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A COMPARISON THEOREM BETWEEN RADON AND
FOURIER-LAPLACE TRANSFORMS FOR D-MODULES

by Thomas REICHELT (*)

ABSTRACT. —  We prove a comparison theorem between the d-plane Radon
transform and the Fourier-Laplace transform for D-modules. This generalizes re-
sults of Brylinski and d’Agnolo-Eastwood.

RiESUME. —  Nous démontrons un théoréme de comparaison entre la transfor-
mation de Radon et la transformation de Fourier-Laplace pour les D-modules. Ceci
généralise des resultats de Brylinski et de d’Agnolo-Eastwood.

Introduction

The history of the Radon transform goes back to the famous paper [11]
of Radon. This transformation associates to a function f on R™ a corre-
sponding function on the family of affine d-dimensional planes in R™ whose
value at a given plane is the integral over f restricted to this plane. Since
then various generalizations, like the Radon transform on homogeneous
spaces [7] and the Penrose transform [6] were made, which had plenty of
applications in representation theory, harmonic analysis and mathemati-
cal physics. Later it was realized that the Radon transform and its various
cousins could be best understood in the context of integral geometry and D-
modules (see [2] for a nice overview). This Radon transform for D-modules
was introduced by Brylinski in [1]. There, he considers D-modules on the
complex projective space and measures their restriction to all d-planes,
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1578 Thomas REICHELT

which gives rise to a (complex of) D-module(s) on the corresponding Grass-
manian. As an application he proved, among other things, the irreducibility
of the monodromy action on the vanishing cohomology of a hyperplane sec-
tion of a (possibly singular) variety. The study of these integral transforms
was further advanced by d’Agnolo and Schapira who on the one hand ex-
tended in [4] the hyperplane Radon transform to twisted D-modules and
to a quantized contact transformation between the cotangent bundles of
the projective spaces and on the other hand to the very general setting of
double fibrations in [5].

The Fourier-Laplace transform on the other hand is an indispensable
tool in the theory of differential equations. In the context of integral ge-
ometry it is a transform with a so-called exponential kernel. This prop-
erty is reflected in the D-module picture by the fact that the Fourier-
Laplace transform does not preserve regular holonomicity. If however the
D-module is monodromic then the Fourier-Laplace transform is equivalent
to the so-called Fourier-Sato transform (or monodromic Fourier-Laplace
transform) which preserves regularity. By a theorem of Brylinski [1], the
hyperplane Radon transform for D-modules on P is closely related to the
monodromic Fourier-Laplace transform on C"*!. Roughly speaking the
theorem of Brylinski says, that the hyperplane Radon transform of a holo-
nomic D-module on P is isomorphic to the (monodromic) Fourier-Laplace
transform of a specific lift of the D-module from P” to C**!. This result
was generalized by d’Agnolo and Eastwood [3] to quasi-coherent D-modules
and to a variant of the Radon transform which does measure the restriction
of the D-module to the complement of a given hyperplane, rather then the
restriciton to the hyperplane itself.

In this paper we extend the results of Brylinski and d’Agnolo-Eastwood
to the case of the d-plane Radon transform. Possible applications of this
result are explicit computations of Gauss-Manin systems of maps whose
fibers are d-plane sections inside a quasi-projective variety. This technique
was already used in [12] in the case of families of Laurent polynomials,
where the fiber of a given Laurent polynomial can be compactified to a hy-
perplane section of a projective toric variety, which is given by the Newton
polytope of the corresponding Laurent polynomial. In forthcoming work
it is planned to use the comparison theorem between the d-plane Radon
transform and the Fourier-Laplace transform, which is proven here, to study
hyperplane arrangements. More precisely, we want to use a variant of the
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A COMPARISON THEOREM BETWEEN RADON AND FL-TRANSFORM 1579

d-plane Radon transform, defined below, to compute explicitly the Gauss-
Manin system of the universal family of hyperplane arrangements and of
the universal family of the complements.

Let us give a short overview of the paper. We first give a brief review of
algebraic D-modules, the Radon as well as the Fourier-Laplace transform
and state the comparison result for the hyperplane case of d’Agnolo and
Eastwood. The proof of the general case proceeds as follows. We first prove
that the d-plane Radon transform for a D-module is equivalent to a diag-
onal embedding of this D-module on a product of projective spaces and
then applying the hyperplane Radon transform on each factor (Lemma 2.8
and Lemma 2.10). This result stems from the simple geometric fact that a
d-plane in P" is isomorphic to the diagonal in (P")*"~¢ cut with an ap-
propiate hyperplane on each factor. We then prove in Proposition 2.11 that
we can apply the theorem of d’Agnolo and Eastwood on each factor. Fi-
nally we have to prove that the extension functors and the Fourier-Laplace
transform interchange (Lemma 2.12).

Acknowledgements. — 1 would like to thank Christian Sevenheck and
Claude Sabbah for useful discussions. Furthermore, I thank Claus Hertling
for his continuous support and interest in my work.

1. Preliminaries

In the first section we review briefly the theory of algebraic D-modules in
order to fix notations. In the second section we review the d-plane Radon
transform and various variants (cf. Definition 1.1) and show how they arise
as an integral transformation (cf. Proposition 1.3). Then we show in Propo-
sition 1.5 that the various transformations preserve (regular) holonomicity
and (quasi-)coherence. In the last section we introduce in Definition 1.7
the Fourier-Laplace transform for D-modules as an integral transform with
exponential kernel .

1.1. D-modules
Let X be a smooth algebraic variety over C. We denote by M (Dx) the
abelian category of algebraic left Dx-modules on X. The full triangulated

subcategories of D*(Dx) := D?(M(Dx)), consisting of objects with Ox-
quasi-coherent resp. Dx-coherent resp. (regular) holonomic cohomology

TOME 65 (2015), FASCICULE 4



1580 Thomas REICHELT

are denoted by D!.(Dx) resp. D%, (Dx) resp. D) (Dx) resp. D% (Dx).
We subsume the different cases by writing D?(Dx) for * € {qc, coh, h,rh}.

Let f: X — Y be a map between smooth algebraic varieties. We denote
by Dx_y resp. Dy, x the transfer bimodules. Let M € D’(Dx) and
N € D*(Dy), then the direct and inverse image for D-modules is defined

by
L
f+M = Rf*(DY%X ®DX M)’

FEN =Dy oy & N
=Dx_v Qf-1p, .

Recall that the functors £, f* preserve quasi-coherence, holonomicity and
regular holonomicity (see e.g., [8]).

If f: X — Y is non-characteristic, then the functor f* preserves co-
herency and is exact.

Denote by wyx the canonical line bundle on X. There exists a duality
functor D : Db, (Dx) — Db , (Dx) defined by

coh

DM = Homo, (wx, RHomp, (M, Dx))[dimX].

Recall that for a single holonomic Dx-module M, the holonomic dual is
also a single holonomic Dx-module ([8, Corollary 2.6.8 (iii)]).
For a morphism f : X — Y between smooth algebraic varieties we
additionally define the functors f; :=Do f; oD and fl:=Do fto.
Consider the following cartesian diagram of algebraic varieties

zTow
o,k
f
Y — X
then we have the canonical isomorphism
+
Frosld =g\ f[d],
where d := dimY —dim X and d’ := dim Z —dim W(cf. [8, Theorem 1.7.3]).
Notice that by symmetry we have also the canonical isomorphism
g fild = fig'"(d]
with d := dim W — dim X and d' := dim Z — dim Y. In the former case we
say we are doing a base change with respect to f, in the latter case with

respect to g.
Using the duality functor, we get isomorphisms:

floil—d ~gif'[-d) and  g'fi[~d ~ fi g [-d].

ANNALES DE L’INSTITUT FOURIER
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Let M € D*(Dx) and N € D*(Dy). We denote by MR N € D*(Dxxy)
the exterior tensor product. The exterior tensor product preserves quasi-
coherence, coherence, holonomicity and regular holonomicity. If My, M5 €
D(Dx), we denote by

L
M1 X M2 = A+(M1 X Mg)

the internal tensor product, where A : X — X x X is the diagonal embed-
ding. The internal tensor product preserves quasi-coherence, holonomicity
and regular holonomicity. Notice that it preserves coherency if M; X M,
is noncharacteristic with respect to A, i.e. if My, My satisfy the following
transversality condition

char(My) Nchar(My) C Tx X .
Let f: X — Y a map between smooth algebraic varieties. One has the
following projection formula (cf. [8, Corollary 1.7.5])
L., L

In the following it will sometimes be convenient to use the language of
integral kernels. Let X and Y be two smooth varieties, M € D?(Dx) and
K € D*(Dxxy). Denote by ¢; : X XY — X resp. ¢ : X xY = Y
the projection to the first resp. second factor. The integral transform with
respect to the kernel K is defined by

oK : D*(Dx) — D*(Dy),
L
M= MoK =g (¢ M®K).

Let Z be another smooth algebraic variety and K e D(Dy 7). The
convolution of the two kernels K and K is defined by

~ + L + ~
KoK :=q3: (¢, K® q23K) )

where g;; is the projection from X x Y x Z to the corresponding factor.
Notice that the folding is associative in the sense that for M € D*(Dx) we
have

(MoK)oK~Mo(KoK)e DDy).

1.2. Radon transform

Let V be a complex n + 1-dimensional vector space and denote by V the
dual vector space. Fix k € {1,...,n} and set W := V* | s0 a point in W

TOME 65 (2015), FASCICULE 4



1582 Thomas REICHELT

gives rise to a vector subspace of V' of codimension < k. Set d :=n —k and
denote by S(k,n) the subvariety of W consisting of points giving rise to
vector subspaces of codimension equal to k resp. d-planes in P(V'). Notice
that GL(k) acts on S(k,n) from the left. The quotient

G(d,n) := Gl(k) \ S(k,n)

is the Grassmanian parametrizing n + 1 — k-dimensional subspaces in V,
i.e. d-planes in P(V'). We use the following abbreviations

P:=P(V), V:=V\{0} and G :=G(d,n).
Let Z (Z—Z> P x G be the universal hyperplane, i.e.

Z:={[w],(\,...,A]ePxG|N@w)=...= @) =0}

and denote by C' S PxGits complement

C:={[],[\,...,\* ] ePx G |3 e{1,...,k} with \(v) #0}.

We will define various versions of the Radon transform. Consider the

e

PxG

\J/

where 7 resp. mo are the projections to the first resp. second factor and

¢ 7 7§ w% are the corresponding restrictions of m; and 73 to C resp.

Z.

following diagram

DEFINITION 1.1. — Let V, Z, U as above. The Radon transform is the
functor

Rs: Db, (Dp) — D*(Dg)
M = 7 (7)Y M ~ moyigyifmi M.
Define two variants
Ry Db.(Dp) = D*(Dg)

M = mgy (n0) M = moy oy jbmi M

ANNALES DE L’INSTITUT FOURIER
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and

Ry : DY, (Dp) — D°(Dg)
M — 7"21( )M ~ Torjetiom M,

as well as a constant Radon transform

Ry : D) (Dp) — D*(Dg)
M — 7T2+(7T1)+M.

In order to compare the Radon transform to the Fourier-Laplace trans-
form which will be introduced below, we will need another type of Radon
transform but this time with target in W = V** instead of G = G(n—k, n).

Let Z' Z/) P x W be defined as
Z'=A{[o], AL, AN ePx WA (w) =... = (v) =0}
and denote by C’ fﬁ; P x W the complement of Z’:
C = {[w],\Y,..., AP ePx W |3l e{l,...,k} with Al (v) #0}.
We will also consider the subvariety A’ fi; P x W:
A =[]\ N e Px W T e {1,. ..k} with X (v) = 0}
together with its complement U’ M) P x W:
U = {[o], A}, AP e Px W | A (v) #0,..., () #0}.

Consider the following diagrams

/
U
c’ c’ u’ u’
™ 2 T . T2
Ju’
™ ay T2 A

P~ PxW -2 W P Px W w,
4 z A’ A
1 L) s 2
z' A’

where as above 7 resp. my are the projections to the first resp. second factor

’ ! ’ ’ ’ !
and 78 7Z 7V 7t 7§ 7 ,wg ,7r§‘ are the corresponding restrictions

of w1 and 5 to C’ resp. Z’ resp. U’ resp. A.

TOME 65 (2015), FASCICULE 4
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DEFINITION 1.2. — Let Z',U’,C" as above. The affine Radon transform
is the functor

Rj: Db.(Dp) — D*(Dy;)
M WQZJ/F(WZ,)JFM ~ Toyigpigimy M.
Define the variants
/1/t : Dgc(DJP’) — Db(DW)
M 7§ (70 )M ~ mojorjém M
RY : Db, (Dp) — DP(Dy;,)

coh

’ ’

M v mgy (n] )M ~ Totjeridmi M
u+ Db (Dp) — D*(Dy;,)
M Wg_{_(ﬂ'U,)_‘_M ~ Ty jurt iy M
as well as a constant Radon transform
R} : D) (Dp) — D*(Dy;)
M+ oy ()T M.
We can now express the affine Radon transforms R/, for
ue{1,51/t,Y,U"}
as an integral transformation with respect to a kernel R;,. Set
Rs =iz Oz, Ry = jci;Ocr, Ry, = jor4Ocr,
Ry+ = jurs Our, Ry = Op i -
Recall that
Mo R, = mpy(n (M) © R,),

then we have the following result.

PROPOSITION 1.3. — Let M € D}.(P). We have the following isomor-
phism
Mo R, ~R,(M) forae{5,1,1/t,U"},
if M € Db , (P) then

coh

MoR, ~R, (M) forae{Y}.

ANNALES DE L’INSTITUT FOURIER
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Proof. — The proof essentially uses the projection formula (cf. (1.1.1)).
We prove the statement for u = 0 the other cases are similar or easier.
/ + L.
MOR(; = 7T2+(7T1 (M) X ZZ’+OZ’)
L
~ mypig (igm M ® Og)
~ i ((n{ )" M)
=Rs(M)
|

Finally, we define the last variant with respect to a kernel having support
on the non-smooth subvariety A’.

DEFINITION 1.4. — Let A’ C P x W as above. Set
Ri4+ = RFA/O]P’XW

and define for M € D} (P)

/ — NG R ) ~ +
R+ (M) :=mop (7] (M) ® Rly1) ~ ma R 4» m] M .

PRrOPOSITION 1.5. — The Radon transforms preserve the following sub-
categories

Rs, R, Ra - Db(Dg) — DY(Dg) for * € {qc, coh, h,rh},
Ry : DY(Dp) — DY(Dg) for x € {coh,h,rh},
The affine Radon transforms preserve the following subcategories
R5, Ry Ru+, Ry, Riys : DYU(Ds) — DY(Dy;,)  for = € {qc, coh, h,h},
RY : DY(Dp) — DY(Dy;,)  for * € {coh,h,rh},

Proof. — First notice that the claim is clear for * € {qc, h,rh}, be-

cause the direct image, the inverse image and the derived tensor product é@
preserve quasi-coherence, holonomicity and regular holonomicity and the
proper direct image preserves holonomicity and regular holonomicity. The
functors Rs, Ry, R resp. Rj, RS, R} preserve coherency because 77,7
resp. 77 /, w?/ are smooth and coherency is preserved by proper direct im-
ages. In order to prove that R /¢ breserves coherency, recall that we have
the isomorphism

’ ’ + L,
(M) = MoRy ), ~my(mf M®R,).

TOME 65 (2015), FASCICULE 4
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Because 7 is proper, it is enough to show that 7 M®R1/t € Db, (Dp i)

for M € D’ , (Dp). Notice that char(R, ;) C T7/P x W u 7 P x W.
Thus one can easily compute that the transversality condition

PxW

(char(M) x T2, W) (Tg, P x W)UT? -

]P’><W)CT* P x W

is satisfied. This shows the claim for R} /¢~ The proofs for Ry+, R+ and
R1/t can be easily adapted. O

LEMMA 1.6. — Let M € D%, (Dp), we have the following triangles in
Dgoh (Dy):
(1) RY(M) — R}, (M) — R5(M) =
<mwmvmw>HW<H%
(8) Rps (M) — R4 (M) — Ry, (M) =
Proof. — The first and the third triangle can be deduced from the fol-
lowing triangles

iz i [ (N) — N — jorjé (N) 25

and

RTA(N) — N — jury it (N) 25

where N € Dgoh (P x W) The second triangle can be deduced by applying
D to the first one. |

1.3. Fourier-Laplace transform

In the next definition we want to introduce the Fourier-Laplace trans-
form.

DEFINITION 1.7. — Let as above V' be a vector space and denote by
V its dual. Define L := = Oy pe (" where (o, ) is the natural pairing
between V and V and the D—module structure is given by the product rule.
Denote by m : V X vV - V,m VX V — V the canonical projections.
The Fourier-Laplace transform is then defined by

FL:D. (Dy)— D..(Dy),

L
M mo (rf M ®L).

ANNALES DE L’INSTITUT FOURIER



A COMPARISON THEOREM BETWEEN RADON AND FL-TRANSFORM 1587

Remark 1.8. — 1In the setting above with W = V¥ and W := V* we
can perform the Fourier-Laplace transform stepwise. Set N;; := V*J x yx
for 5,1 € {0,...,k} with j +1 = k + 1 and denote by v!,...,v7, AL, .. Al
elements of N;;. Define Lj; := ONjyle*@j*)‘”. Notice that Lj; ~ (ﬂj*l)JrL if
it N —V x V is the canonical projection to the j — th factor of V*J
and to the first factor of V*L. Set

FL; (M) = (m§")4 (r") "M ® L),
where
ﬂ{’l :Nj; — Nji—1,
(RN ID VIS U N (L S U N
™t Ny — Ny,
(CLART D D O RS (TENE At NP U
One can easily show that for M € D}.(Dw) we have
FLjo...0FLy(M) ~FL(M),
where the Fourier-Laplace transform on the right hand side is performed

with respect to W.

We will also need a relative version of the Fourier-Laplace transform.
So let E — X be a vector bundle, £ — X its dual and denote by can :
E xx E — X the canonical pairing with respect to the fibers. Define
Lx = Op, pe “". The Fourier-Laplace transform with respect to the
base X is defined by

FLx : D}.(Dg) — D}.(Dy)
L
M w3 (7)) M & Ly)

where 7 : E xx E — E and 7 : E xx E — E are the canonical
projections.

Consider the case where the vector bundle F is trivial, ie. 7 : E =
XxV — Xand E = X x V. Let V1,...,U, be coordinates on V and
denote by Ay, ..., A\, the dual coordinates on V. This gives an isomorphism
between E and E which allows us to view 71 Dx-modules to be defined
on E. Let M be a Dx xy-module. We denote by M the D y-module on
F which is equal to M as a 7 'Dx-module and where \; acts as 0y, and
Oy, acts as —uv;.

The following proposition goes back to Laumon and Katz [9]. The D-
module case is due to Malgrange [10].

TOME 65 (2015), FASCICULE 4
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PROPOSITION 1.9. — There is the following isomorphism in D*(D):
FLx(M)~M  for M e M, (Dg).

Proof. — The proof given in [10] of the case X = pt carries over almost
word for word. g

2. The comparison theorem

In this section we give the proof of the comparison theorem. In the first
section we review the theorem of d’Agnolo and Eastwood for the codimen-
sion one case. In the second section we state the results for the higher
codimension case and in the last section we give the proof of these state-
ments.

2.1. The case of codimension one

Notice that in codimension one the varieties Z’ and A’ as well as U’ and
C' are equal, hence we have the following equality of functors Rs[—1] =
RA+ and R1/t = RU+.

Denote by 7 : V' — V the blowup of the origin 0 in V' and by E the
exceptional divisor. Then V' carries the following stratification

EBVEV.
Denote by i:V — P x V the natural embedding. Consider the maps

(2.1.1) PEV LY
obtained by restriction of the natural projections from P x V and by
PEVLYV

their restriction to V. This gives rise to the following diagram

(212 / v\
NP

ANNALES DE L’INSTITUT FOURIER
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We define the following kernels
Si =7+0‘77 Sy =i1jy+Oy, Sije =14y Oy, S5 =i4ip+Op
onPxV.

The following result, comparing the affine Radon transform and the
Fourier-Laplace transform, is proven in [3] for the case k = 1.

PROPOSITION 2.1. — [3, Proposition 1] There is the following isomor-
phism of integral kernels in D*(Dp,, ;).

SuoL~R,,
where
u=16Y,1/t and 4=46,1,1/t,Y.

Define the following functors from DSC(DP) to Dgc(’DV):

exts(M) := jor (7B)T M ~ jiip it7t M
ext (M) == j 7t M
exty ) (M) := jom M =~ 3+jv+jv+%+(M>
resp. from D? , (Dp) to Db, (Dy)
exty (M) = jim ™M ~ jo jy. gl 7t (M)

LEMMA 2.2. — Let M € D%, (Dp), we have the following triangles in
l)goh(l)"):
+1
1
(1) exty (M) — exty (M) — exts(M) —

(2) exts(M) — exty (M) — exty (M) REN

Proof. — The triangles can be deduced from

ippih[—1)(M) — M — jy jh (M) =

and the corresponding dual triangle. |
The proposition above gives the following comparison between the affine
Radon transform and the Fourier-Laplace transform.
COROLLARY 2.3. — For M € D! (Dp) there are natural isomorphisms
in DZC(Dv)
FLoext, (M) ~R,(M) u=1,6
and for M € D%, (Dp) there are natural isomorphisms in DY , (D)

coh coh

FLoext, (M) ~R,(M) u=1/t,Y.

TOME 65 (2015), FASCICULE 4
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Furthermore, there are the following isomorphisms of triangles

+1

Ry (M) Ri (M) R(M)

e )

FLoexts(M) —— FLoexty(M) ——= FLoext;(M) ——

and

Ry(M) ——————> Rl (M) ————— Ry (M) —=

L

FLoext;(M) —— FLoexty (M) —— FLoexts(M) —

Proof. — We have
RL(M)~MoR, ~MoS,oL~FL(Mo8S,).

So we need to shows that ext,(M) ~ M ¢ S,. But this follows from [3,
Lemma 1]. The isomorphism of triangles follows from the fact that the
proof of [3, Proposition 1] is completely functorial. O

The two results above which deal with the affine Radon transform were
used by d’Agnolo and Eastwood to prove the following theorem, which
generalizes a result obtained by Brylinski in [1, Théoréme 7.27)

THEOREM 2.4. — [3, Theorem 2] For M € D} (Dp) there are natural
isomorphisms in D}, (Dir\ (03)
r*FLoext, (M) ~ 7 Ry(M) u=1,0
and for M € D® , (Dp) there are natural isomorphisms in Dgoh(DV\{o})

coh
r FLoext, (M) ~7#TRa(M) u=1/t,Y.

where r : V' \ {0} = V is the natural inclusion and # : V \ {0} — P the
canonical projection.

2.2. Statement of results

In order to state the comparison theorem in the case k > 1 we have to
introduce the following maps. Let

A:P— PXk

ANNALES DE L’INSTITUT FOURIER
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be the diagonal embedding. Consider the following cartesian diagram

V*)ka

N

]P)*A>PX’C

where the vertical map [[ 7 on the right is just the k-th product map of the
canonical projection 7 : V' — P and V is defined as the k-times product:

(2.2.1) V::VXP...XPV.

Recall that the closure of the map (7, ) : V — P x V is the space V defined
above which is the total space V(Op(—1)) of the tautological line bundle
Op(—1). We get the following commutative diagram

PxV*F —— (PxV)*k

T e

¥ ok

where the closure of the image of [[(r, j) is equal to V**. Hence the closure
V of the image of V. — P x V** is equal to

k
V=V (@ op(n)

which is the total space of the k-times direct sum of the tautological bundle
of P. Denote by D the complement of V in V, by E the image of the zero
section in V and by V° the complement of E in V. We get the following

LN /
NN

E

diagrams

VO

><k

*><<7<

,m* and 7P are restrictions of the projection P x V*k — P
to the first factor and j°,j*, jr and jp are restrictions of the projection to
the second factor.

where 7°,
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Define the following functors from D}.(Dp) to D}.(Dy «x):

ext§(M) == (jp)+(7")" M ~ (jr)+(ig)+ (i) " (me) "M
ext} (M) := ()4 (me) T M
exty (M) = (§°)4 (x°) "M = (ji) 1 (Gve )+ (Gve) T (mi) M
(2.2.2)

resp. from D? , (Dp) to Db, (Dyxx)

coh

eaty (M) := (§°); ()" M = (ji)4 (e )3 (Gve) " (i) " M
eatyy (M) := (5)+(m*) "M = (i) + (Gt () F (@) M

We still need one more extension functor. Let V' :=V (@le Op(l)) be
the dual vector bundle of V. Denote by Dj for [ =1, ...,k the image of the
zero section of the I-the summand Op(1) and by D' = Ué:1 Dj their union

in V. Let V/ 2% V' the complement of D’. We get the following triangle
in ch)oh (DV’)

RI'p Oy — Oyr — (jV/)+(jV/)+OV’ +—1>

We now apply the Fourier-Laplace transformation FLp to the triangle
above:

(2.2.3) FLp(RT pOy/) — i O — (i)t (o) TOw -5

In order to see this we have to compute the second and third term. We
will do this locally with respect to P. Let (vg : ... : v,) be homgeneous coor-
dinates on P and let V; C P the affine chart with coordinates (v;1, ..., Vi)
given by v; # 0. Then V; := V), ~ V; x C* and V] := Viy, = Vi x (CkY
are trivial vector bundles with fiber coordinates £1,...,& and x1,..., 2,
respectively. Hence by Proposition 1.9 we have the following isomorphisms
in Dgc(Dvl)

FLy,(Oy) = FLy, (DV;/(am, O T T ,amk))
= DVl/ (avn? ) avmvglv cee fk)) = ZEIJrOEi y

where ig, : E; := ENV,; — V, is the canonical inclusion of the zero section.
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Denote by jy : V;

K2

= V’mvg — Vi and jy, : V, =VnvV, -V,
the canonical inclusions. The third term follows from the following isomor-
phisms in D (Dy, ):

FLy, ((iy)+ Uiyt Ou; ) = FLy, (Ou (+(D' 1 V7))
~ FLy,(Dy; [(Oviys - -+ s Ovipys Oy T -« o, Op,, Tn))
~ Dy, [(Doiys -+ Do 610815 -+, En0e,.) = (J,)1 (G9,) T Ov,
where the first isomorphism follows from
() + G )T Oy =~ (G )+ (jV;)_lovg
(since Ji 1s an open embedding) and the last isomorphism follows from

(G9.)1(%,) T Ov, = D(jy,)+D(jy,) ' Oy,
~ D (jy.)« DOy, =D (jy,)x Oy, = DOy, (xDNV;)
~D (Dy,/(Quirs- -+ Ovss 01 1y, 06, 6n))
~ Dy, /(Ovsrs- 300,610, ,EnDk, ) -

We are now able to define the last extension functor:
L
eath (M) = (ju)+ (me)* M ® FLp(RT 5 Oy))

from D%, (Dp) to D2, (Dyxx).

coh

LEMMA 2.5. — Let M € D°,, (Dp), whe have the following triangles in
‘DIC)Oh (Dvxk)f

(1) exth(M) — eat}, (M) — exth(M) =

(2) emth(M) —s exth (M) — exth (M) 5

(3) etk (M) — exth(M) — exth, (M) 5

1

Proof. — The first triangle can be deduced from
. . 1
/LE+’LE[_1](M) — M — jw_j{;(M) N

and the second from corresponding dual triangle. The third triangle follows
from (2.2.3). O

We have the following generalization of Corollary 2.3

PROPOSITION 2.6. — For M € DSC(DP) there are natural isomorphisms
in DZC(DW)

FLoextt (M) ~RL(M) uw=1,6 4=241
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and for M € D%, (Dp) there are natural isomorphisms in D? , (Dy;,)

coh
FLoexth (M)~ R, (M) w=1/t,Y,U A" a=Y,1/t,U" A",
Furthermore, there are the following isomorphisms of triangles

R4 (M) ————> R} (M) ————— R4(M) ———

FLoextf(M) ——= FLoexth(M) —— FL o extt(M) Ll

Ry (M) Ry (M) Ry (M) —=

L )

FLoext;(M) —— FLoexty (M) — FLoexts(M) —

+1
o+ (M) RY(M) ———— Ry (M) ———
FLoextyi (M) —— FLoexts(M) —— FLoexty: (M) g

The corresponding generalization of Theorem 2.4 is the following theo-
rem.

THEOREM 2.7. — For M € D! (Dp) there are natural isomorphisms in
DZC(DS(]C,’IL))

rT(FLoexth (M) ~ 7T R4(M) u=1,8 a=41
and for M € D%, (Dp) there are natural isomorphisms in D, (Dg(j.n))
rT(FLoextd (M) ~ #*Roy(M) uw=1/t,Y a=Y,1/t.

where r : S(k,n) — W = V** is the natural inclusion and # : S(k,n) — G
the canonical projection.

2.3. Proof of the higher codimension case

In this section we give the proof of the comparison theorem in the case
of k > 1, using the case k = 1 already proven by d’Agnolo and Eastwood.
We first introduce various Radon like transformations on the product
space P** and prove in Lemma 2.8 that these transformations applied to
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some D-module M which is supported on the diagonal of P** are isomor-
phic to the d-plane Radon transforms of M. Set

Z ={([v'], .., [F AL A e PR W | XN (') =0 Vi e {1,...,k}}

and denote by i : Z — P*k x W its inclusion. Define the open subvariety

U:={([v'],...,[0F], AL, .. AR e PR e W | AL (wh) #0,..., AF(0F) #£ 0}

and let Jg - U — P** x W be the canonical inclusion. Denote by 78, 75

the projections from P** x W to P** resp. W and denote their restrictions

to Z resp. U by ¥, 7% resp. n{, Y.

We define the following transformations for M € D?.(Dpx)

Rs(M) := 7T2Z+(7T1Z)+M = 7T2A+i§+l§(7T1A)+M7

w
=7

U’ - PxW A

Ju’ tz!

!
2
Ay P Axidy, Ay
~ A R i ~
U - P*k x W Z
7
Ly

]P)Xk
where all squares are Cartesian.

LEMMA 2.8. — We have the following isomorphism for M € D! (Dg)

Ry(M) ~ Ra(Ap(M)) @=06,1,U".
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Proof. — We are going to show Rj(M) =~ Rs(A4 (M)) the other cases
are similar or even simpler.

/ ~ : i+ o+
R(;(M) =Tz 4157/ T M

12

A . . . +
o (A X idy) 4 izryiy ) M

R

A o+ o+
7r2+22+AZ/+zZ/7T1 M

A+ ~ +
o~ 7r2+z§+zg(A X idw )7 M

l

A A
~ 7r2+zz+227r1+A+M

= Rs(A4(M)).

|

Now we want to define transformations ﬁz which can be considered as
partial Radon transforms with respect to the i-th factor of P**. We will
prove in Lemma 2.10 that the Radon like transformations R; introduced
above are actually equivalent to the consecutive application of the corre-
sponding hyperplane Radon transforms ﬁ; on each factor.

Define T; ; := P> x V*J for i,5 € {0,...,k} with k <i+j <2k and
consider the following diagram of spaces

T ke Ty ———Tox
71_21 k
WTLkl
1
T k-1
Tk,2 Ti—1,2 )
To o

Tho——>Tp_ 12 —>Tip_22

Tk,2 Tr—1,2
™ ™

Tipy ——> Th—11

k1
Ty
Tk,1
™

Tk.0
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where the maps are defined as follows:
7T,1Ti’j : T’i,j — Ti’jfl,
([0, [, AL M) = ([0, 0], 02, M),
7T2Ti’j Ty — Ty,
([, [ AL M) = (1], AL N

for i, € {1,...,k} with k+1 < i+ j < 2-k. Now it is easy to see that
the squares

T
oI

2
Tij —Ti1,

ﬂ_?i,]‘ W?i—l,j
_n_Ti,j—l
2
Tij 1 ——Ti_1j-1

are cartesian for i,j € {2,...,k} withk+2<i+j <2 k.
We now define closed subvarieties Z; ; C T;; = P** x V>*J for i,j €
{0,.. .k} withk+1<i+j<2 kK

Zigi={(@"), o WA V) €Ty |
AL(F=ItLy = = R () = 0}.
Notice that
Zg = {0, A A e Ty | A () =AM =0 = 2
and
Zik—iv1 = {0 LA N e T [ A (0F) = 0}
forie{1,...,k}.

YA A . . T .
LEMMA 2.9. — Let n;"’ resp. 73"’ be the restrictions of w;"’ resp.
T -
my"? to Z; j. The squares
71'2Zi’j 7r2Zr+1,s+1
Ziaj Zifl’]' ZT+1,5+1 > Zr,s+1
Z; s Z; : z Zp,s
ﬂth Trllfl,J and ™ r+1,s4+1 ™ rys41
WZZ”'—l WZZT+1,S
Zi’j71 Zi*lvjfl ZrJrl,s > TT,s
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are cartesian for i,j € {2,...,k} with k+3 < i+ j < 2-k and for
r,s€{l,....,k—1} withr +s=k.

Proof. — First, we write down the definition of the spaces involved. Set
k:=1+7—k—1, then

Zig = {0, WAL M) € Ty |
M@ty =0, 1=1,...,k+ 1},
Ziiy, = {([v1]7...,[vi_l],)\l,...,)\j) €Ty, |
M@=ty =0,1=1,.. .,n},
Ziga = {0, WA V) € Tiga |
N@EI) =0, 1=2,... k+ 1},
Zi1j1= {([vl],...,[vifl],v,...,AH) €T 1 1|

A@F=I+)y = 0,1 =2, .. m}

where we changed the indices of the elements in the definition of the spaces
Zij—1 and Z;_1 j_1. Now one can see rather easily that the maps

2
2
Zij ——>Zi—1,
Z. .
T “J l
Zij—1

are well-defined and that the left square is cartesian. The proof of the
fact that the right square is cartesian is completely parallel if one sets
Zi’j = Ti’j fori+j=k. O
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The lemma above gives rise to the following diagram of cartesian squares

Z]%k Zl,k = TO,k:
. 1,k
Zl,kl
™
T k-1
(2.3.1) ks P
2 2
Lo —>Zp—12—>Tp_22

Zk,2 Zk—1,2
S ™

Zeg —5 > T
k,1

We now define open subvarieties U, ; C T;; = P*% x Vi for i,j €
{0,...,k}withk+1<i+5<2 k:

Uij={([v",..., [0, A M) € Tig | NP9 £ 0, 1=1,...,k+1}.
Notice that
Ui = {0, [0 AL A € Trg | MY (1) #0,.., 0 WP £ 0} = U
and

Uibivr = {0, [0, A N ey | A(0') # 0}

for i € {1,...,k}. Arguing as in the case of the Z; ; we get a diagram of
cartesian squares
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Uik Uik ——Tok
7721
Ul,ki
T
Ty k1
Uk,2 Ug—1,2

o Ty )

Ugo ——Up—12 ——=Ti_22

Uk,2 Uk—1,2
L U

Ueg —> Th-11
k.1

Ui,

Vi ' i

Ju; 4
- i
71'17"J 71_27,,]
(2.3.2) Tij—1 T, Tiv1,

s J . “J

Zij

for i,j € {0,...,k} with i + j = k + 1. Now define the following partial
Radon transforms for M € DZC(DTi)]._l)

i Zig( _Zij
Rs(M) = Tot (™)

; Ui/ Ui, T, . ) T
v+ (M) = my 2 (m7) M WQjFJ]Ui,j"r][}_i)j (m )M,

T - 4 T;,;
M~ Toyliz, 4, (m ") M

i Ti,j ¢ Ti,j
RI(M) :=my? (my )M

LEMMA 2.10. — We have the following isomorphisms for M € DZC(DTk,o)
Rio...oRE(M)~Ra(M) a=1,6U".

Proof. — We will only show 7%(15 0...0 ﬁlg(M) ~ R5(M) the other cases
are again similar or simpler. Recall the pyramid diagram 2.3.1 from above.
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The squares

7‘_va _n_Zr+1,s+1
2
Zij ——>Zi—1 Zri1,641 — Zyst1
a0 7_‘_17,—1,‘] and - r+1,s+1 - sl
plii—1 ortls
2
Zij—1 —> Zi_1,j-1 Lpp1,s —> T s

are cartesian for 4,5 € {2,...,k} with k+3 < i+ 7 < 2-k and for
r,s€{l,....,k—1} withr +s=k.
By base change we have the following isomorphisms of functors

Zimnayk(

(n! fo)

Ty Zi'j)+

+ = (7T2Zi’])+(771
and
(7 ) )y = () )
Thus we have
Rio.. oREM) = (m ") (r{ )T (™) (m ™) M
S T € T M C i R C i (R hs

It now follows from the construction of the Z; ; that Zj ; ~ Z and, if we
identify the latter spaces, that

Z1,k Zi-1k_Zuw _ 7 Z1,k Zkk—1_Zkk _ _Z
Ty "L T my " =my and Y ...mg w7t =mi .

Thus
Rio...oRE(M)~xZ (nZ)*M

O

As a next step we want to compare the partial Radon transform ﬁz
with a partial Fourier-Laplace transform. For this, we need a description
of the partial Radon transform as an integral transformation with kernel

R%. Recall diagram (2.3.2) and set
E@Jr = jUi,j—O—OUi,j, Eg = Z‘Z,;,j—O—OZi,j, Ell = OTi‘j .

fori € {1,...,k} and j = k 4+ 1 — i. By arguing as in Proposition 1.3, we
get

~. . . L ~.
Mo R =yt ((n )T (M) & RY) =~ R (M)
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for M € D! .(Dy,,_,) and @ = 6,1,U.
Recall the definition of the space T; ; and define for ¢ +j = k 4 1:

1 k—1
TiZ:Ti’j: PX(]P)XV)X \%4

l

i

N
Il
N

(2

together with the following projection:
ali T, — P x V,
([0, T T A A A s ([0, )

We also need to define the following spaces
i—1 k—1
Q; ::HPX (PxV)x HV,
1=1 =i
i—1 k—1
Oi::HPx(fo/)x HV,
=1 l=i

i—1 k—1
Po=][Px®xVvxV)x ][]V,
=1 =i

together with the corresponding projections
79 Q; — PxV,
790, — VXV,
ali P PxV xV.

This gives rise to the following commutative diagram

PxVxV N
q12 iqw/x\\
23
VxV PxV PxV

We consider now the following lifts of the kernels L_ §u on P x V to Q;:

Sii= (791,05, S = (@) Vi (jy Oy), Si o= (79) iy (ip4 Ok)
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and
L; .= 7t L
on O;. Notice that we have Ri ~ 7TiT R/

PROPOSITION 2.11. — We have the following isomorphisms of kernels
in DY(P x V):

SioL;~R: for u=1,6U" a=61U0%,
Proof. —

o i i \+ Qi L. +
Sy o Li~qi5.((q33)" S, @ (¢12)" Li)

. , ~ L
=~ g3 (77)F (43 Su © af
L

~ (77)  quay (g3 Su ©

~ (77) (S, 0 L)
(2.3.3) ~ (7T F(Ry)

~ R!
where (2.3.3) follows from Proposition 2.1. O

Now define the following spaces
Niji =P x VX XL,

with 7, j,l € Ng and ¢ + j + 1 = k. Notice that Ty_; ; = Nr_;0,;. We define
functors

extd' : D! .(Dn,,,) = Doo(Dn,_y ;4y,) foru=96,1
and
emtzzljji : DYon (D, ;) = D2 (DN, iv)
which are lifts of the functors

exty : DZC(DP) — DZC(DV) foru=14,1,

L ~
M s ext,(M) ~ moy (77 M ® S,)
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resp. extyt : DY, (Dp) — DY

coh

(Dy). More precisely, let

7l PO o (P x V) x VI x X
= Niju =P x P x VI x VX,
gl PO o (P x V) x VX x X
= Nis 10 = PO 5 Vo VI x 7,

(2.3.6) 7wl: P*G-1) PxV)xV* x VX L PxV

(2.3.4)

(2.3.5)

be the canonical projections, then
ot (0) = (r") (71 & )73, )

for M € D! .(Dy,,,) and u = 8,1 resp. M € D%, (Dy, ,,) and u = U'.

coh
We also want to define various partial Fourier-Laplace transforms

FLij: D}.(Dy,,,) — D!.(Dy

i,j—l,l+1) )

which lift the corresponding functor

FL: DZC(DV) — DZC(DV)?
M — FL(M),

i.e. let

XL X VXU 5 (1 x 1) x P

= Ny =P VXU v vt
XL X VXU 5 (1 x 1) x P

= Nijorar1 = PXx VXU 7o vt
VLIS S yx@-1) « (V x V) x VX

SV xV

be the canonical projections, then

FLyt(M) = () ((»&f‘l)w 5 (x”l)*L) |
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Now consider the following diagram of functors (for readability we just
wrote the spaces and not the categories on which the functors are defined)

Noo,k
RY
° FLo1k—1
—_—
N1ok-1- o Nojk—1
Ni—20,2
FLk 21,1
Ni—1,0, et —> Np_211
RY
FLk_11,0 FLk 220
NkOO = Vi— 110 4>k = Ni—220 No,k,0
u

First notice that the upper triangles commute, i.e. for M € Dgc(Dka)
and u = 9,1 resp.
M € D%, (Dpxx) and u = UT we have the following isomorphisms

REL(M) ~ M o R},
~Mo(SioL)~(MoS)oL;
~ FLi 115 i(MoS)~ FLi_y 1 xioexti™ (M),
LEMMA 2.12. — Let M € DZC(D]P:Xk). We have the following isomor-
phisms
FLoig_10extt® o .o FLy 1100extt:00(0)
~ FLoextt* 100 oeath00(N)

Proof. — To prove the proposition we have to show that the following
squares commute

i,j—1,1+1
ext,;

j\Q,j4*1,l%*1 ]\2471,jJ—%1
FL; . FLi 1541,
Niji Ni1j+11

5,0
ext,”
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for 4, 4,1 € Ng with ¢ + j 4+ [ = k. It is enough to prove the commutativity
of the following diagram:

2

XxPxV—2 o XV xV

FL2 FLl

X xPxV

XxVxV

e:l:t’(l,

where X is some smooth algebraic variety and the functors F Ly, F Ly, ext?
ext? are defined below. Consider the following maps

P X XPXxVXV —XxPxV,
(, [v'],0%,0°) = (2, [01],0%)
P X XPXV XV —XxVxV,
(z, [v'],v%, ) = (z,v%,0°),
P: X XPxV XV —PxV,

(&, [v'], 0%, 0%) = ('], 07).

The functor ext} is defined by:

exth (M) := po (pF (M) & p* (3)) .

Consider the following maps

qlszIE”xfo/—>X><IE”><V,
(z, [v'], 0%, A1) = (2, ['], AT)

G XXPxVXxV-—XxVxV,
(z, [v'], 0%, A1) = (z,0%\Y),

q:XxIP’xVxV—HP’xV,

(z, [, 0%, A1) = ([0'],0%).

The functor ext? is defined by:

et (M) = 2. (gF (M) & ¢ (5.)).
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Now define the maps

x1:X><V><V><f/—>X><V><V,
(x5v17v27>\1) +_> (x’v13v2)7
XQIXXVXVXV—)XXVXV,
(z, 0", 0% A = (2,02 A1),
x:XxVxVxV—)VxIAﬂ
(z, 0" 0% M) = (vh ).

The functor F'L; is defined by:

FLy (M) = yo1 (X{ (M) & X" L)

Now define
K1 X XPxVxV-—XxPxV,
(2, [0, 0% \Y) = (2, [0, 07)
/<;2:X><]P’><V><V—>X><]P’><f/,
(z, '], 0%, A1) = (2, [v'], AT)
n:Xx]P’xVxV—)fo/,

(z, [v'], 0%, A1) = (v ).

The functor F'Ls is defined by:
+ Lo+
FLy(M) := koy (k] (M)®@KTL).

Consider the following diagram

XxPxVxVxV

X xPxVxV XxVxVxV
/ X‘ / k
XxPxV XxVxV XxVxV
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where the maps 6; and 05 are defined as follows

01 : X xPXxVXVXxV—XxPxVxV,
(z, [v'], 0%, 0%, A1) = (a, [0], 0%, 0%),
Oy : X xPxVXxVxV-—XxVxVxV,

(z, [v'],v%, 03, AY) = (2,02, 03\
Notice that the square is a cartesian diagram. We have
FLyoext, (M)
L ,~\L
= Xa+ <XTP2+ (pT(M) ®p+5u) ® X+L)
+ [t Lo+3 )\ &+
= Xat | 02407 (P (M) @pTS, ) @XxTL
+,+ Lo+ + Lo+
= Xa+ | 02+ (077 (M) @07p" Sy | ©XTL

L ~\ L
= xo402y ((01"1)1"(]\/[) ® 01"p+3u> ® 9;X+L>

Now consider the other diagram

XxPxVxVxV

XxPxVxV XxPxVxV
XxPxV XxPxV XxVxV

where the maps p; and ps are defined as follows:
PLiXXPXVXVXV—=XxPxVxV,
(z, [v'], 0%, 0% A1) = (z, [0'], 0%, AT)
P2 i X XPXVXVXV—3XxPxVxV,

(z, [v'], 0%, 0% A1) = (a, [0'], 07, AT)
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This makes the square a cartesian diagram. We have

ext? o FLy(M)

L L~
= Q2+ <erf€2+ (HT(M) ® H+L> ® Q+Su>

Notice that we have gz 0 p2 = x2 063, k1 0p1 =p1 061, Kopy = xobs and
L
q o p2 = po ;. This, together with the associativity of ® shows
ext? o FLy = FLy o extl .

But as observed above, this shows the claim. O

Consider the following diagram, which is the k-th product of diagram
(2.1.2) above:

Vxlc
Pxk H; ‘7><k HJ Vv xk

[1=* [0

Define the following functors from D}.(Dpxx) to Db.(Dyxk):

extlL(M1) = (TT jo)o (T2 2)* M

extl (A1) = (7). (M7 * M

(2.3.7)
resp.

emtlU—IT(M) = (M4)(Mm) "M
from Dgoh(Dka) to ch)oh(DVXk)'
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LEMMA 2.13. — Let M € D} (Dpxx) and u = 6,1 (respectively M &
Db, (Dpxx) and u = UT). We have the following isomorphisms

extt* 1006 oexthOO (M) ~ emtuH(M) .
I1

where exty," are the extension functors defined above.
Proof. — We begin by proving the case v = 1. Set M,; = P*' x
Vx(k=i=3) 5 V%I for i + j = k and define morphisms
O'lllj = Zdﬁ;z X T X Z-dik_i_j_l X Zdé] : Mz}j — Mi+17j s
d><k i—j—1

i o X1 =  gXJ
0'2 : ZdP X1 X 7 X Zdv : Mi,j — Mi’jJrl’

where 7 : V — P and IE V = V are the maps from equation (2.1.1).
Consider the following diagram

Moo —5= Mo, Mo k-1 —— Mo,k
oy’ oy’
U?,O\L a?,ll U?,kll
Mo ——5= M M -1
oy’
M1, ey — M1

where the squares are cartesian diagrams. Notice that My_; ; = Ni_; 0 =
P> (k=1 5 V*i and

ety ""O(M) = (05" Ty (0TI T(M)
for i € {0,...,k — 1} (cf. [3, lemma 1]). We therefore conclude by base
change that
exti*H0 o exth 00 (0r)
k—
~ (03474 (00 (020) . (oF 0 (1)
e ool (o oo A,
Notice that oF "o, . 00%0 = M7 : V*k 5 Pk and o o 00d? =
mj: vk VXk. ThlS shows the claim for u = 1.
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The proof for v = UT is virtually the same if one defines M; j :=P* x
Vx(k=i=3) 5 V%J with
i NG . iXk—i—j—1 - XJ
Ulj = ZdPZ X m X Zdv J X Zdvj : Mi,j — Mi+1,j7
i . -dxi .dxkfifjfl . -dxj - M M
Oy = tlp XZV X 7 Xdyo i T ij+1

where 7 : V — P is the canonical projection and j : V — V the natural
inclusion. In this case

k—i,i, h—ie1,iy ; k—i—l,
ext O(M) =~ (o5~ )t(o} B (M)

Ut
as well as

oF 0% ooPl =Tix . VXE o pxk
and

1 . .
o o ooyt =T1j VXE 5 vk

It remains to prove the case u = §. Define L; j := P*? x {0}F=17 x V>*J

for i + j < k and define morphisms

. o ki s
0/1] = Zd];l 1 X pX Zd?O} % Zdé] : Li,j — Lifl,j7
. gXi . xXk—i—j—1 . s aXJ o1 L

oy =idp’ X zd{o} X i X 4idy” 1 Ly ; — Lj j41,

where p : P — {0} is the map to the point and ig : {0} — V is the canonical
inclusion.
Consider the following diagram

0,0 0,k—1
Qg Ay
Loy —— Lo Lojg—1— Loy
ai,oT O‘}JT a},le
1,0
Qo
Lig—— L1 Ly -1
k—1,0

; .
Liy_10—>Li_1,1

k,0
Otl T

Lo

where the squares are commutative diagrams. For the following isomor-
phisms, notice that Ly_;; = Ni_ii0 = Px(k=i) « V*i and recall the
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following maps

Wlffi’i’o t Ni—iit1,0 — Ng—ii0 = Li—ii,
W;ﬂﬂ.’i’o S Ne—iit1,0 — Ng—iz1,i+1,0 = Le—i—1,i+1,
TR0 Nyiip10 — PV,
which were defined in equation (2.3.4), (2.3.5) and (2.3.6).
and denote by & : Lg—;; — Ni_;it+1,0 the embedding with image
P* (k=) » {0} x VX2,

ext/g zzO(M) ~ (ﬂ_§—i,i,0)+ ((ﬂ_iﬁ—i,i,O)-kM@( k— 210) i 5(5)

12

—i,i —4t 5
(ﬂ'; s )0)+ ((7‘("1{: ’ 7O)+M ® §Z+0Lk—7,z>

k—ii,
(3 0)+€i+M
k—i—1,1 k—i,i
(o )+a1+ (M).
for i € {0,...,k — 1}, where the second isomorphism follows from the fact
that the image of the exceptional divisor £ C V under the embedding

i:V — PxVisequal to P x {0} and the fourth isomorphism follows
from the fact that &; is a section of ﬂ]f_”’o. We therefore conclude by the

R

(2.3.8)

1

commutativity of the diagram that

1,k—1,0 %,0,0 0,k—1 0,0y 1,0 k,0
exty’ o...oexty (M) >~ (o )+ co(ag)pagy e (M)

~ (ay* o 0ay?) (a0 0al ) M
(lo)+P+M
=~ (Mjo)4 (Mr") "M

= ext(;H(M) ,

where p : P** — {0} is the map to a point and ig : {0} — V** is the
embedding with image {0} x ... x {0} and TTjy resp. TT7¥ were defined
above. g
I1

Finally, we have to compare the functors exty' and ext?.

LEMMA 2.14. — Let M € D}.(Dp) and u = 6,1 resp. M € D%, (Dp)
and v = UT. We have the following isomorphisms

ewtl—l o Ay (M) ~ exth (M) .
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where extk are the extension functors defined in Section 2.2.

Proof. — In order to prove the lemma, consider the following diagrams

V><Ic V><k
SN SN
v B gy e
lﬂ'k \LH; lﬂ'* lHﬂF
P ka P A ]P)Xk
V><k

E E><k

e

P A ]P>><Ic

where the lower squares are cartesian and the upper triangles are commu-
tative, respectively. We will prove the lemma in the case u = 1, the other
cases are similar:

extllo AL (M) = (7). (M7 AL (M)
o ()4 (B4 7 (M) = Gy 7 (M) = eat(M)
O

We are now able to give the proof of Proposition 2.6.

Proof of proposition 2.6. — For v = ,1,U" and @& = 1,6, U we have
the following isomorphisms:
Ry (M) = Ra(A4 (M)
~RLo. o RE(AL(M))
~ FLoyg_10exti® 1 FLp 1 100extt00 (AL (M))
~ FLoext* 1006 oexthO0(A (M)

~FLo extH(A+(M)),
~ FLoextt (M),

where the first isomorphism follows from Lemma 2.8, the second isomor-
phism from Lemma 2.10, the third isomorphism follows form Proposition
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2.11, the fourth isomorphism follows from Lemma 2.12; the fifth isomor-
phism follows from Lemma 2.13 and the last isomorphism from Lemma
2.14.
This gives rise to the following triangles
+1

Ry (M) ———— R, (M) ——— Ry(M)

) | o

FLoexti(M) —— FLoexty, (M) —— FLoext}(M) —

+1

R5(M) Ry (M) Ri (M)

: v e

FLoexti(M) —— FLoexty (M) —— FLoext;(M) —

i (M) Ry (M) ——— R} (M)

v | -

FLoextyi (M) ——> FLoexts(M) ——> FLoexty:(M) ——

Notice that that the connecting homomorphisms in the first two diagrams
resp. the second square in the last diagram commutes by the functorial-
ity of the proof. Hence the third arrow exists in each diagram and is an
isomorphism in D%, (Dy;,). O

coh

We can now give the proof of Theorem 2.7.

Proof of Theorem 2.7. — Using Proposition 2.6 it remains to prove
rTRL(M) ~ 7R (M)
Let
Z" = {[w], A\, AP e P x S(k,n) | A(v) =... = A (v) = 0}
and
C" = {[v],\Y,..., \F € P x S(k,n) | 3l € {1,..., k} with \(v) # 0}.

We will prove the case r* RS (M) ~ 7t Rs(M) the other cases are similar
or simpler.
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Consider the following commutative diagram

‘ITZ/ A
VA 2 1%
TrZ/ T T
1
TZ// r
ﬂ—Z” 71'Z”
P . z" 2 S(k,n)
\L Tz \Lﬂ'
A G
Up

1" " . . . .
where 77" resp. 72 are the canonical projections restricted to Z” and

rzn Tesp. wyzn were chosen such that the upper resp. lower square becomes
cartesian. One has

rRE(M) =t (xf )M
g ()T M
~ g (wf )M
LA A ORI
g, ()M

=1t RsM

1

2

1

1
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