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ON TWO THEOREMS ABOUT LOCAL
AUTOMORPHISMS OF GEOMETRIC STRUCTURES

by Vincent PECASTAING

Abstract. — This article investigates a few questions about orbits of local
automorphisms in manifolds endowed with rigid geometric structures. We give suf-
ficient conditions for local homogeneity in a broad class of such structures, namely
Cartan geometries, extending a classical result of Singer about locally homogeneous
Riemannian manifolds. We also revisit a strong result of Gromov which describes
the structure of the orbits of local automorphisms of manifolds endowed with A-
rigid structures, and give a statement and a simpler proof of this result in the
setting of Cartan geometries.
Résumé. — Cet article s’intéresse à des questions autour des orbites des auto-

morphismes locaux de variétés munies de structures géométriques rigides. Nous for-
mulons des conditions suffisantes assurant l’homogénéité locale d’un large spectre
de structures géométriques rigides, les géométries de Cartan, étendant ainsi un
résultat de Singer sur les variétés riemanniennes localement homogènes. Nous re-
visitons également un résultat très général de Gromov qui décrit l’agencement des
orbites des automorphismes locaux des variétés munies de A-structures rigides.
Nous donnons un énoncé et une preuve élémentaire de ce résultat dans le cadre des
géométries de Cartan.

1. Introduction

The aim of this article is to revisit two classical results on orbits of
local automorphisms of rigid geometric structures: Singer’s theorem on in-
finitesimally homogeneous Riemannian manifolds and Gromov’s result on
Isloc-orbits in a manifold endowed with a rigid geometric structure. We
present a new generalization to Cartan geometries of Singer’s theorem and
an alternative and elementary approach of Gromov’s theorem in the same
geometric context. These two results are based on the study of the be-
haviour of the curvature and its derivatives up to some fixed finite order.

Keywords: Cartan geometries, local homogeneity, orbits of local automorphisms.
Math. classification: 53A40, 53B15, 53C24.



176 Vincent PECASTAING

This work is inspired and motivated by a recent paper of Melnick ([9])
which deals with Gromov’s result in the real-analytic case but seems to
have a flaw when passing to general smooth structures.

1.1. Around Singer’s theorem

Singer defined an infinitesimally homogeneous Riemannian manifold of
order k as a Riemannian manifold such that for every two points x, y,
there exists a linear isometry sending (∇mR)x to (∇mR)y for all m ⩽
k, where ∇mR denotes the m-th covariant derivative of the Riemannian
curvature tensor R with respect to the Levi-Civita connection ∇. He proved
the following result.

Theorem ([16]). — Let (Mn, g) be a Riemannian manifold. There ex-
ists an integer kM ⩽ n(n−1)

2 such that if (M,g) is infinitesimally homoge-
neous of order kM , then it is locally homogeneous.

If the manifold was locally homogeneous, then the existence of a lo-
cal isometry sending x to y would imply infinitesimal homogeneity at any
order k. Thus, Singer not only proved that the converse holds but that
infinitesimal homogeneity of order at most n(n−1)

2 is enough to ensure local
homogeneity.
Following Singer, several generalizations of this theorem to other geomet-

ric structures have been proved by various people. In [14], Podesta and Spiro
extended Singer’s result to pseudo-Riemannian manifolds. Then, Opozda
proposed a version of Singer’s theorem for analytic affine connections ([11])
and also for G-structures endowed with a connection ([12]). However, her
results do not exhibit an analogous bound on the order of derivatives in
[11] and one has to check some additional algebraic condition in [12]. In a
recent paper ([6]), García-Río and al. gave a formulation in the setting of
homothety homogeneity.
In the present paper, we propose a generalization of Singer’s theorem to

manifolds endowed with Cartan geometries. A Cartan geometry on a man-
ifold is a rigid geometric structure, in the sense that everywhere, its infini-
tesimal automorphisms form a finite dimensional Lie algebra. This family
of geometric structures includes most classical structures, such as pseudo-
Riemannian metrics, conformal structures in dimension greater than 2,
projective structures or affine connections. Section 2 presents some basic
definitions and properties for the reader not familiar with Cartan geome-
tries.
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LOCAL AUTOMORPHISMS OF GEOMETRIC STRUCTURES 177

In a Cartan geometry, there exists a notion of curvature and of derivatives
of the curvature. Formally, a Singer-like result in this context would be to
associate to each type of Cartan geometry a bound k0 such that if the
curvature and all its derivatives up to order k0 are somehow constant, then
the geometry is locally homogeneous (see Definitions 2.3 and 2.7 for local
and infinitesimal homogeneity). This is the content of our first main result:

Theorem 1.1. — Let (M,C) be a Cartan geometry on a connected
manifold M , modeled on a homogeneous space X = G/P . Set d = dimP . If
the geometry is d-infinitesimally homogeneous, then it is locally homoge-
neous.

In fact, if (M,C) is modeled on G/P , then dimM = dimG/P . Therefore,
the integer d only depends on dimM and the model space X of the Car-
tan geometry we are dealing with. Let us mention that Melnick’s work on
infinitesimal automorphisms of real-analytic Cartan geometries in [9] can,
with no significant difficulty, be adapted to get another proof of Theorem
1.1 in the real-analytic case, but the bound d would be less tight.
As we shall later see, in the general case, our definition of infinitesimal

homogeneity cannot be directly interpreted on the manifold, but on some
principal fiber-bundle over M . However, Theorem 1.1 completely contains
Singer’s original theorem and its generalization to pseudo-Riemannian met-
rics essentially because the curvature of the Cartan geometry associated to
a metric canonically corresponds to the Riemann curvature tensor of the
metric. In fact, as soon as the model G/P is reductive, infinitesimal ho-
mogeneity in the sense of Definition 2.7 is a tensorial condition that can
be read on the manifold M (see [15] p.197). For instance, if (Mn,∇) is
an affine manifold, we get the expected result: in that case, Theorem 1.1
implies that if for every two points x, y in M , and every s ⩽ n2, there exists
a linear transformation f ∶ TxM → TyM such that f∗(∇sR∇)y = (∇sR∇)x,
then (M,∇) is locally homogeneous.

In addition to being a formulation of Singer’s result in a larger geometric
context, Theorem 1.1 gives a short simple proof of the following result,
adapted to Cartan geometries.

Theorem (Dense orbit theorem, [7], 3.3.A). — Let (M,C) be a Cartan
geometry modeled on X = G/P . Assume the adjoint action of P on g

algebraic. If the pseudo-group Autloc(M) admits a dense orbit, then there
exists an open dense subset of M which is locally homogeneous.

TOME 66 (2016), FASCICULE 1



178 Vincent PECASTAING

Usually, this theorem is presented as a corollary of a more precise result
which describes almost everywhere the structure of Autloc-orbits. It is the
object of the second half of this paper.

1.2. Gromov’s theorem

The theorem of Gromov we are interested in says that given a manifold
M endowed with an A-rigid geometric structure, there exists an open dense
set of M on which the orbits of local isometries are closed submanifolds.

Theorem ([7]). — Let (M,φ) be a manifold endowed with a rigid geo-
metric structure of algebraic type φ. Then, there exists an open dense
subset on which orbits of local isometries of φ are closed submanifolds.

Roughly speaking, Gromov’s proof consists in considering, for some r,
orbits of “isometric r-jet”, called Ir-orbits, that are in fact sets of points on
which the r-jet of the structure φ is the same everywhere. He proved that
outside an exceptional set with empty interior, these orbits are the fibers of
a submersion. The key point is then a result of integrability (a “Frobenius
theorem”) which stipulates that if the order r is chosen large enough, two
points close enough in the same Ir-orbit are related by a local isometry
of the structure, proving that Ir-orbits coincide locally with orbits of local
isometries.
Gromov’s proof, even simplified in [1] or [5], remains technical and dif-

ficult, even when the structure is as elementary as the data of a global
frame.

Recently, Melnick proposed an analogous theorem of integrability in the
setting of Cartan geometries ([9]). The point of view is closer to Singer’s
approach and generalizes results that Nomizu formulated in the Riemann-
ian setting ([10]). Melnick proved for instance that if (M,C) is a compact
analytic Cartan geometry, there exist r0 such that two points are related
by a local automorphism of the Cartan geometry if and only if the first r0
covariant derivatives of the curvature are equal at these points ([9], Propo-
sition 3.8).
In the smooth case, there is not such a global statement and it is more

relevant to look at the tangent directions in which the first r derivatives
of the curvature are constant, namely “Killing generators of order r” in
Nomizu’s terminology. The question is then: does there exist an r0 such
that any Killing generator of order r0 can be integrated into a local Killing
field ? Melnick answered positively to it when we restrict the study to an
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open dense subset ([9], Theorem 6.3). However, whereas Melnick’s proof is
convincing for analytic structures, there seems to be a significant gap in
the proof of her general theorem ([9], Theorem 6.3).
In the second half of this article, we propose a new approach of Melnick’s

result in the smooth case. Although we reuse most definitions of [9] and
give a similar statement, which is the content of the following Theorem 1.2,
our proof is noticeably different and the existence of local Killing field is
derived from the classical Frobenius theorem.

Theorem 1.2 (Integrability of Killing generators). — Let (M,C) be a
Cartan geometry modeled on X = G/P . Setm = dimG, note π ∶ M̂ →M the
associated P -principal bundle and ω the Cartan connection. There exists
an open dense subset Ω ⊂M such that for all x̂ ∈ π−1(Ω) and A ∈ Killm+1(x̂)
a Killing generator of order m + 1 at x̂, there exists a local Killing field on
a neighbourhood of x whose lift Â satisfies ω(Â(x̂)) = A.
Note that this result not only says that, on an open dense set, any Killing

generator of a fixed and finite order extends into a local Killing field, but
also that this order is completely determined by the model space X.
We then apply this to recover Gromov’s result on the structure of orbits of

local isometries for Cartan geometries. We obtain the following formulation.

Theorem 1.3 (Structure of Autloc-orbits). — Let (M,C) be a Cartan
geometry modeled on X = G/P . Assume the adjoint action of P on g

algebraic. Then, there exists an open dense subset Ω of M on which the
orbits of Autloc(M,C) are closed submanifolds.
More precisely, Ω admits a decomposition Ω = Ω1 ∪ ⋯ ∪ Ωk where each

Ωi is an open subset, preserved by local automorphisms, and in which the
Autloc-orbits are closed submanifolds which all have the same dimension.

Our proof shows that in the class of Cartan geometries, the problem is
fundamentally reduced to a question on the structure of the orbits of local
automorphisms of a global framing on a manifold. This is why a section
is devoted to the study of Autloc-orbits in the geometric structure defined
by an absolute parallelism. This question will be treated in an elementary
way and we shall avoid the formalism of jets.

1.3. Organization of the paper

Section 2 contains some generalities about Cartan geometries that will
be used in this paper. The reader will find the definition of local and infin-
itesimal homogeneity in Section 2.3. We then expose in Section 3 a short

TOME 66 (2016), FASCICULE 1



180 Vincent PECASTAING

and direct proof of the generalized Singer’s theorem (Theorem 1.1), and
explain how to deduce the open dense orbit theorem from Singer’s result.
Section 4 focuses mainly on the proofs of Theorems 1.2 and 1.3. As ex-
plained above, we have chosen to split their proofs and we first give the
proofs in the case of a parallelism, which is actually the core of the prob-
lem, before establishing the general statements. At last, we explain how our
proof extends to more general geometric structures and that we can easily
deduce the generalized Singer’s theorem from Gromov’s theorem, with a
bound that is however less tight than in Theorem 1.1.

Conventions and notations

The Lie algebra of a Lie group will be denoted by the same symbol
printed in the fraktur font (for instance, g will design Lie(G)). Often, we
will deal with fiber bundles. We have chosen the following notation: the
total space of a fibration over a manifold M will be denoted by M̂ , and
objects living in M̂ over some object on the base M will be noted with
“hats” over the corresponding objects of M . For example, a point in M̂

lying over a point x ∈M will be denoted x̂ and a bundle automorphism of
M̂ over a diffeomorphism f ∈ Diff(M) will be denoted f̂ .

In all this paper, G will denote a Lie group, P < G a closed subgroup and
we will note X = G/P . We will always make the following assumptions:

(1) G is connected ;
(2) P contains no non-trivial normal subgroup of G, or equivalently P

acts effectively on G/P .
We will say that a manifold is “algebraic” if it is a smooth quasi-projective

real variety. The model space will be said of algebraic type when Adg(P ) <
GL(g) is an algebraic subgroup.

2. Geometric background: Cartan geometries

A Cartan geometry is a geometric structure associated to a certain ho-
mogeneous space, called the model space. Formally, a Cartan geometry on
a manifold, modelled on X, is a geometric structure on that manifold that
shares the infinitesimal properties of the homogeneous space.

Definition 2.1. — Let M be a manifold. A Cartan geometry on M

modeled on X is the data of (M,M̂,ω), where M̂ → M is a P -principal
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fiber bundle and ω is a g valued 1-form on M̂ , called the Cartan form or
the Cartan connection, satisfying the following conditions

(1) For all x̂ ∈ M̂ , ωx̂ ∶ Tx̂M̂ → g is a linear isomorphism ;
(2) For allX ∈ p, ω(X∗) =X, whereX∗ denotes the fundamental vector

field associated to the right action of exp(tX) ;
(3) For all p ∈ P , (Rp)∗ω = Ad(p−1)ω.

We now present some general facts and definitions about Cartan ge-
ometries. Fix a manifold (M,C) endowed with a given Cartan geometry
modeled on X. We will always note π ∶ M̂ → M the associated principal
fiber bundle with structural group P and ω its Cartan connection.
Note that the definition implies dimM = dim X. The Cartan form defines

an absolute parallelism on M̂ . If X ∈ g, note X̃ = ω−1(X) the ω-constant
vector field associated to X. We have a notion of exponential map in M̂ : if
x̂ ∈ M̂ , andA ∈ g is such that the flow φt

Ã
is defined at time 1, set exp(x̂,A) =

φ1
Ã
(x̂). For all x̂, this exponential map is defined in a neighbourhood of 0

in g and satisfies the following property

exp(x̂.p,A) = exp(x̂,Ad(p)A).p.

An exponential neighbourhood of a point in x̂ is the image by exp(x̂, .) of
a small enough neighbourhood of 0 in g

Simplest examples of manifolds endowed with Cartan geometries mod-
eled on X are open sets U ⊂ X. The fibration will be the restriction to
π−1(U) of the canonical projection π ∶ G→X and ω will be the left Maurer-
Cartan form. In this case, ω-constant vector fields are left invariant vector
fields. As one shall expect, those examples are exceptional among all the
possible Cartan geometries modeled on X. In fact, up to isomorphism,
they are locally characterized by the vanishing of a 2-form on M̂ , called
the curvature form. Before detailing this last assertion, let us introduce the
equivalence problem on some fundamental examples.

(1) Let X = (O(n) ⋉ Rn)/O(n) be the Euclidean space. To each Rie-
mannian manifold (Mn, g) naturally corresponds a torsion free (see
[15], p.184) Cartan geometry (Mn,C) modeled on X. Conversely, to
each torsion free Cartan geometry on M modeled on X canonically
corresponds a Riemannian metric g on M . Local automorphisms
of the Cartan geometry (see below) are exactly local isometries of
the associated metric. If we replace O(n) by O(p, q), we obtain
pseudo-Riemannian metrics.

(2) If n ⩾ 3, let X = O(1, n + 1)/P be the conformal round sphere,
where P < O(1, n + 1) is the stabilizer of an isotropic line in the
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182 Vincent PECASTAING

(n+2)-dimensional Minkowski space. Then, there is also a 1−1 cor-
respondence between Riemannian conformal structures on Mn and
normal Cartan geometries on Mn modeled on X (see [15], p.280).
Local automorphisms of such a Cartan geometry are exactly the lo-
cal conformal diffeomorphisms of the associated conformal class of
metrics. If we replace the round sphere by its pseudo-Riemannian
generalization, namely the Einstein space Einp,q, Cartan geome-
tries modeled on Einp,q correspond to conformal classes of metrics
of signature (p, q).

(3) Let X = (GLn(R) ⋉ Rn)/GLn(R) be the affine space. Then, there
exists a 1 − 1 correspondence between manifolds (Mn,∇) endowed
with a linear connection and Cartan geometries (M,C) modeled on
X. Local automorphisms of (M,C) are exactly local affine transfor-
mations of (M,∇).

This list is not exhaustive. The procedure that consists in finding a nat-
ural “classic” geometric structure associated to Cartan geometries of a cer-
tain type is called the equivalence problem. It has been solved in other
cases than those cited above (for instance projective structures or non-
degenerate CR-structures, see [2] or [17]). Hence, Cartan geometries model
a large class of geometric structures.

2.1. Curvature of a Cartan geometry

In the general case, let us introduce the 2-form Ω = dω + 1
2 [ω,ω] on

M̂ , called the curvature form. The geometry will be said flat if Ω = 0.
Since in any Lie group, the left Maurer-Cartan form satisfies the structural
equation, it is clear that any Cartan geometry that is locally isomorphic
(see Definition 2.3 below) to its model must be flat. Conversely, it turns
out that any flat Cartan geometry must be locally isomorphic to its model
(see [15], theorem 5.5.1). It can be shown that such flat Cartan geometries
onM are exactly the data of a (G,X)-structure onM (see for instance [3],
Remark 1.5.2).
The Cartan connection trivializes TM̂ , and then the curvature 2-form

gives rise to a map K ∶ M̂ → Hom(Λ2g,g), called the curvature map.
Since Ω is horizontal, for all x̂, K(x̂) factors through Hom(Λ2(g/p),g). The
equivariance property of ω implies that K is P -equivariant, when P acts
on the right on Λ2(g/p)∗ ⊗ g via the tensor product of the representations
Λ2Ad∗ and Ad. At last, K satisfies the relation K(x̂)(X,Y ) = [X,Y ] −
ωx̂([X̃, Ỹ ]) ([15], p.192).
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2.2. Isomorphisms and Killing fields

Our hypothesis on the model space X implies the following lemma, fun-
damental in the study of local automorphisms of the Cartan geometry. The
result is well known and a proof can be found in [3], Proposition 1.5.3.

Lemma 2.2. — Let U ⊂M be an open set and F be a bundle automor-
phism of π−1(U) over the identity such that F ∗ω = ω. Then, F = id.

If we are given two Cartan geometries (Mi, M̂i, ωi), i = 1,2, on the same
model X, an isomorphism between them is a diffeomorphism f ∶M1 →M2
that lifts to a bundle isomorphism f̂ such that f̂∗ω2 = ω1. Such a lift must
be unique according to the previous lemma. Automorphisms of a Cartan
geometry (M,C) modeled on X are isomorphisms into itself. They form
a finite dimensional Lie group Aut(M,C). This group acts on M̂ , and its
action is free and proper, since lifts of automorphisms preserve an absolute
parallelism on M̂ .

Definition 2.3 (Local automorphisms and Killing fields). — Let U,V ⊂
M be two open sets. A local isomorphism between U and V is a diffeomor-
phism f ∶ U → V that lifts to a bundle automorphism f̂ ∶ π−1(U) → π−1(V )
preserving the Cartan connection.
A Killing field (resp. local Killing field) is a vector field on M (resp.

an open subset U ⊂M) whose local flow is composed with local automor-
phisms.

Let X be a local Killing field on an open set U . Then, X lifts to a field
X̂ on π−1(U) whose flow φt

X̂
= φ̂tX is the lift to π−1(U) of the flow of X.

Automatically, X̂ commutes with the right action of the structural group
P and satisfies LX̂ω = 0. Conversely, if a field on π−1(U) satisfies these
properties, then its projection on U is a local Killing field.

If f ∶ U → V is a local automorphism between two connected open sets,
then f is completely determined by the image f̂(x̂) of an arbitrary point
x̂ ∈ π−1(U) (recall f̂ preserves a global frame). This implies that if X̂ is
the lift to π−1(U) of a local Killing field X defined on an open set U ,
then X̂ (and a fortiori X) is uniquely determined by its value at any point
x̂ ∈ π−1(U).

Note Killloc(x) the set of germs of local Killing fields at x ∈M . They form
a vector space, and if x̂ lies over x, the evaluation X ∈ Killloc(x) ↦ X̂(x̂) is
a linear injective map, and this proves that Killloc(x) is a finite dimensional
vector space. In fact, Killloc(x) is more than an abstract set of germs of
vector fields. Consider a decreasing sequence of connected open sets Ui such
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that ⋂i⩾0Ui = {x} and note Killi(x) the vector space of local Killing fields
at x defined on Ui. Since Killi(x) ⊂ Killi+1(x) and Killi(x) ↪ Killloc(x)
for all i ⩾ 0, there exists i0 such that Killloc(x) ≃ Killi0(x), ie every local
Killing field at x is defined at least on a common neighbourhood Ui0 of x.

Proposition 2.4. — Let F ∶ U → V be a diffeomorphism between two
open sets of M̂ that preserves the Cartan form. Assume that U is connected
and that for all x ∈ π(U), U ∩ π−1(x) is connected. Set U = π(U) and
V = π(V). Then F extends to a bundle isomorphism f̂ ∶ π−1(U) → π−1(V )
that is the lift of a local isomorphism f between U and V .
Let U ⊂ M̂ be a connected open set such that for all x ∈ π(U), U ∩π−1(x)

is connected. Let X̂ be a field on U such that LX̂ω = 0. Then X̂ is in fact
the restriction to U of a local Killing field acting on the saturated open set
π−1(π(U)).

Proof. — There is no choice to build the extensions of F and X since
they have to commute with the action of the structural group. The only
condition is that this extension is well-defined. We explain it in the case
of a vector field. Such a field X̂ has to commute with the fundamental
vector fields A∗, A ∈ p (Definition 2.1). Therefore, if two points x̂ ∈ U and
x̂.p ∈ U lie in the same fiber, then X̂x̂.p = (Rp)∗X̂x̂. Thus, we can define an
extension of X̂ to the saturated open set U .P . One easily verifies that this
extension is indeed a Killing field. �

If we want to exhibit a local Killing field in the neighbourhood of a point
x ∈M , we only have to build a field on a convex exponential neighbourhood
of some x̂ ∈ M̂ lying over x that commutes with every ω-constant vector
field, that is a local Killing field of a framing on this neighbourhood.

2.3. Orbits of local automorphisms, local and infinitesimal
homogeneity

The Autloc-orbit of a point x in a manifold endowed with a Cartan
geometry is the set of points y such that there exists a local automorphism
sending x to y. The Killloc-orbit of a point x ∈ M is the set of points of
M that can be reached from x by a finite sequence of flows of local Killing
fields. Obviously, any Killloc-orbit is contained in an Autloc-orbit.

Definition 2.5 (Local homogeneity). — A Cartan geometry on a mani-
foldM is said to be locally homogeneous if it contains only one Autloc-orbit.
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LOCAL AUTOMORPHISMS OF GEOMETRIC STRUCTURES 185

If f̂ is the lift of a local automorphism f ∶ U → V , we have (f̂)∗Ω = Ω,
and then K ○ f̂ = K on π−1(U). Therefore, we see that if O ⊂ M is an
Autloc-orbit, K(π−1(O)) is a single P -orbit in Hom(Λ2(g/p),g).

2.3.1. Universal covariant derivative

Definition 2.6 (Universal covariant derivative, [15], p.194). — Let V
be a vector space and ρ ∶ P → GL(V ) a linear representation. Let F ∶ M̂ →
V be a P -equivariant map. Since we are given an absolute parallelism on
M̂ , the differential TF ∶ TM̂ → TV can be interpreted as an equivariant
map D1F ∶ M̂ → V ⊕Hom(g, V ) setting ∀x̂ ∈ M̂

D1F (x̂) = (F (x̂),D1F (x̂)), where ∀A ∈ g, D1F (x̂)(A) = Tx̂F (Ãx̂).

The tangent map TF is of course completely determined by this equi-
variant map DF . A very nice aspect of this point of view is that the map F
and its differential are of the same nature. Thus, we can iterate the process
and get DrF the r-th derivative of F , defined after some identifications by

DrF ∶ M̂ → V ⊕Hom(g, V ) ⊕⋯⊕Hom(⊗rg, V )
x̂ ↦ (F (x̂),D1F (x̂), . . . ,DrF (x̂)),

whereDrF (x̂)(X1⊗⋯⊗Xr) ∶= (X̃1. . . . .X̃r.F )(x̂). It is not difficult to prove
that the r-th derivative of F is P -equivariant, where P acts on the right
on each factor Hom(⊗rg, V ) in the following way: for all w ∈ Hom(⊗rg, V )
and p ∈ P ,

w.p ∶X1 ⊗⋯⊗Xr ↦ ρ(p).w(Ad(p)X1, . . . ,Ad(p)Xr).

At last, if f ∶ U → V is a local automorphism of (M,C) such that F ○ f̂ = F
on π−1(U), then for all r ⩾ 0, we have DrF ○ f̂ = DrF on π−1(U).

2.3.2. Infinitesimal homogeneity

Let V = Hom(Λ2(g/p),g) be the target space of the curvature map K.
NoteWr ∶= V ⊕Hom(g, V )⋯⊕Hom(⊗rg, V ). Since any local automorphism
f satisfiesK○f̂ =K, ifO is an Autloc-orbit, then for all r ⩾ 0, DrK(π−1(O))
is a single P -orbit in Wr. This motivates the last definition.

Definition 2.7 (Infinitesimal homogeneity). — The geometry of M is
said r-infinitesimally homogeneous, for r ⩾ 1, if the P -equivariant map DrK
takes values in a single P -orbit in Wr.
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3. Singer’s theorem for Cartan geometries

Let (M,C) be a Cartan geometry modeled on X = G/P , with M con-
nected. Under the hypotheses of generalized Singer’s theorem, subbundles
with interesting properties appear, and infinitesimal homogeneity of (M,C)
is derived from their study. We have isolated the essential properties of these
objects, and we now present them. Theorem 1.1 will follow easily.

3.1. Parallel submanifolds in Cartan geometries

Definition 3.1. — A submanifold Σ ⊂ M̂ is said to be parallel if there
exists a vector subspace h ⊂ g such that for each x̂ ∈ Σ, ω(Tx̂Σ) = h.

Parallel submanifolds appear in the following context.

Lemma 3.2. — Let F ∶ M̂ → V be a map taking values in a vector
space. Assume F has constant rank and note Σ = F −1(v0) for v0 ∈ V . If
D1F ∶ M̂ → V ⊕Hom(g, V ) is constant over Σ, then Σ is parallel.

Proof. — Remind that for us, D1F (x̂) = (F (x̂),D1F (x̂)), where we note
D1F (x̂)(A) = Tx̂F (Ãx̂). Here, D1F is constant equal to w0 ∈ Hom(g, V )
all over Σ. Since for all x̂ ∈ Σ, Tx̂Σ = KerTx̂F , we have

ω(Tx̂Σ̂) = {A ∈ g ∶ (LÃ.F )(x̂) = 0}
= {A ∈ g ∶ D1F (x̂)(A) = 0}
= Kerw0.

Hence, Σ is parallel. �

If Σ is a parallel submanifold, it is natural to consider the restrictions
to Σ of ω-constant fields X̃, for X ∈ h. Those vector fields are tangent to
Σ and we name them (h, ω)-constant vector fields. Those fields define an
absolute parallelism on Σ noted PΣ.
If the curvature map of (M,C) is moreover constant over a parallel sub-

manifold, then we are almost able to prove the local homogeneity of (M,C).
This is the content of the following proposition.

Proposition 3.3 (Parallel submanifolds with constant curvature). —
Let Σ be a connected parallel submanifold of M̂ with “space” h.

(1) If the curvature map K is constant over Σ, then (Σ,PΣ) is locally
homogeneous.
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(2) If moreover, h and p intersect transversally, then π∣Σ ∶ Σ → M

is a submersion and the connected components of π(Σ) are open
Killloc-orbits. In particular, if π(Σ) = M , then (M,C) is locally
homogeneous.

Proof. — 1. Take Σ a parallel submanifold of M̂ such that ω(Tx̂Σ) = h.
Assume K(x̂) =K0 ∈ Hom(Λ2(g/p),g) all over Σ. The first step is to prove
that (h, ω)-constant vector fields on Σ form a (finite dimensional) Lie sub-
algebra of Γ(TΣ). This fact comes from the general relation Kx̂(X,Y ) =
[X,Y ] − ωx̂([X̃, Ỹ ]) holding for every pair of ω-constant vector fields. In-
deed, if X,Y ∈ h, since K ≡K0 on Σ, we must have for x̂ ∈ Σ

ωx̂([X̃, Ỹ ]) = [X,Y ] −K0(X,Y ),

this equality meaning that [X̃, Ỹ ] is ω-constant on Σ. Moreover, because
[X̃, Ỹ ] is tangent to Σ, we get ωx̂([X̃, Ỹ ]) ∈ h, meaning [X̃, Ỹ ] is itself
(h, ω)-constant.

This observation encourages us to consider [, ]′ a Lie bracket on h de-
fined by [X,Y ]′ = [X,Y ] −K0(X,Y ). It naturally corresponds to that of
(h, ω)-constant vector fields on Σ, and hence satisfies the axioms of brack-
ets. We note h′ for (h, [, ]′). Thus, we have exhibited an infinitesimal Lie
group action ι ∶ h′ ↪ Γ(TΣ). According to Palais’ work on infinitesimal ac-
tions (see [13], theorem XI, p. 58), if H ′ is any Lie group with Lie algebra
isomorphic to h′, one has a local action of H ′ on the manifold Σ integrating
the infinitesimal action ι. This means that for all x̂ ∈ Σ and X ∈ Lie(H ′),
d
dt ∣t=0 exp(tX).x̂ = −ι(X)x̂.
It is enough to prove that any point of Σ admits a locally homogeneous

neighbourhood. Take a point x̂0 ∈ Σ. Because a non-zero ω-constant vector
field never vanishes, the local H ′-action is everywhere locally free on Σ.
Hence, there exists an open neighbourhood U of x̂0 in Σ and an open
neighbourhood V of e in H ′ such that the orbital application at x̂0 gives us
an identification ψ ∶ V → U . Assume U and V connected. Now, the point is
that under this identification, (h, ω)-constant vector fields on U correspond
to right-invariant vector fields on V (this is a simple consequence of the
definition of the local H ′-action). We can formulate this fact more formally
saying that if ωH

′

denotes the right Maurer-Cartan form on H ′, we have
ψ∗(ω∣TU) = ωH′ ∣TV .

Finally, for all X ∈ h′, note X̂ = ψ∗(LX) the push-forward of the left-
invariant vector field corresponding toX on V . Then, because left-invariant
and right-invariant vector fields commute, we see that for all X, X̂ com-
mutes with every (h, ω)-constant vector field on U . Thus, {X̂, X ∈ h′} is
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a Lie algebra of Killing fields of (U,PΣ). Since they span Tx̂Σ everywhere,
any two points in U can be joined by a finite sequence of flows of X̂’s.
Thus, U is locally homogeneous and we have proved the first part of the
proposition.

2. Now, assume moreover that h and p intersect transversally. This im-
plies that when restricted to Σ, π realizes a submersion since Tx̂π(ω−1

x̂ (h)) =
Tx̂π(ω−1

x̂ (h + p)) = TxM . Let s = h ∩ p. If X1,X2 ∈ s, since the curvature
form is horizontal, one has [X1,X2] = [X1,X2]′ ∈ h, proving s is a Lie
subalgebra of p. Choose S < P a connected Lie subgroup of P whose Lie
algebra is isomorphic to s. Note that because (s, ω)-constant fields gener-
ate flows which correspond to the right action on M̂ of elements of S, Σ is
preserved by the right S-action.
Let x̂0 be a point in Σ and U its locally homogeneous neighbourhood

exhibited previously. Fix t an arbitrary complement of s in h and choose
0 ∈ U ⊂ t a small neighbourhood of the origin such that expx̂ ∶ U → Σ
is a diffeomorphism onto its image and expx̂(U) =∶ U ′ ⊂ U . If U is small
enough, there exists VS a convex neighbourhood of the identity in S such
that U1 = U ′.VS ⊂ U . Since the fields X̂ commute with (s, ω)-constant
vectors fields, if two points x̂ ∈ U1 and x̂.s ∈ U1 lie in the same fiber, then
X̂x̂.s = (Rs)∗X̂x̂. Therefore, there is a well defined extension of the X̂’s to
the saturated open set π−1(π(U1)) by setting X̂x̂.p = (Rp)∗X̂x̂. We are left
to prove that the extension of the X̂’s to the saturated open set are in fact
the lifts of local Killing fields of (M,C).
We have seen that by construction, for all x̂ ∈ U , (LX̂ω)x̂(v) = 0 for all

v ∈ Tx̂Σ. We claim that X̂ satisfies

(1) for all x̂ ∈ π−1(π(U1)), (LX̂ω)x̂ vanishes on all vertical directions ;

(2) the following equivariance relation for all x̂ ∈ π−1(π(U1)) and A ∈ g

(LX̂ω)x̂.p (Ã) = Ad(p−1) (LX̂ω)x̂ (Ãd(p)A) = 0.

Those facts are actually true for every vector field that commutes with the
P -action. It comes from the following computations:

(1) Since the curvature 2-form is horizontal, for all x̂ ∈ π−1(π(U1)) and
A ∈ p, we have Ωx̂(X̂x̂, Ãx̂) = dωx̂(X̂x̂, Ãx̂) + [ω(X̂x̂),A] = 0. Take
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any x̂ ∈ π−1(π(U1)). We compute

(LX̂ω)x̂(Ã) = dωx̂(X̂, Ã) + (Ã.ω(X̂))x̂

= [A,ωx̂(X̂)] + d
dt

∣
t=0

ω(X̂)(x̂.etA)

= [A,ωx̂(X̂)] + d
dt

∣
t=0

(RetA
∗ω)x̂(X̂)

= [A,ωx̂(X̂)] + d
dt

∣
t=0

Ad(e−tA)ωx̂(X̂)

= 0,

(2) For A ∈ g and small enough t

[(φt
X̂
)∗ω]

x̂.p
(Ã) = [(φt

X̂
)∗ω]

x̂.p
((Rp)∗ Ãd(p)Ax̂)

= [(Rp)∗ (φtX̂)∗ ω]
x̂
(Ãd(p)Ax̂)

= [(φt
X̂
)∗ (Rp)∗ ω]

x̂
(Ãd(p)Ax̂)

= Ad(p−1) ((φt
X̂
)∗ ω)

x̂
(Ãd(p)Ax̂)

Taking derivative at t = 0, we get

(LX̂ω)x̂.p (Ã) = Ad(p−1) (LX̂ω)x̂ (Ãd(p)A) = 0.

Finally, the fields X̂, X ∈ h, satisfy LX̂ω = 0 on π−1(π(U1)). According
to Proposition 2.4, they are the lifts of Killing vector fields defined on a
neighbourhood of x0 in M . Thus, we have exhibited a Lie algebra h′ ⊂
Killloc(x0) of local Killing fields defined on an open neighbourhood of x0.
Since π∣Σ is a submersion, we have h′x = {X(x),X ∈ h′} = TxM for all x in
this neighbourhood. Therefore, any connected component of π(Σ) is locally
homogeneous. �

3.2. Proof of the generalized Singer’s theorem

We now prove Theorem 1.1. Note d = dim p and assume that (M,C) is
d-infinitesimally homogeneous. Then the maps DiK take values in a single
orbit inWi, for i ⩽ d. Let us fix an arbitrary point x̂0 in M̂ . For 0 ⩽ i ⩽ d, let
Si = StabP (DiK(x̂0)) and si = Lie(Si). There is an integer k(x̂0) ⩽ d such
that s0 ⊋ s1 ⊋ ⋯ ⊋ sk(x̂0) = sk(x̂0)+1. Remark that if x̂ is another point, for
all i ⩽ d, StabP (DiK(x̂)) and StabP (DiK(x̂0)) are conjugated in P . This
implies k(x̂) = k(x̂0) = k. We call k the Singer integer of (M,C). Recall the
following well-known result:
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Lemma 3.4. — Let (P,π,M,G) be a principal fibre bundle over a con-
nected manifold M with group G and H < G a closed subgroup. Then
P admits a reduction to an H-subbundle if and only if there exists a G-
equivariant map Φ ∶ P → G/H. In that case, for all u ∈ P , Φ−1(Φ(u)) is a
principal subbundle of P , whose structural group is conjugated to H.

For each i ∈ {0, . . . , d}, let N̂i be the connected component of the level set
DiK−1(DiK(x̂0)) containing x̂0. Then N̂i is a principal subbundle of M̂
with group (Si)0, the identity component of Si. Because of the definition
of k, we must have N̂k = N̂k+1. Note N̂ this subbundle and S its group.
The definition of Singer’s integer ensures that DkK satisfies the hy-

potheses of Lemma 3.2. Indeed, if we set F = DkK, then the derivative
D1F = (K, . . . ,DkK,D1K, . . . ,Dk+1K) must be constant over N̂ since
Dk+1K is itself constant over this subbundle. Thus, N̂ is a parallel subman-
ifold, which is also a principal subbundle of M̂ . Moreover, K is constant
over N̂ . Therefore, Proposition 3.3 implies that M is locally homogeneous.

3.3. Proof of the dense orbit theorem

Theorem 1.1 gives us a direct proof of the dense orbit theorem for Cartan
geometries, which we will now explain.

Let (M,C) be a Cartan geometry, modeled on a space X = G/P of
algebraic type, and such that the pseudo-group Autloc(M) admits a dense
orbit O in M . Let d = dimP . Let Φ = DdK be the d-th covariant derivative
of the curvature. Since Autloc(M) acts on M̂ preserving every derivative
of the curvature, O′ = Φ(π−1(O)) must be a single P -orbit in Wd. Let F
be the closure of O′ in Wd. Then, the map Φ takes values in F . Recall
that Adg(P ) ⊂ GL(g) is an algebraic subgroup. Since the P -action on
Wd is algebraic, every P -orbit in Wd is open in its closure (the closure
is taken relatively to the Hausdorff topology of Wd). Thus, O′ is open in
F and the open set Φ−1(O′) projects on an open subset of M containing
O, and thus has to be dense itself. Call it U . Therefore, the restricted
Cartan geometry (U,π−1(U), ω) satisfies the hypotheses of Theorem 1.1.
Therefore, each connected component of U is locally homogeneous. Take
x, y ∈ U and Vx, Vy ⊂ U connected neighbourhoods of x and y respectively.
These neighbourhoods are locally homogeneous. Since O is dense, it meets
Vx and Vy. Therefore, there exists a local automorphism sending x to y.
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4. Gromov’s Theorem on orbits of local isometries

Our presentation of Gromov’s result can be seen as a refinement of
Singer’s theorem. Indeed, in Singer’s theorem we assumed that the maps
DrK ∶ M̂ → Wr take values in a single P -orbit and concluded that there
is only one Autloc-orbit. In the general case, the principle will be to de-
rive properties of Autloc-orbits from the study of preimages DrK−1(P.w)
of P -orbits in Wr, for r ⩽ dimG.
Let m = dimG and Φ = DmK, the m-th covariant derivative of the

curvature. The general idea used to prove Theorem 1.3 is that there exists
an open dense subset Ω ⊂ M , that splits into a union of Autloc-invariant
open sets Ω = Ω1∪⋯∪Ωk such that for all i, the restriction Φ ∶ π−1(Ωi) → Wr

has constant rank and every level set of Φ in π−1(Ωi) is projected by π onto
an Autloc-orbit in Ωi.

In section 4.2, we focus on the elementary case of a Cartan geometry
associated to an absolute parallelism on M . In this situation, the proof of
Theorem 1.3 will be easier once we will have exhibited Ω and established
Theorem 1.2: orbits of local automorphisms will essentially be level sets of
a map with constant rank. Nonetheless, it will be helpful to treat this case
since in the general case, that will be exposed in section 4.3, the idea is to
deduce regularity properties of the orbits from the fact that they are the
projections of the Autloc-orbits of a parallelism on π−1(Ω).

4.1. Killing generators and integrability domain

Let (M,C) be a manifold endowed with a Cartan geometry, with model
space X = G/P satisfying the standard hypotheses. Recall that we denote
by V the target space Hom(Λ2(g/p),g) of the curvature map K, and that
DrK ∶ M̂ →Wr denotes the r-th covariant derivative of the curvature map.

Definition 4.1 (Killing generator). — For any A ∈ g, we define a linear
morphism

⌞A ∶ Hom(⊗rg, V ) → Hom(⊗r−1g, V ),
given by ∀W ∈ Hom(⊗rg, V ), ∀X1, . . . ,Xr−1 ∈ g,

(W ⌞A)(X1, . . . ,Xr−1) =W (A,X1, . . . ,Xr−1).

We extend ⌞A to a linear map Wr →Wr−1 defined by

(W0, . . . ,Wr) ⌞A = (W1 ⌞A, . . . ,Wr ⌞A).
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For r ⩾ 1, A will be a Killing generator of order r at x̂ if

DrK(x̂)⌞A = 0.

We note Killr(x̂) ⊂ g the set of all Killing generators of order r at x̂ and
Kill∞(x̂) = ⋂∞r=1 Killr(x̂).

Remark 4.2. — If X is a local Killing field of (M,C) and if X̂ is its
lift, then for all x where X is defined and for all x̂ ∈ π−1(x), we have
X̂(x̂) ∈ Kill∞(x̂).

For all 1 ⩽ r < ∞, Killr(x̂) = ωx̂(KerTx̂(Dr−1K)) and for all p ∈ P ,
we have Killr(x̂.p) = Ad(p−1)Killr(x̂). Therefore, if x ∈ M , the dimension
dim Killr is constant over the fiber π−1(x).

Definition 4.3. — If 1 ⩽ r < ∞, we note kr(x) = dim Killr(x̂) for any
x̂ lying over x.

For r ⩾ 1, Killr(x̂) is the kernel of a linear map depending continuously
on x̂. Therefore, the maps kr are upper semi-continuous.

Definition 4.4 (Integrability domain). — We define the integrability
domain of (M,C) to be the subset

Int(M,C) = {x ∈M ∣ k1, . . . , km+2 are locally constant at x}.
If there is no ambiguity on which geometry we are considering, we will also
note M int for Int(M,C).

Since the maps kr are upper semi-continuous, the integrability domain
is an open dense subset of M . Moreover, since for all f ∈ Autloc(M,C) and
r ⩾ 1, kr ○ f = kr, Int(M,C) is Autloc-invariant.

4.2. Gromov’s results for absolute parallelisms

In this section, we prove Theorem 1.2 and Theorem 1.3 in the special case
where the Cartan geometry is simply the data of an absolute parallelism
on the manifoldM . The proof of Theorem 1.2 consists in exhibiting a local
Killing field and we do it by building its graph using standard techniques
of integration of an involutive distribution.
The geometric structure defined by a parallelism is an elementary case

of Cartan geometry. Let us explain it briefly.
Consider M an n-dimensional manifold endowed with an abolute paral-

lelism P, ie a set of n vector fields (X1, . . . ,Xn) on M everywhere linearly
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independent. Then, let ω = (ω1, . . . , ωn) be the dual parallelism of the
cotangent bundle. The data of P is equivalent to the one of the 1-form ω,
that takes values in Rn. Let M̂ = M and π ∶ M̂ → M be the trivial prin-
cipal fibration with group {0}, G be the additive group Rn and P = {0}.
Then, the 1-form ω obviously satisfies the axioms of a Cartan connection
on this bundle. We will say that the Cartan geometry (M,M̂,ω) built
above is the Cartan geometry associated to the parallelism P. Moreover,
local automorphisms of this Cartan geometry are exactly the local auto-
morphisms of (M,P), ie local diffeomorphisms of M commuting with the
fields X1, . . . ,Xn.

Conversely, consider (M,M̂,ω) a Cartan geometry with model space
G/P with G = Rn and P = {0}. The projection π ∶ M̂ → M identifies M̂
with M . The Cartan connection ω can be viewed as a parallelism of T ∗M ,
and we associate to it the dual parallelism of TM .

Since the total space of this fibration coincides with the base, we omit
in this section the notation with “hats”.

From now on, fix (M,P) an n-dimensional manifold together with a
parallelism defined by the vector fields (X1, . . . ,Xn), and note (M,M̂,ω)
its associated Cartan geometry. All of the definitions and properties we
have established above make sense in this geometric context (curvature,
domain of integrability and Killing generators). Recall that if X ∈ Rn, we
note X̃ = ω−1(X) the ω-constant vector field associated to X. Those fields
are linear combinations of the Xi’s. At last, there exists maps γkij such that:

∀1 ⩽ i, j ⩽ n, [Xi,Xj] = ∑
k

γkijXk.

Therefore, the curvature map K is defined for all i, j by

K(x)(ei, ej) = [ei, ej] − ωx([Xi,Xj]) = −(γ1
ij(x), . . . , γnij(x)).

4.2.1. Integrating Killing generators

The problem is the following: we are given A ∈ Killn+1(x0) a Killing
generator of order n + 1 at a point x0 ∈ Int(M,P), and we want to find a
vector field defined on a neighbourhood of x0 that commutes with the n
vector fields of P. Since this problem is local, without loss of generality, we
assume that M = U ⊂ Rn is a connected open subset such that Int(M,P) =
M , or equivalently such that the maps k1, . . . , kn+2 are constant over M .
The parallelism P provides us a particular trivialization of TM which is
the map φ ∶ (x, v) ∈ TM ↦ (x,ωx(v)) ∈ M × Rn. We have chosen to make
all the computations through this trivialization. Thus, a vector field will
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be seen as a smooth map M → Rn. If f is a local diffeomorphism, we
note f∗ ∶ M × Rn → M × Rn the action of its differential map, read in the
trivialization φ.
To exhibit the local Killing field of Theorem 1.2, we will build its graph

in M × Rn. Identify canonically T(x,u)(M × Rn) with TxM × Rn, note
(∂1, . . . , ∂n) the standard basis of the second factor Rn and consider ∆
the n-dimensional distribution on M ×Rn defined by

∆(x,u) = Span(Xi −∑
jk

ujγ
k
ij ∂k , 1 ⩽ i ⩽ n).

The introduction of this object is motivated by the following lemma.

Lemma 4.5. — Let X be a vector field on M . Then X is a Killing field
if and only if its graph in M ×Rn integrates the distribution ∆.

Proof. — Let ΓX = {(x,u1(x), . . . , un(x)) = (x,X(x)), x ∈ M} be the
graph of X, read in the trivialization φ. Then, for all x ∈ M , the n-
dimensional tangent space T(x,X(x))ΓX is spanned by the tangent vectors
Xi(x) +∑k(Xi.uk)(x)∂k ∈ TxM ×Rn, 1 ⩽ i ⩽ n.

When we develop the equations [Xi,∑j ujXj](x) = 0 for 1 ⩽ i ⩽ n, we
get that X is a Killing field if and only if for all 1 ⩽ i, k ⩽ n

(Xi.uk)(x) +∑
j

uj(x)γkij(x) = 0.

Thus, ifX is a Killing field, the tangent space T(x,X(x))ΓX is in fact spanned
by the

Xi(x) −∑
jk

uj(x)γkij(x)∂k, 1 ⩽ i ⩽ n,

meaning T(x,X(x))ΓX = ∆(x,X(x)). Conversely, if we assume T(x,X(x))ΓX =
∆(x,X(x)), then for all i, T(x,X(x))ΓX contains Xi(x) − ∑jk uj(x)γkij(x)∂k.
Therefore, we must have for all i, k, (Xi.uk)(x) = ∑j uj(x)γkij(x). �

Lemma 4.6. — Let x ∈ Int(M,P). Let X ∈ Rn in the injectivity domain
of expx, A ∈ Kills(x) and γ(t) = expx(tX) = φt

X̃
(x), t ∈ [−1,1]. Assume

that for some s ⩾ 1, the maps ks and ks+1 are constant and equal in a
neighbourhood of γ. Then, we have for all t

(φt
X̃
)∗A ∈ Kills(γ(t)).

Proof. — This result corresponds to Proposition 6.2 of [9], with a slight
modification. In fact, the original idea goes back to Nomizu, [10] Lemma 3
(concerning Riemannian manifolds). For the sake of completeness, we give
a detailed proof in Appendix 4.5. �
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We can now begin the proof. Let x0 ∈ M and A ∈ Killn+1(x0). There
exists an integer s0 ⩽ n + 1 such that

k1(x0) > ⋯ > ks0(x0) = ks0+1(x0).

Since the maps k1, . . . , kn+2 are constant on M , the maps ks0 and ks0+1 are
constant and equal. We define

Σ = {(x, v) ∣ v ∈ Kills0(x)} ⊂M ×Rn.

Note that for an arbitrary local Killing field X onM , we must have X(x) ∈
Kill∞(x) everywhere X is defined. Therefore the graph we are looking for
has to be included in Σ and must contain the point (x0,A).

Lemma 4.7. — Σ is a submanifold of M ×Rn

Proof. — Take x ∈ M and consider B = B(0, δ) ⊂ Rn a ball (for an
arbitrary norm) such that expx is defined and injective on B. If Y ∈ B and
y = expx(Y ), since Kills0(y) and Kills0(x) have same dimension, Lemma
4.6 implies Kills0(y) = (φ1

Ỹ
)∗ Kills0(x). Thus, Kills0(x) depends smoothly

of x and Σ is indeed a submanifold of M ×Rn. �

We now prove that ∆ can be restricted into a distribution on Σ, and
that this restricted distribution is involutive. From now on for the reader’s
convenience, we note Vi = Vi(x,u1, . . . , un) = ∑jk ujγkij ∂k.

Lemma 4.8. — The distribution ∆ is everywhere tangent to Σ.

Proof. — According to Lemma 4.6, (φtXi
)∗ ∶ M × Rn → M × Rn pre-

serves Σ if t is small enough. Take (x,u1, . . . , un) = (x,u) ∈ Σ and let
c(t) = (φtXi

)∗(x,u). Then d
dt ∣t=0 c(t) ∈ T(x,u)Σ. Let us compute this tan-

gent vector. According to the definition of φ, we have

d
dt

∣
t=0

c(t) = (Xi(x),∑
j

uj
d
dt

∣
t=0

ω((TxφtXi
)Xj(x))).

Moreover,

d
dt

∣
t=0

ω((TxφtXi
)Xj(x)) = (LXiω)x (Xj(x))

= (dω)x(Xi,Xj),

since ω(Xi) is constant equal to ei. The curvature form of the Cartan
geometry associated to the parallelism P is Ω = dω + 1

2 [ω,ω] = dω since
the Lie algebra g = Rn is abelian. Therefore, (dω)x(Xi,Xj) = Ωx(Xi,Xj) =
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K(x)(ei, ej) = −(γ1
ij(x), . . . , γnij(x)). Finally, we get

d
dt

∣
t=0

c(t) =Xi(x) −∑
jk

ujγ
k
ij(x)∂k

=Xi − Vi ∈ T(x,u)Σ.

Thus, for all i, Xi − Vi is tangent to Σ and we have ∆(x,u) ⊂ T(x,u)Σ. �

From now on, we will consider ∆ as a distribution in TΣ.

Lemma 4.9. — When restricted to Σ, the distribution ∆ is involutive.

Proof. — Let us compute the bracket of X1 − V1 and X2 − V2. We get:

[X1, V2] = ∑
jk

(X1.γ
k
2j)uj ∂k

[V1,X2] = −∑
jk

(X2.γ
k
1j)uj ∂k

[V1, V2] = ∑
jklm

γk1jγ
l
2m(δkmuj ∂l − δjlum ∂k), where δij = 1 if i = j, 0 else.

Note Cp the component of [X1 − V1,X2 − V2] on ∂p, for 1 ⩽ p ⩽ n.

Cp = ∑
j

(∑
k

γkj1γ
p
k2 + γ

k
2jγ

p
k1)uj −∑

j

(X1.γ
p
2j)uj +∑

j

(X2.γ
p
1j)uj .

Projecting on Xp the Jacobi relation involving X1, X2 and Xj , we get:

(Xj .γ
p
12 +∑

k

γk12γ
p
jk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
comes from [Xj ,[X1,X2]]

+ (X1.γ
p
2j +∑

k

γk2jγ
p
1k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
comes from [X1,[X2,Xj]]

+ (X2.γ
p
j1 +∑

k

γkj1γ
p
2k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
comes from [X2,[Xj ,X1]]

.

Therefore, we have for all j and p

∑
k

γk12γ
p
kj + γ

k
2jγ

p
k1 + γ

k
j1γ

p
k2 =Xj .γ

p
12 +X1.γ

p
2j +X2.γ

p
j1.

Then we have:

Cp = ∑
j

[(Xj .γ
p
12)uj −∑

k

γk12γ
p
kjuj]

=
⎛
⎝∑j

ujXj

⎞
⎠
.γp12 −∑

k

γk12∑
j

γpkjuj
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Therefore,

[X1 − V1,X2 − V2] = [X1,X2] +∑
p

Cp∂p

= ∑
k

γk12Xk −∑
p

⎛
⎝∑k

γk12∑
j

γpkjuj
⎞
⎠
∂p +∑

p

⎛
⎝∑j

ujXj

⎞
⎠
.γp12 ∂p

= ∑
k

γk12
⎛
⎝
Xk −∑

jp

γpkjuj ∂p
⎞
⎠
+∑

p

⎛
⎝∑j

ujXj

⎞
⎠
.γp12 ∂p

= ∑
k

γk12(Xk − Vk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈∆

+∑
p

⎛
⎝∑j

ujXj

⎞
⎠
.γp12 ∂p

Since (x,u) ∈ Σ, (u1, . . . , un) ∈ Kills0(x) is a Killing generator of order
s0 ⩾ 1 at x, we get [(u1X1 +⋯ + unXn).K] (x) = 0. Therefore, the second
term of the sum is 0. Hence [X1−V1,X2−V2] ∈ ∆. Of course, this calculation
is still valid for an arbitrary bracket [Xi − Vi,Xj − Vj] and we have proved
that ∆ is involutive. �

Conclusion. — The distribution ∆ gives rise to a foliation F in Σ. Con-
sider the leaf F0 containing (x0,A) and note p ∶ Σ → M the projection
on the first factor. Since X1, . . . ,Xn are everywhere in the image of the
tangent map of p∣F0 , this map is a local diffeomorphism from F0 to M

by the inverse mapping theorem. In a small enough neighbourhood of x0,
set Â(x) = p∣−1

F0
(x). Then Â is a field near x0 whose graph integrates the

distribution ∆. Therefore Â is a Killing field and Â(x0) = A.

4.2.2. Orbits of local automorphisms of a parallelism

We still consider an n-dimensional manifold M endowed with an ab-
solute parallelism P, and note ω the Cartan connection of its associated
Cartan geometry. We shall now prove Theorem 1.3 in this situation. Set
Ω = Int(M,P).
We first study the Killloc-orbits in Ω. Fix x0 ∈ Ω and note O its Killloc-

orbit. The orbit O must be included in the connected component U of Ω
containing x0. The map kn+1(x) is constant equal to k0 over U . This means
that Killn+1(x) has constant dimension k0

n+1 on U . Thus, the map DnK ∶
U →Wn has constant rank n−k0 since Killn+1(x) = ωx(KerTxDnK) for all
x ∈ U . Therefore, its level sets are properly embedded submanifolds of U .
Let F ⊂ U be the connected component of the level set DnK−1(DnK(x0))
in U containing x0. Note first that F is preserved by the flows of local

TOME 66 (2016), FASCICULE 1



198 Vincent PECASTAING

Killing fields of P. By construction, Theorem 1.2 ensures that for all x ∈ F ,
TxF = Killloc(x)∣x = {X(x), X ∈ Killloc(x)} since we have ωx(TxF) =
ωx(KerTxDnK) = Killn+1(x) and x ∈ Int(M,P). Therefore, for all x ∈ F ,
the Killloc-orbit of x is contained in F and has dimension k0 = dimF . By
connectedness, O = F .
We conclude that for all x ∈ U , the Killloc-orbit of x is exactly the con-

nected component containing x of the level set of DnK passing through x.
Now, consider O′ an Autloc orbit in Ω. It is enough to prove that the

intersection between O′ and any connected component of Ω is a closed
submanifold of this component. Let U be a connected component and x ∈
U ∩O′. Then O′∩U is included in DnK−1(DnK(x))∩U . Since O′ is stable
under the action of flows of local Killing fields, what has been proved above
implies thatO′∩U is a union of connected component ofDnK−1(DnK(x))∩
U , and therefore it is a closed submanifold of U .

4.3. From parallelisms to general Cartan geometries

Let (M,C) be a manifold endowed with a Cartan geometry modeled on
X = G/P . We still note π ∶ M̂ →M the associated P -principal bundle and
ω the Cartan connection. The Cartan form defines an absolute parallelism
on M̂ , denoted Pω: identify once for all in an arbitrary way the vector space
g with Rm and note (e1, . . . , em) its standard basis. Let Xi = ω−1(ei), for
1 ⩽ i ⩽m and set Pω = (X1, . . . ,Xm).
Thus, we have two different geometric structures on two different mani-

folds: a Cartan geometry on M , namely (M,C), and a parallelism on M̂ ,
namely (M̂,Pω). We then have two curvature maps:

(1) The curvature map K ∶ M̂ → Hom(Λ2g,g) ≃ Hom(Λ2Rm,Rm) of
the Cartan geometry (M,C) ;

(2) The curvature map KPω ∶ M̂ → Hom(Λ2Rm,Rm) of (M̂,Pω), as
defined in section 4.2.

Those maps satisfy the relation ∀x̂ ∈ M̂, K(x̂) = [ , ]g +KPω(x̂) since we
have for all X,Y ∈ g, K(x̂)(X,Y ) = [X,Y ]g − ωx̂([X̃, Ỹ ]). Therefore, for
all r ⩾ 1, DrK =DrKPω as maps on M̂ .

We deduce that for all x̂ ∈ M̂ and A ∈ g, A is a Killing generator of order
r ⩾ 1 at x̂ of (M,C) if and only if it is a Killing generator of order r at x̂
of (M̂,Pω). Consequently, the integrability domain of (M̂,Pω) coincides
with π−1(Int(M,C)).
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4.3.1. Integrability theorem

We first explain how to deduce from the previous study the proof of
Theorem 1.2 on the integrability of Killing generators in a general Cartan
geometry. It is the easiest part.

Take Ω = Int(M,C). Fix x ∈ Ω, x̂ ∈ M̂ lying over x and A ∈ Killm+1(x̂)
a Killing generator of order m + 1 of (M,C) at x̂. According to what has
been said above, x̂ ∈ Int(M̂,Pω) and A is a Killing generator of order m+1
of (M̂,Pω) at x̂. Then there exists Â a local Killing field at x̂ of (M̂,Pω),
defined on an open set U ⊂ M̂ and such that ωx̂(Â) = A. Shrinking U if
necessary, we can apply Proposition 2.4 to conclude that Â extends to the
saturated open set U .P and that this new vector field is the lift of a local
Killing field of (M,C) defined near x.

4.3.2. Structure of orbits

The Theorem 1.3 on Autloc-orbits will be more difficult to prove. The
study of the orbits of a parallelism ensures that in π−1(Int(M,C)), the
orbits of the parallelism Pω are closed submanifolds. Moreover, Proposi-
tion 2.4 implies that orbits of (M,C) are the projection on M of orbits of
(M̂,Pω). We are then left to prove that these projections are closed sub-
manifolds. This will not be true if we consider orbits in the whole domain
Int(M,C) and we will fix this problem by shrinking this open dense set.

Recall that we need to assume that the model space X = G/P is of alge-
braic type. In particular, the group Adg(P ) < GL(g) acts algebraically on g

and the P -orbits in every space Wr are properly embedded submanifolds.
We will make use of the following property of algebraic actions (see [8],
Proposition of §8.3, p. 60).

Proposition 4.10. — Let G be a real algebraic group and G × V → V

an algebraic action of G on a real variety V . Let v ∈ V and v′ in the
boundary of the orbit G.v. Then, dimG.v′ < dimG.v.

Let Φ ∶ x̂ ∈ π−1(M int) ↦ DmK(x̂) ∈ Wm. Define d ∶ x ∈ M int ↦
dim(P.Φ(x̂)), for any x̂ lying over x (recall Φ is P -equivariant). The map
d is lower semi-continuous and Autloc-invariant since w ∈ Wm ↦ dimP.w

is itself lower semi-continuous and Φ ○ f̂ = Φ for all f ∈ Autloc. Therefore,
there exists Ω ⊂M int an Autloc-invariant open dense subset on which d is
locally constant. Since km+1 and d are locally constant on this open set, Ω
decomposes into a finite union of open sets Ω = Ω1 ∪ ⋯ ∪ Ωl such that for
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all 1 ⩽ i ⩽ l, the maps km+1 and d are constant equal to kim+1 and di on
Ωi. If we assume this decomposition to be minimal (or equivalently that
the Ωi’s are intersections of level sets of km+1 and d), then each Ωi will be
Autloc-invariant. We now focus on the behaviour of Autloc-orbits in each
Ωi and prove that for all i, the Autloc-orbits in Ωi are closed submanifold
with the same dimension.
Let Ω̂i = π−1(Ωi). We note Φi = Φ∣Ω̂i

. Then Φi has constant rankm−kim+1
on Ω̂i. Let O be the Autloc-orbit of a point x ∈ Ωi. Let Pi be the restriction
to Ω̂i of the parallelism Pω defined by the Cartan connection. Take x̂ lying
over x and note O′ the Autloc-orbit of x̂ for the structure (Ω̂i,Pi). As
we saw in section 4.2.2, O′ is in fact a union of connected components of
the level set Φ−1

i (Φi(x̂)). According to Proposition 2.4, O = π(O′). This
observation invites us to study the union of the Autloc-orbits of every point
x̂ in the fiber π−1(x), that is π−1(O).
Fix x̂ in π−1(x), note w = Φi(x̂). We claim that Φ−1

i (P.w) = π−1(O) is a
closed submanifold of Ω̂i, saturated by the P -action.

First, Φ−1
i (P.w) has the structure of a submanifold since Φi has constant

rank and P.w is a submanifold of Wm included in the image of Φi. Note
that dim Φ−1

i (P.w) = dimP.w + (dim Ω̂i −RkΦi) = di + kim+1.
Let x̂n be a sequence of Φ−1

i (P.w) that converges to a point x̂∞ in Ω̂i.
The limit Φi(x̂∞) belongs to the closure of P.w for the Hausdorff topol-
ogy in Wm, and a fortiori to its Zariski closure. Since the P -action on
Wm is algebraic, if Φi(x̂∞) were not in P.w, Proposition 4.10 would imply
dim(P.Φi(x̂∞)) < di, contradicting x̂∞ ∈ Ω̂i. Then, x̂∞ ∈ Φ−1

i (P.w).
Finally, since the projection π is open, π(Φ−1

i (P.w)) is a closed subman-
ifold of Ωi. Moreover, π(Φ−1

i (w)) = π(Φ−1
i (P.w)). Since the orbit O′ is a

union of connected components of Φ−1
i (w) and since O = π(O′), O is a

union of connected components of the manifold π(Φ−1
i (P.w)). Thus O is

itself a closed submanifold of Ωi. Moreover, dimO = dim Φ−1
i (P.w)−dimP =

di + kim+1 − dim p. This dimension does not depend on the orbit O ⊂ Ωi.

4.4. Extension to more general structures

If we are interested in the orbits of automorphisms of a given Cartan
geometry that also preserve some tensor, we cannot a priori find a Cartan
geometry that models the structure resulting from the union of the initial
Cartan geometry and the tensor. We have in mind the proof of a theorem
of D’Ambra whose statement is:
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Theorem ([4], 0.12.A). — Let (M,g) be a simply connected, compact,
real-analytic Lorentz manifold. Then the isometry group Isom(M,g) is
compact.

D’Ambra used Gromov’s result on (M,ϕ), where ϕ is the geometric
structure resulting from the union of g and a well chosen set of vector
fields (X1, . . . ,Xs). That is, in an open dense subset of M , the orbits of
local automorphisms that preserve the metric g and each field Xi are closed
submanifolds.
Also, one can remark that Theorem 1.3 has an awkward weakness with

regard to Gromov’s statement, since A-rigid structures include structures
similar to ϕ, whereas Cartan geometries do not. Thus, the motivation of
this section is to fill this gap and to obtain a formulation of Theorem 1.3
for geometric structures more general than Cartan geometries.

4.4.1. Cartan geometries with additional geometric structure

In any Cartan geometry, the tangent bundle TM is naturally isomorphic
to M̂ ×P g/p, where P acts on g/p via the representation Ad (see [15],
p.188). Therefore, many geometrical objects on M can be interpreted as
P -equivariant maps from M̂ to some manifold endowed with a P -action.
For instance, one can see tensors of type (r, s) on M as P -equivariant
maps M̂ → T sr (g/p), where T sr (g/p) denotes the space of tensors of type
(r, s) on g/p, endowed with the action induced by Adg/p(P ). Moreover,
any k-dimensional distribution on M can be seen has a P -equivariant map
M̂ → Grk(g/p), where Grk(g/p) denotes the k-dimensional Grassmanian
of g/p, P acting on it via the adjoint representation.

Definition 4.11. — Let X = G/P be a model space and W be a man-
ifold endowed with a right action of the group P . A generalized Cartan
geometry (M,C, ϕ) of type (X,W ) on a manifold M is the data of a Car-
tan geometry (M,C) modeled on X together with a P -equivariant map
ϕ ∶ M̂ →W .

Local automorphisms of such a geometric structure are local automor-
phisms f ∶ U → V of (M,C) whose lift f̂ satisfies ϕ ○ f̂ = ϕ on π−1(U). A
local Killing field of (M,C, ϕ) at a point x ∈M is a vector field X defined
on a neighbourhood of x whose flow is composed with local automorphisms
of (M,C, ϕ).

Remark 4.12. — In the examples given above, a ϕ-preserving automor-
phism is nothing more than an automorphism of (M,C) preserving the
corresponding tensor or k-dimensional distribution on M .
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In what follows, Autlocϕ will denote the local automorphisms of a gen-
eralized Cartan geometry (M,C, ϕ), and Killlocϕ (x) its local Killing fields
defined near x ∈M . If X ∈ Killlocϕ (x) is defined on U ⊂M , X admits a lift
X̂ to π−1(U) such that

(1) X̂ commutes with the right P -action ;
(2) LX̂ω = 0 ;
(3) and, if φt

X̂
denotes its local flow, ϕ ○ φt

X̂
= ϕ on π−1(U).

Conversely, a vector field on π−1(U) satisfying these three conditions is the
lift of a local Killing field of (M,C, ϕ).

4.4.2. Generalization of the results

Theorem 1.3 naturally extends to this kind of geometric structures, when
we assume P and W algebraic and the P -action on W algebraic.

Theorem 4.13. — Let (M,C, ϕ) be a generalized Cartan geometry of
type (X,W ). Assume that X is of algebraic type, the group P is algebraic,
W is algebraic and the P -action on W is algebraic. Then, there exists an
open dense subset Ω of M on which the Autlocϕ -orbits are closed submani-
folds.
More precisely, Ω admits a decomposition Ω = Ω1 ∪ ⋯ ∪ Ωk where each

Ωi is an open subset, preserved by local automorphisms, and in which the
Autlocϕ -orbits are closed submanifolds which all have the same dimension.

The proof of this result will also be based on an integrability result.
Before starting it, we need some additional definitions.

Definition 4.14. — Let W be a manifold endowed with a right P -
action. We associate to it a vector bundle B(W ) over W defined by

B(W ) = {(w,α), w ∈W, α ∈ Hom(g, TwW )}.

If ϕ ∶ M̂ → W is a P -equivariant map, we define a map T ϕ ∶ M̂ → B(W )
setting for all x̂ ∈ M̂

T ϕ(x̂) = (ϕ(x̂), Tx̂ϕ ○ ω−1
x̂ ) ∈ B(W ).

The map T ϕ is P -equivariant if we endowed B(W ) with the P -action given
by

(w,α).p = (w.p, TwRp ○ α ○Ad(p−1)),
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where Rp denotes the right action of P on W . We then define recursively
for r ⩾ 0

B0(W ) =W and T 0ϕ = ϕ
Br+1(W ) = B(Br(W )) and T r+1ϕ = T (T rϕ).

The group P acts on the right on each Br(W ) and the map T rϕ ∶ M̂ →
Br(W ) is P -equivariant.

Remark 4.15. — In the special case whereW is a vector space, we have,
after natural identifications, T rϕ = Drϕ (see Definition 2.6).

Remark 4.16. — Note that B(W ) = (W × g∗) ⊗ TW . Since the tangent
bundle of a smooth quasi-projective variety is itself smooth and quasi-
projective, if we assume that W is algebraic and the P -action algebraic,
then for all r ⩾ 1, Br(W ) will be algebraic and P will act on it algebraically.

Remark 4.17. — If f is a local automorphism of (M,C, ϕ), we verify
that for all r ⩾ 1, T rΦ ○ f̂ = T rΦ, where Φ = (K,ϕ) and f̂ denotes the lift
of f (K is the curvature map of (M,C)).

Definition 4.18 (Killing generators). — Let (M,C, ϕ) be a generalized
Cartan geometry of type (X,W ). Note K ∶ M̂ → V = Hom(Λ2(g/p),g) the
curvature map of (M,C) and Φ = (K,ϕ) ∶ M̂ → V ×W . For r ⩾ 1 and x̂ ∈ M̂ ,
we define the space of Killing generators of order r at x̂ as

Killrϕ(x̂) = ωx̂ (KerTx̂(T r−1Φ)) .

These spaces satisfy for all p ∈ P the relation Killrϕ(x̂.p) = Ad(p−1)Killrϕ(x̂)
and we define for x ∈M , kr(x) = dim Killrϕ(x̂), for all x̂ ∈ π−1(x).

We then have kr+1(x) ⩽ kr(x) for all x ∈ M and r ⩾ 1 and the map
{x ↦ kr(x)} is upper semi-continuous and Autlocϕ -invariant for all r ⩾ 1.
Let Int(M,C, ϕ) be the open dense Autlocϕ -invariant subset

Int(M,C, ϕ) =M int
ϕ = {x ∈M ∣ k1, . . . , km+2 are locally constant at x}.

We then have an integrability result, similar to Theorem 1.2.

Theorem 4.19. — If x0 ∈ M int
ϕ and A ∈ Killm+1

ϕ (x̂0) for x̂0 ∈ π−1(x0),
then there exists a local Killing field at x0 whose lift Â is such that
ω(Â(x̂0)) = A.

As we will see, the proof reuses essentially the same arguments.
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4.4.3. Sketch of proof

Proof of Theorem 4.19. — It is enough to find a field Â defined on
a convex exponential neighbourhood of x̂0 that is a local Killing field of
(M̂,Pω) and whose local flow preserves ϕ. We then treat the case of an
absolute parallelism.
Assume (M,C) is the Cartan geometry associated to an absolute par-

allelism (M,P). Then, M̂ = M and ϕ is a smooth map M → W . Take
x0 ∈M int

ϕ and A ∈ Killn+1
ϕ (x0). As in Section 4.2.1, we can assume M = U

is an open subset of Rn on which the functions k1, . . . , kn+2 are constant.
We work in the trivialization of TM given by P and if f is a local dif-
feomorphism of M , we note f∗ ∶ M × Rn → M × Rn its differential action
read in the trivialization given by the Cartan connection ω. There exists
1 ⩽ s ⩽ n + 1 such that ks = ks+1 on M .

Lemma 4.20. — Let x0 ∈M . Assume, for some s ⩾ 1, the maps ks and
ks+1 locally constant and equal in a neighbourhood of x0. Then, for X ∈ g
small enough and t ∈ [−1,1], we have

(φt
X̃
)∗ Killsϕ(x0) = Killsϕ(φtX̃(x0)).

Proof. — This result is local. If we fix a chart ψ of W in a neighbour-
hood of ϕ(x0) taking values in RdimW and if we set ϕ = ψ ○ ϕ in a small
enough neighbourhood of x0, then we can prove, using local trivializations
of Br(W ), that Killrϕ = Killrϕ on this neighbourhood. This shows that it is
enough to prove the lemma in the special case where W is a vector space.
In this situation, Φ = (K,ϕ) takes values in a vector space. Up to natural

identifications, the maps T rΦ correspond to the covariant derivatives DrΦ.
One can then verify that the proof of Lemma 4.6 can directly be adapted
when we replace the curvature map K by Φ and the spaces Killr(x) by
Killrϕ(x). �

Define
Σϕ = {(x,u) ∈M ×Rn ∣ u ∈ Killsϕ(x)}

and let ∆ be the distribution on M ×Rn defined in Lemma 4.5:

∆(x,u) = Span(Xi −∑
jk

ujγ
k
ij ∂k , 1 ⩽ i ⩽ n).

Lemma 4.20 gives us that Σϕ is a submanifold of M × Rn and that ∆ is
everywhere tangent to Σϕ (the proof is exactly the same than Lemmas
4.7 and 4.8). The same calculation than in Lemma 4.9 gives that ∆∣TΣϕ is
involutive since for every (x,u) ∈ Σϕ, u ∈ Kill1(x) is a Killing generator of
order 1 of (M,P).

ANNALES DE L’INSTITUT FOURIER



LOCAL AUTOMORPHISMS OF GEOMETRIC STRUCTURES 205

The distribution ∆ can be integrated into a foliation of Σϕ. Let F0 be
the leaf in Σϕ that contains (x0,A). Note p ∶ Σ → M the projection on
the first factor. The map p∣F0 is a local diffeomorphism from F0 to M by
the inverse mapping theorem. In a small enough neighbourhood of x0, set
Â(x) = p∣−1

F0
(x). Then, Â satisfies:

(1) The graph of Â integrates the distribution ∆, ie Â is a local Killing
field of (M,P), according to Lemma 4.5.

(2) For every x where Â is defined, Txϕ(Â(x)) = 0, since (x, Â(x)) ∈
Σϕ ⇒ Â(x) ∈ Kill1ϕ(x).

The second point implies that ϕ(φt
Â
(x)) does not depend on t and ϕ○φt

Â
= ϕ

for small t and in a neighbourhood of x0. Then, Â ∈ Killlocϕ (x0) and the
theorem is proved.
This last theorem ensures that for all x̂ ∈ π−1(M int

ϕ ),

Killm+1
ϕ (x̂) = ωx̂ (Killlocϕ (x)∣x̂) ∶= ωx̂ ({X̂(x̂), X ∈ Killlocϕ (x)}) .

�

Proof of Theorem 4.13. — Let Φ = (K,ϕ) and Ψ = T mΦ ∶ M̂ → Bm(V ×
W ), where V = Hom(Λ2(g/p),g) denotes the target space of the curvature
map K. By assumption, P acts algebraically on V ×W , and then it also
acts algebraically on Bm(V ×W ). This map Ψ has locally constant rank
over π−1(M int

ϕ ) since Killm+1
ϕ (x̂) = ωx̂ (KerTx̂(T mΦ)) and km+1 is locally

constant over M int
ϕ . Define d ∶ M → N by d(x) = dimP.Ψ(x̂) for all x̂

lying over x. The map d is upper semi-continuous and Autlocϕ -invariant.
Consequently, there exists an Autlocϕ -invariant open dense subset Ω ⊂M int

ϕ

on which d and km+1 are locally constant. This set splits into a minimal
decomposition Ω = Ω1 ∪ ⋯ ∪ Ωk such that every Ωi is an open Autlocϕ -
invariant set on which km+1 and d are constant equal to kim+1 and di. Then,
for x̂ ∈ Ω̂i, if w = Ψ(x̂), Ψ−1(P.w) is a closed submanifold of Ω̂i (according
to Proposition 4.10), saturated by the P -action. Then, π(Ψ−1(P.w)) is a
closed submanifold of Ωi. By construction, we have

∀x̂ ∈ Ψ−1(P.w), Tx̂(Ψ−1(P.w)) = {X̂(x̂), X ∈ Killlocϕ (x)}.

Then, we can apply the same reasoning as in Section 4.3.2 and conclude that
the Autloc-orbits in Ωi are union of connected components of π(Φ−1(P.w)),
and then are closed submanifolds which all have the same dimension. �
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4.5. Another approach of Singer’s theorem

We finish this article by proving that we can view Singer’s generalized
theorem as a corollary of Theorem 1.3, if we assume infinitesimal homo-
geneity with a higher degree.

Let (M,C) be a Cartan geometry, modeled on X = G/P , and m = dimG.
Assume that M is connected and (M,C) is (m + 1)-infinitesimally ho-
mogeneous, that is Dm+1K ∶ M̂ → Wm+1 takes values in a single orbit.
Then, for all r ⩽ m, DrK takes also values in a single P -orbit in Wr.
Therefore, all the maps K,D1K, . . . ,Dm+1K have constant rank on M̂ ,
or equivalently M = M int. Since Dm+1K is P -equivariant, for all x̂ ∈ M̂ ,
Ker(Tx̂Dm+1K) + Tx̂(x̂.P ) = Tx̂M̂ , implying π∗ Ker(Tx̂Dm+1K) = TxM .
Then, Theorem 1.2 gives us TxM = {X(x), X ∈ Killloc(x)} and (M,C) is
locally homogeneous.

Appendix: Technical proof

We give here a detailed proof of Lemma 4.6. Recall its statement

Lemma 4.6. — Let x ∈ Int(M,P). Let X ∈ Rn in the injectivity domain
of expx, A ∈ Kills(x) and γ(t) = expx(tX) = φt

X̃
(x), t ∈ [−1,1]. Assume

that for some s ⩾ 1, the maps ks and ks+1 are constant and equal in a
neighbourhood of γ. Then, we have for all t

(φt
X̃
)∗A ∈ Kills(γ(t)).

By assumption, Kills(γ(t)) = Kills+1(γ(t)) and these spaces have con-
stant dimension. Set At = (φt

X̃
)∗A. Let U ⊂ g be a neighbourhood of 0

on which expx realizes a diffeomorphism onto its image. We define a vec-
tor field Ǎ on exp(x,U) setting Ǎ(exp(x,Y )) = (φ1

Ỹ
)∗A. Note that for all

f ∈ C∞(M) and t we have

(Ãt.f)(γ(t)) = (Ǎ.f)(γ(t)).
Our aim is to prove that for 1 ⩽ r ⩽ s the map t↦DrK(γ(t))⌞At identically
vanishes. We first compute its derivatives:

d
dt

∣
t=t0

DrK(γ(t)) ⌞At =
d
dt

∣
t=t0

(Ãt.Dr−1K)(γ(t))

= d
dt

∣
t=t0

(Ǎ.Dr−1K)(φt
X̃
(x))

= (X̃.Ǎ.Dr−1K)(γ(t0))
= (Ǎ.X̃.Dr−1K)(γ(t0))
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since [Ǎ, X̃](γ(t)) = 0 ⇒ (LX̃LǍf)(γ(t)) = (LǍLX̃f)(γ(t)) for all f ∈
C∞(M). Then, we have

d
dt
DrK(γ(t)) ⌞At = (Ǎ.X̃.Dr−1K)(γ(t))

= (Ãt.X̃.Dr−1K)(γ(t))
= (Dr+1K(γ(t)) ⌞At) ⌞X.

For r ⩾ 1, let Crx ∶ g → Wr−1 be the linear map {X ↦ DrK(x) ⌞X}. We
finally get

(.1) d
dt
Crγ(t)(At) = Cr+1

γ(t)(At) ⌞X.

Note ns = dim Hom(⊗sRn, V ) and consider a basis (ws,1, . . . ,ws,ns) of
Hom(⊗sRn, V ), for s ⩾ 0. There exists linear forms f i,jx ∈ (Rn)∗, i ⩾ 0,
1 ⩽ j ⩽ ni such that for r ⩾ 1,

Crx = ∑
0⩽i⩽r−1
1⩽j⩽ni

f i,jx wi,j .

Since Killr = KerCr for all r and Kills has constant dimension along γ, the
rank of the family (f ij

γ(t), 0 ⩽ i ⩽ s− 1, 1 ⩽ j ⩽ ni) ⊂ (Rn)∗, does not depend
on t. At last, Kills(γ(t)) = Kills+1(γ(t)) implies that for all 0 ⩽ j ⩽ ns,

Ker fs,j
γ(t) ⊃ ⋂

0⩽i⩽s−1
1⩽j⩽ni

Ker f ij
γ(t).

Consequently, the maps fs,j
γ(t) are linear combinations with C∞ coefficients

of the f i,j
γ(t), i ⩽ s − 1, 1 ⩽ j ⩽ ni (this is a consequence of the constant rank

theorem). Therefore, the equations (.1) for 1 ⩽ r ⩽ s give us a system of
differential linear equations of order 1 involving the f i,j

γ(t)(At), 0 ⩽ i ⩽ s− 1,
1 ⩽ j ⩽ ni. Since A ∈ Kills(x), the initial condition of this system is 0,
implying At ∈ Kills(γ(t)) for all t.
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