is the smallest, or to a leaf if there is no such node,
• the t-th leaf from the left in the tree i receives the label ug,r, if
SYi,t = Eg,A,r

The train-track equalities express that for i ∈ K,
∑ai

t=1 ui,t is the sum
of the labels of the leaves of the tree i, with parentheses corresponding
to nodes as before. The castle forest of a family of special intervals has∑
i∈K ai leaves. Induction families are indexed by i ∈ K, and in general wi

does not begin with the letter i.
Proposition 2.21 is replaced by

Proposition 3.2. — While we build inductively a family of special
intervals Ei, we can build by the same process induction families W , and
labels on the edges of the castle forest of the Ei such that

• Ei = [wi];
• the tree i has one single edge whenever wi contains some wj in W
as a strict suffix, and then this edge has an empty label; the only
edges with empty labels are single edges;

• a node corresponding to the word wiv has d([wiv]) issuing edges,
ordered from left to right according to the increasing order of the
first letters of their label;

• if a node in tree i has a path from the root with label v, then in
the induction castle it corresponds to d([wiv]) − 1 points I−sγy+t
in the interior of Ei, where s is the length of the word wiv and the
y + t, 0 6 t 6 d([wiv])− 1, form the set D(wiv);

• v is the (possibly empty) label of a path from a root wi to a leaf uj,t
if and only if v is a return word ofW where wiv = v′wj , v′ ends with
the letter π(x+t−1), whereA(wj) is the set {π(x), . . . , π(x+aj−1)},
and wj is the longest word wh for which wiv = v′′wh for a nonempty
v′′.
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Example 4. — We look at 4 intervals with the symmetric permutation
1 → 4, 2 → 3, 3 → 2, 4 → 1, and suppose that γ1 < γ2 < β1 < γ3 < β2 <

β3, thus the words of length 2 are {41, 42, 43, 33, 34, 14, 24}. The left special
words with one letter are 3 and 4, which constitute our initial family; we
number the special intervals by 1 and 2, so that βi ∈ Ei, and get the initial
castle forest in Figure 3.2.

r2 u2 l1r1

3

l2

4

14
24 3

3
4

Figure 3.2. Labeled castle forest 4.0.

The interval E2 = [4] contains β2 and β3, and is thus cut into three
subintervals of lengths l2 = u2,1, u2 = u2,2, r2 = u2,3. It contains also
I−1γ1 and I−1γ2, which are the two points corresponding to the node
at the root of tree 2; they cut E2 into three subintervals, whose lengths
are deduced from the castle forest to be r2, u2, l1 from left to right. The
train-track equalities are l1 + r1 = r1 + l2, l2 + u2 + r2 = r2 + u2 + l1 (no
parentheses in the last one as there is only one node).

Example 5. — We change now the permutation to 1→ 4, 2→ 3, 3→ 1,
4→ 2, again with γ1 < γ2 < β1 < γ3 < β2 < β3; the words of length 2 are
still {41, 42, 43, 33, 34, 14, 24}. We get the initial castle forest in Figure 3.3.
The train-track equalities are l1 + r1 = r1 + l2, l2 + u2 + r2 = u2 + r2 + l1.

u2 r2 l1r1

3

l2

4

14
24 3

3
4

Figure 3.3. Labeled castle forest 5.0.

We shall now build simultaneously the families of special intervals and
their induction families, amalgamating the generalizations of Sections 2.2,
2.3 and 2.4.
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3.3. The general initial stage

Definition 3.3. — An initial state is a strict order on the 2k−2 points
βi and γi, 1 6 i 6 k−1, such that βi < βi+1 and γi < γi+1 for 1 6 i 6 k−2.

The initial state, together with the permutation π, determines the sets
A(w) and D(w) for words of length 1, and hence the words of length 2.
Namely,

• if γi−1 < βj < γi for e−(i) 6 j 6 e+(i), A(i) is the set {πh, e−(i) 6
h 6 e+(i) + 1}; if there is no such j, A(i) is made with the single
letter πj, where j is the number of the first βq > γi;

• if βπ−1(i)−1 < γj < βπ−1i for b−(i) 6 j 6 b+(i), D(i) is the set
{j, b−(i) 6 j 6 b+(i) + 1}; if there is no such j, D(i) is made with
the single letter j, where j is the number of the first γq > βπi.

The labeled castle forest G0 is defined in several successive steps; the wi
in the initial induction family is used to label the root of tree i.

(1) let K̃ be the set of j such that A(j) has at least two elements; for
j ∈ K̃, let i be the smallest element of A(j) and let wi = j; the set
of such i is our initial K;

(2) for each 1 6 i 6 k − 1, we define a tree with root labeled i, and
#D(i) edges, the t-th edge (from the left) being labeled j where
j is the t-th letter of D(j), and going to a leaf us,t′ where i =
π(e−(j) + t′ − 1) if j is in K̃, t′ = 0 if j is not in K̃;

(3a) for each i in K̃, in the tree with root labeled i we replace each leaf
uj,0, such that the tree with root labeled j has a single edge going
to a leaf uj′,t, by the leaf uj′,t, and extend to the right by j′ the
label of that single edge;

(3b) for each i in K̃, in the tree with root i we replace each leaf uj,0,
such that the root j is a node, by a node, and after this node we
put the tree with root j;

(4) the process in (3a) and (3b) is iterated if new leaves uj,0 are thus
added to trees with roots in K̃; a finite number of iterations are
undertaken until each such leaf has been replaced by a node;

(5) for each i ∈ K̃, we relabel the root i by j, and the leaves ui,t by
uj,t, where wj = i; the tree j in G0 is the tree with root j, j ∈ K.

(6) for each i such that the tree i has one single edge with label v, we
replace wi by wiv, the label v by an empty label, and each label v′
leading to a leaf ui,t by v′v.

The initial castle forest G0 is allowed if the partial lengths of the initial
intervals [wi], which are the ui,t for i ∈ K, t > 0, are strictly positive
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for at least one value of the probability vector of I. These partial lengths
constitute

∑
i∈K ai parameters, which satisfy the train-track equalities. In

that case we say the initial state is allowed.
For example, for 1→ 4, 2→ 3, 3→ 1, 4→ 2, there are 20 initial states,

among which we found 5 are not allowed, namely γ1 < γ2 < β1 < β2 <

β3 < γ3, γ1 < γ2 < β1 < β2 < γ3 < β3, γ1 < β1 < γ2 < γ3 < β2 < β3,
β1 < β2 < β3 < γ1 < γ2 < γ3, β1 < γ1 < γ2 < γ3 < β2 < β3. The castle
forest for the first one would have only one tree, numbered 1, with a single
edge to a leaf u1, with similar impossibilities for the others.

3.4. The general induction step and structure theorem

The greedy decision H is the set of i such that the root of tree i is a
node; for i in H, Ui,t is the sum of the labels of the leaves which are after
the t-th edge (from the left) out of the root labeled wi. An allowed decision
F is again a nonempty subset of H.
A choice c associates to each i ∈ K a ci-uple of numbers t1(i) < · · · tci

(i),
where the previous notations c(i) = −, resp c(i) = +, correspond to the
case where c(i) consists only of t1(i) = 1, resp. t1(i) = di. Namely, the
choice c(i) is the set of all 1 6 t 6 di such that Ei,D,t contains at least
one βj , or equivalently such that

t−1∑
s=1

Ui,s <

q∑
y=1

ui,y <

t∑
s=1

Ui,s

for at least one q. Then, if t is not in c(i), Ei,D,t is included in one Ei,A,s
for s = s(i, t) satisfying

∑s−1
y=1 ui,y <

∑t
q=1 Ui,q <

∑s
y=1 ui,y; if t is in c(i),

Ei,D,t intersects all the Ei,A,s for s−(i, t) 6 s 6 s+(i, t), with
∑s−−1
y=1 ui,y <∑t−1

q=1 Ui,q <
∑s−
y=1 ui,y,

∑s+−1
y=1 ui,y <

∑t
q=1 Ui,q <

∑s+
y=1 ui,y.

Note that the values of s(t), s−(t), s+(t) can be deduced from the knowl-
edge of the set K and the choice c. For example, in Figure 3.1 above
c(i) = {2, 4}, s(i, 1) = 1, s−(i, 2) = 1, s+(i, 2) = 3, s(i, 3) = 3, s−(i, 4) = 3,
s+(i, 4) = 4, s(i, 5) = 4.
For i in F , we create a new interval E′ for each t in c(i), and there

may be more than one: namely, Ei,D,t becomes E′j(i,t), where j(i, t) is the
smallest j such that βj is in Ei,D,t. E′i = Ei if i is not in F . If i is in F

and t ∈ c(i), then for j = j(i, t) the partial lengths of E′j are given by l′j =∑j(i,t)
y=1 ui,y −

∑t−1
s=1 Ui,s, r′j =

∑t
s=1 Ui,s −

∑j+(i,t)
y=1 ui,y, u′j,q = ui,j(i,t)+q−1

for 2 6 q 6 a′j − 1 with a′j = j+(i, t) − j(i, t) + 2. Thus each choice and
decision define a set of integers K ′ numbering the new intervals, and a

ANNALES DE L’INSTITUT FOURIER



GENERALIZED SELF-DUAL INDUCTION 1989

linear map CF from RK to RK′ ; an allowed choice is defined by CH as
before.
For example, in Figure 3.1 above, if i is in F , then j(i, 2) = i, j(i, 4) =

i+ 2, the two new intervals are E′i, of length Ui,2, and E′i+2, of length Ui,4.
The castle forest of the E′i built with an allowed decision F is built from

the castle forest of the Ei by making for all i in F , successively in any order
on i, the surgery on trees detailed below;

• for each t in c(i), let n denote the node or leaf at the end of the t-th
edge (from the left) issuing from the root of tree i; if n is a node,
the part of the former tree i beyond n is cut away and forms a new
tree j(i, t), including n which becomes its root; if n is a leaf labeled
uh,s, a new tree j(i, t) is made with a single edge and a leaf labeled
uh,s;

• if t is in c(i) and t > 1, the t-th edge out of the root of the former
tree i, including n, is cut away and put on top of the former leaf
ui,s−(i,t), which is in a tree h (if h is one of the j(i, t), the new
tree j(i, t)); n (in the added part) becomes a leaf labeled lj(i,t); the
former leaf ui,s−(i,t) becomes a node; if it was the only leaf in tree
h, then the single edge leading to it is deleted, and the new node
becomes the root;

• if t is in c(i) and t < di, the t-th edge out of the root of the former
tree i, including n, is cut away if t = 1, resp. duplicated if t > 1,
and it, resp. its new copy, is put on top of the former leaf ui,s+(i,t),
which is in a tree h′ (if h′ is one of the j(i, t), the new tree j(i, t));
n (in the added part) becomes a leaf labeled rj(i,t); the former leaf
ui,s+(i,t) becomes a node; if it was the only leaf in tree h′, then the
single edge leading to it is deleted, and the new node becomes the
root;

• if t is not in c(i), the t-th edge out of the root of the former tree
i and everything beyond it, are cut away and put on top of the
former leaf ui,s(i,t).

As for the labels, for all i in F ,

• if t is in c(i), wi is extended to the right by the label v of the t-th
edge from the root of tree i, and renamed wj(i,t); every wh which
contains the former wi as a strict suffix is extended to the right by
the label v of the t-th edge from the root of tree i; the labels of
the edges leading to the leaves ui,s for s−(i, t) < s < s+(i, t), also
s = s−(i, t) if t = 1, s = s+(i, t) if t = di, and of every edge leading
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to a leaf uh,s where wh contains the former wi a strict suffix, are
extended to the right by v;

• when an edge is displaced or duplicated, it, and its new copy when
it exists, keep the same label, possibly extended as in the previous
item;

• the leaf ri is relabeled rj , where j is the number of the interval E′
which contains βi+ai−2; all other labels of leaves lh, rh, uh which
appear in the castle forest at that stage are unchanged, which de-
termines the new numbers j and q for which uh = uj,q.

Evolution of Example 4. — We suppose r2 < l2 and r1 < l1, Then the
interval [I−1γ1, I−1γ2[ contains β2 and the interval [I−1γ2, 1[ contains β3.
We take the decision {1, 2}. We make first the surgery determined by 1,
with c(1) = {2}, which agrees also with the rules of Section 2 and c(i) = +;
this gives the intermediate castle forest in Figure 3.4.

r2 u2

r1 l1

34 4

l2

14
24 3

34
4

Figure 3.4. Labeled castle forest 4.1.

Then the surgery determined by 2 illustrates the new rules: c(2) = {2, 3},
both 424 and 43 are left special, they give the new w2 and w3; a new tree
2 is made with a single edge going to u2, and a new tree 3 with the edges
going to r1 and l1. Then the former edge going to r2 is put on top of l2 (in
tree 1) as s(2, 1) = 1, and the leaf at its end is renumbered from r2 to r3;
the former edge going to u2 is put on top of l2 as s−(2, 2) = 1, and the leaf
at its end is renumbered from u2 to l2; a copy of the former edge going to
u2 is put on top of u2 (in the new tree 2) as s+(2, 2) = 2, and the leaf at
its end is renumbered from u2 to r2; the former edge going to the node is
put on top of u2 as s−(2, 3) = 2, and receives a leaf l3.
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r2 l3 r1

43

l1

42434

r3 l2

24
3

34
4

143

24

Figure 3.5. Labeled castle forest 4.2.

The new castle forest is in Figure 3.5. The new train-track equalities are
l1 + r1 = r3 + l2, l2 + r2 = r2 + l3, l3 + r3 = r1 + l1; these correspond to a
castle forest associated to the tree of relations 1=̂3+̂2, and thus to a castle
forest in a graph of graphs of the symmetric permutation in the case of
alternate discontinuities.

Evolution of Example 5. — We suppose first r2 < l2 < u2, l1 < r1, and
take the decision {1, 2}. Then c(2) = {1, 3}, 414 and 43 are left special,
43 being then uniquely extended to 433, and we denote them by w2 and
w3. The new castle forest is in Figure 3.6. The new train-track equalities
are l1 + r1 = r1 + l2, l2 + r2 = r2 + r3 + l3, l3 + r3 = l1. Note that here
a tree 3 is added, thus a leaf u is replaced by two leaves l and r, but no
edge is duplicated because the choices contain only extremal values (1 or
di), thus the number of edges with nonempty labels becomes smaller than
the number of leaves (an edge will be duplicated at a later stage).

r2 r3 l3r1

33

l2

414 433

l1

14
2433

33
3

414

Figure 3.6. Labeled castle forest 5.1.a.

We go back to the initial state of Example 5, suppose l2 < u2, l2 <

r2, l1 < r1, and take the decision {1, 2}. Then c(2) = {1, 2}, 414 and
424 are left special, and we denote them by w2 and w3. The new castle
forest is in Figure 3.7. The new train-track equalities are l1 + r1 = r1 + l2,
l2 + r2 = r2 + l3, l3 + r3 = r3 + l1; these correspond to a castle forest
in Figure 2.15, in a graph of graphs of the rotations class in the case of
alternate discontinuities. There has been one duplicated edge, leading to
leaves l3 and r3.
Proposition 2.24 is still valid at any stage with, for the number of towers,

2k − 2 replaced by the number of edges with nonempty labels, which is at
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r2 l3 r3

424

l1

41433

r1 l2

14
24

24
33

3
414

Figure 3.7. Labeled castle forest 5.1.b.

most
∑
i∈K ai (but can be less as in castle forest 5.1.a above) and, as will

be shown below, is indeed 2k− 2 ultimately. Then Proposition 2.25, Corol-
lary 2.26, Theorem 2.28 are still valid in the general case (the condition
that G0 is allowed is nontrivial here, while it was always satisfied in the case
of alternate discontinuities). Moreover, as in Proposition 2.25 the lengths
of the Ei,n tend to zero, by the remark at the end of Section 3.1, after a
finite number of stages the induction families and castle forests satisfy all
the properties of Sections 2.2, 2.3, 2.4 with the sole exception that the first
letter of wi is not i in general. In Proposition 2.27, the second condition
is not changed while the first is replaced by: if (j1, . . . , js) is the unique
sequence such that j1 = i, the tree root jh has a single edge going to a leaf
xh+1 = ujh+1,th+1 for 1 6 h 6 s− 1, and the root of tree js is a node, then,
for 2 6 h 6 s, at the first ulterior stage for which jh is in F , the leaf xh is
replaced by a node.
The greedy algorithm is still available; a (generalized) trees of relation

algorithm is described completely in the little (if ever)-read Section 3 of [20],
and the loops variant is carried naturally to the general case.

4. Applications of the new induction

4.1. Substitutions and S-adic presentation

Our algorithm of induction allows us to generalize Section 3.3 of [20]. We
recall

Definition 4.1. — A substitution τ is an application from an alphabet
A into the set A? of finite words on A; it extends naturally to a morphism
of A? for the operation of concatenation. It is primitive if there exists k
such that a occurs in τkb for any a ∈ A, b ∈ A. A fixed point of τ is an
infinite sequence u with τu = u.

A sequence x in AN is primitive substitutive if x = ψ(u), where u is
a fixed point of a primitive substitution on an alphabet A0, and ψ a map
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from A0 to A?, extended to a morphism for concatenation. A symbolic
system XL is a primitive substitutive system if L = L(x) for a primitive
substitutive sequence x.

An immediate consequence of Proposition 2.24 is that we can generate
all factors of the trajectories by the names of the Rokhlin towers, thus by
the 2k− 2 (possibly less in the initial stages) nonempty labels of the edges
in the castle forests at stage n; more precisely, by minimality, the symbolic
system XL(I) is the shift on all sequences x such that for every s < t

there exists n such that xs · · ·xt is a factor of any such label Li,n at some
stage n. By Proposition 2.22 or its generalization in Section 3, the labels
at stage n + 1 are given as concatenations of the labels at stage n, of the
form Li,n+1 = Lj1(i,n),n · · ·Ljr(i,n)(i,n),n and, if we define the substitutions
τn by τn(i) = j1(i, n) · · · jr(i,n)(i, n), then we check the well-known equality
(see [13]) Li,n = ψ ◦ τ0 ◦ · · · τn−1(i) where ψ(j) = Lj,0. This constitutes a
presentation of XL(I) as an adic system, see for example [40]; we can also
say that it is generated by the substitutions τn; as by Proposition 2.22 τn
of any symbol is a word of length at most k, they form a finite family of
substitutions, and thus define XL(I) as an S-adic system, see [13]. And,
exactly as in [20], we can show for the new induction the following result,
which is “in the folklore” and holds if we replace our induction algorithm
by any classical one, but we state it for sake of completeness.

Proposition 4.2. — Let I be a k-interval exchange, satisfying the
i.d.o.c. condition; then the symbolic system XL(I) is a primitive substi-
tutive system if and only if any sequence of allowed castle forests, choices
and decisions generated by an algorithm of induction is ultimately periodic.

4.2. Repetitions of words

The following result is a partial answer to a question of Boshernitzan
to the author (2008), which got the same positive answer in [20] for the
hyperelliptic class, for any number of intervals and any initial condition.
This questions interests word combinatorists, but also arithmeticians as
it gives important informations on the approximation by rationals of the
numbers whose either the expansion in base k or the continued fraction
expansion is a trajectory of I, see for example [1].

Proposition 4.3. — The language of any 4-interval exchange, satis-
fying the i.d.o.c. condition and the condition of alternate discontinuities,
contains the word ww for infinitely many different words w.
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Proof. — We have just to show it for the rotations class. In any castle
forest, if v is the label of a path from a root wi to a leaf li or ri, we have
wiv = v′wi; we check inductively that v is not longer than wi, except at
a finite number of initial stages, thus wi = v′′v, and vv is in the language
of I. Thus we need only to prove that, for one algorithm of induction, any
possible sequence of formal castle forests goes infinitely many times through
castle forests with at least one path from a root wi to a leaf li or ri. Now,
for the algorithm of Section 2.8, we check that the only non-transient castle
forests without this property are the four of the central ones in figure 16
which have no loops around them, the 2i and the 7i, and that the allowed
moves make it impossible to stay ultimately among these ones. �

To eliminate the condition of alternate discontinuities, we need to show
that, starting from any initial condition as defined in Section 3.3, the possi-
ble non-transient castle forests for k = 4 and π in the rotations class are all
in the graph of graphs G′ of Section 2.8, possibly after a renumbering of the
wi. This is a particular case of the relations between graphs of graphs and
Rauzy classes mentioned in Section 5: it could be proved combinatorially
by looking at the 108 remaining initial states (this number can be reduced
to 54 by using the map x→ 1− x, and some of them are not allowed) and
the way they can evolve until we get a castle forest where each node has
at most two issuing edges, but this would take up too much space for not
enough interest.

4.3. Weak mixing in an odd component

We recall that (X,T, µ) is weakly mixing if µ is ergodic and the operator
f ◦T in L2(X,R/Z) has no nonzero eigenvalue (denoted additively, f ◦T =
f+ζ). Avila and Forni [3] have proved that, for every given π not satisfying
i ≡ πi mod k, for all 1 6 i 6 k, almost every k-interval exchange is
weakly mixing; but, as far as we know, explicit constructions (as opposed to
existence theorems) of weakly mixing k-interval exchanges have been made
only for the symmetric permutation: the only ones we have been able to find
in the literature are for k = 3 [26][19], k = 4 [23][37], and k = 6 [37], while
in Theorem 13 of [15] we give a construction for every value of k, though
it should be modified as indicated after the proof of Theorem 4.4 below. It
would not be difficult to build weak mixing examples in the rotations class,
provided our interval exchange is the induced map of a rotation but not
a rotation itself: indeed for k = 3 the rotations class and the hyperelliptic
class are the same, while for 1 → 4, 2 → 3, 3 → 1, 4 → 2 we could build
examples using the method below and the analysis in Section 2.8.
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We shall now build a family of weakly mixing interval exchanges outside
both the hyperelliptic and the rotations Rauzy classes, by choosing in [44] a
permutation in the Rauzy class corresponding to the connected component
with odd spin parity in the stratum H(2g − 2), for any given g > 3, and
applying the general self-dual induction for this permutation. The idea of
the proof is the same as in [15]: we kill any possible eigenvalue ζ by the
usual Chacon trick,i.e. we find an integer Q such that both Qζ and (Q+1)ζ
are close to an integer, as in [6], see also [16]; this is achieved by ensuring
first that the heights of two of the Rokhlin towers are coprime, then that
these towers are cycled for a large enough number of times to allow the use
of Bezout’s relation; we conclude by checking that these two towers appear
at least as a fixed proportion of all the towers at a further stage.
Following [44], we build a permutation π in Hodd(2g − 2). It is defined

on {1, . . . , 2g} by
• πi = 2g + 1− i for i = 1, 2, , 2g,
• π(2g − 1) = 2g − 2,
• π(2j + 1) = 2j + 1 for 2 < 2j + 1 < 2g − 1,
• π(2j) = 2j − 2 for 2 < 2j < 2g − 1.

We suppose the condition of alternate discontinuities is satisfied, and
start form the initial castle forest G0 defined in Sections 2.3 nad 2.4. After
labeling, it consists in

• an edge from the root wi to the leaf li for i = 1, 3, 5, . . . , 2g − 3;
• an edge from the root wi to the leaf li+2 for i = 2, 4, 6, . . . , 2g − 4;
• an edge from the root w2g−2 to the leaf l2g−1;
• an edge from the root w2g−1 to the leaf l2;
• an edge from the root wi to the leaf ri−1 for i = 3, 5, . . . , 2g − 3;
• an edge from the root wi to the leaf ri+1 for i = 2, 4, . . . , 2g − 4;
• an edge from the root w2g−2 to the leaf r2g−2;
• an edge from the root w2g−1 to the leaf r1;
• an edge from the root w1 to the leaf r2g−1.

For any castle forest where each tree has two edges, we denote by Pi,j ,
resp. Mi,j , the label of the edge from the root wi to the leaf lj , resp. rj .
Starting from such a castle forest, if we take the greedy decisions and c(i)
is + for all i or − for all i, the choice is allowed and in the new castle forest
each tree has two edges. In such particular cases, when all trees have two
edges, both in the former and the new castle forest, with our numbering of
the edges, the rules of Proposition 2.22 have a simple expression: if c(i) : −,
the unique labelMg,i is not changed, while the unique label Ph,i is extended
to the right by the unique label Mi,j , giving a label which is the new Ph,j ,
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and mutatis mutandis if c(i) = +. Moreover, if in the initial castle forest
there is a circuit of M edges, namely Mj1,j2 , Mj2,j3 , . . . ,Mjr,j1 , and if we
make r consecutive inductions, with the greedy decisions and c(i) = − for
all i, then the unique label Mg,j1 is not changed, while the unique label
Ph,j1 is extended to the right by the concatenationMj1,j2Mj2,j3 , . . . ,Mjr,j1 ,
giving a label which is the new Ph,j1 , and mutatis mutandis if we exchange
P and M , − and +.
In our initial castle forest G0, we have P1,1 = (2g)1, Pi,j = j for all

possible (i, j) 6= (1, 1),Mi,j = j for all possible (i, j). We partition the edges
into circuits of M edges and circuits of P edges: these are (up to circular
permutations inside each circuit)M2i+1,2i, M2i,2i+1, for 3 6 2i+1 6 2g−3;
M1,2g−1, M2g−1,1; M2g−2,2g−2; P2g−1,2, P2,4, . . . , P2g−4,2g−2, P2g−2,2g−1;
P2i+1,2i+1 for 1 6 2i + 1 6 2g − 3. The M circuits have lengths 1 and 2,
the P circuits have lengths 1 and g; thus the discussion above implies that,
if we start from G0 and take the greedy decision at each stage,

• g consecutive choices c(i) = +, 1 6 i 6 2g − 1, are allowed and
then, at successive stages, we go to castle forests G1, . . . , Gg = G0,
where each tree has two edges;

• 2 consecutive choices c(i) = −, 1 6 i 6 2g − 1, are allowed and
then, at successive stages, we go to castle forests G̃1, G̃2 = G0,
where each tree has two edges.

Theorem 4.4. — For any g > 3, one can construct recursively two
sequences pn and qn such that the 2g-interval exchange with permutation
π, defined as in Theorem 2.28 by the sequence of castle forests, choices, and
decisions, made, from the initial stage, by successive runs of 2pn choices
c(i) = −, 1 6 i 6 2g − 1, gqn choices c(i) = +, 1 6 i 6 2g − 1, for
n = 1, 2, . . . ,, and a greedy decision at each stage, is weakly mixing for any
invariant probability measure.

Proof. — The pn and qn are chosen inductively.
At the beginning of a run of 2pn negative choices, we have castle forest

G0, with edges labeled Mi,j and Pi,j for the couples (i, j) described above.
By the discussion before Theorem 4.4, the M edges do not change, while
the P edge ending at i is extended by the concatenated labels of the edges
forming the M circuit beginning at i, as many times as necessary; we get
that at the beginning of the next run of gqn positive choices, we have G0
again with edges labeled Mi,j and P ′i,j with

P ′2i+1,2i+1 = P2i+1,2i+1(M2i+1,2iM2i,2i+1)pn , 3 6 2i+ 1 6 2g − 3,
P ′2i,2i+2 = P2i,2i+2(M2i+2,2i+3M2i+3,2i+2)pn , 2 6 2i 6 2g − 6,
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P ′1,1 = P1,1(M1,2g−1M2g−1,1)pn ,

P ′2g−1,2 = P2g−1,2(M2,3M3,2)pn ,

P ′2g−2,2g−1 = P2g−2,2g−1(M2g−1,1M1,2g−1)pn ,

P ′2g−4,2g−2 = P2g−4,2g−2M
2pn

2g−2,2g−2.

By a similar reasoning, at the beginning of the run of 2pn+1 negative
choices, we have castle forest G0, with edges labeled M ′i,j and P ′i,j with

M ′j,2i = Mj,2i(P ′2i,2i+2P
′
2i+2,2i+4 · · ·P ′2g−2,2g−1P

′
2g−1,2P

′
2,4 · · ·P ′2i−2,2i)qn

for 2 6 2i 6 2g − 2 and corresponding j,

M ′1,2g−1 = M1,2g−1(P ′2g−1,2P
′
2,4 · · ·P ′2g−4,2g−2.P

′
2g−2,2g−1)qn ,

M ′j,2i+1 = Mj,2i+1(P ′2i+1,2i+1)gqn

for 1 6 2i+ 1 6 2g − 3 and corresponding j.
Let xn, resp. yn, resp. Xn, resp. Yn, be the length of the word P1,1, resp.

P3,3, resp. M1,2g−1M2g−1,1, resp. M3,2M2,3, at the beginning of the run
of 2pn negative choices. We make the recursion hypotheses that xn and
yn are coprime and Ynxn − Xnyn 6= 0. The hypothesis is satisfied at the
initial stage where x1 = 2, y1 = 1, X1 = Y1 = 2; we suppose now that it is
satisfied for n, and shall choose pn and qn such that they will be satisfied
for n+ 1.
Namely, xn+1 = xn + pnXn, yn+1 = yn + pnYn. Any common factor of

xn+1 and yn+1 has to divide Ynxn+1 −Xnyn+1 = Ynxn −Xnyn = Zn 6= 0,
which is independent of pn. Let D be the set of all prime factors of Zn, D1
the set of those factors which divide also xn, D2 the set of the other factors.
If d is in D2 and divides Xn, any choice of pn ensures that d does not divide
xn+1; if d is in D2 and does not divideXn, d does not divide xn+1 for any pn
such that pn ≡ X−1

n (z − xn) modulo d, for any z 6≡ 0 modulo d. Similarly
if d is in D1, and therefore does not divide yn, either d does not divide
yn+1 for any value of pn, or this can be ensured by a congruence condition
modulo d. Thus, by the Chinese remainder theorem, we can find infinitely
many values of pn such that no prime number d divides the three numbers
Zn, xn+1 and yn+1, and this ensures that xn+1 and yn+1 are coprime. We
also ask that pn is large enough to have |Pi,j | < εn|P ′i,j | for all pairs (i, j) in
the above recursion formulas, for some prescribed εn. Note that pn depends
only on the parameters p1, . . . , pn−1, q1, . . . , qn−1.
Thus for any n there exist positive integers Un and Vn such that |Unxn−

Vnyn| = 1. As the value of xn+1 and yn+1 depend only on the parameters
p1 . . . , pn, q1, . . . , qn−1, we can then choose qn larger than Un+1∨Vn+1. We
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also ask that qn is large enough to have |Mi,j | < εn|M ′i,j | for all pairs (i, j)
in the above recursion formulas. We finally ask that qn is large enough to
ensure that Zn+1 6= 0: indeed, by construction Zn+1 = Zn + qnΞn for a Ξn
independent of qn, thus if Ξn = 0 any choice of qn is good, and otherwise
qn|Ξn| > |Zn| is sufficient. We shall now prove that, with this choice of the
pn and qn, I is weakly mixing.
By Proposition 2.24, at each stage the space is filled by 4g − 2 Rokhlin

towers, whose names are theMi,j and Pi,j . The towers are made by cutting
and stacking following the recursion rules above, thus in the tower with
nameM ′2g−1,1 at the beginning of the run of 2pn+1 negative choices, we see
(P ′1,1)gqn , when we read the name from level |M2g−1,1| to level |M2g−1,1|+
gqn|P ′1,1| − 1. Let τn be the union of all these levels. For any point ω in
τn, Ixnω, I2xn+1ω, . . .. IUn+1xn+1ω are in the same level of the tower with
name P ′1,1 as ω. Similarly, in the name of M ′2,3 we see (P ′3,3)gqn from level
|M2,3| to level |M2,3|+ gqn|P ′3,3| − 1 let τ ′n be the union of all these levels.
For any point ω in τ ′n, Iyn+1ω, I2yn+1ω, . . .. IVn+1yn+1ω are in the same
level of the tower with name P ′3,3 as ω.
Let µ be an invariant probability for I, f be an eigenfunction for the

eigenvalue ζ; by Corollary 2.26, for each ε > 0 there exists N(ε) such that
for all n > N(ε) there exists fn, which satisfies

∫
‖f − fn‖dµ < ε and is

constant on each level of each tower at the beginning of the run of 2pn
negative choices (where ‖x‖ denotes its distance to the nearest integer).
Thus for µ-almost every ω in τn, fn(IUn+1xn+1ω) = fn(ω) while

f(IUn+1xn+1ω) = ζUn+1xn+1 + f(ω);

we have∫
τn

‖fn ◦ IUn+1xn+1 − ζUn+1xn+1 − fn‖dµ

=
∫
τn

‖ζUn+1xn+1‖dµ = ||ζUn+1xn+1‖µ(τn)

and∫
τn

‖fn ◦ IUn+1xn+1 − ζUn+1xn+1 − fn‖dµ

6
∫
τn

‖fn ◦ IUn+1xn+1 − f ◦ IUn+1xn+1‖dµ+
∫
τn

‖fn − f‖dµ < 2ε.

Thus µ(τn)‖ζUn+1xn+1‖ < 2ε, and similarly µ(τ ′n)‖ζVn+1yn+1‖ < 2ε; as
Un+1xn+1 − Vn+1yn+1 = ±1, we shall conclude that ζ = 0, and thus get
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the weak mixing, if we can prove that µ(τn) and µ(τ ′n) are bounded away
from 0.

For this, we need first to check that all the lengths of theMi,j , resp. Pi,j ,
are comparable at the beginning of the same run of positive or negative
choices; at the initial stage they are equal to 1 except |P1,1| = 2, and, be-
cause the recursion formulas have all the same number of terms, at all sub-
sequent stages the εn can be chosen such that c1|Pi,j | 6 |Pi′,j′ | 6 c2|Pi,j |,
c1|Mi,j | 6 |Mi′,j′ | 6 c2|Mi,j | at he beginning of the same run for all
i, j, i′, j′.
Thus the strings (P ′1,1)gqn fill (about) all the length of M2g−1,1 after the

next runs, thus (because of the recursion formulas and the comparability
of the lengths of the Pi,j) at least a fixed proportion κ of the lengths of P1,1
and P2g−2,2g−1 after the next runs, thus, in the same way, a proportion at
least κκ′ of the lengths ofM2g−1,1,M1,2g−1 and all theMj,2i after the next
runs, thus a proportion at least κ2κ′ of the lengths of all the Pi,j after the
next runs, thus a proportion at least κ2(κ′)2 of the lengths of all the Mi,j

and P,i,j after the next runs, and these are the names of 4g − 2 Rokhlin
towers filling all the space. This implies that µ(τn) > κ2(κ′)2, and a similar
reasoning works for µ(τ ′n). �

We apologize to the readers of [15], as in its Theorem 13 mentioned
above there is a gap in the published proof: with its notations, which are
essentially the same as in the proof of Theorem 4.4 above, not only we
failed to ensure that Z is nonzero, but indeed it is 0 at the first stage.
The shortest way to correct that is to change the pair of names whose
lengths will be coprime: in the case when n = 2p + 1, these should not
be Pk,p+1,p+1 and Pk,p,p+2Pk,p+2,p, but Pk,p+1,p+1 and Pk,1,1, then Z is
nonzero at the first stage and the proof of Theorem 4.4 above can be
carried out, mutatis mutandis; when n = 2p we can take Pk,1,1 and (among
others) Pk,p,p+1Pk,p+1,p, but we have to weaken the recursion hypothesis,
replacing the two coprime lengths by two lengths which have no common
divisor except 2; an imitation of the proof of Theorem 4.4, ensuring this is
satisfied, implies that the system has no eigenvalue except maybe ζ = 1

2 ;
then the fact that the nameMk,p,p has always an odd length and is a return
word of a single word completes the proof of weak mixing.

5. Open questions

We would like to know under which conditions a given allowed castle for-
est may be the castle forest of an induction family for some I; this depends
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on the permutation, but also the initial state as defined in Section 3.3, the
algorithm used, see Section 2.7, and whether we allow it to be transient as
in some examples in Section 2.8; we do not know a general answer to the
question, the castle forests we do use are those which can be reached by an
induction algorithm from some well-defined initial castle forests.
A related problem is to find an algorithm allowing us, as is the case for

the hyperelliptic class, to use only castle forests where each tree has two
edges, possibly with some additional transient castle forests. We have not
been successful in the general case: indeed, with the algorithm of Section 2.8
it is easy to build interval exchanges in the rotations class which define a
sequence of castle forests where ultimately there is always at least one tree
with more than two edges.

For k > 5, Boshernitzan’s question on words ww remains open outside
the hyperelliptic class.
The relations between graphs of graphs and Rauzy classes, examples of

which appear in Section 2.8, are tackled in [12].
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