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SPECTRAL GAPS FOR NORMALLY HYPERBOLIC
TRAPPING

by Semyon DYATLOV (*)

Abstract. — We establish a resonance free strip for codimension 2 symplectic
normally hyperbolic trapped sets with smooth incoming/outgoing tails. An impor-
tant application is wave decay on Kerr and Kerr–de Sitter black holes. We recover
the optimal size of the strip and give an o(h−2) resolvent bound there. We next
show existence of deeper resonance free strips under the r-normal hyperbolicity
assumption and a pinching condition. We also give a lower bound on the one-sided
cutoff resolvent on the real line.
Résumé. — Cet article démontre l’existence d’une bande sans résonances pour

des ensembles captés normalement hyperboliques de codimension 2, dont les varié-
tés entrantes/sortantes sont lisses. Une application importante est la décroissance
exponentielle des ondes pour les trous noirs de Kerr et Kerr–de Sitter. On retrouve
la taille optimale de la bande et on y donne une borne o(h−2) de la résolvante. On
démontre alors l’existence de bandes plus profondes sans résonances si l’ensemble
capté est r-normalement hyperbolique et satisfait une condition de pincement. On
donne aussi une borne inférieure sur la norme de la résolvante tronquée sur l’axe
réel.

1. Introduction

This paper is a collection of results regarding resonance free strips (also
known as spectral gaps) and resolvent estimates in the presence of normally
hyperbolic trapping. Such trapping has received a lot of attention recently
because of its connection with exponential decay of waves on black hole
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Math. classification: 35B34,37D05.
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backgrounds, exponential decay of correlations for contact Anosov flows,
and applications to molecular chemistry. See below for an introduction to
the role of resolvent bounds in decay estimates.
In [28], Wunsch and Zworski showed existence of a small spectral gap for

symplectic normally hyperbolic trapped sets under the assumption that
the incoming/outgoing tails Γ± are smooth and have codimension 1 in the
phase space; this includes subextremal Kerr and Kerr–de Sitter black holes.
More recently, Nonnenmacher and Zworski [23] extended this result by (a)
assuming much weaker regularity of Γ±, namely that their tangent spaces
at the trapped set have merely continuous dependence on the base point
(b) making no assumption on the codimension of Γ± (c) establishing the
optimal size of the gap. The assumptions of [23] apply to more general
situations, including contact Anosov flows.
The first result of this paper (Theorem 1.1) is a spectral gap of optimal

size under the assumptions of [28] (and the orientability of Γ±). The novelty
compared to [23] is the o(h−2) resolvent bound in this gap. The short proof
presented here is also more direct than those in [28, 23] because it relies on
regular semiclassical analysis rather than exotic symbol calculus, at a cost
of not recovering the extensions (a), (b) discussed above.
We next show (Theorem 1.3) the existence of deeper resonance free strips,

under the additional assumptions of r-normal hyperbolicity and pinching.
The second gap and a Weyl law for resonances in between the two gaps
were previously proved in [11] under the same assumptions. The present
paper essentially removes the projector Π from the method of [11], working
directly with the pseudodifferential operators Θ+

j instead (see the discus-
sion of the proof below). This shows the existence of additional resonance
free strips, but does not recover the Weyl law or the structure of Π (which
is important in understanding wave decay, see [10]). For a different yet
related setting of Pollicott–Ruelle resonances for contact Anosov flows, ex-
istence of multiple gaps under a pinching condition and a Weyl law for the
first band of resonances was proved in [15]. Our methods also bear some
similarities to the recent work [12] on resonances for the geodesic flow on
hyperbolic quotients; the horocyclic operators U− of [12] play the same role
as the operators Θ+

j in this paper.
We finally show a lower bound of h−1√log(1/h) on the one-sided cutoff

resolvent on the real line, complementing the upper bounds of [3, 8] –
see (1.12) and §5.
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Motivation

We first give a brief introduction to resolvent estimates on a model ex-
ample. Assume that (M, g) is a Riemannian manifold isometric to the Eu-
clidean space Rn outside of a compact set, and n is odd. Then [14, §4.2]
the resolvent

Rg(ω) := (−∆g − ω2)−1 : L2(M)→ H2(M), Imω > 0

admits a meromorphic continuation to ω ∈ C as a family of operators
L2

comp(M)→ H2
loc(M), and its poles are called resonances. We say that Rg

has a spectral gap of size ν > 0 with loss of m > 0 derivatives, if there
exists C0 > 0 such that

(1.1) ‖χRg(ω)χ‖L2→L2 6 Cχ|ω|−1+m, |Reω| > C0, Imω ∈ [−ν, 1]

for all χ ∈ C∞0 (M). If (1.1) holds, then each solution to the wave equation

(∂2
t −∆g)u = 0, u|t=0 = χu0 ∈ H1

comp(M), ut|t=0 = χu1 ∈ L2
comp(M)

satisfies the resonance expansion (assuming there are no resonances on
{Imω = −ν})

u(t, x) =
∑
j

J(ωj)−1∑
k=0

tke−itωjujk(x) + uR(t, x),

with the sum above over the finitely many resonances in {Imω > −ν} with
multiplicities J(ωj), and the remainder is exponentially decaying in t > 0:

‖eνtχuR‖H1
t,x({t>0}) 6 Cχ(‖u0‖H1+m + ‖u1‖Hm).

See for instance [9, Proposition 2.1] for the proof. We see that the size ν of
the spectral gap gives the rate of exponential decay of the remainder, while
m is the number of derivatives lost in the estimate. Whether or not (1.1)
holds depends on the structure of the trapped set for the geodesic flow
ϕt : T ∗M → T ∗M

K = {(x, ξ) ∈ T ∗M | |ξ|g ∈ (1/2, 2), ∃V b T ∗M : ϕt(x, ξ) ∈ V
for all t ∈ R}

The bound (1.1) is equivalent to the estimate
‖χRh(λ)χ‖L2→L2 6 Cχh

−1−m,

Reλ = ±1, Imλ ∈ [−νh, h], 0 < h� 1
(1.2)

where Rh(λ) = h−2Rg(h−1λ) is the semiclassical resolvent:

(1.3) Rh(λ) = (−h2∆g − λ2)−1 : L2(M)→ H2(M), Imλ > 0.

TOME 66 (2016), FASCICULE 1



58 Semyon DYATLOV

The bounds (1.2) for Reλ = 1 and Reλ = −1 are equivalent (by taking
adjoints), thus we assume that Reλ = 1.
By the gluing method of Datchev–Vasy [6, §4.1], it suffices to prove the

bound for the model resolvent

(1.4) ‖(−h2∆g′ − λ2 − iQ′)−1‖L2(X)→L2(X) 6 Ch
−1−m,

where (X, g′) is a compact Riemannian manifold which contains a part XM

isometric to (M ∩ BR0 , g) where BR0 is the ball of radius R0 � 1 in Rn,
and Q′ ∈ Ψ2

h(X) is a semiclassical pseudodifferential operator (see §2 for
notation) such that σ(Q′) > 0 everywhere and Q′ is elliptic on X \ XM

and supported away from XM ∩ BR0/2. The operator Q′, as well as the
operators Q′′, Q introduced below, are called complex absorbing operators
and generalize complex absorbing potentials used for instance in quantum
chemistry.
To make the setup of (1.6) apply, we need to make the dependence

on λ linear. For that, take self-adjoint compactly microlocalized operators
P,Q′′ ∈ Ψcomp

h (X) such that

−h2∆g′ − iQ′ = (P − iQ′′)2 +O(h∞) microlocally on {1/2 < |ξ|g′ < 2}.

See for instance [18, Lemma 4.6]; moreover, we have in {1/2 < |ξ|g′ < 2},

σ(P )− iσ(Q′′) =
√
|ξ|2g′ − iσ(Q′),

where
√
· maps positive numbers to positive numbers, so in particular

σ(Q′′) > 0 everywhere. Then (see [11, Lemma 4.3] for a more general
argument)

− h2∆g′ − λ2 − iQ′ = (P − iQ′′ + λ)(P − iQ′′ − λ)
microlocally on {1/2 < |ξ|g′ < 2}.

By the elliptic estimate [13, Proposition 2.4], it suffices to prove a bound
on A(−h2∆g′ − λ2 − iQ′)−1 for some A ∈ Ψcomp

h (X) which is elliptic on

Ω := {|ξ|2g′ − iσ(Q′) = 1} ⊂ {x ∈ XM , |ξ|g = 1}.

Since P − iQ′′ + λ is elliptic on Ω, we reduce (1.4) to the bound

(1.5) ‖(P − iQ− λ)−1‖L2(X)→L2(X) 6 Ch
−1−m,

where Q ∈ Ψ0
h(X), σ(Q) > 0 everywhere, and Q = Q′′ microlocally near

Ω. In this paper, we prove the bound (1.5) for the case when the trapped
set K has a normally hyperbolic structure.

ANNALES DE L’INSTITUT FOURIER
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Setup

Let X be a compact manifold with a fixed volume form and

(1.6) R(λ;h) := (P (h)− iQ(h)− λ)−1 : L2(X)→ L2(X),

where P (h), Q(h) ∈ Ψ0
h(X) (henceforth denoted simply P,Q) are self-

adjoint semiclassical pseudodifferential operators of order 0 with principal
symbols p, q (see §2 for the semiclassical notation used) and λ ∈ C satisfies
λ = O(h). We furthermore assume that q > 0 everywhere and q(x, ξ) > 0
for |ξ| large enough. The family R(λ;h) is meromorphic in λ, and we call
its poles resonances. (The resonances for the model resolvent (1.6) need not
coincide with resonances for the scattering resolvent (1.3), but a spectral
gap for (1.6) implies a spectral gap for (1.3).)
As a particular application, [25] shows exponential decay of linear waves

on Kerr–de Sitter black holes (modulo a finite dimensional space) using a
resolvent estimate of type (1.7). We refer the reader to [25, 10] for further
discussion of the relation between resolvent bounds and wave decay, and for
an overview of previous results on wave decay for black holes. We remark
that the analysis of trapping is critical for the understanding of semilinear
and quasilinear wave equations on black holes – see the work of Hintz–
Vasy [21, 19]. In particular, the loss of regularity in the decay estimate
(quantified by m > 0 in (1.1)) is the reason why [19] has to invoke Nash–
Moser theory.
We also point out that normally hyperbolic (in fact, r-normally hyper-

bolic) trapped sets appear naturally in the semiclassical theory of chemical
reaction dynamics, see [17] for a physical description and [23, Remark 1.1]
for a mathematical explanation.
Our results also hold (with the same proofs) in the general framework

of [11, §4.1], which does not use complex absorbing operators and applies
to a variety of scattering problems. In fact, [11, §§4.2, 8.1] reduces the
general case microlocally to a neighborhood of the trapped set, providing
an alternative to the gluing method discussed in the motivation section
above.

We make the following normally hyperbolic trapping assumptions (see
Figure 1.1; these assumptions provide a definition of Γ± and K in our
framework):

(1) Γ± are codimension 1 orientable C∞ submanifolds of T ∗X such
that Γ± ∩ {p = 0} ∩ {q = 0} are compact;

(2) if (x, ξ) ∈ {p = 0} \ Γ±, then e∓tHp(x, ξ) ∈ {q > 0} for some t > 0;
(3) the Hamiltonian field Hp is tangent to Γ±;

TOME 66 (2016), FASCICULE 1
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K

Γ+

Γ+ Γ−

Γ−

Γ+

Γ−

K

K

Figure 1.1. An illustration of normally hyperbolic trapping, with the
Hamiltonian flow lines of p on the whole T ∗X shown on the left and
the restriction of the flow to Γ±, on the right. The shaded region is
the set {q > 0} where the complex absorbing operator takes over. The
dashed lines are the flow lines of Hϕ± , see §2.2.

(4) Γ± intersect transversely, K = Γ+ ∩ Γ− is called the trapped set
and we assume that WFh(Q) ∩K ∩ {|p| 6 δ} = ∅ for δ > 0 small
enough;

(5) K is a symplectic codimension 2 submanifold of T ∗X;
(6) if v ∈ TKΓ±, then de∓tHp ·v exponentially approaches TK ⊂ TKΓ±

as t→ +∞.

ANNALES DE L’INSTITUT FOURIER
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Assumptions (1)–(6) hold for subextremal Kerr and Kerr–de Sitter black
holes with small cosmological constant, see [28, §2], [25, §6.4], and [10, §3.2].
Note that, as in [11], Γ± are open subsets of the full incoming/outgoing
tails of the flow cut off to a small neighborhood of {p = 0} ∩ {q = 0} (and
thus are noncompact manifolds without boundary); as in [25] (see also [10,
§3.5]), one needs to embed the Kerr(–de Sitter) trapped set into a compact
manifold without boundary.
We furthermore define 0 < νmin 6 νmax as the maximal and the minimal

numbers such that for each ε > 0 there exists a constant C such that for
each v ∈ TKΓ±

C−1e−(νmax+ε)t|π(v)| 6 |π(de∓tHp · v)| 6 Ce−(νmin−ε)t|π(v)|, t > 0,

where π : TKΓ± → TKΓ± is any fixed smooth linear projection map whose
kernel is equal to TK. In other words, νmin and νmax are the minimal and
maximal expansion rates in directions transversal to the trapped set.

Results

Our first result is a resonance free strip with a polynomial resolvent
bound:

Theorem 1.1. — For each ε > 0 and h small enough depending on ε
(see Figure 1.2)

‖R(λ)‖L2(X)→L2(X) = o(h−2)
if |λ| = O(h), Imλ > −(νmin − ε)h/2.

(1.7)

Remarks 1.2.
(i) Theorem 1.1 also extends to the case when P,Q are operators acting

on sections of some vector bundle E over X, as long as they are self-
adjoint with respect to some smooth inner product on the fibers
of E , and their principal symbols (see for instance [13, §C.1] for
a definition) are equal to p · IdE , q · IdE for p, q ∈ C∞(X). We
can also relax the assumption that Q = O(h∞) microlocally near
K ∩ {p = 0}, requiring instead that q = 0 and σ(h−1Q) > 0 near
K ∩ {p = 0} (as an endomorphism of E). Indeed, the proof of
Lemma 3.1 still applies, and the relation (3.9) becomes a lower
bound on µ(e−tHp(Uδ)). We leave the details to the reader.

TOME 66 (2016), FASCICULE 1
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Imλ
h

Re λ
h

1
2νmin

1
2νmax

3
2νmin

3
2νmax

5
2νmin

5
2νmax

7
2νmin

7
2νmax

o(h−2)O(h−3)O(h−4)O(h−5)

Figure 1.2. The resonance free strips of Theorems 1.1 and 1.3 (ignoring
ε) are in white, with bounds on the resolvent R(λ) written in the strips
and (potential) bands of resonances in between the strips shaded.

(ii) We note that polynomial resolvent bounds are known in a variety
of other situations – see the review of Wunsch [27] for an overview
of the subject and [4] for other recent results. Also the much earlier
work of Gérard–Sjöstrand [16] treated normally hyperbolic trap-
ping in the analytic category with (implicit) exponential resolvent
bounds.

We now make the stronger assumption that the trapping is r-normally
hyperbolic for large r, namely

(1.8) νmin > rµmax,

where µmax is the maximal expansion rate along K, namely ‖detHp |TK‖ =
O(e(µmax+ε)t) as |t| → ∞, for all ε > 0. The condition (1.8) means that
the rate of expansion in directions transversal to K is much larger than
the rate of expansion along K, and it holds for Kerr(–de Sitter) black holes
(see the references above).
Under the assumption (1.8) and an appropriate pinching condition, we

exhibit deeper resonance free strips with polynomial resolvent bounds:

Theorem 1.3. — Assume that the trapping is r-normally hyperbolic
for all r. Fix m > 1 and assume the pinching condition

(m+ 1/2)νmin > (m− 1/2)νmax.

Then for each small ε > 0 and h small enough depending on ε, we have
(see Figure 1.2)

‖R(λ)‖L2(X)→L2(X) 6 Ch
−m−2 if |λ| = O(h),

and h−1 Imλ ∈ [−(m+ 1/2)νmin + ε,−(m− 1/2)νmax − ε].
(1.9)

ANNALES DE L’INSTITUT FOURIER
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Remarks 1.4.
(i) Since semiclassical arguments only require finitely many derivatives,

it is straightforward to see that Theorem 1.3 is also valid for trap-
ping which is r-normally hyperbolic for some fixed r, where r is
chosen large enough depending only on m and on the dimension of
X. Such trapping is structurally stable under perturbations of the
symbol p, see [22] and [11, §5.2].

(ii) Unlike Theorem 1.1, we only prove Theorem 1.3 in the scalar case,
rather than for operators on general vector bundles, and for Q =
O(h∞) near K ∩ {p = 0}.

(iii) The pinching condition is true (for all m) for the Schwarzschild(–de
Sitter) black hole. In the Kerr case, it was studied for m = 1 in [10,
Figure 2(a) and §3.3].

(iv) A more careful argument, using in part the proof of Theorem 1.1,
shows that the bound (1.9) could be improved to O(h−m−1) for
h−1 Imλ > −mνmin +ε and to o(h−m−2) elsewhere in the strip, and
more optimal bounds can be obtained using complex interpolation.
The transition from one bound to the other at h−1 Imλ > −mνmin
is similar in spirit to the transition from the nontrapping bound
O(h−1) in the upper half-plane to the o(h−2) bound in the first gap.
The method of Theorem 1.1 produces the slightly better bound of
o(h−m−2) because Lemma 3.2 applies under slightly more relaxed
conditions on the norm of Θ+u than Lemma 4.4.

Ideas of the proofs

The proof of Theorem 1.3 is based on constructing pseudodifferential
operators Θ+

j ,W
+
j such that microlocally near K ∩ {p = 0}, we have

Θ+
m . . .Θ+

0 (P − λ) = (P − ihW+
m+1 − λ)Θ+

m . . .Θ+
0 +O(h∞).

The principal symbol of W+
m+1 is bounded from below by (m+1)(νmin−ε)

near K ∩{p = 0}, which has the effect of shifting the spectral parameter λ
into the upper half-plane. Since there are no resonances in the upper half-
plane, we obtain for m large enough depending on Imλ, if (P − iQ−λ)u =
O(h∞), then

(1.10) Θ+
m . . .Θ+

0 u = O(h∞) microlocally near K ∩ {p = 0}.

This is a pseudodifferential equation on u. The principal symbol of each Θ+
j

is a defining function ϕ+ of Γ+, and the equation (1.10) gives information

TOME 66 (2016), FASCICULE 1
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about the phase space behavior of u along the Hamiltonian flow lines of ϕ+,
which are transversal to K (see Figure 1.1). Together with the information
about the decay of u as one approaches K, which depends on Imλ, one can
show that λ has to avoid the strips in (1.9).
A good example to keep in mind, considered in §5, is

P0 = h

i
(x∂x + 1/2).

The relevant solutions to the equation (P0 − λ)u = 0 are those whose
wavefront set lies on Γ+ = {ξ = 0}, which in particular means that u has
to be smooth. This gives the resonances λm = −(m + 1

2 )ih, m = 0, 1, . . .
with resonant states um(x) = xm and the operator ∂x maps um to mum−1.
For the case of P0, we can then take Θ+

j = h
i ∂x and W+

j = j.
In the case of Theorem 1.1, we cannot construct the operators Θ+

j , how-
ever a rougher version of the operator Θ+

0 gives enough information on the
concentration of u along the flow lines of Hϕ+ to still obtain an estimate.
The proof of Theorem 1.1 in given in §3 and the proof of Theorem 1.3 is
given in §4. Both sections use preliminary dynamical and analytical con-
structions of §2.

Bounds on the real line

For λ on the real line, it is shown in [28] that

(1.11) ‖R(λ)‖L2→L2 6 Ch−1 log(1/h), if |λ| = O(h), Imλ = 0.

The results of Burq–Zworski [3] and Datchev–Vasy [8] (see also the papers
of Burq [1, 2], Vodev [26], and Datchev [5] for bounds on the two-sided
cutoff resolvent) deduce the following improved cutoff resolvent bound:

(1.12) ‖R(λ)A‖L2→L2 6 Ch−1√log(1/h), if |λ| = O(h), Imλ = 0,

if A is an h-pseudodifferential operator such that WFh(A) ∩ K = ∅. The
bound (1.12) can be improved to O(h−1) (which is the estimate in the case
there is no trapping) if one puts A on both sides of R(λ), or if the principal
symbol of A vanishes on Γ− – see [7, 20].
In §5, we show that the bound (1.12) is sharp by giving an example of an

operator P − iQ and A for which the corresponding lower cutoff resolvent
bound holds.

ANNALES DE L’INSTITUT FOURIER
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2. Preliminaries

The proofs in this paper rely on the methods of semiclassical analysis.
We refer the reader to [29] for an introduction to the subject, and to [13,
Appendix C.2] for the notation used here. In particular, we use the algebra
Ψ0
h(X) of semiclassical pseudodifferential operators with symbols in the

class S0(X). We moreover require that symbols of the elements of Ψ0
h(X)

are classical in the sense that they have an asymptotic expansion in non-
negative integer powers of h. Denote by

σ : Ψ0
h(X)→ S0(X)

the principal symbol map and recall the standard identities for A,B ∈
Ψ0
h(X),

(2.1)
σ(AB) = σ(A)σ(B), σ(A∗) = σ(A), σ(h−1[A,B]) = −i{σ(A), σ(B)}.

Moreover, each A ∈ Ψ0
h(X) acts L2(X) → L2(X) with norm bounded

uniformly in h. In fact, we have the bound [29, Theorem 5.1]

(2.2) lim sup
h→0

‖A‖L2(X)→L2(X) 6 ‖σ(A)‖∞ := sup
T∗X
|σ(A)|.

We will mostly use the subalgebra of compactly microlocalized pseudodif-
ferential operators, Ψcomp

h (X) ⊂ Ψ0
h(X). For A ∈ Ψcomp

h (X), its wavefront
set WFh(A) is a compact subset of T ∗X. We say that A = B + O(h∞)
microlocally in some set U ⊂ T ∗X if WFh(A−B) ∩ U = ∅.

We will often consider sequences u(hj) ∈ L2(X), where hj → 0 is a
sequence of positive numbers; we typically suppress the dependence on j

and simply write u = u(hj) and h = hj . For such a sequence, we say that
u = O(hδ) microlocally in some open set U ⊂ T ∗X, if ‖Au‖L2 = O(hδ) for
each A ∈ Ψcomp

h (X) such that WFh(A) ⊂ U . The notion of u = o(hδ) in U
is defined similarly.
We may also consider distributions in L2(X; E), where E is some smooth

vector bundle over X with a prescribed inner product. One can take pseu-
dodifferential operators acting on sections of E , see [13, Appendix C.1],
and the principal symbol of such an operator is a section of the endomor-
phism bundle End(E) over T ∗X. However, we will only consider principally
scalar operators, that is, operators whose principal symbols have the form
a(x, ξ) IdE . (Equivalently, these are the operators A ∈ Ψk(X; End(E)) such
that for all B ∈ Ψk(X; End(E)), we have [A,B] = O(h).) The formulas (2.1)
still hold for principally scalar operators. We henceforth suppress E in the
notation.

TOME 66 (2016), FASCICULE 1
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2.1. Semiclassical defect measures

Our proofs rely on the following definition, designed to capture the con-
centration of a sequence of L2 functions in phase space:

Definition 2.1. — Assume that hj → 0 and u = u(hj) ∈ L2(X) is
bounded uniformly in L2 as j → ∞. We say that u converges to a non-
negative Radon measure µ on T ∗X if for each A = A(h) ∈ Ψcomp

h (X), we
have

(2.3) 〈A(hj)u(hj), u(hj)〉 →
∫
T∗X

σ(A) dµ as j →∞.

See [29, Chapter 5] for an introduction to defect measures; in particular,
• for each sequence u(hj) uniformly bounded in L2, there exists a

subsequence hjk such that u(hjk) converges to some µ [29, Theo-
rem 5.2];

• we have µ(U) = 0 for some open U ⊂ T ∗X if and only if u = o(1)
microlocally on U .

We now show the basic properties of semiclassical measures corresponding
to approximate solutions of differential equations:

Lemma 2.2 (Ellipticity). — Take P ∈ Ψ0
h(X) and denote p = σ(P ).

Assume that u = u(hj) converges to some measure µ and Pu = o(1)
microlocally in some open set U ⊂ T ∗X. Then µ(U ∩ {p 6= 0}) = 0.

Proof. — By (2.1), we have for each A ∈ Ψcomp
h (X) with WFh(A) ⊂ U ,∫

T∗X

σ(A)p dµ = lim
h→0
〈APu, u〉 = 0.

Since σ(A)p can be any function in C∞0 (U ∩ {p 6= 0}), we have µ(U ∩ {p 6=
0}) = 0. �

Lemma 2.3 (Propagation). — Take P,W ∈ Ψ0
h(X), denote p = σ(P ),

w = σ(W ), and assume that P ∗ = P . Assume that u = u(hj) converges to
some measure µ and denote f := (P−ihW )u. Then for each a ∈ C∞0 (T ∗X)
and for each Y ∈ Ψcomp

h (X) such that Y = 1 + O(h∞) microlocally in a
neighborhood of supp a,

(2.4)
∣∣∣∣ ∫
T∗X

(Hp − 2 Rew)a dµ
∣∣∣∣ 6 2‖a‖∞ · lim sup

h→0
(h−1‖Y f‖L2 · ‖Y u‖L2).

In particular, if f = o(h) microlocally in a neighborhood of supp a, then∫
T∗X

(Hp − 2 Rew)a dµ = 0.
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Proof. — Take A ∈ Ψcomp
h (X) with σ(A) = a and Y = 1 +O(h∞) near

WFh(A). Without loss of generality, we may assume thatW ∗ = W ; indeed,
one can put the imaginary part of W into P . Then we have

〈Af, u〉 − 〈Au, f〉
ih

= 〈A(P − ihW )u, u〉 − 〈(P + ihW )Au, u〉
ih

=
〈(

(ih)−1[A,P ]− (AW +WA)
)
u, u

〉
.

(2.5)

By (2.1), σ
(
(ih)−1[A,P ]−(AW +WA)

)
= Hpa−2wa; therefore, the right-

hand side of (2.5) converges in absolute value to the left-hand side of (2.4).
The left-hand side of (2.5) is equal to

〈AY f, Y u〉 − 〈AY u, Y f〉
ih

+O(h∞),

and its limit as h→ 0 is bounded by the right-hand side of (2.4) by (2.2).
�

2.2. Dynamical preliminaries

In this section, we review several properties of normally hyperbolic trap-
ping, assuming that p, q,Γ±,K satisfy properties (1)–(6) listed in the in-
troduction. We start with the following restatement of [11, Lemma 5.1],
see also [28, Lemma 4.1]. To be able to quantize the functions ϕ±, c±, we
multiply them by a cutoff to obtain compactly supported functions, but
only require their properties to hold in a neighborhood U of K ∩ {p = 0}.

Lemma 2.4. — Fix small ε > 0. Then there exists a bounded neigh-
borhood U of K ∩ {p = 0} and functions ϕ± ∈ C∞0 (T ∗X) such that
WFh(Q) ∩ U = ∅ and

(1) for δ > 0 small enough, the set

(2.6) Uδ := {|ϕ+| < δ, |ϕ−| < δ, |p| < δ} ∩ U

is compactly contained in U ;
(2) Γ± ∩ U = {ϕ± = 0} ∩ U ;
(3) Hpϕ± = ∓c±ϕ± on U , where c± ∈ C∞0 (T ∗X) satisfy

0 < νmin − ε 6 c± 6 νmax + ε on U ;

(4) {ϕ+, ϕ−} > 0 on U .

Note that in particular, for δ > 0 small enough and all t > 0,

(2.7) e−tHp(Uδ ∩ Γ+) ⊂ {|ϕ−| < e−(νmin−ε)tδ} ∩ Uδ ∩ Γ+.
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Moreover, the map

(2.8) (ρ, s) 7→ esHϕ+ (ρ), ρ ∈ K, s ∈ R

is a diffeomorphism from some neighborhood of (K ∩ {p = 0}) × {s = 0}
in K × R onto some neighborhood of K ∩ {p = 0} in Γ+.
For Theorem 1.3, we also need existence of solutions to the transport

equation on Γ+:

Lemma 2.5. — Assume that the flow is r-normally hyperbolic in the
sense of (1.8), for all r. Fix small δ > 0 and take Uδ defined by (2.6). Then
for each f ∈ C∞(Γ+ ∩Uδ), there exists unique u ∈ C∞(Γ+ ∩Uδ) such that

(2.9) (Hp + c+)u = f.

Proof. — We use [11, Lemma 5.2], which gives existence and uniqueness
of v ∈ C∞(Γ+ ∩ Uδ) such that Hpv = g and v|K = 0, for each g ∈
C∞(Γ+ ∩ Uδ) such that g|K = 0.
We claim that there exists a function G ∈ C∞(Γ+ ∩ Uδ) such that

HpF = c+F, F := eG{ϕ+, ϕ−}−1ϕ−.

Indeed, G needs to solve the equation

HpG = c+ − c− + Hp{ϕ+, ϕ−}
{ϕ+, ϕ−}

,

and we use [11, Lemma 5.2] since the right-hand side of this equation
vanishes on K.
Now (2.9) becomes

Hp(Fu) = Ff,

and it remains to invoke [11, Lemma 5.2] once again. �

2.3. Basic estimates

We now derive some estimates for the operator P − iQ− λ, where P,Q
satisfy the assumptions of Theorem 1.1. We start by using the complex
absorbing operator Q to reduce the analysis to a neighborhood of K∩{p =
0}, where K is the trapped set:

Lemma 2.6. — Assume that hj → 0, u = u(hj) ∈ L2(X) is bounded
uniformly in h, and

‖(P − iQ− λ)u‖L2 = O(hα+1)

for some constant α > 0 and λ = O(h). Then:
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1. u = O(hα) microlocally on the complement of {p = 0} ∩ Γ+.
2. If u converges to some measure µ in the sense of Definition 2.1, then
µ is supported on {p = 0}∩Γ+. If moreover ‖u‖L2 > c > 0 for some
constant c, then for each neighborhood U of {p = 0} ∩K, we have
µ(U) > 0.

Same statements are true if we replace O(hα+1),O(hα) by o(hα+1), o(hα)
and α > 0.

Proof. — Take A ∈ Ψ0
h(X) such that WFh(A)∩{p = 0}∩Γ+ = ∅. Then

(2.10) ‖Au‖L2 6 Ch−1‖(P − iQ− λ)u‖L2 +O(h∞)‖u‖L2 .

This follows from the elliptic estimate [13, Proposition 2.4] and propagation
of singularities with a complex absorbing operator [13, Proposition 2.5],
since for each (x, ξ) ∈ WFh(A), there exists t > 0 such that e−tHp(x, ξ) ∈
{p− iq 6= 0}.
The estimate (2.10) immediately implies part 1 of the lemma, as well

as the first statement of part 2. To see the second statement of part 2, it
suffices to use the following estimate, valid for each B ∈ Ψcomp

h (X) such
that σ(B) 6= 0 on {p = 0} ∩K:

(2.11) ‖u‖L2 6 Ch−1‖(P − iQ− λ)u‖L2 + ‖Bu‖L2 .

To prove (2.11), we again use the elliptic estimate and propagation of
singularities, noting that for each (x, ξ) ∈ T ∗X, there exists t > 0 that
e−tHp(x, ξ) ∈ {p− iq 6= 0} ∪ {σ(B) 6= 0}, see [11, Lemma 4.1]. �

The next lemma is a generalization of the statement that there are no
resonances in the upper half-plane (which, keeping in mind Lemma 2.6, is
the special case withW = 0 and Imλ > ch). See [11, §8.2] for a proof using
positive commutator estimates directly instead of going through semiclas-
sical measures. One could also replace Reσ(W ) in (2.12) by its finite time
avarage average along the flow of Hp on K ∩ {p = 0}, see for instance [24,
Theorem 3.2].

Lemma 2.7. — Fix small δ > 0; we use the set Uδ defined in (2.6).
Assume that A,B,B1 ∈ Ψcomp

h (X) satisfy (see Figure 2.1)
— WFh(A) ⊂ U3δ/2 and A = 1 +O(h∞) microlocally on Uδ;
— WFh(B) ⊂ U3δ ∩{|ϕ+| > δ/2} and B = 1 +O(h∞) microlocally on

U2δ ∩ {|ϕ+| > δ};
— WFh(B1) ⊂ U3δ and B1 = 1 +O(h∞) microlocally on U2δ.

Take W ∈ Ψcomp
h (X) and λ = O(h) such that

(2.12) Reσ(W ) + h−1 Imλ > c > 0 on U3δ
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Γ+

Γ−

K
δ 2δ

A

B2

B1

Figure 2.1. The flow Hp and the wavefront sets of A,B,B1, B2; here
WFh(B) is the shaded portion of WFh(B1). The horizontal axis is ϕ−
and the vertical axis is ϕ+.

for some constant c. Then for each u ∈ L2(X),

‖Au‖L2 6 Ch−1‖B1(P − ihW − λ)u‖L2 + C‖Bu‖L2 +O(h∞)‖u‖L2 .

Proof. — Take B2 ∈ Ψcomp
h (X) such that WFh(B2) ⊂ U2δ and B2 =

1 +O(h∞) microlocally on U3δ/2. We first claim that for each fixed ε0 > 0,
there exists a constant C such that for h small enough,

(2.13) ‖Au‖L2 6 Ch−1‖B2(P − ihW − λ)u‖L2 + C‖Bu‖L2 + ε0‖u‖L2 .

We argue by contradiction. If (2.13) does not hold, then there exist se-
quences hj → 0, λ = λ(hj), and u = u(hj) ∈ L2 such that ‖u‖L2 6 1,
(P − ihW − λ)u = o(h) microlocally in U3δ/2, and ‖Bu‖L2 = o(1), yet
‖Au‖L2 is separated away from zero.

By passing to a subsequence, we may assume that u converges to some
measure µ in the sense of Definition 2.1. Since for each (x, ξ) ∈ U3δ/2 \Γ+,
there exists t > 0 such that e−tHp(x, ξ) ∈ {σ(B) = 1} and e−sHp(x, ξ) ∈
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U3δ/2 for s ∈ [0, t], by propagation of singularities [13, Proposition 2.5] we
see that u = o(1) microlocally in U3δ/2 \ Γ+ and thus

(2.14) µ
(
U3δ/2 \ Γ+

)
= 0.

Passing to a subsequence, we may assume that h−1λ → ω ∈ C. By Lem-
ma 2.3, for each a ∈ C∞0 (U3δ/2),∫

T∗X

Hpa dµ = 2
∫
T∗X

(Reσ(W ) + Imω)a dµ.

By (2.7), (2.14), and (2.12), it follows that for each nonnegative a ∈
C∞0 (U3δ/2),∫

Γ+∩U3δ/2

a ◦ etHp dµ > e2ct
∫

Γ+∩U3δ/2

a dµ, t > 0.

However, the left-hand side is bounded uniformly as t → +∞ (by ‖a‖∞ ·
µ(U3δ/2)), therefore µ(U3δ/2) = 0 and thus ‖Au‖L2 = o(1), giving a con-
tradiction and proving (2.13).
Take B′2 ∈ Ψcomp

h (X) such that B′2 = 1 + O(h∞) microlocally on
WFh(B2). We apply (2.13) to B′2u to get for each ε0 > 0,

‖Au‖L2 6 Ch−1‖B2(P − ihW − λ)u‖L2 + C‖Bu‖L2

+ ε0‖B′2u‖L2 +O(h∞)‖u‖L2 .
(2.15)

Now, for a correct choice of B′2, for each (x, ξ) ∈ WFh(B′2) ∩ {p = 0},
there exists t > 0 such that e−tHp(x, ξ) ∈ {σ(A) 6= 0} ∪ {σ(B) 6= 0} and
e−sHp(x, ξ) ∈ {σ(B1) 6= 0} for s ∈ [0, t]. By propagation of singularities,
we then have

‖B′2u‖L2 6 Ch−1‖B1(P − ihW − λ)u‖L2 + C‖Bu‖L2

+ C‖Au‖L2 +O(h∞)‖u‖L2 .
(2.16)

It remains to combine (2.15) with (2.16) and take ε0 small enough. �

3. First gap

In this section, we prove Theorem 1.1. We argue by contradiction. As-
sume that the estimate (1.7) does not hold; then (replacing ε by 2ε) there
exist sequences hj → 0, λ = λ(hj), and u = u(hj) ∈ L2(X) such that

‖u‖L2 = 1, ‖(P − iQ− λ)u‖L2 = O(h2),
|λ| = O(h), Imλ > −(νmin − 2ε)h/2.
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By Lemma 2.6, we have

(3.1) u = O(h) microlocally on T ∗X \ Γ+.

Take small δ > 0 and let Uδ ⊂ T ∗X be defined in (2.6). Recall that Q =
O(h∞) microlocally on U3δ; therefore,

(3.2) (P − λ)u = O(h2) microlocally on U3δ.

Take Θ+,W+ ∈ Ψcomp
h (X) such that

σ(Θ+) = ϕ+, σ(W+) = c+, Θ∗+ = Θ+,

where ϕ+, c+ are constructed in Lemma 2.4.

Lemma 3.1. — For Imλ > −(νmin − 2ε)h (which is weaker than the
assumption of Theorem 1.1),

(3.3) Θ+u = O(h) microlocally on Uδ.

Proof. — Since Hpϕ+ = −c+ϕ+ on U3δ, we have

(3.4) [P,Θ+] = ihW+Θ+ +O(h2)Ψcomp
h

microlocally on U3δ.

Applying Θ+ to (3.2) and using (3.4), we obtain

(3.5) (P − ihW+ − λ)Θ+u = O(h2) microlocally on U3δ.

We have σ(W+) = c+ > νmin−ε on U3δ; therefore, σ(W+)+h−1 Imλ > ε >
0 on U3δ. It remains to apply Lemma 2.7 to Θ+u and use (3.1) and (3.5). �
Now, passing to a subsequence of hj , we may assume that (in the sense

of Definition 2.1)
u→ µ, h−1 Imλ→ ω ∈ C.

By Lemma 2.6, we have

(3.6) µ(Uδ) > 0, µ(Uδ \ Γ+) = 0.

We now show that µ is Lipschitz in the direction transversal to K. Recall
that ϕ−, constructed in Lemma 2.4, is a defining function of K on Γ+∩Uδ.

Lemma 3.2. — There exists a constant C such that for each δ0 > 0,

(3.7) µ
(
Uδ ∩ {|ϕ−| < δ0}

)
6 Cδ0.

Proof. — We may assume that δ0 is arbitrarily small. Applying Lem-
ma 2.3 to (3.3), we see that there exists a constant C such that for each
a ∈ C∞0 (Γ+ ∩ Uδ),

(3.8)
∣∣∣∣ ∫

Γ+∩Uδ
Hϕ+a dµ

∣∣∣∣ 6 C‖a‖∞.
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s

1

−2δ0 −δ0 δ0 δ1

Figure 3.1. The function ã used in the proof of Lemma 3.2. Here δ1 > 0
is fixed and δ0 → 0.

To see (3.7), we need to apply this estimate to a function a depending on
δ0 which, written in coordinates (ρ, s) of (2.8), has the form a = ã(s)χ(ρ)
with χ ∈ C∞0 (K ∩ {|p| < δ}) equal to 1 on K ∩ {p = 0} and

supp ã ⊂ (−2δ0, δ1), ‖ã‖∞ 6 1, ∂sã > −
2
δ1
,

∂sã >
1

3δ0
for |s| 6 δ0

for some fixed small δ1 ∈ (0, δ) independent of δ0, see Figure 3.1. Then∫
Γ+∩Uδ

Hϕ+a dµ >
1

3δ0
µ
(
{|s| 6 δ0}

)
− 2
δ1
µ
(
{δ0 6 |s| 6 δ1}

)
The left-hand side is bounded by a δ0-independent constant by (3.8); so
is the second term on the right-hand side (since µ is a finite measure).
Multiplying both sides by 3δ0 and using that Γ+ ∩ Uδ ∩ {|ϕ−| 6 δ0} ⊂
{|s| 6 Cδ0} for some constant C, we obtain (3.7). �

We now have by Lemma 2.3 applied to (3.2), for each a ∈ C∞0 (Uδ),∫
Γ+∩Uδ

Hpa dµ = 2 Imω

∫
Γ+∩Uδ

a dµ.

For t > 0, since e−tHp(Γ+ ∩ Uδ) ⊂ Γ+ ∩ Uδ, we have

(3.9) µ(e−tHp(Uδ)) = e2t Imωµ(Uδ).

However, by (2.7), (3.6), and (3.7), as t→ +∞

µ(e−tHp(Uδ)) 6 µ
(
Uδ ∩ {|ϕ−| < δe−(νmin−ε)t}

)
6 Ce−(νmin−ε)t.

However, since Imω > −(νmin − 2ε)/2, we see that e2t Imω decays expo-
nentially slower than e−(νmin−ε)t as t→ +∞. Since µ(Uδ) > 0 by (3.6), we
arrive to a contradiction, finishing the proof of Theorem 1.1.

TOME 66 (2016), FASCICULE 1



74 Semyon DYATLOV

4. Further gaps for r-normally hyperbolic trapping

In this section, we prove Theorem 1.3. For small δ > 0, let Uδ be defined
by (2.6).

4.1. Auxiliary microlocal construction

The proof relies on the following statement, which in particular makes
it possible to improve the remainder in (3.4) to O(h∞). For Z = 0, the
operators Θ,W below were previously constructed in [11, Proposition 7.1].

Lemma 4.1. — Assume that the trapping is r-normally hyperbolic for
all r, in the sense of (1.8). Then for each Z ∈ Ψcomp

h (X), there exist
Θ,W ∈ Ψcomp

h (X) such that

Θ(P − ihZ) = (P − ihW )Θ +O(h∞) microlocally on U3δ;(4.1)
σ(Θ) = ϕ+, σ(W ) = σ(Z) + c+ on U3δ.(4.2)

Proof. — We construct operators

Θk,Wk ∈ Ψcomp
h (X), k = 0, 1, . . . ,

such that microlocally in U3δ, we have for some Rk ∈ Ψcomp
h (X),

(4.3) Θk(P − ihZ) = (P − ihWk)Θk + hk+2Rk +O(h∞)

and take Θ,W to be the asymptotic limits as k → +∞ of these sequences
of operators.
We use induction on k. For k = 0, take any Θ0,W0 satisfying in U3δ,

σ(Θ0) = ϕ+, σ(W0) = σ(Z) + c+,

then (4.3) follows immediately from (2.1) and the fact thatHpϕ+ = −c+ϕ+
on U3δ.
Assume now that k > 0 and (4.3) holds for k − 1; we construct the

operators Θk and Wk in the form

Θk := Θk−1 + hkΩk, Wk := Wk−1 + hkYk,

where Ωk, Yk ∈ Ψcomp
h (X). We rewrite (4.3) for k as the following statement,

valid microlocally in U3δ:

[P,Ωk] + ih(ΩkZ −Wk−1Ωk − YkΘk−1) = hRk−1 +O(h2)Ψcomp
h

.
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and this translates to the following equation on the principal symbols(†) of
Ωk, Yk in U3δ:

(Hp + c+)σ(Ωk) + ϕ+σ(Yk) = iσ(Rk−1).

Since we can choose σ(Yk) arbitrarily and ϕ+ is a defining function of Γ+,
it suffices to find Ωk whose symbol solves the transport equation

(Hp + c+)σ(Ωk) = iσ(Rk−1) on Γ+ ∩ U3δ.

The existence of such a symbol follows from Lemma 2.5 (which is where
we use r-normal hyperbolicity), finishing the construction of Θk,Wk. �

Iterating Lemma 4.1, we obtain

Lemma 4.2. — Assume that the trapping is r-normally hyperbolic for
all r. Then there exist operators

Θ+
m,W

+
m ∈ Ψcomp

h (X), m = 0, 1, . . .

such that W+
0 = 0 and

(4.4) Θ+
m(P−ihW+

m) = (P−ihW+
m+1)Θ+

m+O(h∞) microlocally on U3δ.

Moreover, we have

σ(Θ+
m) = ϕ+, σ(W+

m) = mc+ on U3δ.

4.2. Measures associated to resonant states and proof of
Theorem 1.3

Assume that u = u(hj) ∈ L2(X) is bounded uniformly in h and define
u0, u1, . . . ∈ L2(X) by the relations

(4.5) u0 := u, um+1 := Θ+
mum.

Lemma 4.3. — Assume that for some α > 0 and λ = O(h),

(4.6) ‖(P − iQ− λ)u‖L2 = o(hα+1).

Then for each m > 0,

(P − ihW+
m − λ)um = o(hα+1) microlocally on U3δ;(4.7)

um = o(hα) microlocally on U3δ \ (Γ+ ∩ {p = 0}).(4.8)

(†)This is the place where we cannot take P to act on sections of a vector bundle, as
Rk−1 and thus Ωk, Yk need not be principally scalar and a more complicated transport
equation would be required.
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Moreover, if

(4.9) Imλ > −m(νmin − ε)h+ εh,

then um = o(hα) microlocally on Uδ.

Proof. — The condition (4.7) for m = 0 follows directly from (4.6) (since
Q = O(h∞) microlocally on U3δ); for m > 0, it follows by induction
from (4.4). The condition (4.8) for m = 0 follows from Lemma 2.6, and is
still true form > 0 since um is obtained by applying an h-pseudodifferential
operator to u.

The last statement of this lemma follows from (4.7), (4.8) by Lemma 2.7,
as on U3δ, we have σ(W+

m) = mc+ > m(νmin − ε) and thus σ(W+
m) +

h−1 Imλ > ε > 0. �

We now obtain information on semiclassical measures of solutions to
Θ+
mv = o(h), which generalizes the Lipschitz property of Lemma 3.2. It

is possible to give a more precise description of the measure along the
Hamiltonian flow lines of ϕ+; for Θ+

0 , this is done in [11, §8.5, Theorem 4].

Lemma 4.4. — Assume that v = v(hj) ∈ L2(X) converges to some
measure µ in the sense of Definition 2.1, and µ(Uδ) > 0, µ(Uδ \ Γ+) = 0.
Assume also that for some m,

Θ+
mv = o(h) microlocally in Uδ.

Then for some constant C and for each δ0 ∈ (0, 1), we have

C−1δ0 6 µ
(
Uδ ∩ {|ϕ−| < δ0}

)
6 Cδ0.

Proof. — Let b := σ(h−1 Im Θ+
m), where we denote ImA := 1

2i (A−A
∗).

By Lemma 2.3, we see that for each a ∈ C∞0 (Uδ),∫
Uδ∩Γ+

(Hϕ+ + 2b)a dµ = 0.

It remains to note that in the coordinates (2.8), we have for each a ∈
C∞0 (Uδ) ∫

a dµ =
∫
e2ψa dµ̃(ρ)ds

where ψ ∈ C∞(Uδ ∩ Γ+) is some fixed solution to the equation Hϕ+ψ = b

and µ̃ is some measure on K. �

Lemma 4.4 makes it possible to show bounds on approximate solutions
to Θ+

mv = 0 and (P − ihW+
m−λ)v = 0 for Imλ outside of a certain interval:

Lemma 4.5. — Let A,B1 ∈ Ψcomp
h (X) satisfy

— WFh(A) ⊂ U3δ/2 and A = 1 +O(h∞) microlocally on Uδ;
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— WFh(B1) ⊂ U3δ and B1 = 1 +O(h∞) microlocally on U2δ.
Fix m and assume that λ = O(h) is such that

(4.10) h−1 Imλ /∈ [−(m+ 1/2)(νmax + ε)− ε,−(m+ 1/2)(νmin − ε) + ε].

Then for each v ∈ L2(X),

‖Av‖L2 6 Ch−1(‖B1(P − ihW+
m − λ)v‖L2 + ‖B1Θ+

mv‖L2
)

+O(h∞)‖v‖L2 .

Proof. — Arguing similarly to the proof of Lemma 2.7 (removing B

from (2.13) and (2.15) and replacing B by B1Θ+
m in (2.16)), we see that it

suffices to show that if hj → 0 and v = v(hj) satisfies ‖v‖L2 6 1 and

(P − ihW+
m − λ)v = o(h) microlocally in U3δ/2,(4.11)

Θ+
mv = o(h) microlocally in U3δ/2,(4.12)

then v = o(1) microlocally in U3δ/2.
Passing to a subsequence, we may assume that v converges to some

measure µ in the sense of Definition 2.1 and h−1λ→ ω ∈ C, where

(4.13) Imω /∈ [−(m+ 1/2)(νmax + ε)− ε,−(m+ 1/2)(νmin − ε) + ε].

We have µ(U3δ/2 \Γ+) = 0 by Lemma 2.2 applied to (4.12). By Lemma 2.3
applied to (4.11), we see that for each a ∈ C∞0 (U3δ/2),∫

Γ+∩U3δ/2

Hpa dµ = 2
∫

Γ+∩U3δ/2

(Imω + σ(W+
m))a dµ;

for t > 0, since e−tHp(Γ+ ∩ U3δ/2) ⊂ Γ+ ∩ U3δ/2, we have by (4.13) either
(when Imω is too big)

(4.14) µ(e−tHp(Γ+ ∩ U3δ/2)) > e−(νmin−3ε)tµ(U3δ/2)

or (when Imω is too small)

(4.15) µ(e−tHp(Γ+ ∩ U3δ/2)) 6 e−(νmax+3ε)tµ(U3δ/2).

Here we used that σ(W+
m) = mc+ ∈ [m(νmin − ε),m(νmax + ε)] on U3δ/2.

Using Lemma 4.4 with (4.12) and observing that for t > 0, by Lemma 2.4

{|ϕ−| < 3δ
2 e
−(νmax+ε)t} ∩ Γ+ ∩ U3δ/2 ⊂ e−tHp(Γ+ ∩ U3δ/2),

e−tHp(Γ+ ∩ U3δ/2) ⊂ {|ϕ−| < 3δ
2 e
−(νmin−ε)t} ∩ Γ+ ∩ U3δ/2

both (4.14) and (4.15) imply, by taking the limit t→ +∞, that µ(U3δ/2) =
0 and thus v = o(1) microlocally on U3δ/2, finishing the proof. �
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We can now prove Theorem 1.3. We argue by contradiction. If (1.9) does
not hold, then (changing ε) there exist sequences hj → 0 and u = u(hj) ∈
L2(X) such that

‖u‖L2 = 1, ‖(P − iQ− λ)u‖L2 = o(hm+2),

where λ = λ(hj) = O(hj) satisfies

(4.16) h−1 Imλ ∈
(
− (m+ 1/2)(νmin− ε) + ε,−(m− 1/2)(νmax + ε)− ε

)
.

Define u0, . . . , um+1 by (4.5); then by Lemma 4.3, um+1 = o(hm+1) mi-
crolocally in Uδ. Here we used the following corollary of (4.16):

h−1 Imλ > −(m+ 1)(νmin − ε) + ε.

Using Lemma 4.5 for v = um, um−1, . . . , u0 (and a decreasing sequence of
δ’s), we get uj = o(hj) microlocally in U3j−m−1δ for j = 0, 1, . . . ,m + 1.
Here we used the following corollary of (4.16):

h−1 Imλ /∈ [−(j+1/2)(νmax +ε)−ε,−(j+1/2)(νmin−ε)+ε], 0 6 j 6 m.

In particular, we see that u = u0 = o(1) microlocally in the neighbor-
hood U3−m−1δ of K ∩ {p = 0}, giving a contradiction with Lemma 2.6 and
finishing the proof of Theorem 1.3.

5. A one-dimensional example

In this section, we show a lower bound on the cutoff resolvent for λ = 0
and a specific operator with normally hyperbolic trapping. We start with
the model operator (which we later put into the framework discussed in
the introduction)

P0 = xhDx + h

2i : C∞(R)→ C∞(R), D := 1
i
∂.

Note that P ∗0 = P0.
We construct an approximate solution u0 for the equation P0u = 0 by

truncating the exact solutions (x±)−1/2 in the frequency space. More pre-
cisely, take a function χ ∈ S (R) such that χ̂ ∈ C∞0

(
(1/2, 1)

)
and define

ψ(x) = sgn x
∫ x

0
|x|−1/2|y|−1/2χ(y) dy.

Here χ̂ denotes the Fourier transform of χ:

χ̂(ξ) =
∫
R
e−ixξχ(x) dx.
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Then (as can be seen by considering the Taylor expansion of χ at 0) we
have

ψ ∈ C∞(R), P0ψ = −ihχ.
Moreover, we have

(5.1) ψ(x) = ψ±|x|−1/2 +O(|x|−∞) as x→ ±∞,

where the constants ψ± are given by

ψ± = ±
∫ ±∞

0
|y|−1/2χ(y) dy.

We choose χ so that ψ± 6= 0; this is possible since

ψ± = e±
iπ
4

2
√
π

∫ ∞
0

ξ−1/2χ̂(ξ) dξ.

Define

u0(x;h) := h−1/2ψ(x/h), f0(x;h) := −ih1/2χ(x/h),

then P0u0 = f0. We have

(5.2) WFh(u0) ⊂ {ξ = 0} ∪ {x = 0, ξ ∈ [0, 1)}.

Indeed, if a ∈ C∞0
(
(0,∞)

)
, then by (5.1),

a(x)u0(x) = ψ+a(x)x−1/2 +O(h∞);

since ψ+a(x)x−1/2 is smooth and independent of h, we see by [29, §8.4.2]
that WFh(au0) ⊂ {ξ = 0}. Same is true when a ∈ C∞0

(
(−∞, 0)

)
. Moreover,

since (x∂x + 1
2 )ψ = χ, we have (ξ∂ξ + 1

2 )ψ̂ = −χ̂; since ∂xψ ∈ L2, we have
ξψ̂(ξ) ∈ L2 and the fact that supp χ̂ ⊂ (1/2, 1) implies supp ψ̂ ⊂ [0, 1). This
in turn implies that WFh(u0) ⊂ {ξ ∈ [0, 1)}, finishing the proof of (5.2).
Since supp χ̂ ⊂ (1/2, 1) and χ is Schwartz, we also have

(5.3) WFh(f0) ⊂ {x = 0, ξ ∈ (1/2, 1)}.

We furthermore calculate using (5.1)

‖u0‖L2(−1,1) =
√
|ψ+|2 + |ψ−|2

√
log(1/h) +O(1),

‖f0‖L2(R) = O(h).
(5.4)

We now put u0, f0, P0 into the framework discussed in the introduction.
Put

X = S1 = R/(6Z);
we view X as the interval [−3, 3] with the endpoints glued together. We
consider an operator

P ∈ Ψcomp
h (X), P = P ∗; P = P0 microlocally on {|x| 6 2, |ξ| 6 2}.
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Note that by (5.2), we have Pu0 = f0 +O(h∞)C∞ on (−2, 2).
We next consider q0 ∈ C∞(X) such that q0 = 0 on [−1, 1], q0 > 0

everywhere, and q0 = 1 outside of [−3/2, 3/2]. Take χ1 ∈ C∞0 (−2, 2) such
that χ1 = 1 on [−3/2, 3/2] and define

u1 = χ1u0, f1 = (P − iq0)u1 − χ1f0 = [P, χ1]u0 − iq0χ1u0 +O(h∞)C∞ .

In particular, f1 = O(h∞) on [−1, 1] and WFh(f1) ⊂ {ξ = 0}. Using ODE
theory for the operator P0 − iq0 = h

i (x∂x + 1
2 + h−1q0), we construct u2 ∈

C∞(X) such that u2 = 0 on [−1, 1], u2 = O(e−ε/h) outside of [−7/4, 7/4],
WFh(u2) ⊂ {ξ = 0}, and

(P − iq0)u2 = −f1 +O(h∞)C∞ .

Finally, take a self-adjoint operator Q1 ∈ Ψ0
h such that WFh(Q1) ⊂ {|ξ| >

3/2}, σ(Q1) > 0 everywhere, and σ(Q1) > 0 for |ξ| > 2, denote by Q0 the
multiplication operator by q0, and put

Q := Q0 +Q1, σ(Q) = q0 + σ(Q1).

Then the operator P − iQ : L2(X)→ L2(X) satisfies the assumptions (1)–
(6) of the introduction, with νmin = νmax = 1 and

Γ+ = {ξ = 0, |x| < 2}, Γ− = {x = 0, |ξ| < 2}, K = {x = ξ = 0}.

We have
(P − iQ)u = χ1f0 +O(h∞), u := u1 + u2.

On the other hand, (5.4) implies

‖u‖L2 > C−1√log(1/h), ‖χ1f0‖L2 = O(h).

This means that for each A ∈ Ψcomp
h (X) such that

A = 1 +O(h∞) microlocally on V := {x = 0, ξ ∈ (1/2, 1)},

we have
‖R(0)A‖L2→L2 > C−1h−1√log(1/h).

Note that V ⊂ Γ− and V ∩ Γ+ = ∅, therefore we can choose A to be
microlocalized away from the trapped set K.
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