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COMPLETE ALGEBRAIC VECTOR FIELDS ON
DANIELEWSKI SURFACES

by Matthias LEUENBERGER (*)

Abstract. — We give the classification of all complete algebraic vector fields
on Danielewski surfaces (smooth surfaces given by xy = p(z)). We use the fact that
for each such vector field there exists a certain fibration that is preserved under
its flow. In order to get the explicit list of vector fields a classification of regular
function with general fiber C or C∗ is required. In this text we present results
about such fibrations on Gizatullin surfaces and we give a precise description of
these fibrations for Danielewski surfaces.
Résumé. — Nous donnons une classification de tous les champs de vecteurs

algébriques complets sur les surfaces de Danielewski (surface lisse donnée par xy =
p(z)). Nous utilisons le fait que pour chaque tel champ vectoriel, il existe une
fibration préservée par son flot. Une classification des fonctions régulières avec fibre
générique C or C∗ est requise pour obtenir la liste explicite des champs vectoriels.
Nous présentons des résultats sur de telles fibrations définies sur des surfaces de
Gizatullin et donnons une description précise de ces fibrés pour les surfaces de
Danielewski.

1. Introduction

Complete (= globally integrable) vector fields are vector fields for which
a global holomorphic flow map exists. In general the problem of classifying
complete vector fields on Stein manifolds seems to be out of reach. However,
for complete algebraic vector fields on affine varieties there are some known
results. In 2000 Andersén [1] gave a classification of complete algebraic
vector fields on (C∗)n. For affine surfaces the situation looks better. In 2004
Brunella [6] gave an explicit classification of complete algebraic vector fields
on C2. The proof uses deep results from the theory of foliations on projective
surfaces developed by Brunella [5, 4], McQuillan [14], and others. From this

Keywords: affine surfaces, complete vector fields, algebraic fibrations.
Math. classification: 32M25, 37F75, 14R25.
(*) The author is supported by SNF Grant 200021-140235/1.
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theory it follows that there is always a regular function with general fibers
isomorphic to C or C∗ such that the vector field sends fibers to fibers. Since
these functions on C2 where classified by Suzuki [15] it was only a small
step to conclude the explicit form of the complete algebraic vector fields
on C2. An extension of this result to affine toric surfaces (a quotient of C2

by some cyclic group action) has been recently presented in [12]. The fact
that each complete algebraic vector field preserves the fibers of a regular
function with C or C∗ fibers turns out to be true on almost all normal
affine surfaces. This makes it possible to classify all complete algebraic
vector fields for other surfaces.

Fact ([11, Theorem 1.3]). — Let S be a normal affine surface such that
not all complete algebraic vector fields on S are proportional, and let ν be
a complete algebraic vector field on S. Then there exists a regular function
f : S → C with general fiber isomorphic to C or C∗ such that the flow of
ν sends fibers of f to fibers of f (in short: ν preserves the fibration f).

This fact shows that once the classification of C- and C∗-fibrations is done
the complete vector fields are described. In this text we give some results
about C- and C∗-fibrations on Gizatullin surfaces. For the special case of
smooth surfaces given by xy = p(z) (which are called Danielewski surfaces)
we can provide a precise classification: Here we give the list of complete
algebraic vector fields. Since the C- and C∗-polynomials on Danielewski
surfaces look much alike the ones on C2 the vector fields also look similarly.
Surprisingly if deg(p) = 4 there occurs a complete vector field that has no
analogue on C2.
Section 2 is a recapitulation of the definition of Gizatullin surfaces, a gen-

eralization of Danielewski surfaces, and SNC-completions, a powerful tool
for affine algebraic surfaces. In Section 3 we present some results about C-
and C∗-fibrations on Gizatullin surfaces which will be used in Section 4 to
give an explicit description of C- and C∗-fibrations on Danielewski surfaces.
Section 5 combines this description to a proof of the following theorem:

Main Theorem. — Let ν be a complete algebraic vector field on S =
{xy = p(z)} (where p has simple zeros), and let the hyperbolic vector field
(HF) and the two shear vector fields (SF) be defined as follows:

HF = x
∂

∂x
− y ∂

∂y
, SFx = p′(z) ∂

∂y
+ x

∂

∂z
and SFy = p′(z) ∂

∂x
+ y

∂

∂z
.

Then ν occurs in the following list (up to an automorphism of S):
(1) ν preserves the polynomial x and is of the form:

ν = cHF + (A(x)z +B(x)) SFx
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COMPLETE VECTOR FIELDS ON DANIELEWSKI SURFACES 435

for some c ∈ C and A,B ∈ C[x].
(2) ν preserves a polynomial xm(xl(z+a)+Q(x))n for coprime numbers

m,n ∈ N, deg(Q) ∈ N0, a ∈ C and deg(Q) < l and is of the form:

ν = c

(
z + a

x
+ Q(x)
xl+1

)
SFx +A(xm(xl(z + a) +Q(x))n)

·
[
nHF−

(
(m+ nl)(z + a)

x
+ mQ(x) + nxQ′(x)

xl+1

)
SFx

]
for some c ∈ C and A ∈ C[t] satisfying A(0) = c/(m + nl) and
A(xm(xl(z+a) +Q(x))n)(mQ(x) +nxQ′(x))− cQ(x) ∈ xl+1 ·C[S].

(3) If deg(p) = 4 then ν can also preserve the polynomial ax+y+ 1
6p
′′(z)

where a is the leading coefficient of p. In this case ν looks like:

ν = A

(
ax+ y + 1

6p
′′(z)

)(
−1

6p
′′′(z)HF + aSFx − SFy

)
for some A ∈ C[t].

The Main Theorem describes a class of one-parameter subgroups of the
group of holomorphic automorphisms on S = {xy = p(z)}. It is worth to
compare this result to well known results in the algebraic case. Daigle [7]
and Makar-Limanov [13] showed that on S every algebraic C+-action is up
to an algebraic automorphisms induced by some vector field f(x)SFx for
some polynomial f ∈ C[x], and thus is a special case of (1) of the Main
Theorem. Moreover, by [9] there is a unique (up to an automorphism)
algebraic C∗-action on S which is induced by HF, which can be seen as a
vector field of type (1) or (2).

Acknowledgements. — I thank Shulim Kaliman for introducing me into
this interesting topic and for his helpful comments on this article. Addi-
tionally, I thank the referee for the carefully done report and the numerous
style remarks.

2. Gizatullin surfaces and their completions

2.1. SNC-completions and dual graphs

It is a well established procedure in affine algebraic geometry to use
so called SNC-completions of affine surfaces. Let S be an affine surface,
and let X ⊃ S be a projective surface such that the boundary divisor
D = X \ S = C1 ∪ . . . ∪ Ck is contained in the smooth locus of X. If
moreover the curves Ci are smooth and intersect pairwise transversally
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436 Matthias LEUENBERGER

and at most in double points of D then we say that X is a completion of
S with simple normal crossings (in short: SNC-completion). Every normal
affine surface admits an SNC-completion. In this text D = X\S will always
be a union of rational curves.
A good reference for SNC-completions is for example [8]. In particular,

in this reference most notions that are used in this section are introduced.
However the concept of SNC-completions was already used much earlier by
Danilov and Gizatullin. Let X be an SNC-completion of an affine surface
S then its dual graph ΓX is given as follows: The vertices of ΓX are given
by the irreducible components Ci of the boundary D = X \ S and each
intersection point p ∈ Ci ∩ Cj of two different components corresponds to
an edge of ΓX that connects the vertices which correspond to Ci and Cj .
The graph ΓX is often considered as a weighted graph where the weight of a
vertex is given by the self-intersection Ci ·Ci of its corresponding curve Ci.
Clearly neither SNC-completions nor dual graphs are unique: Modifica-

tions along the boundary will change the boundary and the dual graph
of the boundary. The following two modifications (and its inverses) are
possible (C is the name of the vertex and ω = C · C is its weight):

Outer blow up:
(of a point on a curve C)

Γ =
ω

C

(O)
 Γ̃ =

ω − 1
hatC

−1
E

Inner blow up:
(of a point on C1 ∩ C2)

Γ =
C1

ω1

C2
ω2

(I)
 Γ̃ =

Ĉ1
ω1 − 1

Ĉ2
ω2 − 1

E −1

where E is the exceptional divisor and Ĉ denotes the strict transform of a
curve C. A sequence of (I), (I−1), (O) and (O−1) starting with a weighted
graph is called a modification of weighted graphs. A birational map ϕ :
X 99K Y between two completions X,Y of an affine surface S such that
ϕ|S induces an isomorphism on S is called a birational modification of
completions and an isomorphism of completions if ϕ is additionally an
isomorphism. By a classical theorem of Zariski any birational map can be

ANNALES DE L’INSTITUT FOURIER



COMPLETE VECTOR FIELDS ON DANIELEWSKI SURFACES 437

seen as composition of blow ups followed by a composition of blow downs.
Hence we get the following statement:

Theorem of Zariski.
(1) Let S be an affine surface and letX and Y be two SNC-completions.

Then there exists a SNC-completion Z of S obtained via a sequence
of blow ups performed over the boundaries of S in X and Y , respec-
tively. Hence ΓZ is obtained by modifications as above from both
ΓX and ΓY .

(2) Let γ : ΓX  Γ be a modification of weighted graphs. Then there
is a completion Y of S such that ΓY = Γ and Y is obtained from
X by a birational map φ : X 99K Y that induces the modification
γ on the dual graphs. If γ does not contain outer blow ups then φ
is uniquely determined.

A completion X will be called minimal if ΓX does not have a (-1)-vertex
of degree 6 2.

2.2. Gizatullin surfaces

A Gizatullin surface is a normal affine surface S that admits an SNC-
completion X such that the graph ΓX is linear. For such a completion (also
called a zigzag) with

ΓX =
ω0

C0

ω1

C1

ωk

Ck

we use the notation

ΓX = [[ω0, ω1, . . . , ωk]].

A completion X is called standard if

ΓX = [[0, 0, ω2, . . . , ωk]] or ΓX = [[0, 0, 0]] or ΓX = [[0, 0]]

and ω1-semistandard if

ΓX = [[0, ω1, ω2, . . . , ωk]] or ΓX = [[0, ω1, 0]] or ΓX = [[0, ω1]]

with ωi 6 −2 for all 2 6 i 6 k.
Now we introduce two modifications of the boundary of Gizatullin sur-

faces. The first one is

(2.1) [[0, ω1, . . .]]
(O)
 [[−1,−1, ω1, . . .]]

(I−1)
 [[0, ω1 + 1, . . .]]

TOME 66 (2016), FASCICULE 2



438 Matthias LEUENBERGER

that allows to transform any semistandard completionX with ΓX = [[0, ω1,

ω2, . . .]] into a standard completion Y with ΓY = [[0, 0, ω2, . . .]]. The second
modification is a way to use a zero vertex in order to move weight from one
side of the vertex to the other:

(2.2) [[. . . , ωi−1, 0, ωi+1 . . .]]
(I)
 [[. . . [ωi−1,−1,−1, ωi+1 − 1, . . .]]

(I−1)
 [[. . . , ωi−1 + 1, 0, ωi+1 − 1, . . .]]

By a sequence of modification of type (2.2) it is possible to move zeros
vertices through the boundary divisor:

[[0, 0, ω2, . . . , ωk]] [[ω2, 0, 0, . . . , ωk]] · · · [[ω2, . . . , ωk, 0, 0]].

The modification above is called reversion and it shows that the data of a
standard completion is in general not unique. Using these modifications we
see that each Gizatullin surface admits a standard completion and that all
minimal completions have a linear dual graph:

Proposition 2.1 ([8]). — Let S be a Gizatullin surface. Then:
(1) There exists a standard completion X, and the dual graph ΓX is

unique up to reversion.
(2) For any completions X there is a contraction (i.e. a modification

consisting of (O−1) and (I−1)) of ΓX to a linear graph.

3. C- and C∗-fibrations on Gizatullin surfaces

Let us start with some well know facts in algebraic geometry.

Proposition 3.1.
(a) [2] Let S be a normal affine surface, and let f : S → C be a

reduced(1) regular function with rational fibers. Then there is a
pseudo-minimal SNC-completionX such that f extends to a regular
function f̄ : X → P1 with general fibers isomorphic to P1.

(b) [15] Let f be as in (a). Then χ(S) = χ(F ×C) +
∑

(χ(F ′)− χ(F ))
where χ denotes the Euler characteristic, F is a regular fiber of f
and the sum is taken over all singular fibers F ′.

(c) [2] Let X be a smooth projective surface and let f : X → P1 a
regular function with general fiber isomorphic to P1. Then there is
a sequence of contractions π : X → Y and a map f ′ : Y → P1 such
that f = f ′ ◦ π and f ′ is a P1-bundle.

(1)Recall that a regular function f : S → C is called reduced if its general fiber is
connected.

ANNALES DE L’INSTITUT FOURIER
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(d) [9] Let C ∼= P1 be a curve on a rational projective surface X with
C · C = 0 then there is a regular function f : X → P1 such that
C = f−1(∞) is a regular fiber of f .

Definition 3.2. — If a regular function f : S → C (or P1) on a variety
S is considered as fibration it means that we are only interested in its level
sets (i.e. the fibers). In particular, two regular functions are considered to
be the same fibrations whenever the differ only by a Möbius transform in
the target. A fibration f is said to be a C- (resp. C∗- or P1-) fibration if its
regular fiber is isomorphic to C (resp. C∗ or P1).

Let S be a Gizatullin surface, and let X be a standard completion with
boundary D = X \ S = C0 ∪ . . . ∪ Ck. Then the two curves C0 and C1
induce (Proposition 3.1(d)) both a regular function φ0, φ1 : X → P1 such
that C0 = φ−1

0 (∞) and C1 = φ−1
1 (∞) are regular fibers. The function φ0

(resp. φ1) is constant on Ci for 2 6 i 6 k (resp. 3 6 i 6 k), and we may
assume that it is vanishing there. Moreover φ0 (resp. φ1) restricted to C1
(resp. C0 and C2) is an isomorphism.

0
C1

0

C0

ω2C2

ω3
ωk

φ1

φ0

P1φ0(C0) =∞ 0 = φ0(C2 ∪ . . . ∪ Ck)

P1

∞ = φ1(C1)

0 = φ1(C3 ∪ . . . ∪ Ck)

Hence the map φ = φ0 × φ1 : X → P1
x × P1

y induces isomorphisms φ|C0 :
C0 → {x = ∞}, φ|C1 : C1 → {y = ∞} and φ|C2 → {x = 0}, and
moreover φ contracts the curves C3, . . . , Ck onto (0, 0). Altogether the map
φ describes a way how to construct a Gizatullin surface starting with C2

and blowing up points on {x = 0}. The exceptional divisor of φ consists
of the curves C3, . . . , Ck and additional curves (called feathers) F1, . . . , Fn
that intersect the surface S. By Proposition 3.1(b) the number of feathers
is precisely χ(S).
Now, we are able to state some results about rational fibrations on Gizat-

ullin surfaces. Propositions 3.3, 3.5 and 3.7 are specializations of Proposi-
tion 6.6 in [11]. In order to be self-contained we still present complete
proofs. Let us start with C-fibrations.

Proposition 3.3 ([9]). — Let f : S → C be a C-fibration on a Gizat-
ullin surface S. Then there is a standard completionX such that f coincides
with the fibration φ0 given as above.

TOME 66 (2016), FASCICULE 2
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Proof. — Let X be a pseudo-minimal SNC-completion of S such that f
extends to a regular function f̄ . A general fiber of f̄ intersects D = X \S =
C0 ∪ . . . ∪ Ck in precisely one point, therefore one curve in D (say C1) is
a section of f̄ , and on every other curve in D the function f̄ is constant.
The set f−1(∞) ⊂ D is contractible to a rational curve (apply 3.1(c) to
a the desingularisation of X) which intersects C1 transversally (since C1
is a section). So by pseudo-minimality f̄−1(∞) is already an irreducible
curve (say C0) with self-intersection 0. Moreover, by the absence of further
sections, C0 is disjoint from C2, . . . , Ck. Assume that the dual graph ΓX is
not linear and let Ci be a vertex of degree > 3. By Proposition 2.1(2) all
but two branches at Ci are contractible, but by pseudo-minimality the only
branch that could be non-minimal is the one containing C1. On the other
hand, the branch containing C1 cannot be contractible since it contains also
the vertex C0, which has weight 0, and thus is not contractible. Altogether
ΓX is linear and of the form ΓX = [[0, n, ω2, . . . , ωk]] with n arbitrary
and ωi 6 −2, and can be transformed using the modification (2.1) into a
standard completion such that the fibration φ0 coincides with f̄ . �

Corollary 3.4 ([9]). — For a Gizatullin surface S there are as many
C-fibrations up to an automorphism as there are standard completions of
S up to an isomorphism.

Note that there are families of Gizatullin surfaces that have a unique
standard completion up to reversion. Check [9] for a description of such
Gizatullin surfaces. The surfaces called Danielewski surfaces that are in-
troduced in Section 4 are of this kind. Later, Corollary 3.4 will be used e.g.
in Proposition 4.2.

For C∗-fibrations there are two different cases: The fibration could have
either two sections at infinity or one double-section at infinity (i.e. a curve
such that the fibration restricted to this curve is a ramified 2-sheeted cov-
ering). First we deal with the case when there are two sections.

Proposition 3.5. — Let f : S → C be a C∗-fibration on a Gizatullin
surface S, and let Y be a pseudo-minimal SNC-completion of S such that
the boundary divisor Y \ S contains two sections.

(1) We may choose Y such that the dual graph is of the form

ΓY =
η−m

D−m

η−2

D−2

0
D−1

0
D0

η1

D1

η2

D2

ηn

Dn

with m,n > 0, η1 6 −1 and ηi 6 −2 for |i| > 2 and additionally
D0 = f̄−1(∞).
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(2) There is a ω1-semistandard completion X ⊃ S with ω1 > 0 and

ΓX = 0
C0

ω1

C1

ω2

C2

ωk

Ck

such that Y is obtained from X by (i) a sequence of inner (un-
less S = C2) blow ups at infinitely near points followed by (ii) a
modification of type (2.2):

[[0, ω1, ω2, . . . , ωk]] (i)
 [[0, 0, η−m, . . . , η−2, η1, η2, . . . , ηn]]

(ii)
 [[η−m, . . . , η−2, 0, 0, η1, . . . , ηn]].

Proof. — The proof of (1) works very similarly to the proof above. Again,
by Proposition 3.1(c), f̄−1(∞) is contractible so a curve C with self-
intersection equal to 0 and the two sections C ′ and C ′′ intersect C transver-
ally since they are sections. Moreover, we may assume that C ′ and C ′′ in-
tersect C in two different points. Indeed, otherwise blow up the common
intersection point and blow down the strict transform of C, and repeat this
procedure until C ′ and C ′′ intersect f̄−1(∞) in two different points. Thus
we get an SNC-completion Y with Y \S = C ∪C ′ ∪C ′′ ∪C1 ∪ . . .∪Cl such
that C ·C = 0, C ·C ′ = 1, C ·C ′′ = 1 and C is disjoint from C1 ∪ . . .∪Cl.
Assume again that the dual graph ΓY is not linear. Then for a vertex of de-
gree > 3 all but two branches are contractible, see Proposition 2.1(2). But
by pseudo-minimality a contractible branch must contain one of the curves
C ′ or C ′′. However, then it also contains the zero vertex corresponding to
C and hence it is not contractible. So we have the following picture (note
that D2 and D−2 may or may not be in the same fiber)

C

C ′ C ′′

D−2 D−m

Dn D2

f

P1

∞ = f(C)

and thus ΓY = [[. . . , η−2, a, 0, b, η2, . . .]]. This completion may be trans-
formed by modifications (2.2) into the desired form.
Claim (2) follows from the fact that the graph Γ̃Y = [[η−m, . . . , ηn]] can

be contracted to a minimal graph Γ̃ = [[ω2, . . . , ωk]] such that at least one
endvertex of Γ̃Y does not get contracted. Indeed Γ̃Y has at most one (-1)-
vertex. If the right endvertex Dn is not contracted then move the zeros in

TOME 66 (2016), FASCICULE 2
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ΓY to the left [[0, 0, η−m, . . . , ηn]], and then make the contraction by only
inner blow downs onto a completion with dual graph [[0, ω1, ω2, . . . , ωk]]. If
the left endvertex D−m is not contracted then do the same procedure but
start with moving the zeros to the right [[η−m, . . . , ηn, 0, 0]]. �

The ω1-standard completion from the above proposition can be trans-
formed into a standard completion by modifications (2.1) and there are
ω1 parameters occuring in this process. Therefore we get the following
corollary:

Corollary 3.6. — Let S be a Gizatullin surface such that each stan-
dard completion is determined by its dual graph(2) . Then the family of
C∗-fibrations having a pseudo-minimal SNC-completion with a given dual
graph that is obtained as in Proposition 3.5 from a ω1-semistandard com-
pletion has at most ω1 parameters.

Let us take a closer look how the fibers of a C∗-fibration f : S → C
with two sections at the boundary can look like. For simplicity assume
that the surface S is smooth. Clearly every fiber f−1(a) has precisely one
connected component isomorphic to C∗ or to C ∨C (two lines intersecting
transversally in one point) namly the one connecting D−m ∪ . . . ∪D−1 to
D1∪ . . .∪Dn. All other connected components are isomorphic to C, clearly
all these C components are adjecent to a curve D−m, . . . , D−2, D2 . . . Dn.
By Proposition 3.1(b) the total number of C and C∨C components is equal
to χ(S).

The next proposition will clarify the last possibility, namely when there
is a double-section at infinity.

Proposition 3.7. — Let f : S → C be a C∗-fibration on a Gizatullin
surface S, and let X be a pseudo-minimal SNC-completion of S such that
D = X \ S contains a double-section C. Then ΓX is of the form:

−2

−2

−1
−1 −2 −2

In particular this situation only occurs when the dual graph of a standard
completion of S is of the form

[[0, 0,−4]], [[0, 0,−3,−3]] or [[0, 0,−3,−2, . . . ,−2,−3]].

(2)A criterion for this property can be extracted from [9]. It applies to Danielewski
surfaces.
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Proof. — Let C ′ be the double-section. There is a contraction π such
that the set f̄−1(∞) is contracted to a curve C with C · π(C ′) = 2. So
the curves C and π(C ′) do not intersect transversally. Indeed, otherwise
they would intersect in two points and the dual graph ΓX would contain a
loop. We can see that the dual graph of f̄−1(∞) is [[−2,−1,−2]] and the
double-section C ′ intersects the (-1)-curve transversally. Indeed after two
blow ups the boundary is a SNC-divisor:

0

C

π(C ′)

−1

Ĉ

−1

E

C ′

−2

ˆ̂
C

−2

Ê

−1

So ΓX is of the form:
−2

−2

−1
C ′︸ ︷︷ ︸

Γ′

Since, by Proposition 2.1(2), ΓX can be transformed into a linear graph the
branch Γ′ is contractible and by pseudo-minimality the only (-1)-curve in
Γ′ is C ′. This shows that ΓX is of the desired form. After the contraction
of Γ we get a dual graph of the form [[−2, n,−2]] with n > 0 and they all
lead to a standard completion as in the claim. �

Remark 3.8. — In [12, Lemmas 4.7+4.8] the C∗-fibrations on affine
toric surfaces were classified using other techniques. Affine toric surfaces
are Gizatullin surfaces and some of them have a completion as in Propo-
sition 3.7. Therefore it is expected that they have a C∗-fibration that, in
some sense, looks essentially different from the other C∗-fibrations. In fact
it is possible to see that the C∗-fibrations with double-section at infinity of
affine toric surfaces correspond exactly to the special case appearing in the
end of Lemma 4.8. in [12].

We conclude this section by the classification of C∗-fibrations on C2.
This result is well known: Brunella used it for his classification of complete
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vector fields on C2 in [6]. He cites Suzuki [15]. Here we give an alternative
proof using Lemma 3.5.

Proposition 3.9 ([15]). — Let f : C2 → C be a C∗-fibration. Then (up
to an automorphism) f(x, y) is of the form xi(xly−Q(x))j for i, j relatively
prime numbers, l ∈ N0 and a polynomial Q with deg(Q) < l.

Proof. — Since the dual graph of a standard completion is [[0, 0]], and
hence not as the ones in Proposition 3.7 there is a pseudo-minimal SNC-
completion Y as in Proposition 3.5 with

ΓY =
η−m

D−m

η−2

D−2

0
D−1

0
D0

η1

D1

η2

D2

ηn

Dn .
Since χ(C2) = 1 there is precisely one C or one cross of two lines C ∨ C
inside a fiber (say f−1(0)) of f . If it is C∨C then by the Abhyankar-Moh-
Suzuki theorem we might assume that the zero set of f is {x = 0}∪{y = 0}.
Hence f is of the form xiyj (l = 0). If it is a C component (say F1) then
it is attached say to one of the curves D2, . . . , Dn and let F2 be the C∗
component of this fiber. By the absence of other C components we know
that F̄2 intersects D−m since otherwise D−m ∪ . . . ∪D−2 would contain a
(-1)-curve. By Proposition 3.5(2) we get another completion X of S with

ΓX = 0
C0

ω1

C1 .
It is obtained from Y such that F̄1 is disjoint from C0 and D−m maps
isomorphically onto C0. Thus F̄2 still intersects C0 transversally in one
point. We continue by blowing up the point C0 ∩ F̄2 and blowing down
the strict transform of C0, which is a modification of type (2.1). Repeating
this ω1-times we will end up with a completion isomorhic to P1 × P1 such
that F 2 intersects {x = ∞} transversally in one point, and F 1 ∩ {x =
∞} = ∅. Hence in these coordinates we may assume that F1 = {x = 0}
and F2 = {y = R(x)} is a graph for a rational function R with a pole at
0. Let us write R as R(x) = Q(x)x−l + P (x) for some polynomials Q and
P . Then after a coordinate change given by (x, y) 7→ (x, y + P (x)) we get
that F2 = {xly = Q(x)}, and thus the claim follows. �

4. C- and C∗-fibrations on smooth Danielewski surfaces

Danielewski surfaces form a subfamily of Gizatullin surfaces. They have
an explicit description as a hypersurface in C3 and the classification of C-
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and C∗- fibrations can be done very explicit. In most cases the classification
looks exactly the same as the classification of C- and C∗- fibrations on C2. It
is a direct consequence of the famous Abhyankar-Moh-Suzuki theorem that
all C-fibrations on C2 are up to an automorphism given by the projection
to the x-coordinate. Actually, this classification has already been found by
Gutwirth [10]. Proposition 3.9 is the description of C∗-polynomials on C2.

Definition 4.1. — A smooth affine surface S in called Danielewski
surface(3) if there is an SNC-completion X such that ΓX = [[0, 0,−k]] for
k > 2. Danielewski surfaces can also be seen as surfaces in C3 given by the
equation {xy = p(z)} for a polynomial p of degree k with simple zeros.

Let p be a polynomial of degree k with simple zeros. Given the surface
S = {xy = p(z)} ⊂ C3 it is easy to construct a standard completion.
The projection π(x, y, z) = (x, z) is a birational map from S to C2, it
is an isomorphism on the open sets {x 6= 0} and it contracts the lines
{x = 0, z = zi} onto the points (0, zi) where the numbers zi are the zeros
of p. So S is isomorphic to an open set in C2 blown up in the points (0, zi)
and therefore P1 × P1 blown up in these points is a completion X0 of S.
The curve

D0 = X0 \ S = ̂{x =∞} ∪ ̂{z =∞} ∪ ̂{x = 0}

is the boundary with dual graph ΓX0 = [[0, 0,−k]] (where Ĉ denotes the
strict transform of a curve C). Moreover, the projection to the x (resp. z)
coordinate corresponds to the map φ0 (resp. φ1) constructed in the previous
section and therefore the map π corresponds to the map φ.
On the other hand, given any standard completion of a Danielewski sur-

face S, its corresponding map φ will describe a way to embed S into C3.
Indeed, S is given in C3 by the equation xy = p(z), when the polynomial
p is defined such that its zeros are the indeterminacy points of φ−1).

We begin with the description of C-fibrations on S:

Proposition 4.2 ([13, 7, 9, 3]). — Let f : S = {xy = p(z)} → C be a
C-fibration.

(1) Up to automorphism of S the fibration f is given by the projection
f(x, y, z) = x.

(2) Any standard completion of S is isomorphic to the standard com-
pletion X0 constructed above.

(3) In the literature surfaces given by {xny = p(z)} are often also called Danielewski
surfaces. In this text we only consider the case n = 1.
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Proof. — By Corollary 3.4 (1) is equivalent to (2). There are several
proofs, e.g. (1) is proven in [13] and (2) is proven in [9]. �

4.1. C∗-fibrations with two sections at the boundary

The description of C∗-fibration with two sections at the boundary is very
much related with the description of C∗-fibrations on C2. We will prove the
following proposition:

Proposition 4.3. — Let f : S = {xy = p(z)} → C be a C∗-fibration
with two sections at the boundary. Then f is up to isomorphism of S of the
form z or xi(xl(z+ a) +Q(x))j for i, j relatively prime, l ∈ N0, deg(Q) < l

and a ∈ C.

Proof. — Let X ⊃ S be the semistandard completion from Proposi-
tion 3.5 with

ΓX = 0
C0

ω1

C1

−k
C2

that is obtained (starting by moving the zeros to the left followed by inner
blow downs) from a pseudo-minimal SNC-completion Y with

ΓY =
η−m

D−m

η−2

D−2

0
D−1

0
D0

η1

D1

η2

D2

ηn

Dn

with ηi 6 −2 for |i| > 2 and η−1 6 −1. Since [[η−m, . . . , η−2, η1, . . . , ηn]]
is contractible to [[−k]] such that the right endvertex is not contracted
we have η1 = −1 and thus n > 2 unless X = Y . We may extend f :
S → C to a rational function f̄ : X 99K P1. If X = Y then f(x, y, z) = z

up to isomorphism. Indeed, by Proposition 4.2 the completion X = Y

is isomorphic to X0, and f̄ : X ∼= X0 → P1 coincides with φ1 which
is the projection to the z-coordinate. If X 6= Y then by construction f̄

is constant and non-polar on C2 \ C1 (assume that f vanishes on C2 \
C1). Indeed, C2 is the strict transform of Dn which sits inside a fiber
(since n > 2). The same holds true if we pass by modifications (2.1) to
a standard completion X ′. Hence the pushforward φ∗f̄ by the morphism
φ : X ′ ∼= X0 → P1 × P1 restricted to C2 is a regular function g := φ∗f̄ |C2 :
C2 → C. In particular, g is a polynomial function on C2 with general fibers
isomorphic to C∗ and {x = 0} ⊂ g−1(0). By Proposition 3.9 the function g
and hence its pullback f is, for some automorphism (s, t) of C2, of the form
s(x, z)i(s(x, z)lt(x, z)−Q(s(x, z)))j with i, j, l, Q as desired. Clearly we have
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that (if l = 0 then maybe after exchanging s and t) the zero set of s(x, z)
coincides with {x = 0}. Hence the automorphism is of the form s(x, z) = ax

and t(x, z) = by + r(x), and after rescaling f we may assume a = b = 1.
Since automorphisms of C2 of the form (x, z) 7→ (x, z + xr′(x)) extend to
the surface S we may even assume that s(x, z) = x and t(x, z) = z + a for
some a ∈ C and the claim follows. �

4.2. C∗-fibrations with one double-section at the boundary

By Proposition 3.7 the case of a C∗-fibration with a double-section at
the boundary on a Danielewski surface only occurs when the polynomial p
is of degree 4. It will be more convenient to allow completions where the
components of the boundary do not necessarily intersect transversally.

Lemma 4.4. — Let X be a non-SNC-completion of S = {xy = a(z−z1)
(z−z2)(z−z3)(z−z4)} such thatX\S = C0∪C1 with C0·C1 = 2, C0·C0 = 0
and C1 · C1 = 1. Then:

(1) X can be identified with P2 blown up in [z2
i : zi : 1] for 1 6 i 6 4

such that

C0 = ̂{w = 0} and C1 = ̂{uw = v2}.

(2) There is a unique (up to affine transformation of P1 \{∞}) rational
function h : X → P1 such that C0 is a double-section and C1 =
h−1(∞). The pushforward h̃ of h to P2 is given by

h̃([u : v : w]) = (u− (z1 + z2)v + z1z2w)(u− (z3 + z4)v + z3z4w)
uw − v2 .

Moreover, h has at least three fibers which are not isomorphic to
C∗.

Proof. — The completion X may be transformed into a standard com-
pletion by the following modifications:

1
C1

0

(I)
 

−1
0

−1

(I)
 

−2−1

−2

−1
(I)
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−3

−1

−2

−2
−1

(I)
 

−4

−1

−2

−2
−2

−1

(O−1)
 

−4

p

−2

−1
−2

−1

(I−1)
 

−4

−1

−1
−1 (I−1)

 

−4

0

0

A calculation shows that the birational map P1 × P1 99K P2 given by
(x, z) 7→ [u(x, z) : v(x, z) : w(x, z)] = [x+ az2 : z : 1] induces precisely the
inverse of this modification on the boundary (where a corresponds to the
point p). Thus X can be identified with P2 blown up in [az2

i : zi : 1] for
1 6 i 6 4 (indeed, the standard completion was isomorphic to P1×P1 blown
up in (0, zi) for 1 6 i 6 4). After the isomorphism [u : v : w] 7→ [a−1u :
v : w] the completion X is as desired. For Claim (2) we observe that h̃ is
of degree 2, indeed the general fiber meets {w = 0} twice. Moreover, every
fiber meets {uw = v2} precisely in the points [z2

i : zi : 1] for 1 6 i 6 4.
This holds since these points are indeterminacy points of h̃ because C1 is
an entire fiber of h. The space of curves of degree 2 in P2 is isomorphic
to P5 hence the space of curves of degree 2 passing through four points is
isomorphic to P1. It coincides with the levels of h̃. So, h̃ is (up to affine
transformation of P1 \ {∞}) of the form (uw − v2)−1g(u, v, w), where g
is any homogeneous polynomial of degree 2 such that its zero set meets
{uw = v2} in the four requested points. We may choose the product of two
linear functions each connecting two of the points linearly. Clearly h has
at least three fibers not isomorphic to C∗ since there are three possibilities
to choose two lines through these four points. �

Proposition 4.5. — Let f : S = {xy = p(z)} → C be a C∗-fibration
with double-section at the boundary. Then deg p = 4 and f is given up to
automorphism of S by f(x, y, z) = ax+ y + 1

6p
′′(z) where a is the leading

coefficient of p. Additionally, the fibration f has at least three fibers not
isomorphic to C∗.
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Proof. — By Proposition 3.7 the polynomial p has degree 4 (say p(z) =
a(z− z1)(z− z2)(z− z3)(z− z4)), and moreover there is a pseudo-minimal
SNC-completion with dual graph of the boundary

−2

−2

−1
−1

.
This completion can be transformed by two blow downs into a completion
X as in Lemma 4.4, which is then by (1) isomorphic to P2 blown up in
4 points. The birational map P1 × P1 99K P2 given by (x, z) 7→ [u(x, z) :
v(x, z) : w(x, z)] = [x + z2 : z : 1] induces a birational map from the
standard completion X0 to the completion X. By (2) of Lemma 4.4 the
fibration f is given by

(u− (z1 + z2)v + z1z2w)(u− (z3 + z4)v + z3z4w)
uw − v2

= (x+ z2 − (z1 + z2)z + z1z2)(x+ z2 − (z3 + z4)z + z3z4)
x+ z2 − z2

= 1
x

[
x2 + x(2z2 − (z1 + z2 + z3 + z4)z + z1z2 + z3z4)

+(z − z1)(z − z2)(z − z3)(z − z4)

]
= x+ p(z)

ax
+ 2z2 − (z1 + z2 + z3 + z4)z + z1z2 + z3z4

= x+ y

a
+ 2z2 − (z1 + z2 + z3 + z4)z + z1z2 + z3z4

and hence f is (after multiplying with a and adding a constant) of the
desired form. �

5. Proof of the Main Theorem

Let p be a polynomial with simple zeros, and let

ν = νx(x, y, z) ∂
∂x

+ νy(x, y, z) ∂
∂y

+ νz(x, y, z)
∂

∂z

be a complete algebraic vector field on the Danielewski surface S = {xy =
p(z)} extended regularly to C3. Then, as mentioned in the Introduction,
by [11, Theorem 1.3] the vector field ν preserves a C- or C∗-fibration f :
S → C. These fibrations are described in the previous section. Hence it is
possible to give the precise form of ν using exactly the same arguments
as in the planar case (see Proposition 2 in [6]). Let us establish first two
lemmas.
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Lemma 5.1. — Assume that ν is tangent to {x = 0}. Then ν projects
to a complete vector field

νx(x, p(z)
x
, z) ∂

∂x
+ νz(x,

p(z)
x
, z) ∂

∂z

on C∗x × Cz, νx and νz are divisible by x and ν is of the form

ν = νx(x, y, z)
x

HF + νz(x, y, z)
x

SFx.

Proof. — Regarding ν as a derivation, clearly νx = ν(x) vanishes on
{x = 0}. Therefore we have ν(z)p′(z) = ν(p(z)) = ν(xy) = xν(y)+yν(x) =
0 for x = 0. Hence νz = ν(z) vanishes also on {x = 0}. This means
that both νx and νz are divisible by x. Thus we get the explicit form of
νy = ν(y) = (p′(z)νz − yνx)/x, and also the explicit form of ν as in the
claim. �

Lemma 5.2 ([6]).
(1) Let Dα × Ct be a (holomophic) trivialization of a neighborhood of

a general fiber C of f . Then the pullback of ν to this neighborhood
is of the form

ν̃ = F (α) ∂
∂α

+ (G(α)t+H(α)) ∂
∂t

for holomorphic functions F , G and H. If C ∼= C∗ then H = 0.
(2) If ν = ν1 + ν2, where ν2 is complete and tangent to the fibers of f .

Then ν1 is complete.

Proof. — Since the local flow of ν̃ sends vertical fibers to vertical fibers
the first summand of ν̃ is independent of t. By the Riemann removable
singularities theorem the local flow maps of ν̃ extends to maps {α}× C̄ →
{α′} × C̄. Hence ν̃ extends to D × C̄ such that ν̃ is tangential to D × ∂C.
Thus the second summand is of the desired form. The second claim follows
from the fact that also ν1 extends to C̄ such that it is tangential to the
sections at infinity. �

These two lemmas directly imply the next proposition concerning the
case of C-fibrations.

Proposition 5.3. — If f(x, y, z) = x then

ν = cHF + (A(x)z +B(x)) SFx

for some c ∈ C and A,B ∈ C[x].

Proof. — Since {x= 0} is a singular fiber, ν is tangential to it. Lemma 5.1
shows that it is sufficient to look at the projection and restriction of ν
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to C∗x × Cz. The latter is obviously a trivialization of a neighborhood of
a fiber. Hence Lemma 5.2(1) shows that ν is of the form F (x)∂/∂x +
(G(x)z +H(x)) ∂/∂z on C∗x×Cz. By Lemma 5.1 the functions F,G,H are
divisible by x. By the completeness of ν we have F (x) = cx for some c,
which leads to the desired form. �

The C∗-case with two sections at the boundary works similarly. The only
new difficulty is to trivialize a neighborhood of a fiber.

Proposition 5.4. — If f(x, y, z) = xm(xl(z + a) +Q(x))n for coprime
numbers m,n ∈ N, l ∈ N0, a ∈ C and deg(Q) < l then

ν = c

(
z + a

x
+ Q(x)
xl+1

)
SFx +A(xm(xl(z + a) +Q(x))n)

·
[
nHF−

(
(m+ nl)(z + a)

x
+ mQ(x) + nxQ′(x)

xl+1

)
SFx

]
for some c ∈ C and A ∈ C[t] satisfying A(0) = c/(m+nl) and A(xm(xl(z+
a) +Q(x))n)(mQ(x) + nxQ′(x))− cQ(x) ∈ xl+1 · C[S].

Proof. — Again ν is tangential to {x = 0}, so we work on C∗x ×Cz as in
Lemma 5.1. Pick 0 6= α0 ∈ C, and let D = {|α − α0| < ε} be a small ball
around α0. Then the map

D × C∗ → C∗x × Cz

(α, t) 7→
(
tn,

eαt−m −Q(tn)
tnl

− a
)

gives a trivialization of a neighborhood of the fiber f−1(enα0). Using this
map yields:

∂

∂α
7→ ν1 :=

(
z + a+ Q(x)

xl

)
∂

∂z
,

t
∂

∂t
7→ ν2 := nx

∂

∂x
−
(

(m+ nl)(z + a) + mQ(x) + nxQ′(x)
xl

)
∂

∂z
.

Lemma 5.2(1) shows that ν is given on C∗x × Cz by F (α)ν1 + G(α)ν2 for
α = xm(xl(z+ a) +Q(x))n. We know that G(α)ν2 is complete on C∗x ×Cz
since it is tangent along the fibers of f and its restriction to any fiber is
complete. Thus by Lemma 5.2(2) also F (α)ν1 is complete on C∗x×Cz. This
shows that F (α) is constant. Letting A = G yields that ν is as desired on
C∗x × Cz. Lemma 5.1 provides a lift of ν to the vector field on S as in the
claim. In order to be non-polar on {x = 0} we need the additional condition
on A, which is equivalent to the fact that νz is divisible by x. �
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Proposition 5.5. — If p(z) = a·(z4+bz3+cz2+dz+e) and f(x, y, z) =
ax+ y + 1

6p
′′(z) then

ν = A

(
ax+ y + 1

6p
′′(z)

)(
−1

6p
′′′(z)HF + aSFx − SFy

)

for some A ∈ C[t].

Proof. — By Proposition 4.5 we know that f has more than one fiber
not isomorphic to C∗. Thus ν acts on the base C with more that one fixed
point. By hyperbolicity ν is tangential to the fibers of f . Hence ν restricted
to a general fiber is proportional to t∂/∂t. We need to parametrize a general
fiber Cα = {ax+y+ 2az2 +abz+aα = 0}, α ∈ C. Let us define ξ, χ, κ ∈ C
such that

ξ2 = α+ b2

2 − c, χ = αb− 2d
4ξ2 , κ = e− α2

4 + ξ2χ2.

The map Cα → C∗ defined by

(x, y, z) 7→ t := x+ z2 + b

2z + α

2 + ξ(z + χ) = ax− y
2a + ξ(z + χ)

is an isomorphism. Indeed, after multiplying with x/a and replacing xy by
p(z) the equation defining Cα becomes

x2 + z4 + bz3 + cz2 + dz + e+ (2z2 + bz + α)x

=
(
x+ z2 + b

2z + α

2

)2
+
(
c− b2

4 − α
)
z2 +

(
d− αb

2

)
z + e− α2

4

=
(
x+ z2 + b

2z + α

2

)2
− (ξ(z + χ))2 + κ

= t(t− 2ξ(z + χ)) + κ.

Thus t can be seen as a variable of C∗. Moreover, we can see that the
vector field ν0 = − 1

6p
′′′(z)HF + aSFx − SFy is tangent to the fibers and

restricts to the vector field 2aξt∂/∂t on Cα ∼= C∗. Indeed, ν0 acts on t by
multiplication with 2aξ:
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ν0(t) = ν0

(
ax− y

2a + ξ(z + χ)
)

= 2aξ
(
−p
′′′(z)
6 · ax+ y

4a2ξ
− p′(z)

2aξ + ax− y
2a

)
= 2aξ

(
−1
ξ

(
(4z+b)−(2z2 + bz + α)

4 +2z3+ 3
2bz

2+cz+ d

2

)
+ ax− y

2a

)
= 2aξ

(
−1
ξ

((
−b

2

4 − α+ c

)
z − αb

4 + d

2

)
+ ax− y

2a

)
= 2aξ

(
ξ(z + χ) + ax− y

2a

)
= 2aξt

Overall on every fiber of f the vector field ν is a multiple of ν0. Thus the
proposition is proven. �
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