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p-ADIC HEIGHTS OF GENERALIZED HEEGNER
CYCLES

by Ariel SHNIDMAN (*)

Abstract. — We relate the p-adic heights of generalized Heegner cycles to the
derivative of a p-adic L-function attached to a pair pf, χq, where f is an ordinary
weight 2r newform and χ is an unramified imaginary quadratic Hecke character
of infinity type p`, 0q, with 0 ă ` ă 2r. This generalizes the p-adic Gross-Zagier
formula in the case ` “ 0 due to Perrin-Riou (in weight two) and Nekovář (in
higher weight).
Résumé. — Nous relions les hauteurs p-adiques des cycles de Heegner généra-

lisés à la dérivée d’une fonction L p-adique attachée à une paire pf, χq, où f est une
forme modulaire ordinaire de poids 2r et χ est un caractère de Hecke non-ramifé
de type p`, 0q, pour 0 ă ` ă 2r. Ceci généralise la formule de Perrin-Riou (en poids
deux) and Nekovář (poids plus élevé).

1. Introduction

Let p be an odd prime, N ě 3 an integer prime to p, and f “
ř

anq
n a

newform of weight 2r ą 2 on X0pNq with a1 “ 1. Fix embeddings Q̄Ñ C
and Q̄Ñ Q̄p once and for all, and suppose that f is ordinary at p, i.e. the
coefficient ap P Q̄p is a p-adic unit. Building on work of Perrin-Riou [28],
Nekovář [24] proved a p-adic analogue of the Gross-Zagier formula [14] for
f along with any character C : GalpH{Kq Ñ Q̄ˆ. Here, K is an imaginary
quadratic field of odd discriminant D such that all primes dividing pN split
in K, and H is the Hilbert class field of K.

Keywords: algebraic cycles, modular forms, p-adic L-functions.
Math. classification: 11G40, 11G18.
(*) I am grateful to Kartik Prasanna for suggesting this problem and for his patience and
direction. Thanks go to Hunter Brooks for several productive conversations. I also thank
Bhargav Bhatt, Daniel Disegni, Yara Elias, Olivier Fouquet, Adrian Iovita, Shinichi
Kobayashi, Jan Nekovář, and Martin Olsson for helpful correspondence. The author was
partially supported by National Science Foundation RTG grant DMS-0943832.



1118 Ariel SHNIDMAN

Nekovář’s formula relates the p-adic height of a Heegner cycle to the de-
rivative of a p-adic L-function attached to the pair pf, Cq. Together with
the Euler system constructed in [22], the formula implies a weak form of
Perrin-Riou’s conjecture [6, Conj. 2.7], a p-adic analogue of the Bloch-Kato
conjecture for the motive f bK [24, Theorem B]. The connection between
special values of L-functions and algebraic cycles is part of a very general
(conjectural) framework articulated in the works of Beilinson, Bloch, Kato,
Perrin-Riou, and others. Despite the fact that these conjectures can be for-
mulated for arbitrary motives, they have been verified only in very special
cases.
The goal of this paper is to extend the ideas and computations in [24] to

a larger class of motives. Specifically, we will consider motives of the form
f b Θχ, where

χ : AˆK{K
ˆ Ñ Cˆ

is an unramified Hecke character of infinity type p`, 0q, with 0 ă ` “ 2k ă
2r, and

Θχ “
ÿ

aĂOK

χpaqqNa

is the associated theta series. The conditions on ` guarantee that the Hecke
character χ0 :“ χ´1Nr`k of infinity type pr ` k, r ´ kq is critical in the
sense of [1, §4]. Note that Lpf, χ´1

0 , 0q “ Lpf, χ, r ` kq is the central value
of the Rankin-Selberg L-function attached to fbΘχ. If we take ` “ 0, then
χ comes from a character of GalpH{Kq, so we are in the situation of [24].
Our main result (Theorem 1.1) extends Nekovář’s formula to the case ` ą 0
by relating p-adic heights of generalized Heegner cycles to the derivative of
a p-adic L-function attached to the pair pf, χq. We now describe both the
algebraic cycles and the p-adic L-function needed to state the formula.

1.1. Generalized Heegner cycles

Let Y pNq{Q be the modular curve parametrizing elliptic curves with
full level N structure, and let E Ñ Y pNq be the universal elliptic curve
with level N structure. Denote by W “W2r´2, the canonical non-singular
compactification of the p2r ´ 2q-fold fiber product of E with itself over
Y pNq [33]. Finally, let A{H be an elliptic curve with complex multiplication
by OK and good reduction at primes above p. We assume further that A
is isogenous (over H) to each of its GalpH{Kq-conjugates Aσ and that
Aτ – A, where τ is complex conjugation. Such an A exists since K has
odd discriminant [13, §11]. Set X “ WH ˆH A`, where WH is the base
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GENERALIZED HEEGNER CYCLES 1119

change to H. X is fibered over the compactified modular curve XpNqH ,
the typical geometric fiber being of the form E2r´2 ˆA`, for some elliptic
curve E.
The p2r ` 2k ´ 1q-dimensional variety X contains a rich supply of gen-

eralized Heegner cycles supported in the fibers of X above Heegner points
on X0pNq (we view X as fibered over X0pNq via XpNq Ñ X0pNq). These
cycles were first introduced by Bertolini, Darmon, and Prasanna in [1]. In
Section 4, we define certain cycles εBεY and εB ε̄Y in CHr`k

pXqK which sit
in the fiber above a Heegner point on X0pNqpHq, and which are variants
of the generalized Heegner cycles which appear in [2]. Here, CHr`k

pXqK
is the group of codimension r ` k cycles on X with coefficients in K mod-
ulo rational equivalence. In fact, for each ideal a of K, we define cycles
εBεY

a and εB ε̄Y
a in CHr`k

pXqK , each one sitting in the fiber above a
Heegner point. These cycles are replacements for the notion of GalpH{Kq-
conjugates of εBεY and εB ε̄Y . The latter do not exist as cycles on X, as X
is not (generally) defined over K. In particular, we have εBεY OK “ εBεY .
The cycles εBεY a and εB ε̄Y

a are homologically trivial on X (Corol-
lary 4.2), so they lie in the domain of the p-adic Abel-Jacobi map

Φ : CHr`k
pXq0,K Ñ H1pH,V q,

where V is the GalpH̄{Hq-representation H2r`2k´1
et pX̄,Qpqpr` kq. We will

focus on a particular 4-dimensional p-adic representation Vf,A,`, which ad-
mits a map

H2r`2k´1
et pX̄,Qpqpr ` kq Ñ Vf,A,`.

Vf,A,` is a Qppfq-vector space, where Qppfq is the field obtained by ad-
joining the coefficents of f . As a Galois representation, Vf,A,` is ordinary
(Theorem 6.1) and is closely related to the p-adic realization of the motive
f bΘχ (see Section 4). After projecting, one obtains a map

Φf : CHr`k
pXq0,K Ñ H1pH,Vf,A,`q,

which we again call the Abel-Jacobi map. For any ideal a of K, define
zaf “ Φf pεBεY aq and z̄af “ Φf pεB ε̄Y aq.
One knows that the image of Φf lies in the Bloch-Kato subgroup

H1
f pH,Vf,A,`q Ă H1pH,Vf,A,`q

(Theorem 4.3). If we fix a continuous homomorphism `K : AˆK{Kˆ Ñ Qp,
then [23] provides a symmetric Qppfq-linear height pairing

x , y`K : H1
f pH,Vf,A,`q ˆH

1
f pH,Vf,A,`q Ñ Qppfq.

TOME 66 (2016), FASCICULE 3



1120 Ariel SHNIDMAN

We can extend this height pairing Q̄p-linearly to H1
f pH,Vf,A,`q b Q̄p. The

cohomology classes χpaq´1zaf and χ̄paq´1z̄af depend only on the class A of
a in the class group PicpOKq, of size h “ hK . We denote the former by zA

f,χ

and the latter by zA
f,χ̄. Finally, set

zf,χ “
1
h

ÿ

APPicpOKq

zA
f,χ and zf,χ̄ “

1
h

ÿ

APPicpOKq

zA
f,χ̄,

both being elements of H1
f pH,Vf,A,`q b Q̄p. Our main theorem relates

xzf,χ, zf,χ̄y`K to the derivative of a p-adic L-function which we now de-
scribe.

1.2. The p-adic L-function

Recall, if f “
ř

anq
n PMjpΓ0pMq, ψq and g “

ř

bnq
n PMj1pΓ0pMq, ξq,

then the Rankin-Selberg convolution is

Lpf, g, sq “ LM p2s` 2´ j ´ j1, ψξq
ÿ

ně1
anbnn

´s,

where
LM ps, ψξq “

ź

pfflM

`

1´ pψξqppqp´s
˘´1

.

Let K8{K be the Z2
p-extension of K and let Kp be the maximal abelian

extension of K unramified away from p. In Section 2, we define a p-adic
L-function Lppf bχqpλq, which is a Q̄p-valued function of continuous char-
acters λ : GalpK8{Kq Ñ 1`pZp. The function Lppf bχq is the restriction
of an analytic function on HompGalpKp{Kq,Cˆp q, which is characterized by
the following interpolation property: if W : GalpKp{Kq Ñ Cˆp is a finite
order character of conductor f, with Nf “ pβ , then

Lppf b χqpWq “ Cf,kWpNqχWpDqτpχWqVppf, χ,WqLpf,ΘχW , r ` kq

with
Cf,k “

2pr ´ k ´ 1q!pr ` k ´ 1q!
p4πq2rαppfqβxf, fyN

,

and where αppfq is the unit root of x2 ´ appfqx ` p2r´1, xf, fyN is the
Petersson inner product, D “

`
?
D
˘

is the different of K, ΘχW is the theta
series

ΘχW “
ÿ

pa,fq“1
χWpaqqNa,

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1121

τpχWq is the root number for LpΘχW , sq, and

Vppf, χ,Wq “
ź

p|p

ˆ

1´ pχ̄W̄qppq

αppfq
Nppqr´k´1

˙ˆ

1´ pχWqppq

αppfq
Nppqr´k´1

˙

.

Recall we have fixed a continuous homomorphism `K : AˆK{Kˆ Ñ

Qp. Thinking of `K as a map GalpK8{Kq Ñ Qp, we may write `K “

p´n logp ˝λ, for some continuous λ : GalpK8{Kq Ñ 1 ` pZp and some in-
teger n. The derivative of Lp at the trivial character in the direction of `K
is by definition

L1ppf b χ, `K ,1q “ p´n
d

ds
Lppf b χqpλ

sq

ˇ

ˇ

ˇ

ˇ

s“0
.

With these definitions, we can finally state our main result.

Theorem 1.1. — If χ is an unramified Hecke character of K of infinity
type p`, 0q with 0 ă ` “ 2k ă 2r, then

L1ppf b χ, `K ,1q “ p´1qk
ź

p|p

ˆ

1´ χppqpr´k´1

αppfq

˙2 h xzf,χ, zf,χ̄y`K

u2 p4|D|qr´k´1 ,

where h “ hK is the class number and u “ 1
2OˆK .

Remark. — Our assumption that Aτ – A implies that the lattice corre-
sponding to A is 2-torsion in the class group. This is convenient for proving
the vanishing of the p-adic height in the anti-cyclotomic direction, but not
strictly necessary. One should be able to prove the theorem without this
assumption by making use of the functoriality of the height pairing to relate
heights on X to heights on Xτ , but we omit the details.

Remark. — When ` “ 0 the cycles and the p-adic L-function simplify
to those constructed in [24], and the main theorem becomes Nekovář’s
formula, at least up to a somewhat controversial sign. It appears that a sign
was forgotten in [24, II.6.2.3], causing the discrepancy with our formula and
with Perrin-Riou’s as well. Perrin-Riou’s formula [28] covers the case ` “ 0
and r “ 1.

Remark. — We have assumed N ě 3 for the sake of exposition. For
N ă 3, the proof should be modified to account for the lack of a fine
moduli space and extra automorphisms in the local intersection theory.
These details are spelled out in [24] and pose no new problems.

Remark. — There should be an archimedean analogue of Theorem 1.1,
generalizing Zhang’s formula for Heegner cycles [39] to the ‘generalized’
situation. The author plans to present such a result in the near future.

TOME 66 (2016), FASCICULE 3



1122 Ariel SHNIDMAN

1.3. Applications

Theorem 1.1 implies special cases of Perrin-Riou’s p-adic Bloch-Kato con-
jecture. The assumption that A is isogenous to all its GalpH{Kq-conjugates
implies that the Hecke character

ψH : AˆH Ñ Cˆ,

which is attached to A by the theory of complex multiplication, factors as
ψH “ ψ ˝ NmH{K , where ψ is a p1, 0q-Hecke character of K. Assume for
simplicity that χ “ ψ`, and set χH “ ψ`H and GH :“ GalpH̄{Hq. Then
the GH -representation Vf,A,` is the p-adic realization of a Chow motive
MpfqHbMpχHq. Here,Mpfq is the motive overQ attached to f by Deligne,
and MpχHq is a motive over H (with coefficients in K) cutting out a
two dimensional piece of the middle degree cohomology of A`. In fact, the
motiveMpχHq descends to a motiveMpχq over K with coefficients in Qpχq
(see Remark 4.1). We write Vf,χ for the p-adic realization ofMpfqKbMpχq,
so that Vf,χ is a GK-representation whose restriction to GH is isomorphic
to Vf,A,`. In fact, the p-adic realization of Mpχq is isomorphic to χ ‘ χ̄,
where we now think of χ as a QpχqbQp-valued character of GK . It follows
that

LpVf,χ, sq “ Lpf, χ, sqLpf, χ̄, sq “ Lpf, χ, sq2.

The Bloch-Kato conjecture for the motive MpfqK bMpχq over K reads

dimH1
f pK,Vf,χq “ 2 ¨ ords“r`kLpf, χ, sq.

Similarly, Perrin-Riou’s p-adic conjecture [6, Conj. 2.7] [30, 4.2.2] reads

(1.1) dimH1
f pK,Vf,χq “ 2 ¨ ordλ“1Lpf, χ, `K , λq,

where `K is the cyclotomic logarithm and the derivatives are taken in the
cyclotomic direction. In Section 7, we deduce the “analytic rank 1” case
of Perrin-Riou’s conjecture by combining our main formula with the forth-
coming results of Elias [11] on Euler systems for generalized Heegner cycles:

Theorem 1.2. — If L1ppf bχ, `K ,1q ‰ 0, then (1.1) is true, i.e. Perrin-
Riou’s p-adic Bloch-Kato conjecture holds for the motive MpfqK bMpχq.

Remark. — Alternatively, we can think of zf,χ (resp. zf,χ̄) as giving a
class in H1

f pK,Vf bχq (resp. H1
f pK,Vf b χ̄q), and note that LpVf bχ, sq “

Lpf, χ, sq “ LpVf b χ̄, sq. The Bloch-Kato conjecture for the motive f b χ
over K then reads

dimH1
f pK,Vf b χq “ ords“r`kLpf, χ, sq,

and similarly for χ̄ and the p-adic L-functions.

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1123

We anticipate that Theorem 1.1 can also be used to study the variation
of generalized Heegner cycles in p-adic families, in the spirit of [5] and [16].
Theorem 1.1 allows for variation in not just the weight of the modular form
f , but in the weight of the Hecke character χ as well.

1.4. Related work

There has been much recent work on the connections between Heeg-
ner cycles and p-adic L-functions. Generalized Heegner cycles were first
studied in [1], where their Abel-Jacobi classes were related to the special
value (not the derivative) of a different Rankin-Selberg p-adic L-function.
Brooks extended these results to Shimura curves over Q [17] and recently
Liu, Zhang, and Zhang proved a general formula for arbitrary totally real
fields [20]. In [10], Disegni computes p-adic heights of Heegner points on
Shimura curves, generalizing the weight 2 formula of Perrin-Riou for mod-
ular curves. Kobayashi [19] extended Perrin-Riou’s height formula to the
supersingular case. Our work is the first (as far as we know) to study p-adic
heights of generalized Heegner cycles.

1.5. Proof outline

The proof of Theorem 1.1 follows [24] and [28] rather closely. For this
reason, we have chosen to retain much of Nekovár̆’s notation and not to
dwell long on computations easily adapted to our situation.

We define the p-adic L-function Lppf bχ, λq in Section 2 and show that
it vanishes in the anticyclotomic direction. In Section 3, we integrate the
p-adic logarithm against the p-adic Rankin-Selberg measure to compute
what is essentially the derivative of Lppfbχq at the trivial character in the
cyclotomic direction. In Section 4, we define the generalized Heegner cycles
and describe Hecke operators and p-adic Abel-Jacobi maps attached to the
variety X. After proving some properties of generalized Heegner cycles, we
show that the RHS of Theorem 1.1 vanishes when `K is anticyclotomic.
In Section 5 we compute the local cyclotomic heights of zf at places v
which are prime to p. In Section 6, we prove that Vf,A,` is an ordinary
representation. We complete the proof of the main theorem in Section 7,
modulo the results from the final section.
In the final section, we fix the proof in [24, II.5], to complete a proof

of the vanishing of the contribution coming from local heights at primes

TOME 66 (2016), FASCICULE 3



1124 Ariel SHNIDMAN

above p. The key ingredient is the theory of relative Lubin-Tate groups and
Theorem 8.7. The latter is a result in p-adic Hodge theory which relies on
Faltings’ proof of Fontaine’s Ccris conjecture. This theorem (or rather, its
proof) is quite general and should be useful for computing p-adic heights
of algebraic cycles sitting on varieties fibered over curves.

2. Constructing the p-adic L-functions

Recall f P S2rpΓ0pNqq is an ordinary newform with trivial nebentypus.
As in the introduction, χ : AˆK{Kˆ Ñ Cˆ is an unramified Hecke character
of infinity type p2k, 0q with 0 ă 2k ă 2r. For conventions regarding Hecke
characters, see [1, §4.1]. All that follows will apply to χ of infinity type
p0, 2kq with suitable modifications. In this section, we follow [24] and define
a p-adic L-function attached to the pair pf, χq which interpolates special
values of certain Rankin-Selberg convolutions.

2.1. p-adic measures

We use the notation of [24] unless stated otherwise. We construct the p-
adic L-function only in the setting needed for Theorem 1.1; in the notation
of [24], this means that Ω “ 1, N1 “ N2 “ c1 “ c2 “ c “ 1, N3 “ N 13 “

N,∆ “ ∆1 “ ∆2 “ |D|,∆3 “ 1, and γ “ γ3 “ 0. We begin by defining
theta measures.
Fix an integer m ě 1 and let Om be the order of conductor m in K.

Let a be proper Om-ideal whose class in PicpOmq is denoted by A. The
quadratic form

Qapxq “ Npxq{Npaq,
takes integer values on a. Define the measure ΘA on Zˆp by

(2.1) ΘApapmod pνqq “ χpāq´1
ÿ

xPa
Qapxq”a pmod pνq

x̄`qQapxq.

To keep things from getting unwieldy we have omitted χ from the notation
of the measure. If φ is a function on Z{pνZ with values in a p-adic ring A,
then

(2.2) ΘApφq “ χpāq´1
ÿ

xPa

φpQapxqqx̄
`qQapxq “ χpāq´1

ÿ

ně1
φpnqρapn, `qq

n,

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1125

where ρapn, `q is the sum
ř

x̄` over all x P a with Qapxq “ n. We have

ρapγqpn, `q “ γ̄`ρapn, `q,

for all γ P Kˆ, so that ΘA is independent of the choice of representative a

for the class A. For a P A,

(2.3) χpāq´1
ÿ

xPa

x̄`qQapxq “ wm
ÿ

a1PA
a1ĂOm

χpa1qqNpa1q “ wm
ÿ

ně1
rA,χpnqq

n,

since ` is a multiple of wm. The coefficients rA,χpnq play the role of (and
generalize) the numbers rApmq that appear in [14] and [24].

Proposition 2.1. — ΘApφq is a cusp form in M``1pΓ1pMq, Aq, with
M “ lcmp|D|m2, p2νq.

Proof. — It is classical [26] that
ř

xPa x̄
`qQapxq is a cusp form in

M``1pΓ1p|D|m
2qq. It follows from [15, Proposition 1.1] that weighting this

form by φ gives a modular form of the desired level. �

For a fixed integer C, define the Eisenstein measures

E1pαpmod pνqqpzq “ E1pz, φα,pν q

and

EC1 pαpmod pνqqpzq “ E1pαpmod pνqqpzq ´ CE1pC
´1αpmod pνqqpzq,

as in [24, I.3.6]. Similarly, we define the following convolution measure
on Zˆp
ΦCApapmod pνqq “

H

»

–

ÿ

αPpZ{|D|pνZqˆ
ξpαqΘApα

2apmod pνqqpzqδr´1´k
1 pEC1 pαpmod |D|pνqqpNzqq

fi

fl,

which takes values in M2rpΓ0pN |D|p
8q;χpāq´1p´δZpq, for some δ depend-

ing only on r and k [15, Lem. 5.1]. Here, H is holomorphic projection,
δr´1´k
1 is Shimura’s differential operator, and ξ “

`

D
¨

˘

. We are implicitly
identifying Zp with the ring of integers of Kp for a prime p above p (which
is split in K), so that x` P Zp for all x P a. The measure ΨC

A is defined by

ΨC
A “

1
2wm

ΦCA
ˇ

ˇ

ˇ

ˇ

2r
T p|D|qN |D|p8{Np8 ,

where
T : M2r pΓ0 pN |D|p

8q , ¨q ÑM2r pΓ0 pNp
8q , ¨q

is the trace map, i.e. the adjoint to the operator g ÞÑ |D|r´1g

ˇ

ˇ

ˇ

ˇ

2r

ˆ

|D| 0
0 1

˙

.

TOME 66 (2016), FASCICULE 3
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For ring class field characters ρ : GpHm{Kq Ñ Qˆ, define

ΦCρ “
ÿ

rAsPPicpOmq

ρprAsq´1ΦCA,

and similarly for ΨC
ρ . We define ΨC

f,ρ “ Lf0pΨC
ρ q, where Lf0 is the Hida

projector attached to the p-stabilization

f0 “ fpzq ´
p2r´1

αppfq
fppzq

of f (see [24, I.2] for its definition and properties). Explicitly, if g P

MjpΓ0pNp
µq; Q̄q with µ ě 1, then

(2.4) Lf0pgq “

ˆ

pj{2´1

αppfq

˙µ´1

C

fτ0

ˇ

ˇ

ˇ

ˇ

j

ˆ

0 ´1
Npµ 0

˙

, g

G

Npµ
C

fτ0

ˇ

ˇ

ˇ

ˇ

j

ˆ

0 ´1
Np 0

˙

, f0

G

Np

.

We also define a measure ΨC
f on GalpHp8{Kq ˆGalpKpµp8q{Kq by

ΨC
f pσ pmod pnq, τ pmod pmqq “ Lf0pΨC

Apa pmod pmqqq,

where σ corresponds to A and τ corresponds to a P pZ{pmZq˚ under the
Artin map. Finally, as in [24], we define modified measures Ψ̃C

A, Ψ̃C
ρ , etc.,

by replacing T p|D|q with T p1q in the definition of ΨC
A.

2.2. Integrating characters against the Rankin-Selberg measure

In this subsection, we integrate finite order characters of the Z2
p-extension

of K against the measures constructed in the previous section and show
that they recover special values of Rankin-Selberg L-functions. This allows
us to prove a functional equation for the (soon to be defined) p-adic L-
function. We follow the computations in [24, I.5] and [29, §4]. Let η denote
a character pZ{pνZqˆ Ñ Q̄ˆ. Exactly as in [29, Lemma 7], we compute:

(2.5)
ż

Zˆp
η dΦCA “

`

1´ CξpCqη̄2pCq
˘

HrΘApηqpzqδ
r´k´1
1 pE1pNz, φqqs.

Similarly, if ρ is a ring class character with conductor a power of p,

(2.6)
ż

Zˆp
η dΦCρ “ wm

`

1´CξpCqη̄2pCq
˘

HrΘχpW2qpzqδr´k´1
1 pE1pNz, φqqs,
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where W2 “ ρ¨pη˝Nq, the latter being thought of as a character modulo the
ideal f “ lcmpcond ρ, cond η, pq. We denote by W the primitive character
associated to W2. By definition,

ΘχpW2qpzq “
ÿ

aĂO
pa,fq“1

W2paqχpaqqNpaq.

This is a cusp form in S``1

´

|D|NK
Q pfW2q ,

`

D
¨

˘

η2
¯

, since χ is unramified
(see [26] for a more general result). The computations of [24, I.5.3-4] carry
over to our situation, except the theta series transformation law now reads

(2.7) ΘχpW2qpzq

ˇ

ˇ

ˇ

ˇ

``1
F “

ˆ

D

w

˙

η̄2pwqΘχpW
2q

ˇ

ˇ

ˇ

ˇ

``1

ˆ

0 ´1
|D|pµ 0

˙

,

where F is the involution
ˆ

0 ´1
N |D|pµ 0

˙ˆ

N y

N |D|pµt N

˙

with Nxw ´ |D|pµty “ 1. We then obtain
ż

Zˆp
η dΨC

f,ρ “

`

1´ CξpCqη̄2pCq
˘

`̀

D
¨

˘

η2˘pNqλN pfq|D|
r´1{2

p4πiqαppfq´1pr´1
ΛµpW2q〈

fτ0

ˇ

ˇ

ˇ

ˇ

2r

ˆ

0 ´1
Np 0

˙

, f0

〉
Np

,

where

ΛµpW2q “

pµpr´1{2q

αppfqµ

〈
fτ0 ,Θχ

`

W2
˘

ˇ

ˇ

ˇ

ˇ

``1

ˆ

0 ´1
|D|pµ 0

˙

δr´k´1`E1
`

z, ξη̄2˘˘
〉
N |D|pµ

.

We define τpχWq by the relation

(2.8) ΘχpWq|``1

ˆ

0 ´1
|D|pβ 0

˙

“ p´1qk`1iτpχWqΘχ̄pW̄q,

with |D|pβ being the level ∆pWq of ΘχpWq. One knows ([21, Thm. 4.3.12])
that τpχWq P Q̄ˆ, |τpχWq| “ 1, and

ΛpχW, sq “ τpχWqΛpχ̄W̄, `` 1´ sq,

where
ΛpχW, sq “

`

|D|pβ
˘s{2

p2πq´sΓpsqLpΘχpWq, sq.
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Modifying the computations in [29, §4], we find that

(2.9) ΛµpW2q “ p´1qk`1iτpχWq
ÿ

a|p
Npaq“ps

µpaqχpaqWpaqΛµ,s,

with

(2.10) Λµ,s “

pµpr´
1
2 q´spk`

1
2 q

αppfqµ

〈
fτ0 ,Θχ̄pW̄q

ˇ

ˇ

ˇ

ˇ

``1

ˆ

px 0
0 1

˙

δr´k´1pE1pz, ξη̄
2qqMk

〉
N |D|pµ

and x “ µ´ β ´ s.
Following [29, §4.4], we compute:

ΛµpW2q “

p´1qriτpχWqVppf,χ,Wq

ˆ

pr 1́{2

αppfq

˙β 2pr`k´1q!pr´k´1q!
p4πq2r´1 Lpf,Θχ̄pW̄q, r`kq,

where

Vppf, χ,Wq “
ź

p|p

ˆ

1´ pχ̄W̄qppq

αNppqpfq
Nppqr´k´1

˙ˆ

1´ pχWqppq

αNppqpfq
Nppqr´k´1

˙

.

We have used the fact that
(2.11)
@

fτ , gδr´k´1
1 pE1pz, φqq

D

M
“
p1´εp´1qqpr`k´1q!pr´k´1q!

p´1qr´k´1p4πq2r´1 Lpf, g, r ` kq

for any g P S2k`1pM
1, εq, and where M “ M 1N . Equation (2.11) follows

from the usual unfolding trick and the fact [24, I.1.5.3] that

δr´k´1
1 pE1pz, φqq “

pr ´ k ´ 1q!
p´4πqr´k´1Er´kpz, φq.

We have also used the following generalization of [29, Lemma 23].

Lemma 2.2. — If g is a modular form whose L-function admits a Euler
product expansion

ś

pGppp
´sq, then

Lpf0, g, r ` kq “ Gp
`

pr´k´1αppfq
´1˘Lpf, g, r ` kq.

Putting these calculations together, we obtain the following interpolation
result.
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Theorem 2.3. — For finite order characters W “ ρ ¨ pη ˝Nq as above,
ˆ

1´ C
ˆ

D

C

˙

W̄pCq

˙´1 ż

Zˆp
η dΨC

f,ρ “
Lppf, χ,WqVppf, χ,Wq∆pWqr´1{2

αppfqβHppfq
,

where

Lppf, χ,Wq “

ˆ

D

´N

˙

WpNqτpχWqCpr, kq
Lpf,Θχ̄pW̄q, r ` kq

〈f, f〉N
.

Here,

Cpr, kq “
2p´1qr´1pr ´ k ´ 1q!pr ` k ´ 1q!

p4πq2r
and

Hppfq “

ˆ

1´ p2r´2

αppfq2

˙ˆ

1´ p2r´1

αppfq2

˙

.

The modified measures Ψ̃C
f,ρ satisfy

ż

Zˆp
η dΨ̃C

f,ρ “ |D|
1´rpχWqpDq

ż

Zˆp
η dΨC

f,ρ,

where D “
`
?
D
˘

is the different of K.
Now to define the p-adic L-function. Recall we have fixed an integer C

prime to N |D|p.

Definition. — For any continuous character φ : GpHp8pµp8q{Kq Ñ

Q̄ˆp with conductor of p-power norm, we define

Lppf b χ, φq “

p´1qr´1Hppfq

ˆ

D

´N

˙ˆ

1´ C
ˆ

D

C

˙

φpCq´1
˙´1 ż

GpHp8 pµp8 q{Kq

φdΨ̃C
f .

The p-adic L-function Lppf b χqpλq :“ Lppf b χ, λq is a function of
characters

λ : GpHp8pµp8q{Kq Ñ p1` pZpq.

Lppf bχq is an Iwasawa function with values in c´1O
{Qpf,χq, where

{Qpf, χq
is the p-adic closure (using our fixed embedding Q̄ ãÑ Q̄p) of the field
generated by the coefficients of f and the values of χ, and c P {Qpf, χq is
non-zero.
We can construct analogous measures and an analogous p-adic L-function

for χ̄, which is a Hecke character of infinity type p0, `q. There is a functional
equation relating Lppfbχq to Lppfbχ̄q, which we now describe. First define

Λppf b χqpλq “ λpDN´1qλpNq1{2Lppf b χqpλq.
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Proposition 2.4. — Λp satisfies the functional equation

Λp pf b χq pλq “
ˆ

D

´N

˙

Λp pf b χ̄q
`

λ´1˘ .

Proof. — It suffices to prove this for all finite order characters W. For
such W, the functional equation for the Rankin-Selberg convolution reads

(2.12) Lpf,Θχ̄pW̄q, r ` kq “

´

D
´N

¯

W̄pNq

τpχWq2
Lpf,ΘχpWq, r ` kq,

so
Lppf, χ,Wq

Lppf, χ̄, W̄q
“ WpNq

ˆ

D

´N

˙

.

We also have Vppf, χ̄, W̄q “ Vppf, χ,Wq, so that
Lppf b χqpWq

Lppf b χ̄qpW̄q
“ WpNq

ˆ

D

´N

˙

W̄pDq2.

The proposition now follows from a simple computation. �

Recall the notation λτ paq “ λpaτ q.

Corollary 2.5. — Suppose
`

D
N

˘

“ 1 and λ is anticyclotomic, i.e.
λλτ “ 1. Then Lppf b χqpλq “ 0.

Proof. — From the functional equation and the fact that

Λppf b χqpλq “ Λppf b χ̄qpλτ q,

we obtain
Λppf b χqpλq “ ´Λppf b χqpλ´τ q.

Since λ is anticyclotomic, this is equal to ´Λppf b χqpλq. �

3. Fourier expansion of the p-adic L-function

This section is devoted to computing the Fourier coefficients of
ş

Zˆp
λ dΨ̃A,

where λ is a continuous function Zˆp Ñ Qp. These computations allow us
to relate L1ppf b χ,1q to heights of generalized Heegner cycles. We follow
the computations in [24, I.6], however the transformation laws for theta
series attached to Hecke characters complicate things a bit. We have

ΦCApapmod pνqq “

H

»

–

ÿ

αPpZ{|D|pνZqˆ
ξpαqΘApα

2apmod pνqqpzqδr´1´k
1 pEC1 pαpmod |D|pνqqpNzqq

fi

fl,

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1131

For each factorization D “ D1D2 (with the signs normalized so that D1
is a discriminant), we define

W
pvq
D1
“

ˆ

|D1|a b

N |D|pνc |D1|d

˙

,

of determinant |D1|.

Lemma 3.1. — For W pνq
D1

as above and α P pZ{|D|pνZqˆ,

ΘA pαpmod pνqq pzq
ˇ

ˇ

ˇ

ˇ

``1
W
pvq
D1
“
|D1|

k

χpD1q
γΘAd´1

1

`

|D1|a
2αpmod pνq

˘

pzq,

where
γ “

ˆ

D1

cpνN

˙ˆ

D2

aNpaq

˙

κpD1q
´1,

and D1 is the ideal of norm |D1| in OK and κpD1q “ 1 if D1 ą 0, otherwise
κpD1q “ i.

Remark. — Note that the factor |D1|
k

χpD1q
is equal to ˘1.

Proof. — The proof proceeds as in [28, §3.2], but requires some extra
Fourier analysis. We sketch the argument for the convenience of the reader.
Fixing an ideal a in the class of A, we set L “ pνa and let L˚ be the dual
lattice with the respect to the quadratic form Qa. Denote by S “ Sa the
symmetric bilinear form corresponding to Qa, so Sapα, βq “

1
NpaqTrpαβ̄q.

For u P L˚, define

Θa,χpu, Lq “ χpāq´1
ÿ

w´uPL
wPL˚

w̄`qQapwq.

For any c P Z, one checks the following relations:

Θa,χpu, Lq “
ÿ

w´uPL
wPL˚{cL

Θa,χpw, cLq,(3.1)

Θa,χpu, cLqpc
2zq “ c´`Θa,χpcu, c

2Lqpzq,(3.2)

and for all a P Z and w P L˚,

(3.3) Θa,χpw, cLq
´

z `
a

c

¯

“ e
´a

c
Qapwq

¯

Θa,χpw, cLq.

We also have

(3.4) z´p``1qΘa,χpw, cLq

ˆ

´1
z

˙

“

´ ic´2rL˚ : Ls´1{2
ÿ

yPpcLq˚{cL

e pSapw, yqqΘa,χpy, cLq.
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This follows from the identity

(3.5) z``1
ÿ

xPL

P px` uqe pQapx` yqzq “

irL˚ : Ls´1{2
ÿ

yPL˚

P pyqe

ˆ

´Qapyq

z

˙

e pSapy, uqq ,

valid for any rank two integral quadratic space pL,Qa, Saq and any poly-
nomial P of degree ` which is spherical for Qa. See [37] for a proof of this
version of Poisson summation.
Now write

W
pνq
D1
“ H

ˆ

|D1| 0
0 1

˙

with H P SL2pZq. Exactly as in [28], we use the relations above to compute

Θa,χpαpmod pνqq
ˇ

ˇ

ˇ

ˇ

``1
H “ γ|D1|

´1{2
ÿ

uPa{L
Qapuq”αpmod pνq

ÿ

wPL˚{L

w`auPD´1
1 pra

Θa,χpw,Lq

so that

Θa,χpαpmod pνqq
ˇ

ˇ

ˇ

ˇ

``1
W
pνq
D1
“ γ|D1|

kχpāq´1
ÿ

wPD´1
1 a

Q
aD´1

1
pwq”|D1|a

2αpmod prq

w̄`q
Q

aD´1
1
pwq

“
|D1|

k

χpD1q
γΘaD´1

1 ,χ

`

|D1|a
2αpmod pνq

˘

pzq,

as desired. �

For any function λ on pZ{pνZqˆ, we define hD1pλq as in [24, I.6.3], so
that

ż

Zˆp
λ dΨ̃A “

1
2w

ÿ

D“D1¨D2

ÿ

jPZ{|D1|Z
hD1pλq

ˇ

ˇ

ˇ

ˇ

2r

ˆ

1 j

0 |D1|

˙

.

The Fourier coefficient computation in [24, I.6.5] remains valid, except
one needs to use the following proposition in place of [24, I.1.9]:

Proposition 3.2. — Let f “
ř

ně1 apnqq
n be a cusp form of weight

``1 “ 2k`1, and g “
ř

ně0 bpnqq
n a holomorphic modular form of weight

one, both on Γ0pNq. Then Hpfδr´k´1
1 pgqq “

ř

ně1 cpnqq
n with

cpnq “
p´1qr´k´1
` 2r´2
r´k´1

˘ nr´k´1
ÿ

i`j“n

apiqbpjqHr´k´1,k

ˆ

i´ j

i` j

˙

,
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where

Hm,kptq “
1

2m ¨ pm` 2kq!

ˆ

d

dt

˙m`2k
rpt2 ´ 1qmpt´ 1q2ks

Proof. — From [24, I.1.2.4, I.1.3.2], we have

cpnq “
pr ´ k ´ 1q!
p´4πqr´k´1 ¨

p4πnq2r´1

p2r ´ 2q!

ˆ
ÿ

i`j“n

apiqbpjq

ż 8

0
pr´k´1p4πjyqe´4πnyyr`k´1dy,

where

pmpxq “
m
ÿ

a“0

ˆ

m

a

˙

p´xqa

a! .

The integral is evaluated using the following lemma.

Lemma 3.3. — Let m, k ě 0. Then
ż 8

0
pmp4πjyqe´4πpi`jqyym`2kdy “

pm` 2kq!
p4πpi` jqqm`2k`1Hm,k

ˆ

i´ j

i` j

˙

Proof. — Evaluating the elementary integrals, we find that the left hand
side is equal to

m!
p4πpi` jqqm`2k`1Gm,k

ˆ

j

i` j

˙

.

where

Gm,kptq “
m
ÿ

a“0
p´1qa pm` 2k ` aq!

pa!q2pm´ aq! t
a.

It therefore suffices to prove the identity

(3.6) Gm,kptq “
pm` 2kq!

m! Hm,kp1´ 2tq.

This is proved by showing that both sides satisfy the same defining re-
currence relation (and base cases). Indeed, one can check directly that for
m ě 1:

(3.7) pm` 1q2pm` kqGm`1,kptq “

p2m` 2k ` 1qrm2 `m` 2km` k ´ pm` kqp2m` 2k ` 2qtsGm,kptq

´ pm` k ` 1qpm` 2kq2Gm´1,kptq

That the right hand side of (3.6) satisfies the same recurrence relation
amounts to the well known recurrence relation for the Jacobi polynomials

P pα,βqn ptq “
p´1qn

2nn! p1´ tq
´αp1` tq´β d

n

dtn
“

p1´ tqαp1` tqβp1´ t2qn
‰

.
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Indeed, we have

Hm,kptq “ 22k ¨ P
p0,´2kq
m`2k ptqp1` tq´2k,

and one checks that the recurrence relation

2pn` 1qpn` β ` 1qp2n` βqP p0,βqn`1 ptq “

p2n` β ` 1qrp2n` β ` 2qp2n` βqt´ β2sP p0,βqn ptq

´2npn` βqp2n` β ` 2qP p0,βqn´1 ptq

translates (using n “ m ` 2k and β “ ´2k) into the recurrence (3.7) for
the polynomials pm`2kq!

m! Hm,kp1´ 2tq. �

Finally, to prove the proposition, we simply plug in m “ r ´ k ´ 1 into
the previous lemma and simplify our above expression for cpnq. �

Recall that for any ideal class A, we have defined

rA,χpjq “
ÿ

aPA
aĂO

Npaq“j

χpaq.

Putting together Lemma 3.1, Proposition 3.2, and the manipulation of
symbols in [24, I.6.5], we obtain

am

˜

ż

Zˆp
λdΨ̃A

¸

“
p´1qr´k´1
` 2r´2
r´k´1

˘ mr´k´1
ˆ

D

´N

˙

ÿ

D“D1D2

ˆ

D2

Na

˙

χpD1q
´1

ˆ
ÿ

j`nN“|D1|m
pp,jq“1

ÿ

d|n
pp,dq“1

rAD´1
1 ,χpjq

ˆ

D2

´dN

˙ˆ

D1

|D2|n{d

˙

ˆ λ

ˆ

m|D1| ´ nN

|D1|d2

˙

ˆHr´k´1,k

ˆ

1´ 2nN
m|D1|

˙

.

Lemma 3.4.
rAD´1

1 ,χpjq “ χpD2q
´1rA,χpj|D2|q.

Proof. — Since D1 is 2-torsion in the class group, the left hand side
equals rAD1,χpjq. The lemma now follows from the definitions once one
notes that b ÞÑ bD2 is a bijection from integral ideals of norm j in AD1 to
integral ideals of norm j|D2| in AD. �

Using the lemma and also the change of variables employed in [24], we
obtain our version of [24, Proposition 6.6].
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Proposition 3.5. — If p|m, then

am

˜

ż

Zˆp
λdΨ̃A

¸

“
p´1qr´1
` 2r´2
r´k´1

˘mr´k´1
ˆ

D

´N

˙

|D|´k
ÿ

1ďnďm|D|N

pp,nq“1

rA,χpm|D| ´ nNq

ˆHr´k´1,k

ˆ

1´ 2nN
m|D|

˙

ÿ

d|n

εApn, dqλ

ˆ

m|D|´nN

|D|
¨
d2

n2

˙

.

Here, εApn, dq “ 0 if pd, n{d, |D|q ą 1, and otherwise

εApn, dq “

ˆ

D1

d

˙ˆ

D2

´nN{d

˙ˆ

D2

NpAq

˙

,

where pd, |D|q “ |D2| and D “ D1D2.

Proof. — The proof is as in [24]. We have also used the fact that χpDq “
Dk to get the extra factor of |D|´k and the correct sign (recall that D is
negative!). �

Corollary 3.6. — If
`

D
N

˘

“ 1 and p|m, then

am

˜

ż

Zˆp
logp dΨ̃A

¸

“
p´1qr
` 2r´2
r´k´1

˘mr´k´1|D|´k

ˆ
ÿ

1ďnďm|D|N

pp,nq“1

rA,χpm|D| ´ nNqσApnqHr´k´1,k

ˆ

1´ 2nN
m|D|

˙

,

with
σApnq “

ÿ

d|n

εApn, dq logp
´ n

d2

¯

.

Proof. — As in [28]. �

4. Generalized Heegner cycles

In the previous section we computed Fourier coefficients of p-adic modu-
lar forms closely related to the derivative of Lppf, χq at the trivial character
and in the cyclotomic direction. We expect similar looking Fourier coeffi-
cients to appear as the sum of local heights of certain cycles, with the sum
varying over the finite places of H which are prime to p.
These cycles should come from the motive attached to f bΘχ. Since Θχ

has weight 2k` 1, work of Deligne and Scholl provides a motive inside the
cohomology of a Kuga-Sato variety which is the fiber product of 2k ´ 1
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copies of the universal elliptic curve over X1p|D|q. We work with a closely
related motive, which we describe now.
We fix an elliptic curve A{H with the following properties:
(1) EndHpAq “ OK .
(2) A has good reduction at primes above p.
(3) A is isogenous to each of its GalpH{Kq-conjugates.
(4) Aτ – A, where τ is complex conjugation.

Remark. — Since D is odd, we may even choose such an A with the
added feature that ψ2

A is an unramified Hecke character of type (2,0)
(see [32]). In that case, ψ2k

A differs from χ by a character of GalpH{Kq,
so this is a natural choice of A, given χ. In general, ψ2k

A χ
´1 is a finite order

Hecke character.

We will use a two-dimensional submotive of A2k whose `-adic realizations
are isomorphic to those of the Deligne-Scholl motive for Θψ2k

A
(see [2]).

From Property (3), A is isogenous to Aσ over H for each σ P GalpH{Kq.
If σ corresponds to an ideal class ras P PicpOKq via the Artin map, then one
such isogeny φa : AÑ Aσ is given by AÑ A{Aras, at least if a is integral.
A different choice of integral ideal a1 P ras gives an isomorphic elliptic curve
over H, and the maps φa and φa1 will differ by endomorphisms of A and
Aσ.
As in the introduction, let Y pNq{Q be the modular curve parametriz-

ing elliptic curves with full level N structure, and let E Ñ Y pNq be the
universal elliptic curve with level N structure. The canonical non-singular
compactification of the p2r ´ 2q-fold fiber product

E ˆY pNq ¨ ¨ ¨ ˆY pNq E ,

will be denoted by W “ W2r´2 [33]; W is a variety over Q. The map
W Ñ XpNq to the compactified modular curve has fibers (over non-
cuspidal points) of the form E2r´2, for some elliptic curve E. We set

X “ Xr,N,k “WH ˆA
2k,

where WH is the base change to H. Recall the curve X0pNq{Q, the coarse
moduli space of generalized elliptic curves with a cyclic subgroup of order
N . X0pNq is the quotient of XpNq by the action of the standard Borel
subgroup B Ă GL2 pZ{NZq {t˘1u.
The computations of the Fourier coefficients in the previous section sug-

gest that we consider the following generalized Heegner cycle on X. Fix a
Heegner point y P Y0pNqpHq represented by a cyclic N -isogeny A Ñ A1,
for some elliptic curve A1{H with CM by OK . Such an isogeny exists since
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each prime dividing N splits in K. Also let ỹ be a point of Y pNqH over y.
The fiber Eỹ of the universal elliptic curve E Ñ Y pNq above the point ỹ is
isomorphic to AF , where F Ą H is the residue field of ỹ. Let

∆ Ă Eỹ ˆAF – AF ˆAF

be the diagonal, and we write Γ?D Ă Eỹ ˆ Eỹ for the graph of
?
D P

EndpEỹq – OK . We define

Y “ Γr´1´k?
D

ˆ∆2k Ă Xỹ – A2r´2
F ˆA2k

F ,

so that Y P CHk`r
pXF q. Here Xỹ is the fiber of the natural projection

X Ñ XpNq above the point ỹ.
Since X is not defined over Q, we need to find cycles to play the role

of GalpH{Kq-conjugates of Y . For each σ P GalpH{Kq we have a corre-
sponding ideal class A. For each integral ideal a P A, define the cycle Y a

as follows:

Y a “ Γr´k´1?
D

ˆ
`

Γtφa

˘2k
Ă pAa

F ˆA
a
F q
r´k´1

ˆ pAa
F ˆAF q

2k
“ Xỹσ Ă XF .

Here, Γtφa
is the transpose of Γφa

, the graph of φa : A Ñ Aa. The cycle
Y a P CHk`r

pXF q is not independent of the class of a in PicpOKq, but
certain expressions involving Y a will be independent of the class of a. Note
that Y “ Y OK .

4.1. Projectors

Next we define a projector ε P Corr0
pX,XqK so that εY a lies in the group

CHr`k
pXF q0,K of homologically trivial pr`kq-cycles with coefficients in K.

Here, Corr0
pX,XqK is the ring of degree 0 correspondences with coefficients

in K. For definitions and conventions concerning motives, correspondences,
and projectors see [2, §2].

The projector is defined as ε “ εX “ εW ε`. Here, εW is the pullback
to X of the Deligne-Scholl projector ε̃W P QrAutpW qs which projects onto
the subspace of H2r´1pW q coming from modular forms of weight 2r (see
e.g. [1, §2]). The second factor ε` is the pullback to X of the projector

ε` “

˜?
D ` r

?
Ds

2
?
D

¸b`

˝

ˆ

1´ r´1s
2

˙b`

P Corr0
pA`, A`qK ,

denoted by the same symbol. On the p-adic realization of the motiveMA`,K ,
ε` projects onto the 1-dimensional Qp-subspace V b2k

p A of

Sym2kH1
etpĀ,Qpqpkq Ă H2k

et pĀ
2k,Qppkqq.
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Here, p is the prime of K above p which is determined by our chosen
embedding KãÑQ̄p and VpA “ lim

ÐÝn
Arpns bQp is the p-adic Tate module

of A. See Section 6 and [2, §1.2] for more details.
We also make use of the projectors

ε̄` “

˜?
D ´ r

?
Ds

2
?
D

¸b`

˝

ˆ

1´ r´1s
2

˙b`

P Corr0
pA`, A`qK

and κ` “ ε`` ε̄`. The first projects onto Vp̄Ab` and the latter onto VpAb`‘
Vp̄A

b`. Set ε̄ “ εW ε̄` and ε1 “ εWκ`.

Remark. — For this remark, suppose that χ “ ψ`, where ψ is the p1, 0q-
Hecke character attached toA by the theory of complex multiplication. This
means the GH -action on H1pĀ,Qpqp1q is given by the pK b Qpqˆ-values
Galois character ψH “ ψ ˝NmH{K . If we write χH “ ψ`H , then the motive
MpχHq over H (with coefficients in K) from Section 1.3 is defined by the
triple pA2k, κ`, kq.
We explain how to descend this to a motive over K with coefficients in

Qpχq (this a modification of a construction from an earlier draft of [2]). Let
eK and ēK be the idempotents in K b K corresponding to the first and
second projections K bK – K ˆK Ñ K. For each σ P GalpH{Kq choose
an ideal a Ă OK corresponding to σ under the Artin map and define

Γpσq :“ eK ¨ pφa ˆ ¨ ¨ ¨ ˆ φaq b χpaq
´1 P Hom

`

A`, pA`qσ
˘

bQ Qpχq

Γ̄pσq :“ ēK ¨ pφa ˆ ¨ ¨ ¨ ˆ φaq b χ̄paq
´1 P Hom

`

A`, pA`qσ
˘

bQ Qpχq.

Since χpγaq “ γ`χpaq and φγa “ γφa, these definitions are independent of
the choice of a. Moreover,

Γpστq “ Γpσqτ ˝ Γpτq

and similarly for Γ̄. We set

Λpσq “ κ` ˝ pΓpσq ` Γ̄pσqq ˝ κσ` P Corr0
pA`, pAσq`qQ bQ Qpχq.

Then the collection tΛpσquσ gives descent data for the motive MpχHq b
Qpχq, hence determines a motive Mpχq over K with coefficients in Qpχq.
The p-adic realization of Mpχq is χ ‘ χ̄ where χ is now thought of as a
Qpχq bQp-valued character of GK .

Define the following sheaf on XpNq:

L “ j˚Symw
pR1f˚Qpq b κ`H2k

et pĀ
2k,Qppkqq,

where w “ 2r ´ 2, and j : Y pNq ãÑ XpNq and f : E Ñ Y pNq are the
natural maps.
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From now on we drop the subscript ‘et’ from all cohomology groups and
set Z̄ “ Z ˆSpec k Spec k̄ for any variety defined over a field k. We also use
the notation VK “ V bK, for any abelian group V .

Theorem 4.1. — There is a canonical isomorphism

H1pX̄pNq,Lq „ÝÑ ε1H2r`2k´1pX̄,Qpq “ ε1H˚pX̄,Qpq.

Proof. — See [24, II.2.4] and [1, Prop. 2.4]. �

Corollary 4.2. — The cycles εY a and ε̄Y a are homologically trivial
on XF , i.e. they lie in the domain of the p-adic Abel-Jacobi map

Φ : CHr`k
pXF q0,K Ñ H1pF,H2r`2k´1pX̄,Qppr ` kqqq.

Proof. — By the theorem, ε1Y a is in the kernel of the map

CHr`k
pXF qK Ñ H2r`2kpX̄F ,Qppr ` kqq,

i.e. it is homologically trivial. Moreover, ε “ εε1 and ε̄ “ ε̄ε1. Since Abel-
Jacobi maps commute with algebraic correspondences, it follows that εY a

and ε̄Y a are homologically trivial as well. �

4.2. Bloch-Kato Selmer groups

Let F be a finite extension of Q` (` a prime, possibly equal to p) and
let V be a continuous p-adic representation of GalpF̄ {F q. Then there is
a Bloch-Kato subgroup H1

f pF, V q Ă H1pF, V q, defined for example in [3]
or [23, 1.12 and 2.1.4]. If ` ‰ p (resp. ` “ p) and V is unramified (resp.
crystalline), then H1

f pF, V q “ Ext1
pQp, V q in the category of unramified

(resp. crystalline) representations of GalpF̄ {F q. If instead F is a number
field, then H1

f pF, V q is defined to be the set of classes in H1pF, V q which
restrict to classes in H1

f pFv, V q for all finite primes v of F .
The Bloch-Kato Selmer group plays an important role in the general

theory of p-adic heights of homologically trivial algebraic cycles on a smooth
projective variety X{F defined over a number field F . Indeed, Nekovář’s
p-adic height pairing is only defined on H1

f pF, V q, and not on the Chow
group CHj

pXq0 of homologically trivial cycles of codimension j. Here V “
H2j´1pX̄,Qppjqq. This is compatible with the Bloch-Kato conjecture [3],
which asserts (among other, much deeper statements) that the image of
the Abel-Jacobi map

Φ : CHj
pXq0 Ñ H1pF, V q
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is contained in H1
f pF, V q. The next couple of results follow [24, II.2] and

verify this aspect of the Bloch-Kato conjecture in our situation, allowing
us to consider p-adic heights of generalized Heegner cycles. We also give a
more concrete description of the Abel-Jacobi images of generalized Heegner
cycles in terms of local systems on the modular curve.
Denote by bpY aq the cohomology class of εpȲ aq in the fiber X̄ỹ, so that

bpY aq lies in

ε1H2r`2k´2 `X̄ỹσ ,Qppr ` k ´ 1q
˘GpF̄ {F q „

ÝÑ H0 `ỹσ,B
˘GpF̄ {F q

,

where

B “ Sym2r´2
pR1f˚Qpqpr ´ 1q b κ`H2k `Ā2k,Qppkq

˘

,

the sheaf on Y pNq. The isomorphism above follows from proper base
change, Lemma 1.8 of [1], and the Kunneth formula. Similarly, let b̄pY aq

be the class of ε̄Ȳ a. For the next proposition, let j : Y pNq Ñ XpNq be the
inclusion.

Theorem 4.3. — Set V “ H2r`2k´1pX̄,Qppr ` kqq.
(1) V is a crystalline representation of GalpH̄v{Hvq for all v|p.
(2) The Abel-Jacobi images za “ ΦpεY aq, z̄a “ Φpε̄Y aq P H1pF, V q lie

in the subspace H1
f pF, V q .

(3) The element za, thought of as an extension of p-adic Galois repre-
sentations, can be obtained as the pull back of

0 Ñ H1pXpNq, j˚Bqp1q Ñ H1pXpNq ´ ỹσ, j˚Bqp1q Ñ H0pỹσ,Bq Ñ 0

by the map Qp Ñ H0 `ỹσ,B
˘

sending 1 to bpY aq, and similarly
for z̄a. In particular, za and z̄a only depend on bpY aq and b̄pY aq

respectively.

Proof. — (1) follows from Faltings’ theorem [12] and the fact that X has
good reduction at primes above p. (2) is a general result due to Nekovář,
see [25, Theorem 3.1]. To apply the result one needs to know the purity
conjecture for the monodromy filtration for X. But this is known for W
and A`, so it holds for X as well [25, 3.2]. We note that (2) is ultimately a
local statement at each place v of H, and for v|p, the approach taken in the
proof of Theorem 8.7 below gives an alternate proof of this local statement.
Statement (3) can be proved exactly as in [24, II.2.4]. �

Definition. — If F {H is a field extension, then a Tate vector is an
element in H0pȳ0,BqGalpF̄ {F q for some y0 P Y pNqpF q. A Tate cycle is
a formal finite sum of Tate vectors over F . The group of Tate cycles is
denoted ZpY pNq, F q.
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Let π : XpNq Ñ X0pNq “ XpNq{B be the quotient map, and as in [24],
define εB “ p#Bq´1 ř

gPB g, which acts on XpNq and its cohomology. Set
A “ pπ˚BqB , apY aq “ εBbpY

aq, and āpY aq “ εB b̄pY
aq. We define the

group ZpY0pNq, F q of Tate cycles on Y0pNq exactly as for Y pNq, but with
B replaced by A . Let j0 : Y0pNq Ñ X0pNq be the inclusion. Note that
apY aq is an element of ZpY pNq, Hq, not just ZpY pNq, F q.

Proposition 4.4. — The element

ΦpεBεY aq P H1
´

H,H1
´

X0pNq, pj0q˚A
¯

p1q
¯

,

thought of as an extension of p-adic Galois representations, can be obtained
as the pull back of

0 ÑH1
´

X0pNq, j˚A
¯

p1q ÑH1
´

X0pNq ´ ȳ
σ, j˚A

¯

p1q Ñ H0pȳσ,A q Ñ 0

by the map Qp Ñ H0 pyσ,A q sending 1 to apY aq. In particular, ΦpεBεY aq

only depends on apY aq. Similarly, ΦpεB ε̄Y aq depends only on āpY aq.

In fact, for any field F {H one can define a map ΦT : ZpY0pNq, F q Ñ

H1pF,H1pX̄0pNq, j0˚A qp1qq, by pulling back the appropriate exact se-
quence as above. We then have ΦpεBεY aq “ ΦT papY aqq and ΦpεB ε̄Y aq “

ΦT pāY aq. For more detail, see [24, II.2.6].

4.3. Hecke operators

The Hecke operators on W2r´2 from [24] pull back to give Hecke op-
erators Tm on X. The Tm are correspondences on X; they act on Chow
groups and cohomology groups and commute with Abel-Jacobi maps. To
describe the action of the Hecke algebra T on Tate vectors, we need to
say what Tm does to an element of H0pȳ0,A qGpF̄ {F q for an arbitrary point
y0 P X0pNqpF q, F an extension of H. Such an element is represented by
a triple pE,C, bq where E is an elliptic curve, C is a subgroup of order N ,
and

b P Symw
pH1pĒ,Qpqqpr ´ 1q b κ`Sym2k

pH1pĀ,Qpqqpkq.
As the Hecke operators are defined via base change from those on W2r´2,
we have:

TmpE,C, bq “
ÿ

λ:EÑE1
degpλq“m

pE1, λpCq, pλw ˆ idq˚pbqq,

where we are using the map λw ˆ id : Ew ˆA` Ñ E1w ˆA`.
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Now set Vr,A,` “ εBε
1V “ H1pX0pNq, pj0q˚A qp1q, a subrepresentation of

V . Then za :“ ΦpεBεY aq lands in the Bloch-Kato subspaceH1
f pH,Vr,A,`q Ă

H1pH,Vr,A,`q, by Proposition 4.3. For any newform f P S2rpΓ0pNqq, we let
Vf,A,` be the f -isotypic component of Vr,A,` with respect to the action of
T. Consider the f -isotypic Abel-Jacobi map

Φf : CHr`k
pXq0,K Ñ H1

f pH,Vf,A,`q,

and set zaf “ Φf pεBεY aq and z̄af “ Φf pεB ε̄Y aq.
As is shown in Section 6, the p-adic representation Vf,A,` is ordinary and

satisfies Vf,A,` – V ˚f,A,`p1q. The results of [23] therefore give a symmetric
pairing

x , y`K : H1
f pH,Vf,A,`q ˆH

1
f pH,Vf,A,`q Ñ Qppfq,

depending on a choice of logarithm `K : AˆK{Kˆ Ñ Qp and the canonical
splitting of the local Hodge filtrations at places v of H above p. We will
sometimes omit the dependence on `K in the notation for the heights if a
choice has been fixed. If a, b P ZpY0pNq, F q are two Tate cycles, then we
will write xa, by`K for xΦT paq,ΦT pbqy`K .

4.4. Intersection theory

Here we collect some facts about generalized Heegner cycles and their
corresponding cohomology classes. We first recall the intersection theory
on products of elliptic curves; see [24, II.3] for proofs.

Let E,E1, E2 be elliptic curves over an algbraically closed field k of char-
acteristic not p, and set

HipY q “ Hi
etpY,Qpq “

´

lim
n
Hi

etpY,Z{pnZq
¯

bQp

for any variety Y {k. A pair pα, βq of isogenies α P HompE2, Eq and β P

HompE2, E1q, determines a cycle

Γα,β “ pα, βq˚p1q P CH1
pE ˆ E1q,

where pα, βq˚ : CH0
pE2q Ñ CH1

pE ˆ E1q is the push forward. The image
of Γα,β under the cycle class map CH1

pE ˆ E1q Ñ H2pE ˆ E1qp1q will be
denoted by rΓα,βs. Also let Xα,β be the projection of rΓα,βs to H1pEq b

H1pE1qp1q, i.e.

Xα,β “ rΓα,βs ´ degpαqh´ degpβqv,

where h is the horizontal class rΓ1,0s and v is the vertical class rΓ0,1s. If
α P HompE,E1q, we write Γα and Xα for Γ1,α and X1,α, respectively. If
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β P HompE1, Eq we write Γtβ andXt
β for Γβ,1 andXβ,1, respectively. Finally,

let
p , q : H2pE ˆ E1qp1q ˆH2pE ˆ E1qp1q Ñ Qp,

be the non-degenerate cup product pairing.

Proposition 4.5. — With notation as above,
(1) The map

HompE2, Eq ˆHompE2, E1q Ñ H1pEq bH1pE1qp1q

given by pα, βq ÞÑ Xα,β is biadditive.
(2) The map HompE,E1q Ñ H1pEq ˆH1pE1qp1q given by α ÞÑ Xα is

an injective group homomorphism.
(3) If E “ E1, then Xα,β “ Xβα̂ and pXα, Xβq “ ´Trpαβ̂q for all

α, β P EndpEq.
Here, Tr : EndpEq Ñ Z is the map α ÞÑ α` α̂.

It is convenient to think of H1pEq as VpE˚ “ HompVpE,Qpq, where
VpE “ TpE bQp is the p-adic Tate module. The Weil pairing

VpE ˆ VpE Ñ Qpp1q

gives identifications VpE˚p1q – VpE and
Ź2

VpE – Qpp1q. We then have
the following diagram of isomorphisms

pVpEbVpEqp´1q ÝÑ
´

Sym2VpE‘
Ź2

VpE
¯

p´1q ÝÑ Sym2VpEp´1q‘Qp
§

§

đ
δ

§

§

đ

VpE
˚ b VpE ÝÑ EndpVpEq ÝÑ End0pVpEq‘Qp

One checks that δ identifies Sym2VpEp´1q with the space End0pVpEq of
traceless endomorphisms of VpE. Now suppose that E has complex multi-
plication by OK and that p “ pp̄ splits in K. Then

VpE “ VpE ‘ Vp̄E,

where Vp “ lim
ÐÝ

Erpns b Qp and Vp̄ “ lim
ÐÝ

Erp̄ns b Qp. Let x˚ and y˚ be a
basis for VpE and Vp̄E respectively, and let x, y be the dual basis of H1pEq

arising from the Weil pairing. Since the Weil pairing is non-degenerate, we
may assume that epx˚, y˚q “ 1 P Qp.
If α P EndpEq, then the class Xα P H

1pEq bH1pEqp1q, when thought of
as an element of EndpVpEq via the isomorphisms above, is simply the map
V α : VpE Ñ VpE induced on Tate modules. Thus, X1 “ λpxb y ´ y b xq
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for some λ P Qp. Recall that one can compute the intersection pairing on
H1pEqb2 in terms of the cup product on H1pEq:

pab b, cb dq “ ´paY cqpbY dq.

Since pX1, X1q “ ´2, we conclude that λ “ 1. Next we claim that

(4.1) X?D “ ˘
?
Dpxb y ` y b xq.

To prove this, it suffices to show that V
?
D acts on Vp by

?
D and on

Vp̄ by ´
?
D. Indeed, under the identifications

H1pEq bH1pEqp1q – VpE
˚ b VpE

˚p1q – VpE
˚ b VpE – EndpVpEq,

xby corresponds to the element f P EndpVpq such that fpax˚`by˚q “ ax˚

whereas yb x corresponds to g P EndpVpq such that gpax˚ ` by˚q “ ´by˚.
To understand how V

?
D acts on Vp, write pn “ pnZ` b`

?
D

2 Z for some
b, c P Z such that b2´4pnc “ D, which is possible because p splits in K. For
P P Erpns, one has pb `

?
DqpP q “ 0, so

?
DpP q “ ´bP . Since b ” ˘

?
D

(mod pnq, it follows upon taking a limit that pV
?
Dqpx˚q “ ˘

?
Dx˚. Since

we can write p̄n “ pnZ` b´
?
D

2 Z, we also have pV
?
Dqpy˚q “ ¯

?
Dy˚, and

this proves the claim. Hence

Xγ “ γpxb yq ´ γ̄py b xq P H1pEq bH1pEqp1q,

for all γ P OK ãÑ EndpEq.
Finally, note that the projector ε1 P Corr0

pE,EqK defined earlier acts
on H1pEq as projection onto Vp.

Proposition 4.6. — Let a Ă OK be an ideal and A P PicpOKq its ideal
class. Then the elements

zA
f,χ “ χpaq´1zaf and zA

f,χ̄ “ χ̄paq´1z̄af

in H1
f pH,Vf,A,`qQ̄p depend only on A P PicpOKq.

Proof. — To prove the proposition for zA
f,χ, we wish to relate zaf to zapγqf

for some γ P OK and some integral ideal a. The contribution to zaf from one
of the “generalized” components Γtφa

Ă Aa ˆ A is εXφa,1, where Xφa,1 P

H1pĀa,Qpq bH1pĀ,Qpq is the class of

Γtφa
´ degpφaqh´ v P CH1

pAa ˆAq,

as above. Let x, y be a basis of H1pĀ,Qpq such that

Xγ,1 “ γ̄pxb yq ´ γpy b xq P H1pĀ,Qpq bH1pĀ,Qpq,
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for all γ P OK . Let xa, ya be the basis of H1pĀa,Qpq corresponding to x, y
under the isomorphism φ˚a : H1pĀa,Qpq Ñ H1pĀ,Qpq. One checks that

pφa ˆ idq˚pXφa,1q “ degpφaqX1,1

and so
Xφa,1 “ degpφaq pxa b y ´ ya b xq .

Similarly,

Xφapγq,1 “ Xγφa,1 “ degpφaq pγ̄pxa b yq ´ γpya b xqq .

Since the projector ε kills y, we find that εXγφa,1 “ γεXφa,1. In the com-
ponents which come purely from the Kuga-Sato variety W2r´2, the two
cycles Y a and Y apγq are identical – they both have the form εΓr´k´1?

D
. Tak-

ing the tensor product of the ` “generalized” components and the r´ k´ 1
Kuga-Sato components, we conclude that

z
apγq
f “ γ`zaf ,

as desired. The proof for zA
f,χ̄ is similar: since z̄af is defined using ε̄ instead

of ε, the extra factor of γ̄` which pops out is accounted for by the factor
χ̄paq´1. �

Lemma 4.7. — For any ideal classes A,B, C P PicpOKq, we have
@

zA
f,χ, z

B
f,χ̄

D

“
@

zAC
f,χ, z

BC
f,χ̄

D

Proof. — It suffices to prove
A

zid
f,χ, z

B
f,χ̄

E

“

A

zA
f,χ, z

BA
f,χ̄

E

for all A,B P

PicpOKq. Equivalently, we must show

(4.2) Nmpaq`
A

zOK

f , z̄bf

E

“
@

zaf , z̄
ba
f

D

,

for all integral ideals a and b. Let σ P GalpK̄{Kq restrict to an element
of GalpH{Kq which corresponds to a under the Artin map. Consider the
morphisms of Chow groups

σ : CH˚pW ˆA`qK Ñ CH˚pW ˆ pAσq`qK

and
ξ “ pidˆ φ`aq˚ : CH˚pW ˆ pAσq`qK Ñ CH˚pW ˆA`qK .

After identifying Aσ with Aa, one checks that pξ ˝ σqpY bq “ Y ab. Indeed,
since a and b are integral, the graph of φσb : Aσ Ñ pAbqσ can be identified
with the graph of the projection map φ : A{Aras Ñ A{Arabs (first note
the two isogenies have the same kernel and then use the main theorem of
complex multiplication). The latter is pulled back to Γφab

by pidˆφaq˚. It
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follows that pξ ˝σqpY bq “ Y ab, and the identity therefore holds for the cor-
responding cohomology classes. On cohomology, σ and ξ are isomorphisms,
so (4.2) follows from the functoriality of p-adic heights [23, Theorem 4.11].
We are using the fact that

´

φ̂`a

¯˚

is adjoint to
`

φ`a
˘˚ under the pairing

given by Poincaré duality, and that deg φa “ Nmpaq. �

The goal now is to compute xzf,χ, zf,χ̄y, where

zf,χ “
1
h

ÿ

APPicpOKq

zA
f,χ and zf,χ̄ “

1
h

ÿ

APPicpOKq

zA
f,χ̄.

Here, we have extended the p-adic height Q̄p-linearly.
Let τ P GalpH{Qq be a lift of the generator of GalpK{Qq. As A and W

are defined over R, τ acts on X “W ˆA` and its cohomology.

Lemma 4.8. — Let n Ă OK be the ideal of norm N corresponding to
the Heegner point y P X0pNq, and let p´1qrεf be the sign of the functional
equation for Lpf, sq. Then

τpzA
f,χq “ p´1qr´k´1εfχpnqN

´kz
A´1

rn̄s
f,χ̄

and
τpzA

f,χ̄q “ p´1qr´k´1εf χ̄pnqN
´kz

A´1
rn̄s

f,χ .

Proof. — Let W 0
j pNq be the Kuga-Sato variety over X0pNq, i.e. the

quotient of Wj by the action of the Borel subgroup B. Recall the map
WN : W 0

j Ñ W 0
j which sends a point P P Ēj in the fiber above a dia-

gram φ : E Ñ E{Erns to the point φjpP q in the fiber above the diagram
φ̂ : E{Erns Ñ E{ErN s. Meanwhile, complex conjugation sends the Heeg-
ner point Aa Ñ Aa{Aarns to the Heegner point Aā Ñ Aā{Aārn̄s. Thus on
a generalized component of our cycle, we have

pWN ˆ idq˚pXφān̄,1q “ NXφā,1 “ NτpXφa,1q,

where these objects are thought of as Chow cycles onX which are supported
on the fiber of X above pỹqστ . Since τ takes VpA to Vp̄A, we even have

pWN ˆ idq˚pε̄1Xφān̄,1q “ Nε̄1Xφā,1 “ Nτpε1Xφa,1q.

On the purely Kuga-Sato components, one computes [22, 6.2]

W˚
N pX

?
Dq “ NX?D “ ´NτpX

?
Dq,

where the X?D in the equation above are supported on ỹFrobpān̄q, ỹFrobpāq,
and ỹFrobpaq respectively.
On the other hand, pWN ˆ idq2 “ rN sˆ id, where rN s : W 0

2r´2 ÑW 0
2r´2

is multiplication byN in each fiber. On cycles and cohomology, rN sˆid acts
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as multiplication by N2r´2. SinceWN commutes with the Hecke operators,
we see that pWN ˆ idq acts as multiplication by ˘Nr´1 on the f -isotypic
part of cohomology, and this sign is well known to equal εf . Putting things
together, we obtain

τpzaf q “
p´1qr´k´1pWN ˆ idq˚pz̄ān̄f q

N2k`r´k´1 “
p´1qr´k´1εf z̄

ān̄
f

Nk
,

from which the first identity in the lemma follows. The proof of the second
identity is entirely analogous. �

Theorem 4.9. — If `K : AˆK{Kˆ Ñ Qp is anticyclotomic, i.e. `K˝τ |K “
´`K , then

xzf,χ, zf,χ̄y`K “ 0.

In particular, Theorem 1.1 holds for such `K .

Proof. — From the previous lemma we have

τpzf,χq “ p´1qr´k´1εfχpnqN
´kzf,χ̄

and
τpzf,χ̄q “ p´1qr´k´1εf χ̄pnqN

´kzf,χ.

Thus

xzf,χ, zf,χ̄y`K “ xτpzf,χq, τpzf,χ̄qy`K˝τ “ xzf,χ̄, zf,χy´`K “ ´xzf,χ, zf,χ̄y`K ,

which proves the vanishing. Theorem 1.1 now follows from Corollary 2.5.
�

Since any logarithm `K can be decomposed into a sum of a cyclotomic
and an anticyclotomic logarithm, it now suffices to prove Theorem 1.1 for
cyclotomic `K , i.e. we may assume `K “ `K ˝ τ |K . By Lemma 4.7 we have

(4.3) xzf,χ, zf,χ̄y “
1
h

A

zOK

f,χ , zf,χ̄

E

“
1
h

ÿ

APPicpOKq

@

zf , z
A
f,χ̄

D

.

The height x , y can be written as a sum of local heights:

xx, yy “
ÿ

v

xx, yyv,

where v varies over the finite places of H. These local heights are defined
in general in [23] and computed explicitly for cyclotomic `K in [24, Propo-
sition II.2.16] in a situation similar to ours. In the next section we compute
the local heights xzf , zA

f,χ̄yv for finite places v of H not dividing p. The
contribution from local heights at places v|p will be treated separately.
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5. Local p-adic heights at primes away from p

Our goal is to compute
A

zf , z
A
f,χ̄

E

`K
when `K is cyclotomic. Since such a

homomorphism is unique up to scaling, we may assume that `K “ logp ˝λ,
where λ : GpK8{Kq Ñ 1 ` pZp is the cyclotomic character and logp is
Iwasawa’s p-adic logarithm. We may write λ “ λ̃ ˝ N, where λ̃ : Zˆp Ñ
1 ` pZp is given by λ̃pxq “ xxy´1. Here, xxy “ xω´1pxq, where ω is the
Teichmuller character.
We maintain the following notations and assumptions for the rest of this

section. Fix an ideal class A and an integer m ě 1, and suppose that
there are no integral ideals in A of norm m, i.e. rApmq “ 0. Choose an
integral representative a P A and let σ P GalpH{Kq correspond to A under
the Artin map. Write x “ bpY q and x̄a “ b̄pY aq for the two Tate vectors
supported at the points y and yσ in X0pNqpHq. Let v be a finite place
of H not dividing p and set F “ Hv. Write Λ for the ring of integers
in F ur, the maximal unramified extension of F , and let F “ F̄` be the
residue field of Λ. Write X0pNq Ñ Spec Z for the integral model of X0pNq

constructed in [18], and let X0pNqΛ be the base change to Spec Λ. Finally,
write i : Y0pNq ˆQ F

ur ãÑ X0pNqΛ for the inclusion.
Now suppose a, b are elements of ZpY0pNq, F

urq supported at points ya ‰
yb of X0pNqpF

urq of good reduction. Let y
a
and y

b
be the Zariski closure

of the points ya and yb in X0pNqΛ and let a and b be extensions of a and
b to H0py

a
, i˚A q and H0py

b
, i˚A q respectively. If ya and y

b
have common

special fiber z (so z corresponds to an elliptic curve E{F̄), then define

pa, bqv “ pya ¨ ybqz ¨ paz, bzq,

where py
a
¨ y

b
qz is the usual local intersection number on the arithmetic

surface X0pNqΛ and paz, bzq is the intersection pairing on the cohomology
of E2r´2 ˆA`F, where AF is the reduction of AF̄ .

Remark. — Note that while A may not have good reduction at v, it
has potential good reduction. We can therefore identify Hi

etpAF̄ ,Qpq and
Hi

etpAF,Qpq as vector spaces, but not as GalpF̄ {F q-representations. Since
the ensuing intersection theoretic computations can be performed over an
algebraic closure, this is enough for our purposes.

Our assumption that rApmq “ 0 implies that the Tate vectors x and
Tmx̄

a have disjoint support. By [34], we may assume that they are sup-
ported at points of X0pNqΛ which are represented by elliptic curves with
good reduction. The following proposition gives a way to compute the lo-
cal heights purely in terms of Tate vectors. This technique of computing
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heights of cycles on higher dimensional motives coming from local systems
on curves is the key to the entire computation. The idea goes back to work
of Deligne, Beilinson, Brylinski, and Scholl, among others.

Proposition 5.1. — With notation and assumptions as above, we have

(5.1) xx, Tmx̄
ayv “ ´px, Tmx̄

aqv logppNvq,

Proof. — The proof is exactly as in [24, II.2.16 and II.4.5]. In our case,
one uses that H2pX0pNq, i˚A p1qq “ 0. This follows from the fact that
if A 1 “

`

π˚Sym2r´2
pR1f˚Qpqpr ´ 1q

˘B , then A “ A 1 b W , where W
is a trivial two-dimensional local system, and H2pX0pNq, i˚A

1q “ 0 [18,
14.5.5.1]. �

Recall that over Λ, the sections y and yσ correspond to cyclic isoge-
nies of degree N . We will confuse the two notions, so that the notation
HomΛpy

σ, yq makes sense. See [24] and [8] for details.

Proposition 5.2. — Suppose v is a finite prime of H not divisible by
p. If m ě 1 is prime to N and satisfies rApmq “ 0, then

px, Tmx̄
aqv “

1
2m

r´k´1
ÿ

ně1

ÿ

g

´

ε̄
´

Xbr´k´1
g
?
Dg´1 bX

b`

gφa

¯

, ε
´

Xbr´k´1?
D

bXb`1

¯¯

,

where the sum is over g P HomΛ{πnpy
σ, yq of degree m. The intersection

pairing on the right takes place in the cohomology of E2r´2 ˆ A`F, where
E – AF is the elliptic curve over F corresponding to the special fiber y

s
of y.

Proof. — The proof builds on that of [24, II.4.12], so we only mention
what is new to our setting. We write m as m “ m0q

t where q is the rational
prime below v (this is what Nekovář calls `). In the notation of [24], we
need to compute the special fiber of xagpjq, where g P HomΛpy

σ, yσ
g
q is an

isogeny of degree m0. There is no harm in assuming r “ k` 1, because the
description of the purely Kuga-Sato components of xagpjq (i.e. coming from
factors of the cycle Y a of the form Γ?D Ă Ea ˆ Ea) is handled in [24].
Assume now that q is inert in K and t is even. In this case the special

fiber pyqs is supersingular, and the special fiber pxagqs of the Tate vector is
represented by the pair

´

pyσ
g
qs, ε̄

´

Xb`gφa,1

¯¯

.
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This follows from the definition of the Hecke operators and the following
fact: if g : E Ñ E1 is an isogeny and φ : AÑ E is an isogeny, then

pg ˆ idq˚ pΓ
t
φq “ Γtgφ P CH1

pE1 ˆAq.

Since any isogeny h P HomΛ{πnpy
σ
g
, yq of degree qt on the special fiber

y
s
– pyσ

g
qs is of the form qt{2h0, with h0 of degree 1, we find that, assuming

y and yσ
g
pjq intersect, pxagpjqqs is represented by

´

pyσ
g
qs, ε̄

´

Xb`
qt{2gφa,1

¯¯

“

´

y
s
, ε̄
´

Xb`
h0qt{2gφa,1

¯¯

“

´

y
s
, ε̄
´

Xb`hgφa,1

¯¯

“

´

y
s
, ε̄
´

Xb`
hgφa

¯¯

,

as desired. The proof when t is odd or when q is ramified is similar. If q is
split in K, then both sides of the equation are 0, as is shown in [14]. �

When v lies over a non-split prime, EndΛ{πpyq “ EndpEq is an order R in
a quaternion algebra B and we can make the double sum on the right hand
side more explicit. To do this, we follow [14] and identify HomΛ{πpy

σ, yq

with Ra by sending a map g to b “ gφa. The reduction of endomorphisms
induces an embedding K ãÑ B, which in turn determines a canonical de-
composition B “ K ‘Kj. Thus every b P B can be written as b “ α` βj

with α, β P K. Recall also that the reduced norm on B is additive with
respect to this decomposition, i.e. Npbq “ Npαq `Npβjq.

Proposition 5.3. — If gφa “ b “ α` βj P EndpEq, then
´

ε̄pXr´k´1
g
?
Dg´1 bX

b`
b̄
q, εpXbr´k´1?

D
bXb`1 q

¯

“

p4Dqr´k´1
` 2r´2
r´k´1

˘ ᾱ2kHr´k´1,k

ˆ

1´ 2Npβjq
Npbq

˙

,

where

Hm,kptq “
1

2m ¨ pm` 2kq!

ˆ

d

dt

˙m`2k
rpt2 ´ 1qmpt´ 1q2ks

Proof. — Recall from Section 4.4 that we have chosen a basis x˚, y˚ of
VpE, and a dual basis x, y of H1pEq such that x˚ P VpE, y˚ P Vp̄E, and
px˚, y˚q “ 1. We have already seen that Xα “ αx b y ´ ᾱy b x. Since
γj “ jγ̄ for all γ P K, V j swaps VpE and Vp̄E. So we can write

V j “

ˆ

0 u

v 0

˙
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for some u, v P Qp such that uv “ Npjq “ ´j2. It follows that

Xb “ αxb y ´ ᾱy b x` βuy b y ´ β̄vxb x.

Next note that g
?
Dg´1 “ b

?
Db´1. We write b

?
Db´1 “ γ` δj, so that

γ “
?
D

Npbq pNpαq ´Npβjqq and δ “ ´2
?
D

Npbq αβ. Thus Xg
?
Dg´1 already lies in

Sym2H1pEq, and hence (working now in the symmetric algebra)

ε̄Xg
?
Dg´1 “ 2γxy ` δuy2 ´ δ̄vx2 “

2
?
D

Npbq pᾱx´ βuyqpαy ` β̄vxq,

since ε̄ acts as Scholl’s projector εW on the purely Kuga-Sato components.
The cohomology classes Xb̄ in the statement of the proposition are on

‘mixed’ components, i.e. they live in H1pEqbH1pE1q, where E comes from
a Kuga-Sato component and E1 (which is abstractly isomorphic to E) comes
from the factor A`. Thus

Xb̄ “ ᾱxb y1 ´ αy b x1 ´ βuy b y1 ` β̄xb x1,

and ε̄Xb̄ “ pᾱx´βuyqy
1, since ε̄ acts trivially on H1pEq and kills the basis

vector x1 in H1pE1q. Using these observations together with the compatibil-
ity of the projectors with the multiplication in the appropriate symmetric
algebras, we compute
´

ε̄pXr´k´1
g
?
Dg´1 bX

b`
b̄
q, εpXbr´k´1?

D
bXb`1 q

¯

“

´

p2γxy`δuy2´δ̄x2qŕ ḱ 1pᾱx´βuyq2k b y12k, p2
?
Dxyqŕ ḱ 1y2kbx12k

¯

“

ˆ

4D
Npbq

˙ŕ ḱ 1
py12k,x12kq

`

pᾱx´βuyqr̀ ḱ 1pαy`β̄vxqŕ ḱ 1, xŕ ḱ 1yr̀ ḱ 1˘

“

ˆ

4D
Npbq

˙r´k´1
py12k, x12kqpyr´k´1xr`k´1, xr´k´1yr`k´1q ¨ C

“
p4Dqr´k´1

Npbqr´k´1
` 2r´2
r´k´1

˘ ¨ C ,

where C is the coefficient of the monomial yr´k´1xr`k´1 in
pᾱx ´ βuyqr`k´1pαy ` β̄vxqr´k´1. The pairings in the second to last line
are the natural ones on Sym2kH1pE1q and Sym2r´2H1pEq induced from
the pairings on the full tensor algebras. For example, Sym2r´2H1pEq has
a natural pairing coming from the cup product p , q on H1pEq:

pv1 b ¨ ¨ ¨ b v2r´2q ˆ pw1 b ¨ ¨ ¨ b w2r´2q ÞÑ
1

p2r ´ 2q!
ÿ

σPS2r´2

2r´2
ź

i“1
pvi, wσpiqq.
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In particular, pxayb, xcydq “ 0 unless a “ d and b “ c, and

pxayb, yaxbq “
a!b!

pa` bq! “
ˆ

a` b

a

˙´1
.

We have also used that on Sym2r´2H1pEq b Sym2kH1pE1q we have
pub v, w b zq “ pu,wqpv, zq.
To compute the value of C, note that in general, the coefficient of xm`2k

in

pax` bqm`2kpcx` dqm

is equal to a2kpad ´ bcqmHm,k

´

ad`bc
ad´bc

¯

. This is proved using the method
of [39, 3.3.3]. Applying this to the situation at hand, we find that

C “ ᾱ2kNpbqr´k´1Hr´k´1,k

ˆ

1´ 2Npβjq
Npbq

˙

.

Plugging this in, we obtain the desired expression for the pairing on the
special fiber. �

For each prime q, define xx, Tmx̄ayq “
ř

v|qxx, Tmx̄
ayv.

Proposition 5.4. — Assume that pm,Nq “ 1, rApmq “ 0 and that
N ą 1. Then

χpāq´1
ÿ

q‰p

xx, Tmx̄
ayq “ ´u2 p4|D|mq

r´k´1

Dk ¨
` 2r´2
r´k´1

˘

ˆ
ÿ

0ănăm|D|N

σApnqrA,χ pm|D| ´ nNqHr´k´1,k

ˆ

1´ 2nN
m|D|

˙

,

with σApnq defined as in Corollary 3.6.

Proof. — This type of sum arises from Proposition 5.2 exactly as in [24,
II.4.17] and [14], so we omit the details. The main new feature here is that
each b “ α ` βj P Ra of degree m is weighted by ᾱ`, by the previous
proposition. Thus the numbers rApjq, with j “ m|D| ´ nN , and which
in [24, II.4.17] are simply counting the number of such b, become non-
trivial sums of the form

ÿ

cĂOK

rcs“A´1D
Nmpcq“j

ᾱ`.
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Here, α P d´1a and c “ pαqda´1 (see [14, p. 265]). Rewriting this sum,
we obtain

ÿ

cĂOK

rcs“A´1D
Nmpcq“j

χ̄pcad´1q “
χpāq

χpdq
¨

ÿ

cĂOK

rcs“A´1D
Nmpcq“j

χpc̄q “
χpāq

Dk
¨
ÿ

cĂOK

rcs“A
Nmpcq“j

χpcq “
χpāq

Dk
rA,χpjq.

Multiplying by χpāq´1, we get the desired result. �

We define

Bσm “ mr´k´1

m|D|
N
ÿ

n“1
pp,nq“1

rA,χpm|D| ´ nNqσApnqHr´k´1,k

ˆ

1´ 2nN
m|D|

˙

Cσm “ mr´k´1

m|D|
N
ÿ

n“1
rA,χpm|D| ´ nNqσApnqHr´k´1,k

ˆ

1´ 2nN
m|D|

˙

Up to a constant, the Bσm appear as coefficients of the derivative of the
p-adic L-function defined earlier and Cσm contributes to the height of our
generalized Heegner cycle. Just as in [24, I.6.7], we wish to relate the Bσm
to the Cσm.
Let Up be the operator defined by Cσm ÞÑ Cσmp and similarly for Bσm. For

a prime p of K above p, we write σp for Frobppq P GalpH{Kq. We will also
let σp be the operator Cσm ÞÑ C

σσp
m .

Proposition 5.5. — Suppose p ą 2 is a prime which splits in K and
that χ is an unramified Hecke character of K of infinity type p`, 0q with
` “ 2k. Then

ź

p|p

`

Up ´ p
r´k´1χpp̄qσp

˘2
Cσm “

`

U4
p ´ p

2r´2U2
p

˘

Bσm.

Proof. — The proof follows [28, Proposition 3.20], which is the case r “ 1
and ` “ k “ 0. We first generalize [28, Lemma 3.11] and write down
relations between the various rA,χp´q.

Lemma 5.6. — Set rA,χptq “ 0 if t P QzN. For all integers m ą 0, we
have

(1) rA,χpmpq ` p
`rA,χpm{pq “ χpp̄qrAp,χpmq ` χppqrAp̄,χpmq.

(2) rA,χpmp
2q ` p2`rA,χpm{p

2q “ χpp̄2qrAp2,χpmq ` χpp2qrAp̄2,χpmq if
p|m.
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(3) rA,χpmp
2q´p`rA,χpmq “ χpp̄2qrAp2,χpmq`χpp

2qrAp̄2,χpmq if p - m.
(4) If n “ n0p

t with p ffl n0, then σApnq “ pt ` 1qσA,tpn0q, where
σA,t “ σApt “ σAp̄t .

(5) σAb2pnq “ σApnq for any ideal b.

Proof. — Note that every integral ideal a in A of norm mp is either of
the form a1p with a1 P Ap̄ of norm m or it is of the form a1p̄ with a1 P Ap

of norm m. Moreover, an ideal of norm mp which can be written as such a
product in two ways is necessarily the product of an integral ideal in A of
norm m{p with ppq. The first claim now follows from the fact that

rA,χptq “
ÿ

aĂO
aPA

Npaq“t

χpaq,

and that χpppqq “ p`. Parts (2) and (3) follow formally from (1). (4) is
proven in [28] and (5) is clear from the definition. �

Going back to the proof of Proposition 5.5, the LHS is equal to

Cσmp4 ´ 2pr´k´1
´

χpp̄qC
σσp

mp3 ` χppqC
σσp̄

mp3

¯

` p2pr´k´1q
´

χpp̄q2C
σσp2

mp2 ` 4p`Cσmp2 ` χppqC
σσp̄2

mp2

¯

´ 2p3pr´k´1q`` `χpp̄qCσσp
mp ` χppqC

σσp̄
mp

˘

` p4pr´1qCσm.

In the following we write vppq for the p-adic valuation of an integer n, and
n “ n0p

vppq. For the sake of brevity we also set rApu, vq “ rA,χpu|D|´vNq

for integers u and v and Hpxq “ Hr´k´1,kpxq. Then by the lemma, the
LHS above is equal to

m|D|{N
ÿ

n“1
pvpnq ` 1qpmp4qr´k´1Mpnq,
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where Mpnq equals

rApmp
4, nqσA,vpnqpn0qH

ˆ

1´ 2nN
mp4|D|

˙

´ 2
“

rApmp
4, pnq ` p`rA

`

mp2, n{p
˘‰

σA,vpnq`1pn0qH

ˆ

1´ 2nN
mp3|D|

˙

`

«

rApmp
4, p2nq `

#

p2`rA
`

m,n{p2˘` 4p`rApmp
2, nq if p|n

3p`rApmp
2, nq if p ffl n

ff

ˆ σA,vpnqpn0qH

ˆ

1´ 2nN
mp2|D|

˙

´ 2p`
“

rApmp
2, pnq ` p`rApm,n{pq

‰

σA,vpnq`1pn0qH

ˆ

1´ 2nN
mp|D|

˙

` p2`rApm,nqσA,vpnqpn0qH

ˆ

1´ 2nN
m|D|

˙

.

Grouping in terms of the n0 which arise in this sum, we find that the LHS
is equal to

ÿ

pn0,pq“1

ÿ

t

σA,tpn0qAt

where At equals

pmp4qr´k´1rApmp
4, ptn0q

«

t`1´2t`
#

t´1 if tě 1
0 if t“ 0

ff

H

ˆ

1´ 2n0p
tN

mp4|D|

˙

`pmp2qr´k´1p2r´2rApmp
2, ptn0q

«

´2pt`2q`
#

4pt`1q´2t if tě 1
3 if t“ 0

ff

ˆH

ˆ

1´ 2n0p
tN

mp2|D|

˙

`mr´k´1p4r´4rApm, p
tn0qrt`3´2pt`2q` t`1sH

ˆ

1´ 2n0p
tN

m|D|

˙

.

So At “ 0 unless t “ 0, and we conclude that the LHS is equal to pU4
p ´

p2r´2U2
p qB

σ
m, as desired. �

6. Ordinary representations

The contributions to the p-adic height xzf , zA
f,χ̄y coming from places v|p

will eventually be shown to vanish. The proof is as in [24] (though see
Section 8), where the key fact is that the local p-adic Galois representation
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Vf attached to f is ordinary. We recall this notion and prove that the Galois
representation Vf,A,` “ Vf b κ`H

`pĀ`,Qpqpkq is ordinary as well.

Definition. — Let F be a finite extension of Qp. A p-adic Galois rep-
resentation V of GF “ GalpF̄ {F q is ordinary if it admits a decreasing
filtration by subrepresentations

¨ ¨ ¨F iV Ą F i`1V Ą ¨ ¨ ¨

such that
Ť

F iV “ V ,
Ş

F iV “ 0, and for each i, F iV {F i`1V “ Aipiq,
with Ai unramified.

Recall we have defined ε1 “ εWκ` with

κ` “

»

–

˜?
D ` r

?
Ds

2
?
D

¸b`

`

˜?
D ´ r

?
Ds

2
?
D

¸b`
fi

fl ˝

ˆ

1´ r´1s
2

˙b`

.

Theorem 6.1. — Let f P S2rpΓ0pNqq be an ordinary newform and let
Vf be the 2-dimensional p-adic Galois representation associated to f by
Deligne. Let A{H be an elliptic curve with CM by OK and assume p splits
in K and A has good reduction at primes above p. For any ` “ 2k ě 0, set
W “ κ`H

`pĀ`,Qpqpkq. Then for any place v of H above p, Vf,A,` “ Vf bW

is an ordinary p-adic Galois representations of GalpH̄v{Hvq.

Proof. — First we recall that Vf is ordinary. Indeed, Wiles [38] proves
that the action of the decomposition group Dp on Vf is given by

ˆ

ε1 ˚

0 ε2

˙

with ε2 unramified. Since, detVf is χ2r´1
cyc , we have ε1 “ ε´1

2 χ2r´1
cyc . Thus,

the filtration

F 0Vf “ Vf Ą F 1Vf “ F 2r´1Vf “ ε1 Ą F 2rVf “ 0,

shows that Vf is an ordinary GalpQ̄p{Qpq-representation and hence an or-
dinary GalpH̄v{Hvq-representation as well. Next we describe the ordinary
filtration on (a Tate twist of) W .

Proposition 6.2. — Write ppq “ pp̄ as ideals in K. Then the p-adic
representation M “ κ`H

`
etpĀ

`,Qpqp`q of GalpH̄v{Hvq has an ordinary fil-
tration

F 0M “M Ą F 1M “ F `M Ą F ``1M “ 0.

Proof. — The theory of complex multiplication associates to A an alge-
braic Hecke character ψ : AˆH Ñ Kˆ of type Nm : Hˆ Ñ Kˆ such that
for any uniformizer πv at a place v not dividing p or the conductor of A,
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ψpπvq P K – EndpAq is a lift of the Frobenius morphism of the reduction
Av at v. The composition

tp : AˆH
Nm
ÝÑ AˆK Ñ pK bQpqˆ

agrees with ψ on Hˆ, giving a continuous map

ρ1 “ ψt´1
p : AˆH{H

ˆ Ñ pK bQpqˆ.

Since the target is totally disconnected, this factors through a map

ρ : Gab
H Ñ pK bQpqˆ.

By construction of the Hecke character (and the Chebotarev density theo-
rem), the action of GalpH̄{Hq on the rank 1 pK b Qpq-module TpA b Qp
is given by the character ρ. Since p splits in K, we have

pK bQpqˆ – Kˆp ‘K
ˆ
p̄ “ Qˆp ‘Qˆp .

Now write ρ “ ρp ‘ ρp̄, where ρp and ρp̄ are the characters obtained by
projecting ρ onto Kˆp and Kˆp̄ .

Lemma 6.3. — Let χcyc : GalpH̄v{Hvq Ñ Qˆp denote the cyclotomic
character and consider ρp and ρp̄ as representations of GalpH̄v{Hvq. Then
ρpρp̄ “ χcyc and ρp̄ is unramified.

Proof. — The non-degeneracy of the Weil pairing shows that
Ź2

TpA –

Zpp1q. It then follows from the previous discussion that ρpρp̄ “ χcyc. That
ρp̄ is unramified follows from the fact that tp̄pHvq “ 1 and v is prime to the
conductor of ψ. Indeed, the conductor of A is the square of the conductor
of ψ [13], and A has good reduction at p. �

Remark. — Let A{OH be the Néron model of A{H. Since Arp̄ns is
étale, it follows that the p̄-adic Tate module Vp̄A is unramified at v. We
can therefore identify ρp – VpA and ρp̄ “ Vp̄A. One can also see this from
the computation in equation 4.1.

Lemma 6.4. — As GalpH̄v{Hvq-representations,

H1
etpĀ,Qpqp1q – ρp ‘ ρp̄

and
M “ κ`H

`
etpĀ

`,Qpqp`q – ρ`p ‘ ρ
`
p̄.

Proof. — The first claim follows from the fact that

TpAbQp – H1
etpĀ,Qpqp1q.

Fix an embedding ι : EndpAqãÑK, which by our choices, induces an embed-
ding EndpAqãÑQp. By the definition of ρ, ρp is the subspace ofH1

etpĀ,Qpqp1q
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on which α P EndpAq acts by ιpαq, whereas on ρp̄, α acts as ῑpαq. The sec-
ond statement now follows from the Kunneth formula and the definition
of κ`. �

Now set F 0M “ M , F 1M “ F `M “ ψ`, and F ``1M “ 0. By the
lemmas above, this gives an ordinary filtration of M and proves the propo-
sition. �

Now to prove the theorem. We have specified ordinary filtrations F iVf
and F iM above. A simple check shows that

F ipVf bMq “
ÿ

p`q“i

F pVf b F
qM

is an ordinary filtration on Vf bM . Since Vf,A,` “ Vf bW “ pVf bMqp´kq

and Tate twisting preserves ordinarity, this proves Vf,A,` is ordinary. �

Remark. — Another way to obtain the ordinary filtration on M is to
use the fact that M is isomorphic to the p-adic realization of the motive
Mθ

ψ`
attached to the modular form θψ` of weight ``1. Since A has ordinary

reduction at p, θψ is an ordinary modular form, and it follows that θψ` is
ordinary as well. We may therefore apply Wiles’ theorem again to obtain
an ordinary filtration on W .

Proposition 6.5. — The GalpH̄{Hq representation Vf,A,` “ Vf bW

satisfies V ˚f,A,`p1q – Vf,A,`.

Proof. — Recall that V ˚f p1q – Vf , so we need to show that W˚ – W .
This follows from the two lemmas above. �

7. Proof of Theorem 1.1

In what follows, normalized primitive forms fβ P S2rpΓ0pNqq will be
indexed by the corresponding Q-algebra homomorphisms β : T Ñ Q̄. We
let β0 be the homomorphism corresponding to our chosen newform f . If
A P PicpOKq, then

FA :“
ÿ

β

xzβ,χ, z
A
β,χ̄yfβ

is a cusp form in S2rpΓ0pNq;Qppχqq. Indeed, for pm,Nq “ 1, we have

χpāqampFAq “
ÿ

β

xzβ , z̄
a
βyβpTmq “ xz, Tmz̄

ay “ xx, Tmx̄
ay P Qp,

because the Hecke operators are self-adjoint with respect to the height
pairing. If rApmq “ 0, then we have the decomposition

ampFAq “ cσm ` d
σ
m
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where

cσm “ χpāq´1
ÿ

vfflp

xx, Tmx̄
ayv, dσm “ χpāq´1

ÿ

v|p

xx, Tmx̄
ayv,

and the sums are over finite places of H.
Both sides of the equation in Theorem 1.1 depend linearly on a choice

of arithmetic logarithm `K : AˆK{Kˆ Ñ Qp. By Theorem 4.9, it suffices to
proves the main theorem for cyclotomic `K , i.e. `K “ `K ˝τ . As cyclotomic
logarithms are unique up to scalar we only need to consider the case `K “
`Q˝N. Thus, `K “ logp ˝λ, where λ : GpK8{Kq Ñ 1`pZp is the cyclotomic
character. As before, we write λ “ λ̃ ˝N, where λ̃ : Zˆp Ñ 1` pZp is given
by λ̃pxq “ xxy´1.
By definition,

L1ppf b χ,1q “
d

ds
Lppf b χ, λ

sq

ˇ

ˇ

ˇ

ˇ

s“0
.

Also by definition,

Lppf b χ, λ
sq “ p´1qr´1Hppfq

ˆ

D

´N

˙ˆ

1´ C
ˆ

D

C

˙

λspCq´1
˙´1

ˆ

ż

GpHp8 pµp8 q{Kq

λsdΨ̃C
f,1,1

“ p´1qrHppfq

ˆ

1´ C
ˆ

D

C

˙

λ̃´2spCq

˙´1

ˆ

ż

GpHp8 pµp8 q{Kq

λsdΨ̃C
f,1,1,

where C is an arbitrary integer prime to N |D|p. The measure Ψ̃C
f,1,1 is

given by:

Ψ̃C
f,1,1pσpmod pnq, τpmod pmqq “ Lf0pΨ̃C

A,1papmod pmqqq

where a corresponds to the restriction of τ under the Artin map and σ

corresponds to rAs P PicpOpnq. We have

Lppf b χqpλ
sq “

p´1qrHppfq

ˆ

1´ C
ˆ

D

C

˙

xCy2s
˙´1

Lf0

»

–

ÿ

APPicpOKq

ż

Zˆp
xxy´sdΨ̃C

A,1

fi

fl .
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Using logxxy “ log x, we compute

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

ˆˆ

1´ C
ˆ

D

C

˙

xCy2s
˘´1

ż

Zˆp
xxy´sdΨ̃C

A

¸

“

ˆ

1´ C
ˆ

D

C

˙˙´1 ż

Zˆp
log x dΨ̃C

A ` p˚q

ż

Zˆp
dΨ̃C

A

“

ˆ

1´ C
ˆ

D

C

˙˙´1 ż

Zˆp
log x dΨ̃C

A

The integral
ş

Zˆp
dΨ̃C

A vanishes because by Corollary 2.5, Lppf b χqpλq “ 0
for all anticyclotomic λ, in particular for λ “ 1.
If we set

Gσ “ p´1qr
ż

Zˆp
logp dΨ̃A P M̄2rpΓ0pNp

8q;Qppχqq,

then using the identity
ż

Zˆp
λpβq dΨ̃C

A “

ż

Zˆp
λpβq ´ C

ˆ

D

C

˙

λpC´2βq dΨ̃A,

we obtain
L1ppf b χ,1q “ ´Hppfq

ÿ

σPGpH{Kq

Lf0pGσq.

Define the operator

F “
ź

p|p

`

Up ´ p
r´k´1χppqσp̄

˘2
.

Putting together Corollary 3.6 and Propositions 5.4 and 5.5, we obtain

Proposition 7.1. — If p|m, pm,Nq “ 1 and rApmq “ 0, then

cσm|F “ p´1qk`1 p4|D|qr´k´1
u2ampGσq

ˇ

ˇ

ˇ

ˇ

`

U4
p ´ p

2r´2U2
p

˘

.

We define the p-adic modular form

Hσ “ FA|F ` p´1qk p4|D|qr´k´1
u2Gσ

ˇ

ˇ

ˇ

ˇ

`

U4
p ´ p

2r´2U2
p

˘

.

By construction, when p|m, pm,Nq “ 1 and rApmq “ 0, we have

ampHσq “ dσm|F “ χpāq´1
ÿ

v|p

xx, Tmx̄
ayv|F .

Proposition 7.2. — Define the operator

F 1 “ pUp ´ σpqpUpσp ´ p2r´2qpUp ´ σp̄qpUpσp̄ ´ p
2r´2q.

Then Lf0pHσ|F 1q “ 0.
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Proof. — The proof should be exactly as in [24, II.5.10], however the
proof given there is not correct. In the next section we explain how to
modify Nekovář’s argument to prove the desired vanishing. For our purposes
in this section, the important point is that this modified proof goes through
if we replace the representation Vf,A,0 “ Vf (i.e. the ` “ 0 case which
Nekovář considers) with our representation Vf,A,` “ Vf b W , where W
corresponds to a trivial local system. Indeed, the proof works “on the curve”
and essentially ignores the local system. The only inputs specific to the local
system are two representation-theoretic conditions: it suffices to know that
the representation Vf,A,` is ordinary and crystalline. These follow from
Theorems 6.1 and 4.3, respectively. �

It follows that

Lf0

`

FA|FF 1
˘

“ p´1qk`1 p4|D|qr´k´1
u2Lf0

ˆ

Gσ

ˇ

ˇ

ˇ

ˇ

`

U4
p ´ p

2r´2U2
p

˘

F 1
˙

.

Since Lf0 ˝ Up “ αppfqLf0 , we can remove F 1 from the equation above;
we may divide out the extra factors that arise as they are non-zero by the
Weil conjectures. Summing this formula over σ P GalpH{Kq, we obtain

Lf0pfq
ź

p|p

ˆ

1´ χppqpr´k´1

αppfq

˙2
ÿ

σPGalpH{Kq
xzf , z

A
f,χ̄y

“ p´1qk p4|D|qr´k´1
u2Hppfq

´1
ˆ

1´ p2r´2

αppfq2

˙

L1ppf b χ,1q.

Note that the operators σp and σp̄ (in the definition of F) permute the
various xzf , zA

f,χ̄y as A ranges through the class group. So after summing
over GalpH{Kq, these operators have no effect and therefore do not show
up in the Euler product in the left hand side.(1) By Hida’s computation [24,
I.2.4.2]:

ˆ

1´ p2r´2

αppfq2

˙

“ HppfqLf0pfq,

so we obtain

L1ppf b χ,1q “ p´1qk
ź

p|p

ˆ

1´ χppqpr´k´1

αppfq

˙2 ř

APPicpOKq
xzf , z

A
f,χ̄y

p4|D|qr´k´1
u2

.

(1)This is unlike what happens in [24]. The difference stems from the fact that we
inserted the Hecke character into the definition of the measures defining the p-adic L-
function.
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By equation (4.3), this equals

p´1qk
ź

p|p

ˆ

1´ χppqpr´k´1

αppfq

˙2 hxzf,χz
A
f,χ̄y

p4|D|qr´k´1
u2

proves Theorem 1.1.
Proof of Theorem 1.2. — We now assume χ “ ψ` as in Section 1.3. Re-

call that the cohomology classes zf and z̄f live in H1
f pH,Vf,A,`q. Recall also

Vf,A,` is the 4-dimensional p-adic realization of the motiveMpfqHbMpχHq
over H with coefficients in Qpfq. Using Remark 4.1, we have a motive
MpfqK bMpχq over K with coefficients in Qpf, χq descending MpfqH b
MpχHq b Qpχq. The p-adic realization of this motive over K is what we
called Vf,χ.
Thus we may think of the classes zf and z̄f inH1

f pH,Vf,A,`q–H
1pH,Vf,χq.

Define
zKf “ corH{Kpzf q and z̄Kf “ corH{Kpz̄f q

in H1
f pK,Vf,χq.

Lemma 7.3.
resH{KpzKf q “ hzf,χ and resH{Kpz̄Kf q “ hzf,χ̄.

Proof. — Note that there is a natural action of GalpH{Kq onH1pH,Vf,χq,
since Vf,χ is a GK-representation. Since res ˝ cor “ Nm, it suffices to show
that for each σ P GalpH{Kq, zσf “ zA

f,χ and z̄σf “ zA
f,χ̄, where A corresponds

to σ under the Artin map. Recall that

zA
f,χ “ χpaq´1Φf pεBεY aq and zA

f,χ̄ “ χpāq´1Φf pεB ε̄Y aq ,

for any ideal a in the class of A.
To prove zσf “ zA

f,χ, we first describe explicitly the action of GalpK̄{Kq
on the subspace εVf,A,` Ă Vf,A,`, after identifying the spaces Vf,A,` and
Vf,χ. For each σ P GalpK̄{Kq, we have maps

ε`H
`pĀ`,Qpq

σ˚
ÝÑ εσ`H

`pAσ
`
,Qpq

χpaq´1φ`˚a
ÝÝÝÝÝÝÝÑ ε`H

`pĀ`,Qpq,

which induces an action of GK on εVf,A,` “ VfbεH
`pĀ`,Qppkqq. By defini-

tion ofMpχq, this agrees with the action of GK on Vf,χ. Now the argument
in the proof of Lemma 4.7 shows that zσf “ zA

f,χ. A similar argument works
for z̄σf . �

By Lemma 7.3, resH{KpzKf,χq “ hzf,χ and resH{Kpz̄Kf q “ hzf,χ̄. It follows
that

(7.1)
@

zKf , z̄
K
f

D

K
“ h xzf,χ, zf,χ̄yH .
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Now assume that L1ppfbχ, `K ,1q ‰ 0. By Theorem 1.1 and (7.1), the co-
homology classes zKf and z̄Kf are non-zero, giving two independent elements
ofH1

f pK,Vf,χq. This proves one inequality in Perrin-Riou’s conjecture (1.1).
The other inequality follows from forthcoming work of Elias [11] con-

structing an Euler system of generalized Heegner classes and extending
the methods of Kolyvagin and Nekovář in [22] to our setting (see also [4,
Theorem B]). �

8. Local p-adic heights at primes above p

The purpose of this last section is to fix the proof of [24, II.5.10] on
which both Nekovář’s Theorem A and our main theorem rely. In the first
two subsections we gather some facts about relative Lubin-Tate groups and
ring class field towers, and in 8.3 we explain how to modify the proof in [24].
We have isolated and fixed only the two parts of [24, II.5] with a mistake,
instead of rewriting the entire argument of that section.

8.1. Relative Lubin-Tate groups

The reference for this material is [35, §1].
Let F {Qp be a finite extension and let L be the unramified extension of

K of degree δ ě 1. Write mF and mL for the maximal ideals in OF and
OL and write q for the cardinality of OF {mF . We let φ : L Ñ L be the
Frobenius automorphism lifting xÑ xq and normalize the valuation on F
so that a uniformizer has valuation 1. Let ξ P F be an element of valuation
δ and let f P OLrrXss be such that

fpXq “ $X `OpX2q and fpXq ” Xq mod mL,

where $ P OL satisfies NmL{F p$q “ ξ. Note that $ exists and is a uni-
formizer, since NmL{F pL

ˆq is the set of elements in Fˆ with valuation in
δZ.

Theorem 8.1. — There is a unique one dimensional formal group law
Ff P OLrrX,Y ss for which f is a lift of Frobenius, i.e. for which f P

HompFf , Fφf q. Ff comes equipped with an isomorphism OF – EndpFf q
denoted a ÞÑ rasf , and the isomorphism class of Ff {OL depends only on ξ
and not on the choice of f .
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Now let M be the valuation ideal of Cp and let Mf the M -valued points
of Ff . For each n ě 0, the mnF -torsion points of Ff are by definition

Wn
f “ tω PMf : rasf pωq “ 0 for all a P mnF u

Proposition 8.2. — For each n ě 1, set Lnξ “ LpWn
f q. Then

(1) Lnξ is a totally ramified extension of L of degree pq ´ 1qqn´1 and is
abelian over F .

(2) There is a canonical isomorphism pOF {m
n
F q
ˆ – GalpLnξ {Lq given

by u ÞÑ σu, where σupωq “ ru´1sf pωq for ω PWn
f .

(3) Both the field Lnξ and the isomorphism above are independent of
the choice of f .

(4) The map u ÞÑ σu is compatible with the local Artin map rF : Fˆ Ñ
GalpF ab{F q.

(5) The field Lnξ corresponds to the subgroup ξZ ¨ p1`mnF q Ă Fˆ via
local class field theory.

Writing Lξ “
Ť

n L
n
ξ , we see that GalpLξ{Lq – OˆF and the group of

universal norms in Fˆ coming from Lξ is ξZ. Moreover, we have an iso-
morphism GalpLξ{Lq Ñ OˆF who’s inverse is rF |Oˆ

F
composed with the

restriction GalpF ab{F q Ñ GalpLξ{F q.

8.2. Relative Lubin-Tate groups and ring class field towers

Now let v be a place of H above p and above the prime p of K. For each
j ě 1, write Hj,w for the completion of the ring class field Hpj of conductor
pj at the unique place w “ wpjq above v. In particular, H0,v “ Hv. If
δ is the order of p in PicpOKq, then Hv is the unramified extension of
Kp – Qp of degree δ. Since p splits in K, Hj,w{Hv is totally ramified of
degree pp ´ 1qpj´1{u, where recall u “ #OˆK{2. Moreover, GalpHj,w{Hvq

is cyclic and Hj,w is abelian over Qp. We call H8 “
Ť

j Hj,w the local
ring class field tower; it contains the anticyclotomic Zp-extension of Kp. To
ease notation and to recall the notation of the previous section, we write
L “ Hv.

Proposition 8.3. — Write pδ “ pπq for some π P OK . Then H8 is
contained in the field Lξ attached to the Lubin-Tate group relative to the
extension L{Qp with parameter ξ “ π{π̄ in Kp – Qp. If OˆK “ t˘1u, then
H8 “ Lξ.
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Remark. — Note that there are other natural Lubin-Tate groups rela-
tive to L{Qp coming from the class field theory of K, namely the formal
groups of elliptic curves with complex multiplication by OK . These formal
groups will have different parameters however, as can be seen from the
discussion in [35, II.1.10].

Proof. — By p5q of Proposition 8.2, it is enough to prove that H8 is the
subfield of Qab

p corresponding to the subgroup pπ{π̄qZ ¨µ2
K under local class

field theory. First we show that pπ{π̄q is norm from every Hj,w. Using the
compatibility between local and global reciprocity maps, this will follow if
the idele (with non-trivial entry in the p slot)

p. . . 1 , 1 , π{π̄ , 1, 1 , . . .q P AˆK
is in the kernel of the reciprocity map

rj : AˆK{K
ˆ Ñ GalpKab{Kq Ñ GalpHpj {Kq,

for each j. Since the kernel of rj is KˆAˆK,8Ôˆpj , it is enough to show that

p. . . 1{π , 1{π , 1{π̄ , 1{π , 1{π , . . .q P Ôˆpj .

This is clear at all primes away from p since π is a unit at those places. At
p, it amounts to showing that p1{π̄, 1{πq P Kp ˆKp̄ lands in the diagonal
copy of Zp under the identification Kp ˆ Kp̄ – Qp ˆ Qp, and this is also
clear.
Since L{Qp is unramified of degree δ and ξ “ π{π̄ has valuation δ, it

remains to prove that the only units in Qp which are universal norms for
the tower H8{Qp are those in µ2

K . But by the same argument as above,
the only way α P Zˆp can be a norm from every Hj,w is if αζ “ ζ̄ for some
global unit ζ P K. But then ζ is a root of unity and α “ ζ´1ζ̄ “ ζ´2, so α
is in µ2

K . Conversely, it’s clear that each ζ P µ2
K is a universal norm. �

Remark. — Since we are assumingK has odd discriminant, the equality
H8 “ Lξ holds unless K “ Qpµ3q. For ease of exposition we will assume
K ‰ Qpµ3q for the rest of this section; the modifications needed for the
case K “ Qpµ3q are easy enough.

We will need one more technical fact about the relative Lubin-Tate
group Ff cutting out H8. Let χξ : GalpL̄{Lq Ñ Zˆp , be the character
giving the Galois action on the torsion points of Ff . We let Qppχξq denote
the 1-dimensional Qp-vector space endowed with the action of GalpL̄{Lq
determined by χξ, and we denote by DcrispQppχξqq the usual filtered φ-
module contravariantly attached to the GalpL̄{Lq-representation Qppχξq
by Fontaine.
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Proposition 8.4. — The representation Qppχξq is crystalline and the
frobenius map on the 1-dimensional L-vector space DcrispQppχξqq is given
by multiplication by ξ.

Proof. — This is presumably well known, but with a lack of reference we
will verify this fact using [7, Prop. B.4]. There it is shown that Qppχξq is
crystalline if and only if there exists a homomorphism of tori χ1 : Lˆ Ñ Qˆp
which agrees with the restriction of χξ ˝ rL to OˆL . In that case, frobenius
on DcrispQppχξqq is given by multiplication by χξprLp$qq ¨ χ1p$q´1, where
$ is any uniformizer of L.(2) Combining (2) and (4) of Proposition 8.2 with
the commutativity of the following diagram

Lˆ
rL

ÝÝÝÝÑ GalpLab{Lq

Nm
§

§

đ

§

§

đ

res

Qˆp
rQp

ÝÝÝÝÑ GalpQab
p {Qpq,

we see that χ1 “ Nm´1 gives such a homomorphism, so the crystallinity
follows. Note that by construction χξ : GalpLab{Lq Ñ Zˆp factors through
a character χ̃ξ : GalpQab

p {Lq Ñ Zˆp . So if we choose $ to be such that
NmL{Qpp$q “ ξ, then

χξprLp$qq “ χ̃ξprQppNmp$qqq
“ χ̃ξprQppξqq “ 1.

Thus, the frobenius is given by multiplication by

χ1p$q´1 “ NmL{Qpp$q “ ξ .

�

8.3. Local heights at p in ring class field towers

The proofs of both [24, II.5.6] and [24, II.5.10] mistakenly assert thatHj,w

contains the j-th layer of the cyclotomic Zp-extension of Qp (as opposed
to the anticyclotomic Zp-extension). This issue first arises in the proofs
of [24, II.5.9] and [24, II.5.10]. We explain now how to adjust the proof
of [24, II.5.10]; similar adjustments may be used to fix the proof of [24,
II.5.9]. Our approach is in the spirit of Nekovář’s original argument, but
uses extra results from p-adic Hodge theory to carry the argument through.

(2)Note that we are using the contravariant Dcris, whereas [7] uses the covariant version.
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Recall the setting of [24, II.5.10]: x is the Tate vector corresponding to
our (generalized) Heegner cycle εBεY , and V “ H1

etpX̄0pNq, j0˚Aqp1q. We
have the Tate cycle

xf “
ÿ

mPS

cf,mTmx P ZpY0pNq, Hq bQp L,

a certain linear combination (with coefficients cf,m living in a large enough
field L) of Tmx such that

ΦT pxf q “ zf P H
1
f pH,V q bQp L.

Moreover, each m P S satisfies pm, pNq “ 1 and rpmq “ 0, where rpmq
is the number of ideals in K of norm m. To fix the proof of [24, II.5.10],
we prove the following vanishing result for local heights at primes v of H
above p.

Theorem 8.5. — For each j ě 1, let hσj P Zf pY0pNq, Hj,wq be a Tate
vector supported on a point yj P Y0pNq corresponding to an elliptic curve
Ej such that EndpEjq is the order in OK of index pj . Then

lim
jÑ8

xxf , NHj,w{Hv ph
σ
j qyv “ 0.

Proof. — Recall that Ej is a quotient of an elliptic curve E with CM
by OK by a (cyclic) subgroup of order pj which does not contain either
the canonical subgroup Erps or its dual Erp̄s. By the compatibility of local
heights with norms [24, II.1.9.1], we have

(8.1)
@

xf , NHj,w{Hv ph
σ
j q
D

v,`v
“
@

xf , h
σ
j

D

w,`w
,

where `w “ `v ˝ NHj,w{Hv . Recall that we are assuming now that `K “

logp ˝λ, where λ : GalpK8{Kq Ñ 1`pZp is the cyclotomic character. Thus
the local component `v : Hˆv Ñ Qp of `K is `v “ logp ˝NHv{Qp , and

`w “ logp ˝NHj,w{Qp .

We have seen that the ring class field tower H8 is cut out by a relative
Lubin-Tate group. In fact, it follows from the results in the previous sections
that Hj,w “ Ljξ, where L “ Hv and ξ “ π{π̄ as before. Let E be the mixed
extension used to compute the height pairing of xf and hσj (as in [24,
II.1.7]), and let Ew be its restriction to the decomposition group at w.
Assume that

Ew is a crystalline representation of GalpH̄j,w{Hj,wq.
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Then by definition of the local height, we have
@

xf , h
σ
j

D

w,`w
“ `wprwprEwsqq

“ logp
`

NHj,w{QpprwprEwsqq
˘

.

where rwprEwsq is an element of {OˆHj,w bZp Qp. In fact, the ordinarity of f
allows Nekovář to “bound denominators”; i.e. he shows

p´dj
@

xf , h
σ
j

D

w,`w
P logp

´

NHj,w{Qp

´

{OˆHj,w
¯¯

.

for some integer dj . Indeed, this follows from our assumption that Ew is
crystalline and the proofs in [24, II.1.10, II.5.10]; note thatH1

f pHj,w,Zpp1qq“
{OˆHj,w . Moreover, the dj are uniformly bounded as j varies. Nekovář’s proof
of this last fact does not quite work, but we fix this issue in Proposition 8.9
below. Let us write d “ supj dj . By Proposition 8.2, we have

p´d
@

xf , h
σ
j

D

w,`w
P logpp1` pjZpq Ă pjZp.

The theorem would then follow upon taking the limit as j Ñ8.
It therefore remains to show that Ew is crystalline. First we need a

lemma.

Lemma 8.6. — Let m P S and j be as above. Then the supports of Tmx
and bσpj are disjoint on the generic and special fibers of the integral model
X of X0pNq.

Proof. — Let z P Y0pNqpQ̄pq be in the support of Tmx and let y be the
Heegner point supporting the Tate cycle x. Thinking of these points as
elliptic curves via the moduli interpretation, there is an isogeny φ : y Ñ z

of degree prime to p since pp,mq “ 1. Recall p splits in K, so that y has
ordinary reduction ys at v. Since Endpyq – OK – Endpysq, y is a Serre-
Tate canonical lift of ys. As φ induces an isomorphism of p-divisible groups,
z is also a canonical lift of its reduction. On the other hand, the curve Ej
supporting hσj has CM by a non-maximal order of p-power index in OK

and is therefore not a canonical lift of its reduction. Indeed, the reduction
of Ej is an elliptic curve with CM by the full ring OK as it obtained by
successive quotients of ys by either the kernel of Frobenius or Verschiebung.
This shows that Tmx and bσpj have disjoint support in the generic fiber.
By [14, III.4.3], the divisors Tmny and yτ are disjoint in the generic fiber,

for any τ P GalpH{Kq. Since all points in the support of these divisors are
canonical lifts, the divisors must not intersect in the special fiber either.
But we saw above that the special fiber of Ej is a Galois conjugate of the
reduction of y, so Ej and Tmy are disjoint on the special fiber as well. �
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Next we note that Tmx is a sum
ř

di, where each di is supported on a
single closed point S of Y0pNq{Hj,w. Using norm compatibility once more
and base changing to an extension F{Hj,w which splits S, we may assume
that S P Y0pNqpFq.
It then suffices to show that the mixed extension E1w corresponding to

di and hσj is crystalline. Recall from [24, II.2.8] that this mixed extension
is a subquotient of

H1pX̄0pNq ´ S̄ rel T̄ , j0˚Aqp1q,

where T “ yj is the point supporting hσj . So it is enough to show that this
cohomology group is itself crystalline. Finally, this follows from combining
the previous lemma with the following result. �

Theorem 8.7. — Suppose F is a finite extension of Qp and let S, T P
Y0pNqpFq be points with non-cuspidal reduction and which do not intersect
in the special fiber. Then H1pX̄0pNq ´ S̄ rel T̄ , j0˚Aqp1q is a crystalline
representation of GF.

Remark. — Suppose F is a p-adic field andX{Spec OF is a smooth pro-
jective variety of relative dimension 2k ´ 1. If Y,Z Ă X are two (smooth)
subvarieties of codimension k which do not intersect on the special fiber,
then one expects that H2k´1pX̄F ´ ȲF rel Z̄F ,Qppkqq is a crystalline repre-
sentation of GF . The theorem above proves this for cycles sitting in fibers
of a map X Ñ C to a curve. The general case should follow from the
machinery developed in the recent preprint [9].

Proof. — Write V “ H1pX̄0pNq ´ S̄ rel T, j0˚Aqp1q. The sketch of the
proof is as follows. Faltings’ comparison isomorphism [12] identifiesDcrispVq
with the crystalline analogue of V, which we will refer to (in this sketch) as
H1

crispX´S rel T, j0˚Aq. The dimension of V is determined by the standard
exact sequences

(8.2) 0 Ñ H0pT̄ , j0˚Aqp1q Ñ VÑ H1pX̄ ´ S̄, j0˚Aqp1q Ñ 0

0 Ñ H1pX̄, j0˚Aqp1q Ñ H1pX̄ ´ S̄, j0˚Aqp1q Ñ H0pS̄, j0˚Aq Ñ 0

Similar exact sequences should hold in the crystalline theory (i.e. with
H1 replaced by H1

cris everywhere) since S and T reduce to distinct points
on the special fiber. Using the known crystallinity of H1pX̄, j0˚Aqp1q,
H0pT̄ , j0˚Aqp1q, and H0pS̄, j0˚Aq (the latter two because the fibers of
X Ñ XpNq above S and T have good reduction), we conclude that

dimQp V “ dimF0 H
1
crispX ´ S rel T, j0˚Aq,
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i.e. that V is crystalline. To turn this sketch into a proof, we need to say
explicitly what H1

crispX ´ S rel T, j0˚Aq is. Note that the usual crystalline
cohomology is not a good candidate because it is not usually finite dimen-
sional unless the variety is smooth and projective.
Let us describe in more detail the comparison isomorphism which we

invoked above. The main result of [12] concerns the cohomology of a smooth
projective variety with trivial coefficients. In our setting, however, we deal
with cohomology of an affine curve with partial support along the boundary
and with non-trivial coefficients. The proof of the comparison isomorphism
in this more complicated situation is sketched briefly in [12] as well, but we
follow the exposition [27], where the modifications we need are explained
explicitly and in detail.

Let R be the ring of integers of F and set V “ Spec pRq. Let X{V be a
smooth projective curve and let S, T P XpV q be two rational sections which
we think of as divisors on X. We assume that S and T do not intersect,
even on the closed fiber. Set D “ S Y T and Xo “ X ´D. The divisor D
defines a log structure MX on X and we let pY,MY q be the closed fiber of
pX,MXq. We use the log-convergent topos ppY,MY q{V qconv to define the
‘crystalline’ analogue of V. There is an isocrystal JS on ppY,MY q{V qconv
which is étale locally defined by the ideal sheaf of S; see [27, §13] for its
precise definition and for more regarding the convergent topos.

Theorem 8.8 (Faltings, Olsson). — Let L be a crystalline sheaf on Xo
F

associated to a filtered isocrystal pF,ϕF , F ilF q. Then there is an isomor-
phism

(8.3) BcrispV̄ q bF H
1pppY,MY q{V qconv, F b JSq

Ñ BcrispV̄ q bQp H
1pX̄ ´ S̄ rel T̄ , Lq.

As L “ j0˚A is crystalline [12, 6.3], we may apply this theorem in our
situation. Taking Galois invariants, we conclude that

DcrispVq “ H1pppY,MY q{V qconv, F b JSq .

To complete the proof of Theorem 8.7, it would be enough to know that
the convergent cohomology group DcrispVq sits in exact sequences analo-
gous to the standard Gysin sequences (8.2). These sequences hold in any
cohomology theory satisfying the Bloch-Ogus axioms, but unfortunately
convergent cohomology is not known to satisfy these axioms. On the other
hand, rigid cohomology does satisfy the Bloch-Ogus axioms [31]. So we
apply Shiho’s log convergent-rigid comparison isomorphism [36, 2.4.4] to
identify DcrispVq with H1

rigpY ´Ss rel Ts, j:Eq, for a certain overconvergent

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1171

isocrystal j:E which is the analogue of j0˚A on the special fiber. Here Ss
and Ts are the points on the special fiber. We have similar identifications
with rigid cohomology for each term appearing in the sequences (8.2), and
the corresponding short exact sequences of rigid cohomology groups are
exact. The crystallinity of V now follows from dimension counting. �

Remark. — Theorem 8.5 has two components: first one must bound
denominators and then one shows that the heights go to 0 p-adically. In
the argument above, the ordinarity of f was the crucial input needed to
bound denominators. We briefly explain the modifications need to fix the
proof of [24, II.5.9], where one pairs Heegner cycles of p-power conductor
with cycles in the kernel of the local Abel-Jacobi map (the higher weight
analogue of principal divisors). The fact that these cycles are Abel-Jacobi
trivial allows us to make a “bounded denominators” argument even without
an ordinarity assumption; see [24, II.1.9]. To kill the p-adic height, we
further note that the particular AJ-trivial cycles in the proof of II.5.9 are
again linear combinations of various Tnx, with rpnq “ 0. This lets us invoke
Lemme 8.6 and Theorem 8.7, as before.

As we alluded to in the proof of Theorem 8.5, the proof of [24, II.5.11]
again assumes that H8 contains the cyclotomic Zp-extension of Qp. To fix
the proof there, it is enough to prove the following proposition.

Proposition 8.9. — Let V be the Galois representation
H1

etpX̄0pNq, j0˚Aqp1q attached to weight 2r cusp forms. If we set H8 “
Ť

j Hj,w, then

H0pH8, V q “ 0.

Proof. — We follow Nekovář’s approach, but instead of using the cyclo-
tomic character we use the character χξ coming from the relative Lubin-
Tate group attached to H8, defined above. By Proposition 8.4, the GQp -
representation Qppχξq is crystalline and the frobenius on DcrispQppχξqq is
given by multiplication by ξ, where ξ is defined in Proposition 8.3.
Since V is Hodge-Tate, there is an inclusion of GalpH8{Hvq-represen-

tations
H0pH8, V q Ă ‘jPZH

0pHv, V pχ
j
ξqqpχ

´j
ξ q.

Indeed, H0pH8, V q has an action by GalpH8{Hq which we can break up
into isotypic parts indexed by characters χsξ, with s P Zp. But of these
characters, the only ones which are Hodge-Tate are those with s P Z, so we
obtain the inclusion above.
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So it suffices to show that for each j, H0pHv, V pχ
j
ξqqpχ

´j
ξ q “ 0. Tensoring

the inclusion Qp Ñ Bf“1
cris by V pχjξq, taking invariants, and then twisting

the resulting filtered frobenius modules by χ´jξ , we obtain

H0pHv, V pχ
j
ξqqpχ

´j
ξ q Ă DcrispV q

f“ξ´j .

As an element of C, ξ has absolute value 1. Since V appears in the odd de-
gree cohomology of the Kuga-Sato variety, [18] implies that DcrispV q

f“ξ´j

vanishes and the proposition follows. �

Finally, for completeness, we explain how Proposition 8.9 is used in the
proof of Proposition 7.2. Let X be the (generalized) Kuga-Sato variety over
Hv and let T be the image of the map

H2r`2k´1pX̄,Zppr ` kqq Ñ V “ H2r`2k´1pX̄,Qppr ` kqq.

Proposition 8.9 is used to infer the following fact, whose proof was left to
the reader in [24].

Proposition 8.10. — The numbers #H1pHj,w, T qtors are bounded as
j Ñ8.

Proof. — From the short exact sequence

0 Ñ T Ñ V Ñ V {T Ñ 0,

we have
pV {T qGj Ñ H1pGj , T q Ñ H1pGj , V q Ñ 0,

where Gj “ GalpH̄j,w{Hj,wq. As H1pGj , V q is torsion-free, we see that
pV {T qGj maps surjectively onto H1pGj , T qtors. An element of order pa in
pV {T qGj is of the form p´at for some t P T not divisible by p in T . We then
have σt´ t P paT for all σ P Gj . As V {T – pQp{Zpqn for some integer n, it
suffices to show that a is bounded as we vary over all elements of pV {T qGj
and all j.
Suppose these a are not bounded. Then we can find a sequence ti P T such

that ti R pT and such that σti ´ ti P papiqT for all σ P G8 :“ GalpH̄{H8q.
Here, apiq is a non-decreasing sequence going to infinity with i. Since T
is compact we may replace ti with a convergent subsequence, and define
t “ lim ti. We claim that t P H0pH8, V q. Indeed, for any i we have

σt´ t “ σpt´ tiq ´ pt´ tiq ` σti ´ ti.

For any n ą 0, we can choose i large enough so that pt ´ tiq P p
nT and

σti ´ ti P p
nT , showing that σt “ t. By Proposition 8.9, t “ 0, which

contradicts the fact that t “ lim ti and ti R pT . �
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