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p-ADIC HEIGHTS OF GENERALIZED HEEGNER
CYCLES

by Ariel SHNIDMAN (*)

ABSTRACT. — We relate the p-adic heights of generalized Heegner cycles to the
derivative of a p-adic L-function attached to a pair (f,x), where f is an ordinary
weight 2r newform and x is an unramified imaginary quadratic Hecke character
of infinity type (¢,0), with 0 < ¢ < 2r. This generalizes the p-adic Gross-Zagier
formula in the case £ = 0 due to Perrin-Riou (in weight two) and Nekovar (in
higher weight).

RisUME. —  Nous relions les hauteurs p-adiques des cycles de Heegner généra-
lisés & la dérivée d’une fonction L p-adique attachée & une paire (f, x), ot f est une
forme modulaire ordinaire de poids 2r et x est un caractére de Hecke non-ramifé
de type (¢,0), pour 0 < £ < 2r. Ceci généralise la formule de Perrin-Riou (en poids
deux) and Nekovai (poids plus élevé).

1. Introduction

Let p be an odd prime, N > 3 an integer prime to p, and f = > a,q" a
newform of weight 27 > 2 on X,(N) with a; = 1. Fix embeddings Q — C
and Q — Qp once and for all, and suppose that f is ordinary at p, i.e. the
coefficient a,, € Q,, is a p-adic unit. Building on work of Perrin-Riou [28],
Nekovar [24] proved a p-adic analogue of the Gross-Zagier formula [14] for
f along with any character C : Gal(H/K) — Q*. Here, K is an imaginary
quadratic field of odd discriminant D such that all primes dividing pN split
in K, and H is the Hilbert class field of K.

Keywords: algebraic cycles, modular forms, p-adic L-functions.

Math. classification: 11G40, 11G18.
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1118 Ariel SHNIDMAN

Nekovai’s formula relates the p-adic height of a Heegner cycle to the de-
rivative of a p-adic L-function attached to the pair (f,C). Together with
the Euler system constructed in [22], the formula implies a weak form of
Perrin-Riou’s conjecture [6, Conj. 2.7], a p-adic analogue of the Bloch-Kato
conjecture for the motive f® K [24, Theorem B]. The connection between
special values of L-functions and algebraic cycles is part of a very general
(conjectural) framework articulated in the works of Beilinson, Bloch, Kato,
Perrin-Riou, and others. Despite the fact that these conjectures can be for-
mulated for arbitrary motives, they have been verified only in very special
cases.

The goal of this paper is to extend the ideas and computations in [24] to
a larger class of motives. Specifically, we will consider motives of the form
f ® ©,, where

x:Ag/K* —C*
is an unramified Hecke character of infinity type (¢,0), with 0 < ¢ = 2k <
2r, and

acOk

is the associated theta series. The conditions on ¢ guarantee that the Hecke
character yo := Y N""* of infinity type (r + k,r — k) is critical in the
sense of [1, §4]. Note that L(f,xg"',0) = L(f, x,r + k) is the central value
of the Rankin-Selberg L-function attached to f®0©,. If we take £ = 0, then
X comes from a character of Gal(H/K), so we are in the situation of [24].
Our main result (Theorem 1.1) extends Nekovai’s formula to the case £ > 0
by relating p-adic heights of generalized Heegner cycles to the derivative of
a p-adic L-function attached to the pair (f,x). We now describe both the
algebraic cycles and the p-adic L-function needed to state the formula.

1.1. Generalized Heegner cycles

Let Y(N)/Q be the modular curve parametrizing elliptic curves with
full level N structure, and let £ — Y (V) be the universal elliptic curve
with level N structure. Denote by W = Wj,._5, the canonical non-singular
compactification of the (2r — 2)-fold fiber product of £ with itself over
Y (N) [33]. Finally, let A/H be an elliptic curve with complex multiplication
by Ok and good reduction at primes above p. We assume further that A
is isogenous (over H) to each of its Gal(H/K)-conjugates A% and that
A" =~ A, where 7 is complex conjugation. Such an A exists since K has
odd discriminant [13, §11]. Set X = Wg xgz A’, where Wy is the base

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1119

change to H. X is fibered over the compactified modular curve X (N)g,
the typical geometric fiber being of the form E?"~2 x A’ for some elliptic
curve E.

The (2r + 2k — 1)-dimensional variety X contains a rich supply of gen-
eralized Heegner cycles supported in the fibers of X above Heegner points
on Xo(N) (we view X as fibered over Xo(N) via X(N) — Xo(N)). These
cycles were first introduced by Bertolini, Darmon, and Prasanna in [1]. In
Section 4, we define certain cycles egeY and egéY in CHHk(X )k which sit
in the fiber above a Heegner point on Xo(N)(H), and which are variants
of the generalized Heegner cycles which appear in [2]. Here, CHT'+k(X VK
is the group of codimension r + k cycles on X with coefficients in K mod-
ulo rational equivalence. In fact, for each ideal a of K, we define cycles
epeY® and epeY® in CHTH“(X)K, each one sitting in the fiber above a
Heegner point. These cycles are replacements for the notion of Gal(H/K)-
conjugates of egeY and egeY . The latter do not exist as cycles on X, as X
is not (generally) defined over K. In particular, we have egeY 9% = egeY.

The cycles epeY® and egeY® are homologically trivial on X (Corol-
lary 4.2), so they lie in the domain of the p-adic Abel-Jacobi map

®:CH ™™ (X)ox — HY(H,V),

where V is the Gal(H /H)-representation H2 *2*~1(X Q,)(r + k). We will
focus on a particular 4-dimensional p-adic representation Vf 4, which ad-
mits a map

HZ2RH(X,Qp)(r + k) — Vi .

Vi ae is a Qu(f)-vector space, where Q,(f) is the field obtained by ad-
joining the coefficents of f. As a Galois representation, Vy 4, is ordinary
(Theorem 6.1) and is closely related to the p-adic realization of the motive
f ® O, (see Section 4). After projecting, one obtains a map

Oy : CHT+k(X)O,K - HI(H7 Vf»A,f)7

which we again call the Abel-Jacobi map. For any ideal a of K, define
2§ = @y(epeY?) and 2§ = Oy(epeY™?).
One knows that the image of ® lies in the Bloch-Kato subgroup

Hj(H,Viae) € H'(H, Vi)

(Theorem 4.3). If we fix a continuous homomorphism ( : Ax/K* — Q,,
then [23] provides a symmetric Q,(f)-linear height pairing

Ve t Hi(H Vi ag) x Hi(H,Via.) = Qu(f).

TOME 66 (2016), FASCICULE 3



1120 Ariel SHNIDMAN

We can extend this height pairing Q,-linearly to H(H, Vi a0)® Qp- The
cohomology classes X(a)_lz;‘ and )Z(u)_12; depend only on the class A of
a in the class group Pic(Ok), of size h = hi. We denote the former by z}‘}x
and the latter by Zﬁ)? Finally, set

1 A 1 A
Zfy = 7 Z zfy and  zpg = 7 Z Zf g
AEPiC(OK) AEPiC(OK)

both being elements of Hp(H, V) ® Q,. Our main theorem relates
(2fys 21,5005 tO the derivative of a p-adic L-function which we now de-
scribe.

1.2. The p-adic L-function

Recall, if f = > ang™ € M;(To(M),9) and g = > b,q" € M;(T'o(M), &),
then the Rankin-Selberg convolution is

L(f,9,8) = Lu(2s +2— j = §,9€) > anbun™>,

n=1

where
Lar(s,0€) = [ (1= wO@p)
pIM

Let K /K be the Z2-extension of K and let K, be the maximal abelian
extension of K unramified away from p. In Section 2, we define a p-adic
L-function L, (f®x)(\), which is a Q,-valued function of continuous char-
acters A : Gal(Ko,/K) — 1+ pZ,. The function L,(f ®yx) is the restriction
of an analytic function on Hom(Gal(K,/K), C)’), which is characterized by
the following interpolation property: if W : Gal(K,/K) — CJ is a finite
order character of conductor §, with Nf = p”, then

Ly(f® x)W) = CraW(N)XW(D)r(XW)Vp (f. X W)L(f, O35, 7 + k)
with

Crp— 2r—k—=Dlr+k—1)!
’ (4m)? o (F)f, on
and where a,(f) is the unit root of 22 — a,(f)z + p* 1, {f, f)n is the
Petersson inner product, D = (\/5) is the different of K, @X—W is the theta
series
OLw = Z XWV(a)g™e,
(a,f)=1

ANNALES DE L’INSTITUT FOURIER
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T(xW) is the root number for L(0,yy, s), and

()ZV_V)(]J) r—k—1 (XW) (p) r—k—1
VP(vaa W) = 1- 7N(p) 1- N(p) .
1;[)[ ( ap(f) ) ( ap(f) )

Recall we have fixed a continuous homomorphism fx : Ag/K* —
Qp. Thinking of i as a map Gal(Ky/K) — Qp, we may write {x =
p~"log, oA, for some continuous A : Gal(Ky/K) — 1+ pZ;, and some in-
teger n. The derivative of L, at the trivial character in the direction of £
is by definition

L(f®x,lk,1) = p‘"%Lp(f ® x)(A*) )

With these definitions, we can finally state our main result.

THEOREM 1.1. — If x is an unramified Hecke character of K of infinity
type (£,0) with 0 < £ = 2k < 2r, then

<1 B x(p)p’"’”)2 hzrx: 213000,
ap(f) u2 (4|D|)T7k71 ’

where h = h is the class number and u = %(’)IX(

L(f®x,lx,1) = (-D)*] |

plp

Remark. — Our assumption that A™ =~ A implies that the lattice corre-
sponding to A is 2-torsion in the class group. This is convenient for proving
the vanishing of the p-adic height in the anti-cyclotomic direction, but not
strictly necessary. One should be able to prove the theorem without this
assumption by making use of the functoriality of the height pairing to relate
heights on X to heights on X7, but we omit the details.

Remark. — When ¢ = 0 the cycles and the p-adic L-function simplify
to those constructed in [24], and the main theorem becomes Nekovai’s
formula, at least up to a somewhat controversial sign. It appears that a sign
was forgotten in [24, 11.6.2.3], causing the discrepancy with our formula and
with Perrin-Riou’s as well. Perrin-Riou’s formula [28] covers the case £ = 0
and r = 1.

Remark. — We have assumed N > 3 for the sake of exposition. For
N < 3, the proof should be modified to account for the lack of a fine
moduli space and extra automorphisms in the local intersection theory.
These details are spelled out in [24] and pose no new problems.

Remark. — There should be an archimedean analogue of Theorem 1.1,
generalizing Zhang’s formula for Heegner cycles [39] to the ‘generalized’
situation. The author plans to present such a result in the near future.

TOME 66 (2016), FASCICULE 3
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1.3. Applications

Theorem 1.1 implies special cases of Perrin-Riou’s p-adic Bloch-Kato con-
jecture. The assumption that A is isogenous to all its Gal(H /K )-conjugates
implies that the Hecke character

QZ)H : AE — (CX,
which is attached to A by the theory of complex multiplication, factors as
Yy = 1 o Nmp g, where ¢ is a (1,0)-Hecke character of K. Assume for
simplicity that x = 9*, and set yg = ¥4 and Gy := Gal(H/H). Then
the G p-representation V¢ 4, is the p-adic realization of a Chow motive
M(f)g®M (x ). Here, M (f) is the motive over Q attached to f by Deligne,
and M(xg) is a motive over H (with coefficients in K) cutting out a
two dimensional piece of the middle degree cohomology of A*. In fact, the
motive M (xp) descends to a motive M (x) over K with coefficients in Q(x)
(see Remark 4.1). We write Vy ,, for the p-adic realization of M (f) k@M (x),
so that Vy , is a Gi-representation whose restriction to Gz is isomorphic
to Vi a¢. In fact, the p-adic realization of M (x) is isomorphic to x @ ¥,
where we now think of x as a Q(x) ® Q,-valued character of Gg. It follows
that
L(Vf»X’ s) = L(f,x,s)L(f, X, s) = L(f, x; 5)2'
The Bloch-Kato conjecture for the motive M (f)x ® M(x) over K reads

dim H (K, Vy,y) = 2 - ords—r ik L(f, X, ).
Similarly, Perrin-Riou’s p-adic conjecture [6, Conj. 2.7] [30, 4.2.2] reads
(1.1) dim H} (K, Vy,y) = 2-ordx=1 L(f, x, (xc, A),

where (k is the cyclotomic logarithm and the derivatives are taken in the
cyclotomic direction. In Section 7, we deduce the “analytic rank 1”7 case
of Perrin-Riou’s conjecture by combining our main formula with the forth-
coming results of Elias [11] on Euler systems for generalized Heegner cycles:

THEOREM 1.2. — If Li,(f®x, Kk, 1) # 0, then (1.1) is true, i.e. Perrin-
Riou’s p-adic Bloch-Kato conjecture holds for the motive M (f)x ® M(x).

Remark. — Alternatively, we can think of zy, (resp. zy ) as giving a
class in H}(K, Vi ®x) (resp. H}(K, Vi ®x)), and note that L(V;®x, s) =
L(f,x,s) = L(V; ® X, s). The Bloch-Kato conjecture for the motive f ® x
over K then reads

dim H} (K, Vy ® x) = ords=r+1L(f, X, ),

and similarly for y and the p-adic L-functions.

ANNALES DE L’INSTITUT FOURIER
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We anticipate that Theorem 1.1 can also be used to study the variation
of generalized Heegner cycles in p-adic families, in the spirit of [5] and [16].
Theorem 1.1 allows for variation in not just the weight of the modular form
f, but in the weight of the Hecke character x as well.

1.4. Related work

There has been much recent work on the connections between Heeg-
ner cycles and p-adic L-functions. Generalized Heegner cycles were first
studied in [1], where their Abel-Jacobi classes were related to the special
value (not the derivative) of a different Rankin-Selberg p-adic L-function.
Brooks extended these results to Shimura curves over Q [17] and recently
Liu, Zhang, and Zhang proved a general formula for arbitrary totally real
fields [20]. In [10], Disegni computes p-adic heights of Heegner points on
Shimura curves, generalizing the weight 2 formula of Perrin-Riou for mod-
ular curves. Kobayashi [19] extended Perrin-Riou’s height formula to the
supersingular case. Our work is the first (as far as we know) to study p-adic
heights of generalized Heegner cycles.

1.5. Proof outline

The proof of Theorem 1.1 follows [24] and [28] rather closely. For this
reason, we have chosen to retain much of Nekovai’s notation and not to
dwell long on computations easily adapted to our situation.

We define the p-adic L-function L,(f ® x, A) in Section 2 and show that
it vanishes in the anticyclotomic direction. In Section 3, we integrate the
p-adic logarithm against the p-adic Rankin-Selberg measure to compute
what is essentially the derivative of L, (f®x) at the trivial character in the
cyclotomic direction. In Section 4, we define the generalized Heegner cycles
and describe Hecke operators and p-adic Abel-Jacobi maps attached to the
variety X. After proving some properties of generalized Heegner cycles, we
show that the RHS of Theorem 1.1 vanishes when {j is anticyclotomic.
In Section 5 we compute the local cyclotomic heights of zy at places v
which are prime to p. In Section 6, we prove that Vy 4, is an ordinary
representation. We complete the proof of the main theorem in Section 7,
modulo the results from the final section.

In the final section, we fix the proof in [24, I1.5], to complete a proof
of the vanishing of the contribution coming from local heights at primes

TOME 66 (2016), FASCICULE 3
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above p. The key ingredient is the theory of relative Lubin-Tate groups and
Theorem 8.7. The latter is a result in p-adic Hodge theory which relies on
Faltings’ proof of Fontaine’s Cps conjecture. This theorem (or rather, its
proof) is quite general and should be useful for computing p-adic heights
of algebraic cycles sitting on varieties fibered over curves.

2. Constructing the p-adic L-functions

Recall f € S5,.(To(N)) is an ordinary newform with trivial nebentypus.
As in the introduction, x : Ay /K* — C* is an unramified Hecke character
of infinity type (2k,0) with 0 < 2k < 2r. For conventions regarding Hecke
characters, see [1, §4.1]. All that follows will apply to x of infinity type
(0,2k) with suitable modifications. In this section, we follow [24] and define
a p-adic L-function attached to the pair (f, x) which interpolates special
values of certain Rankin-Selberg convolutions.

2.1. p-adic measures

We use the notation of [24] unless stated otherwise. We construct the p-
adic L-function only in the setting needed for Theorem 1.1; in the notation
of [24], this means that @ = 1,N; = Ny =¢; =ca =c=1,N3 = N} =
N,A =A; = Ay =|D|,A3 =1, and v = v3 = 0. We begin by defining
theta measures.

Fix an integer m > 1 and let O,, be the order of conductor m in K.
Let a be proper O,,-ideal whose class in Pic(O,,) is denoted by A. The
quadratic form

Qa(x) = N(z)/N(a)
takes integer values on a. Define the measure © 4 on Z; by
(2.1) Oala(mod p”) = x(@)~ D] #q?.
Qu ()= (mod p*)
To keep things from getting unwieldy we have omitted x from the notation

of the measure. If ¢ is a function on Z/p”Z with values in a p-adic ring A,
then

(2:2) ©4(s 1Y 0(Qa(2)E g% = x(@)7" Y] d(n)pa(n, )g

TEQ n=1

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1125

where pq(n,£) is the sum > z¢ over all z € a with Q4(z) = n. We have
Pa(n) (na é) = ,s/fpu (’I”L, é)v

for all v € K, so that © 4 is independent of the choice of representative a
for the class A. For a € A,

(2.3 YOO — w3 @) = w3 ran()e”,

TEQ adeA n=1
a'cO,,

since ¢ is a multiple of w,. The coeflicients 74 , (n) play the role of (and
generalize) the numbers r 4(m) that appear in [14] and [24].

PROPOSITION 2.1. — © 4(¢) is a cusp form in My1(T'1 (M), A), with

~ lem(|DJm?, p?).

Proof. — Tt is classical [26] that 3 _ #¢%(® is a cusp form in
My 1(T1(|D|m?)). It follows from [15, Proposition 1.1] that weighting this
form by ¢ gives a modular form of the desired level. 0

For a fixed integer C', define the Eisenstein measures

Er(a(mod p”))(2) = B (2, Pa,p-)

and
EY (a(mod p*))(2) = Ei(a(mod p*))(z) — CE(C™ a(mod p*))(2),

as in [24, 1.3.6]. Similarly, we define the following convolution measure
on Z.*
P

©(a(mod p")) =

H Y, &(@)8a(a’a(mod p*))(2)87H(EF (a(mod [DIp¥))(N2)|,
a€(Z/|D|pZ)*
which takes values in My,.(I'o(N|D|p™); x(@)"'p~°Z,), for some § depend-
ing only on r and k [15, Lem. 5.1]. Here, H is holomorphic projection,
(5{717’“ is Shimura’s differential operator, and & = (Q) We are implicitly
identifying Z, with the ring of integers of K for a prime p above p (which
is split in K), so that 2 € Z,, for all € a. The measure ‘I'ft is defined by
c
Va= m‘b Ty(|D|)N|D|p°O/Np°°7

where
T : My, (Lo (N|D[p®),-) — Ma, (Lo (Np®),-)

f (1219
i .
0\ 0 1

is the trace map, i.e. the adjoint to the operator g — |D|"

TOME 66 (2016), FASCICULE 3
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For ring class field characters p : G(H,,/K) — Q ", define
= > ARy,
[A]ePic(On)

and similarly for ¥¢'. We define ¥¢ Fo =L (¥ ), where Ly, is the Hida
projector attached to the p-stabilization

of f (see [24, 1.2] for its definition and properties). Explicitly, if g €

Mj(FO(Np”)%@) with g > 1, then
(o o))
i
Np 0 Vo

<f0

1
15 ( af>
<Oj 0 ’

We also define a measure \IJC on Gal(Hp»/K) x Gal(K (pp»)/K) by

UF (o (mod p), 7 (mod p™)) = Ly, (¥ (a (mod p™))),

where o corresponds to .4 and 7 corresponds to a € (Z/p™Z)* under the
Artin map. Finally, as in [24], we define modified measures v, \ilg, ete.,
by replacing 7 (| D|) with 7 (1) in the definition of ¥§.

2.2. Integrating characters against the Rankin-Selberg measure

In this subsection, we integrate finite order characters of the Zf,—extension
of K against the measures constructed in the previous section and show
that they recover special values of Rankin-Selberg L-functions. This allows
us to prove a functional equation for the (soon to be defined) p-adic L-
function. We follow the computations in [24, I.5] and [29, §4]. Let n denote
a character (Z/pZ)* — Q*. Exactly as in [29, Lemma 7], we compute:

25) | ndo§ = (1 = CECIP(O) HIOAM) )" (Fa(N=. ).
Similarly, if p is a ring class character with conductor a power of p,

(26) | ndbS = wn(1-CEOTP(C) HIOLV )8 BNz, 0)),

><

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1127

where W = p-(noNN), the latter being thought of as a character modulo the
ideal f = lem(cond p, cond 7, p). We denote by W the primitive character
associated to W”. By definition,

O.W")(z) = >, W (a)x(a)gN®.
acO
(a,f)=1

This is a cusp form in Syyq (|D|Ng (fwr), () n?), since x is unramified
(see [26] for a more general result). The computations of [24, 1.5.3-4] carry
over to our situation, except the theta series transformation law now reads

DY\ _ 0 -1
A= (R)rmen| (b )
where .Z is the involution
(w0 ) (oo &)
N|D|p* 0 N|D|p*t N
with Nzw — |D|ptty = 1. We then obtain

J nd\PJqp =
” ,

X
P

(2.7) 6, (W")(2)

(B)n*)(N) AN (f) D=2 A, (W)
(4mi)oy, (f)~1pr—t 0 —1 ’
< 2r<Np 0 >,fO>N

p

(1—ceC)i(0)
7

where

AH(W”) =

u(r—1/2) 0 1\ . )
pap(f)ﬂ< e+1<|Dp“ 0 )5 ’ 1(E1(Z’§772))>

We define 7(xW) by the relation

fg’ C_)X (W//)

N|D|p+

(2.8) @X(W)Im( |D(|)p5 _01 ) = (=D)Firpov)e, (W),

with |D[p? being the level A(W) of ©, (W). One knows ([21, Thm. 4.3.12])
that 7(xW) € Q%, |T(xW)| = 1, and
AW, 8) = T(W)A(W, £+ 1 — s),

where
AW, ) = (1DIp?)"? (27) T (s) L(Oy (W), 5).

TOME 66 (2016), FASCICULE 3
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Modifying the computations in [29, §4], we find that

(29 AW = (DM lirov) D) p(a)x(@W(a)A,.,

alp
N(a)=p®
with
(2.10) A,s =
pu(ré)s(k+é)< _ <px 0> e L
— . ( f5,0x(W & Ei(z, &%) Mk
ap(f)r 6 Ox )€+1 01 Ul ) N|D|pH

and z=pu—fF—s.
Following [29, §4.4], we compute:

A#(W”) =
v 2\ 2 k= 1) (r—k—1)! e
7o Foom) (B ) BT L e O,
where

_ M) ) r—k—1 o)) r—k—1
%(f,x7w>g(1 Ny ) (1= 2Ny,
We have used the fact that
(2.11)

1 1—e(—=1))(r+k—-1)!(r—k—1)!
g8 B o), - N g 4 1)

for any g € Sop4+1(M’,€), and where M = M'N. Equation (2.11) follows
from the usual unfolding trick and the fact [24, 1.1.5.3] that

(r—k-—1)

B 0) = (i

Erfk(za ¢)

We have also used the following generalization of [29, Lemma 23].

LEMMA 2.2. — If g is a modular form whose L-function admits a Euler
product expansion ]_[p Gp(p~*), then

L(fo,g,m + k) = Gp (0" "oy (£)7") L(f, 9,7 + F).

Putting these calculations together, we obtain the following interpolation
result.
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THEOREM 2.3. — For finite order characters W = p - (n o N) as above,

(1 -C (g) W(C))_1 f ) ndus, - Ep(ﬂx,WLE%,BEIZ/(\;))A(W)T_W’

P

where

£tfoe ) = (¢ ) WEnreomicts

L(f, 05 W), 7 + k)
<f7f>N .

Here,
2(=1)""r—k—=1Dr+k—1)!
(471-)27’

H,(f) = (1—;’2(;) (1‘o]f2<f>l>

The modified measures \il? p satisfy

C(r, k) =

and

| navg, = 1or=womi) [ navs,

where D = (\/5) is the different of K.
Now to define the p-adic L-function. Recall we have fixed an integer C'
prime to N|D|p.

DEFINITION. — For any continuous character ¢ : G(Hpxo (pp»)/K) —
Q, with conductor of p-power norm, we define
Ly(f®x. 9) =

ot () (1-¢ (g)as(c)—l)_l LW O

The p-adic L-function L,(f ® x)(A) := L,(f ® x,A) is a function of
characters
A G(Hpo (pp )/ K) — (1 + pZp).

L,(f ®x) is an Iwasawa function with values in c’lOQm), where Q(f, x)

is the p-adic closure (using our fixed embedding Q < @,) of the field

—

generated by the coefficients of f and the values of x, and ¢ € Q(f, x) is
non-zero.

We can construct analogous measures and an analogous p-adic L-function
for x, which is a Hecke character of infinity type (0, £). There is a functional
equation relating L, (f®x) to L,(f®x), which we now describe. First define

Ap(F ®X)(A) = ADN"HAN) 2L, (f @ X) (V).
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PROPOSITION 2.4. — A, satisfies the functional equation
D _ _
M0 = () M@0 ().

Proof. — It suffices to prove this for all finite order characters WW. For
such W, the functional equation for the Rankin-Selberg convolution reads

) (&) wavy
(2.12) L(f,05(W),r+k) = WL(f,G)X(W),T+k),
> ‘cp(f’XaW) _ 2

‘Cp(f’XaW) - W(N) (_N) .

We also have V,(f,x, W) = V,(f, x, W), so that
L D _
Ly(f@x)(W) -N
The proposition now follows from a simple computation. U
Recall the notation A7 (a) = A(a”).

COROLLARY 2.5. — Suppose (%) = 1 and X is anticyclotomic, i.e.
AT = 1. Then L,(f ® x)(A) = 0.

Proof. — From the functional equation and the fact that

Ap(f@X)(A) = Ap(f @ X)(AT),
we obtain
Ap(F@X)(A) = A (f®X)(ATT).
Since A is anticyclotomic, this is equal to —A,(f ® x)(A). O

3. Fourier expansion of the p-adic L-function

This section is devoted to computing the Fourier coefficients of SZX NP 4,
P

where A is a continuous function Z; — Q. These computations allow us
to relate L;,(f ® x, 1) to heights of generalized Heegner cycles. We follow
the computations in [24, 1.6], however the transformation laws for theta
series attached to Hecke characters complicate things a bit. We have

@G (a(mod p*)) =

H Y, &@)Oa(a®a(mod p)(2)d; T (EY (a(mod | DIp*))(N2)) |,
a€(Z/|D|p*Z)*
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For each factorization D = DDy (with the signs normalized so that D
is a discriminant), we define

@ _ ( |Pifa b
w5 = (Winiye 1ouia )
of determinant |Dy|.

LEMMA 3.1. — For Wg’l) as above and a € (ZJ)|D|p* 7)™,

w _ |D1f*

0.4 (a(mod p”)) (2) D, x(D1)

70 o1 (ID1]a*a(mod p¥)) (2),

£+1

7= (o) (et ) o™

and Dy is the ideal of norm |D1| in Ok and k(D;) = 1 if D1 > 0, otherwise
K([ﬁ) = 1.

where

|D1|*
x(D1)

Proof. — The proof proceeds as in [28, §3.2], but requires some extra

Remark. — Note that the factor is equal to +1.

Fourier analysis. We sketch the argument for the convenience of the reader.
Fixing an ideal a in the class of A, we set L = p”a and let L* be the dual
lattice with the respect to the quadratic form @Q,. Denote by S = S, the
symmetric bilinear form corresponding to Qq, so Sq(a, 8) = ﬁTr(aB).
For u € L*, define

Oun(u. L) = x(@)" Y w'q?).

w—uel
wel*

For any c € Z, one checks the following relations:

(3.1) Oay(u,L) = Z Oq,y (w, cL),

w—ueL

weL*/cL
(3.2) Oay (U, cL)(c?2) = ¢ *Oq y (cu, 2L)(2),
and for all @ € Z and w € L*,

a a
(3.3) Our (W, cL) (z + E) —e (EQu(w)> O (w,cL).
We also have
(34) 2=V, (w,cL) <_1> =
z
—ic ?[L* . L]7V? Z e (Sa(w,y)) Oay(y,cL).
ye(cL)*/cL

TOME 66 (2016), FASCICULE 3



1132 Ariel SHNIDMAN

This follows from the identity

(35) 1) P(a+ we(Qalx +y)2) =

x€eL
iz 12 3 Pl (“L) e sutp).
yeL*

valid for any rank two integral quadratic space (L, Qq,Sq) and any poly-
nomial P of degree ¢ which is spherical for Q4. See [37] for a proof of this
version of Poisson summation.

v |D1| O
wi) (10

with H € SLy(Z). Exactly as in [28], we use the relations above to compute

Now write

Ouy(a(mod p¥))| H = ~|Dy|71/2 > > Ouy(w, L)
£+1 uea/L weL* /L
Qa(u)=a(mod p”) w-‘raueD;lpTa
so that
v () ko (=y—1 ¢ Qp—1(w)
Oux(a(mod p”))|  Wp " = |[D1[*x(a) > w'q "
£+l weDflu
Qa‘Dfl (w)z|D1|a2a(m0d p")
|D1|k v
= X(Dl)’YG“Dfl’X (| D1 |a*a(mod p¥)) (2),
as desired. 0

For any function A on (Z/p”Z)*, we define hp, () as in [24, 1.6.3], so

1hat
r < j >
2 : |D1| .

The Fourier coeflicient computation in [24, 1.6.5] remains valid, except
one needs to use the following proposition in place of [24, 1.1.9]:

-
LAd\IJAzﬁ oD oY)

X
P D=D:-D> jeZ/|D1|Z

PROPOSITION 3.2. — Let f = > ., a(n)q" be a cusp form of weight
(+1=2k+1,andg =}, .,b(n)q" a holomorphic modular form of weight
one, both on T'g(N). Then H(f67%"(g)) = D=1 c(n)g™ with

(—1)”"_’“_1nr—k—1 Z a(i)b(j) Hy— i1k <i—j>’

(r2—rk_—21) i+j=n i+ .7

c(n) =
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where

m+2k
Hp, 1 (t) = m (;) [(t2 — 1)t — 1)2k]

Proof. — From [24, 1.1.2.4, 1.1.3.2], we have

_ (r=k—1)! (4mn)*?
) = T @ -2)

o]
X a0 [ prsms ety
i+j=n 0
where .
m\ (—x)?
Pm(z) = Z (a)( a!) .

a=0
The integral is evaluated using the following lemma.

LEMMA 3.3. — Let m,k > 0. Then

* it + 2k)! i—j
o (477 —4m(i+7)y m+2kd _ (m H,,
L pm(4mjy)e y Y= Gt g e e

Proof. — Evaluating the elementary integrals, we find that the left hand
side is equal to

m! G j
(4 (i + )2 a1 )

where .
(m + 2k + a)!
Gm i (t) = Z(—l)ait“.
= (a)2(m — a)!
It therefore suffices to prove the identity
2k)!
(3.6) Guin(t) = MHm,k(l —21).
m!

This is proved by showing that both sides satisfy the same defining re-
currence relation (and base cases). Indeed, one can check directly that for
m = 1:

(3.7) (m+1)*(m+k)Grp1x(t) =
(2m + 2k + 1)[m?* + m + 2km + k — (m + k)(2m + 2k + 2)t]G (1)
— (m+ k + 1) (m + 2k)2Gr1.4(t)

That the right hand side of (3.6) satisfies the same recurrence relation
amounts to the well known recurrence relation for the Jacobi polynomials

@By D" e s d"
PLP)(t) Sl 1-t)"*1+1) o

[(1-t)*(1+t)’1—)"].
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Indeed, we have

0,—2k _
Hpi(t) = 225 PO (4)(1 + )72,

and one checks that the recurrence relation

2n+1)(n+ B+ 1)2n+B)PYP (1) =
2n+ B+ D[(2n+ B+ 2)(2n + B)t — 2P (1)
—on(n+ B)2n + B+ 2)PL "D (1)

translates (using n = m + 2k and § = —2k) into the recurrence (3.7) for
the polynomials MHm)k(l — 2t). |

m!
Finally, to prove the proposition, we simply plug in m = r — k — 1 into
the previous lemma and simplify our above expression for ¢(n). O

Recall that for any ideal class A, we have defined

rax(j) = Z x(a).
ac A
acO
N(a)=j
Putting together Lemma 3.1, Proposition 3.2, and the manipulation of
symbols in [24, 1.6.5], we obtain

x ) 2 Tapit ) (—237) (|Di)?1l/d)

j+nN=|Di|m dn
(p.g)=1  (p,d)=1

m|Dq| — nN 2nN
AU e (1 )
: ( [Dy[d? ) ’“”“( m|D1|>

LEMMA 3.4.
TAD;1,X(j) = X(D2) 'ra(j|D2).
Proof. — Since D; is 2-torsion in the class group, the left hand side
equals r4p, 1 (j). The lemma now follows from the definitions once one

notes that b — bDy is a bijection from integral ideals of norm j in AD; to
integral ideals of norm j|Ds| in AD. O

Using the lemma and also the change of variables employed in [24], we
obtain our version of [24, Proposition 6.6].
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PROPOSITION 3.5. — If p|m, then

)\d\ij _ (71)7“71 r—k—1 D D —k _
Gm A= a2 |D| Z T4 (m|D[ —nN)
s ( ) -N
P r—k—1 1<n Sﬂ*?
(pm)=

1
2nN m|D|-nN d?
<M k( D)ZE < D] n>

Here, e 4(n,d) = 0 if (d,n/d,|D|) > 1, and otherwise

= () () (o)

where (d,|D|) = |D3| and D = Dy Ds.

Proof. — The proof is as in [24]. We have also used the fact that x(D) =
D¥ to get the extra factor of |[D|™* and the correct sign (recall that D is
negativel). O

COROLLARY 3.6. — If (£) =1 and p|m, then

([,

P

: (=D k1 —k
1ngd‘1/A> = Wm 1|l)|
r—k—1

2nN
x> rax(m|D] = nN)oa(n)Hr g1k <1 - mD) ,

1<ns A

(p,n)=1

oa(n) = ZeA(n,d) log,, (%) .

d|n

Proof. — As in [28]. O

with

4. Generalized Heegner cycles

In the previous section we computed Fourier coefficients of p-adic modu-
lar forms closely related to the derivative of L, (f, x) at the trivial character
and in the cyclotomic direction. We expect similar looking Fourier coeffi-
cients to appear as the sum of local heights of certain cycles, with the sum
varying over the finite places of H which are prime to p.

These cycles should come from the motive attached to f ®©,. Since ©,,
has weight 2k + 1, work of Deligne and Scholl provides a motive inside the
cohomology of a Kuga-Sato variety which is the fiber product of 2k — 1

TOME 66 (2016), FASCICULE 3



1136 Ariel SHNIDMAN

copies of the universal elliptic curve over X;(|D|). We work with a closely
related motive, which we describe now.
We fix an elliptic curve A/H with the following properties:
( ) EndH( ) OK
(2) A has good reduction at primes above p.
(3) A is isogenous to each of its Gal(H /K )-conjugates.
)

(4

Remark. — Since D is odd, we may even choose such an A with the
added feature that ¢% is an unramified Hecke character of type (2,0)
(see [32]). In that case, 1% differs from y by a character of Gal(H/K),
so this is a natural choice of A, given x. In general, 1/1/24]“)(_1
Hecke character.

A" =~ A, where T is complex conjugation.

is a finite order

We will use a two-dimensional submotive of A2¥ whose ¢-adic realizations
are isomorphic to those of the Deligne-Scholl motive for ©,2. (see [2]).

From Property (3), A is isogenous to A over H for each o € Gal(H/K).
If o corresponds to an ideal class [a] € Pic(Ok) via the Artin map, then one
such isogeny ¢, : A — A is given by A — A/A[a], at least if a is integral.
A different choice of integral ideal a’ € [a] gives an isomorphic elliptic curve
over H, and the maps ¢, and ¢, will differ by endomorphisms of A and
A°.

As in the introduction, let Y(N)/Q be the modular curve parametriz-
ing elliptic curves with full level N structure, and let £ — Y (IN) be the
universal elliptic curve with level NV structure. The canonical non-singular
compactification of the (2r — 2)-fold fiber product

& XY (N) " XY(N) g,

will be denoted by W = Ws,._o [33]; W is a variety over Q. The map
W — X(N) to the compactified modular curve has fibers (over non-
cuspidal points) of the form E?"~2, for some elliptic curve E. We set

X =X, np = Wgy x A%

where Wiy is the base change to H. Recall the curve Xo(N)/Q, the coarse
moduli space of generalized elliptic curves with a cyclic subgroup of order
N. Xo(N) is the quotient of X(N) by the action of the standard Borel
subgroup B < GLs (Z/NZ) /{£1}.

The computations of the Fourier coefficients in the previous section sug-
gest that we consider the following generalized Heegner cycle on X. Fix a
Heegner point y € Yo(N)(H) represented by a cyclic N-isogeny A — A’
for some elliptic curve A’/H with CM by Og. Such an isogeny exists since
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each prime dividing N splits in K. Also let § be a point of Y (N) g over y.
The fiber Ej of the universal elliptic curve £ — Y (V) above the point 7 is
isomorphic to Ap, where F' > H is the residue field of §. Let

ACEQXAFQAFXAF
be the diagonal, and we write I' ;5 < Ej x Ej for the graph of VD €
End(Ej) = Og. We define

Y = Fi/%l*k x AP o Xy = A2 x A%

so that Y € CH""(Xr). Here X; is the fiber of the natural projection
X — X(N) above the point .

Since X is not defined over @, we need to find cycles to play the role
of Gal(H/K)-conjugates of Y. For each o € Gal(H/K) we have a corre-
sponding ideal class A. For each integral ideal a € A, define the cycle V¢
as follows:

Ye = I”\”/*Bk*1 X (Ffba)% < (A% x A})T_k_1 x (A% x AF)% = Xgo < Xp.

Here, Ffﬁu is the transpose of I'y,, the graph of ¢ : A — A" The cycle
Y® e CH*™"(Xp) is not independent of the class of a in Pic(Of), but

certain expressions involving Y'* will be independent of the class of a. Note
that Y = YOx.

4.1. Projectors

Next we define a projector € € Corr’ (X, X) k so that €Y ® lies in the group
CH"™(XF)o.x of homologically trivial (r+ k)-cycles with coefficients in K.
Here, Corr® (X, X) g is the ring of degree 0 correspondences with coefficients
in K. For definitions and conventions concerning motives, correspondences,
and projectors see [2, §2].

The projector is defined as € = ex = ewep. Here, ey is the pullback
to X of the Deligne-Scholl projector €y € Q[Aut(W)] which projects onto
the subspace of H**~}(W) coming from modular forms of weight 2r (see
e.g. [1, §2]). The second factor ¢, is the pullback to X of the projector

®¢ ®0
€ = (W) o (1_2[_1]) e Corr’ (A%, AY g,

denoted by the same symbol. On the p-adic realization of the motive M 4¢ g,
€¢ projects onto the 1-dimensional Q,-subspace V;,®2kA of

Sym%Helt (/_L Qp)(k) = Hgtk(A2k= Qp(k)).
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Here, p is the prime of K above p which is determined by our chosen
embedding K<>Q, and V,A = lim A[p"] ®Q, is the p-adic Tate module
of A. See Section 6 and [2, §1.2] for more details.

We also make use of the projectors

_ ®t —[— @t
€ = (W) o (1[1]> € CorrO(AZ,AE)K

2
and k¢ = €, + €. The first projects onto V3 A®* and the latter onto V, A% @
V5 A®%. Set € = eyyép and € = ey k.

Remark. — For this remark, suppose that x = ¢, where v is the (1,0)-
Hecke character attached to A by the theory of complex multiplication. This
means the G g-action on H'(A,Q,)(1) is given by the (K ® Q,)*-values
Galois character Yy = ¢ o Nmpy k. If we write xg = z/JfQI, then the motive
M (xm) over H (with coefficients in K') from Section 1.3 is defined by the
triple (A% kg, k).

We explain how to descend this to a motive over K with coefficients in
Q(x) (this a modification of a construction from an earlier draft of [2]). Let
ex and ex be the idempotents in K ® K corresponding to the first and
second projections K ® K ~ K x K — K. For each o € Gal(H/K) choose
an ideal a € Ok corresponding to ¢ under the Artin map and define

I(0):=ex - (¢a X - X ¢g) ®x(a)"! € Hom (AZ, (Aé)") ®0 Q(x)
[(0) :=éex - (g X - X ¢g) ®X(a)"! € Hom (AZ, (Af)g) ®g Q(x).

Since x(va) = v*x(a) and ¢4 = Yha, these definitions are independent of
the choice of a. Moreover,

I(oT) =T(0)" o I'(7)
and similarly for T'. We set
A(0) = ke o (T(0) + T(0)) o k7 € Corr? (A, (A7) g ®gp Q(x)-

Then the collection {A(c)}, gives descent data for the motive M(xy) ®
Q(x), hence determines a motive M (x) over K with coefficients in Q(x).
The p-adic realization of M (y) is x @ x where x is now thought of as a
Q(x) ® Qp-valued character of Gg.

Define the following sheaf on X (N):
L = jxSym" (R' fQ,) ® reHG (A%, Qu(K)),

where w = 2r — 2, and j : Y(N) — X(N) and f : &€ —» Y(N) are the
natural maps.
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From now on we drop the subscript ‘et’ from all cohomology groups and
set Z = Z Xgpec k Spec k for any variety defined over a field k. We also use
the notation Vg = V ® K, for any abelian group V.

THEOREM 4.1. — There is a canonical isomorphism
HY(X(N), £) = ¢ H* 71X, Q) = € H* (X, Qp).
Proof. — See [24, 11.2.4] and [1, Prop. 2.4]. O

COROLLARY 4.2. — The cycles €Y'* and €Y'® are homologically trivial
on X, i.e. they lie in the domain of the p-adic Abel-Jacobi map

®: CH ™M (Xp)ox — H'(F, H*" 21 (X, Q,(r + k))).
Proof. — By the theorem, €'Y® is in the kernel of the map
CHr+k(XF)K _ H2T+2k(XF,Qp(T + k’)),

i.e. it is homologically trivial. Moreover, ¢ = €€’ and € = €€¢’. Since Abel-
Jacobi maps commute with algebraic correspondences, it follows that €Y ®
and €Y'® are homologically trivial as well. O

4.2. Bloch-Kato Selmer groups

Let F be a finite extension of Q; (¢ a prime, possibly equal to p) and
let V be a continuous p-adic representation of Gal(F/F). Then there is
a Bloch-Kato subgroup H}c (F,V) € HY(F,V), defined for example in [3]
or [23, 1.12 and 2.1.4]. If £ # p (resp. { = p) and V is unramified (resp.
crystalline), then H}(F, V) = Extl(Qp, V) in the category of unramified
(resp. crystalline) representations of Gal(F/F). If instead F is a number
field, then H}(F,V) is defined to be the set of classes in H'(F,V) which
restrict to classes in H} (F,,V) for all finite primes v of F.

The Bloch-Kato Selmer group plays an important role in the general
theory of p-adic heights of homologically trivial algebraic cycles on a smooth
projective variety X /F defined over a number field F. Indeed, Nekovai’s
p-adic height pairing is only defined on H}(F7 V), and not on the Chow
group CH? (X), of homologically trivial cycles of codimension j. Here V =
H%~1(X,Q,(j)). This is compatible with the Bloch-Kato conjecture [3],
which asserts (among other, much deeper statements) that the image of
the Abel-Jacobi map

®: CH/(X)y — HY(F,V)
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is contained in H}(F,V). The next couple of results follow [24, T1.2] and
verify this aspect of the Bloch-Kato conjecture in our situation, allowing
us to consider p-adic heights of generalized Heegner cycles. We also give a
more concrete description of the Abel-Jacobi images of generalized Heegner
cycles in terms of local systems on the modular curve.

Denote by b(Y'?®) the cohomology class of €(Y?) in the fiber Xj, so that
b(Y'?) lies in

o f2r+2k—2 (Xge, Qplr + & — 1))G(F/F) ~, g 7, %)G(F/F)

)

where
# = Sym” (R' £,Q,)(r — 1) @ ke H?* (A%%,Q,(k)),

the sheaf on Y(N). The isomorphism above follows from proper base
change, Lemma 1.8 of [1], and the Kunneth formula. Similarly, let b(Y'®)
be the class of €Y'®. For the next proposition, let j : Y(N) — X (N) be the
inclusion.

THEOREM 4.3. — Set V = H?>"+2k=1(X Q,(r + k)).
(1) V is a crystalline representation of Gal(H,/H,) for all v|p.
(2) The Abel-Jacobi images z* = ®(eY?),z% = ®(eY*) € HY(F,V) lie
in the subspace Hj (F, V).
(3) The element z%, thought of as an extension of p-adic Galois repre-
sentations, can be obtained as the pull back of

0— HY(X(N),jx#)(1) » H{(X(N) = §7,j+%)(1) — H° (5", %) — 0
by the map Q, — H° (§°, ) sending 1 to b(Y*®), and similarly

for z°. In particular, z® and z° only depend on b(Y'®) and b(Y®)
respectively.

Proof. — (1) follows from Faltings’ theorem [12] and the fact that X has
good reduction at primes above p. (2) is a general result due to Nekovaf,
see [25, Theorem 3.1]. To apply the result one needs to know the purity
conjecture for the monodromy filtration for X. But this is known for W
and A, so it holds for X as well [25, 3.2]. We note that (2) is ultimately a
local statement at each place v of H, and for v|p, the approach taken in the
proof of Theorem 8.7 below gives an alternate proof of this local statement.
Statement (3) can be proved exactly as in [24, I1.2.4]. O

DEFINITION. — If F/H is a field extension, then a Tate vector is an
element in HO(jjo, B)%2F/F) for some yo € Y (N)(F). A Tate cycle is
a formal finite sum of Tate vectors over F. The group of Tate cycles is
denoted Z(Y (N), F).
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Let m: X(N) — Xo(N) = X(N)/B be the quotient map, and as in [24],
define ep = (#B)~! 2.4 9, which acts on X (V) and its cohomology. Set
o = (e BB, a(Y®) = epb(Y?), and a(Y*) = epb(Y*). We define the
group Z(Yy(N), F) of Tate cycles on Yy(NV) exactly as for Y(NV), but with
P replaced by 7. Let jo : Yo(N) — Xo(N) be the inclusion. Note that
a(Y'?) is an element of Z(Y(N), H), not just Z(Y(N), F).

PROPOSITION 4.4. — The element
D(epey®) e H (H H (XO(N), (jo)*gi) (1)) ,

thought of as an extension of p-adic Galois representations, can be obtained
as the pull back of

0 H (Ko ot ) 1) H (Ko 50 ) 1) HOGG )

by the map Q, — H° (y°, /) sending 1 to a(Y®). In particular, ®(egeY®)
only depends on a(Y'®). Similarly, ®(eg€eY®) depends only on a(Y'?).

In fact, for any field F/H one can define a map @1 : Z(Yo(N),F) —
H'(F, H'(Xo(N), josx<?)(1)), by pulling back the appropriate exact se-
quence as above. We then have ®(egeY®) = Or(a(Y?)) and P(epeY?) =
®r(aY?®). For more detail, see [24, 11.2.6].

4.3. Hecke operators

The Hecke operators on Wa,._o from [24] pull back to give Hecke op-
erators T,, on X. The T,, are correspondences on X; they act on Chow
groups and cohomology groups and commute with Abel-Jacobi maps. To
describe the action of the Hecke algebra T on Tate vectors, we need to
say what T, does to an element of H°(7, /)¢ F/F) for an arbitrary point
yo € Xo(N)(F), F an extension of H. Such an element is represented by
a triple (E,C,b) where F is an elliptic curve, C' is a subgroup of order N,
and

be Sym"(H'(E,Qp))(r — 1) ® rSym®* (H' (4, Qp)) (k).
As the Hecke operators are defined via base change from those on Ws,._o,
we have:
Tu(B,C.b) = >, (B AC), (W x id)«(b)),

NE—E’
deg(A)=m

where we are using the map A\ x id : E¥ x A! — E" x A%
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Now set V. a0 = ege’V = H(Xo(N), (jo)«<)(1), a subrepresentation of
V. Then 2% := ®(epeY?) lands in the Bloch-Kato subspace H} (H,Vya4) ©
HY'(H,V, a4), by Proposition 4.3. For any newform f € Sa,.(Io(N)), we let
V¢,4.¢ be the f-isotypic component of V. 4 ¢ with respect to the action of
T. Consider the f-isotypic Abel-Jacobi map

Dy CHTJrk(X)o,K - H}(H7 Via0)s

and set 2% = @¢(epeY?) and 2§ = Of(epeY?).

As is shown in Section 6, the p-adic representation Vy 4 ¢ is ordinary and
satisfies Vi a0 = V7, ,(1). The results of [23] therefore give a symmetric
pairing

(otwe t Hp(H, Viag) x Hy(H, Vi ae) = Qp(f),
depending on a choice of logarithm (5 : Ax/K* — @, and the canonical
splitting of the local Hodge filtrations at places v of H above p. We will
sometimes omit the dependence on fk in the notation for the heights if a
choice has been fixed. If a,b € Z(Yy(N), F') are two Tate cycles, then we
will write {a,b),, for (®r(a), 21 (b)),, -

4.4. Intersection theory

Here we collect some facts about generalized Heegner cycles and their
corresponding cohomology classes. We first recall the intersection theory
on products of elliptic curves; see [24, I1.3] for proofs.

Let B, E', E” be elliptic curves over an algbraically closed field k of char-
acteristic not p, and set

H'(Y) = Hi(Y,Qy) = (lim HL (Y, Z/p"7)) @ Q,
for any variety Y /k. A pair («, ) of isogenies o« € Hom(E”,E) and 8 €
Hom(E", E’), determines a cycle
Top = (o, 8)x(1) e CH(E x E),

where (o, 8)y : CHY(E”) — CH'(E x E') is the push forward. The image
of T, 5 under the cycle class map CH'(E x E') — H?(E x E')(1) will be
denoted by [I's s]. Also let X, 5 be the projection of [I's 5] to H'(E) ®
HY(E")(1), i.e.

Xap = [Tap] — deg(a)h — deg(B)v,

where h is the horizontal class [I'1,0] and v is the vertical class [I'g1]. If
a € Hom(E, E'), we write I'y, and X, for I'; , and X; q, respectively. If
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B € Hom(E', E) we write T'; and X} for T'g 1 and Xp 1, respectively. Finally,
let

(,): H*(E x E")(1) x H*(E x E')(1) - Q,,
be the non-degenerate cup product pairing.

PROPOSITION 4.5. — With notation as above,
(1) The map
Hom(E", E) x Hom(E",E') - HY(E)® H*(E')(1)

given by (a, 8) — X, g is biadditive.

(2) The map Hom(E, E') — HY(E) x H*(E')(1) given by a — X, is
an injective group homomorphism.

(3) If E = E/, then Xop5 = Xpa and (Xo, X5) = —Tr(af) for all
a, B € End(E).

Here, Tr : End(E) — Z is the map a — a + 4.

It is convenient to think of H'(E) as V,E* = Hom(V,E,Q,), where
VoE = T,E® Q, is the p-adic Tate module. The Weil pairing

VoE x V,E — Qp(1)

gives identifications V,E*(1) = V,E and A’ VpE = Qp(1). We then have
the following diagram of isomorphisms

(LEGVE)(-1) — (Sym*V,E@ AV,E) (-1) — Sym*V,B(-1)8Q,

| |
V,E*QV,E — End(V, E) —  Endy(V,E)®Q,

One checks that d identifies Sym?V, F(—1) with the space Endy(V, E) of
traceless endomorphisms of V,,E. Now suppose that F has complex multi-
plication by Ok and that p = pp splits in K. Then

VoE =V, E®V;E,

where V, = lim E[p"] ® Q, and V5 = lim E[p"] ® Q,. Let z* and y* be a
basis for V, E and V3 E respectively, and let x, y be the dual basis of HY(E)
arising from the Weil pairing. Since the Weil pairing is non-degenerate, we
may assume that e(z*,y*) = 1€ Q,.

If a € End(FE), then the class X, € H'(E)® H'(E)(1), when thought of
as an element of End(V, E) via the isomorphisms above, is simply the map
Va: V,E — V,E induced on Tate modules. Thus, X; = Az ®y —y ® x)
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for some A € Q,. Recall that one can compute the intersection pairing on
H'(E)®? in terms of the cup product on H'(E):

(a®b,c®d) =—(avc)(bud).
Since (X7, X7) = —2, we conclude that A = 1. Next we claim that
(4.1) X/5=+VDa®y+y®ua).

To prove this, it suffices to show that V+/D acts on Vp by v/D and on
Vs by —+/D. Indeed, under the identifications

HYE)® H'(E)(1) = V,E*® V,E*(1) = V,E* ® V,E =~ End(V, E),

x®y corresponds to the element f € End(V},) such that f(az* +by*) = az*
whereas y ® « corresponds to g € End(V,) such that g(az™ + by*) = —by*.

To understand how V+/D acts on Vp, write p™ = p"Z + H%EZ for some
b, c € Z such that b>—4p™c = D, which is possible because p splits in K. For
P e E[p"], one has (b + +/D)(P) = 0, so vD(P) = —bP. Since b = +v/D
(mod p™), it follows upon taking a limit that (V+/D)(z*) = ++/Dz*. Since
we can write p" = p"Z + b_g/ﬁZ, we also have (Vv/D)(y*) = Fv/Dy*, and
this proves the claim. Hence

X, = (2 ®y) - 3(y®2) e H'(B) @ H'(E)(1),

for all v € Og — End(F).
Finally, note that the projector ¢; € Corr’(E, E)g defined earlier acts
on H'(E) as projection onto V.

PROPOSITION 4.6. — Let a € Ok be an ideal and A € Pic(Ok) its ideal
class. Then the elements

zﬁx = X(a)*lz;‘c and 275 = x(a) "z}
in H}(H7 V}.4.0)g, depend only on A € Pic(Of).

Proof. — To prove the proposition for zﬁx, we wish to relate z; to z;m

for some v € Ok and some integral ideal a. The contribution to 2§ from one
of the “generalized” components I'y, < A% x A is eXy, 1, where Xy 1 €
HY(A*,Q,) ® H'(A,Q,) is the class of

I, —deg(¢pa)h—ve CH'(A® x A),
as above. Let z,y be a basis of H'(A,Q,) such that
X1 =72®y) —1(y®z) € H(A,Q,) ® H'(A,Qy),
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for all v € Ok. Let x4,yq be the basis of H'(A%, Q,) corresponding to z,y
under the isomorphism ¢ : H'(A®,Q,) — H'(A,Q,). One checks that

(¢a x id)*(Xg,,1) = deg(da) X1
and so
Xpo1 = deg(¢a) (2a @Y —ya @ ).
Similarly,

Kool = Xygar = deg(da) (F(2a ®Y) = 7(ya @ 1)) .

Since the projector € kills y, we find that €Xy4,1 = 7¢X4,,1. In the com-
ponents which come purely from the Kuga-Sato variety Wa,._o, the two
cycles Y and Y are identical — they both have the form eF’\"/%k*l. Tak-
ing the tensor product of the ¢ “generalized” components and the r —k — 1
Kuga-Sato components, we conclude that

Z;(v) _ 722;7

as desired. The proof for z;ﬁfi is similar: since 2} is defined using € instead
of €, the extra factor of 4* which pops out is accounted for by the factor

X(a)~ .
LEMMA 4.7. — For any ideal classes A, B,C € Pic(Ok), we have
(efo2ix) = (2 275

Proof. — It suffices to prove <Z}X, > <fo7zfx> for all A,B €

Pic(Ok). Equivalently, we must show

(4.2) Nm(a)! (207,25 ) = (25,280

for all integral ideals a and b. Let o € Gal(K/K) restrict to an element
of Gal(H/K) which corresponds to a under the Artin map. Consider the
morphisms of Chow groups

o: CH*(W x At g — CH*(W x (A7)0 g
and
€ =(id x ¢2)* : CH¥*(W x (A%)0)x — CH*(W x A%k

After identifying A% with A% one checks that (¢ 0 0)(Y?) = Y. Indeed,
since a and b are integral, the graph of ¢7 : A — (A®)? can be identified
with the graph of the projection map ¢ : A/A[a] — A/A[ab] (first note
the two isogenies have the same kernel and then use the main theorem of
complex multiplication). The latter is pulled back to I'y_, by (id x ¢q)*. It

TOME 66 (2016), FASCICULE 3



1146 Ariel SHNIDMAN

follows that (€00)(Y?) = Y% and the identity therefore holds for the cor-

responding cohomology classes. On cohomology, o and £ are isomorphisms,

so (4.2) follows from the functoriality of p-adic heights [23, Theorem 4.11].

We are using the fact that (éﬁ)* is adjoint to (¢£)* under the pairing

given by Poincaré duality, and that deg ¢, = Nm(a). |
The goal now is to compute {zy,y, 25 ¢, Where

1 1
A A
Zfx = 7 Z L and  zpy = 7 Z Zf %
.AEPiC(OK) AEPiC(OK)

Here, we have extended the p-adic height @p—linearly.
Let 7 € Gal(H/Q) be a lift of the generator of Gal(K/Q). As A and W
are defined over R, 7 acts on X = W x A’ and its cohomology.

LEMMA 4.8. — Let n € Ok be the ideal of norm N corresponding to
the Heegner point y € Xo(N), and let (—1)"e; be the sign of the functional
equation for L(f,s). Then

(71)r7k71€fx(n)N7kZ}4j [n]

A
(27 ) X

and
A r—k—1_ - —k AT
T(215) = (=1) erx(m)N~" 2y L

Proof. — Let W)(N) be the Kuga-Sato variety over Xo(N), i.e. the
quotient of W; by the action of the Borel subgroup B. Recall the map
Wy : I/V]o — VVJO which sends a point P € E7 in the fiber above a dia-
gram ¢ : E — FE/E[n] to the point ¢’(P) in the fiber above the diagram
¢ : E/E[n] — E/E[N]. Meanwhile, complex conjugation sends the Heeg-
ner point A* — A%/A%[n] to the Heegner point A® — A%/A%[n]. Thus on
a generalized component of our cycle, we have

(WN X id)*(X¢'aﬁ,1) = NX¢a71 = NT(X¢n71)7
where these objects are thought of as Chow cycles on X which are supported
on the fiber of X above (§)77. Since 7 takes V, A to V3 A, we even have
(Wi xid)* (€1 Xg,1) = Na Xy, 1 = N7(a1 Xy, 1)

On the purely Kuga-Sato components, one computes [22, 6.2]

where the X /5 in the equation above are supported on gFrob(an) - gFrob(d)

and §™°P(®) respectively.
On the other hand, (Wx xid)? = [N] x id, where [N]: W9, — W9
is multiplication by N in each fiber. On cycles and cohomology, [N] xid acts
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as multiplication by N2"~2. Since W commutes with the Hecke operators,
we see that (Wy x id) acts as multiplication by £ N"~! on the f-isotypic
part of cohomology, and this sign is well known to equal €;. Putting things
together, we obtain
. (_1)T—k—1(WN % id)*(z?ﬁ) (_1>r—k—1€f5;icﬁ
7(27) = N2ktr—k—1 - NF ’

from which the first identity in the lemma follows. The proof of the second
identity is entirely analogous. 0

THEOREM 4.9. — Ifly : Ay /K™ — Q, is anticyclotomic, i.e. L oT |k =
—Llk, then
G 2rx00 = 0

In particular, Theorem 1.1 holds for such £ .

Proof. — From the previous lemma we have

T(zry) = (1) Flepx ()N~ zp 5

and

Thus

Gt 28500 = T (285D 0cor = $2hx0 2800 = — B 21300, »
which proves the vanishing. Theorem 1.1 now follows from Corollary 2.5.

a

Since any logarithm /i can be decomposed into a sum of a cyclotomic
and an anticyclotomic logarithm, it now suffices to prove Theorem 1.1 for
cyclotomic ff, i.e. we may assume £x = (i o 7|x. By Lemma 4.7 we have

1
Z <vazé>z>'

1
43 oz =3 (5=
A€ePic(Ok)

The height {, ) can be written as a sum of local heights:
<Z'7 y> = Z<x7 y>’Ua

where v varies over the finite places of H. These local heights are defined
in general in [23] and computed explicitly for cyclotomic ¢k in [24, Propo-
sition I1.2.16] in a situation similar to ours. In the next section we compute
the local heights <zf,zﬁ>z>v for finite places v of H not dividing p. The
contribution from local heights at places v|p will be treated separately.
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5. Local p-adic heights at primes away from p

Our goal is to compute <zf, z]“f‘>2> when /g is cyclotomic. Since such a
X/ 0y
homomorphism is unique up to scaling, we may assume that £x = log, o),

where \ : G(Ky/K) — 1+ pZ, is the cyclotomic character and log,, is
Iwasawa’s p-adic logarithm. We may write A\ = X o N, where \ : Ly —
1 + pZ, is given by A(z) = (z)~'. Here, () = zw™'(z), where w is the
Teichmuller character.

We maintain the following notations and assumptions for the rest of this
section. Fix an ideal class A and an integer m > 1, and suppose that
there are no integral ideals in A of norm m, i.e. r4(m) = 0. Choose an
integral representative a € A and let o € Gal(H/K) correspond to A under
the Artin map. Write z = b(Y) and 2% = b(Y'®) for the two Tate vectors
supported at the points y and y? in Xo(N)(H). Let v be a finite place
of H not dividing p and set F = H,. Write A for the ring of integers
in F", the maximal unramified extension of F, and let F = F, be the
residue field of A. Write Xj,(N) — Spec Z for the integral model of Xy(NV)
constructed in [18], and let X;(/N)a be the base change to Spec A. Finally,
write ¢ : Yo(IV) xg F"" — X(N)a for the inclusion.

Now suppose a, b are elements of Z(Yy(N), F''*) supported at points y, #
Yo of Xo(IN)(F") of good reduction. Let y and y, be the Zariski closure
of the points y, and y, in X;(N)a and let @ and b be extensions of a and
bto H° (y,, %) and HO (y,» 1/ ) respectively. If y ~and y, have common
special fiber z (so z corresponds to an elliptic curve E/F), then define

(a’b)’U = (Qa ' Qb)z ' (Q,wbz)a
where (y_-y,)- is the usual local intersection number on the arithmetic

surface X,(N)a and (a,,b,) is the intersection pairing on the cohomology

of E?"=2 x Af, where Ay is the reduction of Ag.

Remark. — Note that while A may not have good reduction at v, it
has potential good reduction. We can therefore identify HY (A, Q,) and
H (Ar,Q,) as vector spaces, but not as Gal(F/F)-representations. Since
the ensuing intersection theoretic computations can be performed over an
algebraic closure, this is enough for our purposes.

Our assumption that r4(m) = 0 implies that the Tate vectors = and
TnZ® have disjoint support. By [34], we may assume that they are sup-
ported at points of Xy(N)s which are represented by elliptic curves with
good reduction. The following proposition gives a way to compute the lo-
cal heights purely in terms of Tate vectors. This technique of computing

ANNALES DE L’INSTITUT FOURIER



GENERALIZED HEEGNER CYCLES 1149

heights of cycles on higher dimensional motives coming from local systems
on curves is the key to the entire computation. The idea goes back to work
of Deligne, Beilinson, Brylinski, and Scholl, among others.

ProrosIiTION 5.1. — With notation and assumptions as above, we have
(5.1) (&, Tz, = — (z, T1n2%), log,,(Nv),

Proof. — The proof is exactly as in [24, 11.2.16 and 11.4.5]. In our case,
one uses that H?(X,(N),is/(1)) = 0. This follows from the fact that
if o' = (meSym® *(R'£,Q,)(r — 1))3, then o = o/’ @ W, where W
is a trivial two-dimensional local system, and H?(X,(N),i.<’) = 0 [18,
14.5.5.1]. O

Recall that over A, the sections y and y° correspond to cyclic isoge-
nies of degree N. We will confuse the two notions, so that the notation
Homy (y7,y) makes sense. See [24] and [8] for details.

PROPOSITION 5.2. — Suppose v is a finite prime of H not divisible by
p. If m > 1 is prime to N and satisfies r 4(m) = 0, then

(x,Tmi“)
e 5 o) (5 238

where the sum is over g € Homy /rn(y?,y) of degree m. The intersection

pairing on the right takes place in the cohomology of E*"~2 x Afl;, where
E ~ Ay is the elliptic curve over F corresponding to the special fiber Y,
of y.

Proof. — The proof builds on that of [24, 11.4.12], so we only mention
what is new to our setting. We write m as m = moq® where q is the rational
prime below v (this is what Nekovar calls ¢). In the notation of [24], we
need to compute the special fiber of zg(j), where g € HomA(g",gg) is an
isogeny of degree mg. There is no harm in assuming r = k + 1, because the
description of the purely Kuga-Sato components of z(j) (i.e. coming from
factors of the cycle V¢ of the form I' ;5 = E x E°) is handled in [24].

Assume now that ¢ is inert in K and ¢ is even. In this case the special

fiber (y)s is supersingular, and the special fiber (z7)s of the Tate vector is

represented by the pair
o = 4
(e (%50))-
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This follows from the definition of the Hecke operators and the following
fact: if g : E — FE’ is an isogeny and ¢ : A — FE is an isogeny, then

(g x id), (T4) =T%, e CH'(E' x A).
Since any isogeny h € HomA/ﬂn(gg,y) of degree ¢' on the special fiber

y = (y?) is of the form q/2hg, with hg of degree 1, we find that, assuming

s =9

é and y‘; (j) intersect, (x5(j))s is represented by

((y;)s@(X?fzgd,ml)) = (ysaE(X;(ffqt/zg%J))
= (e (X))
= e (x®¢
(gs’ ¢ (thqau)) ’

as desired. The proof when ¢ is odd or when ¢ is ramified is similar. If ¢ is
split in K, then both sides of the equation are 0, as is shown in [14]. O

When v lies over a non-split prime, End, /- (y) = End(FE) is an order R in
a quaternion algebra B and we can make the double sum on the right hand
side more explicit. To do this, we follow [14] and identify Homy /»(y7,y)
with Ra by sending a map g to b = g¢,. The reduction of endomorphisms
induces an embedding K < B, which in turn determines a canonical de-
composition B = K @ Kj. Thus every b € B can be written as b = o + 3j
with «, 3 € K. Recall also that the reduced norm on B is additive with
respect to this decomposition, i.e. N(b) = N(«) + N(37).

PROPOSITION 5.3. — If g¢q = b = a + j € End(E), then

<€(XT_’“_1 ® X&), (X

®r—k—1 ®L
g\/ﬁg—l TD <>9‘)(1 )

o o) -

4D r—k—1 B
((z)r_g)a%Hr—k—l,k <1 -
r—k—1

2N(Bj) >
N@) )’

where
m+2k
okl = gy () 1= 0ma= 0

Proof. — Recall from Section 4.4 that we have chosen a basis x*, y* of
V,E, and a dual basis z,y of H'(E) such that z* € V,E, y* € V;E, and
(z*,y*) = 1. We have already seen that X, = ar ® y — ay ® z. Since
vj = jvyforall ye K, Vj swaps V, E and V5 E. So we can write

. 0 u
vi-(o )
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for some u,v € Q, such that uv = N(j) = —j2. It follows that
Xp=axQuy—ay®z + fuy @y — fur @ .

Next note that gv/Dg~' = bv/Db~!. We write by/Db~! = v+ 4§, so that
T= %(N(Q) —N(Bj)) and ¢ = _l\zlzgaﬁ Thus X /5,1 already lies in

Sym?H'(E), and hence (working now in the symmetric algebra)

VD

;—(b)(d:p — Buy)(ay + Buz),

X, gVDg-1 = 27Ty + Suy? — dva?

since € acts as Scholl’s projector ey on the purely Kuga-Sato components.

The cohomology classes Xj in the statement of the proposition are on
‘mixed’ components, i.e. they live in H'(E)® H'(E’), where E comes from
a Kuga-Sato component and E’ (which is abstractly isomorphic to E) comes
from the factor A¢. Thus

X;=az®y —ay®z' — Puy @y + fr @7,

and €Xj = (ax — Buy)y’, since € acts trivially on H!(E) and kills the basis
vector 2’ in H*(E"). Using these observations together with the compatibil-
ity of the projectors with the multiplication in the appropriate symmetric
algebras, we compute

(FxT i @ X8, (X @ XP))

_ ((2,ny+6uy2_5x2)r—k—1(&x_5uy)2k Q2" (2\/5$y)r—k—ly2k®x/2k>

r—k—1
_ (l\le(Db)) (y/2k’ x/2k) ((&xiﬂuy)rﬂcfl (ozy+ﬂ_vx)rfk71, :L,rfkfl yr+k71)

4D r—k—1
_ ( ) (y/Qk’x/2k)(yr7k71xr+k71,xrfkflyrjtkfl) .C

N(b)
B (4D)r—k—1 .
“No )

where C is the coefficient of the monomial ¢ *~lz"+k=1 in
(ax — Buy) ™+ (ay + Bvz)"~*~1. The pairings in the second to last line
are the natural ones on Sym?* H'(E’) and Sym*" ~?H'(E) induced from
the pairings on the full tensor algebras. For example, Sym?" " 2H'(E) has

a natural pairing coming from the cup product (, ) on H(E):

2r—2

(M ®- ®vzr_2) X (W1 ® - ®war_2) > 27“—2 Z H (Vis Wo(s))-

0€ESo,_o 1=1
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In particular, (%%, 2°y%) = 0 unless a = d and b = ¢, and

-1
ab aby_ ablfa+b
<xy’ym)_(a+b)!_(a '

We have also used that on Sym* " 2H!(E) ® Sym®*H'(E’) we have
(L®v,w® z) = (u,w)(v, 2).

To compute the value of C, note that in general, the coefficient of x
in

m+2k

(az 4+ b)™ 2k (cx + d)™

is equal to a®*(ad — be)™ H,y, (%). This is proved using the method

of [39, 3.3.3]. Applying this to the situation at hand, we find that

2N(Bj)>
N(@) /-

C= @ZkN(b)T_k_lHT_k_l,k (1 —

Plugging this in, we obtain the desired expression for the pairing on the
special fiber. O

For each prime g, define {z, T,,Z%)q = 3,,,(2, TnZ" ).

PROPOSITION 5.4. — Assume that (m,N) = 1, r4(m) = 0 and that
N > 1. Then

o ) (4| D|m)"~* !
X@) 7 D, Ty, = *UZW
q#p ) (rfkfl)
2nN
X Z . oa(n)ray (m|D| —nN) Hp_g—1k (1 - mD) )
O<n<

with o 4(n) defined as in Corollary 3.6.

Proof. — This type of sum arises from Proposition 5.2 exactly as in [24,
I1.4.17] and [14], so we omit the details. The main new feature here is that
each b = o + 3j € Ra of degree m is weighted by a‘, by the previous
proposition. Thus the numbers r4(j), with j = m|D| — nN, and which
in [24, 11.4.17] are simply counting the number of such b, become non-
trivial sums of the form

>al

ccOxk
[c]=A"'D
Nm(c)=j
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Here, « € 9 !a and ¢ = (a)oa™! (see [14, p. 265]). Rewriting this sum,
we obtain

o x(a) ~ x(a) x(a) ‘
DUox(ead™) = 2 Y x(©) = =L D x(0) = =l ran()-
CCOK X a) CCOK D CCOK D
[]J=A"'D [(]=A"'D [c(]=A
Nm(c)=j Nm(c)=3 Nm(c)=j
Multiplying by x(a)~!, we get the desired result. O
We define
o 2’(LN
B? = ; 74 (m| D] = nN)oa(n)Hy k11 (1 - m|D|>
(p,n)=1
\7
o 2nN
Cn = Z=: TAx (m|D| —nN)oa(n )Hr—k—l,k (1 — m|D|>

Up to a constant, the BY, appear as coefficients of the derivative of the
p-adic L-function defined earlier and C, contributes to the height of our
generalized Heegner cycle. Just as in [24, 1.6.7], we wish to relate the BZ,
to the C7,.

Let U, be the operator defined by C7, — C7 , and similarly for B7,. For
a prime p of K above p, we write o, for Frob(p) € Gal(H/K). We will also

let o, be the operator C9, — Cy, .

PROPOSITION 5.5. — Suppose p > 2 is a prime which splits in K and
that x is an unramified Hecke character of K of infinity type (¢,0) with
¢ = 2k. Then

—k— = 2 o — o
H (Up _pT F 1X(p)UP) Cm = (Ug _pw QUI?) Bm'
plp
Proof. — The proof follows [28, Proposition 3.20], which is the case r = 1
and ¢ = k = 0. We first generalize [28, Lemma 3.11] and write down
relations between the various 74, (—).

LEMMA 5.6. — Set ra,,(t) = 0 if t € Q\N. For all integers m > 0, we
have
(1) rax(mp) + pra(m/p) = X(P)rap.x(m) + x(p)rap(m).
(2) TA,x(mp2) + p2éT.A,x(m/p2) = X(p2)rAp27x(m) + X(p2)T.A}32,X(m) if
plm
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(3) Tax(mp?) —pra(m) = x(P*)rapz,x (m) + X (p?)r.ap2 o (m) if p f m.
(4) If n = nop' with p [ ng, then o4(n) = (t + 1)o4+(ng), where

OAt = OApt = O Apt-
(5) oap2(n) = g4(n) for any ideal b.

Proof. — Note that every integral ideal a in A of norm mp is either of
the form a’p with a’ € Ap of norm m or it is of the form a’p with a’ € Ap
of norm m. Moreover, an ideal of norm mp which can be written as such a
product in two ways is necessarily the product of an integral ideal in A of
norm m/p with (p). The first claim now follows from the fact that

raxt) = >, x(a),
acO

ac A
N(a)=t

and that x((p)) = p’. Parts (2) and (3) follow formally from (1). (4) is
proven in [28] and (5) is clear from the definition. O

Going back to the proof of Proposition 5.5, the LHS is equal to

Coop = 207571 (X(B)C + X(R)Ch)
+p2('f‘—k'—1) (X(ﬁ)QCz;;p22 + 4p€Cng2 + X(p)C;(;'322>
—2p? TR ( () Oy + X(p)Cy ) + p* Y C,.

In the following we write v(p) for the p-adic valuation of an integer n, and
n = nop”®). For the sake of brevity we also set 74 (u,v) = 7.4, (u|D| —vN)
for integers u and v and H(x) = Hy_j_1 k(x). Then by the lemma, the
LHS above is equal to

m|D|/N

Y, () + 1) (mp*) M (n),

n=1
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where M (n) equals
2nN
4
H|l- ——
rA(mp”, )0 4 0(n)(100) < mp4|D|>

2nIN
—9 4 4 2 H(1 - 2=
oot )+ . (0 0/9)] .t (o) 7 (1= 250

% 4 (m,n/pz) + 4plr g (mp?,n) if p|n 1

+ [ a(mp*,p*n) +
l me”7°n) {3pém(mp2,n) ifpfn

2nN
H{l————
X CT.A,'u(n) (Tlo) ( mp2D|>

2nN
—9 4 2 ¢ H(1 -2/
p [TA(mp apn) +p TA(mv n/p)] UA,v(n)+1(n0) ( mp|D|)

2nN
20
+ pra(m, n)o 4, u(n) (n0) H (1 — m|D|) .

Grouping in terms of the ng which arise in this sum, we find that the LHS

Z ZUA,t(nO)At

(no,p)=1t

is equal to

where A; equals

t—1 ift>1 H( 2n0ptN>
0 ift=0 mp*| D

(mp*)" 1 A (mp*, p'no) [H 1 —2t+{

et o At+1)—2t ift>1
+ (mp?)F P 2 4 (mp?, pino) l—2(t+2)+{ +1) 1

ift=0
2nopt N
H|1l-
g < mp2|D|>
2nopt N
+mrk1p4r4r_,4(m,ptn0)[t+32(t+2)+t+1]H<1 nmoﬁ)| >

So A; = 0 unless t = 0, and we conclude that the LHS is equal to (U;)1 —
p*"2U2)Bg,, as desired. O
6. Ordinary representations

The contributions to the p-adic height (zy, Zﬁ>2> coming from places v|p
will eventually be shown to vanish. The proof is as in [24] (though see
Section 8), where the key fact is that the local p-adic Galois representation
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V¢ attached to f is ordinary. We recall this notion and prove that the Galois
representation Vi 4, = V; @ ke HY(A?,Q,)(k) is ordinary as well.

DEFINITION. — Let F be a finite extension of Q,. A p-adic Galois rep-
resentation V of Grp = Gal(F/F) is ordinary if it admits a decreasing
filtration by subrepresentations

PV o FHy 5.

such that |JF'V =V, (F'V =0, and for each i, F'V/F""1V = A;(i),
with A; unramified.

Recall we have defined ¢ = ey kp with

| vy | (vD-1vD1\* O(l_[_q)@f
‘- /D 2D 2 '

THEOREM 6.1. — Let f € S2,.(I'o(N)) be an ordinary newform and let
V¢ be the 2-dimensional p-adic Galois representation associated to f by
Deligne. Let A/H be an elliptic curve with CM by Ok and assume p splits
in K and A has good reduction at primes above p. For any { = 2k > 0, set
W = koH'(A*,Q,)(k). Then for any place v of H above p, Vi 4y = Vi QW
is an ordinary p-adic Galois representations of Gal(H,/H,).

Proof. — First we recall that V; is ordinary. Indeed, Wiles [38] proves
that the action of the decomposition group D, on V; is given by

€1 *
0 €2

2r—1

cye s We have € = eglxg)r,c_l. Thus,

with € unramified. Since, det Vy is x
the filtration

FVy =V; o F'Wp = F* 'V = €1 o F'V; = 0,
shows that V; is an ordinary Gal(Q,/Q,)-representation and hence an or-
dinary Gal(H,/H,)-representation as well. Next we describe the ordinary
filtration on (a Tate twist of) W.

PROPOSITION 6.2. — Write (p) = pp as ideals in K. Then the p-adic
representation M = r,HE (A% Q,)(¢) of Gal(H,/H,) has an ordinary fil-
tration

F'M =M > F'M = F'M > F* "' M = 0.

Proof. — The theory of complex multiplication associates to A an alge-
braic Hecke character ¢ : Aj; — K* of type Nm : H* — K* such that
for any uniformizer 7, at a place v not dividing p or the conductor of A,
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P(my) € K = End(A) is a lift of the Frobenius morphism of the reduction
A, at v. The composition
ty: A T AX 5 (KQQ,)”
agrees with ¢ on H*, giving a continuous map
o =ty AR H — (K©Q,)".
Since the target is totally disconnected, this factors through a map
PG~ (K®Q,)*.
By construction of the Hecke character (and the Chebotarev density theo-
rem), the action of Gal(H/H) on the rank 1 (K ® Q,)-module T,A® Q,
is given by the character p. Since p splits in K, we have
(K®Q,)* = K} @K} = QX @ Q).
Now write p = p, @ ps, where p, and p; are the characters obtained by

projecting p onto K, and Kﬁx.

LEMMA 6.3. — Let Xcye : Gal(H,/H,) — Q, denote the cyclotomic

character and consider p, and pj as representations of Gal(H,/H,). Then
PpPs = Xeye and pp is unramified.

Proof. — The non-degeneracy of the Weil pairing shows that /\2 T,A =
Zp(1). It then follows from the previous discussion that ppps = Xcye. That
pp is unramified follows from the fact that ¢5(H,) = 1 and v is prime to the
conductor of . Indeed, the conductor of A is the square of the conductor
of 1 [13], and A has good reduction at p. O

Remark. — Let A/Op be the Néron model of A/H. Since A[p"] is
étale, it follows that the p-adic Tate module VA is unramified at v. We
can therefore identify p, = V, A and p; = V53 A. One can also see this from
the computation in equation 4.1.

LEMMA 6.4. — As Gal(H,/H,)-representations,
He(A, Q) (1) = pp @ py
and
M = k¢He (A%, Q,)(0) = py @ py.
Proof. — The first claim follows from the fact that
T,A®Qp = H (A, Qp)(1).

Fix an embedding ¢ : End(A)— K, which by our choices, induces an embed-
ding End(A4)—Q,. By the definition of p, p, is the subspace of H} (4,Q,)(1)
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on which o € End(A) acts by ¢(a), whereas on pg, a acts as t(«). The sec-
ond statement now follows from the Kunneth formula and the definition
of Kg. O

Now set FOM = M, FIM = F'M = +* and F*'M = 0. By the
lemmas above, this gives an ordinary filtration of M and proves the propo-
sition. O

Now to prove the theorem. We have specified ordinary filtrations F' in

and F?M above. A simple check shows that
Fi(V;@M) = Y. FPV;®F'M
p+q=i

is an ordinary filtration on Vy @M. Since Vi a0 = V; QW = (V;QM)(—k)
and Tate twisting preserves ordinarity, this proves V 4, is ordinary. O

Remark. — Another way to obtain the ordinary filtration on M is to
use the fact that M is isomorphic to the p-adic realization of the motive
Mgw , attached to the modular form 6, of weight £+1. Since A has ordinary
reduction at p, 8 is an ordinary modular form, and it follows that 0. is
ordinary as well. We may therefore apply Wiles’ theorem again to obtain
an ordinary filtration on W.

PROPOSITION 6.5. — The Gal(H/H) representation Vi 4o = V; @ W
satisfies V¥4 ,(1) = Vi a0

Proof. — Recall that V(1) = V}, so we need to show that W* =~ W.
This follows from the two lemmas above. O

7. Proof of Theorem 1.1

In what follows, normalized primitive forms fg € Sz, (I'o(N)) will be
indexed by the corresponding Q-algebra homomorphisms 3 : T — Q. We
let By be the homomorphism corresponding to our chosen newform f. If
A € Pic(Of), then

Fua =Y zpx, 255015
B
is a cusp form in So,(T'o(IN); Qp(x)). Indeed, for (m, N) = 1, we have

X (@)@ (Fa) Z<z5, Z5)B(Th) = (2, Tn2%) = (x, T;,3%) € Qp,

because the Hecke operators are self-adjoint with respect to the height
pairing. If 7 4(m) = 0, then we have the decomposition

am(FA) = C;Tn + dg@
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where

¢g, = Xx(@) 7 Y @, Tna®y,  dg, = x(@)71 D e, Tnd,

vip vlp

and the sums are over finite places of H.

Both sides of the equation in Theorem 1.1 depend linearly on a choice
of arithmetic logarithm ¢ : Ax/K* — Q,. By Theorem 4.9, it suffices to
proves the main theorem for cyclotomic £k, i.e. £ = £ oT. As cyclotomic
logarithms are unique up to scalar we only need to consider the case (i =
lgoN. Thus, £x = log, oA, where A : G(Kq/K) — 1+pZ, is the cyclotomic
character. As before, we write A = A o N, where \ : Z, — 1+ pZy, is given
by Az) = (z)~t.

By definition,

d
L(fex,1) = sl (f®x.A%)

s=0

Also by definition,

o= (£) (e (Z)ver)

x f PNCAT
G(Hpo (py )/ K)

- (1-c ()5 =)

x J AdWS 4,
G(H o (1 )/ K)

where C' is an arbitrary integer prime to N|D|p. The measure \i/gl,l is
given by:

U§ ) 1 (o(mod p"), m(mod p™)) = Ly, (¥4 (a(mod p™)))

where a corresponds to the restriction of 7 under the Artin map and o
corresponds to [A] € Pic(Opn). We have

Ly(f@X)(X°) =

o (1-e(2)@r) 1| 3 [ oraisi,

AePic(Ox)
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Using log{x) = log z, we compute

2 (e(2) L)
_ (1_(; <ZC)>)_1J; log z TG + () . v

-1
= <10<D>) f log x d¥§
C Z;f

The integral §,x d¥q vanishes because by Corollary 2.5, L,(f ® x)(\) =0
P
for all anticyclotomic ), in particular for A = 1.
If we set

GO’ = (_1)T LX logp d‘i/A € MQT(FO(NpOO); Qp(X))7
then using the identity
= D L -
[ awans = [ xo-c(g)resaia

we obtain

L;;(f®X> ]l) = _Hp(f) Z Lfo(GU)'

ceG(H/K)
Define the operator

o 2
F=1] "IX(p)og)
plp
Putting together Corollary 3.6 and Propositions 5.4 and 5.5, we obtain

PROPOSITION 7.1. — Ifp|m, (m,N) =1 and r4(m) = 0, then

| F = (=) 4D wPan(Go)| (UF - p* 2U2).

We define the p-adic modular form

H, = FA|F + (-1)F @4D]))" "1 2G| (US - p* 2U2).

By construction, when p|m, (m,N) =1 and r4(m) = 0, we have

am(Hy) = 5| F = x(@) ™ > a, Tna®) | F.

vlp

PROPOSITION 7.2. — Define the operator
F' = (Up = 0p)(Upoy — p2T_2)(Up —03)(Upoy —p ).
Then Ly, (H,|F") = 0.
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Proof. — The proof should be exactly as in [24, 11.5.10], however the
proof given there is not correct. In the next section we explain how to
modify Nekovai’s argument to prove the desired vanishing. For our purposes
in this section, the important point is that this modified proof goes through
if we replace the representation Vi a0 = V; (i.e. the £ = 0 case which
Nekovar considers) with our representation Vya, = Vy ® W, where W
corresponds to a trivial local system. Indeed, the proof works “on the curve”
and essentially ignores the local system. The only inputs specific to the local
system are two representation-theoretic conditions: it suffices to know that
the representation Vi 4, is ordinary and crystalline. These follow from
Theorems 6.1 and 4.3, respectively. ]

It follows that

Ly, (Fa|FF') = (—1)k+! @D ULy, <GU

)]
Since Ly, o U, = a,(f)Ly,, we can remove F' from the equation above;
we may divide out the extra factors that arise as they are non-zero by the
Weil conjectures. Summing this formula over o € Gal(H/K), we obtain

r—k—1\ 2
L= M) 8 e
plp p ceGal(H/K)
2r—2

- 0D e (1- Zos ) prex .
ap(f)
Note that the operators o, and oj (in the definition of F) permute the
various {zy, Z}A>2> as A ranges through the class group. So after summing
over Gal(H/K), these operators have no effect and therefore do not show
up in the Euler product in the left hand side.(!) By Hida’s computation [24,
1.2.4.2]:

(- f(})z) = H,(DLy, (P,

so we obtain

L(fox1) = (]

k1N 2 A
LX)y RN Zaerico0 B Fx)
a, '

plp

(f) (4D 2

(1) This is unlike what happens in [24]. The difference stems from the fact that we
inserted the Hecke character into the definition of the measures defining the p-adic L-
function.
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By equation (4.3), this equals

ok ~ x(p)pr ! TR
v H<1 op(f) ) (4Dt 2

proves Theorem 1.1.

Proof of Theorem 1.2. — We now assume y = 1/ as in Section 1.3. Re-
call that the cohomology classes zy and zy live in H}c (H,Vy a,). Recall also
V¥, 4,0 is the 4-dimensional p-adic realization of the motive M (f) g ®M (x#)
over H with coefficients in Q(f). Using Remark 4.1, we have a motive
M(f)x ® M(x) over K with coefficients in Q(f, x) descending M(f)y ®
M (xu) ® Q(x). The p-adic realization of this motive over K is what we
called Vi .

Thus we may think of the classes z¢ and zy in H} (H,Via0)=HYH,Vy ).
Define

zfc( = cory/i(zy) and Eff = corg/k (Zy)
in HH(K, Vy,).

LEMMA 7.3.
resH/K(zJIc{) = hzf, and resH/K(EJIf) = hzfx.

Proof. — Note that there is a natural action of Gal(H/K) on H'(H,Vy,),
since V; , is a Gg-representation. Since res o cor = Nm, it suffices to show
that for each o € Gal(H/K), 2§ = zﬁx and z§ = Zﬁ)%’ where A corresponds
to o under the Artin map. Recall that

27 = x(0) 'y (epeY®)  and 27y = x(8) '@ (epeY"),
for any ideal a in the class of A.
To prove 2§ = zﬁx, we first describe explicitly the action of Gal(K/K)

on the subspace €Vy a0 < Vi a4, after identifying the spaces Vi 40 and
V.- For each o € Gal(K/K), we have maps

T Y Ay v-4 (0)tgg* T
efHe(Aév Q;D) — & HZ(AU ) Qp) R EZHZ(Aév Qp)’
which induces an action of G on €V} 40 = Vy®@eH!(A*, Q,(k)). By defini-
tion of M (x), this agrees with the action of Gk on V. Now the argument
in the proof of Lemma 4.7 shows that 2§ = zﬁx. A similar argument works

for 2;‘0. O

By Lemma 7.3, resH/K(zfX) = hzs, and resH/K(Z;() = hzy . It follows
that
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Now assume that L,(f®x, {x, 1) # 0. By Theorem 1.1 and (7.1), the co-
homology classes zJIf and Ejlf are non-zero, giving two independent elements
of H}(K, Vy,y ). This proves one inequality in Perrin-Riou’s conjecture (1.1).

The other inequality follows from forthcoming work of Elias [11] con-
structing an Euler system of generalized Heegner classes and extending
the methods of Kolyvagin and Nekovaf in [22] to our setting (see also [4,
Theorem BJ). O

8. Local p-adic heights at primes above p

The purpose of this last section is to fix the proof of [24, I1.5.10] on
which both Nekovai’s Theorem A and our main theorem rely. In the first
two subsections we gather some facts about relative Lubin-Tate groups and
ring class field towers, and in 8.3 we explain how to modify the proof in [24].
We have isolated and fixed only the two parts of [24, I1.5] with a mistake,
instead of rewriting the entire argument of that section.

8.1. Relative Lubin-Tate groups

The reference for this material is [35, §1].

Let F'/Q, be a finite extension and let L be the unramified extension of
K of degree § > 1. Write mp and my, for the maximal ideals in O and
Oy, and write ¢ for the cardinality of Op/mp. We let ¢ : L — L be the
Frobenius automorphism lifting z — z? and normalize the valuation on F
so that a uniformizer has valuation 1. Let £ € F' be an element of valuation
d and let f € OL[[X]] be such that

f(X) =X +0(X?) and f(X)=X%modmy,

where @ € Of, satisfies Nmy p(w) = £ Note that @ exists and is a uni-
formizer, since Nmy, p(L>) is the set of elements in F* with valuation in
07Z.

THEOREM 8.1. — There is a unique one dimensional formal group law
Fy € Or[[X,Y]] for which f is a lift of Frobenius, i.e. for which f €
Hom(Ff,FJ?). F¢ comes equipped with an isomorphism Op =~ End(FY)
denoted a — [a]f, and the isomorphism class of Fy/Or, depends only on &
and not on the choice of f.
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Now let M be the valuation ideal of C, and let My the M-valued points
of Fy. For each n > 0, the m-torsion points of Fy are by definition

Wi ={weMy: [a]f(w) =0 forall aemj}

PROPOSITION 8.2. — For eachn > 1, set Ly = L(W}). Then

(1) Lg is a totally ramified extension of L of degree (q — 1)g"~! and is
abelian over F.

(2) There is a canonical isomorphism (Op/mp)* =~ Gal(L{/L) given
by u — oy, where o, (w) = [u™!]f(w) for we Wi

(3) Both the field Ly and the isomorphism above are independent of
the choice of f.

(4) The map u — o, is compatible with the local Artin map rp : F* —
Gal(F2b/F).

(5) The field Lg corresponds to the subgroup . (1+mht) c F* via
local class field theory.

Writing Le = J, L¢, we see that Gal(L¢/L) = O and the group of
universal norms in F'* coming from L¢ is ¢”. Moreover, we have an iso-
morphism Gal(L¢/L) — O who’s inverse is TF|O; composed with the
restriction Gal(F2P/F) — Gal(L¢/F).

8.2. Relative Lubin-Tate groups and ring class field towers

Now let v be a place of H above p and above the prime p of K. For each
J = 1, write Hj ,, for the completion of the ring class field H,; of conductor
p’ at the unique place w = w(j) above v. In particular, Hy, = H,. If
§ is the order of p in Pic(Ok), then H, is the unramified extension of
K, = Q, of degree §. Since p splits in K, H,,,/H, is totally ramified of
degree (p — 1)p’~! /u, where recall u = #0}; /2. Moreover, Gal(H;,.,/H,)
is cyclic and Hj,, is abelian over Q,. We call Hy, = Uj Hj ,, the local
ring class field tower; it contains the anticyclotomic Zy-extension of K. To
ease notation and to recall the notation of the previous section, we write
L=H,.

PROPOSITION 8.3. — Write p° = (r) for some m € Of. Then H, is
contained in the field L¢ attached to the Lubin-Tate group relative to the
extension L/Q, with parameter { = w/7 in K, = Q,. If O = {£1}, then
Hy = Le.
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Remark. — Note that there are other natural Lubin-Tate groups rela-
tive to L/Q, coming from the class field theory of K, namely the formal
groups of elliptic curves with complex multiplication by Og. These formal
groups will have different parameters however, as can be seen from the
discussion in [35, I1.1.10].

Proof. — By (5) of Proposition 8.2, it is enough to prove that Hy, is the
subfield of Q3> corresponding to the subgroup (/@)% - i under local class
field theory. First we show that (7/7) is norm from every H; ,. Using the
compatibility between local and global reciprocity maps, this will follow if
the idele (with non-trivial entry in the p slot)

(..1,1,n/7,1,1,...)e A}
is in the kernel of the reciprocity map
rj AR /K™ — Gal(K*®/K) — Gal(H,; /K),
for each j. Since the kernel of r; is K XAIXQOO@;“ it is enough to show that
(..l/m,m, 17, m, w,..) € OF.

This is clear at all primes away from p since 7 is a unit at those places. At
p, it amounts to showing that (1/7,1/m) € K, x K lands in the diagonal
copy of Z, under the identification K, x Kz = Q, x Q,, and this is also
clear.

Since L/Q, is unramified of degree 6 and £ = 7/7 has valuation ¢, it
remains to prove that the only units in Q, which are universal norms for
the tower H,,/Q, are those in p2.. But by the same argument as above,
the only way a € Z) can be a norm from every Hj,, is if a = ¢ for some
global unit ¢ € K. But then ¢ is a root of unity and o = (~'¢ = (2, s0 «
is in p2-. Conversely, it’s clear that each ¢ € p% is a universal norm. O

Remark. — Since we are assuming K has odd discriminant, the equality
Hy, = L¢ holds unless K = Q(u3). For ease of exposition we will assume
K # Q(us) for the rest of this section; the modifications needed for the
case K = Q(us) are easy enough.

We will need one more technical fact about the relative Lubin-Tate
group F cutting out He. Let x¢ : Gal(L/L) — Z,, be the character
giving the Galois action on the torsion points of Fy. We let Q,(x¢) denote
the 1-dimensional Q,-vector space endowed with the action of Gal(L/L)
determined by x¢, and we denote by Deris(Qp(x¢)) the usual filtered ¢-
module contravariantly attached to the Gal(L/L)-representation Q,(x¢)
by Fontaine.
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PROPOSITION 8.4. — The representation Q,(x¢) is crystalline and the
frobenius map on the 1-dimensional L-vector space Deyis(Qp(X¢)) Is given
by multiplication by &.

Proof. — This is presumably well known, but with a lack of reference we
will verify this fact using [7, Prop. B.4]. There it is shown that Q,(x¢) is
crystalline if and only if there exists a homomorphism of tori " : L* — Q
which agrees with the restriction of x¢ o rz, to Of . In that case, frobenius
on Deis(Qp(xe)) is given by multiplication by x¢(r(@)) - x/(w) !, where
@ is any uniformizer of L.(?) Combining (2) and (4) of Proposition 8.2 with
the commutativity of the following diagram

L* —™— Gal(L*®/L)

- e
Q) —2 Gal(Q2/Q,),

we see that ¥’ = Nm™! gives such a homomorphism, so the crystallinity
follows. Note that by construction x¢ : Gal(L*"/L) — Z factors through
a character X¢ : Gal(Q&"/L) — ZX. So if we choose @ to be such that
Nmp g, (@) = &, then

Xe(re(w)) = Xe(rg, (Nm(w)))
= Xe(rg, (§) = 1.

Thus, the frobenius is given by multiplication by

X(w) ! = Nmp g, (@) =§.

8.3. Local heights at p in ring class field towers

The proofs of both [24, I1.5.6] and [24, I1.5.10] mistakenly assert that Hj ,,
contains the j-th layer of the cyclotomic Zy-extension of Q, (as opposed
to the anticyclotomic Z,-extension). This issue first arises in the proofs
of [24, 11.5.9] and [24, 11.5.10]. We explain now how to adjust the proof
of [24, 11.5.10]; similar adjustments may be used to fix the proof of [24,
I1.5.9]. Our approach is in the spirit of Nekovdi’s original argument, but
uses extra results from p-adic Hodge theory to carry the argument through.

(2) Note that we are using the contravariant Deris, whereas [7] uses the covariant version.
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Recall the setting of [24, I1.5.10]: x is the Tate vector corresponding to
our (generalized) Heegner cycle egeY, and V = H} (Xo(N), jos.A)(1). We
have the Tate cycle

zp= > crmIma e Z(Yo(N), H) ®q, L,

mesS

a certain linear combination (with coefficients ¢y, living in a large enough
field L) of T}, x such that

@T(xf) =ZzZf€ H}(H, V) ®Qp L.

Moreover, each m € S satisfies (m,pN) = 1 and r(m) = 0, where r(m)
is the number of ideals in K of norm m. To fix the proof of [24, 11.5.10],
we prove the following vanishing result for local heights at primes v of H
above p.

THEOREM 8.5. — For each j > 1, let h] € Z;(Yo(N), Hj.,) be a Tate
vector supported on a point y; € Yo(N) corresponding to an elliptic curve
E; such that End(E}) is the order in Ok of index p’. Then

Tim G, Ny a1, () = 0.

Proof. — Recall that E; is a quotient of an elliptic curve £ with CM
by Ok by a (cyclic) subgroup of order p? which does not contain either
the canonical subgroup E[p] or its dual E[p]. By the compatibility of local
heights with norms [24, 11.1.9.1], we have
(8.1) <'rf7NHj,w/Hv <h'?)>v,é,, = <l‘f,h?>wl ,

w

where ¢, = £, o Ny, ,/u,- Recall that we are assuming now that b =
log,, oA, where X : Gal(K/K) — 1+ pZ, is the cyclotomic character. Thus
the local component ¢, : H) — Q) of {k is £, = log,oNy, q,, and

gw = logp ONHj,w/Qp'

We have seen that the ring class field tower Hy, is cut out by a relative
Lubin-Tate group. In fact, it follows from the results in the previous sections
that H; , = Lg, where L = H, and £ = n/7 as before. Let E be the mixed
extension used to compute the height pairing of zy and h7 (as in [24,
I1.1.7]), and let E,, be its restriction to the decomposition group at w.
Assume that

E,, is a crystalline representation of Gal(H .,/Hj ).
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Then by definition of the local height, we have

<5'3f7 J>w£ = lu(ru([Eu]))
= log, (Nu, . /q, (rw([Ew]))) -

—_—

where 7, ([Ey]) is an element of O ®z, Q. In fact, the ordinarity of f
allows Nekovar to “bound denomlnators ; i.e. he shows

p G g hg), . elog, (NHW 0, (ogj,w)) .

for some integer d;. Indeed, this follows from our assumption that E., is
crystalline and the proofs in [24, I1.1.10, I1.5.10]; note that H } (H; ., Zp(1)) =

(’)X . Moreover, the d; are uniformly bounded as j varies. Nekovai’s proof
of thls last fact does not quite work, but we fix this issue in Proposition 8.9
below. Let us write d = sup; d;. By Proposition 8.2, we have

p~xg,hG ), €log,(1+pZ,y) < p'Z,.
The theorem would then follow upon taking the limit as j — oo.

It therefore remains to show that F,, is crystalline. First we need a
lemma.

LEMMA 8.6. — Let m € S and j be as above. Then the supports of T,,x
and b;,- are disjoint on the generic and special fibers of the integral model

X of Xo(N).

Proof. — Let z € Yo(N)(Q,) be in the support of T),x and let y be the
Heegner point supporting the Tate cycle x. Thinking of these points as
elliptic curves via the moduli interpretation, there is an isogeny ¢ : y — 2
of degree prime to p since (p,m) = 1. Recall p splits in K, so that y has
ordinary reduction ys at v. Since End(y) =~ Ok =~ End(ys), y is a Serre-
Tate canonical lift of y,. As ¢ induces an isomorphism of p-divisible groups,
z is also a canonical lift of its reduction. On the other hand, the curve E;
supporting i has CM by a non-maximal order of p-power index in O
and is therefore not a canonical lift of its reduction. Indeed, the reduction
of E; is an elliptic curve with CM by the full ring O as it obtained by
successive quotients of ys by either the kernel of Frobenius or Verschiebung.
This shows that T,z and b;j have disjoint support in the generic fiber.

By [14, I11.4.3], the divisors T,y and y” are disjoint in the generic fiber,
for any 7 € Gal(H/K). Since all points in the support of these divisors are
canonical lifts, the divisors must not intersect in the special fiber either.
But we saw above that the special fiber of E; is a Galois conjugate of the
reduction of y, so E; and T3,y are disjoint on the special fiber as well. [
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Next we note that T,z is a sum Y. d;, where each d; is supported on a
single closed point S of Yy(IN)/H; .. Using norm compatibility once more
and base changing to an extension F/H) ., which splits S, we may assume
that S € Yo(N)(F).

It then suffices to show that the mixed extension E! corresponding to
d; and h{ is crystalline. Recall from [24, I1.2.8] that this mixed extension
is a subquotient of

HY(Xo(N) =S rel T, jos A)(1),

where T' = y; is the point supporting hJ. So it is enough to show that this
cohomology group is itself crystalline. Finally, this follows from combining
the previous lemma with the following result. g

THEOREM 8.7. — Suppose [ is a finite extension of Q, and let S,T e
Yo(N)(F) be points with non-cuspidal reduction and which do not intersect
in the special fiber. Then H'(Xo(N) — S rel T, jox.A)(1) is a crystalline
representation of Gy.

Remark. — Suppose F' is a p-adic field and X /Spec Op is a smooth pro-
jective variety of relative dimension 2k — 1. If Y, Z < X are two (smooth)
subvarieties of codimension k£ which do not intersect on the special fiber,
then one expects that H2*~1(Xp —YF rel Zp,Q,(k)) is a crystalline repre-
sentation of Gp. The theorem above proves this for cycles sitting in fibers
of a map X — C to a curve. The general case should follow from the
machinery developed in the recent preprint [9].

Proof. — Write V. = H*(Xo(N) — S rel T, jo4.A)(1). The sketch of the
proof is as follows. Faltings’ comparison isomorphism [12] identifies De,is(V)
with the crystalline analogue of V, which we will refer to (in this sketch) as
Hl. . (X—=Srel T, jox.A). The dimension of V is determined by the standard
exact sequences

(8:2) 0= HT,joxA)(1) =V — H (X =5, joxA)(1) = 0

0 - Hl(XaJO*A)(]') - HI(X - ga]O*A)(]-) - HO(S7]0*A) g 0

Similar exact sequences should hold in the crystalline theory (i.e. with
H! replaced by Hl,. everywhere) since S and T reduce to distinct points
on the special fiber. Using the known crystallinity of H'(X,jox.A)(1),
HO(T, jox A)(1), and H°(S, jox.A) (the latter two because the fibers of

X — X(N) above S and T have good reduction), we conclude that
dimg, V = dimp, H (X — S el T, jos A),
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i.e. that V is crystalline. To turn this sketch into a proof, we need to say
explicitly what H} (X — S rel T, jo..A) is. Note that the usual crystalline
cohomology is not a good candidate because it is not usually finite dimen-
sional unless the variety is smooth and projective.

Let us describe in more detail the comparison isomorphism which we
invoked above. The main result of [12] concerns the cohomology of a smooth
projective variety with trivial coefficients. In our setting, however, we deal
with cohomology of an affine curve with partial support along the boundary
and with non-trivial coefficients. The proof of the comparison isomorphism
in this more complicated situation is sketched briefly in [12] as well, but we
follow the exposition [27], where the modifications we need are explained
explicitly and in detail.

Let R be the ring of integers of F and set V' = Spec (R). Let X/V be a
smooth projective curve and let S, T € X (V') be two rational sections which
we think of as divisors on X. We assume that S and T do not intersect,
even on the closed fiber. Set D =S U T and X° = X — D. The divisor D
defines a log structure Mx on X and we let (Y, My ) be the closed fiber of
(X, Mx). We use the log-convergent topos ((Y, My)/V)conv to define the
‘crystalline’ analogue of V. There is an isocrystal Jg on ((Y, My )/V)cony
which is étale locally defined by the ideal sheaf of S; see [27, §13] for its
precise definition and for more regarding the convergent topos.

THEOREM 8.8 (Faltings, Olsson). — Let L be a crystalline sheaf on Xg
associated to a filtered isocrystal (F,¢p, Fily). Then there is an isomor-
phism

(83) Bcris(f/) ®]F Hl(((Y7 MY)/V)COHV7F®JS)
- Bcris(‘_/) ®Qp Hl (X - g rel T, L)

As L = joxA is crystalline [12, 6.3], we may apply this theorem in our
situation. Taking Galois invariants, we conclude that

Dcris(V) = Hl(((Y7 MY)/V)conv; F ® JS) .

To complete the proof of Theorem 8.7, it would be enough to know that
the convergent cohomology group D..is(V) sits in exact sequences analo-
gous to the standard Gysin sequences (8.2). These sequences hold in any
cohomology theory satisfying the Bloch-Ogus axioms, but unfortunately
convergent cohomology is not known to satisfy these axioms. On the other
hand, rigid cohomology does satisfy the Bloch-Ogus axioms [31]. So we
apply Shiho’s log convergent-rigid comparison isomorphism [36, 2.4.4] to

identify Dcyis(V) with Hrlig(Y — 8, rel Ty, j1€), for a certain overconvergent
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isocrystal j7€ which is the analogue of jo4.A on the special fiber. Here S,
and T are the points on the special fiber. We have similar identifications
with rigid cohomology for each term appearing in the sequences (8.2), and
the corresponding short exact sequences of rigid cohomology groups are
exact. The crystallinity of V now follows from dimension counting. g

Remark. — Theorem 8.5 has two components: first one must bound
denominators and then one shows that the heights go to 0 p-adically. In
the argument above, the ordinarity of f was the crucial input needed to
bound denominators. We briefly explain the modifications need to fix the
proof of [24, 11.5.9], where one pairs Heegner cycles of p-power conductor
with cycles in the kernel of the local Abel-Jacobi map (the higher weight
analogue of principal divisors). The fact that these cycles are Abel-Jacobi
trivial allows us to make a “bounded denominators” argument even without
an ordinarity assumption; see [24, 11.1.9]. To kill the p-adic height, we
further note that the particular AJ-trivial cycles in the proof of I11.5.9 are
again linear combinations of various T;,x, with (n) = 0. This lets us invoke
Lemme 8.6 and Theorem 8.7, as before.

As we alluded to in the proof of Theorem 8.5, the proof of [24, I1.5.11]
again assumes that Hy, contains the cyclotomic Z,-extension of Q,. To fix
the proof there, it is enough to prove the following proposition.

ProprosiTiON 8.9. — Let V  be the Galois representation
HL(Xo(N), josxA)(1) attached to weight 2r cusp forms. If we set H,, =
U, Hj,w, then

H°(H,,V) =0.

Proof. — We follow Nekovai’s approach, but instead of using the cyclo-
tomic character we use the character x¢ coming from the relative Lubin-
Tate group attached to Hy, defined above. By Proposition 8.4, the Gg,-
representation Q,(x¢) is crystalline and the frobenius on Deyis(Qp(xe)) is
given by multiplication by &, where ¢ is defined in Proposition 8.3.

Since V' is Hodge-Tate, there is an inclusion of Gal(H/H,)-represen-
tations

H°(Ho,, V) © @z HO(Ho, VX)) (7).

Indeed, H%(Hy, V) has an action by Gal(H,,/H) which we can break up
into isotypic parts indexed by characters xg, with s € Z,. But of these
characters, the only ones which are Hodge-Tate are those with s € Z, so we
obtain the inclusion above.
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So it suffices to show that for each j, H°(H,, V(xg))(xgj) = 0. Tensoring
f= NV

the inclusion Q, — B/Z' by V(xg), taking invariants, and then twisting

the resulting filtered frobenius modules by ng , we obtain
HO(H,, V(X%))(ng) < DcriS(V)f=£_J~

As an element of C, £ has absolute value 1. Since V' appears in the odd de-
gree cohomology of the Kuga-Sato variety, [18] implies that Des(V)7=¢"
vanishes and the proposition follows. O

Finally, for completeness, we explain how Proposition 8.9 is used in the
proof of Proposition 7.2. Let X be the (generalized) Kuga-Sato variety over
H, and let T be the image of the map

H> 26X 7,(r + k) —» V = H* 21X Q,(r + k).

Proposition 8.9 is used to infer the following fact, whose proof was left to
the reader in [24].

PROPOSITION 8.10. — The numbers #Hl(HLw,T)torS are bounded as
j — 0.

Proof. — From the short exact sequence
0->T—->V ->V/T -0,

we have
(V/T)% — H'(G;,T) — H'(G;,V) -0,

where G; = Gal(H;.,/Hj.). As HY(G;,V) is torsion-free, we see that
(V/T)%i maps surjectively onto H'(G;,T)tors- An element of order p® in
(V/T)%3 is of the form p~®t for some ¢ € T not divisible by p in 7. We then
have ot —t € p°T for all 0 € G;. As V/T = (Q,/Z,)™ for some integer n, it
suffices to show that a is bounded as we vary over all elements of (V /1)
and all j.

Suppose these a are not bounded. Then we can find a sequence t; € T such
that t; ¢ pT and such that ot; — t; € p*@T for all 0 € Gop := Gal(ﬂ/Hgo).
Here, a(i) is a non-decreasing sequence going to infinity with ¢. Since T
is compact we may replace t; with a convergent subsequence, and define
t = limt;. We claim that t € H*(H., V). Indeed, for any i we have

ot —t = o(t —t;) — (t —t;) + ot; — t,.

For any n > 0, we can choose i large enough so that (¢t —¢;) € p"T and
ot; —t; € p"T, showing that ot = t. By Proposition 8.9, t = 0, which
contradicts the fact that t = lim¢; and ¢; ¢ pT. O
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