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NON-EMBEDDABLE 1-CONVEX MANIFOLDS

by Jan STEVENS

Abstract. — We show that every small resolution of a 3-dimensional terminal
hypersurface singularity can occur on a non-embeddable 1-convex manifold.

We give an explicit example of a non-embeddable manifold containing an irre-
ducible exceptional rational curve with normal bundle of type (1, −3). To this end
we study small resolutions of cD4-singularities.
Résumé. — Nous montrons que chaque petite résolution d’une singularité de

hypersurface 3-dimensionnelle terminale peut se produire sur une variété 1-convexe
non plongeable.

Nous donnons un exemple explicite d’une variété non plongeable contenant une
courbe exceptionnelle rationnelle irréductible avec fibré normal du type (1, −3). À
cette fin, nous étudions de petites résolutions des singularités cD4.

Introduction

A 1-convex (or strongly pseudoconvex) complex manifold X with 1-
dimensional exceptional set can be embedded in some CM × PN , except
possibly when dimX = 3 and an irreducible component of the exceptional
curve is a rational curve with normal bundle of type (−1,−1), (0,−2)
or (1,−3). Non-embeddable examples are known in the first two cases
[18, 6, 4]. In this paper we show that last type also occurs.

An irreducible exceptional rational curve C on a 3-dimensional manifold
X with normal bundle of type (a, b) with a + b = −2 blows down to a
terminal Gorenstein singularity, that is, a cDV -singularity. This means that
the general hyperplane section through the singular point is Du Val, or in
other terminology, a rational double point. The simplest possibility is an
ordinary double point (a 3-dimensional A1-singularity). The first example
of a non-embeddable 1-convex manifold [18, 6] is a variant of Moishezon’s

Keywords: 1-convex manifolds, small resolutions.
Math. classification: 32S45, 32F10, 32Q15, 32T15, 13C20, 14E30.
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example of a non-projective Moishezon manifold [12]. Let Y ⊂ C4 be a
general hypersurface of degree d > 6 with one A1-singularity and let Y ⊂ P4

be its projective closure. A small resolution of Y is non-projective and a
small resolution of Y is non-embeddable. The explicit example of [4] for
the case of normal bundle (−1,−1) is also of this form. The examples for
(0,−2) are similar. They start from an equation f2k for a 3-fold A2k−1-
singularity, for which a small resolution with irreducible exceptional set is
easily constructed. Let f2N be a homogeneous polynomial of high degree
2N with isolated singularity at 0 ∈ C4. Then Yk = {f2k + εf2N = 0} is
an affine hypersurface with non-embeddable small resolution. In [4] this
is shown by explicit construction of a 3-chain with the exceptional set as
boundary.
These examples suggest the following construction. Let {f = 0} ⊂ C4 be

a hypersurface with terminal singularity at the origin, admitting a small
resolution. Choose a general enough polynomial g of high enough degree.
A small resolution X of Y = {f + εg = 0} should be a non-embeddable
1-convex manifold. Our main result states that this is indeed the case.
The proof uses that X is non-embeddable if and only if the corresponding
small resolution X of the projective closure Y is non-projective [21] (as g
is general, the hyperplane section Y∞ = {g = 0} ⊂ P3 is smooth). This
follows once the group of Weil divisors modulo algebraic equivalence has
rank one [10]. We show the stronger result that the class group Cl(Y ) is
infinite cyclic: by the Grothendieck-Lefschetz theorem of [14] Cl(Y ) injects
into the class group of Y∞, and by the classical Noether-Lefschetz theorem
this smooth surface has Picard group Z for very general g (meaning for g
outside a countable union of subvarieties in parameter space).
We also provide an explicit example of a non-embeddable X with irre-

ducible exceptional curve with normal bundle (1,−3). Such a curve blows
down to a singularity with general hyperplane section of type D4, E6, E7
or E8 [8]. In the latter cases the formulas become very complicated, so
we restrict ourselves to the simplest one (D4). The strict transform of the
general hyperplane section is a partial resolution of the D4 singularity, and
the total space is a 1-parameter smoothing. It can be obtained by pull-back
from the versal deformation of the partial resolution, which is a simulta-
neous partial resolution of the versal deformation of the singularity, after
a base change. We compute this base change and then construct the small
modification, generalising Example (5.15) in Reid’s pagoda paper [16]. We
classify all 1-parameter smoothings, that is, all 3-dimensional singularities
to which these blow down.

ANNALES DE L’INSTITUT FOURIER
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Our explicit example is a small resolution of

x2 + (t+ z)y2 + (t− z)z2 − (t2 − z2)t2k + εt2m = 0.

This hypersurface is very singular at infinity, but the equation has the ad-
vantage of containing only a few terms. We explicitly show that (twice) the
exceptional curve bounds a real 3-chain, and therefore the small resolution
is not embeddable.
In the first section we recall the necessary definitions and known results

about non-embeddable 1-convex manifolds. Then we show our main result
on the existence of hypersurfaces with non-embeddable small resolution. In
the second section we classify the cD4-singularities which admit a small res-
olution, and construct this resolution explicitly. The final section is devoted
to the specific example.
I thank the referee for a careful reading of the manuscript.

1. Non-embeddable 1-convex manifolds

Definition 1.1. — A complex space X is 1-convex (or strongly pseu-
doconvex) if there exists a proper surjective morphism π : X → Y onto
a Stein space Y with π∗OX = OY and a finite subset T ⊂ Y such that
Xrπ−1(T )→ Y rT is biholomorphic. The exceptional set is S = π−1(T ).

Definition 1.2. — A 1-convex space X is called embeddable if there
exists a holomorphic embedding X → CM × PN for some (M,N).

A necessary and sufficient condition is given by the following result [17]:

Proposition 1.1. — The 1-convex manifold X with exceptional set S
is embeddable if and only if there exists a line bundle on X with L|S ample.

We from now on only consider the case of one-dimensional exceptional
sets S. There is the following topological criterion.

Theorem 1.2 ([1]). — LetX be a 1-convex manifold with one-dimensio-
nal exceptional set S. Then X is Kähler if and only if S does not contain an
effective curve C, whose class in H2(X,Z) vanishes. If moreover H2(X,Z)
is finitely generated, then these conditions are equivalent to the fact that X
is embeddable.

Similar results are obtained in [18]. Non-embeddable 1-convex manifolds
are very special.

TOME 64 (2014), FASCICULE 5
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Theorem 1.3 ([6, 19]). — If a 1-convex manifold X with one-dimensio-
nal exceptional set S is not embeddable, then X has dimension three and
S has an irreducible component C with KX · C = 0.

It follows that C is a rational curve, with normal bundle of type OC(a)⊕
OC(b), satisfying a + b = −2. The only possibilities are (−1,−1), (0,−2)
or (1,−3) [11], see also [5, Lecture 16].
To describe the singularities of Y we look at the germ of X along S.

Let π : (X,S) → (Y, p) be a small contraction (we call the map π a small
contraction or small resolution depending on whether we view X or Y as
the primary object) with X smooth and KX π-trivial, i.e., KY · C = 0
for every irreducible component of S. Then Y is Gorenstein terminal, so a
cDV -singularity. This means that a hyperplane section through the singular
point is a rational double point (a.k.a. DuVal singularity).

Proposition 1.4 ([16]). — If (H, p) is a generic hyperplane section of
the cDV-singularity (Y, p) with small resolution π : (X,S) → (Y, p), then
G := π∗H is normal and the induced map f : (G,S) → (Y, p) is a partial
resolution, dominated by the minimal resolution.

In particular, if π contracts only one rational curve, the partial resolu-
tion is obtained by blowing down all exceptional curves on the minimal
resolution H̃ of H, except one. The type of H is determined by Kollár’s
length invariant [5, Lecture 16].

Definition 1.3. — The length l of the small contraction π : (X,C)→
(Y, p) with irreducible exceptional curve C is

l = lgOX/π∗mY,p.

The length equals the multiplicity of the fundamental cycle of H̃ at the
strict transform of the exceptional curve C.

Proposition 1.5 ([8]). — The length of the small contraction π de-
termines the type of the general hyperplane section H and the partial
resolution G→ H.

A simple proof is given by Kawamata [9]. For length l = 1 the general
hyperplane section is of type A1. This occurs for normal bundle of type
(−1,−1) or (0,−2). For (1,−3) the length lies between 2 and 6, with for
l = 2, 3, 4 general hyperplane section D4, E6 and E7. If l = 5, 6, then H

has an E8-singularity.
This result suggests how to construct examples of small contractions:

start with a partial resolution of a rational double point with irreducible

ANNALES DE L’INSTITUT FOURIER
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exceptional curve, and take a 1-parameter smoothing of it, such that the
exceptional curve is isolated. As the singularity is rational, the deformation
blows down to a deformation of the rational double point. Typically this
construction leads to an affine hypersurface with embeddable small res-
olution. Examples of non-embeddable spaces with a singularity of length
1 were given by Colţoiu, Vo Van Tan and Bassanelli-Leoni [6, 18, 4], see
also [7, 19].
For an affine threefold Y with small resolution π : X → Y embeddability

of X is closely related to projectivity of the corresponding small resolution
of the projective closure of Y . More precisely, we have the following result
of [2], which was proved earlier in the special case of hypersurfaces in [21].
A similar result is proved in [18].

Theorem 1.6 ([2]). — Let π : X → Y be a contraction of the 1-convex
manifold X, with Y Stein and quasi-projective, of dimension at least 3. Let
(Y , Y∞) be the projective closure of Y and assume that Sing(Y ) = Sing(Y ).
Let (X,X∞) be the corresponding compactification, with the same divisor
X∞ = Y∞ at infinity. Suppose that the map H2(X,R) → H2(X,R) is
injective. Then X is embeddable (this is so if and only if X is Kähler) if
and only if X is projective.

The condition on the mapH2(X,R)→ H2(X,R) is in particular satisfied
if Y∞ is a smooth projective hypersurface.
For small resolutions of threefolds in P4 we have the following result.

Theorem 1.7 ([10, Theorem 5.3.2]). — Let π : X → Y be a small reso-
lution of a projective threefold Y with at most terminal hypersurface singu-
larities, such that the group of Weil divisors modulo algebraic equivalence
has rank one. Then X is a Moishezon threefold which is nonprojective if π
is not an isomorphism.

Consider now any terminal hypersurface singularity, which admits a
small resolution. Then there exists a projective hypersurface with this sin-
gularity as only singularity.

Lemma 1.8. — Let the polynomial function f : C4 → C define a hyper-
surface with isolated singularity at the origin. For generic homogeneous g
of high enough degree the projective closure Y ⊂ P4 of the affine hyper-
surface V (f + εg) has only one singularity, isomorphic to the singularity of
V (f) at the origin, and the hyperplane section at infinity Y∞ is smooth.

Proof. — As the singularity of f at the origin is finitely determined, the
hypersurface V (f + εg) has an isomorphic singularity at the origin if the

TOME 64 (2014), FASCICULE 5
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degree of g is at least the degree of determinacy. For generic g there are no
other singularities and the hyperplane section at infinity Y∞ = V (g) ⊂ P3

is smooth. �

A polynomial is very general, if its parameter point lies outside a count-
able union of proper subvarieties in the space parametrising polynomials
of given degree.

Theorem 1.9. — Let f and g be as in the lemma above, and let Y ⊂ P4

be the projective closure of V (f + εg). If g is a very general polynomial,
then the class group of Y satisfies Cl(Y ) ∼= Z.

Proof. — By the Grothendieck-Lefschetz theorem of Ravindra and Srini-
vas [14] the restriction homomorphism Cl(Y ) → Cl(Y∞) is injective. The
theorem as stated there gives only the conclusion for hyperplane sections in
a Zariski dense open subset of sections, but as remarked by the same Au-
thors in [15, p. 3378], it suffices that Y∞ is smooth and does not pass
through the singularity of Y . By the classical Noether-Lefschetz theo-
rem a very general smooth surface S of degree at least 4 in P3 satisfies
Cl(S) = Pic(S) ∼= Z. An algebraic proof can be found in [15]. �

Combining the above results we obtain that every small contraction to a
hypersurface singularity can occur on a non-embeddable 1-convex manifold.

Corollary 1.10. — Suppose that the affine threefold V (f) ⊂ C4 has a
terminal hypersurface singularity at the origin, which admits a non-trivial
small resolution X0. For very general homogeneous g of high enough degree
the corresponding small resolution X of the affine hypersurface V (f + εg)
is a non-embeddable 1-convex manifold.

The above Corollary is a statement about affine 3-folds. A direct proof,
without going to the projective closure, would be preferable. We have not
been able to find it. The problem is that there exist affine hypersurfaces
with terminal singularities, whose small resolution is embeddable: typically
this is the case for the hypersurface V (f), whose small resolution is given
by explicit polynomial formulas. Adding the form g means specifying the
hyperplane section at infinity, so one is naturally led to the projective clo-
sure.

2. Small resolutions for cD4-singularities

In this section we construct a small resolution with irreducible excep-
tional set for certain cD4-singularities. We view it as total space of a 1-
parameter smoothing of a partial resolution of a D4 surface singularity. As

ANNALES DE L’INSTITUT FOURIER
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such it can be obtained by pull-back from the versal deformation of the
partial resolution. We first describe Pinkham’s construction of this versal
deformation [13], see also [8]. We give explicit formulas. We then classify
the occurring singularities.
The versal deformation Y → S of a surface singularity Y of type A, D, E

admits a simultaneous resolution after base change with the corresponding
Weyl group W . We write S = T/W and identify T with the vector space
spanned by a root system of type A, D or E. The simultaneous resolution
is the versal deformation X̃ → T of the minimal resolution X̃ of Y .
Now consider a partial resolution X̂ → Y with irreducible exceptional

set E0; we denote strict transform of E0 on the minimal resolution by the
same name. It determines a one vertex subgraph Γ0 of the resolution graph
Γ. The connected components of the complement Γ r Γ0 are the graphs of
the singularities on the partial resolution X̂; we can construct X̂ from the
minimal resolution by blowing down the configurations of curves, given by
Γ r Γ0. The versal deformation X̂ of X̂ admits a simultaneous resolution
after base change with the product W0 of the Weyl groups corresponding
to the connected components of Γ r Γ0; this simultaneous resolution is
nothing else than X̃ → T . So the base space of X̂ is T/W0.
In the cases A and D it is rather easy to give the simultaneous partial

resolution explicitly, but for E (and especially E8) the formulas become too
complicated (cf. [8]). We restrict ourselves in the following to the simplest
case leading to normal bundle (1,−3), the case D4. Then the length of the
small contraction (Definition 1.3) is equal to two.
We start from the versal deformation X → S = T/W of D4, as in [20],

see also [8], given by

(2.1) x2 + y2z − z3 − t2z2 − t4z − t6 + 2s4y = 0.

In T ∼= C4, with negative definite inner product {ei, ej} = −δij , there is a
root system with basis

v1 = e1 − e2 = (1,−1, 0, 0)
v2 = e2 − e3 = (0, 1,−1, 0)
v3 = e3 − e4 = (0, 0, 1,−1)
v4 = e3 + e4 = (0, 0, 1, 1)

and Dynkin diagram

v1 v2 v3

v4

TOME 64 (2014), FASCICULE 5
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The roots vi correspond to the components of the exceptional divisor of
the resolution of D4. The partial resolution X̃, which only pulls out the
central curve, is obtained by blowing down the components corresponding
to v1, v3 and v4. The graph ΓrΓ0 has three components, all three of type
A1. Its Weyl group is W0 = W (A1) × W (A1) × W (A1). To describe it
explicitly, we take coordinates (α1, α2, α3, α4) on T . The reflection sv4 acts
as (α1, α2, α3, α4) 7→ (α1, α2,−α4,−α3), whereas for i = 1, 2, 3 the svi

are
the transpositions (i, i + 1). The connection with the deformation (2.1) is
that the coordinates on S = T/W are the invariants t2i = σi(α2

1, α
2
2, α

2
3, α

2
4)

for i = 1, 2, 3 and s4 = σ4(α1, α2, α3, α4), where the σi are the elementary
symmetric functions.

Proposition 2.1. — The versal deformation X̂ → T/W0 of the partial
resolution X̂ is a simultaneous partial resolution (without base change) of
the deformation

(2.2) F (x, y, z;β1, β2, γ3, β4) = x2 − (z2 + zβ1 + β2
2)γ2

3 + z(y + β2)2

− 2β2(y + β2)(z − β4)− (z + β1)(z − β4)2

of the D4 surface singularity Y .

Proof. — The invariants for W0 are

γ3 = α1 + α2,

β1 = α2
3 + α2

4,

β2 = α3α4,

β4 = α1α2.

We express the coordinates on S in these invariants:

t2 = β1 + γ2
3 − 2β4,

t4 = β2
2 + β2

4 + β1(γ2
3 − 2β4),

t6 = β1β
2
4 + β2

2(γ2
3 − 2β4),

s4 = β2β4.

Inserting these values in the versal family (2.1) and rearranging gives the
formula (2.2). According to Pinkham [13] a simultaneous partial resolution
gives the desired versal deformation. �

Lemma 2.2. — The (reduced) discriminant of the family (2.2) has five
irreducible components, given by 4β4 = γ2

3 , β2 = 2β1, β2 = −2β1, γ3 = 0
and

(2.3) (β2
4 + β1β4 + β2

2)2 − γ2
3(β1β

2
2 + 4β2

2β4 + β1β
2
4) + β2

2γ
4
3 = 0.

ANNALES DE L’INSTITUT FOURIER
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Proof. — The discriminant is the image of the reflection hyperplanes
αi ± αj = 0 in T . The hyperplanes perpendicular to v1, v3 and v4 are
α1 = α2, α3 = α4 and α3 = −α4; they map to 4β4 = γ2

3 , β2 = 2β1
and β2 = −2β1. The fundamental cycle of the singularity corresponds to
v1 + 2v2 + v3 + v4 = (1, 1, 0, 0) and determines the hyperplane α1 + α2 =
γ3 = 0. For γ3 = 0 there is a singular point at x = y + β2 = z − β4 = 0.

The remaining hyperplanes give rise to the same irreducible component of
the discriminant. To describe it we determine the corresponding component
of the critical locus, which is the component of the singular locus of the
total space, not contained in γ3 = 0. A computation, which we suppress,
shows that it is given by x = 0 and

Rank

 z β2 z − β4
β2 −z − β1 y + β2

z − β4 y + β2 −γ2
3

 6 1.

This is indeed image of α1 + α3 = 0: we have γ3 = α1 + α2, β1 = α2
1 + α2

4,
β2 = −α1α4 and β4 = α1α2, while the singular point lies at x = 0, y =
−α2α4 and z = −α2

1. By eliminating the variables y and z we find the
equation (2.3) for this component. �

To explicitly construct the simultaneous partial resolution we proceed as
in Example (5.15) of [16]. We write the family (2.2) as

(2.4) F = X2 + (ac− b2)T 2 + aY 2 − 2bY Z + cZ2.

This generalises the family in [16], where b = 0. The coordinate change
is given by X = x, T = γ3, Y = y + β2, Z = z − β4, a = z, b = β2 and
c = −z−β1. We consider the family (2.4) as quadric in X, Y , Z and T , with
coefficients in C[a, b, c]. It has two small resolutions. To give them explicitly
we have to factorize aY 2 − 2bY Z + cZ2. The idea is to put a = −α2 and
writeX2−(αY + b

αZ)2+(ac−b2)(T 2−(Zα )2) = 0. Then one small resolution
is obtained by blowing up the ideal (X − (αY + b

αZ), T − Z
α ). We could as

well set c = −γ2; it leads to the same two small resolutions.
We eliminate α from the generators of the ideal by writing them as

(−1, α)M , where M is the matrix

(2.5) M =
(
Z −aT X − bT −aY
T Z Y X − bT

)
.

Lemma 2.3. — The blow-up of the ideal generated by the minors of
the 2 × 4 matrix M defines a small resolution X̂ of the total space of the
family (2.4).

TOME 64 (2014), FASCICULE 5
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Proof. — The minors of the matrixM are not independent, and the ideal
needs only four generators. The blow-up is the subset of C3×C4×P3, which
is the closure of the graph of the rational map

(2.6) (P : Q : R : S) =
(
Z2 + aT 2 : (X − bT )2 + aY 2 :

ZY − T (X − bT ) : Z(X − bT ) + aTY
)
.

The relation between the minors gives S2 − PQ + aR2 = 0. Furthermore
one sees that Q + cP − 2bR is proportional to F , so vanishes on F = 0.
This allows us to eliminate Q = 2bR− cP . We find

S2 + cP 2 − 2bPR+ aR2 = 0.

This formula shows that we have a small modification. The determinantal
syzygies between the minors of the matrix give the following four equations,
where Q is already eliminated:

Y P − ZR− TS = 0,
(X − bT )P + aTR− ZS = 0,
−cTP + (X + bT )R− Y S = 0,

(cZ − bY )P + (aY − bZ)R+XS = 0.

These equations determine (P : R : S) except when the rank of the coeffi-
cient matrix is at most one: this happens exactly at the singular points.
To check smoothness we look at affine charts. The exceptional curve over

the origin is covered by the charts P = 1 and R = 1. In R = 1 we can
eliminate Z, X and a, leaving (Y, P, S, T, b, c) as coordinates:

Z = Y P − TS,
X + bT = cTP + Y S,

S2 + cP 2 − 2bP + a = 0.

This shows that the space X̂ is smooth in this chart. Likewise we find in
the chart P = 1 that

Y = ZR+ TS,

X − bT = −aTR+ ZS,

S2 + c− 2bR+ aR2 = 0.

�

To view X̂ as simultaneous partial resolution of the deformation (2.2)
of D4 we have to go back to the original coordinates. The three singular

ANNALES DE L’INSTITUT FOURIER
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points of the special fibre are visible in the chart R = 1, so we only look at
this chart. We eliminate x and z via

(2.7)
x = (y + β2)S − (z + β1)γ3P − β2γ3,

z = (y + β2)P − γ3S + β4

and are left with one equation

(2.8) S2 − (y + β2)P 3 − (β1 + β4 − γ3S)P 2 + (y − β2)P + β4 − γ3S = 0

in the variables (S, P, y;β1, β2, γ3, β4).
Over the non-smooth component (2.3) of the discriminant we have, using

the parametrisation by the reflection hyperplane α1 + α3 = 0, that

x = (α1 + α2)(−α4S + (α1 + α2)P )(S + α4P − α1),

z = −α2
1 − (α1 + α2)(S + α4P − α1),

0 = (S + α4P − α1)(S + (α1 + α2)P 2 − α4P − α2).

So the curve S + α4P − α1 = 0 is the exceptional curve (it extends to the
P = 1 chart).

Over γ3 = 0 we have x = y + β2 = z − β4 = 0 and the exceptional curve
S2 − (β1 + β4)P 2 − 2β2P + β4 = 0. Note that this curve is reducible if
in addition β2

2 + β1β4 + β2
4 = 0, that is, over the intersection of the two

components of the discriminant.
We now return to 3-dimensional cD4 singularities. We use Arnol’d’s no-

tation for singularities, see [3].

Proposition 2.4. — A 3-fold singularity withD4 as general hyperplane
section, which has a small resolution with irreducible exceptional curve, is
of type T3,3,2q+2, Q6q+5 or Qρ+1,δ with δ odd.

Proof. — The singularity is a 1-parameter smoothing of the hyperplane
section D4, so can be obtained by pull-back from the versal family (2.2).
We have to describe a curve in the base space, so now we take the βi and γ3
to be functions of a variable t. Having a small resolution with irreducible
exceptional curve gives two conditions, that the curve does not lie in the
discriminant, and that the total space of the 1-parameter deformation of
the partial resolution of D4 is smooth. The first condition translates into
γ3(t) 6≡ 0 and a more complicated one for the other component. Smoothness
of the total space can be checked in the R = 1 chart. We look at the
equation (2.8) and its derivatives with respect to the variables y, S, P

TOME 64 (2014), FASCICULE 5
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and t. A possible singular point satisfies

(P 2 − 1)P = 0,
2S + γ3(P 2 − 1) = 0,

−3P 2(y + β2)− 2(β1 + β4 − γ3s)P + y − β2= 0,
−β′1P 2 − β′2(P 3 + P ) + (γ′3s− β′4)(P 2 − 1) = 0.

Here β′i(t) is the derivative of the power series βi(t). If P = 0, y = β2 and
2S = γ3, S2 + β4 − γ3S = 0, so 4β4 = γ2

3 . The condition of nonsingularity
is then that 2γ3γ

′
3 − 4β′4 6= 0, at t = 0. If P = ±1, S = 0, β1 ± 2β2 = 0 and

y ± β4 = 0 and we get the condition at t = 0 that β′1 ± 2β′2 6= 0.
As γ3(0) = 0 the condition at P = 0 becomes β′4 6= 0, so by a coordinate

change we may assume that β4(t) = t. We now write βi(t) = tβ̄i(t) =
t(b1 + . . . ) and γ3(t) = tγ̄3(t) = t(c3 + . . . ). We put F = x2 + G(y, z, t).
The 3-jet of G is

j3G = z(y + b2t)2 − 2b2t(y + b2t)(z − t) + (−z − b1t)(z − t)2.

This cubic defines a cubic curve in P2 with singular point in (y : z : t) =
(−b2 : 1 : 1). We claim that it is irreducible. To show this we compute a
parametrisation using the pencil λ(y + b2t) = µ(z − t) of lines through
the singular point. The curve is irreducible if and only if it has a rational
parametrisation of degree 3. We find

(z − t)2((µ2 − λ2)z − (2µb2 + b1λ))λt = 0,

so the curve is reducible if and only if µ2 − λ2 and (2µb2 + b1λ)λ have a
factor in common, but this only happens if b1± 2b2 = 0, which is excluded
by non-singularity. The cubic has a cusp if 1 + b1 + b2

2 = 0. Otherwise
the curve is a nodal cubic, and the singularity is a cusp of type T3,3,r. To
determine the exact type of the singularity, also in the cuspidal cubic case,
we blow up the origin. As said, we write βi = tβ̄i, γ3 = tγ̄3. We look at the
appropriate chart, with coordinates (t, η, ζ), such that (t, y, z) = (t, ηt, ζt).
The strict transform of G is

(−ζ2− ζβ̄1− β̄2
2)tγ̄2

3 + ζ(η+ β̄2)2− 2β̄2(η+ β̄2)(ζ − 1) + (−ζ − β̄1)(ζ − 1)2.

The singular point lies at (t, η, ζ) = (0,−b2, 1). We multiply the equation
with the unit ζ and complete the square to obtain

(ζη + β̄2)2 − (ζ2 + ζβ̄1 + β̄2
2)(ζtγ̄2

3 + (ζ − 1)2).

If 1 + b1 + b2
2 6= 0, then ζ2 + ζβ̄1 + β̄2

2 is a unit, and the singularity on the
strict transform is an A2q−2 with q = ordt γ3 = ordt γ̄3 + 1 and the original
singularity is of type T3,3,2q+2.
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Otherwise ζ2 + ζβ̄1 + β̄2
2 is the equation of a curve, which is smooth in

the point (t, ζ) = (0, 1), as b1 = −2 and 1 + b1 + b2
2 = 0 gives b2

2 = 1,
contradicting the condition b1 6= ±2b2 for nonsingularity. Let ρ = ordt(1 +
β̄1 + β̄2

2). The order of contact of the smooth branch with the cusp ζtγ̄2
3 +

(ζ − 1)2 is equal to min(2q − 1, 2ρ). If the minimum is 2q − 1, then there
is an E6q−5 and the original singularity is of type Q6q+5. Otherwise we set
δ = 2(q − ρ)− 1; the singularity is of type Jρ,δ with original singularity of
type Qρ+1,δ. �

Remark 2.5. — The original example of Laufer [11] of an exceptional
curve with normal bundle of type (1,−3) is x2 + y3 + zt2 + yz2q+1 of type
Q6q+5. One needs a coordinate transformation to bring this equation into
our normal form. Note that the general hyperplane section does not give
the standard quasi-homogeneous form for D4.

3. A specific example

We now give an example of a non-embeddable 1-convex manifold. To
have one we can compute with, we look for a simple formula with only a
few terms.
In the versal family (2.2) we substitute β2 = 0, β4 = t, β1 = −2t and

γ3 = itk. After the coordinate transformation z 7→ z + t we obtain the
3-fold singularity

f = x2 + (t+ z)y2 + (t− z)z2 − (t2 − z2)t2k

of type T3,3,2k+2. The small resolution of the previous section gives an
embeddable 1-convex manifold. The given formula determines a curve in
the base of the versal deformation (2.2), which intersects the discriminant
in t4 − 2t2k+3 = 0, so the hypersurface {f = 0} ⊂ C4 has singular points
for t2k−1 = 1

2 . They are also resolved by the construction.
Now we perturb the function f by adding terms of high order. We take

only one monomial, which makes the resulting hypersurface very singular
at infinity. It is therefore not an example for Corollary 1.10. We show that a
small resolution is non-embeddable by explicitly exhibiting a 3-chain with
boundary on the exceptional curve.

Proposition 3.1. — The affine hypersurface with equation

h = x2 + (t+ z)y2 + (t− z)z2 − (t2 − z2)t2k + εt2m = 0,

where m > k + 1, has for almost all ε only one singular point, of type
T3,3,2k+2, isomorphic to that of f .
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Proof. — We compute the singular locus V (h, ∂xh, ∂yh, ∂zh, ∂th):

h = x2 + (t+ z)y2 + (t− z)z2 − (t2 − z2)t2k + εt2m,

∂xh = 2x,
∂yh = 2(t+ z)y,

∂zh = y2 + 2tz − 3z2 + 2zt2k,

∂th = y2 + z2 − (2k + 2)t2k+1 + 2kz2t2k−1 + 2mεt2m−1.

A singular point always satisfies x = 0. If z+ t = 0, then y2 = 5t2 + 2t2k+1

and 2t3 + εt2m = 0. This makes that t∂th = 6t3 + 2mεt2m = (6− 4m)t3, so
t = z = y = x = 0. At the origin h has the same singularity as f (a cusp
singularity has no moduli).
If z + t 6= 0, then y = 0. If also z = 0 holds, then t2k+2 = εt2m, and

t∂th = 2(m− k − 1)t2k+2 6= 0, as t 6= 0.
If z 6= 0, then 3z = 2t+ 2t2k. This shows that t 6= 0. Therefore

(t− 2t2k)2(4t+ t2k) + 27εt2m = 0,

(t− 2t2k)(4t− 2t2k − 2k(5t+ 2t2k)t2k−1) + 18mεt2m−1= 0.

The first equation shows that t2k−1 = 1
2 gives no longer singular points for

ε 6= 0 We eliminate ε, divide by 2t2(t− 2t2k) and find

(4m− 6) + (15k + 3− 7m)t2k−1 + (6k − 2m)t4k−2 = 0.

This is a quadratic equation for t2k−1. Only for finitely many values of
ε there are singular points outside the origin. If m 6= 3k, then 3(m −
3k)2εt2m−3 + (4m− 10k− 1)(2k− 1)t2k−1− 2(2mk−m− 2k2− k+ 1) = 0.
For m = 3k the equations simplify: t2k−1 = 2, εt2m−3 = −2, but on the
other hand t2m−3 = t6k−3 = 8, so singularities only exist for ε = −1/4. �

Theorem 3.2. — A small resolution of the affine hypersurface {h = 0},
with h as in Proposition 3.1 and ε > 0, is a non-embeddable 1-convex
manifold, with rational irreducible exceptional curve with normal bundle
of type (1,−3).

Proof. — The normal bundle on a small resolution is as stated, because
the general hyperplane section through the singular point is of type D4.
We prove that the manifold is not embeddable by showing that the ex-

ceptional curve C is rationally zero-homologous: 2C is a boundary.
We write h(x, y, z, t) = x2 + h̄t(y, z) and f(x, y, z, t) = x2 + f̄t(y, z),

and consider h̄t(y, z) and f̄t(y, z) as a families of affine cubic curves. For
all real t > 0 the curve f̄t(y, z) has three infinite branches and an oval
with the origin in its interior, except for the t-value t2k−1 = 1

2 , when the
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Figure 3.1. h̄t and f̄t with k = 2, m = 6 and ε = 1 for t = 2
3 ,

3
√

1
2 .

total space has a singular point. Then the intersection with the z-axis,
given by (t− z)(z2 − (t + z)t2k) = 0, has z = t as double root. We obtain
h̄t(y, z) by adding the term εt2m to f̄t(y, z). As ε > 0, there is no longer
a double root. With increasing t the oval becomes smaller, and vanishes if
t2k+2 = εt2m. This equation has only one real solution. For that t-value the
curve h̄t(y, z) has a singularity, as is easily seen from the computations in
the proof of Proposition 3.1; this singularity is an isolated real point. We
show the curves for ε = 1, k = 2 and m = 6. The pictures are made with
the Xalci web demo at exacus.mpi-inf.mpg.de. Figure 3.1 shows that
for small t the curves h̄t and f̄t look almost the same, and that h̄t does
not have a double point. Figure 3.2 shows how the oval of h̄t first grows
and then vanishes. The family of surfaces x2 + h̄t(y, z) is the family of
double covers of the (y, z)-plane, branched along the curves h̄t(y, z). For
0 < t < 2m−2k−2

√
1/ε there is a component of the real locus, which is a

double covering of the interior of the oval, branched along the oval itself,
while for t = 2m−2k−2

√
1/ε there is an isolated real point. The component

is diffeomorphic to a 2-sphere. Together with the isolated point they form
a smooth real 3-dimensional manifold M in the half-space {t > 0}, which
is compactified by the singular point at the origin.
On the small resolution the manifoldM has boundary on the exceptional

set. To compute it, we look at f . For small t > 0 the value of z2 on the
oval is approximately at most t2k+1, so |z| � t. We divide the equation by
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Figure 3.2. h̄t with k = 2, m = 6 and ε = 1 for t = 2
3 ,

3
√

1
2 ,

19
20 ,

99
100 , 1.

the unit t2 − z2 and use the coordinate transformation

ξ = x√
t2 − z2

, η = y√
t− z

, ζ = z√
t+ z

,

valid in a neighbourhood of the oval. Now

x2

t2 − z2 = ξ2,
y2

t− z
= η2,

z2

t+ z
= ζ2,

so the transformation brings the 2-sphere in evidence:

ξ2 + η2 + ζ2 = t2k.

We have to compute the limit for t→ 0 on the small resolution. We look at
the chart R = 1. Rather than computing the inhomogeneous coordinates
P and S from the homogeneous expressions P/R and S/R, we find P and
S from the formulas (2.7) for z and x, which after our substitution and
coordinate transformation z 7→ z + t become

x = yS − i(z − t)tkP,

z = yP − itkS.

This gives us

S = yx+ iz(z − t)tk

y2 − (t− z)t2k , P = yz + ixtk

y2 − (t− z)t2k .
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In the coordinates introduced above

S = ηξ − iζtk

η2 − t2k
√
t+ z, P = ηζ + iξtk

η2 − t2k

√
t+ z

t− z
.

We do not express the square roots in the variable ζ, but observe that on
our component of the real locus

lim
t→0

√
t+ z = 0, lim

t→0

√
t+ z

t− z
= 1.

We parametrise the 2-sphere of radius tk with the inverse of a stereographic
projection: with w = u+ iv we put

ξ = 2v
ww̄ + 1 t

k,

η = ww̄ − 1
ww̄ + 1 t

k,

ζ = 2u
ww̄ + 1 t

k.

With these values we find

lim
t→0

S = 0, lim
t→0

P = 2(ww̄ − 1)u+ 2i(ww̄ + 1)v
−4ww̄ = 1

2

(
1
w
− w

)
.

The map P = (w−1 − w)/2 is degree 2 map from P1 to P1, showing that
the boundary of the real manifold M is 2C. �
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