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PYTHAGOREAN POWERS OF HYPERCUBES

by Assaf NAOR & Gideon SCHECHTMAN (*)

Abstract. — It is shown here that for every n ∈ N, any embedding into
L1 of the n-fold Pythagorean power of the n-dimensional Hamming cube incurs
distortion that is at least a constant multiple of

√
n. This is achieved through

the introduction of a new bi-Lipschitz invariant of metric spaces that is inspired
by a linear inequality of Kwapień and Schütt (1989). The new metric invariant is
evaluated here for L1, implying the above nonembeddability statement. Links to
the Ribe program are discussed, as well as related open problems.
Résumé. — On montre que pour tout n ∈ N, tout plongement dans L1 de

la puissance pythagoricienne n-ième du cube de Hamming de dimension n admet
une distortion qui est au moins un multiple de

√
n par une constante. Pour cela

on introduit un nouvel invariant bi-Lipschitz des espaces métriques, inspiré par
une inégalité linéaire de Kwapień et Schütt (1989). C’est en évaluant ce nouvel
invariant sur L1 que l’on obtient l’énoncé ci-dessus. On explique le rapport avec le
programme de Ribe, et on discute des questions ouvertes.

1. Introduction

For a metric space (X, dX) and n ∈ N, the n-fold Pythagorean power of
(X, dX), denoted `n2 (X), is the space Xn, equipped with the metric given
by setting for every (x1, . . . , xn), (y1, . . . , yn) ∈ X,

(1.1) d`n2 (X)
(
(x1, . . . , xn), (y1, . . . , yn)

)
def=
√
dX(x1, y1)2 + . . .+ dX(xn, yn)2.

For p ∈ [1,∞], one analogously defines the `p powers of (X, dX) by re-
placing in the right hand side of (1.1) the squares by p’th powers and the
square root by the p’th root (with the obvious modification for p = ∞).

Keywords: metric embeddings, Ribe program.
Math. classification: 46B85, 30L05.
(*) A. N. was supported by the NSF, the BSF, the Packard Foundation and the Simons
Foundation. G. S. was supported by the ISF and the BSF.



1094 Assaf NAOR & Gideon SCHECHTMAN

When (X, ‖ · ‖X) is a Banach space and p ∈ [1,∞], one also commonly
considers the Banach space `p(X) consisting of all the infinite sequences
x = (x1, x2, . . .) ∈ Xℵ0 such that ‖x‖p`p(X) =

∑∞
j=1 ‖xj‖

p
X <∞. One could

give a similar definition of infinite `p powers for pointed metric spaces, but
in the present article it will suffice to only consider n-fold powers of metric
spaces for finite n ∈ N.
Throughout the ensuing discussion we shall use standard notation and

terminology from Banach space theory, as in [17]. In particular, for p ∈
[1,∞] and n ∈ N, we use the notations `p = `p(R) and `np = `np (R), and the
space Lp refers to the Lebesgue function space Lp(0, 1). We shall also use
standard notation and terminology from the theory of metric embeddings,
as in [18, 25]. In particular, a metric space (X, dX) is said to admit a bi-
Lipschitz embedding into a metric space (Y, dY ) if there exists s ∈ (0,∞),
D ∈ [1,∞) and a mapping f : X → Y such that

(1.2) ∀x, y ∈ X, sdX(x, y) 6 dY (f(x), f(y)) 6 DsdX(x, y)

When this happens we say that (X, dX) embeds into (Y, dY ) with distortion
at most D. We denote by c(Y,dY )(X, dX) (or simply cY (X), cY (X, dX) if
the metrics are clear from the context) the infimum over those D ∈ [1,∞]
for which (X, dX) embeds into (Y, dY ) with distortion at most D. When
Y = Lp we use the shorter notation cLp(X, dX) = cp(X, dX).

A folklore theorem asserts that `2(`1) is not isomorphic to a subspace
of L1. While this statement follows from a (nontrivial) gliding hump ar-
gument, we could not locate a reference to where it was first discovered;
different proofs of certain stronger statements can be found in [14, Theo-
rem 4.2], [28] and [27, Section 3]. More generally, `q(`p) is not isomorphic
to a subspace of L1 whenever q > p > 1; the present work yields new infor-
mation on this stronger statement as well, but for the sake of simplicity we
shall focus for the time being only on the case of Pythagorean products.
Finite dimensional versions of the above results were discovered in [16] by

Kwapień and Schütt, who proved that for every n ∈ N, if T : `n2 (`n1 )→ L1 is
an injective linear mapping then necessarily ‖T‖ · ‖T−1‖ &

√
n. Here, and

in what follows, we use the convention that for a, b ∈ [0,∞) the notation
a & b (respectively a . b) stands for a > cb (respectively a 6 cb) for
some universal constant c ∈ (0,∞). Below, the notation a � b stands for
(a . b)∧ (b . a). By the Cauchy–Schwarz inequality, the identity mapping
Id : `n2 (`n1 ) → `n1 (`n1 ) satisfies ‖Id‖ · ‖Id−1‖ =

√
n. So, the above lower

bound of Kwapień and Schütt is asymptotically sharp as n→∞, up to the
implicit universal constant.

ANNALES DE L’INSTITUT FOURIER
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By general principles, the above stated result of Kwapień and Schütt
formally implies that

(1.3) lim
n→∞

c1(`n2 (Fn2 )) =∞,

where Fn2 is the n-dimensional discrete hypercube, endowed with the metric
inherited from `n1 via the identification Fn2 = {0, 1}n ⊆ Rn. The deduction
of (1.3) is as follows. Suppose for the purpose of obtaining a contradic-
tion that supn∈N c1(`n2 (Fn2 )) < ∞. Since for every ε > 0 every finite sub-
set of `1 embeds with distortion 1 + ε into Fm2 for some m ∈ N (this
can be seen e.g. by combining Proposition 4.2.2 and Proposition 4.2.4
of [7]), it follows from our contrapositive assumption that there exists
K ∈ [1,∞) such that for every finite subset X ⊆ `1 and every n ∈ N
we have c1(`n2 (X)) 6 K. By a standard ultrapower argument (as in [11])
this implies that supn∈N c1(`n2 (`n1 )) 6 K. Next, by using a w∗-Gâteaux dif-
ferentiation argument combined with the fact that L∗∗1 is an L1(µ) space
(see [10] or [4, Chapter 7])) it follows that there exists a linear operator
T : `n2 (`n1 )→ L1 with ‖T‖ · ‖T−1‖ . 2K, contradicting the lower bound of
Kwapień and Schütt. This proof of (1.3) does not yield information on the
rate at which c1(`n2 (Fn2 )) tends to ∞, a problem that we resolve here.

Theorem 1.1. — We have c1(`n2 (Fn2 )) �
√
n.

Note that if we write Y def= `n2 (Fn2 ) then |Y | = 2n2 , and therefore by
Theorem 1.1 we have

(1.4) c1(Y ) � 4
√

log |Y |.

In light of (1.4), the following interesting open question asks whether or
not `n2 (Fn2 ) is the finite subset of `2(`1) that is asymptotically the furthest
from a subset of L1 in terms of its cardinality.

Question 1. — Suppose that S ⊆ `2(`1) is finite. Is it true that

c1(S) . 4
√

log |S| ?

The following proposition (proved in Section 4 below) is a simple con-
sequence of [2]. It shows that the answer to Question 1 is positive (up to
lower order factors) for finite subsets S ⊆ `2(`1) that are product sets, i.e.,
those sets of the form S = X1 × . . . × Xn ⊆ `n2 (`1) for some n ∈ N and
finite subsets X1, . . . , Xn ⊆ `1. This assertion is of course far from a full
resolution of Question 1. We conjecture that the answer to Question 1 is
positive, and it would be worthwhile to investigate whether or not variants
of the methods used in the proof of the main result of [2] are relevant here.

TOME 66 (2016), FASCICULE 3
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Proposition 1.2. — Fix n ∈ N and suppose that X1, . . . , Xn ⊆ `1 are
finite subsets of `1. Denote S = X1 × . . .×Xn ⊆ `n2 (`1). Then

c1(S) . 4
√

log |S| ·
√

log log |S| = (log |S|)
1
4 +o(1)

.

1.1. Metric Kwapień–Schütt inequalities

In [16] (see also [15]) Kwapień and Schütt (implicitly) proved the follow-
ing inequality, which holds for every n ∈ N and every {zjk}j,k∈{1,...,n} ⊆ L1.

(1.5) 1
n

n∑
j=1

∑
ε∈{−1,1}n

∥∥∥ n∑
k=1

εkzjk

∥∥∥
1
.

1
n!
∑
π∈Sn

∑
ε∈{−1,1}n

∥∥∥ n∑
j=1

εjzjπ(j)

∥∥∥
1
,

where Sn denotes as usual the group of all permutations of {1, . . . , n}.
The validity of (1.5) immediately implies the previously mentioned lower

bound on the distortion of any linear embedding T : `n2 (`n1 ) → L1. To see
this, identify from now on `n2 (`n1 ) with Mn(R) by considering for every
x = (x1, . . . , xn) ∈ `n2 (`n1 ) the matrix whose j’th row is xj ∈ Rn. With this
convention, apply (1.5) to zjk = T (ejk), where ejk is the n by n matrix
whose (j, k) entry equals 1 and the rest of its entries vanish. Then for every
ε ∈ {−1, 1}n and j ∈ {1, . . . , n} we have

(1.6)
∥∥∥ n∑
k=1

εkzjk

∥∥∥
1
>

∥∥∥∑n
k=1 εkejk

∥∥∥
`n2 (`n1 )

‖T−1‖
= n

‖T−1‖
,

and for every π ∈ Sn and ε ∈ {−1, 1}n we have

(1.7)
∥∥∥ n∑
j=1

εjzjπ(j)

∥∥∥
1
6 ‖T‖

∥∥∥ n∑
j=1

εjejπ(j)

∥∥∥
`n2 (`n1 )

= ‖T‖
√
n.

The only way for (1.6) and (1.7) to be compatible with (1.5) is if

‖T‖ · ‖T−1‖ &
√
n.

In light of the above argument, it is very natural to ask which Banach
spaces satisfy (1.5), i.e., to obtain an understanding of those Banach spaces
(Z, ‖ · ‖Z) for which there exists K = K(Z) ∈ (0,∞) such that for every
n ∈ N and every {zjk}j,k∈{1,...,n} ⊆ Z we have

(1.8) 1
n

n∑
j=1

∑
ε∈{−1,1}n

∥∥∥ n∑
k=1

εkzjk

∥∥∥
Z
6
K

n!
∑
π∈Sn

∑
ε∈{−1,1}n

∥∥∥ n∑
j=1

εjzjπ(j)

∥∥∥
Z
.

ANNALES DE L’INSTITUT FOURIER
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This question requires further investigation and obtaining a satisfactory
characterization seems to be challenging. In particular, it seems to be un-
known whether or not the Schatten trace class S1 satisfies (1.8). Regardless,
it is clear that the requirement (1.8) is a local linear property, and therefore
by Ribe’s rigidity theorem [29] it is preserved under uniform homeomor-
phisms of Banach spaces. In accordance with the Ribe program (see [3, 24])
one should ask for a bi-Lipschitz invariant of metric spaces that, when re-
stricted to the class of Banach spaces, is equivalent to (1.8).
Following the methodology that was introduced by Enflo [8] (see also [9,

5]), a first attempt to obtain a bi-Lipschitz invariant that is (hopefully)
equivalent to (1.8) is as follows. Consider those metric spaces (X, dX) for
which there exists K = K(X) ∈ (0,∞) such that for every n ∈ N and every
f : Mn(F2)→ X we have

(1.9) 1
n

n∑
j=1

∑
x∈Mn(F2)

dX

(
f
(
x+

n∑
k=1

ejk

)
, f(x)

)
6
K

n!
∑
π∈Sn

∑
x∈Mn(F2)

dX

(
f
(
x+

n∑
j=1

ejπ(j)

)
, f(x)

)
.

If X is in addition a Banach space and {zjk}j,k∈{1,...,n} ⊆ X then for
f(x) =

∑n
j=1

∑n
k=1(−1)xjkzjk the inequality (1.9) becomes (1.8). However,

for every integer n > 3 no metric space that contains at least two points
can satisfy (1.9) with K < n/2, as explained in Remark 2.4 below. Thus,
obtaining a metric characterization of the linear property (1.8) remains
open.
We shall overcome this difficulty by first modifying the linear defini-

tion (1.8) so that it still implies the same nonembeddability result for
`n2 (`n1 ), and at the same time we can prove that the reasoning that led
to the metric inequality (1.9) now leads to an analogous inequality which
does hold true for nontrivial metric spaces (specifically, we shall prove that
it holds true for L1).

Definition 1.3 (Linear KS space). — We shall say that a Banach space
(Z, ‖ · ‖Z) is a linear KS space if there exists C = C(X) ∈ (0,∞) such that
for every n ∈ N and every {zjk}j,k∈{1,...,n} ⊆ Z we have

(1.10) 1
n

n∑
j=1

∑
ε∈{−1,1}n

∥∥∥ n∑
k=1

εkzjk

∥∥∥
Z

6
C

nn

∑
k∈{1,...,n}n

∑
ε∈{−1,1}n

∥∥∥ n∑
j=1

εjzjkj

∥∥∥
Z
.

TOME 66 (2016), FASCICULE 3
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The difference between (1.10) and (1.8) is that we replace the aver-
aging over all permutations π ∈ Sn by averaging over all the mappings
π : {1, . . . , n} → {1, . . . , n}. We shall see below that L1 is a linear KS
space. The same reasoning that leads to (1.9) now leads us to consider the
following new bi-Lipschitz invariant for metric spaces.

Definition 1.4 (KS metric space). — Say that a metric space (X, dX)
is a KS space if there exists C = C(X) ∈ (0,∞) such that for every n ∈ 2N
and every f : Mn(F2)→ X we have

(1.11) 1
n

n∑
j=1

∑
x∈Mn(F2)

dX

(
f
(
x+

n∑
k=1

ejk

)
, f(x)

)

6
C

nn

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

dX

(
f
(
x+

n∑
j=1

ejkj

)
, f(x)

)
.

Remark 1.5. — The reason why in Definition 1.4 we require (1.11) to
hold true only when n ∈ N is even is that no non-singleton metric space
(X, dX) satisfies (1.11) when n > 3 is an odd integer. Indeed, suppose
that a, b ∈ X are distinct and that n > 3 is an odd integer. For every
x ∈ Mn(F2) write σ(x) =

∑n−1
j=1

∑n
k=1 xjk ∈ F2. Define f : Mn(F2) → X

by setting f(x) = a if σ(x) = 0 and f(x) = b if σ(x) = 1. Since n is
odd, σ(x +

∑n
k=1 ejk) = σ(x) + n 6= σ(x) for every j ∈ {1, . . . , n − 1} and

x ∈ Mn(F2). Consequently the left hand side of (1.11) is nonzero (since a
and b are distinct). But, for every x ∈ Mn(F2) and k ∈ {1, . . . , n}n, since
n is odd we have σ(x +

∑n
j=1 ejkj ) = σ(x) + n − 1 = σ(x). Consequently

the right hand side of (1.11) vanishes. This parity issue is of minor signifi-
cance: in Remark 2.3 below we describe an inequality that is slightly more
complicated than (1.11) but makes sense for every n ∈ N and in any metric
space, and we show that it holds true for L1-valued functions. This vari-
ant has the same nonembeddability consequences as (1.11), albeit yielding
distortion lower bounds that are weaker by a constant factor.

The following theorem is the main result of the present article. We shall
soon see, in Section 1.2 below, how it quickly implies Theorem 1.1 (and
more).

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.6. — L1 is a KS space. Namely, for all n ∈ 2N and every
f : Mn(F2)→ L1 we have

n∑
j=1

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
k=1

ejk

)
− f(x)

∥∥∥
1

6
2n

nn − (n− 2)n
∑

k∈{1,...,n}n

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
j=1

ejkj

)
− f(x)

∥∥∥
1
.

For every fixed n ∈ 2N, the factor 2n/(nn − (n − 2)n) above cannot be
improved. So, L1 satisfies (1.11) for every n ∈ 2N with

C = sup
n∈2N

2
1−

(
1− 2

n

)n = 2e2

e2 − 1 ,

and this value of C cannot be improved.

Note that if (Z, ‖ · ‖Z) is a Banach space and {zjk}j,k∈{1,...,n} ⊆ Z then
by considering the mapping f : Mn(F2)→ Z given by

f(x) =
n∑
j=1

n∑
k=1

(−1)xjkzjk

we see that if Z is a KS space as a metric space then it is also a linear
KS space (with the same constant C). We do not know whether or not the
converse holds true, i.e., we ask the following interesting open question: if a
Banach space (Z, ‖ · ‖Z) is a linear KS space then is it also a KS space as a
metric space? Understanding which Banach spaces are linear KS spaces is
a wide-open research direction. In particular, we ask whether the Schatten
trace class S1 is a KS space as a metric space, or even whether it is a linear
KS space. There are inherent conceptual difficulties that indicate that our
proof of Theorem 1.6 cannot be extended to the case of S1 without a
substantial new idea; see Remark 3.2 below.
Our proof of Theorem 1.6 consists of simple Fourier analysis combined

with a nonlinear transformation; see Section 2 below. The simplicity of
this proof indicates one of the advantages of generalizing linear inequalities
such as (1.10) to their stronger nonlinear counterparts, since this brings
genuinely nonlinear tools into play. In particular, we thus obtain a very
simple proof of the linear inequality (1.10) through an argument which
would have probably not been found without the need to generalize (1.10)
to a metric inequality as part of the Ribe program.

TOME 66 (2016), FASCICULE 3
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1.2. Embeddings of `q(Fn2 , ‖ · ‖p) into L1

Suppose that q > p > 1. By arguing as in (1.6) and (1.7) one deduces
from the Kwapień–Schütt inequality (1.5) that for every n ∈ N, every
injective linear mapping T : `nq (`np )→ L1 must satisfy

(1.12) ‖T‖ · ‖T−1‖ & n
1
p−

1
q .

Note that this conclusion was stated by Kwapień and Schütt in [16, Corol-
lary 3.4] under the additional assumption that q 6 2, but this restriction
is not necessary. By a differentiation argument (see [10] or [4, Chapter 7]),
it follows from (1.12) that

(1.13) c1
(
`nq (`np )

)
& n

1
p−

1
q .

We previously deduced from the case q = 2 and p = 1 of (1.13)
that limn→∞ c1(`n2 (Fn2 )) = ∞. This was done in the paragraph that fol-
lowed (1.3), relying on the fact that any finite subset of `1 admits an em-
bedding with O(1) distortion into Fm2 for some m ∈ N. The analogous
assertion is not true for p > 1, and therefore despite the validity of (1.13)
it was previously unknown whether or not supn∈N c1(`q(Fn2 , ‖ · ‖p)) = ∞.
Our metric KS inequality of Theorem 1.6 answers this question.

Theorem 1.7. — Suppose that 1 6 p < q and n ∈ N then

(1.14) c1
(
`nq (Fn2 , ‖ · ‖p)

)
� n

1
p−

1
q .

It is worthwhile to note here that while Theorem 1.7 yields a sharp
asymptotic evaluation of c1

(
`nq (Fn2 , ‖ · ‖p)

)
, the corresponding bound (1.13)

in the continuous setting is not always sharp. Specifically, in Section 4 we
explain that

(1.15) c1
(
`nq (`np )

)
�

{
n

1
p−

1
q if 1 6 p < q and p 6 2,

n1− 1
p−

1
q if 2 6 p < q.

From (1.14) and (1.15) we see that if 1 6 p < q and p 6 2 then

c1
(
`nq (Fn2 , ‖ · ‖p)

)
� c1

(
`nq (`np )

)
,

while if 2 < p < q then since 1/p− 1/q < 1− 1/p− 1/q we have

c1
(
`nq (Fn2 , ‖ · ‖p)

)
= o

(
c1
(
`nq (`np )

))
.

The upper bound on c1(`nq (Fn2 , ‖ · ‖p)) that appears in (1.14) will be
proven in Section 4. We shall now show how the lower bound on the quantity
c1(`nq (Fn2 , ‖ · ‖p)) that appears in (1.14) quickly follows from Theorem 1.6.

ANNALES DE L’INSTITUT FOURIER



PYTHAGOREAN POWERS OF HYPERCUBES 1101

This will also establish Theorem 1.1 as a special case. So, suppose that
D ∈ [1,∞) and f : Mn(F2)→ L1 satisfies

‖x− y‖`nq (`np ) 6 ‖f(x)− f(y)‖1 6 D‖x− y‖`nq (`np )

for every x, y ∈ Mn(F2). Our goal is to bound D from below. Since the
metric space `nq (Fn2 , ‖ · ‖p) contains an isometric copy of `n−1

q

(
Fn−1

2 , ‖ · ‖p
)
,

we may assume that n is even. By Theorem 1.6 applied to f we have

(1.16) 1
n

n∑
j=1

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
k=1

ejk

)
− f(x)

∥∥∥
1

.
1
nn

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
j=1

ejkj

)
− f(x)

∥∥∥
1
.

But,

(1.17)
n∑
j=1

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
k=1

ejk

)
− f(x)

∥∥∥
1

> 2n
2

n∑
j=1

∥∥∥ n∑
k=1

ejk

∥∥∥
`nq (`np )

= 2n
2
n1+ 1

p ,

and

(1.18)
∑

k∈{1,...,n}n

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
j=1

ejkj

)
− f(x)

∥∥∥
1

6 D2n
2 ∑
k∈{1,...,n}n

∥∥∥ n∑
j=1

ejkj

∥∥∥
`nq (`np )

= D2n
2
nn+ 1

q .

For (1.16) to be compatible with (1.17) and (1.18) we must have

D & n
1
p−

1
q .

Remark 1.8. — We only discussed L1 embeddings of `nq (Fn2 , ‖ · ‖p), but
it is natural to also ask about embeddings of `mq (Fn2 , ‖ · ‖p). However, it
turns out that the case m = n is the heart of the matter, i.e., the L1
distortion of `mq (Fn2 , ‖ · ‖p) is up to a constant factor the same as the L1
distortion of `kq

(
Fk2 , ‖ · ‖p

)
with k = min{m,n}; see Remark 4.1 below.

2. Proof of Theorem 1.6

The stated sharpness of Theorem 1.6 is simple: consider the function
ϕ : Mn(F2) → R given by ϕ(x) = (−1)x11+...+xnn . For this choice of ϕ
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we have ϕ(x +
∑n
k=1 ejk) = −ϕ(x) ∈ {−1, 1} for every x ∈ Mn(F2) and

j ∈ {1, . . . , n}. Consequently,

(2.1)
n∑
j=1

∑
x∈Mn(F2)

∣∣∣ϕ(x+
n∑
k=1

ejk

)
− ϕ(x)

∣∣∣ = n2n
2+1.

Also, for every x ∈Mn(F2) and k ∈ {1, . . . , n}n we have

ϕ
(
x+

n∑
j=1

ejkj

)
= (−1)`(k)ϕ(x),

where

`(k) def= |{j ∈ {1, . . . , n} : kj = j}| =
n∑
j=1

1{kj=j}.

Consequently,∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∣∣∣ϕ(x+
n∑
j=1

ejkj

)
− ϕ(x)

∣∣∣
= 2n

2 ∑
k∈{1,...,n}n

(
1− (−1)

∑n

j=1
1{kj=j}

)

= 2n
2
nn − 2n

2
n∏
j=1

n∑
k=1

(−1)1{k=j}

= 2n
2

(nn − (n− 2)n) .(2.2)

The identities (2.1) and (2.2) demonstrate that for every fixed n ∈ N the
factor 2n/(nn−(n−2)n) in Theorem 1.6 cannot be replaced by any strictly
smaller number.
Passing now to the proof of Theorem 1.6, we will actually prove the

following statement, the case p = 1 of which is Theorem 1.6 itself.

Theorem 2.1. — Suppose that p ∈ (0, 2] and n ∈ 2N. Then for every
f : Mn(F2)→ Lp we have

n∑
j=1

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
k=1

ejk

)
− f(x)

∥∥∥p
p

6
2n

nn − (n− 2)n
∑

k∈{1,...,n}n

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
j=1

ejkj

)
− f(x)

∥∥∥p
p
.

Proof. — By a classical theorem of Schoenberg [30], the metric space
(Lp, ‖x− y‖p/2

p ) admits an isometric embedding into L2. Since the desired
inequality is purely metric, i.e., it involves only distances between various
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values of f , it suffices to prove it for p = 2 and then apply it to the
composition of f with the Schoenberg isometry so as to deduce the desired
inequality for general p ∈ (0, 2]. In order to prove the case p = 2, it suffices
to prove the desired inequality when f is real-valued (deducing the case of
L2-valued f by integrating the resulting point-wise inequality).
Suppose then that f : Mn(F2)→ R. We shall use below standard Fourier-

analytic arguments on Mn(F2), considered as a vector space (of dimension
n2) over F2. Specifically, one can write

f(x) =
∑

A1,...,An⊆{1,...,n}

f̂(A1, . . . , An)(−1)
∑n

j=1

∑
k∈Aj

xjk
,

where for every A1, . . . , An ⊆ {1, . . . , n},

f̂(A1, . . . , An) def= 1
2n2

∑
x∈Mn(F2)

(−1)
∑n

j=1

∑
k∈Aj

xjk
f(x).

Then, for every x ∈Mn(F2) and j ∈ {1, . . . , n} we have

f
(
x+

n∑
k=1

ejk

)
− f(x)

=
∑

A1,...,An⊆{1,...,n}

f̂(A1, . . . , An)
(

(−1)|Aj | − 1
)

(−1)
∑n

s=1

∑
k∈As

xsk

= −2
∑

A1,...,An⊆{1,...,n}
|Aj |≡1 mod 2

f̂(A1, . . . , An)(−1)
∑n

s=1

∑
k∈As

xsk .

Hence, by the orthogonality of the functions

{x 7→ (−1)
∑n

s=1

∑
k∈As

xsk}A1,...,An⊆{1,...,n}

on Mn(F2),

(2.3) 1
2n2+2

n∑
j=1

∑
x∈Mn(F2)

(
f
(
x+

n∑
k=1

ejk

)
− f(x)

)2

=
∑

A1,...,An
⊆{1,...,n}

|{j ∈ {1, . . . , n} : |Aj | ≡ 1 mod 2}| f̂(A1, . . . , An)2.
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At the same time, for every x ∈Mn(F2) and k ∈ {1, . . . , n}n we have

f
(
x+

n∑
j=1

ejkj

)
− f(x)

=
∑

A1,...,An
⊆{1,...,n}

f̂(A1, . . . , An)
(

(−1)
∑n

j=1
1Aj (kj)−1

)
(−1)

∑n

j=1

∑
k∈Aj

xjk
.

Using orthogonality again, we therefore have∑
k∈{1,...,n}n

∑
x∈Mn(F2)

(
f
(
x+

n∑
j=1

ejkj

)
− f(x)

)2
(2.4)

= 2n
2 ∑
k∈{1,...,n}n

∑
A1,...,An
⊆{1,...,n}

f̂(A1, . . . , An)2
(

(−1)
∑n

j=1
1Aj (kj) − 1

)2

= 2n
2+1

∑
A1,...,An
⊆{1,...,n}

f̂(A1, . . . , An)2
∑

k∈{1,...,n}n

(
1− (−1)

∑n

j=1
1Aj (kj)

)
.

Fixing A1, . . . , An ⊆ {1, . . . , n}, denote

S
def= {j ∈ {1, . . . , n} : |Aj | ≡ 1 mod 2} .

Since n is even, if j ∈ S then |Aj | ∈ {1, . . . , n − 1}, and consequently
|2|Aj | − n| 6 n− 2. Hence,∑

k∈{1,...,n}n

(
1− (−1)

∑n

j=1
1Aj (kj)

)
= nn −

n∏
j=1

n∑
k=1

(−1)1Aj (k)

= nn −
n∏
j=1

(n− 2|Aj |)

> nn −
n∏
j=1

∣∣2|Aj | − n∣∣
> nn − nn−|S|(n− 2)|S|.(2.5)

Since the mapping |S| 7→
(
nn − nn−|S|(n− 2)|S|

)
/|S| is decreasing in |S|,

it follows from (2.5) that

(2.6)
∑

k∈{1,...,n}n

(
1− (−1)

∑n

j=1
1Aj (kj)

)

>
nn − (n− 2)n

n
|{j ∈ {1, . . . , n} : |Aj | ≡ 1 mod 2}| .
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The desired inequality now follows by substituting (2.6) into (2.4) and
recalling (2.3). �

Remark 2.2. — By the cut-cone decomposition of L1 metrics (see e.g. [7,
Chapter 4]), the inequality of Theorem (1.6) is equivalent to the following
(also sharp) isoperimetric-type inequality. For every and n ∈ 2N and every
subset S ⊆Mn(F2) we have

(2.7)
n∑
j=1

∣∣∣{x ∈ S : x+
n∑
k=1

ejk /∈ S
}∣∣∣

6
2n

nn − (n− 2)n
∑

k∈{1,...,n}n

∣∣∣{x ∈ S : x+
n∑
j=1

ejkj /∈ S
}∣∣∣.

Due to the simplicity of our proof of Theorem 1.6, we did not attempt to
obtain a direct combinatorial proof of (2.7), though we believe that this
should be doable (and potentially instructive). We also did not attempt to
characterize the equality cases in (2.7).

Remark 2.3. — In Remark 1.5 we have seen that (1.11) can hold true
only if n ∈ N is even. However, this parity issue can be remedied through
the following (sharp) inequality, which holds true for every n ∈ N, every
p ∈ (0, 2] and every f : Mn(F2)→ Lp.

1
n

n∑
j=1

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
k=1

ejk

)
− f(x)

∥∥∥p
p

(2.8)

6
2(2n)−n

1−
(
1− 1

n

)n ∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∑
y∈Fn2

∥∥∥f(x+
n∑
j=1

yjejkj

)
−f(x)

∥∥∥p
p

6
2e
e−1 ·

1
(2n)n

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∑
y∈Fn2

∥∥∥f(x+
n∑
j=1

yjejkj

)
−f(x)

∥∥∥p
p
.

The distortion lower bounds that we obtained as a consequence of Theo-
rem 1.6 also follow mutatis mutandis from (2.8).
To prove (2.8), note that, exactly as in the beginning of the proof of

Theorem 2.1, it suffices to prove (2.8) when p = 2 and f : Mn(F2) → R.
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Now, argue as in (2.4) to obtain the following identity.∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∑
y∈Fn2

(
f
(
x+

n∑
j=1

yjejkj

)
− f(x)

)2
(2.9)

= 2n
2+1

∑
A1,...,An⊆{1,...,n}

f̂(A1, . . . , An)2

·
∑

k∈{1,...,n}n

∑
y∈Fn2

(
1− (−1)

∑n

j=1
yj1Aj (kj)

)
.

For every A1, . . . , An ⊆ {1, . . . , n} and k ∈ {1, . . . , n}n we have∑
y∈Fn2

(
1− (−1)

∑n

j=1
yj1Aj (kj)

)
=
{

2n if kj ∈Aj for some j∈{1, . . . , n},
0 otherwise.

Hence, denoting

T
def= {j ∈ {1, . . . , n} : Aj 6= ∅} ⊇ {j ∈ {1, . . . , n} : |Aj | ≡ 1 mod 2} def= S,∑

k∈{1,...,n}n

∑
y∈Fn2

(
1− (−1)

∑n

j=1
yj1Aj (kj)

)
(2.10)

= 2n
∑

k∈{1,...,n}n

(
1− 1{∀ j∈{1,...,n}, kj /∈Aj}

)
= 2n

(
nn −

n∏
j=1

(n− |Aj |)n
)

> 2n
(
nn − nn−|T |(n− 1)|T |

)
> 2n (nn − (n− 1)n) |T |

n
.

Consequently, by (2.9) and (2.10), combined with the fact that |T | > |S|,
we have∑

k∈{1,...,n}n

∑
x∈Mn(F2)

∑
y∈Fn2

(
f
(
x+

n∑
j=1

yjejkj

)
− f(x)

)2

>
2n2+n+1 (nn − (n− 1)n)

n

·
∑

A1,...,An
⊆{1,...,n}

|{j ∈ {1, . . . , n} : |Aj | ≡ 1 mod 2}| f̂(A1, . . . , An)2

(2.3)= 2n (nn − (n− 1)n)
2n

n∑
j=1

∑
x∈Mn(F2)

(
f
(
x+

n∑
k=1

ejk

)
− f(x)

)2
.
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This completes the proof of (2.8).

Remark 2.4. — As stated in the Introduction, the “vanilla" version of
the metric Kwapień–Schütt inequality (1.9) cannot hold true in any non-
singleton metric space (X, dX). To see this, note first that we have already
seen in Remark 1.5 that if n ∈ N is odd then (1.9) fails to hold true for any
K > 0. So, suppose that n > 4 is an even integer. It suffices to deal with
X = {−1, 1} ⊆ R. Define ψ : Mn(F2)→ {−1, 1} by

ψ(x) = (−1)x11+
∑n

j=2

∑n

k=4
xjk .

For every x ∈Mn(F2) we have

ψ
(
x+

n∑
k=1

e1k

)
= −ψ(x),

and for j ∈ {2, . . . , n} we have

ψ
(
x+

n∑
k=1

ejk

)
= (−1)n−3ψ(x) = −ψ(x),

since n is even. Consequently,

(2.11)
n∑
j=1

∑
x∈Mn(F2)

∣∣∣ψ(x+
n∑
k=1

ejk

)
− ψ(x)

∣∣∣ = n2n
2+1.

At the same time, for every x ∈Mn(F2) and π ∈ Sn we have

(2.12) ψ
(
x+

n∑
j=1

ejπ(j)

)
= (−1)1{π(1)=1}+

∑n

j=2
1{π(j)>4}ψ(x).

If π(1) = 1 then {2, 3} ⊆ {π(2), . . . , π(n)} and therefore we know that the
integer 1{π(1)=1} +

∑n
j=2 1{π(j)>4} = n − 2 is even. On the other hand, if

π(1) ∈ {1, . . . , n} r {1, 2, 3} then {π(2), . . . , π(n)} ⊇ {1, 2, 3} and conse-
quently we have that 1{π(1)=1}+

∑n
j=2 1{π(j)>4} = n−4 is even. In the re-

maining case π(1) ∈ {2, 3} we have that 1{π(1)=1}+
∑n
j=2 1{π(j)>4} = n−3

is odd. Hence, by (2.12) we have

(2.13)
∑
π∈Sn

∑
x∈Mn(F2)

∣∣∣ψ(x+
n∑
j=1

ejπ(j)

)
− ψ(x)

∣∣∣
= 2n

2+1 ∣∣{π ∈ Sn : π(1) ∈ {2, 3}
}∣∣ = 2n

2+2(n− 1)!.

By contrasting (2.11) with (2.13) we see that if (1.9) holds true then nec-
essarily K > n/2.
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3. Uniform and coarse nonembeddability

A metric space (X, dX) is said to admit a uniform embedding into a
Banach space (Z, ‖·‖Z) if there exists an injective mapping f : X → Z and
nondecreasing functions α, β : (0,∞) → (0,∞) with limt→0 β(t) = 0 such
that α(dX(a, b)) 6 ‖f(a) − f(b)‖Z 6 β(dX(a, b)) for all distinct a, b ∈ X.
Similarly, (X, dX) is said to admit a coarse embedding into a Banach space
(Z, ‖·‖Z) if there exists a mapping f : X → Z and nondecreasing functions
α, β : (0,∞)→ (0,∞) with limt→∞ α(t) =∞ for which

α(dX(a, b)) 6 ‖f(a)− f(b)‖Z 6 β(dX(a, b))

for all distinct a, b ∈ X.
The space `2(`1) does not admit a uniform or coarse embedding into L1.

Indeed, by [1] in the case of uniform embeddings and by [26] in the case of
coarse embeddings, this would imply that `2(`1) is linearly isomorphic to
a subspace of L0, which is proved to be impossible in [14, Theorem 4.2].
Theorem 1.6 yields a new proof that `2(`1) does not admit a uniform or

coarse embedding into L1. Indeed, suppose that α, β : (0,∞)→ (0,∞) are
nondecreasing and f : `2(`1)→ L1 satisfies

(3.1) α
(
‖f(x)− f(y)‖`2(`1)

)
6 ‖f(x)− f(y)‖1 6 β

(
‖f(x)− f(y)‖`2(`1)

)
for every x, y ∈ `2(`1). For every s ∈ (0,∞) and n ∈ 2N, apply Theorem 1.6
to the mapping fs : Mn(F2) → L1 given by fs(x) = f(sx). The resulting
inequality, when combined with (3.1), implies that α(sn) . β(s

√
n). Choos-

ing s = 1/
√
n shows that α(

√
n) . β(1), so f is not a coarse embedding,

and choosing s = 1/n shows that β(1/
√
n) & α(1) > 0, so f is not a

uniform embedding.
Observe that since, by [13], Lp is isometric to a subset of L1 when

p ∈ [1, 2], the above discussion implies that `2(`1) does not admit a uni-
form or coarse embedding into Lp for every p ∈ [1, 2]. Passing now to an
examination of the uniform and coarse embeddability of `2(`1) into Lp for
p > 2, observe first that since, by [1] and [12], when p > 2 there is no
uniform or coarse embedding of Lp into L1, the fact that `2(`1) does not
admit a uniform or coarse embedding into L1 does not imply that `2(`1)
fails to admit such an embedding into Lp. An inspection of the above argu-
ment reveals that in order to show that `2(`1) does not admit a uniform or
coarse embedding into Lp it would suffice to establish the following variant
of Theorem 2.1 when p > 2: there exits Cp, θp ∈ (0,∞) such that for every
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n ∈ 2N, every f : Mn(F2)→ Lp satisfies

(3.2) 1
n

n∑
j=1

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
k=1

ejk

)
− f(x)

∥∥∥θp
p

6
Cp
nn

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∥∥∥f(x+
n∑
j=1

ejkj

)
− f(x)

∥∥∥θp
p
.

However, no such extension of Theorem 2.1 to the range p > 2 is possible.
Indeed, since `2 is linearly isometric to a subspace of Lp, we may fix a linear
isometry U : `np (`n2 )→ Lp. Define f : Mn(F2)→ Lp by

f(x) =
n∑
j=1

n∑
k=1

xjkU(ejk).

For this choice of f , (3.2) becomes

2n
2
n
θp
2 = 1

n

n∑
j=1

∑
x∈Mn(F2)

∥∥∥ n∑
k=1

ejk

∥∥∥θp
`np (`n2 )

(3.2)
6

Cp
nn

∑
k∈{1,...,n}n

∑
x∈Mn(F2)

∥∥∥ n∑
j=1

ejkj

∥∥∥θp
`np (`n2 )

= 2n
2
Cpn

θp
p ,

which is a contradiction for large enough n ∈ 2N, because p > 2. Thus,
it was crucial to assume in Theorem 2.1 that p 6 2. When p > 4, this is
accentuated by the following proposition.

Proposition 3.1. — For every p > 4 there exists Fp : `2(`1)→ Lp that
satisfies

(3.3) ∀x, y ∈ `2(`1), ‖Fp(x)− Fp(y)‖p = ‖x− y‖
2
p

`2(`1).

Thus `2(`1) admits an embedding into Lp that is both uniform and coarse.

Proof. — Fix T : `1 → L2 such that

(3.4) ∀x, y ∈ `1, ‖T (x)− T (y)‖2 =
√
‖x− y‖1.

See [7, page 288] for the existence of such T (an explicit formula for T
appears in [23, Section 3]). By a theorem of Schoenberg [30], since 4/p 6 1
there exists a mapping σp : L2 → L2 that satisfies

(3.5) ∀x, y ∈ L2 ‖σp(x)− σp(y)‖2 = ‖x− y‖
4
p

2 .

Fix also an isometric embedding S : L2 → Lp and define

Fp : `2(`1)→ `p(Lp) ∼= Lp
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by

∀x ∈ `2(`1), Fp(x) def= (S ◦ σp ◦ T (xj))∞j=1 .

Then, for every x, y ∈ `2(`1) we have

‖Fp(x)− Fp(y)‖`p(Lp) =
( ∞∑
j=1
‖S(σp(T (xj)))− S(σp(T (yj)))‖pp

) 1
p

=
( ∞∑
j=1
‖σp(T (xj))− σp(T (yj))‖p2

) 1
p

(3.5)=
( ∞∑
j=1
‖T (xj)− T (yj)‖4

2

) 1
p

(3.4)=
( ∞∑
j=1
‖xj − yj‖2

1

) 1
p

,

which is precisely the desired requirement (3.3). �

The above proof of Proposition 3.1 used the fact that p > 4 in order
for (3.5) to hold true. It is therefore natural to ask Question 2 below.
Analogous questions could be asked for uniform and coarse embeddings of
`p1(`p2) into Lp3 (or even into `p3(Lp4)), and various partial results could
be obtained using similar arguments (at times with the embedding in (3.5)
replaced by the embedding of [21, Remark 5.10]). We shall not pursue this
direction here because it yields incomplete results.

Question 2. — Suppose that 2 < p < 4. Does `2(`1) admit a uniform or
coarse embedding into Lp?

Remark 3.2. — In the Introduction we asked whether or not the Schat-
ten trace class S1 is a KS metric space. The approach of Section 2 seems
inherently insufficient to address this question. Indeed, we treated L1 by
relating its metric to Hilbert space through the isometric embedding of
(L1,

√
‖x− y‖1), while S1 is not even uniformly homeomorphic to a sub-

set of Hilbert space (this follows from [1] combined with e.g. [14] and the
classical linear nonembeddability result of [20]). For this reason we believe
that asking about the validity of (1.11) in S1 is worthwhile beyond its
intrinsic interest, as a potential step towards addressing more general sit-
uations in which one cannot reduce the question to (nonlinear) Hilbertian
considerations.
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4. Embeddings

In this section we shall justify the remaining (simple) embedding state-
ments that were given without proof in the Introduction, starting with the
proof of Proposition 1.2.

Proof of Proposition 1.2. — Recall that we are given n ∈ N, finite sub-
sets X1, . . . , Xn ⊆ `1, and we denote S = X1 × . . . × Xn ⊆ `n2 (`1). Thus
we have |S| =

∏n
j=1 |Xi|. We may assume without loss of generality that

|Xj | > 1 for all j ∈ {1, . . . , n}. Write

(4.1) J
def=
{
j ∈ {1, . . . , n} : |Xj | > exp

( √
log |S|

log log |S|

)}
.

Then

(4.2) |S| >
∏
j∈J
|Xj | > exp

(
|J |
√

log |S|
log log |S|

)
=⇒ |J | <

√
log |S| log log |S|.

By the main result of [2], for every j ∈ {1, . . . , n} there exists a mapping
fj : Xj → `2 such that

(4.3) ‖u− v‖1 6 ‖fj(u)− fj(v)‖2 .
√

log |Xj | log log |Xj | · ‖u− v‖1

for every u, v ∈ Xj . We shall fix from now on an isometric embedding
T : `{1,...,n}rJ2 (`2)→ L1.
Define φ : S → (`J1 (`1)⊕L1)1, where (`J1 (`1)⊕L1)1 is the corresponding

`1-direct sum, by setting

φ(u) def= ((uj)j∈J)⊕ T
(
(fj(uj))j∈{1,...,n}rJ

)
.

Then for every u, v ∈ S we have

‖φ(u)− φ(v)‖(`J1 (`1)⊕L1)1

=
∑
j∈J
‖uj − vj‖1 +

( ∑
j∈{1,...,n}rJ

‖fj(uj)− fj(vj)‖2
2

) 1
2

>

(∑
j∈J
‖uj − vj‖2

1

) 1
2

+
( ∑
j∈{1,...,n}rJ

‖uj − vj‖2
1

) 1
2

> ‖u− v‖`n2 (`1),(4.4)

where in the first inequality of (4.4) we used the leftmost inequality in (4.3).
The corresponding upper bound is deduced as follows from the Cauchy–
Schwarz inequality, the rightmost inequality in (4.3), the definition of J
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in (4.1), and the upper bound on |J | in (4.2).

‖φ(u)− φ(v)‖(`J1 (`1)⊕L1)1

=
∑
j∈J
‖uj − vj‖1 +

( ∑
j∈{1,...,n}rJ

‖fj(uj)− fj(vj)‖2
2

) 1
2

.
√
J |
(∑
j∈J
‖uj − vj‖2

1

) 1
2

+
(

max
j∈{1,...,n}rJ

√
log |Xj | log log |Xj |

)( ∑
j∈{1,...,n}rJ

‖uj − vj‖2
1

) 1
2

6 4
√

log |S|
√

log log |S|
(∑
j∈J
‖uj − vj‖2

1

) 1
2

+
4
√

log |S| log
( √

log |S|
log log |S|

)
√

log log |S|

( ∑
j∈{1,...,n}rJ

‖uj − vj‖2
1

) 1
2

. 4
√

log |S|
√

log log |S| · ‖u− v‖`n2 (`1). �

We shall next justify the upper bound on c1(`nq (Fn2 , ‖ · ‖p)) in (1.14), thus
concluding the proof of Theorem 1.7 (the proof of the reverse inequality was
presented in Section 1.2). Recall that we are assuming here that q > p > 1.
Since for every x, y ∈Mn(F2) we have

‖x− y‖`nq (`np ) =
( n∑
j=1
‖xj − yj‖qp

) 1
q

=
( n∑
j=1
‖xj − yj‖

q
p

1

) 1
q

,

by Hölder’s inequality

(4.5)
‖x− y‖

1
p

`n1 (`n1 )

n
1
p−

1
q

6 ‖x− y‖`nq (`np ) 6 ‖x− y‖
1
p

`n1 (`n1 ).

By a classical theorem of Bretagnolle, Dacunha-Castelle and Krivine [6]
(see also [31, Theorem 5.11]), for every α ∈ (0, 1] the metric space

(L1, ‖x− y‖α1 )

admits an isometric embedding into L1. Hence, the metric space(
Mn(F2), ‖x− y‖

1
p

`n1 (`n1 )

)
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admits an isometric embedding into L1, and consequently (4.5) implies that

c1
(
`nq (Fn2 , ‖ · ‖p)

)
6 n

1
p−

1
q . �

Remark 4.1. — Arguing similarly to the above discussion also justifies
the assertion in Remark 1.8. Indeed, suppose that m,n ∈ N and q > p > 1.
Then by Hölder’s inequality for every x, y ∈ `mq (Fn2 ),

(4.6)
‖x− y‖

1
p

`m1 (`n1 )

m
1
p−

1
q

=
‖x− y‖`mp (`np )

m
1
p−

1
q

6 ‖x− y‖`mq (`np ) 6 ‖x− y‖`mp (`np ) = ‖x− y‖
1
p

`m1 (`n1 ).

Also, because ‖xj−yj‖1 ∈ {0, . . . , n} for x, y ∈ `mq (Fn2 ) and j ∈ {1, . . . ,m},
(4.7)

‖x−y‖`mq (`np ) =
( m∑
j=1
‖xj−yj‖

q
p

1

) 1
q

∈
[
‖x− y‖

1
q

`m1 (`n1 ), n
1
p−

1
q ‖x− y‖

1
q

`m1 (`n1 )

]
.

Letting Mm×n(F2) denote the space of m by n matrices with entries in F2,
since the metric spaces(

Mm×n(F2), ‖x− y‖
1
p

`m1 (`n1 )

)
and

(
Mm×n(F2), ‖x− y‖

1
q

`m1 (`n1 )

)
admit an isometric embedding into L1, it follows from (4.6) and (4.7) that

(4.8) c1
(
`mq (Fn2 , ‖ · ‖p)

)
6 min

{
m

1
p−

1
q , n

1
p−

1
q

}
.

Since `mq (Fn2 , ‖ · ‖p) contains an isometric copy of

`min{m,n}
q

(
Fmin{m,n}

2 , ‖ · ‖p
)
,

by (1.14) and (4.8),

c1
(
`mq (Fn2 , ‖ · ‖p)

)
� c1

(
`min{m,n}
q

(
Fmin{m,n}

2 , ‖ · ‖p
))

,

as required.

We end with a brief justification of (1.15). If 1 6 p < q and p 6 2 then
c1
(
`nq (`np )

)
& n1/p−1/q, as proved by Kwapień and Schütt [16]. The reverse

inequality follows from the fact that the `nq (`np ) norm is n1/p−1/q-equivalent
to the `np (`np ) norm, and from the fact [13] that `p is isometric to a subspace
of L1 when p 6 2. When q > p > 2, the `np norm is n1/2−1/p-equivalent
to the `n2 norm and the `nq norm is n1/2−1/q-equivalent to the `n2 norm.
So, the `nq (`np ) norm is n1−1/p−1/q-equivalent to the `n2 (`n2 ) norm, which
embeds isometrically into L1. For the matching lower bound, suppose that
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T : `nq (`np )→ L1 is an injective linear mapping. Since L1 has cotype 2 (see
e.g. [19]),

n2

‖T−1‖2 6
n∑
j=1

n∑
k=1
‖Tejk‖2

1 .
1

2n2

∑
ε∈{−1,1}n2

∥∥∥ n∑
j=1

n∑
k=1

εjkTejk

∥∥∥2

1
(4.9)

6
‖T‖2

2n2

∑
ε∈{−1,1}n2

∥∥∥ n∑
j=1

n∑
k=1

ejk

∥∥∥2

`nq (`np )
= ‖T‖2 · n

2
p+ 2

q .

By (4.9) we have ‖T‖ · ‖T−1‖ & n1−1/p−1/q. The fact that

c1
(
`nq (`np )

)
& n1− 1

p−
1
q

now follows by a standard differentiation argument; see e.g. [4, Chapter 7]
(alternatively, one could repeat the above argument mutatis mutandis,
while using the fact that L1 has metric cotype 2 directly; see [22]).
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