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J-HOLOMORPHIC DISCS AND REAL ANALYTIC
HYPERSURFACES

by William ALEXANDRE & Emmanuel MAZZILLI (*)

Abstract. — We give in R6 a real analytic almost complex structure J , a real
analytic hypersurface M and a vector v in the Levi null set at 0 of M , such that
there is no germ of J-holomorphic disc γ included inM with γ(0) = 0 and ∂γ

∂x
(0) =

v, although the Levi form of M has constant rank. Then for any hypersurface M
and any complex structure J , we give sufficient conditions under which there exists
such a germ of disc.
Résumé. — Nous définissons dans R6 une structure presque complexe réelle

analytique J , une hypersurface réelle analytique M dont la forme de Levi est de
rang constant et un vecteur v appartenant au noyau de la forme de Levi deM en 0
tels qu’il n’existe pas de germe de disque J-holomorphe γ inclus dans M vérifiant
γ(0) = 0 et ∂γ

∂x
(0) = v. Nous donnons ensuite des conditions suffisantes pour qu’un

tel germe de disque existe.

1. Introduction

Throughout all this paper, we denote by M a real analytic hypersurface
in R2n such that 0 belongs to M . We denote by ϕ a real analytic function
such that M = {z ∈ R2n, ϕ(z) = 0} and such that dϕ does not vanish on
M . We also denote by TM the tangent vector bundle to M .
We equip R2n with a real analytic almost complex structure J , i.e. a linear
map from TR2n into itself such that J2 = −Id. Without restriction, we
can always assume that J(0) = J0, the standard complex structure in
R2n = Cn, and that J is as close as we need to J0. We denote by T JM the
J invariant part of TM , that is T JM = TM ∩ J TM .

Keywords: almost complex structure, J-holomorphic disc, hypersurface.
Math. classification: 32Q60, 32Q65.
(*) The first author is partially supported by A.N.R. BL-INTER09-CRARTIN.
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The Levi form Lϕ of M and its kernel are two objects linked to the
geometry of M . The Levi form is defined for every vector field X ∈ T JM
by

Lϕ(X) = dϕ(J [X, JX]).
We will also consider L̂ϕ, the polar form of Lϕ:

L̂ϕ(X,Y ) = 1
2 (dϕ(J [X, JY ] + J [Y, JX]) + idϕ(J [X,Y ] + J [JX, JY ])) .

Both Lϕ and L̂ϕ do not depend on the derivatives of X and Y . Moreover,
they depend on the defining function ϕ up to multiplication by a nonnega-
tive function. Therefore kerLϕ does no depend on ϕ and we simply denote
it by kerL.

When J is integrable, or more simply when J is the standard struc-
ture, and when kerL is a subbundle of T JM , Freeman proved in [2] that
there exists a complex foliation of M . However, when J is a generic almost
complex structure, there is no foliation by J-holomorphic manifolds of di-
mension greater than or equal to 2 because such objects do not exist in
general. Hence Freeman’s theorem does not hold anymore in the non inte-
grable case; we can only hope to find a J-holomorphic disc with prescribed
derivative of order 1 included in M . A J-holomorphic disc is a C1 map
γ : D → R2n, where D is the unit disc of C equipped with the standard
structure J0, such that for all ζ ∈ D, we have as linear map:

dγ(ζ) ◦ J0 = J(γ(ζ)) ◦ dγ(ζ).

When γ is a J-holomorphic disc included inM , i.e. γ(D) ⊂M , the vector
∂γ
∂x (0) belongs to (kerL)γ(0). When J is integrable and kerL is a subbundle
of T JM , Freeman’s result implies that the converse is true (even in the
non real analytic case); that is, for any point p ∈ M and any v ∈ kerL,
there exists a J-holomorphic disc γ included in M such that γ(0) = p and
∂γ
∂x (0) = v. This result was generalized by Kruzhilin and Sukhov in [5] when
J is not integrable and M is Levi flat, that is when kerL = T JM . It was
then natural to hope that this result was true in the real analytic case when
kerL is only a subbundle of T JM . However, we will show that this is not
the case, even when M is pseudoconvex. We will prove in Section 2 the
following theorem:

Theorem 1.1. — There exist a real analytic almost complex structure
J , a real analytic hypersurface M in R6 such that kerL is a subbundle
of dimension 1 of T JM and a vector v ∈ kerL0 such that no germ of J-
holomorphic disc γ, satisfying ∂γ

∂x (0) = v, is tangent to M at 0 at order
greater than 5.
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The following natural question then arises: under which condition on
v ∈ T J0 M does there exist a (germ of) J-holomorphic disc γ included in M
such that γ(0) = 0 and ∂γ

∂x (0) = v ?
In order to answer this question, we can either work in local coordinates

or we can use a torsion free connection ∇ in order to have more intrinsic
results. In this case, for simplicity sake, we use a multiplicative notation:
when X and Y are two vector fields, we denote by X · Y the vector field
∇XY . Since ∇ is torsion free, we have [X,Y ] = X ·Y −Y ·X for all vectors
fields X and Y . We also introduce the following notations:

Notation 1.2. — If X is a vector field and p and q are two integers, we
define Dp,q

X by the formula

Dp,q
X φ = JX · (JX · · · (JX︸ ︷︷ ︸

q

· (X · (X . . . (X︸ ︷︷ ︸
p

·φ) . . .)

where φ is a smooth function.

This notation will be often used with q = 0 in the whole paper and with
q 6= 0 in the proof of Lemma 4.4 and 4.7 in Section 4.

Notation 1.3. — Let X be a vector field. We denote by L(X) the com-
plex Lie algebra generated byX, i.e. the smallest complex Lie algebra which
contains X and JX and is such that for Y and Z in L(X), [Y,Z] belongs
to L(X).

We will establish two sufficient conditions on a vector X under which
there exists a J-holomorphic disc γ included in M such that for all k ∈ N∗,
∂kγ
∂xk

(0) = Dk−1,0
X X(0). The first one is given by the following theorem:

Theorem 1.4. — Let X ∈ T JM be a real analytic vector field in a
neighborhood of 0 ∈M such that L(X) is included in T JM .
Then, for all p ∈ M in a neighborhood of 0, there exists a germ of J-
holomorphic disc γ such that

(1) γ(0) = p,
(2) for all k ∈ N∗, ∂

kγ
∂xk

(0) = Dk−1,0
X X(p).

Theorem 1.4 can be shown using Nagano’s Theorem [7] in a good way.
Here we don’t use it but we give a simple direct proof of Theorem 1.4
without differential equations. Instead we construct directly the jet of the
curve at the point p. This approach allows us to generalize Theorem 1.4
and to obtain Theorem 1.6 below, which is not possible to achieve with the
classical Nagano’s result.

TOME 64 (2014), FASCICULE 5
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We also point out that, unlike Freeman’s Theorem [2], Theorem 1.4
makes no assumption on the rank of the Levi form L. In particular, The-
orem 1.4 can be applied to an integrable complex structure when kerL is
not a subbundle. In this case, we will show that for any X ∈ kerL, there
exists a J-holomorphic disc γ included in M such that ∂γ

∂x (0) = X(0) (see
Theorem 4.5). We will also give an example of application of our result
in a non-integrable case and where the Levi form has constant rank (see
Example 4.6).
In order to state our next result which requires a condition in the spirit

of Freeman’s theorem, we recall the following definition introduced in [1]:

Definition 1.5. — We say that a vector field X commutes at order k
at a point p if for all l 6 k, all X1, . . . , Xl ∈ {X, JX},

[X1, [. . . , [Xl−1, Xl] . . .](p) = 0.

We will prove the following result:

Theorem 1.6. — Let L be a subbundle of T JM such that the following
property is true: if X ∈ L commutes at order k at the point 0, then for all
X1, . . . , Xk+1 ∈ {X, JX}, [X1, [. . . , [Xk, Xk+1] . . .]](0) belongs to L0.
Then for all X ∈ L, there exists a germ of J-holomorphic disc γ such that
γ(0) = 0, ∂

kγ
∂xk

(0) = Dk−1,0
X X(0) for all k ∈ N∗ and γ(D) ⊂M .

This Theorem 1.6 enables us to prove, in the real analytic case and in a
constructive way, Kruzhilin and Suhkov’s theorem [5] (See Theorem 4.8).
We will also give examples of applications of Theorem 1.6 (see Example
4.9).

In order to prove Theorem 1.4 and 1.6, we prove a generalization of the
existence results of J-holomorphic discs with prescribed jets of finite order,
due to Sikorav in the case of 1-jets (see [8]) and to Ivashkovich and Rosay
[3] and independently to Barraud and Mazzilli [1] in the case of k-jets, for k
finite. For this, a key point is to show that if (xk)k∈N is an infinite sequence
of vectors in R2n such that the series

∑
k
k+1
k! |xk| converges, then there is a

germ of J-holomorphic disc γ included in M such that ∂kγ
∂xk

(0) = xk for all
k ∈ N (see Theorem 3.1 and Corollary 3.3). The general procedure to prove
this is in some sense analogue to the case of finite jets but the proof is more
intricate: we have to prove that some maps between two Banach spaces Ω̃
and Ω are invertible in a neighborhood of the origin. In the case of k-jets,
the Banach spaces considered were simply Ω̃ = (R2n)k and Ω = Ck+α(D)
for α > 0, with the k-jet belonging to (R2n)k and the disc to Ck+α(D). The
first difficulty we have to overcome is to find the appropriate Banach spaces.

ANNALES DE L’INSTITUT FOURIER



J-HOLOMORPHIC DISCS 2227

Here, the k-jet becomes an infinite sequence of vectors of R2n, so we have to
consider a space of sequences with an appropriate norm. This role will be
played by the space Ω̃ of all sequences (xk)k of vectors in R2n such that the
norm ‖(xk)k‖∼ :=

∑
k
k+1
k! |xk| is finite. The space of functions will be the

space Ω of real analytic functions f =
∑
k,l fk,lz

kzl on the disc D such that
‖f‖ :=

∑
k,l(1 + k + l + kl)|fkl| is finite. Then, as in the case of k-jets, we

associate to any jet a function and to any function a jet (See Theorem 3.1
for details). Showing that these maps are firstly well defined and secondly
invertible, we find a J-holomorphic disc with prescribed derivatives of any
order.
In Proposition 3.4 we will prove that if X is a real analytic vector field

in a neighborhood of 0, then the sequence (Dk−1,0
X X(0))k∈N∗ belongs to Ω̃.

Hence there exists a germ of J-holomorphic disc γ such that γ(0) = 0 and
∂kγ
∂xk

(0) = Dk−1,0
X X(0) for all k ∈ N∗.

From this point, the problem of finding a J-holomorphic disc included
in M with prescribed derivatives is reduced to finding a sequence of vector
fields (Xl)l in T JM such that the sequence (Dk−1,0

Xl
Xl(0))k∈N∗ does not

depend on l and is such that Xl commutes at order l at 0. Indeed, Theorem
3.1 gives a J-holomorphic disc γ such that for all k and all l, ∂kγ

∂xk
(0) =

Dk−1,0
Xl

Xl(0). Since Xl commutes at order l, Theorem 1 of [1] implies that
γ is tangent to M at 0 at order l + 1, for all l. As both M and γ are real
analytic, it follows that γ is actually included in M .
Starting from a vector field X which does not commute but which satis-

fies the assumptions of Theorem 1.4 or 1.6, we inductively construct such a
sequence of vector fields by solving systems of linear equations (see Lemma
4.4 and Lemma 4.7).

The paper is organized as follows. In section 2, we prove Theorem 1.1.
In Section 3, we show the existence of J-holomorphic disc with prescribed
derivatives at any order. Finally, in Section 4, we prove Theorem 1.4 and
1.6 and give examples of applications of these theorems.

2. A counter-example to a generalization of Freeman’s
Theorem

In this section, in order to prove Theorem 1.1, we exhibit an almost
complex structure J and a pseudoconvex hypersurface M in R6, both real
analytic, such that there exists a vector v which belongs to the kernel of
the Levi form of M at the point 0 but which is not the derivative at 0 of

TOME 64 (2014), FASCICULE 5
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some germ of J-holomorphic disc γ included inM , despite the fact that the
kernel of the Levi form of M is a subbundle of T JM . We will prove that
in fact, there exists no J-holomorphic disc γ tangent to M at 0 at order 5
(i.e. such that ϕ ◦ γ(ζ) = O(ζ5)).

Proof of Theorem 1.1: Let ϕ : R6 → R be the map defined by

ϕ(x1, y1, x2, y2, x3, y3) = y1,

and let M be the set M = {z ∈ R6 ϕ(z) = 0}.
We define the six following vector fields

L1 = ∂

∂x1
, L2 = ∂

∂y1
,

L3 = ∂

∂x2
− 1

2y
2
3
∂

∂x1
, L4 = ∂

∂y2
+ (−2y3x3 + x2) ∂

∂x1
,

L5 = ∂

∂x3
− y2y3

∂

∂x1
, L6 = ∂

∂y3
+ x3

∂

∂x2
−
(
x3y

2
3

2 + x3y2

)
∂

∂x1
,

and the almost complex structure J they induce by setting

JL1 = L2, JL3 = L4, JL5 = L6.

Therefore J(0) is the standard complex structure J0 and TM is spanned
over R by L1, L3, L4, L5 and L6, while T JM is spanned over C by L3 and
L5.
When we compute the Lie brackets of the Li’s belonging to the complex
tangent bundle, we get:

[L3, L4] = L1,

[L3, L5] = 0, [L4, L5] = y3
∂

∂x1
,

[L3, L6] = y3
∂

∂x1
[L4, L6] = 0, [L5, L6] = L3.

Therefore

L̂ϕ(L3, L5) = 0,

L̂ϕ(L3, L3) = dϕ(L2) = 1,

L̂ϕ(L5, L5) = dϕ(L3) = 0,

which thus implies that M is pseudoconvex and that kerL = spanC{L5};
therefore kerL is a subbundle of T JM .

ANNALES DE L’INSTITUT FOURIER
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Now let us assume that there exists a J-holomorphic disc γ : D → R2n

tangent to M at order 5 and such that ∂γ
∂x (0) = L5(0). Theorem 1 from [1]

implies that there exists a vector field X ∈ T JM such that X commutes
at order 4 at 0, i.e. such that all the Lie brackets of X and JX of length at
most 4 vanish at 0, and such that X(0) = ∂γ

∂x (0) = L5(0). We prove that
such a vector field does not exist.
Let us consider X = aL3 + bL4 + cL5 + dL6 where a, b, c and d are real
valued functions. Let us assume that X commutes at order 4 and that
X(0) = L5(0). Therefore we have a(0) = b(0) = d(0) = 0 and c(0) = 1. We
compute [X, JX]:

[X, JX] = (a2 + b2)L1 + (c2 + d2)L3

+ (−X · b− JX · a)L3 + (X · a− JX · b)L4

+ (−X · d− JX · c)L5 + (X · c− JX · d)L6

and since [X,JX](0) = 0, it follows that

X · b(0) + JX · a(0) = −1. (2.1)

We also get from the computation of [X, JX] that

J [X, JX] · ϕ = a2 + b2,

thus

X ·X · J [X, JX] · ϕ = 2((X · a)2 + (X · b)2 + aX ·X · a+ bX ·X · b)

and

JX ·JX ·J [X, JX] ·ϕ = 2((JX ·a)2 +(JX ·b)2 +aJX ·JX ·a+bJX ·JX ·b).

Since a(0) = b(0) = 0, if we prove that X · X · J [X, JX] · ϕ(0) = 0 and
JX · JX · J [X, JX] ·ϕ(0) = 0, we get JX · a(0) = 0 and X · b(0) = 0 which
is incompatible with (2.1).
Let us compute X · X · J [X, JX] · ϕ(0). In local coordinates, we write

X =
∑2n
j=1 Xj

∂
∂xj

, [X, JX] =
∑2n
j=1 Yj

∂
∂xj

and J = (Ji,j)i,j=1,...,2n.
We have

X · J [X, JX] · ϕ

=
2n∑

i,j,k=1
Xi
∂Jj,k
∂xi

Yk
∂ϕ

∂xj
+XiJj,k

∂Yk
∂xi

∂ϕ

∂xj
+XiJj,kYk

∂2ϕ

∂xi∂xj

= (X · J)[X, JX] · ϕ+ J(X · [X, JX]) · ϕ+D2ϕ(X, J [X, JX]).

TOME 64 (2014), FASCICULE 5
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and

X ·X · J [X, JX] · ϕ

=
2n∑

i,j,k,l=1
Xl
∂Xi

∂xl

∂Jj,k
∂xi

Yk
∂ϕ

∂xj
+XlXi

∂2Jj,k
∂xl∂xi

Yk
∂ϕ

∂xj
+XlXi

∂Jj,k
∂xi

∂Yk
∂xl

∂ϕ

∂xj

+XlXi
∂Jj,k
∂xi

Yk
∂2ϕ

∂xj∂xl
+Xl

∂Xi

∂xl
Jj,k

∂Yk
∂xi

∂ϕ

∂xj
+XlXi

∂Jj,k
∂xl

∂Yk
∂xi

∂ϕ

∂xj

+XlXiJj,k
∂2Yk
∂xi∂xl

∂ϕ

∂xj
+XlXiJj,k

∂Yk
∂xi

∂2ϕ

∂xj∂xl
+Xl

∂Xi

∂xl
Jj,kYk

∂2ϕ

∂xi∂xj

+XlXi
∂Jj,k
∂xl

Yk
∂2ϕ

∂xi∂xj
+XlXiJj,k

∂Yk
∂xl

∂2ϕ

∂xi∂xj
+XlXiJj,kYk

∂3ϕ

∂xi∂xj∂xl

=(X ·X · J)[X, JX] · ϕ+ 2(X · J)(X · [X, JX]) · ϕ

+ 2D2ϕ(X, (X · J)[X, JX]) + J(X ·X · [X, JX]) · ϕ

+ 2D2ϕ(J(X · [X, JX]), X) +D2ϕ(X ·X, J · [X, JX])

+D3ϕ(X,X, J [X, JX]).

Since [X, JX](0) vanishes at 0, the terms (X ·X ·J)[X, JX]·ϕ(0),D2ϕ(X ·
X, J [X, JX]), D2ϕ(X, (X · J)[X,JX]) and D3ϕ(X,X, J [X, JX])(0) also
vanish at 0.

Again [X,JX](0) = 0 yields [X, [X, JX]](0) = X · [X,JX](0). On the
other hand, X commutes at 0 at order 4 so [X, [X,JX]](0) = 0 which gives
X · [X, JX](0) = 0. So (X · J)(X · [X, JX]) · ϕ(0) = 0 and D2ϕ(J(X ·
[X, JX]), X)(0) = 0.
Using [X, [X, JX]](0) = 0, we get

[X, [X, [X, JX]]](0) = X · [X, [X, JX]](0)

and since X commutes at 0 at order 4, we have X · [X, [X, JX]](0) = 0.
We also have X · [X, [X, JX]] = X ·X · [X, JX]−X · [X, JX] ·X and since
[X, JX](0) = X · [X, JX](0) = 0, we conclude that X ·X · [X, JX](0) = 0
and so J(X ·X · [X, JX]) · ϕ(0) = 0.
We finally have proved that X ·X ·J [X, JX]·ϕ(0) = 0 and so X ·b(0) = 0.

Analogously, we have JX ·JX ·J [X, JX] ·ϕ(0) = 0 which yields JX ·a(0) =
0.
Now, just notice that (2.1) and X ·b(0) = JX ·a(0) = 0 are incompatible.

Hence there is no J-holomorphic disc γ tangent at order 5 at 0 to M such
that ∂γ

∂x (0) = L5(0).

ANNALES DE L’INSTITUT FOURIER
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3. Existence of J-holomorphic discs with prescribed
derivatives

In this section, we show under an appropriate assumption, that there
exists a J-holomorphic disc γ with prescribed derivatives of any order.
More precisely, we prove the following

Theorem 3.1. — Let J be a real analytic complex structure in a neigh-
borhood of the origin of R2n, and let (xk)k be a sequence of vectors of R2n

such that
∑∞
k=0

k+1
k! |xk| 6 r, where r > 0 is sufficiently small.

Then there exists a J-holomorphic disc γ : D→ R2n such that for all k ∈ N,
∂kγ
∂xk

(0) = xk.

Before proving Theorem 3.1, we rewrite the condition of J-holomorphi-
city of a disc when J is close to the standard structure J0. As in [4],
γ : D→ R2n is a J-holomorphic disc if and only if

∂γ

∂ζ
−AJ(γ)∂γ

∂ζ
= 0

with AJ(z) = (J0 + J(z))−1(J0− J(z))C, C being the R-linear application
which corresponds to the complex conjugation on R2n = Cn.
Let T : Cω(D)→ Cω(D) be the map defined by T (u)(ζ) :=

∫
[0,ζ] u(ζ, ω)dω.

The real analytic function T (u) is a primitive of u with respect to ζ, that
is ∂T (u)

∂ζ
= u. Let also ΦJ : Cω(D) → Cω(D) be the map defined by

ΦJ(u) = u− T
(
AJ(u)∂u

∂ζ

)
.

Then, a real analytic function γ : D→ R2n is J-holomorphic if and only if
ΦJ(γ) is holomorphic in the classical way. We can now prove Theorem 3.1.
Proof of Theorem 3.1: The principle of the proof is analogous to the case
of finite sequences: we first introduce two well chosen Banach algebras: an
algebra Ω̃ of vector sequences, and an algebra Ω of real analytic functions
on D. We set

Ω̃ =
{

(xk)k ∈
(
R2n)N , ‖(xk)k‖∼ :=

∞∑
k=0

k + 1
k! |xk| <∞

}
,

Ω =

f =
∑
k,l

fk,lζ
kζ
l : D→ R2n, ‖f‖ :=

∞∑
k,l=0

(1 + k + l + kl)|fk,l| <∞

 .

TOME 64 (2014), FASCICULE 5



2232 William ALEXANDRE & Emmanuel MAZZILLI

We also introduce two applications

ϕ1 :
{

Ω̃ −→ Cω(D)
(xk)k 7−→

∑
k
xk
k! ζ

k ,

ϕ2 :
{

Ω −→
(
R2n)N

f 7−→
(
∂kf
∂xk

(0)
)
k

.

We will prove the following facts:
(i) ϕ1 is an isometry from Ω̃ into Ω,
(ii) ϕ2 maps continuously Ω into Ω̃,
(iii) ΦJ : Ω→ Ω is invertible in a neighborhood of 0,
(iv) ϕ2 ◦ Φ−1

J ◦ ϕ1 : Ω̃→ Ω is also invertible in a neighborhood of 0.

Then, the disc γ = Φ−1
J ◦ ϕ1 ◦

(
ϕ2 ◦ Φ−1

J ◦ ϕ1
)−1 ((xk)k) will be the J-

holomorphic disc we are looking for.
We first check fact (i): ϕ((xk)k) =

∑
k
xk
k! ζ

k and so, for all l 6= 0, the
coefficient of ζkζl in ϕ1((xk)k) vanishes. Therefore

‖ϕ1((xk)k)‖ =
∑
k

(1 + k) |xk|
k! = ‖(xk)k‖∼

and ϕ1 is an isometry from Ω̃ into Ω.
We now check fact (ii): writing ζ as ζ = x+ iy, we get for all k and l that
ζkζ

l = xk+l + yPk,l(x, y) where Pk,l is a polynomial in x and y. Therefore

∂nζkζ
l

∂xn

∣∣∣∣∣
ζ=0

=
{

(k + l)! if k + l = n

0 otherwise
.

So, for f =
∑
k,l fk,lζ

kζ
l, we have ∂nf

∂xn (0) = n!
∑
k+l=n fk,l and

ϕ2(f) =
(
n!
∑
k+l=n

fk,l

)
n∈N

,

from which it follows that

‖ϕ2(f)‖∼ 6
∑
n

(n+ 1)
∑
k+l=n

|fk,l|

6 ‖f‖.

So ϕ2(f) belongs to Ω̃ and ϕ2 : Ω→ Ω̃ is continuous.
In order to prove Fact (iii), we introduce for f ∈ Ω the functions g =
AJ(f)∂f∂z and G = T (g). Fact (iii) will be proved if we show that G belongs
to Ω and that ‖G‖ < 1

2‖f‖ when ‖f‖ is small, because ΦJ will then be an
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invertible perturbation of the identity in a neighborhood of 0 ∈ Ω. We will
use the following lemma.

Lemma 3.2. — Let A be the Banach algebra of complex valued func-
tions defined by

A = {u(z, z) =
∑
k,l

uk,lz
kzl, ‖f‖∗ :=

∑
k,l

(1 + k)|fk,l| <∞},

and let F be an analytic function bounded on {z ∈ Ck, |z| < R}, R > 0.
For r > 0, we denote by Ar the set Ar = {f ∈ A, ‖f‖∗ < r}.
Then, for all r ∈]0, R[, the following properties hold true:

(i) for all f1, . . . , fk ∈ Ar, F (f1, f2, . . . , fk) belongs to A,

(ii) ΨF :
{

Akr −→ A
(f1, . . . , fk) 7−→ ΨF (f1, . . . , fk) = F (f1, . . . , fk) is con-

tinuous,
(iii) for all f1, . . . , fk ∈ Ar, ‖ΨF (f1, . . . , fk)‖∗ 6

(
R
R−r

)k
‖F‖∞.

We admit this lemma for the moment and finish the proof of Theo-
rem 3.1. We denote by R the radius of convergence of AJ , and we ap-
ply Lemma 3.2 to AJ . If f belongs to Ω, each of its components belongs
to A and has norm smaller than ‖f‖. Therefore, for all f belonging to
ΩR

2
:= {g ∈ Ω, ‖g‖ < R

2 }, Lemma 3.2 implies that each coefficient in the
matrix AJ(f) belongs to A and have norm smaller that ‖AJ‖∞. Moreover∥∥∥∂f∂z ∥∥∥∗ =

∑
k,l(1+ l)k|fk,l| 6 ‖f‖, and since A is a Banach algebra, we have

‖g‖∗ =
∥∥∥AJ(f)∂f∂z

∥∥∥
∗
. ‖AJ‖∞‖f‖, uniformly with respect to f and J .

Now we notice that the operator T : A2n → Ω is continuous because for
u =

∑
k,l uk,lz

kzl ∈ A we have∫
[0,z]

u(z, ω)dω =
∑
k,l

1
l + 1uk,lz

kzl+1

and∑
k,l

k + (l + 1) + 1 + k(l + 1)
l + 1 |uk,l| =

∑
k,l

k + 1
l + 1 |uk,l|+ (k + 1)|uk,l|

6 2‖u‖∗.

Therefore G = T (g) belongs to Ω and ‖G‖ 6 2‖g‖∗ . ‖AJ‖∞‖f‖. This
proves that ΦJ(f) belongs to Ω for all f ∈ ΩR

2
and that ΦJ : ΩR

2
→

Ω is continuous. Moreover, provided J is close enough to the standard
structure, ‖AJ‖∞ is arbitrarily small and so ‖G‖ 6 1

2‖f‖ which implies
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that ΦJ is a small perturbation of the identity. Thus ΦJ : ΩR
2
→ ΦJ(ΩR

2
)

is continuously invertible.
Now Fact (iv) is an immediate consequence of the previous facts because,
since ϕ2 ◦ ϕ1 is the identity over Ω̃, ϕ2 ◦ Φ−1

J ◦ ϕ1 is in fact a continuous
perturbation of the identity which is arbitrarily small, provided J is close
enough to the standard structure.
Now, for any sequence (xk)k of vectors of R2n, provided ‖(xk)k‖ < R

2 ,
γ = Φ−1

J ◦ϕ1 ◦
(
ϕ2 ◦ Φ−1

J ◦ ϕ1
)−1 ((xk)k) is a J-holomorphic disc such that

ϕ2(γ) = (xk)k. To conclude the proof of the theorem, we have to prove the
crucial Lemma 3.2.

Proof of Lemma 3.2: The proof of this Lemma is inspired from abstract
harmonic analysis and more precisely from Theorem 24D of [6]. In order
to make the proof clearer, we prove the lemma for k = 2, that is for
F : C2 → C, analytic over P (0, R) = {(z, w) ∈ C2, |z|2 + |w|2 < R2},
R > 0. The case k > 2 is a direct generalization of the case k = 2.

Let f =
∑
k,l fk,lζ

kζ
l and g =

∑
k,l gk,lζ

kζ
l belonging to A be such

that ‖f‖∗ < r and ‖g‖∗ < r for some r ∈]0, R[. We write F (z, w) =∑
k,l Fk,lz

kwl and F (f, g)(ζ) =
∑
k,l hk,lζ

kζ
l. In order to determine a suit-

able expression of hk,l we introduce the Banach algebra

Â =

(uk,l)k,l ⊂ R2n, ‖(uk,l)k,l‖∗̂ :=
∑
k,l

(1 + k)|uk,l| <∞


that we trivially identify to A via the application

φ :
{

A −→ Â∑
k,l uk,lζ

kζ
l 7−→ (uk,l)k,l

.

We denote by e the unit of Â, ek,l = 1 if k = l = 0, and 0 otherwise and
we denote by 1 the constant function which equals 1 so that φ(1) = e. We
have

hk,l =
∑
n,m

Fn,mφ(fngm)k,l

and using Cauchy’s Formula we get:

hk,l =
∑
n,m

1
(2iπ)2

∫
|λ|=R
|µ|=R

F (λ, µ)
λn+1µm+1φ(fngm)k,ldλdµ.

Since ‖f‖∗ < r and ‖g‖∗ < r, we have ‖fngm‖∗ < rn+m so |φ(fngm)k,l| <
rn+m.
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Therefore if r < R, the series
∑
n,m

1
λnµmφ(fn, gm)k,l converges normally

for all λ and µ in C such that |λ| = |µ| = R, and we can exchange the signs∫
and

∑
in the last expression of hk,l and which gives

hk,l = 1
(2iπ)2

∫
|λ|=R
|µ|=R

F (λ, µ)
∑
n,m

(
φ

(
fn

λn+1

)
φ

(
gm

µm+1

))
k,l

dλdµ.

Since ‖f‖∗ < r < |λ| and ‖g‖∗ < r < |µ|, we have (λe− φ(f))−1 =∑
n φ
(

fn

λn+1

)
and (µe− φ(g))−1 =

∑
m φ

(
gm

µm+1

)
which yields

hk,l = 1
(2iπ)2

∫
|λ|=R
|µ|=R

F (λ, µ)
(

(λe− φ(f))−1 (µe− φ(g))−1
)
k,l
dλdµ.

Using this expression of hk,l, it follows that∑
k,l

(k + 1)|hk,l|

6
R2

(2π)2

∫ 2π

0

∫ 2π

0
|F (Reiθ, Reiϕ)|

·
∑
k,l

(k + 1)
∣∣∣∣((Reiθe− φ(f)

)−1(
Reiϕe− φ(g)

)−1
)
k,l

∣∣∣∣ dθdϕ
6

R2

(2π)2

∫ 2π

0

∫ 2π

0
|F (Reiθ, Reiϕ)|

∥∥∥(Reiθe− φ(f)
)−1(

Reiϕe− φ(g)
)−1
∥∥∥
∗̂
dθdϕ.

Now, using again the identity (λe− φ(f))−1 =
∑
n φ
(

fn

λn+1

)
, for λ = Reiθ

we get ∥∥∥(λe− φ(f))−1
∥∥∥
∗̂
6

1
R− r

.

The same holds true for g and so

‖F (f, g)‖∗ =
∑
k,l

(k + 1)|hk,l| 6
(

R

R− r

)2
‖F‖∞,

which implies that F (f, g) belongs to A and that (iii) of Lemma 3.2 holds
true.
In order to establish the continuity of ΨF , let f̃ and g̃ be two functions of
A such that ‖f̃‖∗ < r and ‖g̃‖∗ < r and set F (f̃ , g̃) =

∑
k,l h̃k,lζ

kζ
l. We

have

hk,l − h̃k,l = 1
(2iπ)2

∫
|λ|=R
|µ|=R

F (λ, µ)
((
λe− φ(f)

)−1(
µe− φ(g)

)−1

−
(
λe− φ(f̃)

)−1(
µe− φ(g̃)

)−1
)
k,l
dλdµ.
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This yields

‖F (f, g)− F (f̃ , g̃)‖∗

6
R2

4π2

∫ 2π

0

∫ 2π

0
|F (Reiθ, Reiϕ)| ·

∥∥∥(Reiθe− φ(f)
)−1(

Reiϕe− φ(g)
)−1

−
(
Reiθe− φ(f̃)

)−1(
Reiϕe− φ(g̃)

)−1
∥∥∥
∗̂
dθdϕ.

We have the following inequality:∥∥∥(Reiθe− φ(f)
)−1 −

(
Reiϕe− φ(f̃)

)−1
∥∥∥
∗̂

6
∥∥∥(Reiθe− φ(f)

)−1 ·
(
Reiϕe− φ(f̃)

)−1
∥∥∥
∗̂
· ‖φ(f)− φ(f̃)‖∗̂

6
1

(R− r)2 ‖f − f̃‖∗.

Using this estimate of
∥∥∥(Reiθe− φ(f)

)−1 −
(
Reiθe − φ(f̃)

)−1
∥∥∥
∗̂
and the

corresponding one for
∥∥∥(Reiϕe− φ(g)

)−1 −
(
Reiϕe− φ(g̃)

)−1
∥∥∥
∗̂
, we get

‖F (f, g)− F (f̃ , g̃)‖∗ 6
R2

(R− r)3 ‖F‖∞ · (‖f − f̃‖∗ + ‖g − g̃‖∗)

which proves that ΨF is continuous.
Under a simple growth condition of a sequence (xk)k, the following corol-

lary gives the existence of a germ of J-holomorphic disc γ such that for all
k ∈ N, ∂

kγ
∂xk

(0) = xk.

Corollary 3.3. — Let J be a real analytic complex structure in a
neighborhood of the origin of R2n, and let (xk)k be a sequence of vectors
of R2n. Assume that x0 is close enough to the origin and that there exists
R > 0 such that for all k ∈ N∗, |xk| 6 k!Rk.
Then there exists a germ of J-holomorphic disc γ such that for all k ∈ N,
∂kγ
∂xk

(0) = xk.

Proof: Let r > 0 be the constant given by Theorem 3.1 and for α > 0 let
(x̃k)k be the sequence defined by x̃k =

(
α
R

)k
xk.

Then
∑∞
k=1

k+1
k! |x̃k| 6

∑∞
k=1(k + 1)αk, so if |x0| < r and if α is small

enough, we have
∑∞
k=0

k+1
k! |x̃k| < r. Therefore we can apply Theorem 3.1

to (x̃k)k and so there exists a J-holomorphic disc γ̃ : D → R2n such that
∂kγ̃
∂xk

(0) = x̃k for all k.
Now setting γ(ζ) = γ̃(Rα ζ) for ζ ∈ C such that |ζ| < α

R , we get a germ of
J-holomorphic disc such that ∂kγ

∂xk
(0) = xk for all k.
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Given a point p in M and an analytic vector field X, we aim at finding a
germ of J-holomorphic disc γ such that γ(0) = p and ∂kγ

∂xk
(0) = Dk−1,0

X X(p)
for k ∈ N∗ by applying Corollary 3.3 to the sequence (xk)k defined by
x0 = p and xk = Dk−1,0

X X(p), k ∈ N∗. For this, we have to prove that
the sequence (Dk−1,0

X X(p))k satisfies the assumption of this corollary. The
estimates needed will be given in the next proposition, but before we state
it, we need the following notation.
If X is a real analytic vector field defined in the polydisc P(0, R) =

{(x1, y1, . . . , xn, yn) ∈ R2n, |xi| < R, |yi| < R, i = 1, . . . , n}, we denote
by X̃ the “polarization” of X. More precisely, if X(z, z) =

∑
ν,µ aν,µz

νzµ

where ν and µ are multi-indices of Nn, z = x+ iy belongs to Cn and aν,µ
belongs to R2n, we set X̃(z, ζ) =

∑
ν,µ aν,µz

νζµ which is defined for all z
and ζ such that |zj |, |ζj | < R, j = 1, . . . , n,. We then set

cR(X) = sup
|zj |,|ζj |<R

|X̃(z, ζ)|.

We can now state the estimates of Dk,0
X X(0):

Proposition 3.4. — Let X be an analytic vector field in a neighbor-
hood of the origin of R2n. Then for all R > 0 small enough and for all
k ∈ N

|Dk,0
X X(0)| 6 2nk!

(
8ncR(X)

R

)k
.

The proof of Proposition 3.4 relies on the following combinatorial Lem-
mata.

Lemma 3.5. — For all α1, . . . , αk ∈ N such that α1 + . . . + αk = k, we
have

α1! . . . αk! 6 k!.

Proof: Without restriction we assume that α1, . . . , αr > 1 and αr+1 = . . . =
αk = 0, r 6 k so that α1 + . . .+ αr = k.
The number k! is the number of permutations of the set {1, . . . , k} whereas
α1! . . . αr! is the number of permutations of {1, . . . , k} which leave stable
each of the sets {1, . . . , α1}, {α1 + 1, . . . , α1 + α2}, . . . , {α1 + . . .+ αr−1 +
1, . . . , k}. Therefore α1! . . . αk! 6 k!.

Lemma 3.6. — There are exactly
(2k−1

k

)
distinct k-tuples (α1, . . . , αk) ∈

Nk such that α1 + . . .+ αk = k.

Proof: To a k-tuple (α1, . . . , αk) ∈ Nk we associate the k-tuple (β1, . . . , βk)=
(α1 + 1, . . . , αk + 1) so that β1 + . . . + βk = 2k. This correspondence is a
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bijection, and now we count the number of such k-tuples (β1, . . . , βk).
The sum 1 + 1 + . . .+ 1 (2k-times) equals 2k and there are as many ways
of writing β1 + . . . + βk = 2k as ways of separating the number 1 in the
sum 1 + 1 + . . .+ 1 = 2k with k − 1-sticks, that is

(2k−1
k−1

)
ways.

Lemma 3.7. — For all k ∈ N we have(
2k − 1
k − 1

)
6

4k√
πk
.

Proof: This is a simple consequence of Stirling’s formula.
We now prove Proposition 3.4:
Proof of Proposition 3.4: Let X be a real analytic vector field in a neigh-
borhood of the origin in R2n. Let R > 0 be such that X is defined and
continuous on P (0, R).
We write X in local coordinates as X =

∑2n
j=1 Xj

∂
∂xj

. In order to establish
the proposition, we need an upper bound for the quantity:

Xi1

∂

∂xi1

(
Xi2

∂

∂xi2

(
. . .

(
Xik−1

∂Xik

∂xik−1

)
. . .

)
(0). (3.1)

In the term above, we denote by ji the cardinal of the set {l, il = i}.
In (3.1), for i ∈ {1, . . . , 2n} and for α(i)

j , j ∈ {1, . . . , k}, such that
∑
j α

(i)
j =

ji, the term
k∏
j=1

∂α
(1)
j

+...+α(2n)
j Xij

∂x
α

(1)
j

1 . . . ∂x
α

(2n)
j

2n

(0)

appears less than
( j1

(α(1)
1 ,...,α

(1)
k

)

)
. . .
( j2n

(α(2n)
1 ,...,α

(2n)
k

)

)
times.

On the other hand, from Cauchy’s inequalities, we get∣∣∣∣∣∣∂
α

(1)
j

+...+α(2n)
j Xij

∂x
α

(1)
j

1 . . . ∂x
α

(2n)
j

2n

(0)

∣∣∣∣∣∣ 6 α
(1)
j ! . . . α(2n)

j ! cR(X)

Rα
(1)
j

+...+α(2n)
j

.

This yields ∣∣∣∣Xi1

∂

∂xi1

(
Xi2

∂

∂xi2

(
. . .

(
Xik−1

∂Xik

∂xik−1

)
. . .

)
(0)
∣∣∣∣

6
∑

α
(1)
1 +...+α(1)

k
=j1

...
α

(2n)
1 +...+α(2n)

k
=j2n

j1! . . . j2n!
(
cR(X)
R

)k
.
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Applying successively Lemma 3.6, Lemma 3.7 and Lemma 3.5 we get∣∣∣∣Xi1

∂

∂xi1

(
Xi2

∂

∂xi2

(
. . .

(
Xik−1

∂Xik

∂xik−1

)
. . .

)
(0)
∣∣∣∣

6 4j1+...+j2nj1! . . . j2n!
(
cR(X)
R

)k
6 k!

(
4cR(X)
R

)k
.

Now, since there are at most (2n)k terms

Xi1

∂

∂xi1

(
Xi2

∂

∂xi2

(
. . .

(
Xik−1

∂Xik

∂xik−1

)
. . .

)
(0)

in Dk,0
X X(0), the following inequaltiy holds true

|Dk,0
X X(0)| 6 k!

(
8ncR(X)

R

)k
,

which proves the claim.

4. J-holomorphic discs and hypersurfaces

In this section, given a point p ∈ M close enough to the origin and
a vector v ∈ T JpM , we look for a J-holomorphic disc γ included in M

such that ∂γ
∂x (p) = v. Our strategy will be the following: we will look for a

sequence of vector fields (Xk)k∈N∗ such that
(i) For all k, the vector field Xk belongs to T JM ,
(ii) X1(p) = v,
(iii) Dl,0

Xk
Xk(p) = Dl,0

X1
X1(p) for all k in N∗ and l in N,

(iv) Xk commutes at order k at p.
Then, applying Proposition 3.4 to X1 and corollary 3.3 to the sequence
(xk)k defined by x0 = p and xk = Dk−1,0

X1
X1(p) for k ∈ N∗, we will

get a germ of J-holomorphic disc γ such that γ(0) = p and ∂kγ
∂xk

(p) =
Dk−1,0
X1

X1(p) for all k ∈ N∗, and in particular ∂γ
∂x (p) = v. In order to check

that γ is included in M , we will use Theorem 1 of [1]: since Xk commutes
at order k at p, and since ∂lγ

∂xl
(0) = Dl−1,0

Xk
Xk(p) for all l 6 k, γ is tangent

to M at p at order k + 1. Now, since this holds for all k, this implies that
γ is tangent to M at p at any order. As M and γ are real analytic, γ is in
fact included in M . In order to construct such a sequence of vector fields,
we will need the following propositions.
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Proposition 4.1. — Let X be any real analytic vector field in a neigh-
borhood of the origin. Then the following assertions are equivalent :

(i) For all 0 6 k 6 k0 − 2 and all X1, . . . , Xk ∈ {X,JX},

X1 ·X2 . . . Xk · [X, JX](0) = 0,

(ii) X commutes at order k0 at 0.
Moreover, in that case, for all integers k and l such that 0 6 l 6 k 6 k0−1
the following holds:

X1 . . .Xl · [Xl+1,[. . . [Xk,[X, JX] . . .] (0) = [X1,[X2, . . . [Xk, [X, JX] . . . ] (0).
(4.1)

Remark 4.2. — We point out that (4.1) holds true for 0 6 k 6 k0 − 1
even if (i) is true only for 0 6 k 6 k0 − 2.

Proof of proposition 4.1: The equivalence of (i) and (ii) was shown in [1],
proposition 13. The second assertion is proved by induction on l, the case
l = 0 being trivial.
We assume that the identity holds true for l 6 k 6 k0−2 and we denote by
Y the vector field Y = [Xl+2, [. . . , [Xk, [X,JX]] . . .]]. Then, since X̃1 . . . X̃l ·
Y (0) = 0 for all X̃1, . . . X̃l ∈ {X, JX}, we have

X1 . . . Xl[Xl+1, [Xl+2, . . . [Xk, [X, JX]] . . .](0)
= X1 . . . Xl ·Xl+1 · Y (0)−X1 . . . Xl · Y ·Xl+1(0)
= X1 . . . Xl ·Xl+1 · Y (0).

Proposition 4.3. — Let X be a vector field commuting at order k at
0, k > 2. Then for all X1, . . . , Xk ∈ {X, JX}, we have

[X1, [. . . , [Xk, [X, JX]]]](0) = [JX, [. . . , [JX︸ ︷︷ ︸
q

, [X, [. . . , [X︸ ︷︷ ︸
p

, [X, JX] . . .](0)

where p = #{i, Xi = X} and q = #{i, Xi = JX}.

Proof: It suffices to show that for all l 6 k − 2 we have

[X1, [. . . , [Xl, [X, [JX, [Xl+3, [. . . , [X, JX] . . .](0)
= [X1, [. . . , [Xl, [JX, [X, [Xl+3, [. . . , [X, JX] . . .](0).

We set Y = [Xl+3, [. . . , [X, JX] . . .]. From Jacobi identity we have:

[X, [JX, Y ]] = [JX, [X,Y ]] + [[X, JX], Y ]. (4.2)
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From Proposition 4.1, for all 0 6 l̃ 6 l and all X̃1, . . . , X̃l̃ ∈ {X, JX}, we
have X̃1 . . . X̃l̃ · [X, JX](0) = 0 which yields

[X1, . . . , [Xl, [X, JX] · Y ] . . .](0) = 0 (4.3)

Analogously, it follows from Proposition 4.1 that

[X1, . . . , [Xl, Y · [X, JX]] . . .](0) = 0

which with (4.3) gives

[X1, . . . , [Xl, [[X, JX], Y ]] . . .](0) = 0

and with (4.2) we finish the proof of the proposition.
Taking our strategy into account, the proof of Theorem 1.4 will be a

direct consequence of the following lemma:

Lemma 4.4. — Let X ∈ T JM be a real analytic vector field in a neigh-
borhood of 0 ∈ M such that L(X), the Lie algebra generated by X, is
included in T JM .
Then there exists a sequence (Xk)k∈N∗ of vector fields in T JM such that

(a) Dl,0
Xk
Xk(0) = Dl,0

X X(0) for all k in N∗ and l in N,
(b) for all k ∈ N∗, Xk commutes at order k at 0.

Proof: We set X1 = X and by induction on k we construct a sequence
(Xk)k of vector fields which satisfy (a) and (b) and which are such that for
all k, Xk belongs to L(X). Assuming Xk constructed, we set

Yp,q = [JXk, [. . . , [JXk,︸ ︷︷ ︸
q

[Xk, [. . . , [Xk︸ ︷︷ ︸
p

[Xk, JXk] . . .]

for all p and q such that p+ q = k − 1, and we look for Xk+1 as

Xk+1 = Xk +
∑

p+q=k−1
(ap,q + bp,qJ)Yp,q,

where ap,q and bp,q are real analytic functions which vanish at order k − 1
at the origin. Hence Xk+1 already belongs to L(X) and we have to show
that ap,q and bp,q can be chosen so that (a) and (b) hold. We compute the
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Lie bracket [Xk+1, JXk+1]:

[Xk+1, JXk+1] =
= [Xk, JXk]

+
∑

p+q=k−1

((
Xk(ap,q)− JXk(bp,q)

)
JYp,q +

(
−Xk(bp,q)− JXk(ap,q)

)
Yp,q

)
+

∑
p+q=k−1

(a2
p,q + b2

p,q)[Yp,q, JYp,q]

+
∑

p+q=k−1

(
ap,q ([Xk, JYp,q] + [Yp,q, JXk])− bp,q ([Xk, Yp,q] + [JXk, JYp,q])

)
+
∑

p+q=k−1
r+s=k−1

(
ar,sYr,s(ap,q)+br,sJYr,s(ap,q)−ar,sJYr,s(bp,q)+br,sYr,s(bp,q)

)
JYp,q

+
∑

p+q=k−1
r+s=k−1

(
−ar,sYr,s(bp,q)−br,sJYr,s(bp,q)−ar,sJYr,s(ap,q)+br,sYr,s(ap,q)

)
Yp,q.

Since ap,q and bp,q vanish at order k−1 at the origin, and sinceXk commutes
at order k at 0, for all X(1), . . . , X(k−2) ∈ {Xk+1, JXk+1} we have

X(1) . . . X(k−2)[Xk+1, JXk+1](0) = 0.

It then follows from Proposition 4.1 that Xk+1 already commutes at order
k at 0. Moreover, Dr,0

Xk+1
Xk+1(0) = Dr,0

Xk
Xk(0) for all r 6 k − 1 and for all

choices of functions ap,q and bp,q, vanishing at order k − 1 at 0.
We now choose these functions so that Xk+1 commutes at order k + 1 at
the origin and so that Dr,0

Xk+1
Xk+1(0) = Dr,0

Xk
Xk(0) for all r > k.

It follows from Proposition 4.1 that Yr,s(0) = Dr,s
Xk

[Xk, JXk](0) for all r
and s such that r + s = k − 1. Since the functions ap,q and bp,q vanish at
order k − 1 at the origin, we have for all r and s such that r + s = k − 1

Dr,s
Xk+1

[Xk+1, JXk+1](0)

= Yr,s(0) +
∑

p+q=k−1

((
Dr+1,s
Xk

ap,q(0)−Dr,s+1
Xk

bp,q(0)
)
JYp,q(0)

)
+

∑
p+q=k−1

((
−Dr+1,s

Xk
bp,q(0)−Dr,s+1

Xk
ap,q(0)

)
Yp,q(0)

)
.

Perhaps after a change of coordinates if needed, we can assume that Xk =
∂
∂x1

and that J(0) is still the standard structure. We therefore have JXk =∑n
k=1 J2k−1,1

∂
∂xk

+ J2k
∂
∂yk

and since J(0) is the standard structure, it fol-
lows that JXk(0) = ∂

∂y1
. Now, since ap,q and bp,q vanishes at 0 at order

k − 1, neither Xk nor JXk is differentiated in Dr,s
Xk
ap,q(0) and Dr,s

Xk
bp,q(0)

ANNALES DE L’INSTITUT FOURIER



J-HOLOMORPHIC DISCS 2243

and we therefore have

Dr,s
Xk+1

[Xk+1, JXk+1](0) = (4.4)

= Yr,s(0) +
∑

p+q=k−1

((
∂kap,q

∂xr+1
1 ∂ys1

(0)− ∂kbp,q

∂xr1∂y
s+1
1

(0)
)
JYp,q(0)

)

+
∑

p+q=k−1

((
− ∂kbp,q

∂xr+1
1 ∂ys1

(0)− ∂kap,q

∂xr1∂y
s+1
1

(0)
)
Yp,q(0)

)
.

We search for ap,q and bp,q as homogeneous polynomials in x1 and y1 of
degree k without the term xk1 such that

∀(r, s) ∈ N, r+s = k−1,


∂kap,q

∂xr+1
1 ∂ys1

(0)− ∂kbp,q
∂xr1∂y

s+1
1

(0) = 0,
∂kbr,s

∂xr+1
1 ∂ys1

(0) + ∂kap,q
∂xr1∂y

s+1
1

(0) = 0 if (r, s) 6= (p, q),
∂kbp,q

∂xr+1
1 ∂ys1

(0) + ∂kap,q
∂xr1∂y

s+1
1

(0) = 1.

With such a choice, (4.4) gives Dr,s
Xk+1

[Xk+1, JXk+1] = 0, for all r and s

such that r+s = k−1, which together with Propositions 4.1 and 4.3 proves
that Xk+1 commutes at order k + 1 at 0. So (b) holds true.
Now, we notice that Dr,0

Xk
ap,q(0) = Dr,0

Xk
bp,q(0) = 0 for all r ∈ N, and all

(p, q). Therefore Dr,0
Xk+1

Xk+1(0) = Dr,0
Xk
Xk(0) for all r ∈ N, and so (a) also

holds true.

We deduce from Theorem 1.4 the following generalization of Freeman’s
Theorem:

Theorem 4.5. — If J is integrable, then for all X ∈ kerL and all p in a
neighborhood of 0, there exists a J-holomorphic disc γ such that γ(0) = p

and ∂γ
∂x (0) = X(p).

Proof: Let X be a vector field in kerL. We show that the Lie algebra
generated by X and JX is included in T JM by proving by induction that
all Lie brackets we can form with X and JX belong to kerL.
In the integrable case, we have the following characterization of kerL

(see [2]):

kerL = {X ∈ T JM, ∀Y ∈ T JM, [X,Y ] ∈ T JM}. (4.5)

Assume that all Lie brackets of length at most k belongs to kerL. Let Xp

and Xq be two Lie brackets of length p and q respectively, with p and q

such that p+ q = k + 1. Using (4.5), we show that [Xp, Xq] and [Xp, JXq]
belong to kerL.
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Jacobi’s identity gives for all Y ∈ T JM :

[[Xp, JXq], Y ] = [Xp, [JXq, Y ]] + [JXq, [Y,Xp]].

The vector field JXq belong to kerL so (4.5) implies that [JXq, Y ] belongs
T JM and so, again (4.5) implies that [Xp, [JXq, Y ]] belongs to T JM . Anal-
ogously, [JXq, [Y,Xp]] belongs to T JM and so [[Xp, JXq], Y ] is a element
of T JM for all Y in T JM , which with (4.5) implies that [Xp, JXq] belongs
to kerL.
Analogously, [Xp, Xq] belongs to kerL. Therefore all Lie brackets of X and
JX belong to kerL and so to T JM . Applying Theorem 1.4 ends the proof
of Theorem 4.5.

Another example of situation where Theorem 1.4 can be useful is the
following example:

Example 4.6. — Let ϕ : R8 → R be the map defined by

ϕ(x1, y1, x2, y2, x3, y3, x4, y4) = y1

and let M be the set M = {z ∈ R8, ϕ(z) = 0}. We define the eight
following vector fields

L1 = ∂

∂x1
, L2 = ∂

∂y1
,

L3 = ∂

∂x2
− 1

2y
2
3
∂

∂x1
, L4 = ∂

∂y2
+ (−2y3x3 + x2) ∂

∂x1
,

L5 = ∂

∂x3
− y2y3

∂

∂x1
, L6 = ∂

∂y3
+ x3

∂

∂x2
−
(
x3y

2
3

2 + x3y2

)
∂

∂x1
,

L7 = ∂

∂x4
+ y4

∂

∂y4
L8 = ∂

∂y4
.

and the complex structure J they induce by setting

JL1 = L2, JL3 = L4, JL5 = L6, JL7 = L8.

This example is derived from the example of Section 2. Again J(0) is the
standard complex structure J0 and the tangent space TM is spanned over
R by L1, L3, L4, L5, L6, L7 and L8 and T JM is spanned over C by L3,
L5 and L7.
When we compute the Lie brackets of the Li’s in the complex tangent
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bundle, we get:

[L3, L4] = L1,

[L3, L5] = 0, [L4, L5] = y3
∂

∂x1
,

[L3, L6] = y3
∂

∂x1
, [L4, L6] = 0, [L5, L6] = L3,

[L3, L7] = 0, [L4, L7] = 0, [L5, L7] = 0, [L6, L7] = 0,
[L3, L8] = 0, [L4, L8] = 0, [L5, L8] = 0, [L6, L8] = 0,

and [L7, L8] = −L8. Therefore

L̂ϕ(L3, L5) = 0, L̂ϕ(L3, L7) = 0,

L̂ϕ(L5, L7) = 0, L̂ϕ(L3, JL3) = dϕ(L2) = 1,

L̂ϕ(L5, JL5) = dϕ(L3) = 0, L̂ϕ(L7, JL7) = dϕ(−L8) = 0,

and so, M is pseudoconvex and kerL is spanned by L5 and L7.
As in Section 2, there is no germ of J-holomorphic disc γ included in M

such that γ(0) = 0 and ∂γ
∂x (0) = ∂

∂x3
but Theorem 1.4 yields the existence

of a germ of J-holomorphic disc γ included in M , such that γ(0) = 0 and
∂γ
∂x (0) = L7(0).

We now prove Theorem 1.6 by applying our strategy with the following
lemma:

Lemma 4.7. — Let L be a subbundle of T JM . Assume that for all X ∈
L which commutes at order k at 0, and for all X1, . . . , Xk+1 ∈ {X, JX},
[X1, [. . . , [Xk, Xk+1] . . .]](0) belongs to L0.
Then for all X ∈ L, there exists a sequence (Xk)k of vector fields in L such
that

(α) Dl,0
Xk
Xk(0) = Dl,0

X X(0) for all k in N∗ and l in N,
(β) Xk commutes at order k at 0.

Proof: We proceed by induction on k. We set X1 = X and we assume Xk

constructed. Maybe after a change of coordinates if needed, we can assume
that Xk = ∂

∂x1
and JXk(0) = ∂

∂y1
. We set

Xk+1 = Xk +
∑̀
p=1

(ap + Jbp)Lp

where L1, . . . , L` is a basis of L and where ap and bp, p = 1, . . . , `, are
homogeneous polynomials of degree k in the variables x1 and y1, without
the term xk1 . Therefore Xk+1 belongs to L, Dl,0

Xk+1
Xk+1(0) = Dl,0

X1
X1(0) for
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all l and Xk+1 commutes at order k at 0.
Analogously to the proof of Lemma 4.4, we now choose ap and bp so that
Xk+1 commutes at order k + 1 at 0. We compute

[Xk+1, JXk+1]

= [Xk, JXk] +
∑̀
p=1

(a2
p + b2

p)[Lp, JLp]

+
∑̀
p=1

((
Xk(ap)− JXk(bp)

)
JLp +

(
−Xk(bp)− JXk(ap)

)
Lp

)

+
∑̀
p=1

(
ap ([Xk, JLp] + [Lp, JXk])− bp ([Xk, Lp] + [JXk, JLp])

)
+
∑̀
p,q=1

(
aqLq(ap) + bqJLq(ap)− aqJLq(bp) + bqLq(bp)

)
JLp

+
∑̀
p,q=1

(
−aqLq(bp)− bqJLq(bp)− aqJLq(ap) + bqLq(ap)

)
Lp.

On the one hand, the functions ap and bp vanish at order k−1 at the origin.
Therefore, for all r and s such that r + s = k − 1

Dr,s
Xk+1

[Xk+1, JXk+1](0)

= Dr,s
Xk

[Xk, JXk](0) +
∑̀
p=1

((
Dr+1,s
Xk

ap(0)−Dr,s+1
Xk

bp(0)
)
JLp(0)

)

+
∑̀
p=1

((
−Dr+1,s

Xk
bp(0)−Dr,s+1

Xk
ap(0)

)
Lp(0)

)
.

On the other hand, Proposition 4.1 implies that for all r and s such that
r + s = k − 1

Dr,s
Xk

[Xk, JXk](0) = [JXk, [. . . , [JXk︸ ︷︷ ︸
s

[Xk, . . . [Xk︸ ︷︷ ︸
r

, [Xk, JXk]] . . .](0)

and soDr,s
Xk

[Xk, JXk](0) belongs to L0. Hence there exists αr,s1 , . . . , αr,s` ∈ C
such that

Dr,s
Xk

[Xk, JXk](0) =
∑̀
p=1

αr,sp Lp(0)
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and so

Dr,s
Xk+1

[Xk+1, JXk+1](0)

=
∑̀
p=1

αr,sp Lp(0) +
∑̀
p=1

((
Dr+1,s
Xk

ap(0)−Dr,s+1
Xk

bp(0)
)
JLp(0)

)

+
∑̀
p=1

((
−Dr+1,s

Xk
bp(0)−Dr,s+1

Xk
ap(0)

)
Lp(0)

)
.

Now we choose the functions ap and bp as in Lemma 4.4 such that

∀(r, s) ∈ N, r + s = k − 1,


∂kap

∂xr+1
1 ∂ys1

(0)− ∂kbp
∂xr1∂y

s+1
1

(0) = −Im(αr,sp )
∂kbr,s

∂xr+1
1 ∂ys1

(0) + ∂kap,q
∂xr1∂y

s+1
1

(0) = Re(αr,sp )
.

After solving this system of 2k equations and 2k variables, we get a vector
field Xk+1 such that Dr,s

Xk+1
[Xk+1, JXk+1](0) = 0 for all r and s such that

r + s = k − 1. Since Xk+1 already commutes at order k, Propositions 4.1
and 4.3 then imply that in fact Xk+1 commutes at order k + 1 at 0.
As a corollary of Theorem 1.6, we get the following Theorem already

proved by Kruzhilin and Sukhov in [5] in the smooth case:

Theorem 4.8. — If kerL = T JM , then for all p ∈M and all v ∈ T JM ,
there exists a germ of J-holomorphic disc γ such that γ(0) = p, ∂γ∂x (p) = v

and γ(D) ⊂M .

Proof: We prove that if X ∈ T JM commutes at order k at 0, then for all
X1, . . . , Xk−1 ∈ {X, JX}, [X1, [. . . , [Xk−1, [X, JX]] . . .](0) belongs to T J0 M
and we apply Theorem 1.6.
On the one hand, since M is Levi flat, [X, JX] belongs to T JM and
dϕ(J [X, JX]) vanishes identically.
On the other hand, since X commutes at order k at 0

X1 ·X2 . . . Xk−1 · dϕ(J [X, JX])(0)
= dϕ(J(X1 ·X2 . . . Xk−1 · [X, JX]))(0)
= dϕ(J [X1, [X2, . . . [Xk−1, [X, JX] . . .])(0)

and so [X1, . . . [Xk−1, [X, JX] . . .](0) belongs to JT0M . Now, since X and
JX belong to TM , [X1, . . . [Xk−1, [X, JX] . . .] also belongs to TM and
finally [X1, . . . [Xk−1, [X, JX] . . .](0) to T J0 M.

Let us notice that the above theorem can in fact be generalized in the
following sense. If L is a complex bundle included in kerL such that
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• for all X ∈ L, [X, JX] belongs to L,
• there exist ϕ1, . . . , ϕk such that for all X ∈ T JM , X · ϕ1 = . . . =
X · ϕk = 0 if and only if X belongs to L,

then the previous proof shows that for any X in L, there exists a J-
holomorphic disc γ such that γ(0) = p, ∂γ∂x (p) = v and γ(D) ⊂M . However,
as we will see in the next example, Theorem 1.6 is more general.

Example 4.9. — Let ϕ : R8 → R be the map defined by

ϕ(x1, y1, x2, y2, x3, y3, x4, y4) = y1

and let M be the set M = {z ∈ R8, ϕ(z) = 0}. We also define the eight
following vector fields

L1 = ∂

∂x1
, L2 = ∂

∂y1
,

L3 = ∂

∂x2
− 1

2y
2
3
∂

∂x1
, L4 = ∂

∂y2
+ (−2y3x3 + x2) ∂

∂x1
,

L5 = ∂

∂x3
− y2y3

∂

∂x1
, L6 = ∂

∂y3
+ x3

∂

∂x2
−
(
x3y

2
3

2 + x3y2

)
∂

∂x1
,

L7 = ∂

∂x4
+ y4

∂

∂y4
+ y1y4L5 L8 = ∂

∂y4
+ y1y4L6.

and the complex structure J they induce by setting

JL1 = L2, JL3 = L4, JL5 = L6, JL7 = L8.

Again this example is derived from the example of Section 2. The tangent
space TM is spanned over R by L1, L3, L4, L5, L6, L7 and L8 and T JM
is spanned over C by L3, L5 and L7.
When we compute the Lie brackets of the Li’s in the complex tangent
bundle, we get:

[L3, L4] = L1,

[L3, L5] = 0, [L4, L5] = y3
∂

∂x1
,

[L3, L6] = y3
∂

∂x1
, [L4, L6] = 0, [L5, L6] = L3,

[L3, L7] = 0, [L4, L7] = y1y3y4
∂

∂x1
, [L5, L7] = 0,

[L3, L8] = y1y3y4
∂

∂x1
, [L4, L8] = 0, [L5, L8] = y1y4L3,

[L6, L7] = y1y4L3, [L6, L8] = 0
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and
[L7, L8] = −y1L5 + y2

1y
2
4L3 + 2y1y4L6 − L8.

Therefore

L̂ϕ(L3, L5) = 0,

L̂ϕ(L3, L7) = 0,

L̂ϕ(L5, L7) = 0,

L̂ϕ(L3, JL3) = dϕ(L2) = 1,

L̂ϕ(L5, JL5) = dϕ(L3) = 0,

L̂ϕ(L7, JL7) = dϕ(y2
1y

2
4L4 − y1y4L5 − y1L6 − L8) = 0,

and so, M is pseudoconvex and kerL is spanned by L5 and L7. As in
Section 2, there is no germ of J-holomorphic disc γ included inM such that
γ(0) = 0 and ∂γ

∂x (0) = ∂
∂x3

. However, Theorem 1.6 can be applied to L7 with
L the subbundle generated by L7. In order to do this, it suffices to check that
for all X1, . . . , Xk ∈ {L7, L8}, the Lie bracket [X1, [. . . , [Xk, [L7, L8] . . .](0)
is a linear combination of L7 and L8. By induction on k, we get

[X1, [. . . , [Xk, [L7, L8] . . .] = y1L+ αL8

where L is a vector field and α belongs to {−1, 0, 1}, both depending on the
sequenceX1, . . . , Xk. Therefore [X1, [. . . , [Xk, [L7, L8] . . .](0) belongs to the
subbundle generated by L7 at 0 and Theorem 1.6 yields the existence of a
J-holomorphic disc γ included inM , such that γ(0) = 0 and ∂γ

∂x (0) = L7(0).
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