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GLOBAL ANALYSIS OF QUASILINEAR WAVE
EQUATIONS ON ASYMPTOTICALLY DE SITTER

SPACES

by Peter HINTZ

Abstract. — We establish the small data solvability of suitable quasilinear
wave and Klein-Gordon equations in high regularity spaces on a geometric class
of spacetimes including asymptotically de Sitter spaces. We obtain our results by
proving the global invertibility of linear operators with coefficients in high regular-
ity L2-based function spaces and using iterative arguments for the nonlinear prob-
lems. The linear analysis is accomplished in two parts: Firstly, a regularity theory is
developed by means of a calculus for pseudodifferential operators with non-smooth
coefficients, similar to the one developed by Beals and Reed, on manifolds with
boundary. Secondly, the asymptotic behavior of solutions to linear equations is
studied using resonance expansions, introduced in this context by Vasy using the
framework of Melrose’s b-analysis.
Résumé. — On établit la resolubilité, sur une classe géométrique d’espaces-

temps incluant les espaces asymptotiquement de Sitter, de certaines equations
d’ondes et de Klein-Gordon dans des espaces de grande régularité. On obtient
ces résultats en prouvant l’inversibilité globale d’opérateurs linéaires à coefficients
dans des espaces de grande régularité de type L2, et en utilisant des processus ité-
ratifs pour les problèmes non-linéaires. L’analyse linéaire est fait en deux étapes:
premièrement, on développe une théorie de la régularité au moyen d’un calcul
pour les opérateurs pseudo-différentiels à coefficients peu réguliers sur variétés à
bord, similaire à celui développé par Beals et Reed. Deuxièmement, on étudie le
comportement asymptotique des solutions des équations linéaires en utilisant des
développements en états résonnants, introduite dans ce contexte par Vasy, dans le
cadre de la b-analyse de Melrose.

1. Introduction

We study quasilinear wave equations on spacetimes for which infinity
has a structure generalizing that of static de Sitter space. We prove global

Keywords: quasilinear wave equations, asymptotically de Sitter spaces, microlocal anal-
ysis, resonance expansions.
Math. classification: 35L70, 35B40, 35S05, 58J47.



1286 Peter HINTZ

existence and exponential decay to constants of scalar quasilinear waves.
For concreteness, we state our results in the special case of scalar waves
on static de Sitter space, but it is important to keep in mind that the
geometric and analytic settings are more general, see also the discussion
further below.
The region of de Sitter space we are working on is a (non-compact) n-

dimensional manifold

M◦ = Rt∗ × {|Z| < 1 + 2δ}, δ > 0, Z ∈ Rn−1,

which extends past the cosmological horizon |Z| = 1 of static de Sitter
space. The manifold M◦ is equipped with a stationary Lorentzian metric
gdS (i.e. ∂t∗ is a Killing vector field) which depends on the cosmological
constant Λ > 0, though we drop this in the notation. Concretely, in static
coordinates (t, r, ω) on Rt × (0, 1)r × Sn−2

ω , the static de Sitter metric, see
e.g. [40, §4.2],(1) does not extend to the cosmological horizon r = 1 due
to a coordinate singularity, but introducing t∗ = t + h(r) with a suitable
function h as in [40, §4.3], the metric does extend smoothly to r = 1 and
beyond.
In order to set up our problem, see Figure 1.1 for an illustration, we

consider the domain

Ω◦ = [0,∞)t∗ × {|Z| 6 1 + δ} ⊂M◦,

which is a submanifold with corners with two boundary hypersurfaces,
which are the intersections of

H1 = {t∗ = 0}, H2 = {|Z| = 1 + δ}

with Ω◦. Thus, H1 is a Cauchy hypersurface, and H2 is a spacelike hy-
persurface. We are interested in solving the forward problem for wave-like
equations in Ω◦, i.e. imposing vanishing Cauchy data at H1; initial value
problems with general Cauchy data can always be converted into an equa-
tion of this type.
The simplest (even though not the most natural from a geometric per-

spective, see below) wave equations we consider are of the form

�g(u)u = f + q(u, du),

u real-valued, where g(0) = gdS is the static de Sitter metric, and at each
p = (t∗, Z) ∈M◦, the metric g(u) is gp(u(p)), where

gp : R→ S2T ∗pM

(1)Our t, t∗ are denoted t̃, t in [40].

ANNALES DE L’INSTITUT FOURIER



QUASILINEAR WAVE EQUATIONS 1287

Figure 1.1. Penrose diagram of the domain Ω◦, bounded by the dashed
lines, on which we solve quasilinear wave equations. H+ is the cos-
mological horizon. Moreover, H1 is a Cauchy hypersurface, where we
impose vanishing Cauchy data, and H2 is spacelike.

depends smoothly on p, and in fact only depends on Z, but not on t∗;
further

q(u, du) =
N ′∑
j=1

aju
ej

Nj∏
k=1

Xjku, ej , Nj ∈ N0, Nj + ej > 2,

with aj ∈ C∞(M◦) and Xjk ∈ V(M◦) real and independent of t∗. (Here aj
is only relevant if Nj = 0, since it can otherwise be absorbed into Xj1.)
Using the stationary nature of the spacetime further, we will use the

Sobolev spaces Hs on M◦ = Rt∗ ×X, with X = {|Z| < 1 + 2δ} considered
as an open subset of Rn−1

Z ; thus, the norm of u ∈ Hs is defined by

(1.1) ‖u‖2Hs =
∑

j+|β|6s

‖∂jt∗∂
β
y u‖2L2(M◦,|dgdS|)

Our central result in the form which is easiest to state is:

Theorem 1.1. — For g(0) = gdS a static de Sitter metric as above,
and for 0 < α > 1 and f ∈ C∞c (M◦) real-valued with sufficiently small
Hn/2+8-norm, the wave equation

(1.2) �g(u)u = f + q(u, du)

in Ω◦, with vanishing Cauchy data, and with q as above with Nj > 1 for
all j, has a unique real smooth (in Ω◦) global forward solution of the form
u = u0 + ũ, eαt∗ ũ bounded, u0 = cχ, c ∈ R, where χ = χ(t∗) is identically
1 for large t∗. More precisely, we have eαt∗ ũ ∈ H∞.

Theorem 1.1 follows from Theorem 1.2 below which is in a much more
general geometric setting and also allows for a larger class of nonlineari-
ties. See Theorem 8.10 for the full statement of Theorem 1.1 in the more
general setting, in particular for statements regarding stability and higher
regularity, and the subsequent Remark 8.14 for more precise asymptotics.
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1288 Peter HINTZ

One can also consider equations on natural vector bundles; see the discus-
sion later in the introduction. In a different direction, we can also solve
backward problems in spaces with fast exponential decay as t∗ → ∞, see
Theorem 8.20, where we can in fact replace �g(u) by �g(u) +L for any first
order operator L.
It is important to note that the presence of a cosmological horizon and the

asymptotically hyperbolic nature of the (cosmological) end of the spacetime
lead to dispersive properties of waves which are much stronger than in the
asymptotically flat case, and they lead to very good low frequency behavior:
In particular, there are no conditions on the nonlinear term q(u, du) other
than the (essentially necessary) requirement that it vanish on constants,
see [19, Remark 2.31], and the dimension of the spacetime is arbitrary; this
is in stark contrast to the case of quasilinear wave equations on asymp-
totically flat spacetimes, where a ‘null condition’ needs to be imposed in
low spacetime dimensions, including the physical case of 3 + 1 dimensions,
to guarantee global existence even for semilinear equations; see [24] and
further references below. In addition, the dispersive behavior of de Sitter
space leads to exponential decay to constants and a (partial) mode ex-
pansion as in the above theorem, as opposed to merely polynomial decay
for (quasi)linear waves on Minkowski space and other asymptotically flat
spacetimes.
The novelty of our analysis of quasilinear wave and Klein-Gordon equa-

tions lies in combining the methods used by Vasy and the author [19] to
treat semilinear equations on static asymptotically de Sitter (and more
general) spaces with the technology of pseudodifferential operators with
non-smooth coefficients in the spirit of Beals and Reed [7], which is used
to understand the regularity properties of operators like �g(u) in the above
theorem. Our approach, appropriately adapted, also works in a variety of
other settings, in particular on asymptotically Kerr-de Sitter spaces, where
however a much more delicate analysis is necessary in view of issues coming
from trapping.(2) In a different direction, asymptotically Minkowski spaces
in the sense of Baskin, Vasy and Wunsch [6] should be analyzable as well
using similar methods.

(2) In fact, making heavy use of the machinery developed in the present paper, Vasy and
the author [18] recently completed the required analysis for nonlinear problems on spaces
with normally hyperbolic trapping, thereby in particular obtaining global well-posedness
results for quasilinear wave equations on asymptotically Kerr-de Sitter spaces; the class
of equations considered there is in fact even more general than (1.2) in that the metric
is also allowed to depend on derivatives of u.

ANNALES DE L’INSTITUT FOURIER
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Concretely, as in [19], rather than solving an evolution equation for a
short amount of time, controlling the solution using (almost) conservation
laws and iterating, we use a different iterative procedure, where at each
step we solve a linear equation, with non-smooth coefficients, of the form

(1.3) Pukuk+1 ≡ �g(uk)uk+1 = f + q(uk, duk)

globally on L2-based spacetime Sobolev spaces or analogous spaces that
encode partial expansions. Since the non-linearity q (as well as g) must be
well-behaved relative to these, we work on high regularity spaces; recall here
that Hs(Rn) is an algebra for s > n/2. Moreover, we need to prove decay
(or at least non-growth) for solutions of (1.3) so that q can be considered
a perturbation. Since linear scalar waves on static de Sitter space decay
exponentially fast to constants, the metric g(uk) in (1.3) will similarly be
equal to a stationary metric gk,0 plus an exponentially decaying remain-
der g̃k; the asymptotics of solutions to the linear equation (1.3) are then
dictated by the stationary part N(Puk) := �gk,0 , also called the normal
operator, of the operator Puk . Since gk,0 is a smooth stationary metric, we
can appeal to the results of Vasy [40, 38] to understand linear waves glob-
ally on the (approximately) static de Sitter space described by the metric
gk,0: In particular, resonances (also known as quasinormal modes) and the
associated resonant states describe the asymptotics of linear waves. Just
as in the semilinear setting, we need to require the resonances to lie in the
‘unphysical half-plane’ Im σ < 0 (a simple resonance at 0 is fine as well),
since resonances in the ‘physical half-plane’ Im σ > 0 would allow growing
solutions to the equation, making the non-linearity non-perturbative and
thus causing our method to fail. The linear analysis of equations like (1.3)
is carried out in §7 in two steps: the invertibility on high regularity spaces
which however contain functions that are growing as t∗ →∞ (Theorem 7.9)
and the proof of decay corresponding to the location of resonances (Theo-
rem 7.10).
In the iteration scheme (1.3), notice that if uk is in a (weighted) spacetime

Hs space, then the right hand side is in Hs−1. Now Puk has leading order
coefficients inHs and subprincipal terms with regularityHs−1; therefore, in
order to have a well-defined iteration scheme, we need the solution operator
for Puk to map Hs−1 into Hs, the loss of one derivative being standard for
hyperbolic problems. In other words, there is a delicate balance of the
regularities involved; at the heart of this paper thus lies a robust regularity
theory for operators like Puk . We will achieve this by adapting a number of
methods of microlocal analysis to the non-smooth setting we are interested
in here.

TOME 66 (2016), FASCICULE 4



1290 Peter HINTZ

In order to conveniently encode the asymptotic structure of static de
Sitter space and its perturbations, we compactify M◦ and Ω◦ at future
infinity by introducing the function τ := e−t∗ (whose real powers are thus
naturally used to measure growth/decay at infinity) and adding τ = 0 to
the spacetime; thus, we let

M = [0,∞)τ × {|Z| < 1 + 2δ}, Ω = [0, 1]τ × {|Z| 6 1 + δ} ⊂M,

which introduces an ‘ideal boundary’ Y = ∂M = {τ = 0}.
Compactifying the spacetime at infinity puts equation (1.2) into the

framework of b-analysis. Here ‘b’ refers to analysis based on vector fields
tangent to the boundary of the (compactified) space, so b-vector fields
are spanned by τ∂τ and ∂Z , and b-differential operators are linear com-
binations of products of these. Note that τ∂τ = −∂t∗ , and smoothness
(resp. the better, invariant, notion of conormality) in τ near τ = 0 corre-
sponds to smoothness (resp. conormality) in e−t∗ as t∗ →∞; thus, the use
of the language of b-geometry and b-analysis is a very economic way for
deal with asymptotically stationary problems. (The b-analysis originates
in Melrose’s work on the propagation of singularities on manifolds with
smooth boundary; Melrose described a systematic framework for elliptic
b-equations in [31]. We will give more details later in the introduction.)
A first indication for this is that the normal operator of Puk is now ob-
tained in a natural way by freezing the coefficients of Puk at the boundary
τ = 0 as a b-operator. More importantly though, in this b-framework,
the PDE (1.2) reveals a rich microlocal structure: For instance, one of the
central features is that the null-geodesic flow for the unperturbed wave op-
erator �gdS extends smoothly to a flow within τ = 0, more precisely within
the b-cotangent bundle (see below), which can be thought of as a uniform
version of the standard cotangent bundle all the way up to future infinity;
and this flow has saddle points where the cosmological horizon intersects
future infinity. Microlocally speaking, the Hamilton vector field of �gdS is
radial there, i.e. a multiple of the generator of dilations in the fibers of the
b-cotangent bundle; hence the standard propagation of singularities result
by Duistermaat and Hörmander [13] does not yield any regularity informa-
tion there, and we must appeal to more refined results on the propagation
of singularities near radial points, dating back to Melrose [32]; see §6 for
further references. See Figure 1.2.

In order to emphasize the generality of the method, let us point out that
given an appropriate structure of the null-geodesic flow at ∞, for example
radial points as above, the only obstruction to the solvability of quasilinear

ANNALES DE L’INSTITUT FOURIER
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Figure 1.2. Illustration of the null-geodesic flow near the cosmological
horizon, and its extension to the boundary ∂M = {τ = 0} at future
infinity. No null-geodesic starting in M◦ = {τ > 0} can reach τ = 0 in
finite time, but the special structure of the flow near the radial set L
at the (conormal bundle of the) horizon allows for refined microlocal
regularity results at L.

equations are growing modes and bounded but oscillatory modes; in par-
ticular, in the presence of resonances in the upper half plane, our methods
cannot be applied.
The main ingredient of the framework in which will analyze b-operators

with non-smooth coefficients on manifolds with boundary is a partial cal-
culus for what we call b-Sobolev b-pseudodifferential operators; for brevity,
we will refer to these as ‘non-smooth operators’ to distinguish them from
‘smooth operators,’ by which we mean standard b-pseudodifferential opera-
tors, recalled below. b-Sobolev b-ps.d.o.s are (generalizations of) b-ps.d.o.s
with coefficients in b-Sobolev spaces, which partly extends a correspond-
ing partial calculus on manifolds without boundary in the form developed
by Beals and Reed [7]. (Beals and Reed consider coefficients in microlocal
Sobolev spaces; this generality is not needed for our purposes, even though
including it in our general calculus would only require more care in book-
keeping.) This calculus allows us to prove microlocal regularity results –
which are standard in the smooth setting – for b-Sobolev b-ps.d.o.s, namely
elliptic regularity, real principal type propagation of singularities, includ-
ing with (microlocal) complex absorbing potentials, and propagation near
radial points; see §6. We only develop a local theory since this is all we
need for the purposes of our application.(3) The exposition of the calculus
and its consequences in §§2–6 comprises the bulk of the paper.

(3)We refer the reader to the paper [18, Remark 4.6], which appeared after the first
version of the present manuscript, for a partition of unity argument showing that even
in more complicated geometries, the local non-smooth theory suffices.

TOME 66 (2016), FASCICULE 4



1292 Peter HINTZ

To set up the main theorem, recall from [38] that an asymptotically de
Sitter space M̃ is an appropriate generalization of the Riemannian con-
formally compact spaces of Mazzeo and Melrose [28] to the Lorentzian
setting, namely a smooth manifold with boundary, with the interior of M̃
equipped with a Lorentzian signature (taken to be (1, n − 1)) metric g̃,
and with a boundary defining function τ (i.e. τ = 0 defines the boundary,
and dτ 6= 0 there) such that ĝ = τ2g̃ is a smooth symmetric 2-tensor of
signature (1, n−1) up to the boundary of M̃ , and ĝ(dτ, dτ) = 1 so that the
boundary defining function is timelike and the boundary itself is spacelike.
In addition, ∂M̃ has two components X±, each of which may be a union
of connected components, with all null-geodesics γ(s) tending to X± as
s→ ±∞.
We now blow up a point p ∈ X+, which amounts to introducing polar

coordinates around p, and obtain a manifold with corners [M̃ ; p], with a
blow-down map [M̃ ; p] → M̃ . The backward light cone from p lifts to a
smooth manifold transversal to the front face of [M̃ ; p] and intersects the
front face in a sphere. The interior of this backward light cone, at least
near the front face, is a generalization of the static model of de Sitter
space; we will refer to a neighborhood M of the closure of the interior of
the backward light cone from p in [M̃ ; p] that only intersects the boundary
of [M̃ ; p] in the interior of the front face as the static asymptotically de
Sitter model, with boundary Y (which is non-compact) and a boundary
defining function τ ; see also [38, 40] for more on the relation of the ‘global’
and ‘static’ problems. Since we are interested in forward problems for wave
and Klein-Gordon equations and therefore work with energy estimates,
we consider a compact region Ω ⊂ M , bounded by (a part of) Y and
two ‘artificial’ spacelike hypersurfaces H1 and H2, see Figures 1.1 and 1.3.
For definiteness, let us assume H1 = {τ = 1}. We will demonstrate this
construction explicitly for exact (static) de Sitter space in §8.1.
On M , we naturally have the b-tangent bundle bTM , whose sections

are the b-vector fields Vb(M), i.e. vector fields tangent to the boundary;
in local coordinates τ, y near the boundary, bTM is spanned by τ∂τ and
∂y. The enveloping algebra of Vb of b-differential operators is denoted
Diff∗b(M). The b-cotangent bundle, the dual of bTM , is denoted bT ∗M

and spanned by dτ
τ and dy, and we have the b-differential bd : C∞(M ;C) d−→

C∞(M ;T ∗M) → C∞(M ; bT ∗M), where the last map comes from the nat-
ural map bTM → TM . Now, the metric g on M is a smooth, sym-
metric, Lorentzian signature section of the second tensor power of bTM .
The associated d’Alembertian (or wave operator) �g thus is an element

ANNALES DE L’INSTITUT FOURIER
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Figure 1.3. Geometric setup of the static (asymptotically) de Sitter
problem. Indicated are the blow-up of M̃ at p and the front face of the
blow-up, further the lift of the backward light cone to [M̃ ; p] (solid),
and lifts of backward light cones from points near p (dotted); moreover,
Ω is bounded by the front face and the dashed spacelike boundaries.

of Diff2
b(M) and therefore naturally acts on weighted b-Sobolev spaces

Hs,α
b (M) = ταHs

b(M), where we define

Hs
b(M) = {u ∈ L2(M,volg0) : X1 · · ·Xsu ∈ L2(M, volg0),

X1, . . . , Xs ∈ Vb(M)}

for s ∈ N0, and for general s ∈ R using duality and interpolation. Denote
by Hs,α

b (Ω)•,− the space of restrictions of Hs,α
b (M)-functions with support

in {τ 6 1} to Ω; that is, elements of Hs,α
b (Ω)•,− are supported at H1 and

extendible at H2 in the sense of Hörmander [23, Appendix B]. Finally, let
X s,α be the space of all u which near τ = 0 asymptotically look like a
constant plus an Hs,α

b -function, i.e. for some c ∈ C, u′ = u − cχ(τ) ∈
Hs,α

b (Ω)•,−, where χ ∈ C∞c (R), χ ≡ 1 near 0, is a cutoff near Y ; for such a
function u, define its squared norm by

‖u‖2X s,α = |c|2 + ‖u′‖2Hs,αb (Ω)•,− .

Our main theorem then is:

Theorem 1.2. — Let s > n/2 + 7 and 0 < α < 1. Assume that for
j = 0, 1,

g : X s−j,α → (C∞ +Hs−j,α
b )(M ;S2bT ∗M),

q : X s−j,α ×Hs−1−j,α
b (Ω; bT ∗ΩM)•,− → Hs−1−j,α

b (Ω)•,−

are continuous, g is Lipschitz near 0, and

‖q(u, bdu)− q(v, bdv)‖Hs−1−j,α
b (Ω)•,− 6 Lq(R)‖u− v‖X s−j,α

for u, v ∈ X s−j,α with norm 6 R, where Lq : R>0 → R is continuous and
non-decreasing. Then there is a constant CL > 0 so that the following

TOME 66 (2016), FASCICULE 4
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holds: If Lq(0) < CL, then for small R > 0, there is Cf > 0 such that
for all f ∈ Hs−1,α

b (Ω)•,− with norm 6 Cf , there exists a unique solution
u ∈ X s,α of the equation

�g(u)u = f + q(u, bdu)

with norm 6 R, and in the topology of X s−1,α, u depends continuously
of f .

See Theorem 8.5. Another case we study is g(u) = µ(u)g, i.e. we only al-
low conformal changes of the metric; here, one can partly improve the above
theorem, in particular allow non-linearities of the form q(u, bdu,�g(u)u); see
§8.3. The point of the Lipschitz assumptions on q in all these cases is to
ensure that q(u, bdu) has a sufficient order of vanishing at u = 0 so that
q(u, bdu) can be considered a perturbation of �g(u); quadratic vanishing
is enough, but slightly less (simple vanishing will small Lipschitz constant
near or at 0) also suffices.

Similar results hold for quasilinear Klein-Gordon equations with positive
mass, where the asymptotics of solutions, hence the function spaces used,
are different, namely the leading order term is now decaying; see §8.4 for
details.

In §8.5 finally, we will discuss backward problems; it is expected that
the results there extend to the setting of Einstein’s equations (after fixing
a gauge) on static de Sitter and even on Kerr-de Sitter spacetimes, thus
enabling constructions of dynamical black hole spacetimes in the spirit of
recent work by Dafermos, Holzegel and Rodnianski [10], however the issue
of constructing appropriate initial data sets is rather subtle.

While all results were stated for scalar equations, corresponding results
hold for operators acting on natural vector bundles, provided that all res-
onances lie in the unphysical half-plane Im σ < 0 (with a simple resonance
at 0 being fine as well): Indeed, the linear arguments go through in gen-
eral for operators with scalar principal symbols; only the numerology of
the needed regularities depends on estimates of the subprincipal symbol at
(approximate) radial points.

Lastly, let us mention that paradifferential methods would give sharper
results with respect to the regularity of the spaces in which we solve equa-
tion (1.2), and correspondingly we have not made any efforts here to push
the regularity down. However, our entirely L2-based method is both concep-
tually and technically relatively straightforward, powerful enough for our
purposes, and lends itself very easily to generalizations in other contexts.

ANNALES DE L’INSTITUT FOURIER
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Non-linear wave and Klein-Gordon equations on asymptotically de Sitter
spacetimes (or static patches thereof) have been studied in various contexts:
Friedrich [16, 15] proved the global nonlinear stability of 4-dimensional
asymptotically de Sitter spaces using a conformal method, see also [14]
for a discussion of more recent developments; also in four dimensions,
Rodnianski and Speck [34] proved the stability of the Euler-Einstein sys-
tem. Anderson [2] proved the nonlinear stability of all even-dimensional
asymptotically de Sitter spaces by generalizing Friedrich’s argument. On
the semilinear level, Baskin [4, 5] established Strichartz estimates for the
linear Klein-Gordon equation using his parametrix construction [3] and
used them to prove global well-posedness results for classes of semilinear
equations with no derivatives; Yagdjian and Galstian [44] derived explicit
formulas for the fundamental solution of the Klein-Gordon equation on ex-
act de Sitter spaces, which were subsequently used by Yagdjian [42, 43] to
solve semilinear equations with no derivatives. Vasy and the author [19]
proved global well-posedness results for a large class of semilinear wave
and Klein-Gordon equations on (static) asymptotically de Sitter spaces,
where the non-linearity can also involve derivatives; however, just as in the
present paper, the (b-)microlocal, high regularity approach used does not
apply to low-regularity non-linearities covered by the results of Baskin and
Yagdjian. There is more work on the linear problem in de Sitter spaces; see
e.g. the bibliography of [38].
There is an extensive literature on linear and non-linear wave equations

on perturbations of Minkowski space and more general asymptotically flat
spacetimes, see e.g. [9, 11, 22, 26] and [19] for details and further pointers
to the literature.

The study of ps.d.o.s with non-smooth coefficients has a longer history:
Beals and Reed [7] developed a partial calculus with coefficients in L2-based
Sobolev spaces on Euclidean space, which is the basis for our extension to
manifolds with boundary. Marschall [27] gave an extension of the calculus
to Lp-based Sobolev spaces (and even more general spaces) and in addition
proved the invariance of certain classes of non-smooth operators under
changes of coordinates. Witt [41] extended the L2-based calculus to contain
elliptic parametrices. Pseudodifferential calculi for coefficients in Ck spaces
have been studied by Kumano-go and Nagase [25]. In a slightly different
direction, paradifferential operators, pioneered by Bony [8] and Meyer [33],
are a widely used tool in nonlinear PDE; see e.g. Hörmander [22] and
Taylor [37, 36] and the references therein.

TOME 66 (2016), FASCICULE 4
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1.1. b-preliminaries and outline of the paper

We will now give some background on b-pseudodifferential operators and
microlocal regularity results along with indications as to how to generalize
them to the non-smooth setting, thereby giving a brief, mostly chronolog-
ical, outline of some of the technical aspects of the paper.

We recall from Melrose [31] that the small calculus of b-ps.d.o.s on a
compact manifold M with boundary is the microlocalization of the algebra
of b-differential operators on M , and the kernels of b-ps.d.o.s are concep-
tually best described as conormal distributions on a certain blow-up M2

b
of M ×M , smooth up to the front face, and vanishing to infinite order
at the left/right boundary faces. More prosaically, using local coordinates
(x, y) ∈ Rn+ := [0,∞)x × Rn−1

y near the boundary of M , i.e. x is a local
boundary defining function, and using the corresponding coordinates λ, η
in the fibers of bT ∗M , i.e. writing b-covectors as

λ
dx

x
+ η dy,

the action of a b-ps.d.o A ∈ Ψm
b of order m on u ∈ Ċ∞c (Rn+), the dot

referring to infinite order of vanishing at the boundary, is computed by

Au(x, y) =
∫
R×Rn−1×(0,∞)×Rn−1

ei(y−y
′)ηsiλ

× a(x, y, λ, η)u(x/s, y′) dλ dη ds
s
dy′,

(1.4)

where a(x, y, λ, η), the full symbol of A in the local coordinate chart, lies
in the symbol class Sm(bT ∗Rn+), i.e. satisfies the symbolic estimates

|∂αx,y∂
β
λ,ηa(x, y, λ, η)| 6 Cαβ〈λ, η〉m−|β| for all multiindices α, β.

We say that A is a left quantization of a. Using the formula for the behav-
ior of the full symbol under a coordinate change, one finds that one can
invariantly define a principal symbol

σmb (A) ∈ Sm(bT ∗M)/Sm−1(bT ∗M)

of A, which is locally just given by (the equivalence class of) a. If the princi-
pal symbol admits a homogeneous representative am, meaning am(z, λζ) =
λmam(z, ζ) for λ > 1, then we say that A has a homogeneous principal
symbol and, by a slight abuse of notation, set σmb (A) = am. We will some-
times identify homogeneous functions on bT ∗M \ o with functions on the
unit cosphere bundle bS∗M , viewed as the boundary of the fiber-radial
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compactification bT
∗
M of bT ∗M .(4) The first key point now is that there

is a symbolic calculus for b-ps.d.o.s, with the most important features being
that for A ∈ Ψm

b (M), B ∈ Ψm′

b (M),

σ0
b(I) = 1, σmb (A∗) = σmb (A), σm+m′

b (A ◦B) = σmb (A)σm
′

b (B),

where we fixed a b-density on M , which in local coordinates is of the form
a
∣∣dx
x dy

∣∣ with a > 0 smooth down to x = 0, to define the adjoint. For local
computations, it is very useful to have the asymptotic expansion

(1.5) σfull(A ◦B)(z, ζ) ∼
∑
β>0

1
β! (∂

β
ζ a

bDβ
z b)(z, ζ)

for the full symbol of a composition of b-ps.d.o.s, where a and b are the full
symbols of A and B, and bDz = (xDx, Dy), where D = −i∂; the notation
‘∼’ means that the difference of the left hand side and the sum on the right
hand side, restricted to |β| < N , lies in Sm+m′−N (bT ∗Rn+), for any N . In
particular, this gives that for A ∈ Ψm

b , B ∈ Ψm′

b with principal symbols
a, b, the principal symbol of the commutator is σm+m′−1

b ([A,B]) = 1
iHab,

where
Ha = (∂λa)x∂x + (∂ηa)∂y − (x∂xa)∂λ − (∂ya)∂η.

This follows from the expansion (1.5) if we keep track of terms up to first
order. The vector field Ha is in fact the smooth extension to the boundary
of the standard Hamilton vector field Ha ∈ C∞(T ∗M◦, TT ∗M◦) of a ∈
C∞(T ∗M◦).

The second key point for us is that b-ps.d.o.s naturally act on weighted
b-Sobolev spaces Hs,α

b (M), defined above:

Ψm
b (M) 3 A : Hs,α

b (M)→ Hs−m,α
b (M), s, α ∈ R.

We will collect some more information on b-Sobolev spaces and b-ps.d.o.s
in §2.
The analogous ‘non-smooth’ operators that play the starring role in this

paper, b-Sobolev b-ps.d.o.s, are locally defined by (1.4), but we now allow
the symbol a to be less regular. As an example, for many remainder terms
in our computations, it will suffice to merely have

(1.6)
∥∥∥∥a(z, ζ)
〈ζ〉m

∥∥∥∥
Hsb((Rn+)z)

6 C, uniformly in ζ ∈ Rn,

(4)Strictly speaking, this identification is only well-defined for functions which are homo-
geneous of order 0; in the general case, one should identify homogeneous functions with
sections of a natural line bundle on bS∗M which encodes the differential of a boundary
defining function of fiber infinity.
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which already implies that A = a(z, bDz) defines a continuous map

(1.7) A : Hs′

b → Hs′−m
b , s > s′ −m, s > n/2 + max(0,m− s′);

see Proposition 3.9. Assuming more regularity of the symbols in ζ, we can
study compositions of such non-smooth operators; the main tool here is the
asymptotic expansion (1.5), which must be cut off after finitely many terms
in view of the limited regularity of the symbols, and the remainder term
will be estimated carefully. In §3, we will develop the (partial) calculus
of b-Sobolev b-ps.d.o.s as far as needed for the remainder of the paper,
in particular for the proofs of microlocal regularity results, which will be
essential for the linear analysis of equation (1.3).
Let us briefly recall a few such regularity results in the smooth setting,

working on unweighted b-Sobolev spaces for brevity. First, we define the
b-wavefront set WFsb(u) ⊂ bT ∗M \o of u ∈ H−∞b (M) as the complement of
the set of all ω ∈ bT ∗M \ o such that Au ∈ L2

b(M) = H0
b(M) for some A ∈

Ψs
b(M) elliptic at ω; recall that a b-ps.d.o A ∈ Ψs

b(M) with homogeneous
principal symbol a is elliptic at ω ∈ bT ∗M \ o iff |a(λω)| > c|λ|m for λ > 1,
where we let R+ act on bT ∗M \ o by dilations in the fiber. We informally
say that u is in Hs

b microlocally at ω iff ω /∈ WFsb(u). By definition, the
wavefront set is closed and conic, thus we can view it as a subset of bS∗M ;
moreover, it can capture global Hs

b regularity in the sense that WFsb(u) = ∅
implies u ∈ Hs

b(M) (and vice versa). Elliptic regularity then states that if
u ∈ H−∞b satisfies Pu ∈ Hσ−m

b for P ∈ Ψm
b which is elliptic at ω, then u is

in Hσ
b microlocally at ω. The proof is an easy application of the symbolic

calculus – one essentially takes the reciprocal of the symbol of P near ω to
obtain an approximate inverse of P there – and readily generalizes to the
non-smooth setting as shown in §5; the main technical task is to understand
reciprocals of non-smooth symbols, which we will deal with in §4.
Next, given an operator P ∈ Ψm

b with real homogeneous principal symbol
p, we need to study the singularities for solutions u ∈ H−∞b of Pu = f ∈
Hσ−m+1

b within the characteristic set Σ = p−1(0) of u; note that elliptic
regularity gives u ∈ Hσ+1

b microlocally off Σ. Let us assume that dp 6= 0
at Σ so that Σ is a smooth conic codimension 1 submanifold of bT ∗M \ o.
The real principal type propagation of singularities, in the setting of closed
manifolds originally due to Duistermaat and Hörmander [13], then states
that WFσb(u) is invariant under the flow of the Hamilton vector field Hp

of p. In other words, WFσb(u) is the union of maximally extended null-
bicharacteristics of P , which are by definition flow lines ofHp. We recall the
key idea of the proof using a positive commutator argument in §6.3. In this
section, we will then generalize this statement and the commutator proof
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to the case of non-smooth P . Since P now only acts on a certain range of
b-Sobolev spaces, the allowed degrees σ of regularity that we can propagate
have bounds both from above and from below in terms of the regularity s
of the coefficients of P ; also, since non-smooth operators like the ones given
by symbols as in (1.6) have very restricted mapping properties on low or
negative order spaces, see (1.7), we need to assume higher regularity Hs

b
of the coefficients of P when we want to propagate low regularity Hσ

b of
solutions u. The main bookkeeping overhead of the proof of the propagation
of singularities thus comes from the need to make sense of all compositions,
dual pairings, adjoints and actions of non-smooth operators that appear in
the course of the positive commutator argument.

In order to complete the microlocal picture, we also need to consider
the propagation of singularities near radial points, which are points in the
b-cotangent bundle where the Hamilton vector field Hp is radial, i.e. a
multiple of the generator of dilations in the fiber. The above propagation
of singularities statement does not give any information at radial points.
Now, in many geometrically interesting cases, the Hamilton flow near the
set of radial points has a lot of structure, e.g. if the radial set is a set of
sources/sinks/saddle points for the flow. The proof of a microlocal estimate
near a class of radial points in §6.4 (see the introduction to §6 for refer-
ences in the smooth setting) again proceeds via positive commutators, thus
similar comments about the interplay of regularities as in the real principal
type setting apply.
In §7.2, we will combine the microlocal regularity results with standard

energy estimates for second order hyperbolic equations from §7.1, see e.g.
Hörmander [23, Chapter XXIII] or [19, §2], and prove the existence and
higher regularity of global forward solutions to linear wave equations with
non-smooth coefficients under certain geometric and dynamical assump-
tions, in particular non-trapping. The idea is to start off with forward
solutions in a space H0,r

b , r � 0, obtain higher regularity at elliptic points,
propagate higher regularity (from the ‘past,’ where the solution vanishes)
using the real principal type propagation of singularities, propagate this
regularity into radial points, which lie over the boundary, and propagate
from there within the boundary; the non-trapping assumption guarantees
that by piecing together all such microlocal regularity statements, we get
a global membership in a high regularity b-Sobolev space, however still
with weight r � 0. To improve the decay of the solution, we use a contour
deformation argument using the normal operator family as in [40, §3].
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Finally, to apply the machinery developed thus far to quasilinear wave
and Klein-Gordon equations on ‘static’ asymptotically de Sitter spaces,
we check in §8 that they fit into the framework of §7.2, thereby proving
Theorems 1.1 and 1.2. To keep the discussion in §8 simple, we will in fact
only consider quasilinear equations on static patches of de Sitter space
explicitly, but the reader should keep in mind that the arguments apply in
more general settings; see §8, in particular Remark 8.3, for further details.
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2. Function and symbol spaces for local b-analysis

We work on an n-dimensional manifold M with boundary ∂M . Since
almost all results we will describe are local, we consider a product decom-
position Rn+ = (R+)x × Rn−1

y near a point on ∂M . Whenever convenient,
we will assume that all distributions and kernels of all operators we con-
sider have compact support. Whenever the distinction between x and y (or
their dual variables, λ and η) is unimportant, we also write z = (x, y) (or
ζ = (λ, η)).
On S(Rn−1

y ), we have the Fourier transform (Fv)(η) =
∫
e−iyηv(y) dy

with inverse (F−1v)(y) =
∫
eiyηv(η) dη, where we normalize the mea-

sure dη to absorb the factor (2π)−(n−1). Likewise, on Ċ∞c (R+), i.e. func-
tions vanishing to infinite order at 0 with compact support, we have the
Mellin transform (Mu)(λ) =

∫∞
0 x−iλu(x) dxx with inverse (M−1

α u)(x) =∫
Imλ=−α x

iλu(λ) dλ, where α ∈ R is arbitrary; here, we also normalize dλ
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to absorb the factor (2π)−1. For any function u = u(x, y) ∈ Ċ∞c (Rn+), we
shall write

û(λ, η) = (Mx→λFy→ηu)(λ, η).
Weighted b-Sobolev spaces on Rn+ can then be defined by

u ∈ Hs,α
b (Rn+) ≡ ταHs

b(Rn+) ⇐⇒ 〈ζ〉s(M |Imλ=−αFu)(ζ) ∈ L2(Rnζ ),

where the restriction to Imλ = −α effectively removes the weight xα. We
will also write L2

b(Rn+) = H0
b(Rn+), which agrees with the usual definition

of L2
b(Rn+) = L2(Rn+, dxx dy), since MF : L2(Rn+, dxx dy) → L2(Rnζ ) is an

isometric isomorphism by Plancherel’s theorem.
As in the introduction, we define the b-wavefront set of u ∈ H−∞b (Rn+)

by

(z0, ζ0) /∈WFsb(u) ⇐⇒ ∃A ∈ Ψs
b,c(Rn+), σsb(A)(z0, ζ0) 6= 0, Au ∈ L2

b(Rn+).

Here, Ψ∗b,c consists of operators with compactly supported Schwartz kernel,
and we write A = A(z, bDz) ≡ A(x, y, xDx, Dy). The b-wavefront set in a
weighted b-Sobolev sense is defined by

WFs,αb (u) := WFsb(x−αu), u ∈ H−∞,αb (Rn+).

There is the following simple characterization of WFsb(u).

Lemma 2.1. — Let u ∈ H−∞b (Rn+). Then (z0, ζ0) /∈WFsb(u) if and only
if there exists φ ∈ C∞c (Rn+), φ(z0) 6= 0, and a conic neighborhood K of ζ0
in Rn such that

(2.1) χK(ζ)〈ζ〉sφ̂u ∈ L2(Rn),

where χK is the characteristic function of K.

Proof. — It suffices to prove the lemma when χK is replaced by χ̃K ∈
C∞(Rn), where χ̃K ≡ 1 on the half line R>1ζ0, and χ̃K is homogeneous of
degree 0 in |ζ| > 1. Given such a χ̃K and φ ∈ C∞c (Rn+) so that (2.1) holds
(with χK replaced by χ̃K), the map

A : v 7→ (χ̃K(bD)〈bD〉s + r(bD))(φv)

is an element of Ψs
b,c(Rn+) for an appropriate choice of r(ζ) ∈ S−∞ (see

Lemma 2.4). Since r(bD) : H−∞b (Rn+)→ H∞b (Rn+), we conclude that Âu ∈
L2(Rn), which by Plancherel’s theorem gives (z0, ζ0) /∈WFsb(u), as desired.
For the converse direction, given A ∈ Ψs

b,c(Rn+), σsb(A)(z0, ζ0) 6= 0, take
φ ∈ C∞c (Rn+) and χ̃K ∈ C∞(Rn) with φ(z0) 6= 0, χ̃K(ζ0) 6= 0 such that A is
elliptic on WF′b(B), where B = (χ̃K(bD)〈bD〉s+r(bD))φ ∈ Ψs

b,c(Rn+), again
with an appropriately chosen r ∈ S−∞. A straightforward application of
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the symbol calculus gives the existence of C ∈ Ψ0
b,c(Rn+), R′ ∈ Ψ−∞b,c (Rn+)

such that B = CA − R′; thus Bu = C(Au) − R′u ∈ L2
b(Rn+). Since

r(bD) : H−∞b → H∞b , we conclude that χK(ζ)〈ζ〉sφ̂u ∈ L2(Rn), and the
proof is complete. �

It is convenient to build up the calculus of smooth b-ps.d.o.s on M using
the kernels of b-ps.d.o.s explicitly, as done by Melrose [31]: On the one
hand, they are conormal distributions, namely the partial Fourier transform
of a symbol(5) a(x, y;λ, η) near the diagonal of the b-stretched product
M2

b , smoothly up to the front face, and on the other hand, they vanish to
infinite order at the two boundaries lb(M2

b) and rb(M2
b), which in particular

ensures that b-ps.d.o.s act on weighted spaces. However, we will refrain from
describing the kernels of the non-smooth b-operators to be considered later
and rather keep track of more information on the symbol a, wherever this
is necessary. The idea is the following: Given a conormal distribution

Ĩa(s) :=
∫
eiλ log sa(λ) dλ, a ∈ Sm(R),

The function Ia(t) := Ĩa(et) is rapidly decaying as |t| → ∞. If we require
however that Ĩa(s) be rapidly decaying as s → 0 and s → ∞, i.e. Ia is
super-exponentially decaying as |t| → ∞, it turns out that the symbol a(λ)
can be extended to an entire function of λ with symbol bounds in Reλ
which are locally uniform in Imλ; see Lemma 2.3 below.

Definition 2.2. — Let m ∈ R. Then Smb ((R+)x×Rn−1
y ;Rλ×Rn−1

η ) is
the space of all symbols a ∈ Sm((Rn+)z;Rnζ ) such that the partial inverse
Fourier transform F−1

λ→ta is super-exponentially decaying as |t| → ∞, i.e.
for all µ ∈ R, there is Cµ <∞ such that |F−1

λ→ta(x, y; t, η)| 6 Cµe
−µ|t| for

|t| > 1.

Lemma 2.3. — Letm ∈ R. Then a(λ) ∈ Smb (Rλ) if and only if a extends
to an entire function, also denoted a(λ), which for all N,K ∈ N satisfies
an estimate

(2.2) |Dk
λa(λ)| 6 CN,K〈λ〉m−k, | Imλ| 6 N, k 6 K.

for a constant CN,K <∞.

Proof. — Given a ∈ Smb , we write a = a0 + a1, where for φ ∈ C∞c (R),
φ ≡ 1 near 0,

a0 = F (φF−1a), a1 = F ((1− φ)F−1a).

(5)For clarity, the semicolon ‘;’ will often be used to separate base and fiber variables
(resp. differential operators) in symbols (resp. operators).
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Since F−1a1 ∈ C∞(R) is super-exponentially decaying, we easily get the
estimate (2.2) for a1 (in fact, the estimate holds for arbitrary m); see e.g.
[31, Theorem 5.1]. Next, φF−1a ∈ E ′(R), thus a0 is entire, and we write
for λ, µ ∈ R:

a0(λ+ iµ) =
∫∫

R2
ei(σ−λ−iµ)xφ(x)a(σ) dσ dx

=
∫
R
a(σ + λ)

(∫
R
eiσxeµxφ(x) dx

)
dσ

Since eµxφ(x) is a locally bounded (in µ) family of Schwartz functions, we
have for |µ| 6 N , N ∈ N arbitrary,

|a0(λ+ iµ)| 6 CN
∫
〈σ + λ〉m〈σ〉−N dσ(2.3)

= CN

(∫
|σ|6|λ|

〈σ + λ〉m〈σ〉−N dσ +
∫
|σ|>|λ|

〈σ + λ〉m〈σ〉−N dσ

)
.(2.4)

First, we consider the casem > 0. Then the first integral in (2.4) is bounded
by ∫

R
〈λ〉m〈σ〉−N dσ 6 CN 〈λ〉m

for N > 1, and the second integral is bounded by∫
R
〈σ〉−N+m dσ 6 CN,m 6 CN 〈λ〉m

for −N +m < −1 in view of m > 0; thus we obtain (2.2) for k = 0.
Next, we consider the case m < 0. The integral in (2.3) is dominated by

〈λ〉m
∫

〈λ〉−m

〈σ + λ〉−m〈σ〉−m
〈σ〉−N−m dσ 6 〈λ〉m

∫
R
Cm〈σ〉−N−m dσ

6 CN,m〈λ〉m.

This proves (2.2) for k = 0. To get the estimate for the derivatives of a0,
we compute

Dk
λa0(λ) =

∫∫
(−x)kei(σ−λ−iµ)xφ(x)a(σ) dσ dx

=
∫∫

(−Dσ)kei(σ−λ−iµ)xφ(x)a(σ) dσ dx

=
∫∫

ei(σ−λ−iµ)xφ(x)Dk
σa(σ) dσ dx,

and since |Dk
σa(σ)| 6 Ck〈σ〉m−k, the above estimates yield (2.2) for arbi-

trary K.
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For the converse direction, it suffices to prove the super-exponential decay
of F−1a. Fix µ ∈ R. Then for |x| > 1, k ∈ N, we compute

exµF−1a(x) = exµ
∫
R
eixλa(λ) dλ = exµ

xk

∫
R
eixλ(−Dλ)ka(λ) dλ.

Choose k such thatm−k < −1, then we can shift the contour of integration
to Imλ = µ, thus

|exµF−1a(x)| 6 |x|−k
∫
R
|Dk

λa(λ+ iµ)| dλ ∈ L∞x .

Since this holds for any µ ∈ R, this gives the super-exponential decay of
F−1a for |x| → ∞, and the proof is complete. �

In particular, the operator with full symbol 〈ζ〉s is not a b-ps.d.o. unless
s ∈ 2N. However, we can fix this by changing 〈ζ〉s by a symbol of order
−∞; more generally:

Lemma 2.4. — For any symbol a ∈ Sm((R+)x × Rn−1
y ;Rλ × Rn−1

η ),
there is a symbol ã ∈ Smb with a− ã ∈ S−∞.

Proof. — Fix φ ∈ C∞c (R) identically 1 near 0 and put

ã(x, y;λ, η) = Fλ→t
(
(F−1

λ→ta)(x, y; t, η)φ(t)
)
.

Then ã ∈ Smb by the proof of Lemma 2.3. Moreover, F−1
λ→t(a− ã) is smooth

and rapidly decaying, thus the lemma follows. �

Corollary 2.5. — For each s ∈ R, there is Λs ∈ Ψs
b(Rn+) with full

symbol λs ∈ Ssb, λs(ζ) 6= 0 for all ζ ∈ Rn, such that λs − 〈ζ〉s ∈ S−∞.

Proof. — The only statement left to be proved is that λs can be arranged
to be non-vanishing. Let λ̃s ∈ Ssb be the symbol constructed in Lemma 2.4.
Since λ̃s differs from the positive function 〈ζ〉s ∈ Ss \ Ss−1 by a symbol
of order S−∞, it is automatically positive for large |ζ|; thus we can choose
C = C(s) large such that λs(ζ) = λ̃s(ζ) + C(s)e−ζ2 is positive for all
ζ ∈ Rn. Since e−ζ2 ∈ S−∞b , the proof is complete. �

3. A calculus for operators with b-Sobolev coefficients

We continue to work in local coordinates on M . To analyze the action
of operators with non-smooth coefficients on b-Sobolev functions, we need
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a convenient formula. Given A ∈ Ψm
b (M) with full symbol a(x, y;λ, η) ∈

Sm(bT ∗M), compactly supported in x, y, we have for u ∈ Ċ∞(M)

Au(x, y) =
∫∫∫∫

eiλ log(x/x′)eiη(y−y′)a(x, y;λ, η)u(x′, y′) dx
′

x′
dy′ dλ dη

=
∫∫

xiλeiηya(x, y;λ, η)û(λ, η) dλ dη.

Writing â for the Mellin transform in x and the Fourier transform in y, we
obtain

Âu(σ, γ) =
∫∫∫∫

x−i(σ−λ)e−i(γ−η)ya(x, y;λ, η)û(λ, η) dλ dη dx
x
dy(3.1)

=
∫∫

â(σ − λ, γ − η;λ, η)û(λ, η) dλ dη.

Even though this makes sense as a distributional pairing, it is technically
inconvenient to use directly: The problem is that if a does not vanish at
x = 0, then â(σ, γ;λ, η) has a pole at σ = 0 (cf. [31, Proposition 5.27]).
This is easily dealt with by decomposing

(3.2) a = a(0)(y;λ, η) + a(1)(x, y;λ, η),

where a(0)(y;λ, η) = a(0, y;λ, η) and a(1)(x, y;λ, η) = xã(1)(x, y;λ, η) with
ã(1) ∈ Sm. (Of course, a(0) in general no longer has compact support;
however, this will be completely irrelevant for the analysis, due to the fact
that a(0) has ‘nice’ behavior in y, independently in x.) Then â(1)(σ, γ;λ, η)
is smooth and rapidly decaying in (σ, γ), and we write

(3.3) (A(1)u)̂(ζ) =
∫
â(1)(ζ − ξ; ξ)û(ξ) dξ.

For A(0) = a(0)(y, bD), we obtain

(3.4) (A(0)u)̂(σ, γ) =
∫

Fa(0)(γ − η;σ, η)û(σ, η) dη,

and Fa(0)(γ;σ, η) is rapidly decaying in γ.

Remark 3.1. — Either we read off equation (3.4) directly from equa-
tion (3.1), where we observe that the symbol a(0) is independent of x,
thus the integrals over x and λ are Mellin transform and inverse Mellin
transform, respectively, and therefore cancel; or we observe that, with
a(0)(x, y;λ, η) := a(0)(y;λ, η), we have

â(0)(σ − λ, γ − η;λ, η) = 2πδσ=λFa(0)(0, γ − η;λ, η).

The second argument also shows that many manipulations on integrals
that compute A(1)u (or compositions of b-operators) also apply to the
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computation of A(0)u if one reads integrals as appropriate distributional
pairings.

Notice that (3.3) is, with the change in meaning of â(1) and û and keeping
in mind that a(1) = xã(1) is a rather special symbol, the same formula as
for pseudodifferential operators on a manifold without boundary used by
Beals and Reed [7]. Since also the characterization of Hs

b functions in terms
of their mixed Mellin and Fourier transform (Lemma 2.1) is completely
analogous to the characterization of Hs functions in terms of their Fourier
transform, the arguments presented in [7] carry over to this restricted b-
setting. In order to introduce necessary notation and construct a (partial)
calculus in the full b-setting, containing weights, we will go through most
arguments of [7], extending and adapting them to the b-setting; and of
course we will have to treat the term A0 separately.
The class of operators we are interested in are b-differential operators

whose coefficients lie in (weighted) b-Sobolev spaces of high order. Let us
remark that we do not attempt to develop an invariant calculus that can
be transferred to a manifold; in particular, all definitions are on Rn+, see
also the beginning of §2. We thus define the following classes of non-smooth
symbols:

Definition 3.2. — For m, s ∈ R, define the spaces of symbols

Hs
bS

m
(b) =

{∑
finite

aj(z)pj(z, ζ) : aj ∈ Hs
b, pj ∈ Sm(b)

}
,

and denote by Hs
bΨm

(b) the corresponding spaces of operators, i.e.

Hs
bΨm

(b) = {a(z, bD) : a(z, ζ) ∈ Hs
bS

m
(b)}.

Moreover, let Ψm = {a(z, bD) : a(z, ζ) ∈ Sm}.

Remark 3.3. — In this paper, we will only deal with operators that are
quantizations of symbols on the b-cotangent bundle, and thus with Ψm we
will always mean the space defined above.

Remark 3.4. — In a large part of the development of the calculus for
non-smooth b-ps.d.o.s in this section, we will keep track of additional infor-
mation on the symbols of most ps.d.o.s, encoded in the space of symbols S∗b,
in order to ensure that they act on weighted b-Sobolev spaces. Although
this requires a small conceptual overhead, it simplifies some computations
later on.

The spaces H∗bΨ∗(b) are not closed under compositions, in fact they are
not even left Ψ∗b-modules. To get around this, which will be necessary in
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order to develop a sufficiently powerful calculus, we will consider less regular
spaces, which however are still small enough to allow for good analytic (i.e.
mapping and composition) properties.

Definition 3.5. — For s,m ∈ R, k ∈ N0, define the space

Sm;0Hs
b =

{
p(z, ζ) : p ∈ 〈ζ〉mL∞ζ ((Hs

b)z)
}

=
{
p(z, ζ) : 〈η〉

sp̂(η; ζ)
〈ζ〉m

∈ L∞ζ L2
η

}
.

Let Sm;0
b Hs

b be the space of all symbols p(x, y;λ, η) ∈ Sm;0Hs
b which are

entire in λ with values in 〈η〉mL∞η ((Hs
b)z) such that for all N the following

estimate holds:

(3.5) ‖p(z;λ+ iµ, η)‖Hsb 6 CN 〈λ, η〉
m, |µ| 6 N.

Finally, define the spaces

Sm;k
(b) H

s
b =

{
p(z, ζ) : ∂βζ p ∈ S

m−|β|;0
(b) Hs

b, |β| 6 k
}
.

The spaces of operators which are left quantizations of these symbols are
denoted by Ψm;0Hs

b, Ψm;0
b Hs

b and Ψm;k
(b) H

s
b, respectively.

Weighted versions of these spaces, involving Hs,α
b for α ∈ R, are defined

analogously.

We can also define similar symbol and operator classes for operators act-
ing on bundles: Let E,F,G be the trivial (complex or real) vector bundles
over Rn+ of ranks dE , dF , dG, respectively, equipped with a smooth metric
(Hermitian for complex bundles) on the fibers which is the standard metric
on the fibers over the complement of a compact subset of Rn+, then we can
define

Hs
bS

m(Rn+;G) := {(ai)16i6dG : ai ∈ Hs
bS

m}.
We then define the space Hs

bΨm(Rn+;E,F ) to consist of left quantizations
of symbols in Hs

bS
m(Rn+; Hom(E,F )); likewise for all other symbol and

operator classes.(6) We shall also writeHs
bΨm(Rn+;E) := Hs

bΨm(Rn+;E,E).

Remark 3.6. — If we considered, as an example, the wave operator cor-
responding to a non-smooth metric acting on differential forms, the natural
metric on the fibers of the form bundle would be non-smooth. Even though
this could be dealt with directly in this setting, we simplify our arguments

(6)Since we are only concerned with local constructions, we use the somewhat imprecise
notation just introduced; the proper class that the symbol of a b-pseudodifferential
operator (with smooth coefficients), mapping sections of E to sections of F , lies in, is
Sm(bT ∗M ;π∗ Hom(E,F )), where π : bT ∗M →M is the projection; see [31].
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by choosing an ‘artificial’ smooth metric to avoid regularity considerations
when taking adjoints, etc.

The first step is to prove mapping properties of operators in the classes
just defined; compositions will be discussed in §3.2.

3.1. Mapping properties

The mapping properties of operators in Ψm;0Hs
b are easily proved using

the following simple integral operator estimate.

Lemma 3.7 (cf. [7, Lemma 1.4]). — Let g(η, ξ) ∈ L∞ξ L2
η and G(η, ξ) ∈

L∞η L
2
ξ . Then the operator

Tu(η) =
∫
G(η, ξ)g(η − ξ, ξ)u(ξ) dξ

is bounded on L2 with operator norm 6 ‖G‖L∞η L2
ξ
‖g‖L∞

ξ
L2
η
.

Proof. — Cauchy-Schwartz gives

‖Tu‖2L2 6
∫ (∫

|G(η, ξ)|2 dξ
)(∫

|g(η − ξ, ξ)u(ξ)|2 dξ
)
dη

6 ‖G‖2L∞η L2
ξ

∫ (∫
|g(η − ξ, ξ)|2 dη

)
|u(ξ)|2 dξ

6 ‖G‖2L∞η L2
ξ
‖g‖2L∞

ξ
L2
η
‖u‖2L2 . �

The most common form of G in this paper is given by and estimated in
the following lemma. We use the notation

(3.6) a+ := max(a, 0), a ∈ R.

Lemma 3.8. — Suppose s, r ∈ R are such that s > r, s > n/2 + (−r)+,
then

G(η, ξ) = 〈η〉r

〈η − ξ〉s〈ξ〉r
∈ L∞η (Rn;L2

ξ(Rn)).

Proof. — First, suppose r > 0. Then we obtain

G(η, ξ)2 6
1

〈η − ξ〉2(s−r)〈ξ〉2r
+ 1
〈η − ξ〉2s

.

Since s > n/2, the ξ-integral of the second fraction is finite and indepen-
dent of η. For the ξ-integral of the first fraction, we split the domain of
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integration into two parts and obtain∫
|ξ|6|η−ξ|

1
〈η − ξ〉2(s−r)〈ξ〉2r

dξ +
∫
|η−ξ|6|ξ|

1
〈η − ξ〉2(s−r)〈ξ〉2r

dξ

6
∫ 1
〈ξ〉2s

dξ +
∫ 1
〈η − ξ〉2s

dξ ∈ L∞η .

Next, if r < 0, then we estimate

G(η, ξ)2 = 〈ξ〉−2r

〈η − ξ〉2s〈η〉−2r 6
1

〈η − ξ〉2(s−(−r)) + 1
〈η − ξ〉2s

,

where in the first fraction, we discarded the term 〈η〉−2r > 1. Since s −
(−r) > n/2, the integrals of both fractions are finite, and the proof is
complete. �

Proposition 3.9. — Let m ∈ R. Suppose s > s′ −m and s > n/2 +
(m − s′)+. Then every A = a(z, bD) ∈ Ψm;0Hs

b(Rn+;E,F ) is a bounded
operator Hs′

b (Rn+;E)→ Hs′−m
b (Rn+;F ). If A ∈ Ψm;0

b Hs
b(Rn+;E,F ), then A

is also a bounded operator Hs′,α
b (Rn+;E)→ Hs′−m,α

b (Rn+;F ) for all α ∈ R.

Note that this proposition also deals with ‘low’ regularity in the sense
that negative b-Sobolev orders are permitted in the target space. We shall
have occasion to use this in arguments involving dual pairings in §6.

Proof of Proposition 3.9. Let us first prove the statement without bun-
dles, i.e. for complex-valued symbols and functions. Let u ∈ Hs′

b be given.
Then

〈ζ〉s
′−mÂu(ζ) =

∫
〈ζ〉s′−m〈ξ〉m

〈ζ − ξ〉s〈ξ〉s′
a0(ζ − ξ; ξ)u0(ξ) dξ

for a0(ζ; ξ) ∈ L∞ξ L
2
ζ , u0 ∈ L2. Lemma 3.8 ensures that the fraction in

the integrand is an element of L∞ζ L2
ξ , and then Lemma 3.7 implies that

〈ζ〉s′−mÂu(ζ) ∈ L2
ζ .

In order to prove the second statement, we write for u ∈ Ċ∞c

a(x, y, xDx, Dy)u(x, y) =
∫∫

Imλ=0
eiλ log xeiηya(x, y;λ, η)û(λ, η) dλ dη

=
∫∫

Imλ=0
ã(λ)(η;x, y)û(λ, η) dλ dη,

where
ã(λ)(η;x, y) = xiλeiηya(x, y;λ, η);

we want to shift the contour of integration to Imλ = −α. Assuming that
suppx,y a is compact, we have that for any N ,

‖ã(λ)(η, ·, ·)‖Hs,−Nb
6 CN 〈λ, η〉m+s, | Imλ| < N,
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and ã(λ) is holomorphic in λ with values in Hs,−N
b for fixed η. Since û(λ, η)

is rapidly decaying, we infer for all sufficiently large M > 0∫
‖ã(λ)(η, ·, ·)‖Hs,−Nb

|û(λ, η)| dη 6 CN
∫
〈λ, η〉m+s−M dη

= CNM 〈λ〉m+s−M+n−1,

thus

ã′(λ)(x, y) :=
∫
ã(λ)(η;x, y)û(λ, η) dη ∈ 〈λ〉−ML∞λ (Hs,−N

b )

for all M > 0, and ã′ : C→ Hs,−N
b is holomorphic. Therefore, if we choose

N > |α|, we can shift the contour of integration to the horizontal line
R− iα:

a(x, y, xDx, Dy)u(x, y) =
∫

Imλ=−α
ã′(λ)(x, y) dλ

= xα
∫∫

Imλ=0
eiλ log xeiηya(x, y;λ− iα, η)(x−αu)̂(λ, η) dλ dη.

(3.7)

By definition, a|Imλ=−α satisfies symbolic bounds just like a|Imλ=0, thus
we are done by the first half of the proof.
Adding bundles is straightforward: Write A ∈ Ψm;0Hs

b(Rn+;E,F ) as A =
(Aij), Aij ∈ Ψm;0Hs

b(Rn+) and u ∈ Hs′

b (Rn+;E) as u = (uj), uj ∈ Hs′

b (Rn+).
Then Au = (

∑dE
j=1Aijuj), thus Au ∈ H

s′−m
b (Rn+;F ) follows by component-

wise application of what we just proved. �

Corollary 3.10. — Let s > n/2. Then Hs
b(Rn+; End(E)) is an alge-

bra. Moreover, Hs′

b (Rn+; Hom(E,F )) is a left Hs
b(Rn+; End(E))- and a right

Hs
b(Rn+; End(F ))-module for |s′| 6 s.

Proof. — As in the proof of Proposition 3.9, we can reduce the proof to
the case of complex-valued functions. For s′ > 0, the claim follows from
Hs′

b ⊂ Ψ0;0
b Hs′

b and the previous Proposition. For s′ 6 0, use duality. �

3.2. Compositions

The basic idea is to mimic the formula for the asymptotic expansion of
the full symbol of an operator which is the composition of P = p(z, bD) ∈
Ψm

b and Q = q(z, bD) ∈ Ψm′

b , namely

σfull(P ◦Q)(z, ζ) ∼
∑
β>0

1
β! (∂

β
ζ p

bDβ
z q)(z, ζ).
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If p or q only have limited regularity in ζ or z, we only keep finitely many
terms of this expansion and estimate the resulting remainder term carefully.
More precisely, keeping Remark 3.1 in mind, we compute for u ∈ Ċ∞c

(PQu)̂(η) =
∫∫

p̂(η − ξ; ξ)q̂(ξ − ζ; ζ)û(ζ) dζ dξ

=
∫ (∫

p̂(η − ζ − ξ; ζ + ξ)q̂(ξ; ζ) dξ
)
û(ζ) dζ,(3.8)

and

[(∂βζ p
bDβ

z q)(z, bD)u]̂(η) =
∫

(∂βζ p
bDβ

z q)̂(η − ζ; ζ)û(ζ) dζ

=
∫ (∫

∂βζ p̂(η − ζ − ξ; ζ)ξβ q̂(ξ; ζ) dξ
)
û(ζ) dζ.

We now apply Taylor’s theorem to the second argument of p̂ at ξ = 0 in
the inner integral in (3.8), keeping track of terms up to order k − 1 which
we assume to be > 0 (the remaining case k = 0 is handled easily), and
obtain a remainder

r̂(η − ζ; ζ) =
∑
|β|=k

k

β!

∫ (∫ 1

0
(1− t)k−1∂βζ p̂(η − ζ − ξ; ζ + tξ) dt

)
× ξβ q̂(ξ; ζ) dξ,

corresponding to the operator

(3.9) r(z, bD) = P ◦Q−
∑
|β|<k

1
β! (∂

β
ζ p

bDβ
z q)(z, bD).

We rewrite the remainder as
(3.10)

r̂(η; ζ) =
∑
|β|=k

k

β!

∫ (∫ 1

0
(1− t)k−1∂βζ p̂(η − ξ; ζ + tξ) dt

)
(bDβ

z q)̂(ξ; ζ) dξ.

We will start by analyzing the terms in an expansion like (3.9) when the
symbols involved are not smooth. When we deal with smooth b-operators
by using the decomposition (3.2) of their symbols, we will need multiple
sets of dual variables of x and y. For clarity, we will stick to the following
names for them:

(Mellin-)dual variables of x : σ, λ, ρ,
(Fourier-)dual variables of y : γ, η, θ.
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Lemma 3.11. — Let s, s′,m,m′ ∈ R be such that s > n/2, |s′| 6 s.
Then

Sm;0Hs
b · Sm

′;0Hs′

b ⊂ Sm+m′;0Hs′

b ,

Sm · Sm
′;0Hs′

b ⊂ Sm+m′;0Hs′

b .

The same statements are true if all symbol classes are replaced by the
corresponding b-symbol classes.

Proof. — In light of the definitions of the symbol classes, we can assume
m = m′ = 0. The first statement then is an immediate consequence of
Corollary 3.10. In order to prove the second statement, we simply observe
that, given p ∈ S0, p(·; ζ) is a uniformly bounded family of multipliers on
Hs′

b . A direct proof of the sort that we will use in the sequel goes as follows:
Decompose the symbol p as in (3.2). The part p(1) ∈ S0;0H∞b can then be
dealt with using the first statement. Thus, we may assume p = p(0), i.e.
p = p(y;λ, η) is x-independent. Let q ∈ S0;0Hs′

b be given. Choose N large
and put

p0(γ;λ, η) = 〈γ〉N |Fp(γ;λ, η)|,

q0(σ, γ;λ, η) = 〈σ, γ〉s
′
|q̂(σ, γ;λ, η)|,

r0(σ, γ;λ, η) = 〈σ, γ〉s
′
|p̂q(σ, γ;λ, η)|.

Then∫∫
r0(σ,γ;λ, η)2 dσ dγ

6
∫∫ (∫

〈σ, γ〉s′

〈γ − θ〉N 〈σ, θ〉s′
p0(γ − θ;λ, η)q0(σ, θ;λ, η) dθ

)2

dσ dγ

. ‖p0(γ;λ, η)‖2L∞
λ,η

L2
γ
‖q0(σ, θ;λ, η)‖2L∞

λ,η
L2
σ,θ

by Cauchy-Schwartz. �

Recall Remark 3.3 for the notation used in the following theorem on the
composition properties of non-smooth operators:

Theorem 3.12. — Let m,m′, s, s′ ∈ R, k, k′ ∈ N0. For two operators
P = p(z, bD) and Q = q(z, bD) of orders m and m′, respectively, let

R = P ◦Q−
∑
|β|<k

1
β! (∂

β
ζ p

bDβ
z q)(z, bD).

Denote the sum of the terms in the expansion for which |β| = j by Ej .
(1) Composition of non-smooth operators, k > m+ k′, k > k′.
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(a) Suppose s > n/2 and s 6 s′ − k [s 6 s′ − 2k +m+ k′]. If

P ∈ Ψm;kHs
b, Q ∈ Ψm′;0Hs′

b ,

then

Ej ∈ Ψm+m′−j;0Hs
b, R ∈ Ψm′−k′;0Hs

b [Ψm+m′−k;0Hs
b].

(b) If
P ∈ Ψm;kH∞b , Q ∈ Ψm′;0Hs′

b ,

then

Ej ∈ Ψm+m′−j;0Hs′−j
b ,

R ∈ Ψm′−k′;0Hs′−k
b ∩Ψm+m′−k;0Hs′−2k+m+k′

b .

(2) Composition of smooth with non-smooth operators.
(a) Suppose k > m+ k′, k > k′. If

P ∈ Ψm, Q ∈ Ψm′;0Hs′

b ,

then

Ej ∈ Ψm+m′−j;0Hs′−j
b ,

R ∈ Ψm′−k′;0Hs′−k
b ∩Ψm+m′−k;0Hs′−2k+m+k′

b .

(b) Suppose k 6 k′ and k′ > m. If

P ∈ Ψm;k′Hs
b, Q ∈ Ψm′ ,

then

Ej ∈ Ψm+m′−j;0Hs
b, R ∈ Ψm+m′−k;0Hs

b.

(3) Composition of smooth with non-smooth operators, k 6 m+k′, k > k′.
If

P ∈ Ψm, Q ∈ Ψm′;0Hs′

b ,

then

Ej ∈ Ψm+m′−j;0Hs′−j
b ,

R = R1Λm+k′−k + Λm+k′−kR2,

where R1, R2 ∈ Ψm′−k′;0Hs′−k
b .

Moreover, (1)–(2) hold as well if all operator spaces are replaced by the
corresponding b-spaces. Also, all results hold, mutatis mutandis, if P maps
sections of F to sections of G, and Q maps sections of E to sections of F .
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Proof. — The statements about the Ej follow from Lemma 3.11. It re-
mains to analyze the remainder operators. We will only treat the case k > 0;
the case k = 0 is handled in a similar way. We prove parts (1), (2a) and
(3) of the theorem for k′ = 0 first. (1a). Consider the case s 6 s′ − k. We
use formula (3.10) and define

p0(η, ξ; ζ) =
∑
|β|=k

k

β! 〈η〉
s

∫ 1

0
|∂βζ p̂(η; ζ + tξ)| dt,

q0(ξ; ζ) = 〈ξ〉
s′−k|(bDk

z q)̂(ξ; ζ)|
〈ζ〉m′

,

where bDk
z denotes the vector (bDβ

z )|β|=k. Since p0 ∈ L∞ζ,ξL
2
η in view of

k > m, i.e. ∂βζ p is a symbol of order m− k 6 0, and q0 ∈ L∞ζ L2
ξ , we obtain

〈η〉s|r̂(η; ζ)|
〈ζ〉m′

6
∫

〈η〉s

〈η − ξ〉s〈ξ〉s′−k
p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ ∈ L∞ζ L2

η

by Lemma 3.7, as claimed. Next, if s 6 s′ − 2k +m, we instead define

(3.11) p0(η, ξ; ζ) =
∑
|β|=k

k

β! 〈η〉
s

∫ 1

0
〈ζ+tξ〉k−m|∂βζ p̂(η; ζ+tξ)| dt ∈ L∞ζ,ξL2

η,

thus
〈η〉s|r̂(η; ζ)|
〈ζ〉m+m′−k 6

∫
〈η〉s

〈η − ξ〉s〈ξ〉s′−k
· 〈ζ〉k−m

inf06t61〈ζ + tξ〉k−m

× p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ

with q0 ∈ L∞ζ L2
ξ as above. Now

(3.12) 〈ζ〉k−m

inf06t61〈ζ + tξ〉k−m
. 〈ξ〉k−m,

since for |ξ| 6 |ζ|/2, the left hand side is uniformly bounded, and for
|ζ| 6 2|ξ|, we estimate the infimum from below by 1 and the numerator
from above by 〈ξ〉k−m. Therefore, we get r0 ∈ L∞ζ L2

η in this case as well.
(1b). This is proved similarly: Define q0(ξ; ζ) as above, and choose N

large and put

p0(η, ξ; ζ) =
∑
|β|=k

k

β! 〈η〉
N

∫ 1

0
|∂βζ p̂(η; ζ + tξ)| dt.

Then
〈η〉s′−k|r̂(η; ζ)|

〈ζ〉m′
6
∫

〈η〉s′−k

〈η − ξ〉N 〈ξ〉s′−k
p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ,
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and the fraction in the integrand is an element of L∞η L2
ξ by Lemma 3.8,

thus an application of Lemma 3.7 yields R ∈ Ψm′;0Hs′−k
b . In a similar

manner, now using (3.12), we obtain R ∈ Ψm+m′−k;0Hs′−2k+m
b .

(2). Decomposing the smooth operator as in (3.2), the x-dependent part
has coefficients in H∞b , thus we can apply part (1). Therefore, we may
assume that the smooth operator is x-independent in both cases.

(2a). The remainder is

r̂(σ, γ;λ, η) =
∑
|β|=k

k

β!

∫ (∫ 1

0
(1− t)k−1∂βλ,ηFp(γ − θ;λ+ tσ, η + tθ) dt

)
×(bDβ

z q)̂(σ, θ;λ, η) dθ;

therefore, choosing N large and defining

p0(γ, σ, θ;λ, η) =
∑
|β|=k

k

β! 〈γ〉
N

∫ 1

0
|∂βλ,ηFp(γ;λ+ tσ, η + tθ)| dt

∈ L∞σ,θ,λ,ηL2
γ ,

q0(σ, θ;λ, η) = 〈σ, θ〉
s′−k|(bDβ

z q)̂(σ, θ;λ, η)|
〈λ, η〉m′

∈ L∞λ,ηL2
σ,θ,

we get

〈σ, γ〉s′−k|r̂(σ, γ;λ, η)|
〈λ, η〉m′

6
∫

〈σ, γ〉s′−k

〈γ − θ〉N 〈σ, θ〉s′−k
p0(γ − θ, σ, θ;λ, η)q0(σ, θ;λ, η) dθ,

which is an element of L∞λ,ηL2
σ,γ by Lemmas 3.8 and 3.7. This proves R ∈

Ψm′;0Hs′−k
b , and in a similar way we obtain R ∈ Ψm+m′−k;0Hs′−2k+m

b .
(2b). Here, the remainder is

r̂(σ, γ;λ, η) =
∑
|β|=k

k

β!

∫ (∫ 1

0
(1− t)k−1∂βλ,ηp̂(σ, γ − θ;λ, η + tθ) dt

)
×F (bDβ

z q)(θ;λ, η) dθ,

and arguments similar to those used in (a) give the desired conclusion if
k = k′. If k < k′, we just truncate the expansion after Ek−1 and note that
the resulting remainder term, which is the sum of the remainder term after
expanding to order k′ and the expansion terms Ek, . . . , Ek′−1, indeed lies
in Ψm+m′−k;0Hs

b.
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(3). We again use formula (3.10) for the remainder term and put

r̂1(η; ζ) = r̂(η; ζ)χ(|ζ| > |η + ζ|)
λm−k(ζ) , r̂2(η; ζ) = r̂(η; ζ)χ(|ζ| < |η + ζ|)

λm−k(η + ζ) ,

the point being that, by equation (3.3), for any u ∈ Ċ∞c ,

(r(z,bD)u)̂(η) =
∫
r̂(η − ζ, ζ)û(ζ) dζ

=
∫
r̂1(η − ζ, ζ)(Λm−ku)̂(ζ) dζ + λm−k(η)

∫
r̂2(η − ζ, ζ)û(ζ) dζ

= (r1(z, bD)Λm−ku)̂(η) + (Λm−kr2(z, bD)u)̂(η).

It remains to prove that r1(z, bD), r2(z, bD) ∈ Ψm′;0Hs′−k
b . First, we treat

the case P ∈ xΨm. Then for any N ∈ N, we obtain, using

sup
06t61

〈ζ + tξ〉m−k . 〈ζ〉m−k + 〈ξ〉m−k,

that

〈η〉s′−k|r̂1(η, ζ)|
〈ζ〉m′

.
∫
〈η〉s′−k(1 + 〈ξ〉m−k/〈ζ〉m−k)

〈η − ξ〉N 〈ξ〉s′−k
χ(|ζ| > |η + ζ|)

× p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ

≡
∫
G(η, ξ; ζ)p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ,

where p0(η, ξ; ζ) ∈ L∞ξ,ζL2
η is defined as in (3.11) (with s replaced by N)

and q0 ∈ L∞ζ L2
ξ as before. We have to show G(η, ξ; ζ) ∈ L∞η,ζL2

ξ in order
to be able to apply Lemma 3.7. For |ξ| > 2|η|, we immediately get, for N
large enough,

G(η, ξ; ζ) . 1
〈ξ〉N ′

(
1 + 〈ξ〉

m−k

〈ζ〉m−k

)
∈ L∞η,ζL2

ξ(|ξ| > 2|η|),

where N ′ = N − (k − s′)+. On the other hand, if |ξ| < 2|η|, we estimate

G(η, ξ; ζ) . 〈η〉s′−k

〈η − ξ〉N 〈ξ〉s′−k

(
1 + 〈η〉

m−k

〈ζ〉m−k

)
χ(|ζ| > |η + ζ|)

and use that |ζ| > |η + ζ| implies |η| 6 |η + ζ| + | − ζ| 6 2|ζ|, hence the
product of the last two factors is uniformly bounded, giving G(η, ξ; ζ) ∈
L∞η,ζL

2
ξ(|ξ| < 2|η|) by Lemma 3.8.
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In the case P = p(0, y;xDx, Dy), we get the estimate

〈σ, γ〉s′−k|r̂1(σ, γ;λ, η)|
〈λ, η〉m′

6
∫
G(σ, γ, θ;λ, η)p0(γ − θ, σ, θ;λ, η)q0(σ, θ;λ, η) dθ,

where p0(γ, σ, θ;λ, η) ∈ L∞σ,θ,λ,ηL2
γ , q0(σ, θ;λ, η) ∈ L∞λ,ηL2

σ,θ, and

G(σ, γ, θ;λ, η) = 〈σ, γ〉s′−k

〈γ − θ〉N 〈σ, θ〉s′−k

(
1 + 〈σ, θ〉

m−k

〈λ, η〉m−k

)
× χ

(
|(λ, η)| > |(σ, γ) + (λ, η)|

)
.

As above, separating the cases |(σ, θ)| > 2|(σ, γ)| and |(σ, θ)| < 2|(σ, γ)|,
one obtains G ∈ L∞σ,γ,λ,ηL2

θ, and we can again apply Lemma 3.7.
The second remainder term r2 is handled in the same way.

Next, we prove that (1)-(2) also hold for the corresponding b-operator
spaces. Using exactly the same estimates as above, one obtains the respec-
tive symbolic bounds for the remainders on each line Imλ = α0. What
remains to be shown is the holomorphicity of the remainder operator in λ.
This is a consequence of the fact that the derivatives ∂λ∂βζ p, |β| = k, and
∂λq, satisfy the same (in the case of symbols of smooth b-ps.d.o.s, even bet-
ter by one order) symbol estimates as ∂βζ p and q, respectively. Indeed, for
(1a), i.e. for non-smooth b-symbols, this follows from the Cauchy integral
formula, which for ∂λq gives

∂λq(z;λ, η) = 1
2πi

∮
γ(λ)

q(z;σ, η)
(σ − λ)2 dσ

where γ(λ) is the circle around λ with radius 1. Namely, since |σ − λ| = 1
for σ ∈ γ(λ), we get the desired estimate for ∂λq from the corresponding
estimate for q itself. We handle ∂λ∂βζ p similarly. (1b) and (2) for b-operators
follow in the same way.

Finally, let us prove (1), (2a) and (3) for k′ > 0 following the argument of
Beals and Reed in [7, Corollary 1.6], starting with (1a): Choose a partition
of unity on Rn consisting of smooth non-negative functions χ0, . . . , χn with
suppχ0 ⊂ {|ζ| 6 2}, and |ζl| > 1 on suppχl. Then

P ◦Qχ0(bD) ∈ Ψm;kHs
b ◦Ψ−∞;0Hs′

b

can be treated using (1a) with k′ = 0, taking an expansion up to order
k > m+ k′ > m; all terms in the expansion as well as the remainder term
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are elements of Ψ−∞;0Hs
b, hence P ◦Qχ0(bD) ∈ Ψ−∞;0Hs

b can be put into
the remainder term of the claimed expansion.
Let us now consider P ◦Qχl(bD). For brevity, let us replace Q by Qχl(bD)

and thus assume |ζl| > 1 on supp q(z, ζ). Then by the Leibniz rule,

P ◦QbDk′

zl
= P bDk′

zl
◦Q−

k′∑
j=1

cjk′P
bDk′−j

zl
◦ (bDj

zl
q)(z, bD)

for some constants cjk′ ∈ R. Composing on the right with(7) bD−k
′

zl
thus

shows that P ◦Q is an element of the space
k′∑
j=0

Ψm+k′−j;0Hs
b ◦Ψm′−k′Hs′−j

b .

In view of the part of (1a) already proved, the j-th summand has an
expansion to order k − j > m + k′ − j with error term in the space
Ψm′−k′;0

b Hs
b [Ψm+m′−k;0

b Hs
b], where we use k − j > k − k′ > 0 and s 6

(s′ − j) − (k − j) [s 6 (s′ − j) − 2(k − j) + (m + k′ − j)]. Using the same
idea, one can prove (1b), (2a) and (3). �

Notice that we do not claim in (3) that R1 and R2 lie in b-operator spaces
if q does. The issue is that 1/λm(ζ) in general has singularities for non-real
ζ. In applications later in this paper, we will only need the proposition as
stated, with the additional assumption that p is a b-symbol, since instead
of letting the operators in the expansion and the remainder operator act on
weighted spaces, we will conjugate P and Q by the weight before applying
the theorem.

4. Reciprocals of and compositions with Hs
b functions

In this section, we recall some basic results about 1/u and, more gen-
erally, F (u), for u in appropriate b-Sobolev spaces on an n-dimensional
compact manifold with boundary M , and smooth/analytic functions F .

Remark 4.1. — We will give direct proofs which in particular do not
give Moser-type bounds; see [37, §§13.3, 13.10] for examples of the latter.
However, at least special cases of the results below (e.g. when C∞(M)
is replaced by C or R) can easily be proved in a way as to obtain such
bounds: The point is that the analysis can be localized and thus reduced

(7)To be precise, one should take bD−k
′

zl χ̃l(bD), where χ̃l ≡ 1 on suppχl and |ζl| > 1/2
on supp χ̃l.
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to the case M = Rn+; a logarithmic change of coordinates then gives an
isometric isomorphism of Hs

b(Rn+) and Hs(Rn), and on the latter space,
Moser-type reciprocal/composition results are standard, see [37].

4.1. Reciprocals

Let M be a compact n-dimensional manifold with boundary.

Lemma 4.2. — Let s > n/2+1. Suppose u,w ∈ Hs
b(M) and a ∈ C∞(M)

are such that |a + u| > c0 > 0 on suppw. Then w/(a + u) ∈ Hs
b(M), and

one has an estimate
(4.1)∥∥∥∥ w

a+ u

∥∥∥∥
Hsb

6 CK‖w‖Hsb
(
1 + ‖u‖Hsb

)dse(1 +
∥∥∥∥ 1
a+ u

∥∥∥∥
L∞(K)

)dse+1

for any neighborhood K of suppw.

Proof. — We can assume that suppw and suppu lie in a coordinate
patch of M . Note that clearly w/(a + u) ∈ L2

b. We will give an iterative
argument that improves on the regularity of w/(a + u) by (at most) 1 at
each step, until we can eventually prove Hs

b regularity.
To set this up, let us assume w/(a + u) ∈ Hs′−1

b for some 1 6 s′ 6 s.
Recall the operator Λs′ = λs′(bD) from Corollary 2.5, and choose ψ0, ψ ∈
C∞(M) such that ψ0 ≡ 1 on suppw, ψ ≡ 1 on suppψ0, and such that
moreover |a + u| > c′0 > 0 on suppψ, which can be arranged since u ∈
Hs

b ⊂ C0. Then for K = suppψ,∥∥∥Λs′
w

a+ u

∥∥∥
L2

b

6
∥∥∥(1− ψ)Λs′

ψ0w

a+ u

∥∥∥
L2

b

+
∥∥∥ψΛs′

ψ0w

a+ u

∥∥∥
L2

b

.
∥∥∥ w

a+ u

∥∥∥
L2

b

+
∥∥∥ 1
a+ u

∥∥∥
L∞(K)

∥∥∥ψ(a+ u)Λs′
w

a+ u

∥∥∥
L2

b

.
∥∥∥ w

a+ u

∥∥∥
L2

b

+
∥∥∥ 1
a+ u

∥∥∥
L∞(K)

(
‖ψΛs′w‖L2

b
+
∥∥∥ψ[Λs′ , a+ u] w

a+ u

∥∥∥
L2

b

)

.
∥∥∥ w

a+ u

∥∥∥
L2

b

+
∥∥∥ 1
a+ u

∥∥∥
L∞(K)

×
(
‖w‖Hs′b

+
∥∥∥ w

a+ u

∥∥∥
Hs
′−1

b

+
∥∥∥ψ[Λs′ , u] w

a+ u

∥∥∥
L2

b

)
,

(4.2)

where we used that the support assumptions on ψ0 and ψ imply (1 −
ψ)Λs′ψ0 ∈ Ψ−∞, and ψ[Λs′ , a] ∈ Ψs′−1. Hence, in order to prove that
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w/(a + u) ∈ Hs′

b , it suffices to show that [Λs′ , u] : Hs′−1
b → L2

b. Let v ∈
Hs′−1

b . Since

(Λs′uv)̂(ζ) =
∫
λs′(ζ)û(ζ − η)v̂(η) dη

(uΛs′v)̂(ζ) =
∫
û(ζ − η)λs′(η)v̂(η) dη,

we have, by taking a first order Taylor expansion of λs′(ζ) = λs′(η+(ζ−η))
around ζ = η,

([Λs′ , u]v)̂(ζ)

=
∑
|β|=1

∫ (∫ 1

0
∂βζ λs′(η + t(ζ − η)) dt

)
(bDβ

z u)̂(ζ − η)v̂(η) dη.

We will to prove that this is an element of L2
ζ using Lemma 3.7. Since for

|β| = 1,
|∂βζ λs′(η + t(ζ − η))| . 〈η + t(ζ − η)〉s

′−1,

|(bDβ
z u)̂(ζ − η)| = u0(ζ − η)

〈ζ − η〉s−1 , |v̂(η)| = v0(η)
〈η〉s′−1

for u0, v0 ∈ L2, it is enough to observe that

〈η + t(ζ − η)〉s′−1

〈ζ − η〉s−1〈η〉s′−1 .
1

〈ζ − η〉s−1 + 1
〈ζ − η〉s−s′〈η〉s′−1 ∈ L

∞
ζ L

2
η,

uniformly in t ∈ [0, 1], since s− 1 > n/2.
To obtain the estimate (4.1), we proceed inductively, starting with the

obvious estimate

‖w/(a+u)‖L2
b
6 ‖w‖L2

b
‖1/(a+u)‖L∞(K) 6 ‖w‖Hsb

(
1 +

∥∥∥ 1
a+ u

∥∥∥
L∞(K)

)
.

Then, assuming that for integer 1 6 m 6 s, one has

‖w/(a+ u)‖Hm−1
b
. ‖w‖Hsb

(
1 +

∥∥∥ 1
a+ u

∥∥∥
L∞(K)

)m (
1 + ‖u‖Hsb

)m−1

we conclude, using the estimate (4.2),∥∥∥ w

a+ u

∥∥∥
Hmb

.
∥∥∥ w

a+ u

∥∥∥
L2

b

+
∥∥∥ 1
a+ u

∥∥∥
L∞(K)

(
‖w‖Hsb + (1 + ‖u‖Hsb )

∥∥∥ w

a+ u

∥∥∥
Hm−1

b

)
. ‖w‖Hsb

(
1 +

∥∥∥ 1
a+ u

∥∥∥
L∞(K)

)m+1 (
1 + ‖u‖Hsb

)m
.
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Thus, one gets such an estimate form = bsc; then the same type of estimate
gives (4.1), since one has control over the Hs−1

b -norm of w/(a+ u) in view
of s− 1 < bsc and the bound on ‖w/(a+ u)‖

H
bsc
b

. �

In particular:

Corollary 4.3. — Let s > n/2 + 1.
(1) If u ∈ Hs

b(M) does not vanish on suppφ, where φ ∈ C∞c (M), then
φ/u ∈ Hs

b(M).
(2) Let α > 0. If u ∈ Hs,α

b (M) is bounded away from −1, then
1/(1 + u) ∈ 1 +Hs,α

b (M).

Proof. — The second statement follows from

1− 1
1 + u

= u

1 + u
∈ Hs,α

b (M). �

We also obtain the following result on the inversion of non-smooth elliptic
symbols:

Proposition 4.4. — Let s > n/2 + 1, m ∈ R, k ∈ N0.
(1) Suppose p(z, ζ) ∈ Sm;kHs

b(Rn+; Hom(E,F )) and a(z, ζ) ∈ S0 are
such that ‖p(z, ζ)−1‖Hom(F,E) 6 c0〈ζ〉−m, c0 <∞, on supp a. Then

ap−1 ∈ S−m;kHs
b(Rn+; Hom(F,E)).

(2) Let α > 0. Suppose that p′(z, ζ) ∈ Sm;kHs,α
b (Rn+; Hom(E,F )),

p′′(z, ζ) ∈ Sm(Rn+; Hom(E,F )) and a(z, ζ) ∈ S0 are such that

‖(p′′)−1‖Hom(F,E), ‖(p′ + p′′)−1‖Hom(F,E) 6 c0〈ζ〉−m on supp a.

Then

a(p′ + p′′)−1 ∈ a(p′′)−1 + S−m;kHs,α
b (Rn+; Hom(F,E)).

Proof. — By multiplying the symbols p and p′ by 〈ζ〉−m, we may assume
that m = 0.
(1) Let us first treat the case of complex-valued symbols. By Corollary 4.3,

a(·, ζ)/p(·, ζ) ∈ Hs
b, uniformly in ζ; thus a/p ∈ S0;0Hs

b. Moreover, for
|α| 6 k,

∂αζ

(
a

p

)
=
∑

cβ1···γν

∏µ
j=1 ∂

βj
ζ a

∏ν
l=1 ∂

γl
ζ p

pν+1 ,

where the sum is over all β1 + · · ·+βµ+γ1 + · · ·+γν = α with |γj | > 1,
1 6 j 6 ν. Hence, using that Hs

b is an algebra and that the growth
order of the numerator is −|α|, we conclude, again by Corollary 4.3,
that ∂αζ (a/p) ∈ S−|α|;0Hs

b; thus a/p ∈ S0;kHs
b.
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If p is bundle-valued, we obtain ap−1 ∈ S0;0Hs
b(Rn+; Hom(F,E)) us-

ing the explicit formula for the inverse of a matrix and Corollaries 3.10
and 4.3; then, by virtue of

∂ζ(ap−1) = (∂ζa− ap−1(∂ζp))p−1,

similarly for higher derivatives, we get ap−1 ∈ S0;kHs
b(Rn+; Hom(F,E)).

(2) Since a(p′+p′′)−1 =
(
a(p′′)−1)(I+p′(p′′)−1)−1, we may assume p′′ = I,

a ∈ S0(Rn+; Hom(F,E)) and p′ ∈ S0;kHs,α
b (Rn+; End(F )), and we need

to show
(I + p′)−1 − I ∈ S0;kHs,α

b (Rn+; End(F )).
But we can write

(I + p′)−1 − I = −p′(I + p′)−1,

which is an element of S0;0Hs,α
b (Rn+; End(F )) by assumption. Then, by

an argument similar to the one employed in the first part, we obtain
the higher symbol estimates. �

4.2. Compositions

Using the results of the previous subsection and the Cauchy integral
formula, we can prove several results on the regularity of F (u) for F smooth
or holomorphic and u in a weighted b-Sobolev space. The main use of such
results for us will be that they allow us to understand the regularity of the
coefficients of wave operators associated to non-smooth metrics.
In all results in this section, we shall assume that M is a compact n-

dimensional manifold with boundary, s > n/2 + 1, and α > 0.

Proposition 4.5. — Let u ∈ Hs,α
b (M). If F : Ω→ C is holomorphic in

a simply connected neighborhood Ω of u(M), then F (u)−F (0) ∈ Hs,α
b (M).

Moreover, there exists ε > 0 such that F (v) − F (0) ∈ Hs,α
b (M) depends

continuously on v ∈ Hs,α
b (M), ‖u− v‖Hs,αb

< ε.

Proof. — Observe that u(M) is compact. Let γ ⊂ C denote a smooth
contour which is disjoint from u(M), has winding number 1 around every
point in u(M), and lies within the region of holomorphicity of F . Then,
writing F (z)− F (0) = zF1(z) with F1 holomorphic in Ω, we have

F (u)− F (0) = u

2πi

∮
γ

F1(ζ) 1
ζ − u

dζ,

Since γ 3 ζ 7→ u/(ζ−u) ∈ Hs,α
b (M) is continuous by Lemma 4.2, we obtain

the desired conclusion F (u)− F (0) ∈ Hs,α
b .
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The continuous dependence of F (v)−F (0) on v near u is a consequence
of Lemma 4.2 and Corollary 3.10. �

Proposition 4.6. — Let u′ ∈ C∞(M), u′′ ∈ Hs,α
b (M); put u = u′+u′′.

If F : Ω → C is holomorphic in a simply connected neighborhood Ω of
u(M), then F (u) ∈ C∞(M)+Hs,α

b (M); in fact, F (v) depends continuously
on v in a neighborhood of u in the topology of C∞(M) +Hs,α

b (M).

Proof. — Let γ ⊂ C denote a smooth contour which is disjoint from
u(M), has winding number 1 around every point in u(M), and lies within
the region of holomorphicity of F . Since u′′ = 0 at ∂M and u′′ is continuous
by the Riemann-Lebesgue Lemma, we can pick φ ∈ C∞(M), φ ≡ 1 near
∂M , such that γ is disjoint from u′(suppφ). Then

φF (u) = 1
2πi

∮
γ

φ
F (ζ)/(ζ − u′)

1− u′′/(ζ − u′) dζ

= 1
2πi

∮
γ

φ
F (ζ)
ζ − u′

dζ + 1
2πi

∮
γ

φ
(F (ζ)/(ζ − u′))u′′

(ζ − u′)− u′′ dζ;

the first term equals φF (u′), and the second term is an element of Hs,α
b by

Corollary 4.3. Next, let φ̃ ∈ C∞(M) be identically equal to 1 on supp(1−φ),
and φ̃ ≡ 0 near ∂M . Then φ̃u ∈ Hs

b; in fact, it lies in any weighted such
space. Thus,

(1− φ)F (u) = 1
2πi

∮
γ

(1− φ)F (ζ)
ζ − φ̃u

dζ ∈ Hs,α
b ,

and the proof is complete. �

If we only consider F (u) for real-valued u, it is in fact sufficient to as-
sume F ∈ C∞(R;C) using almost analytic extensions, see e.g. Dimassi and
Sjöstrand [12, Chapter 8]: For any such function F and an integer N ∈ N,
let us define

(4.3) F̃N (x+ iy) =
N∑
k=0

(iy)k

k! (∂kxF )(x)χ(y), x, y ∈ R,

where χ ∈ C∞c (R) is identically 1 near 0. Then, writing z = x+ iy, we have
for y close to 0:
(4.4)

∂z̄F̃N (z) = 1
2(∂x + i∂y)F̃N (z) = (iy)N

2N ! (∂N+1
x F )(x)χ(y) = O(| Im z|N ).

Observe that all u ∈ C∞(M) + Hs,α
b (M) are bounded, hence in analyzing

F (u), we may assume without restriction that F ∈ C∞c (R;C).

TOME 66 (2016), FASCICULE 4



1324 Peter HINTZ

Proposition 4.7. — Let F ∈ C∞c (R;C). Then for u ∈ Hs,α
b (M ;R), we

have F (u) − F (0) ∈ Hs,α
b (M); in fact, F (u) − F (0) depends continuously

on u.

Proof. — Write F (x) − F (0) = xF1(x). Then, with (F̃1)N defined as
in (4.3), the Cauchy-Pompeiu formula gives the pointwise identity

F (u)− F (0) = −u
π

∫
C

∂ζ̄(F̃1)N (ζ)
ζ − u

dx dy, ζ = x+ iy.

Here, note that the integrand is compactly supported, and 1/(ζ − u(z)) is
locally integrable for all z. In particular, we can rewrite

(4.5) F (u)− F (0) = − 1
π

lim
δ↘0

∫
| Im ζ|>δ

∂ζ̄(F̃1)N (ζ) u

ζ − u
dx dy.

Now Lemma 4.2 gives∥∥∥ u

ζ − u

∥∥∥
Hs,αb

. C(‖u‖Hs,αb
)| Im ζ|−s−2,

since u is real-valued. Thus, if we choose N > s+ 2, then

C \ R 3 ζ 7→ ∂ζ̄(F̃1)N (ζ) u

ζ − u
∈ Hs,α

b

is bounded by (4.4), hence integrable, and therefore the limit in (4.5) exists
in Hs,α

b , proving the proposition. �

We also have an analogue of Proposition 4.6.

Proposition 4.8. — Let F ∈ C∞c (R;C), and u′ ∈ C∞(M ;R), u′′ ∈
Hs,α

b (M ;R); put u = u′ + u′′. Then F (u) ∈ C∞(M) + Hs,α
b (M); in fact,

F (u) depends continuously on u.

Proof. — As in the proof of the previous proposition, we have the point-
wise identity

F (u′ + u′′)− F (u′)

= − 1
π

lim
δ↘0

∫
| Im ζ|>δ

∂ζ̄(F̃1)N (ζ)
(

1
ζ − u′ − u′′

− 1
ζ − u′

)
dx dy

= − 1
π

lim
δ↘0

∫
| Im ζ|>δ

∂ζ̄(F̃1)N (ζ)
ζ − u′

· u′′

(ζ − u′)− u′′ dx dy

Writing fN := ∂ζ̄(F̃1)N , we estimate the Hs,α
b -norm of the integrand for

ζ ∈ C \ R using Lemma 4.2 by∥∥∥∥fN (ζ)
ζ − u′

∥∥∥∥
L(Hs,αb )

∥∥∥∥ u′′

(ζ − u′)− u′′

∥∥∥∥
Hs,αb

.

∥∥∥∥fN (ζ)
ζ − u′

∥∥∥∥
L(Hs,αb )

| Im ζ|−s−2;
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here, we denote by ‖h‖L(Hs,αb ), for a function h, the operator norm of mul-
tiplication by h on Hs,α

b . We claim that the operator norm

bs :=
∥∥∥∥fN (ζ)
ζ − u′

∥∥∥∥
L(Hs,αb )

is bounded by | Im ζ|N−s−1; then choosing N > 2s + 3 finishes the proof
as before. To prove this bound, we use interpolation: First, since u′ is real-
valued, we have b0 = O(| Im ζ|−1|fN (ζ)|) = O(| Im ζ|N−1) by (4.4). Next,
for integer k > 1, the Leibniz rule gives

bk .
k∑
j=0
| Im ζ|−1−j |∂k−jx fN (ζ)| . | Im ζ|N−k−1,

where we use that |∂`xfN (ζ)| = O(| Im ζ|N ) for all `, as follows directly from
the definition of fN . By interpolation, we thus obtain bs . | Im ζ|N−s−1, as
claimed. �

5. Elliptic regularity

With the partial calculus developed in §3, it is straightforward to prove
elliptic regularity for b-Sobolev b-pseudodifferential operators. Notice that
operators with coefficients in Hs

b for s > n/2 must vanish at the boundary
by the Riemann-Lebesgue Lemma, thus they cannot be elliptic there. A
natural class of operators which can be elliptic at the boundary is obtained
by adding smooth b-ps.d.o.s to b-Sobolev b-ps.d.o.s, and we will deal with
such operators in the second part of the following theorem.

Theorem 5.1. — Let m, s, r ∈ R and ζ0 ∈ bS∗Rn+. Suppose P̃ =
P̃m + R̃, where P̃m ∈ Hs

bΨm
b (Rn+;E,F ) has principal symbol p̃, and R̃ ∈

Ψm−1;0
b Hs−1

b (Rn+;E,F ).

(1) Let P = P̃ , and suppose p ≡ p̃ is elliptic at ζ0, or
(2) let P = P0 + P̃ , where P0 ∈ Ψm

b (Rn+;E,F ) has principal symbol p0,
and suppose p = p̃+ p0 is elliptic at ζ0.

Let s̃ ∈ R be such that s̃ 6 s− 1 and s > n/2 + 1 + (−s̃)+. Then in both
cases, if u ∈ H s̃+m−1,r

b (Rn+;E) satisfies

Pu = f ∈ H s̃,r
b (Rn+;F ),

it follows that ζ0 /∈WFs̃+m,rb (u).
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Proof. — We will only prove the theorem without bundles; adding bun-
dles only requires simple notational changes. In both cases, we can assume
that r = 0 by conjugating P by x−r; moreover, R̃u ∈ H s̃

b by Proposition 3.9
by the assumptions on s and s̃, thus we can absorb R̃u into the right hand
side and hence assume R̃ = 0. Choose a0 ∈ S0 elliptic at ζ0 such that p is
elliptic on supp a0, and non-vanishing there, which only matters near the
zero section.
(1) Let λm be as in Corollary 2.5. By Proposition 4.4,

q(z, ζ) := a0(z, ζ)λm(ζ)/p(z, ζ) ∈ S0;∞Hs
b.

Put Q = q(z, bD). Then by Theorem 3.12 (1a), using P = P̃m ∈
Ψm;0Hs

b,
Q ◦ P = a0(z, bD)Λm +R′

with R′ ∈ Ψm−1;0Hs−1
b , hence by(8) Proposition 3.9

a0(z, bD)Λmu = Qf −R′u ∈ H s̃
b.

Then standard microlocal ellipticity implies ζ0 /∈WFs̃+mb (u).
(2) If ζ0 /∈ bT ∗

∂Rn+
Rn+, then the proof of part (1) applies, since away from

∂Rn+, one has Ψm
b ⊂ Hs

bΨm
b . Thus, assuming ζ0 ∈ bT ∗

∂Rn+
Rn+, we note

that the ellipticity of p at ζ0 implies p0 6= 0 near ζ0, since the function
p̃ vanishes at ∂Rn+. Therefore, Proposition 4.4 applies if one chooses
a0 ∈ S0 as in the proof of part (1), yielding

q(z, ζ) := a0(z, ζ)λm(ζ)/p(z, ζ) = q̃0(z, ζ) + q0(z, ζ),

where q̃0 ∈ S0;∞Hs
b, q0 ∈ S0. Put Q̃0 = q̃0(z, bD), Q0 = q0(z, bD), then

(Q̃0 +Q0) ◦ (P̃m + P0) = a0(z, bD)Λm +R′

with

R′ ∈ Ψm−1;0Hs−1
b + Ψm−1;0Hs

b + Ψm−1;0Hs−1
b + Ψm−1

b

⊂ Ψm−1;0Hs−1
b + Ψm−1

b ,

where the terms are the remainders of the first order expansions of
Q̃0 ◦ P̃m, Q̃0 ◦P0, Q0 ◦ P̃m and Q0 ◦P0, in this order; to see this, we use
Theorem 3.12 (1a), (2b), (2a) and composition properties of b-ps.d.o.s,
respectively. Hence

a0(z, bD)Λmu = Q̃0f +Q0f −R′u ∈ H s̃
b,

(8)For Qf ∈ H s̃
b, we need s > s̃ and s > n/2 + (−s̃)+. For R′u ∈ H s̃

b, we need s− 1 > s̃
and s− 1 > n/2 + (−s̃)+.
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which implies ζ0 /∈WFs̃+mb (u). �

Remark 5.2. — Notice that it suffices to have only local H s̃,r
b member-

ship of f near the base point of ζ0. Under additional assumptions, even
microlocal assumptions are enough, see in particular [7, Theorem 3.1]; we
will not need this generality though.

6. Propagation of singularities

We next study the propagation of singularities (equivalently the propaga-
tion of regularity) for certain classes of non-smooth operators. The results
cover operators that are of real principal type (6.3) or have a specific radial
point structure (6.4). For a microlocally more complete picture, we also
include a brief discussion of complex absorption (6.3.3).

The statements of the theorems and the ideas of their proofs are (mostly)
standard in the context of smooth pseudodifferential operators; see for ex-
ample Hörmander [23] and Vasy [40] for statements on manifolds without
boundary and Hassell, Melrose and Vasy [17], Baskin, Vasy and Wunsch [6]
as well as [19] for the propagation of b-regularity near radial points in var-
ious settings. Beals and Reed [7] discuss the propagation of singularities
on manifolds without boundary for non-smooth ps.d.o.s, and parts of §§6.1
and 6.3 follow their exposition closely.

6.1. Sharp Gårding inequalities

We will need various versions of the sharp Gårding inequality, which
will be used to obtain one-sided bounds for certain terms in positive com-
mutator arguments later. For the first result, we follow the proof of [7,
Lemma 3.1].

Proposition 6.1. — Let s,m ∈ R be such that s > 2−m and s > n/2+
2 +m+, where m+ = max(m, 0). Let p(z, ζ) ∈ S2m+1;2Hs

b(Rn+; End(E)) be
a symbol with non-negative real part, i.e.

Re〈p(z, ζ)e, e〉 > 0 z ∈ Rn+, ζ ∈ Rn, e ∈ E,

where 〈·, ·〉 is the inner product on the fibers of E. Then there is C > 0
such that P = p(z, bD) satisfies the estimate

Re〈Pu, u〉 > −C‖u‖2Hmb , u ∈ Ċ∞c (Rn+;E).
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Proof. — Let q ∈ C∞c (Rn) be a non-negative even function, supported in
|ζ| 6 1, with

∫
q2(ζ) dζ = 1, and put

F (ζ, ξ) = 1
〈ζ〉n/4

q

(
ξ − ζ
〈ζ〉1/2

)
.

Define the symmetrization of p to be

psym(η, z, ζ) =
∫
F (η, ξ)p(z, ξ)F (ζ, ξ) dξ.

Observe that the integrand has compact support in ξ for all η, z, ζ, therefore
psym is well-defined. Moreover,

(psym(bD, z, bD)u)̂(η) =
∫
p̂sym(η, η − ζ, ζ)û(ζ) dζ,

hence, writing u = (uj), p = (pij), psym = ((psym)ij), and summing over
repeated indices,

Re〈psym(bD, z, bD)u, u〉 = Re
∫∫

p̂sym(η, η − ζ, ζ)ij û(ζ)j ûi(η) dζ dη

= Re
∫∫ (∫

eizζF (ζ, ξ)û(ζ) dζ
)
j

(∫
eizηF (η, ξ)û(η) dη

)
i

×pij(z, ξ) dξ dz

=
∫∫

Re
〈
p(z, ξ)F (bD; ξ)u(z), F (bD; ξ)u(z)

〉
dξ dz > 0.

Thus, putting r(z, bD) = psym(bD, z, bD)− p(z, bD), it suffices to show that
r(z, ζ) ∈ S2m;0Hs−2

b (Rn+; End(E)), i.e.

(6.1)
〈η〉s−2‖r̂(η; ζ)‖End(E)

〈ζ〉2m
6 r0(η; ζ), r0(η; ζ) ∈ L∞ζ L2

η.

in order to conclude the proof, since Proposition 3.9 then implies the con-
tinuity of r(z, bD) : Hm

b (Rn+;E) → H−mb (Rn+;E). From now on, we will
suppress the bundle E in our notation and simply write | · | for ‖ · ‖End(E).
Now, r(z, bD) acts on Ċ∞c by

(r(z, bD)u)̂(η) =
∫
r̂(η − ζ, ζ)û(ζ) dζ;
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hence

r̂(η; ζ) = p̂sym(η + ζ, η, ζ)− p̂(η; ζ)

=
∫
F (η + ζ, ξ)p̂(η; ξ)F (ζ, ξ) dξ − p̂(η; ζ)(6.2)

=
∫
F (η + ζ, ξ)

(
p̂(η; ξ)− p̂(η; ζ)

)
F (ζ, ξ) dξ

+
∫ (

F (η + ζ, ξ)− F (ζ, ξ)
)
p̂(η; ζ)F (ζ, ξ) dξ,

(6.3)

where we use
∫
F (ζ, ξ)2 dξ = 1. To estimate r̂(η; ζ), we use that

|p̂(η; ζ)| = 〈ζ〉
2m+1

〈η〉s
p0(η; ζ), p0(η; ζ) ∈ L∞ζ L2

η.

We get a first estimate from (6.2):

|r̂(η; ζ)| .
∫
S

1
〈η + ζ〉n/4〈ζ〉n/4〈η〉s

〈ξ〉2m+1p0(η; ξ) dξ + 〈ζ〉
2m+1

〈η〉s
p0(η; ζ),

where S is the set

S = {|ξ − ζ| 6 〈ζ〉1/2, |ξ − (η + ζ)| 6 〈η + ζ〉1/2}.

In particular, we have 〈ζ〉 ∼ 〈ξ〉 ∼ 〈η + ζ〉 on S, which yields

|r̂(η; ζ)| . 〈ζ〉
2m+1−n/2

〈η〉s

∫
|ξ−ζ|6〈ζ〉1/2

p0(η; ξ) dξ + 〈ζ〉
2m+1

〈η〉s
p0(η; ζ).

We contend that

p′0(η; ζ) := 〈ζ〉−n/2
∫
|ξ−ζ|6〈ζ〉1/2

p0(η; ξ) dξ ∈ L∞ζ L2
η.

Indeed, this follows from Cauchy-Schwartz:∫ ∣∣∣∣∫
|ξ−ζ|6〈ζ〉1/2

p0(η; ξ) dξ
∣∣∣∣2 dη . ∫ 〈ζ〉n/2 ∫

|ξ−ζ|6〈ζ〉1/2
|p0(η; ξ)|2 dξ dη

. 〈ζ〉n‖p0(η; ξ)‖2L∞
ξ
L2
η
.

We deduce

|r̂(η; ζ)| 6 〈ζ〉
2m+1

〈η〉s
p′′0(η; ζ), p′′0(η; ζ) ∈ L∞ζ L2

η.

If |η| > |ζ|/2, this implies

(6.4) 〈η〉s−1|r̂(η; ζ)|
〈ζ〉2m

6
〈ζ〉
〈η〉

p′′0(η; ζ) . p′′0(η; ζ),

thus we obtain a forteriori the desired estimate (6.1) in the region |η| >
|ζ|/2.
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From now on, let us thus assume |η| 6 |ζ|/2. We estimate the first integral
in (6.3). By Taylor’s theorem,

p̂(η; ξ)− p̂(η; ζ) = ∂ζ p̂(η; ζ) · (ξ − ζ)

+
∫ 1

0
(1− t)〈ξ − ζ, ∂2

ζ p̂(η; ζ + t(ξ − ζ)) · (ξ − ζ)〉 dt,

and since 〈ξ〉 ∼ 〈ζ〉 on suppF (ζ, ξ), this gives

p̂(η; ξ)− p̂(η; ζ) = ∂ζ p̂(η; ζ) · (ξ − ζ) + |ξ − ζ|2O(〈ζ〉2m−1) on suppF (ζ, ξ),

where we say f ∈ O(g) if |f | 6 |g|h for some h ∈ L∞ζ L2
η. The first integral

in (6.3) can then be rewritten as

∂ζ p̂(η; ζ) ·
∫

(ξ − ζ)
(
F (η + ζ, ξ)− F (ζ, ξ)

)
F (ζ, ξ) dξ

+O(〈ζ〉2m−1)
∫
|ξ − ζ|2F (η + ζ, ξ)F (ζ, ξ) dξ,

where we use
∫

(ξ − ζ)F (ζ, ξ)2 dξ = 0, which is a consequence of q being
even.
Taking the second integral in (6.3) into account, we obtain

(6.5) |r̂(η; ζ)| . (M1 +M2 +M3)p′′′0 (η; ζ), p′′′0 (η; ζ) ∈ L∞ζ L2
η,

where

M1(η, ζ) = 〈ζ〉
2m+1

〈η〉s

∫
|ξ − ζ|
〈ζ〉

|F (η + ζ, ξ)− F (ζ, ξ)|F (ζ, ξ) dξ

M2(η, ζ) = 〈ζ〉
2m+1

〈η〉s

∫
|ξ − ζ|2

〈ζ〉2
F (η + ζ, ξ)F (ζ, ξ) dξ

M3(η, ζ) = 〈ζ〉
2m+1

〈η〉s

∣∣∣∣∫ (F (η + ζ, ξ)− F (ζ, ξ)
)
F (ζ, ξ) dξ

∣∣∣∣ .
M2 is estimated easily: On the support of the integrand, one has |ξ−ζ|2 6

〈ζ〉, thus

M2(η, ζ) . 〈ζ〉
2m

〈η〉s
· 〈ζ〉n/2

〈η + ζ〉n/4〈ζ〉n/4
;

here, the term 〈ζ〉n/2 in the numerator is (up to a constant) an upper
bound for the volume of the domain of integration. Since we are assuming
|η| 6 |ζ|/2, we have 〈η + ζ〉 & 〈ζ〉, which gives M2(η, ζ) . 〈ζ〉2m/〈η〉s.
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In order to estimate M1 and M3, we will use

∂ζF (ζ, ξ) = a0(ζ)
〈ζ〉n/4+1 q1

(
ξ − ζ
〈ζ〉1/2

)
+ a1(ζ)
〈ζ〉n/4+1/2 ∂ζq

(
ξ − ζ
〈ζ〉1/2

)
,

∂2
ζF (ζ, ξ) = a2(ζ)

〈ζ〉n/4+1 q2

(
ξ − ζ
〈ζ〉1/2

)
,

where the aj are scalar-, vector- or matrix-valued symbols of order 0, and
qj ∈ C∞c (Rn).
Hence, writing F (η+ζ, ξ)−F (ζ, ξ) = η ·∂ζF (ζ+ t̄η, ξ) for some 0 6 t̄ 6 1,

we get

M1(η, ζ) . 〈ζ〉
2m+1

〈η〉s
· 〈ζ〉n/2|η|
〈ζ〉1/2〈ζ + t̄η〉n/4+1/2〈ζ〉n/4

.
〈ζ〉2m

〈η〉s−1 ,

where we again use |η| < |ζ|/2 and 〈ζ + t̄η〉 & 〈ζ〉.
Finally, to bound M3, we write

F (η + ζ, ξ)− F (ζ, ξ) = η · ∂ζF (ζ, ξ) +
∫ 1

0
(1− t)〈η, ∂2

ζF (ζ + tη, ξ) · η〉 dt

and deduce

M3(η, ζ) . 〈ζ〉
2m+1

〈η〉s

(
〈ζ〉n/2|η|

〈ζ〉n/4+1〈ζ〉n/4

+ |η|
〈ζ〉n/4+1/2

∣∣∣∣∫ (∂ζq)
(
ξ − ζ
〈ζ〉1/2

)
q

(
ξ − ζ
〈ζ〉1/2

)
dξ

∣∣∣∣
+ 〈ζ〉n/2|η|2

〈ζ〉n/4+1〈ζ〉n/4

)
.
〈ζ〉2m

〈η〉s−2 ,

where we use ∫
(∂ζq)

(
ξ − ζ
〈ζ〉1/2

)
q

(
ξ − ζ
〈ζ〉1/2

)
dξ = 0,

which holds since q has compact support. Plugging the estimates for Mj ,
j = 1, 2, 3, into (6.5) proves that (6.1) holds. The proof is complete. �

The idea of the proof can also be used to prove the sharp Gårding in-
equality for smooth b-ps.d.o.s:

Proposition 6.2. — Let m ∈ R, and let p(z, ζ) ∈ S2m+1(Rn+; End(E))
be a symbol with non-negative real part. Then there is C > 0 such that
P = p(z, bD) satisfies the estimate

Re〈Pu, u〉 > −C‖u‖2Hmb , u ∈ Ċ∞c (Rn+;E).
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Proof. — Write p(x, y; ζ) = p(0)(y; ζ) + p(1)(x, y; ζ), where p(0)(y; ζ) =
p(0, y; ζ) and p(1) = xp̃ ∈ H∞b S2m+1. The symmetrization p(bD, z, bD),
defined as in the proof of Proposition 6.1 is again non-negative, and the
symbol of the remainder operator r(z, bD) = psym(bD, z, bD) − p(z, bD) is
the sum of two terms p(0)

sym−p(0) and p(1)
sym−p(1). The proof of Proposition 6.1

shows that p(1)
sym− p(1) ∈ S2m;0H∞b . It thus suffices to assume that p = p(0)

is independent of x, which implies that psym is independent of x as well,
and to prove r(y, bD) = (psym − p)(y, bD) : Hm

b → H−mb .
Similarly to the proof of Proposition 6.1, we put

F (λ, η;σ, γ) = 1
〈λ, η〉n/4

q

(
(σ − λ, γ − η)
〈λ, η〉1/2

)
psym(ρ, θ; y;λ, η) =

∫∫
F (ρ, θ;σ, γ)p(y;σ, γ)F (λ, η;σ, γ) dσ dγ

and obtain

(psym(bD; y; bD)u)̂(ρ, θ) =
∫

Fpsym(ρ, θ; θ − η; ρ, η)û(ρ, η) dη

F r(θ;λ, η) = Fpsym(λ, θ + η; θ;λ, η)−Fp(θ;λ, η),

thus

F r(θ;λ, η)

=
∫∫

F (λ, θ + η;σ, γ)
(
Fp(θ;σ, γ)−Fp(θ;λ, η)

)
F (λ, η;σ, γ) dσ dγ

+
∫∫ (

F (λ, θ + η;σ, γ)− F (λ, η;σ, γ)
)
Fp(θ;λ, η)F (λ, η;σ, γ) dσ dγ.

Then, following the argument in the previous proof, we obtain

(6.6) |F r(θ;λ, η)| 6 〈λ, η〉
2m

〈θ〉N
r0(θ;λ, η), r0(θ;λ, η) ∈ L∞λ,ηL2

θ,

where we use

|Fp(θ;λ, η)| = 〈λ, η〉
2m+1

〈θ〉N+2 p0(θ;λ, η), p0(θ;λ, η) ∈ L∞λ,ηL2
θ,

which holds for every integer N (with p0 depending on the choice of N).
An estimate similar to the one used in the proof of Proposition 3.9 shows
that (6.6) implies r(y, bD) : Hs

b → Hs−2m
b for all s ∈ R. �

Finally, we merge Propositions 6.1 and 6.2.

Corollary 6.3. — Let s,m ∈ R be such that s > 2−m, s > n/2+2+
m+. Let p̃(z, ζ) ∈ S2m+1;2Hs

b(Rn+; End(E)), p0(z, ζ) ∈ S2m+1(Rn+; End(E))
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be symbols such that p = p0 + p̃ has non-negative real part. Then there is
C > 0 such that P = p(z, bD) satisfies the estimate

Re〈Pu, u〉 > −C‖u‖2Hmb , u ∈ Ċ∞c (Rn+;E).

Proof. — The symmetrized operator psym(bD, z, bD) is again non-nega-
tive, and the symbol of the remainder operator r(z, bD) = psym(bD, z, bD)−
p(z, bD) is the sum of two terms p0,sym − p0 and p̃sym − p̃. The proofs of
Propositions 6.1 and 6.2 show that (p0,sym−p0)(z, bD) and (p̃sym−p̃)(z, bD)
map Hm

b to H−mb , hence r(z, bD) maps Hm
b to H−mb , and the proof is

complete. �

6.2. Mollifiers

In order to deal with certain kinds of non-smooth terms in §§6.3 and 6.4,
we will need smoothing operators in order to smooth out and approximate
non-smooth functions in a precise way. We only state the results for un-
weighted spaces, but the corresponding statements for weighted spaces hold
true by the same proofs.

Lemma 6.4. — Let s ∈ R, χ ∈ C∞c (R+). Then χ(x/ε) → 0 strongly as
a multiplication operator on Hs

b(Rn+) as ε→ 0, and in norm as a multipli-
cation operator from Hs,α

b (Rn+)→ Hs
b(Rn+) for α > 0.

Proof. — We start with the first half of the lemma: For s = 0, the state-
ment follows from the dominated convergence theorem. For s a positive
integer, we use that

(x∂x)s
(
χ
(x
ε

))
=

s∑
j=1

csj

(x
ε

)j
χ(j)

(x
ε

)
, csj ∈ R,

is bounded and converges to 0 pointwise in x > 0 as ε→ 0, thus by virtue
of the Leibniz rule and the dominated convergence theorem, we obtain
χ(x/ε)u(x, y)→ 0 in Hs

b(Rn+) for u ∈ Hs
b(Rn+). For s ∈ −N, the statement

follows by duality.
Finally, to treat the case of general s, we first show that χ(·/ε) is a

uniformly bounded family (in ε > 0) of multiplication operators on Hs
b(Rn+)

for all s ∈ R: For s ∈ N0, this follows from the above estimates, for s ∈ Z
again by duality, and then for general s ∈ R by interpolation. Now, put
M = sup0<ε61 ‖χ(·/ε)‖Hsb→Hsb < ∞. Let w ∈ Hs

b and δ > 0 be given, and
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choose w′ ∈ H∞b such that ‖w′ −w‖Hsb < δ/2M . By what we have already
proved, we can choose ε0 > 0 so small that

‖χ(·/ε)w′‖Hsb 6 ‖χ(·/ε)w′‖
H
dse
b

< δ/2, ε < ε0;

then

‖χ(·/ε)w‖Hsb 6 ‖χ(·/ε)(w − w′)‖Hsb + ‖χ(·/ε)w′‖Hsb < M
δ

2M + δ

2 = δ.

Concerning the second half of the lemma, the case s = 0 is clear since
xαχ(x/ε) → 0 in L∞(R+) as ε → 0; as above, this implies the statement
for s a positive integer, and the case of real s again follows by duality and
interpolation. �

Lemma 6.5. — Let M be a compact manifold with boundary. Then
there exists a family of operators Jε : C−∞(M) → C∞c (M◦), ε > 0, such
that Jε ∈ Ψ−∞b (M), and for all s, α ∈ R, Jε is a uniformly bounded family
of operators on Hs,α

b (M) that converges strongly to the identity map I as
ε→ 0.

Proof. — Choose a product decomposition ∂M×[0, ε0)x near the bound-
ary of M , and let χ ∈ C∞c (R), χ ≡ 1 near 0, suppχ ⊂ [0, 1/2]. We can then
define the multiplication operators χ(x/ε) globally on H−∞b (M). By the
previous lemma, I − χ(·/ε) converges strongly to I on Hs

b(M); moreover,
supp(u − χ(·/ε)u) ⊂ {x > ε}. Thus, if we let J̃ε be a family of mollifiers,
J̃ε ∈ Ψ−∞b (M), J̃ε → I in Ψδ′

b (M) for δ′ > 0, such that on the support of
the Schwartz kernel of J̃ε, we have |x1 − x2| < ε/2 near ∂M × ∂M where
x1, x2 are the lifts of x to the left and right factor of M ×M , then we have
that J̃ε(u − χ(·/ε)u) is an element of H∞b (M) with support in {x > ε/2},
thus is smooth. Therefore, the family Jε := J̃ε ◦ (I − χ(·/ε)) satisfies all
requirements. �

6.3. Real principal type propagation, complex absorption

We will prove real principal type propagation estimates of b-regularity for
operators with non-smooth coefficients by means of a positive commutator
argument which is standard in the smooth coefficient case; we recall the
argument below.

Theorem 6.6. — Let m, r, s, s̃ ∈ R, α > 0. Suppose P̃ = P̃m + P̃m−1 +
R̃, where P̃m ∈ Hs,α

b Ψm
b (Rn+;E) has a real, scalar, homogeneous prin-

cipal symbol p̃m; moreover, let P̃m−1 ∈ Hs−1,α
b Ψm−1

b (Rn+;E) and R̃ ∈
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Ψm−2
b (Rn+;E) + Ψm−2;0

b Hs−1,α
b (Rn+;E). Suppose s and s̃ are such that

(6.7) s̃ 6 s− 1, s > n/2 + 7/2 + (2− s̃)+.

(1) Let P ≡ P̃ and p ≡ p̃m, or
(2) let P = P0 + P̃ , where P0 ∈ Ψm

b (Rn+;E) has a real, scalar, homoge-
neous principal symbol p0. Denote p = p0 + p̃m.

In both cases, if u ∈ H s̃+m−3/2,r
b (Rn+;E) is such that Pu ∈ H s̃,r

b (Rn+;E),
then WFs̃+m−1,r

b (u) is a union of maximally extended null-bicharacteris-
tics of p, i.e. of integral curves of the Hamilton vector field Hp within the
characteristic set p−1(0) ⊂ bT ∗Rn+ \ o.

The proof, given in §§6.3.1 and 6.3.2, in fact gives an estimate for the
H s̃+m−1,r

b -norm of u: Suppose E,B,G ∈ Ψ0
b are such that all forward or

backward null-bicharacteristics from WF′b(B) reach the elliptic set of E
while remaining in the elliptic set of G, and ψ ∈ C∞c (Rn+) is identically 1
on π(WF′b(B)), where π : bT ∗Rn+ → Rn+ is the projection, then

‖Bu‖H s̃+m−1,r
b

6 C(‖GPu‖H s̃,rb
+ ‖Eu‖H s̃+m−1,r

b
+ ‖ψPu‖H s̃−1,r

b
+ ‖u‖

H
s̃+m−3/2,r
b

)(6.8)

in the sense that if all quantities on the right hand side are finite, then
so is the left hand side, and the inequality holds. See Figure 6.1 for an
illustration. In particular, it suffices to have only microlocal H s̃,r

b member-
ship of Pu near the parts of null-bicharacteristics along which we want to
propagate H s̃+m−1,r

b regularity of u. The term involving ψPu comes from
the local requirements for elliptic regularity, see Remark 5.2.

Figure 6.1. Illustration of the propagation estimate (6.8). Here, γ is a
null-bicharacteristic, i.e. an integral curve of the Hamilton vector field
of the principal symbol of P .

In §6.3.3, we will add complex absorption and obtain the following state-
ment.
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Theorem 6.7. — Under the assumptions of Theorem 6.6, let Q ∈
Ψm

b (Rn+;E), Q = Q∗. Suppose E,B,G ∈ Ψ0
b are such that all forward,

resp. backward, bicharacteristics from WF′b(B) reach the elliptic set of E
while remaining in the elliptic set of G, and suppose moreover that q 6 0,
resp. q > 0, on WF′b(G), further let ψ ∈ C∞c (Rn+) be identically 1 on
π(WF′b(B)), then

‖Bu‖H s̃+m−1,r
b

6 C(‖G(P − iQ)u‖H s̃,rb
+ ‖Eu‖H s̃+m−1,r

b

+ ‖ψ(P − iQ)u‖H s̃−1,r
b

+ ‖u‖
H
s̃+m−3/2,r
b

)(6.9)

in the sense that if all quantities on the right hand side are finite, then so
is the left hand side, and the inequality holds.

In other words, we can propagate estimates from the elliptic set of E
forward along the Hamilton flow to WF′b(B) if q > 0, and backward if
q 6 0.
Conjugating by xr (where x is the standard boundary defining function),

it suffices to prove Theorems 6.6 and 6.7 for r = 0. Moreover, as in the
smooth setting, we can apply Theorem 5.1 on the elliptic set of P in both
cases and deduce microlocal H s̃+m

b regularity of u there, which implies
that WFs̃+m−1

b (u) is a subset of the characteristic set of P , and thus we
only need to prove the propagation result within the characteristic set. We
will begin by proving the first part of Theorem 6.6 in §6.3.1; the proof is
then easily modified in §6.3.2 to yield the second part of Theorem 6.6. To
keep the notation simple, we will only consider the case of complex-valued
symbols (hence, operators acting on functions); in the general, bundle-
valued case, all arguments go through with purely notational changes.
Before commencing the proofs of the above theorems, we briefly sketch

the proof of Theorem 6.6 (for the weight r = 0) in the smooth setting using
a positive commutator estimate in the form given by de Hoop, Uhlmann
and Vasy [21], which roughly goes as follows (omitting a number of ‘ir-
relevant’ terms and glossing over the fact that the argument needs to be
regularized in order to make sense of the appearing dual pairings): Sup-
pose ζ /∈ WFσb(u), σ = s̃ + m − 1; we want to propagate microlocal Hσ

b
regularity of u along a null-bicharacteristic strip γ of P from ζ to a nearby
point ζ ′ ∈ γ. To do so, we choose a symbol a ∈ S2σ−m+1 with support
localized near γ, which is decreasing along the Hamilton flow of p except
near ζ (where we have a priori information on u), i.e. Hpa = −b2 +e, where
e ∈ S2σ is supported near ζ, and b ∈ S2σ is elliptic near ζ ′. Then, denot-
ing by A,B,E formally self-adjoint quantizations of a, b, e, respectively, we
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obtain

(6.10) ‖Bu‖2L2
b(M) = 〈B∗Bu, u〉 = 〈Eu, u〉 − 〈i[P,A]u, u〉+ 〈Gu, u〉,

where 〈·, ·〉 denotes the (sesquilinear) dual pairing on L2
b(M), and G =

B∗B − E + i[P,A] ∈ Ψ2σ−1
b . For simplicity, let us assume u ∈ Hσ−1/2

b (M)
and P = P ∗; then, expanding the commutator and integrating by parts to
write 〈[P,A]u, u〉 = 〈Au, Pu〉 − 〈Pu,Au〉, and using that Pu ∈ Hσ−m+1

b ,
moreover using that 〈Eu, u〉 is bounded by the regularity assumption on
u at ζ, and using that 〈Gu, u〉 is bounded since u is in Hσ−1/2

b , we obtain
Bu ∈ L2

b. Hence by elliptic regularity, u ∈ Hσ
b microlocally near ζ ′, finishing

the argument. Notice the loss of one derivative compared to the elliptic
setting, which naturally comes about by the use of a commutator: We
can only propagate Hσ

b regularity of u, not Hσ+1
b regularity, even though

Pu ∈ Hσ+1−m
b .

For the proof in the non-smooth setting, we will be choosing most op-
erators in this argument (A,B,E,G in the above notation) to be smooth
ones and thus have to absorb certain non-smooth terms into an additional
error term F of symbolic order 2σ, which without further caution would
render the above argument invalid; by judiciously choosing B and E, we
can however ensure that the symbol of F in fact has a sign, thus the ad-
ditional term 〈Fu, u〉 appearing in (6.10) can be bounded by a version of
the sharp Gårding inequality which we proved in §6.1.

6.3.1. Propagation in the interior

For brevity, denoteM = Rn+. We start with the first half of Theorem 6.6,
where we can in fact assume α = 0 since we are working away from the
boundary, as explained below. Thus, let P = Pm + Pm−1 + R, where we
assume

m > 1

for now,

Pm ∈ Hs
bΨm

b with real homogeneous principal symbol,

Pm−1 ∈ Hs−1
b Ψm−1

b ,

R ∈ Ψm−2;0
b Hs−1

b ,

and let us assume that we are given a solution

(6.11) u ∈ Hσ−1/2
b ,
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to the equation
Pu = f ∈ Hσ−m+1

b ,

where σ = s̃ + m − 1 with s̃ as in the statement of Theorem 6.6. In fact,
since

R : Hσ−1/2
b ⊂ Hσ−1

b → Hσ−m+1
b

by Proposition 3.9,(9) we may absorb the term Ru into the right hand side;
thus, we can assume R = 0, hence P = Pm + Pm−1.
Moreover, let γ be a null-bicharacteristic of the principal symbol pm of

Pm, and assume that Hpm is never radial on γ, i.e. that Hpm is linearly
independent from the generator of dilations in the fibers of bT ∗M \o – recall
that at radial points, the statement of the propagation of singularities is
void. Note that the non-radiality in particular means that γ ∩ bT ∗∂MM = ∅
since pm vanishes identically at the boundary, and in fact this setup is
the correct one for the discussion of real principal type propagation in
the interior of M . All functions we construct in this section are implicitly
assumed to have support away from ∂M . Even though we are working
away from the boundary, we will still employ the b-notation throughout
this section, since the proof of the real principal type propagation result
(near and) within the boundary will only require minor changes compared
to the proof of the interior result given here.
The objective is to propagate microlocal Hσ

b regularity along γ to a point
ζ0 ∈ bT ∗M \ o, assuming a priori knowledge of microlocal Hσ

b regularity
of u near a point ζ∗ on the backward bicharacteristic from ζ0; the location
and size of this region will be specified later, see Proposition 6.8. We will
use a positive commutator argument.

Step 0. Outline of the symbolic construction of the commutant. — The
idea, following [21, §2], is to arrange for Hpm = ρ1−mHpm , ρ = 〈ζ〉,

(6.12) Hpma = −b2 + e− f,

where a, b, e are smooth symbols and f is a non-smooth symbol, absorbing
non-smooth terms of Hpma in an appropriate way, which however has a
definite sign; by virtue of the sharp Gårding inequality, we will be able to
bound terms involving f using the a priori regularity assumptions on u.
As in the smooth case, terms involving e will be controlled by the a priori
assumptions of u near ζ∗. If b is elliptic at ζ0, we are thus able to prove the
desired Hσ

b regularity at ζ0. The actual commutant to be used, which has

(9) We need s− 1 > σ −m+ 1 and s− 1 > n/2 + (m− σ − 1)+.
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the correct symbolic order and is regularized, will be constructed later; see
Proposition 6.8 for its relevant properties.
The general strategy for choosing the non-smooth symbol f is as follows:

Non-smooth terms T , which arise in the computation and are positive, say
T > c > 0, are smoothed out using a mollifier J , giving a smooth function
JT , but only as much as to still preserve some positivity JT − c/4 > c/4 >
0, and in such a way that the error T − JT + c/4 is non-negative; then
b2 = JT − c/4 is a smooth, positive term, and f = T − JT + c/4 is non-
smooth, but has a sign, and T = b2 + f. The mollifiers we shall use were
constructed in Lemma 6.5.

Step 1.1: Symbolic construction of the commutant on bS∗M . — To
start, choose η̃ ∈ C∞(bS∗M) with η̃(ζ0) = 0, Hpm η̃(ζ0) > 0, i.e. η̃ mea-
sures, at least locally, propagation along the Hamilton flow. Choose σj ∈
C∞(bS∗M), j = 1, . . . , 2n−2, with σj(ζ0) = 0 and Hpmσj(ζ0) = 0, and such
that dη̃, dσj span T ∗ζ0

(bS∗M). Put ω =
∑2n−2
j=1 σ2

j , so that ω1/2 approxi-
mately measures how far away one is from the bicharacteristic through ζ0.
Thus, |η̃|+ω1/2 is, near ζ0, equivalent to the distance from ζ0 with respect
to any distance function given by a Riemannian metric on bS∗M . Then for
δ ∈ (0, 1), ε ∈ (0, 1], β ∈ (0, 1] and z > 0 (large) to be chosen later, let

φ = η̃ + 1
ε2δ

ω,

and, taking χ0(t) = e−1/t for t > 0, χ0(t) = 0 for t 6 0, and χ1 ∈ C∞(R),
χ1 > 0, √χ1 ∈ C∞(R), suppχ1 ⊂ (0,∞), suppχ′1 ⊂ (0, 1), and χ1 ≡ 1 in
[1,∞), consider

a = χ0

(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1
)
.

First, we observe that Hpmφ(ζ0) = Hpm η̃(ζ0) > 0; but χ1

(
η̃+δ
εδ + 1

)
≡ 1

near ζ0, so

Hpma(ζ0) = −z−1δ−1Hpmφ(ζ0)χ′0(2z−1β) < 0

has the right sign at ζ0.
Next, we analyze the support of a: First of all, If ζ ∈ supp a, then

φ(ζ) 6 2βδ, η̃(ζ) > −δ − εδ > −2δ.

Since ω > 0, we get η̃ = φ− ω/ε2δ 6 φ 6 2βδ 6 2δ, thus ω = ε2δ(φ− η̃) 6
4ε2δ2, i.e.

(6.13) − δ − εδ 6 η̃ 6 2βδ, ω1/2 6 2εδ on supp a.
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In particular, we can make supp a to be arbitrarily close to ζ0 by choosing
δ > 0 small, hence there is δ0 > 0 small such that Hpm η̃ > c0 > 0 whenever
|η̃| 6 2δ0 and ω1/2 6 2δ0. The support of a becomes localized near ω = 0
by choosing ε > 0 small. The parameter β then allows one to localize supp a
near the segment η̃ ∈ [−δ; 0]. Moreover, we have

(6.14) − δ − εδ 6 η̃ 6 −δ, ω1/2 6 2εδ on supp a ∩ suppχ′1,

which is the region where we will assume a priori microlocal control on u.
Observe that by taking ε > 0 small, we can make this region arbitrarily
closely localized at η̃ = −δ, ω = 0.
Choose χ̃1 ∈ C∞(R), χ̃1 > 0, such that χ̃1 ≡ 1 on suppχ′1, and supp χ̃1 ⊂

[0, 1]. Since the coefficients of Hpm are continuous because of s > n/2 + 1,
we can choose a mollifier J as in Lemma 6.5, acting on functions f defined
on bT ∗Rn+ by (Jf)(z, ζ) = J(f(·, ζ))(z), such that

e = χ0

(
z−1

(
2β−φ

δ

))
(JHpm)

(
χ1

(
η̃+δ
εδ

+1
))

+χ̃1

(
η̃+δ
εδ

+1
)
,

f ′ = χ0

(
F−1

(
2β−φ

δ

))[
χ̃1

(
η̃+δ
εδ

+1
)

(6.15)

+ (JHpm−Hpm)
(
χ1

(
η̃+δ
εδ

+1
))]

,

hence e− f′ = χ0Hpmχ1, we have f′ > 0. Note that e ∈ C∞ has support as
indicated in (6.14), and f ′ ∈ Hs−1

b in the base variables.
In order to have (6.12), it remains to prove that the remaining term of

Hpma, namely χ1Hpmχ0, is non-positive; for this, it is sufficient to require
Hpmφ > c0/2 on supp a if δ < δ0. From the definition of φ, this would follow
provided

(6.16) |Hpmω| 6 c0ε2δ/2

on supp a. Now, since for s > n/2 + 2, Hpmσj is Lipschitz continuous and
vanishes at ζ0, we have

(6.17) |Hpmω| 6 2
2n−2∑
j=1
|σj ||Hpmσj | 6 Cω1/2

(
|η̃|+ ω1/2

)
,

hence (6.16) holds if 2Cεδ(2δ + 2εδ) 6 c0ε2δ/2, which is satisfied provided
16Cδ/c0 6 ε. Let us choose ε = 16Cδ/c0, with δ small enough such that
ε 6 1. For later use, let us note that then near η̃ = −δ, the ‘width’ of the
support of a is

(6.18) ω1/2 6
c0ε

2δ/2
C(ω1/2 + |η̃|)

. δ2,
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hence by (6.14), the region where we will assume a priori microlocal control
on u (i.e. supp e) has size ∼ δ2.
Now, let

b = (zδ)−1/2
√

(JHpm)φ− c0/4

×

√
χ′0

(
z−1

(
2β − φ

δ

))√
χ1

(
η̃ + δ

εδ
+ 1
)
,

f ′′ = (zδ)−1 ((Hpm − JHpm)φ+ c0/4)

× χ′0
(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1
)
,

where J is the same mollifier as used in (6.15); we assume it is close enough
to I so that |(Hpm − JHpm)φ| < c0/8, which implies (JHpm)φ − c0/4 >
c0/8 > 0 and f′′ > 0. Putting f = f ′ + f′′, which is Hs−1

b in the base
variables, we thus have achieved (6.12).

Step 1.2: Incorporating the correct symbolic order into the commutant.
Next, we have to make the commutant, a, a symbol of order 2σ− (m− 1),
so that the ‘principal symbol’ of i[P,A], i.e. Hpma, is of order 2σ, hence b
has order σ, which is what we need, since we want to prove Hσ

b regularity
of u at ζ0. Thus, define

ǎ = ρσ−(m−1)/2a1/2,

and let

(6.19) ϕt = (1 + tρ)−1

be a regularizer, ϕt ∈ S−1 for t > 0, which is uniformly bounded in S0

for t ∈ [0, 1] and satisfies ϕt → 1 in S` for ` > 0 as t → 0. We define the
regularized symbols to be ǎt = ϕtǎ and at = ϕ2

tρ
2σ−(m−1)a = ǎ2

t .
We compute Hpmϕt = −tϕ2

tHpmρ. Amending (6.12) by another term
which will be used to absorb certain terms later on, we aim to show that
we can choose bt, et and ft such that, in analogy to (6.12), for N > 0 fixed,
to be specified later,

Hpmat = ϕ2
tρ

2σ (Hpma +
(
(2σ −m+ 1)− 2tϕtρ

)
(ρ−1Hpmρ)a

)
= −b2t −N2ρm−1at + et − ft,

that is to say,

ϕ2
tρ

2σ (Hpma +
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1Hpmρ) +N2] a

)
= −b2t + et − ft.

(6.20)

TOME 66 (2016), FASCICULE 4



1342 Peter HINTZ

Here, note that, using the definition of ϕt, tρϕt is a uniformly bounded
family of symbols of order 0. To achieve (6.20), let us take

et = ϕ2
tρ

2σe
ft = f ′t + f ′′t , f ′t = ϕ2

tρ
2σf ′,

(6.21)

where e, f ′ are given by (6.15); we will define f ′′t momentarily. Using χ0(t) =
t2χ′0(t), we obtain

Hpma +
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1Hpmρ) +N2] a

= e− f ′ − (zδ)−1
(

Hpmφ

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1Hpmρ) +N2]z−1δ

(
2β − φ

δ

)2
)

× χ′0
(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1
)

Thus, if z is large enough, the term in the large parentheses is bounded
from below by 3c0/8 on supp a, since |2β− φ/δ| 6 4 there. (The last state-
ment follows from −2δ 6 η̃ 6 φ 6 2βδ 6 2δ and β 6 1.) Therefore, we can
put

bt = (zδ)−1/2ϕtρ
σ

(
(JHpm)φ(6.22)

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1(JHpm)ρ) +N2]

×z−1δ
(

2β − φ

δ

)2
− c0

8

)1/2

×

√
χ′0

(
z−1

(
2β − φ

δ

))√
χ1

(
η̃ + δ

εδ
+ 1
)
,

f ′′t = (zδ)−1ϕ2
tρ

2σ
(

(Hpm − JHpm)φ

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1(Hpm − JHpm)ρ)

]
×z−1δ

(
2β − φ

δ

)2
+ c0

8

)
× χ′0

(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1
)
,

with f ′′t > 0 if the mollifier J is close enough to I, and thus obtain (6.20).
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We now summarize this construction, slightly rephrased, retaining only
the important properties of the constructed symbols. Let us fix any Rie-
mannian metric on bS∗M near ζ0 and denote the metric ball around a
point p with radius r in this metric by B(p, r).
Proposition 6.8. — There exist δ0 > 0 and C0 > 0 such that for

0 < δ 6 δ0, the following holds: For any N > 0, there exist a sym-
bol ǎ ∈ Sσ−(m−1)/2 and uniformly bounded families of symbols ǎt =
ϕtǎ ∈ Sσ−(m−1)/2 (with ϕt defined by (6.19)), bt ∈ Sσ, et ∈ S2σ and
ft ∈ S2σ;∞Hs−1

b , ft > 0, supported in a coordinate neighborhood (inde-
pendent of δ) of ζ0 and supported away from ∂M , that satisfy the following
properties:

(1) ǎtHpm ǎt = −b2t −N2ρm−1ǎ2
t + et − ft.

(2) bt → b0 in Sσ+` for ` > 0, and b0 is elliptic at ζ0.
(3) The support of et is contained in B(ζ0 − δHpm(ζ0), C0δ

2).
(4) For t > 0, the symbols have lower order: ǎt ∈ Sσ−(m−1)/2−1, bt ∈

Sσ−1, et ∈ S2σ−2 and ft ∈ S2σ−2;∞Hs−1
b .

The commutant given by this proposition will now be used to deduce the
propagation of regularity in a direction which agrees with the Hamilton flow
to first order.

Step 2. Expanding the commutator; bounding error terms. — Let Ǎ ∈
Ψσ−(m−1)/2

b be a quantization of ǎ with WF′b(Ǎ) ⊂ supp ǎ, let Φt be a
quantization of ϕt, i.e. Φt ∈ Ψ0

b is a uniformly bounded family, Φt ∈ Ψ−1
b

for t > 0, and let Ǎt = ǍΦt. Moreover, let Bt ∈ Ψσ
b be a quantization of bt,

with uniform b-microsupport contained in a conic neighborhood of γ, such
that Bt ∈ Ψσ

b is uniformly bounded, and Bt ∈ Ψσ−1
b for t > 0. Similarly,

let Et ∈ Ψ2σ
b be a quantization of et with uniform b-microsupport disjoint

from WFσb(u) in the sense that

(6.23) ‖Etu‖Hσb is uniformly bounded for t > 0.

This is the requirement that u is in Hσ
b on a part of the backwards bichar-

acteristic from ζ0, more precisely in the ball specified in Proposition 6.8.
In a sense that we will make precise below, the principal symbol of the

commutator iǍ∗t [Pm, Ǎt] is given by ǎtHpm ǎt, which is what we described
in Proposition 6.8. We compute for t > 0, following the proof of [7, Theo-
rem 3.2]:

Re〈iǍ∗t [Pm, Ǎt]u, u〉 = Re
(
〈iPmǍtu, Ǎtu〉 − 〈iǍtPmu, Ǎtu〉

)
= 1

2 〈i(Pm − P
∗
m)Ǎtu, Ǎtu〉 − Re〈iǍtf, Ǎtu〉+ Re〈iǍtPm−1u, Ǎtu〉,(6.24)
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where 〈·, ·〉 denotes the sesquilinear pairing between spaces which are dual
to each other relative to L2

b. The adjoints here are taken with respect to the
b-density dx

x dy, and in the case where P acts on a vector bundle, we use the
smooth metric in the fibers of E for the adjoint. This computation needs
to be justified, namely we must check that all pairings are well-defined by
the a priori assumptions on u so that we can perform the integrations by
parts.
First, we observe that

Ǎ∗t ǍtPmu ∈ Ǎ∗t ǍtHs
b ·H

σ−m−1/2
b ⊂ H−σ+1/2

b ,

because of s > |σ − m − 1/2| and Ǎ∗t Ǎt ∈ Ψ2σ−m−1
b . Since (σ − 1/2) +

(−σ + 1/2) = 0 is non-negative, the pairing 〈Ǎ∗t ǍtPmu, u〉 is well-defined.
By the same token, the pairing 〈ǍtPmu, Ǎtu〉 is well-defined, hence we can
integrate by parts, justifying half of the first equality in (6.24). For the
second half of the first equality, we use Pm ∈ Hs

bΨm
b and(10) Corollary 3.10

to obtain

PmǍtu ∈ PmHm/2
b ⊂ H−m/2b ,

Ǎ∗tPmǍtu ∈ H
−σ+1/2
b ,

which by the same reasoning as above proves the first equality in (6.24).
For the second equality, we write Pm as a sum of terms of the form wQm
with w ∈ Hs

b, Qm ∈ Ψm
b , for which we have

(6.25) 〈Ǎtu,wQmǍtu〉 = 〈w̄Ǎtu,QmǍtu〉 = 〈Q∗mw̄Ǎtu, Ǎtu〉,

where the first equality follows from Ǎtu ∈ Hm/2
b and QmǍtu ∈ H−m/2b ,(11)

and for the second equality, one observes that the two pairings on the right
hand side in (6.25) are well-defined, and we can integrate by parts, i.e.
move Qm to the other side, taking its adjoint.
Now, since the principal symbol of Pm is real, we can apply Theorem 3.12

(3) with k = 1, k′ = 0 to obtain Pm−P ∗m ∈ Ψm−1
b ◦Ψ0;0Hs−1

b +Ψm−1;0Hs−1
b .

Therefore, Proposition 3.9 implies that Pm−P ∗m defines a continuous map
from H

(m−1)/2
b to H−(m−1)/2

b ,(12) thus

|〈(Pm − P ∗m)Ǎtu, Ǎtu〉| 6 C1‖Ǎtu‖2H(m−1)/2
b

with a constant C1 only depending on Pm.

(10) This requires s > m/2; recall that we are assuming m > 1.
(11) We need s > m/2 and can then use Corollary 3.10.
(12) Provided s− 1 > (m− 1)/2 and s− 1 > n/2 + (m− 1)/2.

ANNALES DE L’INSTITUT FOURIER



QUASILINEAR WAVE EQUATIONS 1345

Looking at the next term in (6.24), we estimate

|〈Ǎtf, Ǎtu〉| 6
1
4‖Ǎtf‖

2
H
−(m−1)/2
b

+ ‖Ǎtu‖2H(m−1)/2
b

6 C2 + ‖Ǎtu‖2H(m−1)/2
b

,

where we use that

Ǎtf ∈ Hσ−m+1−σ+(m−1)/2
b = H

−(m−1)/2
b

uniformly.
For the last term on the right hand side of (6.24), the well-definedness

is easily checked.(13) To bound it, we rewrite it as

〈ǍtPm−1u, Ǎtu〉 = 〈Pm−1Ǎtu, Ǎtu〉+ 〈[Ǎt, Pm−1]u, Ǎtu〉.

The first term on the right hand side is bounded by C3‖Ǎtu‖2
H

(m−1)/2
b

for

some constant C3 only depending on Pm−1; indeed, Pm−1 : H(m−1)/2
b →

H
−(m−1)/2
b is continuous.(14) For the second term, note that Pm−1Ǎt ∈

Hs−1
b Ψσ+(m−1)/2

b can be expanded to zeroth order, the first (and only)
term being pm−1ǎt and the remainder being R′1 ∈ Hs−1

b Ψσ+(m−1)/2−1
b . (For

notational convenience, we drop the explicit t-dependence here; inclusions
are understood to be statements about a t-dependent family of operators
being uniformly bounded in the respective space.) Next, we can expand
ǍtPm−1 to zeroth order by Theorem 3.12 (3) with k′ = 0 – again obtaining
pm−1ǎt as the first term – which(15) yields a remainder term R′′1 + R2,
where

R′′1 ∈ Ψσ+(m−1)/2−1;0Hs−2
b

R2 ∈ Ψσ−(m−1)/2−1
b ◦Ψm−1;0Hs−2

b .

We can then use Proposition 3.9 to conclude that

R1 := R′′1 −R′1 ∈ Ψσ+(m−1)/2−1;0Hs−2
b

is a uniformly bounded family of maps(16)

R1 : Hσ−1/2
b → H

−m/2+1
b .

which shows that 〈R1u, Ǎtu〉 is uniformly bounded. Moreover, we can apply
Proposition 3.9 and use the mapping properties of smooth b-ps.d.o.s to

(13) We need s− 1 > |σ−m+ 1/2| and can then use Corollary 3.10 to obtain Pm−1u ∈
H
σ−m+1/2
b .

(14) This requires s− 1 > (m− 1)/2 and s− 1 > n/2.
(15) Assuming σ − (m− 1)/2 > 1.
(16) The requirements are s− 2 > −m/2 + 1, s− 2 > n/2 + (m/2− 1)+.
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prove that R2u ∈ H−(m−1)/2
b is uniformly bounded.(17) We thus conclude

that
|〈[Ǎt, Pm−1]u, Ǎtu〉| 6 C4(N) + ‖Ǎtu‖2H(m−1)/2

b
,

where C4, while it depends on N in the sense that it depends on a semi-
norm of the N -dependent operator Ǎ constructed in Proposition 6.8, is
independent of t.
Plugging all these estimates into (6.24), we thus obtain

Re〈iǍ∗t [Pm, Ǎt]u, u〉 > −(C2 + C4(N))− (C1 + 1 + C3 + 1)‖Ǎtu‖2H(m−1)/2
b

,

where all constants are independent of t > 0, and C1, C2, C3 are in addition
independent of the real number N in Proposition 6.8. Choosing N2 >

C1 + C3 + 2, this implies that there is a constant C <∞ such that for all
t > 0, we have

(6.26) Re
〈(
iǍ∗t [Pm, Ǎt] +N2(ΛǍt)∗(ΛǍt)

)
u, u

〉
> −C,

where Λ := Λ(m−1)/2. Therefore,
(6.27)
Re
〈(
iǍ∗t [Pm, Ǎt] +B∗tBt +N2(ΛǍt)∗(ΛǍt)− Et

)
u, u

〉
> −C+‖Btu‖2L2

b
.

Here, we use that 〈Etu, u〉 is uniformly bounded by (6.23).

Step 3. Using the symbolic commutator calculation. — The next step
is to exploit the commutator relation in Proposition 6.8 in order to find
a t-independent upper bound for the left hand side of (6.27). The key is
that(18) Theorem 3.12 (3) gives

i[Pm, Ǎt] = (Hpm ǎt)(z, bD) + R̃1 + R̃2

with uniformly bounded families of operators

R̃1 ∈ Ψσ+(m−1)/2−1;0Hs−2
b

R̃2 ∈ Ψσ−(m−1)/2−2
b ◦Ψm;0Hs−2

b .

Notice that Hpm ǎt ∈ Hs−1
b Sσ+(m−1)/2 uniformly. If we applied Theo-

rem 3.12 (3) directly to the composition Ǎ∗t (Hpm ǎt)(z, bD), the regularity
of the remainder operator, say R, obtained by applying Theorem 3.12 (3),
would be too weak in the sense that we could not bound 〈Ru, u〉. To get
around this difficulty, choose

J+ ∈ Ψσ−(m−1)/2−1
b , J− ∈ Ψ−σ+(m−1)/2+1

b

(17) Indeed, we have u ∈ H
σ−1/2
b ⊂ Hσ−1

b , and Ψm−1;0Hs−2
b : Hσ−1

b → Hσ−m
b is

continuous if s− 2 > σ −m, s− 2 > n/2 + (m− σ)+.
(18) Applicable with k = 2, k′ = 0 if σ − (m− 1)/2 > 2.
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with real principal symbols j+, j− such that

(6.28) J+J− = I + R̃, R̃ ∈ Ψ−∞b .

Observe that J−Ǎ∗t is uniformly bounded in Ψ1
b. Then by Theorem 3.12

(3),

iJ−Ǎ∗t [Pm, Ǎt] = (j−ǎtHpm ǎt)(z, bD) +R1 +R2 +R3 +R4,

where

R1 = J−Ǎ∗t R̃1 ∈ Ψ1
b ◦Ψσ+(m−1)/2−1;0Hs−2

b

R2 = J−Ǎ∗t R̃2 ∈ Ψσ−(m−1)/2−1
b ◦Ψm;0Hs−2

b

R3 ∈ Ψσ+(m−1)/2;0
b Hs−2

b

R4 ∈ Ψ0
b ◦Ψσ+(m−1)/2;0Hs−2

b .

(6.29)

Applying Proposition 3.9,(19) we conclude that Rj (1 6 j 6 4) is a uni-
formly bounded family of operators

H
σ−1/2
b → H

−m/2
b ,

thus, since (J+)∗ ∈ H
m/2
b , the pairings 〈Rju, (J+)∗u〉 remain uniformly

bounded.
Hence, Proposition 6.8 implies

J+
(
iJ−Ǎ∗t [Pm, Ǎt] + J−B∗tBt + J−N2(ΛǍt)∗(ΛǍt)− J−Et

)
= J+

(
[j−(ǎtHpm ǎt + b2t +N2ρm−1ǎ2

t − et)](z, bD) +R+G
)

= J+((−j−ft)(z, bD) +R+G
)
,(6.30)

where R = R1 + R2 + R3 + R4 and G ∈ Ψσ+(m−1)/2
b ; G appears because

the principal symbols of the smooth operators on both sides are equal. We
already proved that 〈J+Ru, u〉 is uniformly bounded; also, 〈J+Gu, u〉 is
uniformly bounded, since J+G ∈ Ψ2σ−1

b and u ∈ Hσ−1/2
b .

It remains to prove a uniform lower bound on(20)

Re〈J+(j−ft)(z, bD)u, u〉 = Re〈(j−ft)(z, bD)u, (J+)∗u〉.

(19) The conditions s − 2 > −m/2 + 1 and s − 2 > n/2 + m/2 are sufficient to treat
R1, R3 and R4. For R2, we need s− 2 > σ−m− 1/2 and s− 2 > n/2 + (m+ 1/2−σ)+.
(20)To justify the integration by parts here, note that j−ft ∈ Sσ+(m−1)/2−1;∞Hs−1

b
for t > 0, thus (j−ft)(z, bD)u ∈ H

−m/2+1
b provided s − 1 > −m/2 + 1, s − 1 >

n/2 + (m/2− 1)+, which follows from the conditions in Footnote 19.
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In order to be able to apply the sharp Gårding inequality, Proposition 6.1,
we need to rewrite this. Since j+ is bounded away from 0, we can write

(j−ft)(z, bD) =
[
j−ft
j+

]
(z, bD) ◦ (J+)∗ +R, R ∈ Ψσ+(m−1)/2;0Hs−1

b

by Theorem 3.12 (2b), since j−ft/j+ ∈ Sm+1;∞Hs−1
b . Now 〈Ru, (J+)∗u〉 is

uniformly bounded, since (J+)∗u ∈ Hm/2
b and Ru ∈ H−m/2b are uniformly

bounded.(21) We can now apply the sharp Gårding inequality to deduce
that

(6.31) Re
〈[

j−ft
j+

]
(z, bD)(J+)∗u, (J+)∗u

〉
> −C‖(J+)∗u‖2

H
m/2
b
> −C,

where the constant C only depends on the uniform S2σ;∞Hs−1
b -bounds on

ft and the Hσ−1/2
b -norm of u.(22)

Putting (6.27), (6.30) and (6.31) together by inserting I = J+J−− R̃ in
front of the large parenthesis in (6.27) and observing that the error term

Re
〈
R̃
(
iǍ∗t [Pm, Ǎt] +B∗tBt +N2(ΛǍt)∗(ΛǍt)− Et

)
u, u

〉
is uniformly bounded,(23) we deduce that ‖Btu‖L2

b
is uniformly bounded for

t > 0. Therefore, a subsequence Btku, tk → 0, converges weakly to v ∈ L2
b

as k → ∞. On the other hand, Btku → Bu in H−∞b ; hence Bu = v ∈ L2
b,

which implies that u ∈ Hσ
b microlocally on the elliptic set of B.

Step 4. Removing the restriction on the order m. — To eliminate the
assumption that m > 1, notice that the above propagation estimate for a
general m-th order operator can be deduced from the m0-th order result
for any m0 > 1, simply by considering

PΛ+(Λ−u) = f + PRu,

where Λ+ ∈ Ψ−(m−m0)
b is elliptic with parametrix Λ− ∈ Ψm−m0

b , and
Λ+Λ− = I+R, R ∈ Ψ−∞b . If we pass from P to PΛ+, which means passing
from m to m0, we correspondingly have to pass from σ to σ0 = σ−m+m0
in equation (6.11); in other words, the difference σ−m = σ0−m0 remains
the same.

(21)For Ru, we need s−1 > n/2+m/2, which follows from the conditions in Footnote 19.
(22) This requires s− 1 > 2−m/2 and s− 1 > n/2 + 2 +m/2.
(23) Indeed, Ǎ∗t ǍtPmu ∈ H

−σ−3/2
b is uniformly bounded because of s > |σ −m− 1/2|;

and Ǎtu ∈ Hm/2−1
b is uniformly bounded, hence so is PmǍtu ∈ H−m/2−1

b in view of
s > m/2+1, which follows from the condition in Footnote 14, and therefore Ǎ∗tPmǍtu ∈
H
−σ−3/2
b is uniformly bounded.
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Step 5. Collecting the regularity requirements. — Thus, let us collect
the conditions on s and s̃ = σ − m + 1 as given in the footnotes in the
course of the argument: All conditions are satisfied provided

3/2− s 6 s̃ 6 s− 1, s̃ > (5−m0)/2,(6.32)
s > n/2 + 2 + (3/2− s̃)+, s > n/2 + 3 +m0/2(6.33)

for some m0 > 1. The optimal choice for m0 is thus m0 = max(1, 5− 2s̃) =
1 + 2(2− s̃)+; plugging this in, we obtain the conditions in the statement
of Theorem 6.6:

s > n/2 + 7/2 + (2− s̃)+, s̃ 6 s− 1.

Thus, we have proved a propagation result which propagates estimates in
a direction which is ‘correct to first order’. To obtain the final form of the
propagation result, we use an argument by Melrose and Sjöstrand [29, 30],
in the form given in [21, Lemma 8.1]. This finishes the proof of the first
part of Theorem 6.6.

Remark 6.9. — For second order real principal type operators of the
form considered above, with the highest order derivative having Hs

b coef-
ficients, the maximal regularity one can prove for a solution u with right
hand side f ∈ Hs−1

b is H s̃+1
b with s̃ being at most s− 1, i.e. one can prove

u ∈ Hs
b, which is exactly what we will need in our quest to solve quasilinear

wave equations.

6.3.2. Propagation near the boundary

We now aim to prove the corresponding propagation result (near and)
within the boundary ∂M : Thus, let P = P0+P̃ , where P̃ = P̃m+P̃m−1+R̃,
with P0 ∈ Ψm

b and P̃m ∈ Hs,α
b Ψm

b having real homogeneous principal
symbols, P̃m−1 ∈ Hs−1,α

b Ψm−1
b and R̃ ∈ Ψm−2;0

b Hs−1,α
b as before, and

let us assume that we are given a solution

u ∈ Hσ−1/2
b

to the equation
Pu = f ∈ Hσ−m+1

b ,

where σ = s̃+m− 1. In fact, since

R̃ : Hσ−1/2
b ⊂ Hσ−1

b → Hσ−m+1
b ,

we may absorb the term R̃u into the right hand side; thus, we can assume
R̃ = 0, hence P̃ = P̃m + P̃m−1.
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Moreover, let γ be a null-bicharacteristic of p = p0 + p̃m; we assume Hp is
never radial on γ. Since Hp̃m = 0 at bT ∗∂MM , this in particular implies that
Hp0 is not radial on γ∩ bT ∗∂MM , and the positivity of the principal symbol
ǎtHpǎt of the commutator there comes from the positivity of ǎtHp0 ǎt.
The proof of the interior propagation, with small adaptations, carries

over to the new setting. We indicate the changes: First, in the notation of
§6.3.1, Hpσj now only is Hölder continuous with exponent α, thus (6.17)
becomes

|Hpmω| 6 Cω1/2
(
|η̃|+ ω1/2

)α
.

Hence, for (6.16) to hold, we need

Cω1/2(|η̃|+ ω1/2)α 6 c0ε2δ/2,

which holds if 21+2αCδ1+α 6 c0εδ/2; let us thus choose ε = 41+αCδα/c0;
in particular ε 6 1 for δ small enough. Thus, the size of the a priori control
region near η̃ = −δ, cf. (6.18), becomes

ω1/2 6
c0ε

2δ

2C(|η̃|+ ω1/2)α
= Cαδ

1+α,

which is small enough for the argument in [21, Lemma 8.1] to work. Further,
defining the commutant a as before, we replace the a priori control terms
e, f ′ in (6.15) by

e = χ0(Hp0 + JHp̃m)χ1 + χ̃1,

f ′ = χ0(JHp̃m − Hp̃m)χ1 + χ̃1,
(6.34)

where we choose the mollifier J to be so close to I that f′ > 0; here, we use
that the first summand in the definition of f ′ is an element of Hs−1

b in the
base variables, hence for s > n/2+1 in particular continuous and vanishing
at the boundary ∂M , and can therefore be dominated by χ̃1. We then let
et and f ′t be defined as in (6.21) with the above e and f ′. We change the
terms bt and f ′′t in (6.22) in a similar way: We take

bt = (zδ)−1/2ϕtρ
σ

(
(Hp0 + JHp̃m)φ

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1(JHp̃m + Hp0)ρ) +N2]

×z−1δ
(

2β − φ

δ

)2
− c0

8

)1/2

×

√
χ′0

(
z−1

(
2β − φ

δ

))√
χ1

(
η̃ + δ

εδ
+ 1
)
,
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f ′′t = (zδ)−1ϕ2
tρ

2σ
(

(Hp̃m − JHp̃m)φ

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1(Hp̃m − JHp̃m)ρ)

]
×z−1δ

(
2β − φ

δ

)2
+ c0

8

)
× χ′0

(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1
)
.

As before, we can control the term 〈Etu, u〉 in (6.27) by the a priori assump-
tions on u. The new feature here is that f ′t , f ′′t > 0 are not just symbols
with coefficients having regularity Hs−1

b , but there are additional smooth
terms involving χ̃1 and c0/8. Thus, we need to appeal to the version of the
sharp Gårding inequality given in Corollary 6.3 to obtain a uniform lower
bound on the term 〈J+(j−ft)(z, bD)u, u〉 in (6.30).
Since the computation of compositions and commutators in the proof

of the previous section for P0 is standard as P0 is a smooth b-ps.d.o, and
since P̃m and P̃m−1 lie in the same space as the operators called Pm and
Pm−1 there, all arguments now go through after straightforward changes
that take care of the smooth b-ps.d.o. P0.

This finishes the proof of Theorem 6.6.

6.3.3. Complex absorption

We next aim to prove Theorem 6.7, namely we add a complex absorbing
potential Q = q(z, bD) ∈ Ψm

b with Q = Q∗ and prove the propagation of
Hσ

b regularity of solutions u ∈ Hσ−1/2
b to the equation

(P − iQ)u = f ∈ Hσ−m+1
b ,

where γ is a null-bicharacteristic of P , in a direction which depends on the
sign of q near γ. Namely, we can propagate Hσ

b regularity forward along
the flow of the Hamilton vector field Hp if q > 0 near γ, and backward
along the flow if q 6 0 near γ.

Let Γ be an open neighborhood of γ. It suffices to consider the case that
q > 0 in Γ. Recall that the proofs of the real principal type propagation re-
sults given above only show the propagation in the forward direction along
the flow; the propagation in the backward direction is proved completely
analogously (or simply by considering forward propagation for −P ), and
in the presence of complex absorption leads to the reversal in the condition
on the sign of q described above. We thus focus on the forward propagation
estimate: Here, the only step that we have to change in the real principal
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type propagation proofs is the right hand side of equation (6.24), where we
have an additional term in view of Pmu = f − Pm−1u+ iQu, namely

−Re〈iǍt iQu, Ǎtu〉 = Re〈ǍtQu, Ǎtu〉

= Re〈QǍtu, Ǎtu〉+ Re〈Ǎ∗t [Ǎt, Q]u, u〉.

The first term on the right is bounded from below by −C5‖Ǎtu‖H(m−1)/2
b

and will be absorbed as in (6.26), and the second term is bounded by the
a priori microlocal Hσ−1/2

b regularity of u in Γ, since

Re〈Ǎ∗t [Ǎt, Q]u, u〉 = 1
2 〈Q̃tu, u〉

with

Q̃t = Ǎ∗t [Ǎt, Q] + [Q, Ǎ∗t ]Ǎt
= (Ǎ∗t − Ǎt)[Ǎt, Q] + [Ǎt, [Ǎt, Q]] + [Q, Ǎ∗t − Ǎt]Ǎt

uniformly bounded in Ψ2σ−1
b in view of the principal symbol of Ǎt being

real and the presence of double commutators.
This finishes the proof of Theorem 6.7.

6.4. Propagation near radial points

We will only consider the class of radial points which will be relevant in
our applications; see §8, where an example of an operator with this radial
point structure is presented. We remark that the conditions at the ‘radial
set’ L below do not entail that Hp is indeed radial there, i.e. a multiple of
the generator of dilations in the fibers of bT ∗M \ o, but this does hold in
the application on exact static de Sitter space, which is why we kept the
terminology. (In more general applications, the setup below thus really gives
the propagation at ‘generalized radial sets.’) The point is that the standard
propagation of singularities results proved in the previous sections do not
give any information at (generalized) radial sets: In the case of radial sets,
this is clear since the Hamilton flow at a radial point stays within the
fiber of the b-cotangent bundle over that point, and more generally in the
case of generalized radial sets L considered here, one cannot propagate any
regularity into (or out of) L in finite time using standard propagation.
The setting is very similar to the one in [19, §2]: There, the authors con-

sider an operator P ∈ Ψm
b (M ;E) with real, scalar, homogeneous principal

symbol p on a compact manifoldM with boundary Y = ∂M and boundary
defining function x, where the assumptions on p are as follows:
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(1) At p = 0, dp 6= 0, and at bS∗YM ∩ p−1(0), dp and dx are linearly
independent; hence Σ = p−1(0) ⊂ bS∗M is a smooth codimension
1 submanifold transversal to bS∗YM .

(2) L = L+∪L−, where L± are smooth disjoint submanifolds of bS∗YM ,
given by L± = L± ∩ bS∗YM , where L± are smooth disjoint sub-
manifolds of Σ transversal to bS∗YM , defined locally near bS∗YM .
Moreover, the rescaled Hamilton vector field Hp = ρ1−mHp (which
is homogeneous of degree 0) is tangent to L±, where, as before,
ρ = 〈ζ〉, and Hp is the Hamilton vector field of p.

(3) There are functions β0, β̃ ∈ C∞(L±), β0, β̃ > 0, such that

(6.35) ρHpρ−1|L± = ∓β0, −x−1Hpx|L± = ∓β̃β0.

(4) For a homogeneous degree 0 quadratic defining function ρ0 of L =
L+ ∪ L− within Σ,

(6.36) ∓ Hpρ0 − β1ρ0 > 0 modulo terms that vanish cubically at L±,

where β1 ∈ C∞(Σ), β1 > 0 at L±.
(5) The imaginary part of the subprincipal symbol is homogeneous, and

equals

(6.37) σm−1
b

(
1
2i (P − P

∗)
)

= ±β̂β0ρ
m−1 at L±,

where β̂ ∈ C∞(L±;π∗ End(E)), π : L± → M being the projection
to the base; note that β̂ is self-adjoint at every point.

These conditions imply that L± is a sink, resp. source, for the bicharacter-
istic flow within bS∗YM , in the sense that nearby null-bicharacteristics tend
to L± in the forward, resp. backward, direction; but at L± there is also
an unstable, resp. stable, manifold, namely L±. In general applications, L+
(and likewise L−) will be the union of one or several connected components
of the (generalized) radial set; on static de Sitter space, L+ and L− will be
the two halves of the conormal bundle of the cosmological horizon within
future infinity; see Figure 7.2.
In the non-smooth setting, we will make the exact same assumptions on

the ‘smooth part’ of the operator; the guiding principle is that non-smooth
operators with coefficients in Hs,α

b , α > 0, s > n/2 + 1, have symbols and
associated Hamilton vector fields that vanish at the boundary, thus would
not affect the above conditions anyway, with the exception of condition (4),
which however is only used close to, but away from L±, and the positivity of
∓Hpρ0 there is preserved when one adds small non-smooth terms inHs,α

b to
p. In order to be able to give a concise expression for the threshold regularity
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(determining whether one can propagate into or out of the boundary), let
us define for a function b ∈ C∞(L±, π∗ End(E)) with values in self-adjoint
endomorphisms of the fiber,

inf
L±

b := sup{λ ∈ R : b > λ I everywhere on L±},

sup
L±

b := inf{λ ∈ R : b 6 λ I everywhere on L±}.

We then have the following theorem:

Theorem 6.10. — Letm, r, s, s̃ ∈ R, α > 0. Let P = P0+P̃ , where P0 ∈
Ψm

b (Rn+;E) has a real, scalar, homogeneous principal symbol p0, further
P̃ = P̃m + P̃m−1 + R̃ with P̃m ∈ Hs,α

b Ψm
b (Rn+;E) having a real, scalar,

homogeneous principal symbol p̃m, moreover P̃m−1 ∈ Hs−1,α
b Ψm−1

b (Rn+;E)
and R̃ ∈ Ψm−2

b (Rn+;E) + Ψm−2;0
b Hs−1,α

b (Rn+;E). Suppose that the above
conditions (1)-(5) hold for p0 and P0 in place of p and P . Finally, assume
that s and s̃ satisfy

(6.38) s̃ 6 s− 1, s > n/2 + 7/2 + (2− s̃)+.

Suppose u ∈ H s̃+m−3/2,r
b (Rn+;E) is such that Pu ∈ H s̃,r

b (Rn+;E).
(1) If s̃ + (m − 1)/2 − 1 + infL±(β̂ − rβ̃) > 0, let us assume that in a

neighborhood of L±, L± ∩ {x > 0} is disjoint from WFs̃+m−1,r
b (u).

(2) If s̃+(m−1)/2+supL±(β̂−rβ̃) < 0, let us assume that a punctured
neighborhood of L±, with L± removed, in Σ ∩ bS∗

∂Rn+
Rn+ is disjoint

from WFs̃+m−1,r
b (u).

Then in both cases, L± is disjoint from WFs̃+m−1,r
b (u).

Adjoints are again taken with respect to the b-density dx
x dy and the

smooth metric on the vector bundle E. We remark that condition (6.37)
is insensitive to changes both of the b-density and the metric on E by the
radiality of Hp0 at L±; see [40, Footnote 19] for details.

Remark 6.11. — Since WFs̃+m−1,r
b (u) is closed, we in fact have the

conclusion that a neighborhood of L± is disjoint from WFs̃+m−1,r
b (u). As

in the real principal type setting (see equation (6.8) in particular), one can
also rewrite the wavefront set statement as an estimate on the L2

b norm of
an operator of order s̃+m−1, elliptic at L±, applied to u. In particular, we
will see that it suffices to have only microlocal H s̃,r

b membership of Pu near
the part of the radial set that we propagate to/from, and local membership
in H s̃−1

b , which comes from a use of elliptic regularity (Theorem(5.1) in our
argument.
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Moreover, as the proof will show, the theorem also holds for operators
P which are perturbations of those for which it directly applies: Indeed,
even though the dynamical assumptions (1)-(4) are (probably) not stable
under perturbations, the estimates derived from these are. Here, perturba-
tions are to be understood in the sense that P0 may be perturbed within
Ψm

b , and P̃m, P̃m−1 and R̃ may be changed arbitrarily, with the estimate
corresponding to the wavefront set statement of the theorem being locally
uniform.

The proof is an adaptation of the proof of [19, Proposition 2.1], see
also [40, Propositions 2.10 and 2.11] for a related result, to our non-smooth
setting. Before giving the full proof, we briefly recall the commutator proof
in the smooth setting, for the weight r = 0, and under the assumption P =
P ∗ ∈ Ψm

b (Rn+;E), ignoring issues of regularization: Putting σ = s̃+m− 1
and p = ρ−mp, where p is the principal symbol of P , we consider the
commutant a = ρσ−(m−1)/2ψ(ρ0)ψ1(x)ψ0(p), where ψ,ψ0, ψ1 ∈ C∞c (R) are
identically 1 and have non-positive derivative on [0,∞). Since the Hamilton
vector field Hp of is radial at L± (or, more generally, tangent to the gener-
alized radial set L±), the positivity in the commutator calculation comes
from the weight: Concretely, working near L+,

aHpa = ρ2σψψ0ψ1

(
β0(σ − (m− 1)/2)ψψ0ψ1

+ (x−1Hpx)xψ′1ψψ0 + (Hpρ0)ψ′ψ0ψ1 + (Hpp)ψ′0ψψ1

)
.

The first term is the main term giving ‘positivity’ at L±. Let us only treat
the case σ− (m−1)/2 > 0, then the main term is positive at L+ by (6.35),
as is the third term by (6.36), while the second term is negative; it is on
its support that we need to make a priori regularity assumption. (The last
term is supported on the elliptic set of P and will therefore be controlled
by elliptic regularity.) We then let A be a quantization of a and obtain
〈iA∗[P,A]u, u〉 = 〈(B∗1B1 − B∗2B2 + B∗3B3)u, u〉 (plus lower order terms
and terms controlled by Pu using elliptic regularity), with B1 ∈ Ψσ

b elliptic
at L+; therefore, dropping the term involving B3,

‖B1u‖2L2
b
6 ‖B2u‖L2

b
+ Re〈iA∗[P,A]u, u〉.

Upon expanding the commutator, integration by parts (this is where β̂
from (6.37) comes into play if P is not formally self-adjoint) and applying
Cauchy-Schwarz, absorbing terms involving Au into the left hand side, we
can therefore control u in Hσ

b microlocally at L+ provided we have Hσ
b
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control on u on the support of ψ′1(x)ψ(ρ0)ψ0(p) and Hσ−m+1
b control on

f = Pu.

Proof of Theorem 6.10. We again drop the bundle E from the notation.
Since R̃u ∈ H s̃

b by the a priori regularity on u, we can absorb R̃u into

f ≡ Pu

and thus assume R̃ = 0.

Step 1: Symbolic construction of the commutant. — Let us assume

m > 1, r = 0

for now; these conditions will be eliminated at the end of the proof.
Define the regularizer ϕt(ρ) = (1 + tρ)−1 for t > 0 as in the proof

of Theorem 6.6, put p0 = ρ−mp0 and σ = s̃ + m − 1, and consider the
commutant

at = ϕt(ρ)ψ(ρ0)ψ0(p0)ψ1(x)ρσ−(m−1)/2,

where ψ,ψ0, ψ1 ∈ C∞c (R) are equal to 1 near 0 and have derivatives which
are 6 0 on [0,∞); we will be more specific about the supports of ψ,ψ0, ψ1
below. Let us also assume that

√
−ψψ′ and

√
−ψ1ψ′1 are smooth in a neigh-

borhood of [0,∞). As usual, we put Hp̃m = ρ1−mHp̃m . We then compute,
using Hp̃mϕt = −tϕ2

tHp̃mρ:

atHp̃mat = ϕ2
tρ

2σψψ0ψ1

(
(σ − (m− 1)/2− tρϕt)(ρ−1Hp̃mρ)ψψ0ψ1

+ (x−1Hp̃mx)xψψ0ψ
′
1 + (Hp̃mρ0)ψ′ψ0ψ1 + Hp̃m(p0)ψψ′0ψ1

)
,

and to compute atHp0at, we can use (6.35) to simplify the resulting ex-
pression.
To motivate the next step, recall that the objective is to obtain an esti-

mate similar to (6.26); however, since in the present situation, the weight
ρσ−(m−1)/2 can only give a limited amount of positivity at L±, we need
to absorb error terms, in particular the ones involving P − P ∗, into the
commutator atHpmat, where pm = p0 + p̃m is the principal symbol of P
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and also of Pm := P0 + P̃m. Thus, consider

atHpmat ± ρm−1a2
tβ0β̂ = ±ϕ2

tρ
2σψψ0ψ1

×
([
β0(σ − (m− 1)/2− tρϕt + β̂)

± (σ − (m− 1)/2− tρϕt)(ρ−1Hp̃mρ)
]
ψψ0ψ1

+ (β̃β0 ± x−1Hp̃mx)xψψ0ψ
′
1 ± (Hp0ρ0 + Hp̃mρ0)ψ′ψ0ψ1

+ (−mβ0p0 ± Hp̃mp0)ψψ′0ψ1

)
.

Recall that tρϕt is a bounded family of symbols in S0, and we in fact have
|tρϕt| 6 1 for all t. We now proceed to prove the first case of the theorem.
Let us make the following assumptions:
• On supp(ψ ◦ ρ0) ∩ supp(ψ0 ◦ p0) ∩ supp(ψ1 ◦ x):

β0(σ − (m− 1)/2− 1 + β̂) > c0 > 0(6.39)

|(σ − (m− 1)/2− tρϕt)(ρ−1Hp̃mρ)| 6 c0/4 for all t > 0.

The first condition is satisfied at L± by assumption, and the second
condition is satisfied close to Y = {x = 0}, since ρ−1Hp̃mρ = o(1) as
x→ 0 by Riemann-Lebesgue.

• On supp d(ψ1 ◦ x) ∩ supp(ψ ◦ ρ0) ∩ supp(ψ0 ◦ p0):

β̃β0 > c1 > 0, |x−1Hp̃mx| 6 c1/2.

The second condition is satisfied close to Y , since x−1Hp̃mx = o(1) as
x→ 0.

• On supp d(ψ ◦ ρ0) ∩ supp(ψ1 ◦ x) ∩ supp(ψ0 ◦ p0):

(6.40) ∓ Hp0ρ0 >
β1

2 ρ0 > c2 > 0, |Hp̃mρ0| 6 c2/2.

• On supp d(ψ0 ◦ p0) ∩ supp(ψ ◦ ρ0) ∩ supp(ψ1 ◦ x):

(6.41) |ρ−mpm| > c3 > 0.

This can be arranged as follows: First, note that we can ensure

(6.42) |p0| > 2c3

there; then, since |ρ−mp̃m| = o(1) as x → 0, shrinking the support of
ψ1 if necessary guarantees (6.41).

We can ensure that all these assumptions are satisfied by first choosing ψ1,
localizing near bS∗YM , then ψ, localizing near L± within the characteristic
set p−1

0 (0) of P0, such that the inequalities in (6.39) and (6.40) are strict on
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p−1
0 (0), then choosing ψ0 (localizing near p−1

0 (0)) such that strict inequal-
ities hold in (6.39), (6.40) and (6.42), and finally shrinking the support of
ψ1, if necessary, such that all inequalities hold.
We can then write

(6.43)
atHpmat ± ρm−1a2

tβ0β̂ = ±
(c0

8 ρ
m−1a2

t + b21,t + b22,t − b23,t + ft + gt

)
,

where, with a mollifier J as in Lemma 6.5,

b1,t = ϕtρ
σψψ0ψ1

[
β0(σ − (m− 1)/2− tρϕt + β̂)

± (σ − (m− 1)/2− tρϕt)(ρ−1JHp̃mρ)− c0
2

]1/2
,

b2,t = ϕtρ
σψ0ψ1

√
−ψψ′

[
∓ (Hp0ρ0 + JHp̃mρ0)− c2

4

]1/2
,

b3,t = ϕtρ
σψψ0

√
−ψ1ψ′1

[(
β̃β0 ± x−1JHp̃mx+ c1

4

)
x
]1/2

,

gt = ϕ2
tρ

2σψ2ψ0ψ
′
0ψ

2
1(−mβ0p0 ± Hp̃mp0),

and ft = f1,t + f2,t + f3,t with

f1,t = ϕ2
tρ

2σψ2ψ2
0ψ

2
1

×
[
±(σ − (m− 1)/2− tρϕt)

(
ρ−1(Hp̃m − JHp̃m)ρ

)
+ 3c0

8

]
,

f2,t = ϕ2
tρ

2σψψ′ψ2
0ψ

2
1

(
±
(
Hp̃m − JHp̃m

)
ρ0 −

c2
4

)
,

f3,t = ϕ2
tρ

2σψ2ψ2
0ψ1ψ

′
1

(
±x−1(Hp̃m − JHp̃m

)
x− c1

4

)
x.

In particular, b1,t, b2,t ∈ Sσ, b3,t ∈ x1/2Sσ, ft ∈ S2σ;∞Hs−1
b + S2σ, gt ∈

Hs−1
b S2σ+S2σ uniformly, with the symbol orders one lower if t > 0 for bj,t,

j = 1, 2, 3, and two lower for ft, gt. The term b21,t will give rise to an operator
which is elliptic at L±. The term b22,t (which has the same, ‘advantageous,’
sign as b1,t) can be discarded, and the term −b23,t, with a ‘disadvantageous’
sign, will be bounded using the a priori regularity assumptions on u. An
important point here is that the non-smooth symbol ft is non-negative if
we choose the mollifier J to be close enough to I; in fact, we then have
fj,t > 0 for j = 1, 2, 3. Lastly, we will be able to estimate the contribution
of the term gt using elliptic regularity, noting that its support is disjoint
from the characteristic set p−1

m (0) of P .

Step 2. Expanding the commutator; bounding error terms. — Let At ∈
Ψσ−(m−1)/2

b and B1,t, B2,t, B3,t ∈ Ψσ
b denote quantizations with uniform

b-microsupport contained in the support of the respective full symbols
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at, b1,t, b2,t and b3,t. Then we compute as in the proof of real principal
type propagation (see equation (6.24) there):

Re〈iA∗t [Pm, At]u, u〉 = −
〈

1
2i (Pm − P

∗
m)Atu,Atu

〉
− Re〈iAtf,Atu〉+ Re〈iAtP̃m−1u,Atu〉.

We split the first term on the right hand side into two pieces corresponding
to the decomposition Pm = P0 + P̃m. The piece involving P0 will be dealt
with later. For the other piece, note that P̃m is a sum of terms of the form
ταwQm, where w ∈ Hs

b is real-valued and Qm = qm(z, bD) ∈ Ψm
b has a

real principal symbol. Now,

ταwQm − (ταwQm)∗

= ταw(Qm −Q∗m) + τα(wQ∗m −Q∗mw) + τα(Q∗m − τ−αQ∗mτα)w,

thus, using Theorem 3.12 (3) with k = 1, k′ = 0 (applicable because we are
assuming m > 1) to compute Q∗mw and with k = 0, k′ = 0 to compute the
last term, we get

i(P̃m − P̃ ∗m) = R1 +R2 +R3,

where

R1 ∈ Hs−1,α
b Ψm−1

b , R2 ∈ Ψm−1
b ◦Ψ0;0Hs−1,α

b , R3 ∈ Ψm−1;0Hs−1,α
b .

Let χ ∈ C∞c (R+), χ ≡ 1 near 0. Writing R1 as the sum of terms of the form
w′Q′, where w′ ∈ Hs−1,α

b and Q′ ∈ Ψm−1
b , we have for ε′ > 0, which we

can choose to be as small as we like provided we shrink the support of the
Schwartz kernel of At:

〈w′(z)Q′Atu,Atu〉 = 〈χ(x/ε′)w′(z)Q′Atu,Atu〉;

by Lemma 6.4, this can be bounded by cε′‖Atu‖2
H

(m−1)/2
b

, where cε′ → 0

as ε′ → 0.(24) In a similar manner, we can treat the terms involving R2
and R3. Hence, under the assumption that the Schwartz kernel of At is
localized sharply enough near ∂M × ∂M , we have

|〈(P̃m − P̃ ∗m)Atu,Atu〉| 6 Cδ + δ‖Atu‖2H(m−1)/2
b

for an arbitrarily small, but fixed δ > 0.
Next, for δ > 0, we estimate

|〈Atf,Atu〉| 6 Cδ + δ‖Atu‖2H(m−1)/2
b

,

(24) This argument requires that elements of Hs−1
b are multipliers on H(m−1)/2

b , which
is the case if s− 1 > (m− 1)/2.
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using that ‖Atf‖H−(m−1)/2
b

is uniformly bounded.

Finally, we can bound the term 〈AtP̃m−1u,Atu〉 as in the proof of The-
orem 6.6, thus obtaining

|〈AtP̃m−1u,Atu〉| 6 Cδ + δ‖Atu‖2H(m−1)/2
b

.

Therefore, writing Q := 1
2i (P0 − P ∗0 ) ∈ Ψm−1

b , we get

±Re〈(iA∗t [Pm, At] +A∗tQAt)u, u〉 6 Cδ + δ‖Atu‖2H(m−1)/2
b

Now, using that |〈B∗t,3Bt,3u, u〉| = ‖Bt,3u‖2L2
b
is uniformly bounded because

of the assumed a priori control of u in a neighborhood of L± in L±∩{x > 0},
we deduce, using the operator Λ = Λ(m−1)/2:

Re
〈(
±iA∗t [Pm, At]±A∗tQAt −

c0
8 (ΛAt)∗(ΛAt)

−B∗1,tB1,t −B∗2,tB2,t +B∗3,tB3,t

)
u, u

〉
6 Cδ +

(
δ − c0

8

)
‖Atu‖2H(m−1)/2

b
− ‖B1,tu‖2L2

b
,

(6.44)

where we discarded the negative term −〈B∗2,tB2,tu, u〉 on the right hand
side. If we choose δ < c0/8, then we can also discard the term on the right
hand side involving Atu, hence

‖B1,tu‖2L2
b
6 C − Re

〈(
±iA∗t [Pm, At]±A∗tQAt −

c0
8 (ΛAt)∗(ΛAt)

−B∗1,tB1,t −B∗2,tB2,t +B∗3,tB3,t

)
u, u

〉
.

(6.45)

Step 3. Using the symbolic commutator calculation. — We now exploit
the commutator relation (6.43) in the same way as in the proof of Theo-
rem 6.6: If we introduce operators

J+ ∈ Ψσ−(m−1)/2−1
b , J− ∈ Ψ−σ+(m−1)/2+1

b

with real principal symbols j+, j−, satisfying J+J− = I + R̃, R̃ ∈ Ψ−∞b ,
we obtain, keeping in mind (6.37),

Re
〈
J−
(
±iA∗t [Pm, At]±A∗tQAt −

c0
8 (ΛAt)∗(ΛAt)

−B∗1,tB1,t −B∗2,tB2,t +B∗3,tB3,t

)
u, (J+)∗u

〉
> Re

〈[
j−
(
±atHpmat + ρm−1a2

tβ0β̂ −
c0
8 ρ

m−1a2
t

−b21,t − b22,t + b23,t

)]
(z, bD)u, (J+)∗u

〉
− C

= Re〈(j−ft)(z, bD)u, (J+)∗u〉+ Re〈(j−gt)(z, bD)u, (J+)∗u〉 − C,
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where we absorbed various error terms in the constant C; see the discus-
sion around equation (6.30) for details. The term involving ft is uniformly
bounded from below as explained in the proof of Theorem 6.6 after equa-
tion (6.30). It remains to bound the term involving gt. Note that we can
write (j−gt)(z, ζ) as a sum of terms of the form w(z)ϕt(ζ)2s(z, ζ), where
w ∈ Hs−1

b , or w ∈ C∞, and s ∈ Sσ+(m−1)/2+1, and we can assume

(bS∗M ∩ supp s) ∩ p−1
m (0) = ∅,

since this holds for gt in place of s. Thus, on bS∗M ∩ supp s, we can use
elliptic regularity, Theorem 5.1, to conclude that WFσ+1

b (u) ∩ (bS∗M ∩
supp s) = ∅; but this implies that

(wϕ2
t s)(z, bD)u ∈ H−(m−1)/2

b

is uniformly bounded. Therefore, we finally obtain from (6.45) a uniform
bound on ‖B1,tu‖L2

b
, which implies B1,0u ∈ L2

b and thus the claimed mi-
crolocal regularity of u at L±, finishing the proof of the first part of the
theorem in the case m > 1, r = 0.

Step 3’. Propagation below the threshold regularity. — The proof of the
second part is similar, only instead of requiring (6.39), we require

β0(σ − (m− 1)/2 + β̂) 6 −c0 < 0

on supp(ψ◦ρ0)∩supp(ψ0◦p0)∩supp(ψ1◦x), and we correspondingly define

b1,t = ϕtρ
σψψ0ψ1

[
−β0(σ − (m− 1)/2− tρϕt + β̂)

∓ (σ − (m− 1)/2− tρϕt)(ρ−1JHp̃mρ)− c0
2

]1/2
.

We also redefine

b3,t = ϕtρ
σψψ0

√
−ψ1ψ′1

[(
β̃β0 ± x−1JHp̃mx−

c1
4

)
x
]1/2

,

f1,t = ϕ2
tρ

2σψ2ψ2
0ψ

2
1[

∓(σ − (m− 1)/2− tρϕt)
(
ρ−1(Hp̃m − JHp̃m)ρ

)
+ 3c0

8

]
,

f3,t = ϕ2
tρ

2σψ2ψ2
0ψ1ψ

′
1

(
∓x−1(Hp̃m − JHp̃m

)
x− c1

4

)
x.

Equation (6.43) then becomes

atHpmat ± ρm−1a2
tβ0β̂ = ∓

(c0
8 ρ

m−1a2
t + b21,t − b22,t + b23,t + ft + gt

)
,

and the rest of the proof proceeds as before, the most important difference
being that now the term b23,t has an advantageous sign (namely, the same
as b21,t), whereas −b22,t does not, which is the reason for the microlocal
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regularity assumption on u in a punctured neighborhood of L± within
bS∗

∂Rn+
Rn+.

Step 4. Removing the restrictions on the order m and the weight r. —
The last step in the proof is to remove the restrictions on m (the order of
the operator) and r (the growth rate of u and f). We accomplish this by
rewriting the equation Pu = f (without restrictions on m and r) as

(x−rPΛ+xr)(x−rΛ−u) = x−rf + x−rPRxr(x−ru),

where Λ± ∈ Ψ∓(m−m0)
b , m0 > 1, have principal symbols ρ∓(m−m0) and

satisfy Λ+Λ− = I + R, R ∈ Ψ−∞b . Then x−rPΛ+xr has order m0, and,
recalling s̃ = σ −m+ 1,

x−rf ∈ H s̃
b, x−rΛ−u ∈ H s̃+m0−3/2

b

lie in unweighted b-Sobolev spaces. The principal symbol of the rescaled
operator P0,r := x−rP0Λ+xr is an elliptic multiple of the principal symbol
of P0, hence the Hamilton vector fields of P0,r and P0 agree, up to a positive
factor, on the characteristic set of P0; in particular, even though β0 in
equation (6.35) may be different for P0,r and P0, β̃ does not change on L±.
However, the imaginary part of the subprincipal symbol, hence β̂, does
change, resulting in a shift of the threshold values in the statement of the
theorem: Concretely, we claim that
(6.46)

σm0−1
b

(
1
2i (P0,r − P ∗0,r)

)
= ±ρm0−1β0

(
β̂ + m−m0

2 − rβ̃
)

at L±.

Granted this, the threshold quantity is the sup, resp. inf, over L± of

s̃+ (m0 − 1)/2 + β̂ + (m−m0)/2− rβ̃ = s̃+ (m− 1)/2 + β̂ − rβ̃.

To prove (6.46), let us write P0 = P ′m + P ′m−1; we can arrange for P ′m
to be (formally) self-adjoint by letting P ′m = (P0 + P ∗0 )/2 and P ′m−1 =
(P0 − P ∗0 )/2, and we shall also assume Λ+ = (Λ+)∗. We then compute

σm0−1
b

(
1
2i
(
x−rP ′m−1Λ+xr − xrΛ+(P ′m−1)∗x−r

))
= ρm0−1ρ1−mσm−1

b

(
1
2i (P

′
m−1 − (P ′m−1)∗)

)
= ±ρm0−1β0β̂,
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and

σm0−1
b

(
1
2i
(
x−rP ′mΛ+xr − xrΛ+P ′mx

−r))
= σm0−1

b

(
1
2i [P

′
m,Λ+]

)
+ σm0−1

b

(
1
2i
(
x−r[P ′mΛ+, xr]− xr[Λ+P ′m, x

−r]
))

= ±m−m0

2 β0ρ
m0−1 − rx−1Hp0ρm0−mx

= ±
(
m−m0

2 β0 − rβ̃β0

)
ρm0−1 − rp0x

−1Hρm0−mx.

The last term on the right hand side involving p0 vanishes at L±, prov-
ing (6.46).

Step 5. Collecting the regularity requirements. — Lastly, the regulari-
ties needed for the proof to go through are that the conditions in (6.32)
hold for some m0 > 1; thus, choosing m0 = max(1, 5− 2s̃) = 1 + 2(2− s̃)+,
we obtain the conditions given in the statement of Theorem 6.10. �

7. Global solvability results for second order hyperbolic
operators with non-smooth coefficients

Even though complex absorption is a useful tool to put wave equations
on some classes of geometric spaces into a Fredholm framework, as done
by Vasy [40] in various dilation-invariant settings, and microlocally easy
to deal with, it is problematic in general non dilation-invariant situations
if one wants to prove the existence of forward solutions, as pointed out
by Vasy and the author [19]. We shall adopt the strategy of [19] and use
standard, non-microlocal, energy estimates for wave operators to show the
invertibility of the forward problem on sufficiently weighted spaces; using
the microlocal regularity results of §§5 and 6, we will in fact show higher
regularity and the existence of partial expansions of forward solutions.

7.1. Energy estimates

Let (M, g) be a compact manifold with boundary, where g is a Lorentzian
b-metric satisfying

(7.1) g ∈ C∞(M ;S2bT ∗M) +Hs
b(M ;S2bT ∗M),
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with s ∈ R to be specified later, where the b-Sobolev space here is defined
using an arbitrary fixed smooth b-density on M . Let U ⊂M be open, and
suppose t : U → (t0, t1) is a proper function such that dt is timelike on U .
We consider the operator

P = �g + L, L ∈ (C∞ +Hs−1
b )Diff1

b + (C∞ +Hs−2
b ).

Remark 7.1. — Although all arguments in this section are presented
for P and �g acting on functions, the results are true for P and �g acting
on natural vector bundles as well, e.g. the bundle of q-forms; only minor,
mostly notational, changes are needed to verify this.

For s > n/2, one obtains using Lemma 4.2 and Corollary 3.10 that in any
coordinate system the coefficients Gij of the dual metric G are elements of
C∞+Hs

b, and all Christoffel symbols are elements of C∞+Hs−1
b . Therefore,

by definition of �g, one easily obtains that

�g ∈ (C∞ +Hs
b)Diff2

b + (C∞ +Hs−1
b )Diff1

b,

thus

(7.2) P ∈ (C∞ +Hs
b)Diff2

b + (C∞ +Hs−1
b )Diff1

b + (C∞ +Hs−2
b ).

Proposition 7.2. — Let t0 < T0 < T ′0 < T1 < t1 and r ∈ R, and
suppose s > n/2 + 2. Then there exists a constant C > 0 such that for all
u ∈ H2,r

b (M), the following estimate holds:

‖u‖H1,r
b (t−1([T ′0,T1])) 6 C(‖Pu‖H0,r

b (t−1([T0,T1])) + ‖u‖H1,r
b (t−1([T0,T ′0]))).

This also holds with P replaced by P ∗. If one replaces C by any C ′ > C,
the estimate also holds for small perturbations of P in the space indicated
in (7.2).

Proof. — Let us work in a coordinate system z1 = x, z2 = y1, . . . , zn =
yn−1, where x is a boundary defining function in case we are working near
the boundary. By piecing together estimates from coordinate patches, one
can deduce the full result. Write b∂j = ∂zj for 2 6 j 6 n, and b∂1 = x∂x
if we are working near the boundary, b∂1 = ∂x otherwise. Moreover, let us
fix the Riemannian b-metric

g̃ = dx2

x2 + dy2

near the boundary, g̃ = dx2 + dy2 away from it. We adopt the summation
convention in this proof.
We will imitate the proof of [40, Proposition 3.8], which proves a similar

result in a smooth, semiclassical setting. Thus, consider the commutant
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V = −iZ, where Z = x−2rχ(t)W with χ ∈ C∞(R), chosen later in the
proof, and W = G(−, bdt), which is timelike in U . We will compute the
‘commutator’

(7.3) − i(V ∗P − P ∗V ) = −i(V ∗�g −�∗gV )− iV ∗L+ iL∗V,

where the adjoints are taken with respect to the (b-)metric g̃. First, we
need to make sense of all appearing operator compositions. Notice that
V ∈ x−2r(C∞ +Hs

b)Diff1
b, and writing V = −iZjb∂j , we get

V ∗ = −ib∂jZj = V − i(b∂jZ
j) ∈ x−2r(C∞ +Hs

b)Diff1
b + x−2r(C∞ +Hs−1

b ),

similarly

�g,�
∗
g, P

∗ ∈ (C∞ +Hs
b)Diff2

b + (C∞ +Hs−1
b )Diff1

b + (C∞ +Hs−2
b );

now, since

(C∞ +Hs−j
b )Diffjb(C∞ +Hs−k

b )Diffkb ⊂
∑
l6j

(C∞ +Hs−j
b Hs−k−l

b )Diffj+k−lb ,

it suffices to require s > n/2 + 2, since then Hs−j
b Hs−k−j

b ⊂ Hs−k−j
b for

0 6 j, k 6 2, 0 6 j + k 6 3.
Returning to the computation of (7.3), we conclude that −i(V ∗�g −

�∗gV ) ∈ (C∞ + Hs−3,−2r
b )Diff2

b, and thus its principal symbol is defined.
Since it is a formally self-adjoint (with respect to g̃) operator with real coef-
ficients that vanishes on constants, it equals bd∗Cbd provided the principal
symbols are equal. To compute it, we adopt the computation by Vasy [39,
§3] to the present context: Let us write

−i(V ∗�g −�∗gV ) = −(b∂kZ
k)�g + i[�g, V ]− i(�g −�∗g)V.

We define Si ∈ C∞ +Hs−1
b by

σ2
b(−i(�g −�∗g)V ) = 2SiZjζiζj = (SiZj + SjZi)ζiζj .

Moreover, with HG denoting the Hamilton vector field of the dual metric
of g,

HG = Gijζi
b∂j +Gijζj

b∂i − (b∂kG
ij)ζiζj∂ζk ,

we find σ2
b(−i(V ∗�g −�∗gV )) = Bijζiζj with

Bij = −b∂k(ZkGij) +Gik(b∂kZ
j) +Gjk(b∂kZ

i) + SiZj + SjZi

∈ x−2r(C∞ +Hs−1
b ),

thus
−i(V ∗�g −�∗gV ) = bd∗Cbd, Cji = Bij .
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Let us now plug Z = x−2rχW into the definition of Bij and separate
the terms with derivatives falling on χ, the idea being that the remaining
terms, considered error terms, can then be dominated by choosing χ′ large
compared to χ. We get

Bij = x−2r(b∂kχ)(GikW j +GjkW i −GijW k)

+ χ
(
Gik(b∂kx

−2rW j) +Gjk(b∂kx
−2rW i)

− b∂k(x−2rW kGij) + x−2r(SiW j + SjW i)
)
.

(7.4)

Notice here that for a b-1-form ω ∈ C∞(M ; bT ∗M), the quantity

EW,bdχ(ω) := 1
2(b∂kχ)(GikW j +GjkW i −GijW k)ωiωj

= 1
2
[
(ω, bdχ)Gω(W ) + ω(W )(bdχ, ω)G − bdχ(W )(ω, ω)G

]
= χ′(t)EW,bdt(ω)

is related to the sesquilinear energy-momentum tensor

EW,bdt(ω) = Re
(
(ω, bdt)Gω(W )

)
− 1

2
bdt(W )(ω, ω)G,

where (·, ·)G is the sesquilinear inner product on CbT ∗M . This quantity,
rewritten in terms of b-vector fields as

EX,Y (ω) = Re(ω(X)ω(Y ))− 1
2 〈X,Y 〉(ω, ω)G,

is well-known to be positive definite provided X and Y are both future
(or both past) timelike, see e.g. Alinhac [1]. In our setting, we thus have
EW,bdt = EW,W > 0 by our definition of W . Correspondingly,

(7.5) C = x−2rχ′A+ x−2rχR

with A positive definite and R symmetric.
We obtain(25)

(7.6) 〈−i(V ∗P − P ∗V )u, u〉 = 〈Cbdu, bdu〉 − 〈iLu, V u〉+ 〈iV u, Lu〉.

(25)The integrations by parts here and further below are readily justified using s >

n/2+2: In fact, since we are assuming u ∈ H2,r
b , we have V u ∈ H1,−r

b for s > n/2, s > 1,
and then P ∗V u ∈ H−1,−r

b provided multiplication with an Hs−j
b function is continuous

H1
b → H1−j

b for j = 0, 1, 2, which is true for s > n/2 + 1; similarly, one has Pu ∈ H0,r
b

provided s > n/2, and then V ∗Pu ∈ H−1,−r
b if multiplication by an Hs−j

b function is
continuous H−jb → H−1

b for j = 0, 1, which holds for s > n/2, s > 1.
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We now finish the proof by making χ′ large compared to χ on t−1([T ′0, T1]),
as follows: Pick T ′1 ∈ (T1, t1) and let

χ̃(s) = χ̃1

(
s− T0

T ′0 − T0

)
χ0(−z−1(s− T ′1)), χ(s) = χ̃(s)H(T1 − s),

whereH is the Heaviside step function, χ0(s) = e−1/sH(s) ∈ C∞(R) (which
satisfies χ′0(s) = s−2χ0(s)) and χ̃1 ∈ C∞(R) equals 0 on (−∞, 0] and 1 on
[1,∞); see Figure 7.1.

Figure 7.1. Graph of the commutant χ. The dashed line is the graph
of the part of χ̃ that is cut off using the Heaviside function in the
definition of χ.

Then in (T ′0, T ′1),

χ′(s) = −z−1χ′0(−z−1(s− T ′1))H(T1 − s)− χ0(−z−1(T1 − T ′1))δT1

= −z(s− T ′1)−2χ(s)− χ0(−z−1(T1 − T ′1))δT1 ,

in particular χ(s) = −z−1(s− T ′1)2χ′(s) on (T ′0, T1); hence for any γ > 0,
we can choose z > 0 so large that χ 6 −γχ′ on (T ′0, T1); therefore

−(χ′A+ χR) > −1
2χ
′χ̃1A on (T ′0, T1).

Put χ1(s) = χ̃1(s)H(T1 − s), then

−〈Cbdu, bdu〉 > 1
2 〈x
−2r(−χ′χ1)Abdu, bdu〉

+ χ0(−z−1(T1 − T ′1))〈x−2rAδT1
bdu, bdu〉 − C ′‖bdu‖2

H0,r
b (t−1([T0,T ′0])),
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and the term on the right hand side involving δT1 is positive, thus can be
dropped. Hence, using equation (7.6) and the positivity of A,

c0‖
√
−χ′χ1

bdu‖2
H0,r

b
6

1
2 〈x
−2r(−χ′χ1)Abdu, bdu〉

6 C ′‖bdu‖2
H0,r

b (t−1([T0,T ′0])) + C ′‖χ1/2Pu‖H0,r
b
‖χ1/2bdu‖H0,r

b

+ C ′‖χ1/2bdu‖2
H0,r

b
+ C ′‖χ1/2bdu‖H0,r

b
‖χ1/2u‖H0,r

b

6 C ′′‖u‖2
H1,r

b (t−1([T0,T ′0])) + C ′‖χ1/2Pu‖2
H0,r

b
+ C ′γ‖

√
−χ′χ1

bdu‖2
H0,r

b

+ C ′γ‖
√
−χ′χ1u‖2H0,r

b
,

(7.7)

where the norms are on t−1([T0, T1]) unless otherwise specified. Choosing
z large and thus γ small allows us to absorb the second to last term on
the right into the left hand side. To finish the proof, we need to treat the
last term, as follows: We compute, using Wχ = χ′G(bdt, bdt) ≡ mχ′ with
m ∈ C∞ +Hs

b positive,

〈(W ∗x−2rχ+ x−2rχW )u, u〉

= −〈(Wx−2rχ− x−2rχW )u, u〉 − 〈(divg̃W )x−2rχu, u〉

> −〈x−2rmχ′u, u〉H0
b(t−1([T0,T1])) − 〈x−2rwχu, u〉 − 〈(divg̃W )x−2rχu, u〉

> ‖
√
−χ′χ1m

1/2u‖2
H0,r

b (t−1([T ′0,T1])) − ‖
√
|χ′|m1/2u‖2

H0,r
b (t−1([T0,T ′0]))

− C‖√χu‖2
H0,r

b (t−1([T0,T1])),

where w = x2rWx−2r ∈ C∞ + Hs
b. Similarly as above, we now choose z

large to obtain

‖
√
−χ′χ1u‖2H0,r

b (t−1([T ′0,T1]))

6 C‖√χbdu‖2
H0,r

b
+ C‖

√
χ+ |χ′|u‖2

H0,r
b (t−1([T0,T ′0])).

Using this estimate in (7.7) and absorbing one of the resulting terms,
namely γ‖√χbdu‖2

H0,r
b (t−1([T ′0,T1])), into the left hand side finishes the proof

of the estimate, since
√
−χ′χ1 has a positive lower bound on t−1([T ′0, T1]).

That the estimate holds for perturbations of P follows simply from the
observation that all constants in this proof depend on finitely many semi-
norms of the coefficients of P , hence the constants only change by small
amounts if one makes a small perturbation of P . �
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7.2. Analytic, geometric and dynamical assumptions on
non-smooth linear problems

The arguments of the first half of [19, §2.1.3] leading to a Fredholm
framework for the forward problem for certain P , e.g. wave operators on
non-smooth perturbations of the static model of de Sitter space, now go
through with only minor technical modifications. Because there are large
dimension-dependent losses in estimates for the adjoint of P relative to the
regularity of the coefficients of P , say C∞ +Hs

b for the highest order ones,
the spaces that P acts on as a Fredholm operator are roughly of the order
s− n/2.
This can be vastly improved with a calculus for right quantizations of

non-smooth symbols just like the one developed in this paper for left quan-
tizations. Right quantizations have ‘good’ mapping properties on negative
order (but lossy ones on positive order) b-Sobolev spaces. Correspondingly,
all microlocal results (elliptic regularity, propagation of singularities, in-
cluding at radial points) hold by the same proofs mutatis mutandis. Then,
viewing P ∗ as the right quantization of a non-smooth symbol gives esti-
mates which allow one to put P into a Fredholm framework on spaces with
regularity s− ε, ε > 0.
Our focus here however is to prove the invertibility of the forward prob-

lem, whose discussion in the second half of [19, §2.1.3] (in the smooth
setting) we follow.
We now describe the general setup; a concrete example to keep in mind

for the remainder of the section is the wave operator on a (perturbed) static
asymptotically de Sitter space. Let us from now assume that the operator

P = �g + L, L ∈ (C∞ +Hs−1,α
b )Diff1

b + (C∞ +Hs−1,α
b ),

with α > 0, and g now satisfying

g ∈ C∞(M ;S2bT ∗M) +Hs,α
b (M ;S2bT ∗M),

is such that:
(1) P satisfies the dynamical assumptions of Theorem 6.10, i.e. has the

indicated radial point structure. Let L±, β̃, β̂ be defined as in the
statement of Theorem 6.10,

(2) P ∈ (C∞+Hs,α
b )Diff2

b + (C∞+Hs−1,α
b )Diff1

b + (C∞+Hs−1,α
b ); note

that the regularity of the lowest order term is higher than what we
assumed before,

(3) the characteristic set Σ of P has the form Σ = Σ+ ∪Σ− with Σ± a
union of connected components of Σ, and L± ⊂ Σ±.
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We denote by t1 and t2 two smooth functions onM and put for δ1, δ2 small

Ωδ1,δ2 := t−1
1 ([δ1,∞)) ∩ t−1

2 ([δ2,∞)), Ω ≡ Ω0,0,

Ω◦δ1,δ2
:= t−1

1 ((δ1,∞)) ∩ t−1
2 ((δ2,∞)),

where we assume that:
(4) The differentials of t1 and t2 have the opposite timelike character

near their respective zero sets within Ω, more specifically, dt1 is
future timelike, dt2 past timelike,

(5) putting Hj := t−1
j (0), the Hj intersect the boundary ∂M transver-

sally, and H1 and H2 intersect only in the interior of M , and they
do so transversally,

(6) Ωδ1,δ2 is compact.
Let us make two additional assumptions:
(7) Assume that there is a boundary defining function x ofM such that

dx/x is timelike everywhere on Ω with timelike character opposite
to the one of t1, i.e. dx/x is past oriented.

(8) The metric g is non-trapping in the following sense: All bicharac-
teristics in ΣΩ := Σ∩ bS∗ΩM from any point in ΣΩ∩ (Σ+ \L+) flow
(within ΣΩ) to bS∗H1

M ∪ L+ in the forward direction (i.e. either
enter bS∗H1

M in finite time or tend to L+) and to bS∗H2
M ∪ L+ in

the backward direction, and from any point in ΣΩ ∩ (Σ− \ L−) to
bS∗H2

M ∪ L− in the forward direction and to bS∗H1
M ∪ L− in the

backward direction.
See Figure 7.2 for the setup.

Figure 7.2. The domain Ω on which we have a global energy esti-
mate as well as solvability and uniqueness on appropriate weighted
b-Sobolev spaces. The ‘artificial’ spacelike boundary hypersurfaces H1
and H2 are also indicated.
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Conditions (1) and (8) are (probably) not stable under perturbations of
P , and it will in fact be crucial later that they can be relaxed. Namely, we
do not need to require that null-bicharacteristics of a small perturbation
P̃ of P tend to L±, but only that they reach a fixed neighborhood of L±,
since then Theorem 6.10 is still applicable to P̃ , see Remark 6.11; and this
condition is stable under perturbations.
Denote by Hs,r

b (Ωδ1,δ2)•,− distributions which are supported (•) at the
‘artificial’ boundary hypersurface t−1

1 (δ1) and extendible (−) at t−1
2 (δ2),

and the other way around for Hs,r
b (Ωδ1,δ2)−,•. Then we have the following

global energy estimate:

Lemma 7.3 (cf. [19, Lemma 2.15]). — Suppose s > n/2 + 2. There
exists r0 < 0 such that for r 6 r0, −r̃ 6 r0, there is C > 0 such that for
u ∈ H2,r

b (Ωδ1,δ2)•,−, v ∈ H2,r̃
b (Ωδ1,δ2)−,•, one has

‖u‖H1,r
b (Ωδ1,δ2 )•,− 6 C‖Pu‖H0,r

b (Ωδ1,δ2 )•,− ,

‖v‖H1,r̃
b (Ωδ1,δ2 )−,• 6 C‖P

∗v‖H0,r̃
b (Ωδ1,δ2 )−,• .

If one replaces C by any C ′ > C, the estimates also hold for small pertur-
bations of P in the space indicated in assumption (2).

Proof. — The proof follows [19, Lemma 2.15], adapted to the non-smooth
setting as in Proposition 7.2, the point being that the terms in (7.4) with
x−2r differentiated and thus possessing a factor of r can be used to dominate
the other, ‘error,’ terms in (7.5). We require s > n/2 + 2 here in order for
the arguments in Proposition 7.2 to apply. �

Remark 7.4. — For this lemma we in fact only need to assume condi-
tions (4)-(7).

By a duality argument, we thus obtain solvability; furthermore, the re-
sults on microlocal elliptic regularity and the propagation of singularities
proved in §§5 and 6 give us a robust way to show higher regularity:

Lemma 7.5 (cf. [19, Corollaries 2.10 and 2.16]). — Let 0 6 s′ 6 s and
assume s > n/2 + 6. There exists r0 < 0 such that for r 6 r0, there is
C > 0 with the following property: If f ∈ Hs′−1,r

b (Ω)•,−, then there exists
a unique u ∈ Hs′,r

b (Ω)•,− such that Pu = f , and u moreover satisfies

‖u‖
Hs
′,r

b (Ω)•,− 6 C‖f‖Hs′−1,r
b (Ω)•,− .

If one replaces C by any C ′ > C, this result also holds for small perturba-
tions of P in the space indicated in assumption (2).
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Remark 7.6. — One can prove this Lemma without appealing to mi-
crolocal regularity results by commuting b-vector fields through the equa-
tion Pu = f . However, we use this opportunity to show in the simplest
setting how the microlocal results are used before applying them in a more
substantial way in the proof of Theorem 7.10 below. Moreover, the proof
given here immediately shows that one can choose r0 independently of s′, s.

Proof of Lemma 7.5. We follow the proofs of [19, Lemmas 2.7 and 2.9].
Choose δ1 < 0 and δ2 < 0 small, and choose an extension

f̃ ∈ Hs′−1,r
b (Ω0,δ2)•,− ⊂ H−1,r

b (Ω0,δ2)•,−

satisfying

(7.8) ‖f̃‖
Hs
′−1,r

b (Ω0,δ2 )•,− 6 2‖f‖
Hs
′−1,r

b (Ω)•,− .

By Lemma 7.3, applied with r̃ = −r, we have

‖φ‖H1,r̃
b (Ω0,δ2 )−,• 6 C‖P

∗φ‖H0,r̃
b (Ω0,δ2 )−,•

for φ ∈ H2,r̃
b (Ω0,δ2)−,•. Therefore, by the Hahn-Banach theorem, there

exists ũ ∈ H0,r̃
b (Ω0,δ2)•,− such that

〈Pũ, φ〉 = 〈ũ, P ∗φ〉 = 〈f̃ , φ〉, φ ∈ H2,r̃
b (Ω0,δ2)−,•,

and

(7.9) ‖ũ‖H0,r̃
b (Ω0,δ2 )•,− 6 C‖f̃‖H−1,r̃

b (Ω0,δ2 )•,− .

We can view ũ as an element of H0,r̃
b (Ωδ1,δ2)•,− with support in Ω0,δ2 ,

similarly for f̃ ; then 〈Pũ, φ〉 = 〈f̃ , φ〉 for all φ ∈ Ċ∞c (Ω◦δ1,δ2
) (with the dot

referring to infinite order of vanishing at ∂M), i.e. Pũ = f̃ as distributions
on Ω◦δ1,δ2

.
Now, ũ vanishes on Ω◦δ1,δ2

\Ω0,δ2 , in particular is in Hs′,r
b,loc there. Elliptic

regularity and the propagation of singularities, Theorems 5.1, 6.6 and 6.10,
imply that ũ ∈ Hs′,r

b,loc(Ω◦δ1,δ2
). Indeed, by Theorem 5.1 with s̃ = −1, ũ is in

H
1/2,r
b on the elliptic set of P within Ω◦δ1,δ2

; Theorem 6.6 with s̃ = −1/2
gives H1/2,r

b -control of ũ on the characteristic set away from radial points,
and then an application of Theorem 6.10 gives H1/2,r

b -control of ũ on all of
Ω◦δ1,δ2

.(26) Iterating this argument gives Hs′,r
b,loc(Ωδ1,δ2)◦, and we in fact get

(26)The conditions of all theorems used here are satisfied because of s > n/2 + 6; if
necessary, we need to make r0 smaller, i.e. assume that r 6 r0 is more negative, in order
for the assumptions of Theorem 6.10 to be fulfilled. Strictly speaking, we in fact need
to use localized estimates in the following sense: If ũ ∈ H s̃,r

b and P ũ ∈ H s̃−1/2,r
b , and if
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an estimate

‖χũ‖
Hs
′,r

b (Ωδ1,δ2 ) 6 C
(
‖χ̃P ũ‖

Hs
′−1,r

b (Ωδ1,δ2 ) + ‖χ̃ũ‖H0,r
b (Ωδ1,δ2 )

)
for appropriate χ, χ̃ ∈ C∞c (Ω◦δ1,δ2

), χ̃ ≡ 1 on suppχ. In view of the support
properties of ũ, an appropriate choice of χ and χ̃ gives that the restric-
tion of ũ to Ω is an element of Hs′,r

b (Ω)•,−, with norm bounded by the
Hs′−1,r

b (Ω)•,−-norm of f in view of (7.9) and (7.8).
To prove uniqueness, suppose u ∈ Hs′,r

b (Ω)•,− satisfies Pu = 0, then,
viewing u as a distribution on Ω◦δ1,0 with support in Ω, elliptic regu-
larity and the propagation of singularities, applied as above, give u ∈
Hs,r

b,loc(Ω◦δ1,0) ⊂ H2,r
b,loc(Ω◦δ1,0); hence, for any δ̃ > 0, Lemma 7.3 applied

to u′ = u|Ω
0,̃δ
∈ H2,r

b (Ω0,̃δ)
•,− gives u′ = 0, thus, since δ̃ > 0 is arbitrary,

u = 0. �

Corollary 7.7 (cf. [19, Corollary 2.17]). — Let 0 6 s′ 6 s and assume
s > n/2 + 6. There exists r0 < 0 such that for r 6 r0, there is C > 0 with
the following property: If u ∈ Hs′,r

b (Ω)•,− is such that Pu ∈ Hs′−1,r
b (Ω)•,−,

then
‖u‖

Hs
′,r

b (Ω)•,− 6 C‖Pu‖Hs′−1,r
b (Ω)•,− .

If one replaces C by any C ′ > C, this result also holds for small perturba-
tions of P in the space indicated in assumption (2).

Proof. — Let u′ ∈ Hs′,r
b (Ω)•,− be the solution of Pu′ = Pu given by the

existence part Lemma 7.5, then P (u − u′) = 0, and the uniqueness part
implies u = u′. �

We also obtain the following propagation of singularities type result:

Corollary 7.8. — Let 0 6 s′′ 6 s′ 6 s and assume s > n/2 + 6;
moreover, let r ∈ R be such that s′′ − 1 + infL±(β̂ − rβ̃) > 0. Then there
is C > 0 such that the following holds: Any u ∈ Hs′′,r

b (Ω)•,− with Pu ∈
Hs′−1,r

b (Ω)•,− in fact satisfies u ∈ Hs′,r
b (Ω)•,−, and obeys the estimate

‖u‖
Hs
′,r

b (Ω)•,− 6 C(‖Pu‖
Hs
′−1,r

b (Ω)•,− + ‖u‖
Hs
′′,r

b (Ω)•,−).

If one replaces C by any C ′ > C, this result also holds for small perturba-
tions of P in the space indicated in assumption (2).

χ ∈ C∞c (Ω◦δ1,δ2
) is identically 1 near a point x0, then Pχũ = χP ũ+[P, χ]ũ is in H s̃−1/2,r

b
in a neighborhood of x0 and globally in H s̃−1,r

b , since [P, χ] is a first order operator. By
inspection of the relevant theorems, in particular (6.8), this regularity suffices to apply
the relevant microlocal regularity results and deduce microlocal H s̃+1/2,r

b regularity of ũ.
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Proof. — As in the proof of Lemma 7.5, working on Ωδ1,0 for δ1 < 0
small, we obtain u ∈ Hs′,r

b,loc by iteratively using elliptic regularity, real
principal type propagation and the propagation near radial points; the
latter, applied in the first step with s̃ = s′′ − 1/2, is the reason for the
condition on s′′. Thus, u ∈ Hs′,r

b (Ω0,̃δ)
•,− for δ̃ > 0. From here, arguing as

in the proof of Proposition 2.13 in [19], we obtain the desired conclusion.
�

Let us rephrase Lemma 7.5 and Corollary 7.7 as an invertibility state-
ment:

Theorem 7.9 (cf. [19, Theorem 2.18]). — Let 0 6 s′ 6 s and assume
s > n/2 + 6. There exists r0 < 0 with the following property: Let r 6 r0
and define the spaces

X s,r = {u ∈ Hs,r
b (Ω)•,− : Pu ∈ Hs−1,r

b (Ω)•,−}, Ys,r = Hs,r
b (Ω)•,−.

Then P : X s,r → Ys−1,r is a continuous, invertible map with continuous
inverse.
Moreover, the operator norm of the inverse, as a map from Hs−1,r

b (Ω)•,−
to Hs,r

b (Ω)•,−, of small perturbations of P in the space indicated in as-
sumption (2) is uniformly bounded.

We can now apply the arguments of [19], see also [40] for the dilation-
invariant case, to obtain more precise asymptotics of solutions u to Pu =
f using the knowledge of poles of the inverse of the Mellin transformed
normal operator family P̂ (σ), where the normal operator N(P ) of P is
defined just as in the smooth setting by ‘freezing’ the coefficients of P at
the boundary ∂M . This makes sense in our setting since the coefficients of
P are continuous; also, the coefficients of N(P ) are then smooth, since all
non-smooth contributions to P vanish at the boundary.

Theorem 7.10 (cf. [19, Theorem 2.20]). — Let s > n/2 + 6, 0 < α < 1,
and assume g ∈ C∞(M ;S2bT ∗M) +Hs,α

b (M ;S2bT ∗M). Let

P = �g + L, L ∈ (C∞ +Hs−1,α
b )Diff1

b + (C∞ +Hs−1,α
b ).

Further, let t1 and Ω ⊂M be as above, and suppose P , Ω and g satisfy the
assumptions (1)-(8) above. Let σj be the poles of P̂ (σ)−1, of which there
are only finitely many in any half space Im σ > −C by assumption (7).(27)
Let r ∈ R be such that r 6= Im σj and r 6 − Im σj + α for all j, and let

(27)See the arguments leading to [40, Theorem 7.5] for an explanation.
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r0 ∈ R. Moreover, let 1 6 s0 6 s′ 6 s, and suppose that

s′ − 2 + inf
L±

(β̂ − rβ̃) > 0.

Finally, let φ ∈ C∞(R) be such that suppφ ⊂ (0,∞) and φ ◦ t1 ≡ 1 near
∂M ∩ Ω.
If we assume that the poles σj or P̂ (σ)−1 are simple, then any solution

u ∈ Hs0,r0
b (Ω)•,− of Pu = f with f ∈ Hs′−1,r

b (Ω)•,− satisfies

(7.10) u−
∑
j

xiσj (φ ◦ t1)aj = u′ ∈ Hs′,r
b (Ω)•,−

for some aj ∈ C∞(∂M ∩ Ω), where the sum is understood over the finite
set of j such that − Im σj < r < − Im σj + α.
The result is stable under small perturbations of P in the space indicated

in assumption (2) in the sense that, even though the σj might change, all
C∞-seminorms of the expansion terms aj and the Hs′,r

b (Ω)•,−-norm of the
remainder term u′ are bounded by C(‖u‖Hs0,r0

b (Ω)•,−+‖f‖
Hs
′−1,r

b (Ω)•,−) for
some uniform constant C (depending on which norm we are bounding).

In general, without the simplicity assumption, the expansion (7.10) in-
cludes log terms xiσj | log x|k, 0 6 k 6 mj <∞, with (mj + 1) equal to the
order of the pole of P̂ (σ)−1 at σ = σj .

Proof. — By making r0 smaller (i.e. more negative) if necessary, we may
assume that r0 6 r and

s0 − 1 + inf
L±

(β̂ − r0β̃) > 0.

First, assume σ∗ := minj{− Im σj} > r. Then u ∈ Hs0,r0
b (Ω)•,− and Pu =

f ∈ Hs′−1,r
b (Ω)•,− imply u ∈ Hs′,r0

b (Ω)•,− by Corollary 7.8. Since

P −N(P ) ∈ (xC∞+Hs,α
b )Diff2

b + (xC∞+Hs−1,α
b )Diff1

b + (xC∞+Hs−1,α
b ),

we thus obtain f̃ := (P − N(P ))u ∈ Hs′−2,r0+α
b (Ω)•,−, where we use s >

s′ − 2 and s− 1 > s′ − 1; hence

N(P )u = f − f̃ ∈ Hs′−2,r′
b (Ω)•,−

with r′ = min(r, r0 + α). Applying(28) [40, Lemma 3.1] and using the ab-
sence of poles of P̂ (σ) in Im σ > −r gives u ∈ Hs′−1,r′

b (Ω)•,−; but then

(28)This requires s′ > 1 in view of the supported/extendible spaces that we are using
here; see also [19, Footnote 28].
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Pu ∈ Hs′−1,r
b (Ω)•,− implies u ∈ Hs′,r′

b (Ω)•,−, again by Corollary 7.8, where
we use

(s′ − 1)− 1 + inf(β̂ − r′β̃) > s′ − 2 + inf(β̂ − rβ̃) > 0.

If r′ = r, we are done; otherwise, we iterate, replacing r0 by r0 + α, and
obtain u ∈ Hs′,r

b (Ω)•,− after finitely many steps.
If there are σj with − Im σj < r, then, assuming that σ∗ − α < r0 < σ∗,

in fact that r0 is arbitrarily close to σ∗, as we may by the first part of
the proof, the application of [40, Lemma 3.1] gives a partial expansion u1

of u with remainder u′ ∈ Hs′−1,r′
b (Ω)•,−, where r′ = min(r, r0 + α). Now

N(P )u1 = 0, and u1 is a sum of terms of the form ajx
iσj with Im σj 6 −σ∗

and aj ∈ C∞(∂M ∩ Ω), in particular u1 ∈ H∞,r0
b (Ω)•,−; thus

(7.11)
(P −N(P ))u1 ∈ H∞,r0+1

b (Ω)•,− +Hs−1,σ∗+α
b (Ω)•,− ⊂ Hs−1,σ∗+α

b (Ω)•,−,

where the two terms correspond to the coefficients of P −N(P ) being sums
of xC∞- and Hs−1,α

b -functions. Therefore,

(7.12) Pu′ = Pu−N(P )u1 − (P −N(P ))u1 ∈ Hs′−1,r
b (Ω)•,−,

which by Corollary 7.8 implies u′ ∈ Hs′,r′

b (Ω)•,−, finishing the proof in the
case that r′ = r, i.e. r < σ∗ + α. If r = σ∗ + α, we need one more iterative
step to establish the improvement in the weight of u′: We use u′ ∈ Hs′,r′

b
to deduce

N(P )u = f − (P −N(P ))u

∈ Hs′−1,r
b +Hs′−2,r′+α

b +Hs−1,σ∗+α
b ⊂ Hs′−2,σ∗+α

b ,

where we use (P−N(P ))u′ ∈ Hs′−2,r′+α
b and (7.11). Hence [40, Lemma 3.1]

implies that the partial expansion u = u1 + u′ in fact holds with u′ ∈
Hs′−1,r

b , and then Corollary 7.8 and (7.12) imply u′ ∈ Hs′,r
b , finishing the

proof in the case r = σ∗ + α. �

Remark 7.11. — In the smooth setting, one can use the partial expan-
sion u1 to obtain better information on f̃ for a next step in the iteration.
This however relies on the fact that P − N(P ) ∈ xDiff2

b there (see the
proof of [19, Theorem 2.20]); here, however, we also have terms in the
space Hs−1,α

b Diff2
b in P −N(P ), and Hs−1

b -functions do not have a Taylor
expansion at x = 0, hence the above iteration scheme does not yield addi-
tional information after the first step in which one gets a non-trivial part
u1 of the expansion of u.
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If however we encode more precise asymptotics in the function space in
which g lies, then P−N(P ) has a partial polyhomogeneous expansion which
can be used to obtain more precise asymptotics for u. See also Remark 8.14.

Combining Theorem 7.10 with Theorem 7.9 gives us a forward solution
operator for P which, provided we understand the poles of P̂ (σ)−1, will
be the key tool in our discussion of quasilinear wave equations in the next
section.

8. Quasilinear wave and Klein-Gordon equations on the
static model of de Sitter space

8.1. The static model of de Sitter space

In order to introduce the static model of de Sitter space, we start by
considering (n + 1)-dimensional Minkowski space Rn+1

z with metric g0 :=
dz2
n+1 − dz2

1 − · · · − dz2
n. Then n-dimensional de Sitter space is the one-

sheeted hyperboloid

M̃◦ = {z2
n+1 − z2

1 − · · · − z2
n = −1}

with metric g induced by g0; thus, g has signature (+,−, . . . ,−). Moreover,
M̃◦ inherits the usual time orientation from the ambient Minkowski space,
in which ∂zn+1 is future timelike. We can introduce global coordinates using
the map Rzn+1 × Sn−1

θ , (zn+1, θ) 7→ ((1 + z2
n+1)1/2θ, zn+1) ∈ Rn+1, and

the metric becomes

g =
dz2
n+1

1 + z2
n+1
− (1 + z2

n+1)dθ2

We compactify M̃◦, first at future infinity by introducing x = z−1
n+1 in

zn+1 > 1, say, so the metric becomes

(8.1) g = x−2
(

dx2

1 + x2 − (1 + x2)dθ2
)

=: x−2ḡ,

where ḡ is a smooth Lorentzian metric down to x = 0, and likewise at past
infinity; thus, we have compactified M̃◦ to a cylinder

M̃ ∼= [−1, 1]T × Sn−1,

say with T = 1−x near x = 0, and T = 0 at zn+1 = 0. The metric g is a so-
called 0-metric, see [28]. Null-geodesics of g are merely reparametrizations
of null-geodesics of the conformally related metric ḡ. From the point of
view of causality, one can localize the study of (nonlinear) wave equations
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on de Sitter space M̃ by picking a point q at future infinity, say T = 1,
θ = e1 ∈ Sn−1 ⊂ Rn, considering only the interior M◦S of the backward
light cone from q, intersected with {T > 0} for convenience; we call M◦S
the static model of de Sitter space.(29) For an illustration, see Figure 8.1.

Figure 8.1. The ‘future half’ of the static modelM◦S of de Sitter space,
a submanifold of (compactified) de Sitter space M̃ , is the backward
light cone from the point q at future infinity, intersected with T > 0.
The full static model is the intersection of the interiors of the backward
light cone from q and the corresponding point at past infinity.

We make this explicit in the coordinates z1, . . . , zn+1 of the ambient
Minkowski space: Namely, for each fixed ω ∈ Sn−2 ⊂ Rn−1

z2,...,zn , the affine
curve

γω(zn+1) = (zn+1, ω; zn+1) ∈ M̃◦ ⊂ R1+(n−1)+1

is a geodesic on de Sitter space M̃◦, and written in the coordinates x =
z−1
n+1, θ = (z2

1 + · · · + z2
n)−1/2(z1, . . . , zn) ∈ Sn−1 introduced above, it is

equal to

γω(zn+1) = (x, θ(x)), θ(x) = (1 + x2)−1/2(e1 + xω).

Thus, we see that the family {γω : ω ∈ Sn−2} sweeps out the backward
light cone from the point x = 0, θ = e1, thus is the boundary of the static
model M◦S . In other words, in the Minkowskian coordinates,

M◦S = {(z1, . . . , zn+1) ∈ M̃◦ : zn+1 > 0, z2
2 + · · ·+ z2

n < 1}.

(29)Strictly speaking, this is only the future half of the static model; the full static model
is the intersection of the interior of the backward light cone from (T = 1, θ = e1) with
the forward light cone from (T = −1, θ = e1), see [40, §4] for details.
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The backward light cone is a cosmological horizon for M◦S : Any causal
(timelike or null) future-oriented curve in M̃◦, starting at a point in M◦S ,
which crosses the cosmological horizon, can never return to M◦S .

On M◦S , one can choose static coordinates t ∈ R, Z ∈ Rn−1, |Z| < 1,
with respect to which the metric g is t-independent, and writing Z = rω,
r ∈ (0, 1), ω ∈ Sn−2, away from Z = 0, one has

g = (1− r2) dt2 − (1− r2)−1 dr2 − r2 dω2.

One can compactify this at future infinity using τ̃ = e−t as a boundary
defining function; the coordinate singularity of the metric at r = 1 can
then be resolved by means of a suitable blow up of the corner τ̃ = 0, r = 1,
with g extending smoothly and non-degenerately past the front face of the
blow-up near the side face τ̃ = 0; see [40, §4] for details.

We describe a different way of arriving at such a smooth extension of
the static metric past the cosmological horizon. First, we recall the relation
of hyperbolic space Hn = {z2

n+1 − z2
1 − · · · − z2

n = 1, zn+1 > 0} as a
subset of Minkowski space to the upper half plane model: Define the global
coordinate chart

Φ: Hn 3 (z1, z2, . . . , zn, zn+1) 7→ (x, y),

x = 2
z1 + zn+1

∈ (0,∞), y = 2(z2, . . . , zn)
z1 + zn+1

∈ Rn−2,

then the induced metric on Hn takes the simple form x−2(dx2 + dy2). The
above map Φ is in fact well-defined on {z1 + zn+1 > 0}, and restricting Φ
to M̃◦ ∩ {z1 + zn+1 > 0}, the metric on M̃◦ has the form

g = x−2(dx2 − dy2).

Moreover, the point q at future infinity singled out above has coordinates
x = 0, y = 0, where we extended Φ by continuity to M̃ ∩ {z1 + zn+1 > 0},
and the backward light cone from q is simply the set {|y| = x}; the static
model, compactified at future infinity, therefore is

MS = {|y| < x, x > 0}.

Blowing up (0, 0) spherically, we introduce coordinates τ = x ∈ [0, 1), Z =
y/x ∈ Rn−1, |Z| < 1 near the interior of the front face, with respect to
which

(8.2) g = (1− |Z|2) dτ
2

τ2 − 2Z dτ
τ
dZ − dZ2 = dτ2

τ2 −
(
Z
dτ

τ
+ dZ

)2

which extends non-degenerately as a Lorentzian b-metric past the cosmo-
logical horizon |Z|=1. Moreover, τ and 1/zn+1 are comparable (i.e. bounded
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by constant multiples of each other) near q, and in terms of the static time
coordinate t, we have τ ∼ e−t over compact subsets of MS , i.e. away from
the cosmological horizon. In fact, we can define a new time coordinate t∗ by

τ = e−t∗ ,

which is thus smooth onM◦S up to (and beyond) the cosmological horizons.
The dual metric of g is

(8.3) G = (Z∂Z − τ∂τ )2 − ∂2
Z .

Concretely, with r = |Z| and ω = r−1Z, we introduce µ = 1 − r2 as a
defining function of r = 1, and compute

(8.4) G = −4µr2∂2
µ + 4r2τ∂τ ∂µ + (τ∂τ )2 − r−2∂2

ω,

valid away from r = 0, which extends non-degenerately to µ < 0; the
Lorentzian geometry at µ = 0 is crucial for our analysis, since �g has radial
points at the conormal bundle to µ = 0 within τ = 0, as we will verify below.
Let us therefore use the coordinates µ ∈ (−δ, 1), ω ∈ Sn−2, τ ∈ [0,∞), for
small δ > 0, on physical space near the cosmological horizon µ = 0 and
the natural coordinates in the fiber of the b-cotangent bundle, which come
from writing b-covectors as

ξ dµ+ η dω + σ
dτ

τ
.

Moreover, we write K for the dual metric on the round sphere; in a co-
ordinate system on the sphere, its components are denoted Kij . We shall
also have occasion to use the coordinates Z = rω ∈ Rn−1 and τ , valid near
r = 0, with b-covectors written

ζ dZ + σ
dτ

τ
.

Then the quadratic form associated with the dual metric G of the static de
Sitter metric g, which is the same as the b-principal symbol of P := �g, is
given by

p = σ2
b(P ) = −4r2µξ2 + 4r2σξ + σ2 − r−2|η|2K

= (Z · ζ − σ)2 − |ζ|2.
(8.5)

Correspondingly, the Hamilton vector field is
Hp = (∂ξp)∂µ − (∂µp)∂ξ + (∂σp)τ∂τ − (τ∂τp)∂σ − r−2H|η|2

K

= 4r2(−2µξ + σ)∂µ − (4ξ2(1− 2r2)− 4σξ − r−4|η|2K)∂ξ
+ (4r2ξ + 2σ)τ∂τ − r−2H|η|2

K

= 2(Z · ζ − σ)(Z∂Z − ζ∂ζ − τ∂τ )− 2ζ · ∂Z .

(8.6)
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We aim to show that P fits into the framework of §7, so that Theorems 7.9
and 7.10 apply to P and non-smooth perturbations of it. Since the metric
g is τ -independent, the computations are very similar to those performed
by Vasy [40] in the Mellin transformed picture; also, in [19, §2], it is used,
even if not explicitly stated, that P does fit into the smooth framework
there, but we will provide all details here for the sake of completeness.
Denote the characteristic set of p by Σ = p−1(0) ⊂ bT ∗M \ o.

Lemma 8.1. — Σ is a smooth codimension 1 (conic) submanifold of
bT ∗M \ o transversal to bT ∗YM .

Proof. — We have to show that dp 6= 0 whenever p = 0. We compute

dp = (4ξ2(1− 2r2)− 4σξ − r−4|η|2K)dµ+ 4r2(−2µξ + σ)dξ

+ (4(1− µ)ξ + 2σ)dσ − r−2d|η|2K .

Thus if dp = 0, all coefficients have to vanish, thus σ = 2µξ and σ =
2(µ − 1)ξ, giving ξ = 0 and thus σ = 0, hence also η = 0. Thus dp
vanishes only at the zero section of bT ∗M in this coordinate system. In
the coordinates valid near r = 0, we compute

dp = 2(Z · ζ − σ)ζ · dZ + 2
(
(Z · ζ − σ)Z − 2ζ

)
· dζ − 2(Z · ζ − σ) dσ,

thus dp = 0 implies Z · ζ = σ, hence ζ = 0 and then σ = 0. Thus, the first
half of the statement is proved. The transversality is clear since dp and dτ
are linearly independent at Σ by inspection. �

We will occasionally also use Σ to denote the characteristic set viewed
as a subset of the radially compactified b-cotangent bundle bT

∗
M or as a

subset of the boundary bS∗M of bT
∗
M at fiber infinity.

8.1.1. Radial points

Since g is a Lorentzian b-metric, the Hamilton vector field Hp cannot be
radial except at the boundary Y = ∂M at future infinity, where τ = 0. In
the coordinate system near r = 0, one easily checks using (8.6) that there
are no radial points over Z = 0. At radial points, we then moreover have
Hpµ = 4r2(−2µξ + σ) = 0, thus σ = 2µξ. Further, we compute

H|η|2
K

= HηiKij(ω)ηj = 2ηjKij(ω)∂ωi − 2ηi(∂ωkKij)ηj∂ηk .

The coefficient of ∂ωi must vanish for all i, which implies η = 0, since K is
non-degenerate. Now, if ξ = 0, then σ = 0, i.e. all fiber variables vanish and
we are outside the characteristic set Σ; thus ξ 6= 0. At points where σ =
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2µξ, η = 0, τ = 0, the expression for p simplifies to 4r2µξ2 + 4µ2ξ2 = 4µξ2,
which does not vanish unless µ = 0. Hence, µ = 0, τ = 0, η = 0, σ = 0, and
we easily check that these conditions are also sufficient for a point in this
coordinate patch to be a radial point. Thus:

Lemma 8.2. — The set of radial points of �g is a disjoint union R =
R+ ∪R−, where

R± = {µ = 0, τ = 0, η = 0, σ = 0,±ξ > 0}
= {τ = 0, σ = 0, Z = ∓ζ/|ζ|} ⊂ Σ.

To analyze the flow near L± := ∂R± ⊂ bS∗M , we introduce normalized
coordinates

ρ̂ = 1
ξ
, η̂ = η

ξ
, σ̂ = σ

ξ

and consider the homogeneous degree 0 vector field Hp := |ρ̂|Hp. Follow-
ing [6, §3], we get a good qualitative understanding of the dynamics near
L± by looking at the linearization W of ±Hp = ρ̂Hp; note that 〈ξ〉−1 is a
defining function of the boundary of bT

∗
M at fiber infinity near L±. The

coordinate vector fields in the new coordinate system are

∂η = ρ̂∂
η̂
, ξ∂ξ = −ρ̂∂

ρ̂
− η̂∂

η̂
− σ̂∂

σ̂
.

Hence

ρ̂Hp = 4r2(−2µ+ σ̂)∂µ + (4(1− 2r2)− 4σ̂ − r−4|η̂|2K)(ρ̂∂
ρ̂

+ η̂∂
η̂

+ σ̂∂
σ̂
)

+ (4r2 + 2σ̂)τ∂τ − r−2ρ̂H|η|2
K
.

We have ρ̂Hp ∈ Vb(bT
∗
M), i.e. it is tangent to the boundary ρ̂ = 0 at fiber

infinity, and to the boundary of M , given by τ = 0. Since ρ̂Hp vanishes at
a radial point q ∈ bT

∗
M , it maps the ideal I of functions in C∞(bT

∗
M)

vanishing at q into itself. The linearization of ρ̂Hp at q then is the vector
field ρ̂Hp acting on I/I2 ∼= T ∗q

bT
∗
M , where the isomorphism is given by

f + I2 7→ df |q. Computing the linearization W of ρ̂Hp at q now amounts
to ignoring terms of ρ̂Hp that vanish to at least second order at q, which
gives

W = 4(−2µ+ σ̂)∂µ − 4(ρ̂∂
ρ̂

+ η̂∂
η̂

+ σ̂∂
σ̂
) + 4τ∂τ − 2Kij(ω)η̂j∂ωi .
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We read off the eigenvectors and corresponding eigenvalues:

dρ̂, dη̂, dσ̂ with eigenvalue − 4,
dµ− dσ̂ with eigenvalue − 8,

dτ with eigenvalue + 4,

dωi − 1
2K

ijdη̂j with eigenvalue 0.

Thus, L+ (L−) is a sink (source) of the Hamilton flow within bS∗YM , with
an unstable (stable) direction normal to the boundary. More precisely, the
τ -independence of the metric suggests the definition

L± = ∂{µ = 0, σ = 0, η = 0,±ξ > 0} ⊂ bS∗M,

so that L± = bS∗YM ∩ L±; moreover L± ⊂ Σ, and Hp is tangent to L±;
indeed,

(8.7) Hp = 4ξ2∂ξ + 4ξτ∂τ at L±.

Lastly, L+ (L−) is indeed the unstable (stable) manifold at L±. Now, going
back to the full rescaled Hamilton vector field Hp, we have at L± (in fact,
at L±):

|ρ̂|−1Hp|ρ̂| = ∓β0, −τ−1Hpτ = ∓β̃β0

with β0 = 4 and β̃ = 1; furthermore, near L±,

∓Hpη̂ = 4η̂, ∓Hpσ̂ = 4σ̂, ∓Hp(µ− σ̂) = 8(µ− σ̂)

modulo terms that vanish quadratically at L±, hence, putting β1 = 8, the
quadratic defining function ρ0 := η̂2 + σ̂2 +(µ− σ̂)2 of L± within Σ satisfies

∓Hpρ0 − β1ρ0 > 0

modulo terms that vanish cubically at L±.
We have thus verified the geometric and dynamical assumptions (1)-(5)

in §6.4 regarding the characteristic set and the Hamilton flow of p near the
radial set. Note that assumption (5) is automatic here with β̂ = 0, since P
is formally self-adjoint with respect to the metric b-density. In other words,
we have verified assumption (1) of §7.2.

8.1.2. Global behavior of the characteristic set

The next assumption to be checked is (3) in §7.2. This is easily accom-
plished: Indeed, from (8.5), we have

(8.8) p = (σ + 2r2ξ)2 − 4r2ξ2 − r−2|η|2K ,
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and thus Σ = Σ+ ∪ Σ−, where

(8.9) Σ± = {±(σ + 2r2ξ) > 0} ∩ Σ = {±(σ − Z · ζ) > 0}

since p = 0, σ + 2r2ξ = 0 implies ξ = η = 0, thus σ = 0, thus {σ + 2r2ξ =
0} does not intersect the characteristic set p−1(0), and similarly in the
(τ, Z;σ, ζ) coordinates. Moreover, we have L± ⊂ Σ± by definition of L±.

We proceed with a description of the domain Ω ⊂ M with artificial
boundaries H1 and H2, which have defining functions t1, t2, and check the
assumptions (4)-(8) in §7.2. We first observe that G

(
dτ
τ ,

dτ
τ

)
= 1 > 0. Now,

pick any δ > 0 and τ0 > 0 and define

t1 = τ0 − τ, t2 = µ+ δ.

Then

G(bdt1,
bdt1)|t1=0 = G

(
−τ dτ

τ
,−τ dτ

τ

)
|τ=τ0 = τ2

0 > 0,

G(bdt2,
bdt2)|t2=0 = G(dµ, dµ)|µ=−δ = 4δ(1 + δ) > 0,

G(bdt1,
bdt2)|t1=t2=0 = −4(1 + δ)τ0 < 0,

thus bdt1 and bdt2 are timelike with opposite timelike character; indeed,
with the usual time orientation on de Sitter space (namely where −dτ/τ
is future oriented), t1 is future oriented and t2 is past oriented, as is dτ/τ .
Moreover, dt2 and dτ are clearly linearly independent at Y ∩H2, as are dt1
and dt2 at H1 ∩H2. Thus, the assumptions (4)-(7) are verified.

It remains to check the non-trapping assumption (8). Let us first an-
alyze the flow in bT ∗ΩM \ bT ∗YM ; notice that Hpτ = 0 in bT ∗YM , thus
bicharacteristics that intersect bT ∗YM are in fact contained in bT ∗YM , and
correspondingly bicharacteristics containing points in bT ∗ΩM \ bT ∗YM stay
in bT ∗ΩM \ bT ∗YM . There,

(8.10) ±Hpτ = ±2(σ + 2r2ξ)τ > 0 on Σ±.

In particular, in Σ± \ bT ∗YM , bicharacteristics reach bT ∗H1
M (i.e. τ = τ0)

in finite time in the forward (+), resp. backward (−), direction. We show
that they stay within bT ∗ΩM : For this, observe that p = 0 and µ < 0, thus
r > 1, imply

2|ξ| 6 2r|ξ| 6 |σ + 2r2ξ|

by equation (8.8). In fact, if ξ 6= 0, the first inequality is strict, and if ξ = 0,
the second inequality is strict, and we conclude the strict inequality

2|ξ| < |σ + 2r2ξ| if p = 0, µ < 0.
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Hence, on (Σ± \ bT ∗YM) ∩ ΣΩ, if µ < 0, then

(8.11) ±Hpµ = ±4r2(σ + 2r2ξ − 2ξ) > 0,

thus in the forward (on Σ+), resp. backward (on Σ−), direction, bicharac-
teristics cannot cross bT ∗H2

M = {µ = −δ}.
Next, backward, resp. forward, bicharacteristics in L±\L± tend to L± by

equation (8.10), since Hp is tangent to L±, and L± = L±∩{τ = 0}; in fact,
by equation (8.7), more is true, namely these bicharacteristics, as curves in
bT
∗
M \ o, tend to L± if the latter is considered a subset of the boundary

bS∗M of bT
∗
M at fiber infinity. Now, consider a backward, resp. forward,

bicharacteristic γ in (Σ± \ L±) ∩ bT ∗ΩM , including those within bT ∗YM .
By (8.10), τ is non-increasing along γ, and by (8.11), µ is strictly decreasing
along γ once γ enters µ < 0, hence it then reaches bT ∗H2

M in finite time,
staying within bT ∗ΩM . We have to show that γ necessarily enters µ < 0 in
finite time. Assume this is not the case. Then observe that

(8.12) ∓Hp(σ − Z · ζ) = ∓2|ζ|2 = ∓2(σ − Z · ζ)2 on Σ±,

thus σ−Z · ζ converges to 0 along γ. Now on Σ, |ζ| = |σ−Z · ζ|, thus, also
ζ converges to 0, and moreover, on Σ, we have

|σ| 6 |Z · ζ|+ |Z · ζ − σ| 6 (1 + |Z|)|ζ|

since we are assuming |Z| 6 1 on γ, hence σ converges to 0 along γ. But
Hpσ = 0, i.e. σ is constant. Thus necessarily σ = 0, hence p = 0 gives
|Z · ζ| = |ζ|, and thus we must in fact have |Z| = 1 on γ, more precisely
Z = ∓ζ/|ζ|, and thus γ lies in L±, which contradicts our assumption
γ 6⊂ L±. Hence, γ enters |Z| > 1 in finite time, and thus, as we have
already seen, reaches bT ∗H2

M in finite time.
Finally, we show that forward, resp. backward, bicharacteristics γ in

(Σ±∩ bT ∗YM \R±)∩ΣΩ tend to L±. By equation (8.12), ±(σ−Z · ζ)→∞
(in finite time) along γ, hence |ζ| = |σ − Z · ζ| on γ ⊂ Σ tends to ∞, and
therefore

|Z| > |Z · ζ|
|ζ|

>
|σ − Z · ζ|
|ζ|

− |σ|
|ζ|
→ 1

since σ is constant along γ. On the other hand, at points on γ where
|Z| > 1, i.e. µ < 0, we have ±Hpµ > 0 by (8.11). We conclude that γ tends
to |Z| = 1, i.e. µ = 0. Moreover,(

Z · ζ
|ζ|
− σ

|ζ|

)2
= 1 on Σ,
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thus
∣∣Z ·ζ/|ζ|∣∣→ 1 along γ; together with |Z| → 1, this implies Z → ∓ζ/|ζ|,

and since σ is constant and |ζ| → ∞, we conclude that γ tends to L±. Thus,
assumption (8) in §7.2 is verified.

8.1.3. The normal operator

The Mellin transformed normal operator P̂ (σ) of P = �g, with principal
symbol (in the high energy sense, σ being the large parameter) given by
the right hand side of (8.5), fits into the framework of Vasy [40]. In the
current setting, the poles of P̂ (σ)−1 for P acting on functions have been
computed explicitly by Vasy [38]. In fact, if more generally Pλ = �g − λ,
the only possible poles of P̂λ(σ)−1 are in

(8.13) iŝ±(λ)− iN, ŝ±(λ) = −n− 1
2 ±

√
(n− 1)2

4 − λ,

and the pole with largest imaginary part is simple unless λ = (n−1)2/4, in
which case it is a double pole. Notice that for λ = 0, all non-zero resonances
have imaginary part 6 −1.

8.2. Quasilinear wave equations

We are now prepared to discuss existence, uniqueness and asymptotics
of solutions to quasilinear wave and Klein-Gordon equations for complex-
and/or real-valued functions on the static model of de Sitter space, in
fact on the domain Ω described in the previous section, with small data,
i.e. small forcing. Keep in mind though that the methods work in greater
generality, as explained in the introduction. In particular, we will prove
Theorems 1.1 and 1.2.

Remark 8.3. — The only reason for us to stick to the scalar case here
as opposed to considering wave equations on natural vector bundles is the
knowledge of the location of resonances in this case, see §8.1.3; the author
is not aware of corresponding statements for bundle-valued equations. The
general statement is that as long as there is no resonance or only a simple
resonance at 0 in the closed upper half plane, the arguments presented in
this section go through. Likewise, we can work on the more general class
of static asymptotically de Sitter spaces, since the normal operator, hence
the resonances are the same as on exact static de Sitter space, and in fact
on much more general spacetimes, provided the above resonance condition
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as well as all assumptions in §7.2 are satisfied; examples of the latter kind
include perturbations (even of the asymptotic model) of asymptotically de
Sitter spaces, see also Remark 8.6.

Let us from now on denote by gdS the static de Sitter metric. We start
with a discussion of quasilinear wave equations.

Definition 8.4. — For s, α ∈ R, define the Hilbert space

X s,α := C⊕Hs,α
b (Ω)•,−

with norm ‖(c, v)‖2X s,α = |c|2 + ‖v‖2
Hs,αb (Ω)•,− . We will identify an element

(c, v) ∈ X s,α with the distribution (φ ◦ t1)c + v, where φ and t1 are as in
the statement of Theorem 7.10.

We are now in a position to prove Theorem 1.2 whose statement we
recall:

Theorem 8.5. — Let s > n/2 + 7 and 0 < α < 1. Assume that for
j = 0, 1,

g : X s−j,α → (C∞ +Hs−j,α
b )(M ;S2bT ∗M),

q : X s−j,α ×Hs−1−j,α
b (Ω; bT ∗ΩM)•,− → Hs−1−j,α

b (Ω)•,−

are continuous, g is Lipschitz near 0, and

(8.14) ‖q(u, bdu)− q(v, bdv)‖Hs−1−j,α
b (Ω)•,− 6 Lq(R)‖u− v‖X s−j,α

for u, v ∈ X s−j,α with norm 6 R, then there is a constant CL > 0 so that
the following holds: If Lq(0) < CL, then for small R > 0, there is Cf > 0
such that for all f ∈ Hs−1,α

b (Ω)•,− with norm 6 Cf , there exists a unique
solution u ∈ X s,α of the equation

(8.15) �g(u)u = f + q(u, bdu)

with norm 6 R, and in the topology of X s−1,α, u depends continuously
on f .

Remark 8.6. — Note that the poles of the meromorphic inverse normal
operator family �̂g(u)(σ)−1 depend continuously on u, see [40, §2.7], and
the simple pole at 0, corresponding to constant functions being annihilated
by N(�g(u)), is preserved under perturbations. This will be crucial in the
proof, and it also shows that we may allow the metric g(0) to be a perturba-
tion (in the b-sense) of gdS, rather than exact gdS, without any additional
work.
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Remark 8.7. — The permitted range of α is directly linked to the width
of the resonance free strip below the real axis for the basic linear operator.
In particular, R > 0 depends on α in the sense that one must ensure that
the linear operator �g(u) for u ∈ X s,α with norm 6 R has no resonances
other than 0 in Im σ > −α. Since the only resonances of �gdS in Im σ > −1
are 0 and −i, the continuous dependence of resonances on the b-metric
ensures that R > 0 can indeed be chosen in this way.

Remark 8.8. — Of course, we require all sections g(u) of S2bT ∗M to
take values in symmetric 2-tensors with real coefficients. If we assume that
q and f are real-valued, we may therefore work in the real Hilbert space

(8.16) X s,αR := R⊕Hs,α
b (Ω;R)•,−

and find the solution u there. This remark also applies to all theorems later
in this section.

Proof of Theorem 8.5. To simplify the notation, we will occasionally write
Hσ,ρ

b in place of Hσ,ρ
b (Ω)•,− if the context is clear.

By assumption on g, there exists RS such that for u ∈ X s,α with
‖u‖X s,α 6 RS , the operator �g(u) satisfies the relaxed versions of the as-
sumptions (1)-(8) in §7.2 (see the discussion after assumption (8)), thus
Theorem 7.9 is applicable, giving a continuous forward solution operator
Sg(u) on sufficiently weighted b-Sobolev spaces. For such u, the normal op-
erator N(�g(u)) is a small perturbation of N(�gdS) in Diff2(Y ∩ Ω), and
since further s − 2 − α > 0, we can apply Theorem 7.10 to conclude that
the solution operator in fact maps

Sg(u) : Hs−1,α
b (Ω)•,− → X s,α

continuously, with uniformly bounded operator norm

(8.17) ‖Sg(u)‖ 6 CS , ‖u‖X s,α 6 RS .

Let CL := C−1
S , and assume that Lq(0) < CL, then Lq(Rq) < CL for

Rq > 0 small. Put R := min(RS , Rq) and Cf = R(C−1
S − Lq(R)); let f ∈

Hs−1,α
b (Ω)•,− have norm 6 Cf . Define u0 := 0 and iteratively uk+1 ∈ X s,α

by solving

(8.18) �g(uk)uk+1 = f + q(uk, bduk),

i.e. uk+1 = Sg(uk)
(
f + q(uk, bduk)

)
. For uk+1 to be well-defined, we need

to check that ‖uk‖X s,α 6 R for all k. For k = 0, this is clear; for k > 0, we
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deduce from (8.17) and (8.14) that

‖uk+1‖X s,α 6 CS
(
‖f‖Hs−1,α

b
+ Lq(R)‖uk‖X s,α

)
6 CS

(
R(C−1

S − Lq(R)) + Lq(R)R
)

= R.

We aim to show that the sequence (uk)k is in fact Cauchy in X s−1,α. First,
we observe that for u ∈ X s−1,α, we have

�g(u) = gij(u)bDi
bDj + g̃j(u, bdu)bDj

with gij(u) ∈ C∞ + Hs−1,α
b , g̃j(u, bdu) ∈ C∞ + Hs−2,α

b ; using the explicit
formula for the inverse of a metric, Corollary 3.10 and Lemma 4.2, we
deduce from the Lipschitz assumption on g that

gij : X s−1,α → C∞ +Hs−1,α
b , g̃j : X s−1,α → C∞ +Hs−2,α

b

are Lipschitz as well; hence, for some constant Cg(R), we obtain

‖�g(u) −�g(v)‖L(X s,α,Hs−2,α
b ) 6 Cg(R)‖u− v‖X s−1,α

for u, v ∈ X s−1,α with norms 6 R. Therefore, we get the following estimate
for the difference of two solution operators Sg(u) and Sg(v), u, v ∈ X s,α,
with a loss of 2 derivatives relative to the elliptic setting, using a ‘resolvent
identity’:

‖Sg(u)−Sg(v)‖L(Hs−1,α
b ,X s−1,α)

= ‖Sg(u)(�g(v) −�g(u))Sg(v)‖L(Hs−1,α
b ,X s−1,α)

6 C2
S‖�g(u) −�g(v)‖L(X s,α,Hs−2,α

b )

6 C2
SCg(R)‖u− v‖X s−1,α .

(8.19)

Here, we assumed CS is such that ‖Sg(u)‖L(Hs−2,α
b ,X s−1,α) 6 CS for small

u ∈ X s,α, which is where we use that s − 1 > n/2 + 6. Returning to the
goal of proving that (uk)k is Cauchy in X s−1,α, we estimate

‖uk+1 − uk‖X s−1,α

6
∥∥(Sg(uk) − Sg(uk−1))

(
f + q(uk−1,

bduk−1)
)∥∥
X s−1,α

+‖Sg(uk)(q(uk, bduk)− q(uk−1,
bduk−1))‖X s−1,α

6 CS
(
Lq(R) + CSCg(R)(Cf + Lq(R)R)

)
‖uk − uk−1‖X s−1,α .

Since CSLq(0) < 1, the constant on the right hand side is less than 1 for
small R > 0, recalling that Cf = Cf (R) → 0 as R → 0. Therefore, (uk)k
converges exponentially fast to a limit u ∈ X s−1,α as k → ∞. Since {uk}
is bounded in the Hilbert space X s,α, it in fact has a weakly convergent
subsequence in X s,α, and the limit is necessarily equal to u, so u ∈ X s,α.
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This easily implies the weak convergence of the full sequence uk ⇀ u in
X s,α.

We can prove uniqueness and stability in one stroke: Suppose we are
given u1, u2 ∈ X s,α with norms 6 R and satisfying

�g(uj)uj = fj + q(uj , bduj), j = 1, 2,

where the fj ∈ Hs−1,α
b , j = 1, 2, have norm 6 Cf . Then the estimate (8.19)

yields

‖u1 − u2‖X s−1,α 6 CS
(
‖f1 − f2‖Hs−2,α

b

+ (Lq(R)+CSCg(R)(Cf+Lq(R)R))‖u1−u2‖X s−1,α
)
.

Arguing as before, the second term on the right can be absorbed into the
left hand side for small R > 0. Hence

‖u1 − u2‖X s−1,α 6 C ′‖f1 − f2‖Hs−2,α
b

as desired. �

Remark 8.9. — In the case that g(u) ≡ g is constant, see [19, Theo-
rem 2.24] for a discussion of the corresponding semilinear equations. There,
one in particular obtains more precise asymptotics in the case of polynomial
non-linearities, see [19, Theorem 2.35]; see also Remark 7.11.

We next turn to a special case of Theorem 8.5 which is very natural and
allows for a stronger conclusion.

Theorem 8.10. — Let s > n/2 + 7 and 0 < α < 1. Let N,N ′ ∈ N,
and suppose ck ∈ C∞(R;R), gk ∈ (C∞ +Hs

b)(M ;S2bT ∗M) for 1 6 k 6 N ;
define the map g : X s,αR → (C∞ +Hs,α

b )(M ;S2bT ∗M) by

g(u) =
N∑
k=1

ck(u)gk,

and assume g(0) = gdS. Moreover, define

q(u, bdu) =
N ′∑
j=1

uej
Nj∏
k=1

Xjku, ej +Nj > 2, Nj > 1, Xjk ∈ (C∞ +H∞b )Vb.

Then for small R > 0, there exists Cf > 0 such that for all forcing terms
f ∈ Hs−1,α

b (Ω;R)•,− with norm 6 Cf , the equation

(8.20) �g(u)u = f + q(u, bdu)

has a unique solution u ∈ X s,αR , with norm 6 R, and in the topology of
X s−1,α

R , u depends continuously on f . If in fact f ∈ Hs′−1,α
b (Ω;R)•,− for

some s′ ∈ (s,∞], then u ∈ X s
′,α

R .
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The initial metric g(0) can be more general, see Remark 8.6.

Remark 8.11. — As alluded to in §1, the class (C∞+H∞b )Vb of b-vector
fields is well-defined irrespective of the exponential compactification of the
static de Sitter space: Using the function t∗ from the beginning of §8.1,
one could use τ̃ := e−a(x)t∗ , with a > 0 a smooth function of the ‘spatial’
variables, to compactify the spacetime, i.e. use τ̃ as a boundary defining
function of future infinity, which in view of τ̃ = τa(x), τ = e−t∗ , leads to
a different smooth structure than if one compactifies using τ , however one
easily checks that the space H∞b on the compactification does not depend
on the choice of boundary defining function, and neither does the space
C∞ +H∞b .

Remark 8.12. — One could, for instance, choose the metrics gk such
that at every point p ∈ M , the linear space S2bTpM is spanned by the
gk(p), and in a similar manner the b-vector fields Xjk.

Remark 8.13. — The point of the last part of the theorem is that even
though a priori the radius of the ball which is the set of f ∈ Hs′−1,α

b (Ω)•,−
for which one has solvability in X s′,α according to Theorem 8.5 could shrink
to 0 as s′ → ∞, this does not happen in the setting of Theorem 8.10.
We use a straightforward approach to proving this by differentiating the
PDE; a somewhat more robust way could be to use Nash-Moser iteration,
see e.g. [35], which however would require a more careful analysis of all
estimates in §§3–7, as indicated, for instance, in Remark 4.1.(30)

Remark 8.14. — If f has more decay, say f ∈ H∞,∞b , it is relatively
straightforward to show that the solution u in fact has an asymptotic ex-
pansion to any fixed order, assuming f is small in an appropriate space.
Indeed, for such a statement, one only needs to replace the spaces X s,α by
similar spaces which now encode more precise partial asymptotic expan-
sions, as in [19, §2.3], and prove the persistence of such spaces under taking
reciprocals, compositions with smooth functions etc.

For the proof, we need one more definition:

Definition 8.15 (cf. [7, Definition 1.1]). — For s′ > s, α ∈ R and
Γ ⊂ bS∗M , let

Hs,α;s′,Γ
b := {u ∈ Hs,α

b : WFs
′,α

b (u) ∩ Γ = ∅}.

(30)Recently, this analysis has been done by Vasy and the author [18] and was used
there to study nonlinear waves on asymptotically Kerr-de Sitter spaces.
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Proof of Theorem 8.10. The map g satisfies the requirements of The-
orem 8.5 by Proposition 4.8, and q satisfies (8.14) with Lq(0) = 0, thus
Theorem 8.5 implies the existence and uniqueness of solutions in X s,α with
small norm as well as their stability in the topology of X s−1,α. The unique-
ness of u in all of X s,αR , in fact in Hs

b,loc(Ω◦), follows from local uniqueness
for quasilinear symmetric hyperbolic systems, see e.g. Taylor [37, §16.3].
It remains to establish the higher regularity statement; by an iterative

argument, it suffices to prove the following: If s′ > s, u ∈ X s
′−1/2,α

R ,
‖u‖X s,α 6 R, and u solves (8.20) with f ∈ Hs′−1,α

b , then u ∈ X s
′,α

R ; note
that we only make the s′-independent assumption of the X s,α-norm of u
being small – the reason for this assumption is that it ensures that �g(u)
fits into our framework.
We will use the summation convention for the remainder of the proof.

Equation (8.20) in local coordinates reads

(8.21)
(
gij(u)b∂2

ij + hj(u, b∂u)b∂j
)
u = f + q(u, b∂u),

where gij(v), hj(v; z) and q(v; z) are C∞-functions of v and z. As is stan-
dard in ODEs to obtain higher regularity (and exploited in a similar setting
by Beals and Reed [7, §4]), we will differentiate this equation with respect
to certain b-vector field V : After differentiating and collecting/rewriting
terms, one obtains an equation like (8.21) for V u, where only the coeffi-
cients of first order terms are changed, and without q and with a different
forcing term; one can then appeal to the regularity theory for the equation
for V u, which is thus again a wave equation with lower order terms. Con-
cretely, suppose Σ̃ ⊂ Σ is a closed subset of the characteristic set of �g(u),
consisting of bicharacteristic strips and contained in the coordinate patch
we are working in; we want to propagate X s′,α regularity of u into Σ̃, as-
suming we have this regularity on backward/forward bicharacteristics from
Σ̃ or in a punctured neighborhood of Σ̃. With π : bS∗M →M denoting the
projection to the base, choose χ, χ0 ∈ C∞c (Rn+) so that χ is identically 1
near π(Σ̃) and χ0 is identically 1 on suppχ. Let V0 ∈ Vb(Rn+) be a constant
coefficient b-vector field which is non-characteristic (in the b-sense) on Σ̃,
which is possible if Σ̃ is sufficiently small, and put V = χ0V0. Applying V
to (8.21), we obtain, suppressing the arguments u, b∂u,(

gijb∂2
ij+[hj+(∂zjhk)b∂ku−∂zjq]b∂j

)
Vu+(gij)′Vub∂2

iju+gij [V,b∂2
ij ]u

= V f + (∂vq)V u+ (∂zjq)[V, b∂j ]u

− (∂vhj)V u b∂ju− hj [V, b∂j ]u− (∂zjhk)[V, b∂k]u =: f1.
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Since V0 annihilates constants, V u ∈ Hs′−3/2,α
b locally near π(Σ̃). Similarly,

[V, b∂j ]u ∈ Hs′−3/2,α
b locally near π(Σ̃), and hj(u, b∂u) ∈ C∞ + H

s′−3/2,α
b ,

q(u, b∂u) ∈ H
s′−3/2,α
b , similarly for derivatives of hj and q; lastly, V f ∈

Hs′−2,α
b , thus f1 ∈ Hs′−2,α

b locally near π(Σ̃). We need to analyze the last
two terms on the left hand side: Since V is non-characteristic on suppχ ⊃
π(Σ̃), we can write

b∂j = (1− χ)b∂j +QjV + R̃j , Qj ∈ Ψ0
b, R̃j ∈ Ψ1

b,WF′b(R̃j) ∩ Σ̃ = ∅;

put Rj := (1−χ)b∂j+R̃j = b∂j−QjV . Note that Rj annihilates constants.
We can then write

b∂2
iju = b∂iQjV u+ b∂iRju,

and the second term is in H∞,αb microlocally near Σ̃. Thus, we have

(gij)′V u b∂2
iju =

(
(gij)′V u b∂iQj

)
V u+ (gij)′V u b∂iRju;

the second term on the right is a product of a function in Hs′−3/2,α
b with

b∂iRju, the latter a priori being an element of Hs′−5/2,α;∞,Σ̃
b ; we will prove

below in Lemma 8.16 that this product is an element of Hs′−5/2,α;s′−3/2,Σ̃
b .

Moreover, [V, b∂2
ij ] is a second order b-differential operator, vanishing on

constants, with coefficients vanishing near π(Σ̃); this implies gij [V, b∂2
ij ]u ∈

H
s′−5/2,α;∞,Σ̃
b . We conclude that

(8.22) P1(V u) = f2 ∈ Hs′−5/2,α;s′−2,Σ̃
b ,

where

P1 = �g(u) + P̃ , P̃ = [(∂zjhk)b∂ku− ∂zjq]b∂j + (gij)′V u b∂iQj .

Since we are assuming u ∈ X s′−1/2,α, and moreover P̃ is an element of
H
s′−3/2,α
b Ψ1

b near π(Σ̃), we see that, a forteriori,

P1 ∈ (C∞ +Hs′−1,α
b )Diff2

b + (C∞ +Hs′−2,α
b )Ψ1

b.

Hence, we can propagate Hs′−1,α
b regularity of V u into Σ̃ by Theorems 6.6

and 6.10; recall that these two theorems only deal with the propagation
of regularity which is 1/2 more than than the a priori regularity of V u,
which is Hs′−3/2,α

b . The point here is that real principal type propagation
only depends on the principal symbol of P1, which is the same as the
principal symbol of �g(u), and the propagation of Hs′−1,α

b regularity near
radial points works for arbitrary Hs′−2,α

b Ψ1
b-perturbations of �g(u); see

Remark 6.11. Therefore, writing u = c + u′ with u′ ∈ Hs′−1/2,α
b a priori,
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we obtain u′ ∈ Hs′,α
b microlocally near Σ̃ by standard elliptic regularity,

since V is non-characteristic on Σ̃. Away from the characteristic set of
�g(u),(31) we simply use P1V u ∈ Hs′−5/2,α

b and elliptic regularity for P1V

to deduce that u′ ∈ Hs′+1/2,α
b there;(32) here, we would choose V such that

it is non-characteristic on a set disjoint from Σ. Putting all such pieces of
regularity information together by choosing finitely many such sets Σ̃, we
obtain u′ ∈ Hs′,α

b,loc(Ω)•,−.
We can make this is a global rather than local statement by extending

Ω to the slightly larger domain Ω0,δ2 , δ2 < 0, solving the quasilinear PDE
there, and restricting back to Ω; thus u′ ∈ Hs′,α

b (Ω)•,−. �

To finish the proof, we need the following lemma, which we prove using
ideas from [7, Theorem 1.3].

Lemma 8.16. — Let α ∈ R and s > n/2 + 1. Then, in the notation of
Definition 8.15, for u ∈ Hs

b and v ∈ Hs−1,α;s,Γ
b , we have uv ∈ Hs−1,α;s,Γ

b .

Proof. — Without loss, we may assume α = 0. By Corollary 3.10, uv ∈
Hs−1

b , and we must prove the microlocal regularity of uv. Using a partition
of unity, it suffices to assume Γ = (Rn+)z ×K for a conic set K ⊂ Rnζ \ o;
moreover, since the complement of the wave front set is open, we can assume
that K is open. By assumption, we can then write

|û(ζ)| = u0(ζ)
〈ζ〉s

, u0 ∈ L2, |v̂(ζ)| =
(
χK(ζ)
〈ζ〉s

+ χKc(ζ)
〈ζ〉s−1

)
v0(ζ), v0 ∈ L2,

where χK denotes the characteristic function ofK, andKc the complement
of K. Now, let K0 ⊂ K be closed and conic. Then

χK0(ζ)|ûv(ζ)|〈ζ〉s 6
∫
χK0(ζ)〈ζ〉s

〈ζ − ξ〉s

(
χK(ξ)
〈ξ〉s

+ χKc(ξ)
〈ξ〉s−1

)
u0(ζ − ξ)v0(ξ) dξ

We want to use Lemma 3.7 to show that this is an element of L2, thus
finishing the proof. But we have

〈ζ〉s

〈ζ − ξ〉s〈ξ〉s
∈ L∞ζ L2

ξ ,

and on the support of χK0(ζ)χKc(ξ), we have |ζ − ξ| > c|ζ|, c > 0, thus
χK0(ζ)χKc(ξ)〈ζ〉s

〈ζ − ξ〉s〈ξ〉s−1 .
1

〈ξ〉s−1 ∈ L
∞
ζ L

2
ξ ,

since s > n/2 + 1. �

(31)Notice that P1 and �g(u) have the same characteristic set.
(32)Let us stress the importance of only using local rather than microlocal regularity
information of P1V u, since the proof of Theorem 5.1, giving elliptic regularity for V u
solving P1(V u) = f , only works with local assumptions on f , see Remark 5.2.
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8.3. Conformal changes of the metric

Reconsidering the proof of Theorem 8.5, one cannot bound

‖(Sg(u) − Sg(v))‖L(Hs−1,α
b ,X s,α) . ‖u− v‖X s,α

in general,(33) which however would immediately give uniqueness and sta-
bility of solutions to (8.15) in the space X s,α. But there is a situation where
we do have good control on Sg(u) − Sg(v) as an operator from Hs−1,α

b to
X s,α, namely when �g(u) and �g(v) have the same characteristic set, since
in this case, in (8.19) the composition of �g(v) −�g(u) with Sg(v) loses no
derivative (ignoring issues coming from the limited regularity of g(u), g(v)
for the moment – they will turn out to be irrelevant). This situation arises
if g(u) = µ(u)g(0) for µ(u) ∈ C∞(M)+Hs

b(M); that this is in fact the only
possibility is shown by a pointwise application of the following lemma.

Lemma 8.17. — Let d > 1, and assume g, g′ are bilinear forms on R1+d

with signature (1, d) such that the zero sets of the associated quadratic
forms q, q′ coincide. Then g = µg′ for some µ ∈ R×.

Proof. — By a linear change of coordinates, we may assume that g′ is the
Minkowski bilinear form on R1+d. Let gij , 0 6 i, j 6 d, be the components
of g, and let us write vectors in R1+d as (x1, x

′) ∈ R×Rd. Since g′(1, 0) 6= 0,
we have g(1, 0) = g00 6= 0. Dividing g by µ := g00, we may assume g00 = 1;
we now show that g = g′. For all x′ ∈ Rd, |x′| = 1 (Euclidean norm!),
we have q(1, x′) = 0 and q(1,−x′) = 0, hence q(1, x′) − q(1,−x′) = 0, in
coordinates

4
∑
i>1

g0ix
′
i = 0, |x′| = 1,

and thus g0i = 0 for all i > 1. Now let q̃(x′) := q(0, x′) and q̃′(x′) :=
q′(0, x′), then

q̃(x′) = −1 ⇐⇒ q(1, x′) = 0 ⇐⇒ q′(1, x′) = 0 ⇐⇒ q̃′(x′) = −1,

thus by scaling q̃ ≡ q̃′ on Rd, hence by polarization gij = g′ij for 1 6 i, j 6 d,
and the proof is complete. �

(33) Indeed, consider a similar situation for scalar first order operators Pa := ∂t − a∂x,
a ∈ R, on [0, 1]t × Rx. The forward solution operator Sa is constructed by integrating
the forcing term along the bicharacteristics s 7→ (s, x0 − as) of Pa, and it is easy to see
that Sa ∈ L(L2, L2). However, Sa−Sb is constructed using the difference of integrals of
the forcing f along two different bicharacteristics, which one can naturally only bound
using df , i.e. one only obtains the estimate ‖(Sa − Sb)f‖L2 . |a− b|‖f‖H1 , which is an
estimate with a loss of 2 derivatives, similar to (8.19). The core of the problem is that
there is no estimate of the form ‖f(·+ a)− f‖L2 . |a|‖f‖L2 , although such an estimate
holds if the norm on the right is replaced by the H1-norm.
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In this restricted setting, we have the following well-posedness result;
notice that the topology in which we have stability is stronger than in
Theorem 8.5, and we also allow more general non-linearities q.

Theorem 8.18. — Let s > n/2 + 6, 0 < α < 1. Let

g0 ∈ (C∞ +Hs,α
b )(M ;S2bT ∗M)

be a metric satisfying the assumptions (1)-(8) in §7.2 on Ω, for example
g0 = gdS (see also Remark 8.6) and let µ : X s,α → X s,0R be(34) a continuous
map with µ(0) = 1 and

(8.23) ‖µ(u)− µ(v)‖X s,0 6 Lµ(R)‖u− v‖X s,α

for all u, v ∈ X s,α with norms 6 R, where Lµ : R>0 → R is continuous and
non-decreasing. Put g(u) := µ(u)g0.
(1) Let

(8.24) q : X s,α ×Hs−1,α
b (Ω; bT ∗ΩM)•,− → Hs−1,α

b (Ω)•,−

be continuous with q(0) = 0, satisfying

(8.25) ‖q(u, bdu)− q(v, bdv)‖Hs−1,α
b (Ω)•,− 6 Lq(R)‖u− v‖X s,α

for all u, v ∈ X s,α with norms 6 R, where Lq : R>0 → R is continuous
and non-decreasing. Then there is a constant CL > 0 so that the
following holds: If Lq(0) < CL, then for small R > 0, there is Cf > 0
such that for all f ∈ Hs−1,α

b (Ω)•,− with norm 6 Cf , there exists a
unique solution u ∈ X s,α of the equation

(8.26) �g(u)u = f + q(u, bdu)

with norm 6 R, which depends continuously on f .
(2) More generally, if

(8.27) q : X s,α ×Hs−1,α
b (Ω; bT ∗ΩM)•,− ×Hs−1,α

b (Ω)•,− → Hs−1,α
b (Ω)•,−

is continuous with q(0) = 0 and satisfies

‖q(u1,
bdu1, w1)− q(u2,

bdu2, w2)‖Hs−1,α
b (Ω)•,−

6 Lq(R)
(
‖u1 − u2‖X s,α + ‖w1 − w2‖Hs−1,α

b (Ω)•,−
)(8.28)

for all uj ∈ X s,α, wj ∈ Hs−1,α
b (Ω)•,− with ‖uj‖ + ‖wj‖ 6 R, then

there is a constant CL > 0 such that the following holds: If Lq(0) <
CL, then for small R > 0, there is Cf > 0 such that for all f ∈

(34)X s,αR was defined in (8.16).
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Hs−1,α
b (Ω)•,− with norm 6 Cf , there exists a unique solution u ∈ X s,α

of the equation

(8.29) �g(u)u = f + q(u, bdu,�g(u)u)

with ‖u‖X s,α + ‖�g0u‖Hs−1,α
b

6 R, which depends continuously on f .

Proof. — First, note thatN(�g(u)) = µ(u)|YN(�g0), which is a constant
multiple of N(�g0) by the definition of the space X s,α. Thus, as in the proof
of Theorem 8.5, there exists RS > 0 such that

Sg(u) : Hs−1,α
b (Ω)•,− → X s,α

is continuous with uniformly bounded operator norm

‖Sg(u)‖ 6 CS ;

for ‖u‖X s,α 6 RS ; let us also assume that

(8.30) |µ(u)| > c0 > 0, ‖u‖X s,α 6 RS .

We now prove the first half of the theorem. Let CL := C−1
S , and as-

sume that Lq(0) < CL, then Lq(Rq) < CL for Rq > 0 small. Put R̃ :=
min(RS , Rq); let 0 < R 6 R̃, to be specified later, and put and Cf (R) =
R(C−1

S − Lq(R)); let f ∈ Hs−1,α
b (Ω)•,− have norm 6 Cf (R). Let B(R)

denote the metric ball of radius R in X s,α, and define T : B(R)→ B(R),

Tu := Sg(u)
(
f + q(u, bdu)

)
.

By the choice of R,CL and Cf , T is well-defined by the same estimate as
in the proof of Theorem 8.5. The crucial new feature here is that for R
sufficiently small, T is in fact a contraction. This follows once we prove the
existence of a constant Ci > 0 such that for u, v ∈ X s,α with norms 6 R,
we have

(8.31) ‖Sg(u) − Sg(v)‖L(Hs−1,α
b ,X s,α) 6 CSCiLµ(R)‖u− v‖X s,α .

Indeed, assuming this, we obtain

‖Tu− Tv‖X s,α

6
∥∥Sg(u)

(
q(u, bdu)− q(v, bdv)

)∥∥
X s,α

+‖(Sg(u) − Sg(v))(f + q(v, bdv))‖X s,α

6
(
CSLq(R) + CSCiLµ(R)(Cf (R) + Lq(R)R)

)
‖u− v‖X s,α ;

and since CSLq(R) 6 CSLq(R̃) < θ < 1 for R 6 R̃, we can choose R so
small that

(8.32) CSCiLµ(R)(Cf (R) + Lq(R)R) 6 θ − CSLq(R),
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where we use that Cf (R) → 0 as R → 0. With this choice of R, T is
a contraction, thus has a unique fixed point u ∈ X s,α which solves the
PDE (8.26).
Continuing to assume (8.31), let us prove the continuous dependence of

the solution u on f . For this, let us assume that uj ∈ X s,α, j = 1, 2, solves

�g(uj)uj = fj + q(uj , bduj),

where fj ∈ Hs−1,α
b has norm 6 Cf . Then, as in the proof of Theorem 8.5,

‖u1 − u2‖X s,α 6 CS
(
‖f1 − f2‖Hs−1,α

b

+ (Lq(R) + CiLµ(R)(Cf + Lq(R)R))‖u1 − u2‖X s,α
)
.

Because of (8.32), the prefactor of ‖u1 − u2‖ on the right hand side is
6 θ < 1, hence we conclude

‖u1 − u2‖X s,α 6
CS

1− θ‖f1 − f2‖Hs−1,α
b

,

as desired.
We now prove the crucial estimate (8.31) by using the identity in (8.19),

as follows: By definition of �, we have

(8.33) �g(u) = �
µ(v)g0

µ(u)
µ(v)

= µ(v)
µ(u)�g(v) + Eu,v,

where Eu,v ∈ Hs−1,α
b Vb satisfies the estimate(35)

‖Eu,v‖Hs−1,α
b Vb

6 C

∥∥∥∥bd

(
µ(v)
µ(u)

)∥∥∥∥
Hs−1

b

,

where the constant C is uniform for ‖u‖X s,α , ‖v‖X s,α 6 R. Thus,

‖(�g(v) −�g(u))Sg(v)‖L(Hs−1,α
b )

6

∥∥∥∥1− µ(v)
µ(u)

∥∥∥∥
L(Hs−1,α

b )
+ ‖Eu,v‖L(X s,α,Hs−1,α

b )‖Sg(v)‖L(Hs−1,α
b ,X s,α)

6

∥∥∥∥1− µ(v)
µ(u)

∥∥∥∥
X s−1,0

+ CCS

∥∥∥∥bd

(
µ(v)
µ(u)

)∥∥∥∥
Hs−1

b

.

Now, ∥∥∥∥1− µ(v)
µ(u)

∥∥∥∥
X s−1,0

6 C ′
∥∥∥∥ 1
µ(u)

∥∥∥∥
X s−1,0

‖µ(u)− µ(v)‖X s−1,0

6 C ′iLµ(R)‖u− v‖X s,α ,
(8.34)

(35)To define a norm of an element E ∈ Hσ,ρ
b Vb(M), use a partition of unity on M to

reduce this task to a local one, and as the norm of E ∈ Hσ,ρ
b Vb(Rn+), take the sum of

the Hσ,ρ
b -norms of the coefficients of E.
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where

C ′i := C ′ sup
‖w‖Xs,α6R

∥∥∥∥ 1
µ(w)

∥∥∥∥
X s,0

<∞

by assumption (8.30) and Lemma 4.2. Likewise, since bd(µ(v)/µ(u)) =
bd
(
µ(v)/µ(u)− 1

)
,∥∥∥∥bd

(
µ(v)
µ(u)

)∥∥∥∥
Hs−1

b

6

∥∥∥∥1− µ(v)
µ(u)

∥∥∥∥
X s,0
6 C ′iLµ(R)‖u− v‖X s,α ;

therefore,

(8.35) ‖(�g(v) −�g(u))Sg(v)‖L(Hs−1,α
b ) 6 CiLµ(R)‖u− v‖X s,α

for Ci = C ′i(1+CCS), and with ‖Sg(u)‖L(Hs−1,α
b ,X s,α) 6 CS and the identity

in (8.19), we finally obtain the estimate (8.31).
We proceed to prove the second half of the theorem along the lines of

the proof of [19, Theorem 2.24]. We work on the Banach space
(8.36)
Ys,α := {u ∈ X s,α : �g0u ∈ H

s−1,α
b }, ‖u‖Ys,α = ‖u‖X s,α + ‖�g0u‖Hs−1,α

b
.

The idea is that all operators �g(u) are (pointwise) multiples of each other
modulo first order operators, thus�g0 is as good as any other such operator,
and therefore �g0 in the third argument of the non-linearity q acts as a
first order operator on the successive approximations T k(0) in the iteration
scheme implicit in the application of the Banach fixed point theorem used
above to solve equation (8.26). Thus, let B(R) denote the metric ball of
radius R 6 RS in Ys,α, and define T : B(R)→ Ys,α,

Tu := Sg(u)
(
f + q(u)

)
where we write q(u) := q(u, bdu,�g(u)u) to simplify the notation. We will
prove that for R > 0 small enough, the image of T is contained in B(R).
We first estimate for u ∈ B(R) and w ∈ Ys,α, using (8.33) and an estimate
similar to (8.34) (with v = 0):

‖�g(u)w‖Hs−1,α
b

6 ‖�g(0)w‖Hs−1,α
b

+ ‖(�g(u) −�g(0))w‖Hs−1,α
b

6 ‖w‖Ys,α + C̃i‖u‖X s,α‖w‖Ys,α

6 (1 + C̃iR)‖w‖Ys,α

for some constant C̃i > 0. For convenience, we choose R 6 C̃−1
i , thus

‖�g(u)w‖Hs−1,α
b

6 2‖w‖Ys,α , w ∈ Ys,α.
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Using this, we obtain for u, v ∈ B(R):

‖�g(u)u−�g(v)v‖Hs−1,α
b

6 ‖�g(u)(u− v)‖Hs−1,α
b

+ ‖(�g(u) −�g(v))v‖Hs−1,α
b

6 2‖u− v‖Ys,α +
∥∥∥∥((1− µ(u)

µ(v)

)
�g(u) − Ev,u

)
v

∥∥∥∥
Hs−1,α

b

6 2‖u− v‖Ys,α + C ′Lµ(R)‖u− v‖X s,α
(
‖�g(u)v‖Hs−1,α

b
+ ‖v‖X s,α

)
6 (2 + 3C ′Lµ(R)R)‖u− v‖Ys,α 6 3‖u− v‖Ys,α

for sufficiently small R, where C ′ = C ′i(1+C). Thus, with L′q(R) := 3Lq(R),
we have

‖q(u)− q(v)‖Hs−1,α
b

6 L′q(R)‖u− v‖Ys,α

for u, v ∈ Ys,α with norm 6 R.
We can now analyze the map T : First, for u ∈ B(R) and f ∈ Hs−1,α

b ,
‖f‖ 6 Cf , we have, recalling (8.35), here applied with v = 0,

‖Tu‖X s,α 6 CS(Cf + L′q(R)R)

and

‖�g(0)Tu‖Hs−1,α
b

6 ‖(�g(0) −�g(u))Sg(u)(f + q(u))‖Hs−1,α
b

+ ‖f + q(u)‖Hs−1,α
b

6 (1 + CiLµ(R)R)(Cf + L′q(R)R).

Thus, if L′q(0) < (1 + CS)−1, then

Cf (R) := R
(
(1 + CS + CiLµ(R)R)−1 − L′q(R)

)
is positive for small enough R > 0. We conclude that for f ∈ Hs−1,α

b with
norm 6 Cf (R), the map T indeed maps B(R) into itself. We next have
to check that T is in fact a contraction on B(R), where we choose R even
smaller if necessary. As in the proof of the first half of the theorem, we can
arrange

(8.37) ‖Tu− Tv‖X s,α 6 θ‖u− v‖Ys,α , u, v ∈ B(R)

for some fixed θ < 1. Moreover, for u, v ∈ B(R),

‖�g(0)(Tu− Tv)‖Hs−1,α
b

6 ‖�g(0)Sg(u)(q(u)− q(v))‖Hs−1,α
b

+ ‖�g(0)(Sg(u) − Sg(v))(f + q(v))‖Hs−1,α
b

.

(8.38)
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The first term on the right can be estimated by

‖q(u)− q(v)‖Hs−1,α
b

+ ‖(�g(u) −�g(0))Sg(u)(q(u)− q(v))‖Hs−1,α
b

6 L′q(R)(1 + CiLµ(R)R)‖u− v‖Ys,α .

For the second term on the right hand side of (8.38), we use the algebraic
identity

�g(0)(Sg(u) − Sg(v)) = (I + (�g(0) −�g(u))Sg(u))(�g(v) −�g(u))Sg(v),

which gives

‖�g(0)(Sg(u) − Sg(v))‖L(X s−1,α) 6 (1 + CiLµ(R)R)CiLµ(R)‖u− v‖Ys,α .

Plugging this into equation (8.38), we obtain

‖�g(0)(Tu− Tv)‖Hs−1,α
b

6 C ′(R)‖u− v‖Ys,α

with

C ′(R) = (1 + CiLµ(R)R)
(
L′q(R) + CiLµ(R)(Cf (R) + L′q(R)R)

)
.

Now if L′q(0) is sufficiently small, then since the second summand of the
second factor of C ′(R) tends to 0 as R→ 0, we can choose R so small that
C ′(R) < 1− θ, and we finally get with (8.37):

‖Tu− Tv‖Ys,α 6 θ′‖u− v‖Ys,α , u, v ∈ B(R),

for some θ′ < 1, which proves that T is a contraction on B(R), thus has
a unique fixed point, which solves the PDE (8.29). The continuous depen-
dence on f is shown as in the proof of the first half of the theorem. �

Remark 8.19. — The space Ys,α introduced in the proof of the second
part, see equation (8.36), which the solution u of equation (8.29) belongs to,
is a coisotropic space similar to the ones used in [40, 19], with the difference
being that here �g0 is allowed to have non-smooth coefficients. It still is a
natural space in the sense that the space of elements of the form c(φ◦t1)+w,
c ∈ C, w ∈ Ċ∞c , is dense. Indeed, since �g0 annihilates constants, it suffices
to check that Ċ∞c is dense in Ys,α0 := {u ∈ Hs,α

b : �g0u ∈ Hs−1,α
b }. Let

Jε be a mollifier as in Lemma 6.5. Given u ∈ Ys,α0 , put uε := Jεu. Then
uε → u in Hs,α

b , and

�g0uε = Jε�g0u+ [�g0 , Jε]u;

the first term converges to �g0u in Hs−1,α
b . To analyze the second term,

observe that we have

�g0Jε − Jε�g0 = �g0(Jε − I) + (I − Jε)�g0 → 0
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strongly in L(Hs+1,α
b , Hs−1,α

b ), and since Hs+1,α
b ⊂ Hs,α

b is dense, it suffices
to show that [�g0 , Jε] is a bounded family in L(Hs,α

b , Hs−1,α
b ). Write

�g0 = Q1 +Q2 + E,

Q1 ∈ Diff2
b, Q2 ∈ Hs,α

b Diff2
b, E ∈ (C∞ +Hs−1,α

b )Diff1
b.

Then [Q1, Jε] and [E, Jε] are bounded in L(Hs,α
b , Hs−1,α

b ). Now Q2Jε can be
expanded into a leading order term Q′ε and a remainder R1,ε which is uni-
formly bounded in Hs

bΨ1
b; but also JεQ2 has an expansion by Theorem 3.12

(2a) (with k = k′ = 1) into the same leading order term Q′ε and a remainder
R2,ε which is uniformly bounded in Ψ1;0

b Hs−1
b . Hence [Q2, Jε] = R1,ε−R2,ε

is bounded in L(Hs,α
b , Hs−1,α

b ) by Proposition 3.9, finishing the argument.

8.4. Quasilinear Klein-Gordon equations

One has corresponding results to the theorems in the previous two sec-
tions for quasilinear Klein-Gordon equations, i.e. for Theorems 8.5, 8.10
and 8.18 with � replaced by �−m2; only the function spaces need to be
adapted to the situation at hand, as follows: Denote P := �gdS −m2 and
let (σj)j∈N be the sequence of poles of P̂ (σ)−1, with multiplicity, sorted by
increasing − Im σj .(36) Let us assume that the ‘mass’ m ∈ C is such that
Im σ1 < 0. A major new feature of Klein-Gordon equations as compared
to wave equations is that non-linearities like q(u) = up can be dealt with,
more generally

q(u, bdu) =
∑
j

uej
Nj∏
l=1

Xjku, ej +Nr > 2, Xjk ∈ (C∞ +H∞b )Vb.

See [19, Theorem 2.24] for the related discussion of semilinear equations.
We give an (incomplete) short list of possible scenarios and the relevant
function spaces; for concreteness, we work on exact de Sitter space, but our
methods work in much greater generality.
(1) If Im σ1 6= Im σ2, as is e.g. the case for small mass m2 < (n − 1)2/4,

let α0 = min(1, Im σ1 − Im σ2), and for − Im σ1 < α < − Im σ1 + α0,
put

X s,α := C(τ iσ1)⊕Hs,α
b .

(36)See equation (8.13) for the explicit formula. Also keep in mind that everything we
do works in greater generality; we stick to the case of exact de Sitter space here for
clarity.
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We can then solve quasilinear equations of the form explained above
with forcing in Hs−1,α

b and get one term, cτ iσ1 , in the expansion of
the solution. Notice that if the mass is real and small, then all σj are
purely imaginary, hence the term in the expansion is real as well if all
data are, which is necessary for an analogue of Theorem 8.10 to hold.

(2) If Im σ1 − Im σ2 < 1, e.g. if m2 > n(n− 2)/4, let α0 := min(1, Im σ1 −
Im σ3), and for − Im σ2 < α < − Im σ1 + α0, put

X s,α := C(τ iσ1)⊕ C(τ iσ2)⊕Hs,α
b , σ2 6= σ1,

X s,α := C(τ iσ1)⊕ C(τ iσ1 log τ)⊕Hs,α
b , σ2 = σ1,

then we can solve equations as above with forcing inHs−1,α
b and obtain

two terms in the expansion. For masses m2 > (n − 1)2/4, we have
Im σ1 = Im σ2 =: −σ and Reσ1 = −Reσ2 =: ρ, hence the terms in
the expansion for real data are a linear combination of τσ cos(ρτ) and
τσ sin(ρτ).

(3) If the forcing decays more slowly than τ iσ1 , then with 0 < α < − Im σ1,
we can work on the space

X s,α := Hs,α
b ,

with forcing in Hs−1,α
b .

To prove the higher regularity statement in Theorem 8.10 for quasilinear
Klein-Gordon equations, one first obtains higher regularity Hs′,α

b with 0 6
α < − Im σ1 and then, if the amount of decay of the forcing is high enough
to allow for it, applies Theorem 7.10 to obtain a partial expansion of u.

In the third setting, the assumption that the mass m is independent of
the solution u can easily be relaxed: Namely, assuming that m = m(u) or
m = m(u, bdu) with continuous (or Lipschitz) dependence on u ∈ X s,α, the
poles of the inverse of the normal operator family of �g(u)−m(u)2 depend
continuously on u, hence for small u, there is still no pole with imaginary
part > −α, therefore the solution operator produces an element of Hs,α

b for
small u; thus, well-posedness results analogous to Theorems 8.5 and 8.18
continue to hold in this setting. If the forcing in fact does decay faster
than τ iσ1 , these results can be improved in many cases: Once one has the
solution u ∈ Hs,α

b , in particular the mass m(u) is now fixed, one can apply
Theorem 7.10 to obtain a partial expansion of u.
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8.5. Backward problems

We briefly indicate how our methods also apply to backward problems
on static patches of (asymptotically) de Sitter spaces; see Figure 8.2 for an
exemplary setup.

Figure 8.2. Setup for a backward problem on static de Sitter space:
We work on spaces with high decay, consisting of functions supported
at H2 and extendible at H1 (notice the switch compared to the forward
problem). In the situation shown, we prescribe initial data at H2 or,
put differently, forcing in the shaded region.

We only state an analogue of Theorem 8.10, but remark that analogues
of Theorems 8.5 and 8.18 also hold. For simplicity, we again only work on
static de Sitter spaces. We use the notation from §7.2.

Theorem 8.20. — Let s > n/2 + 6, N,N ′ ∈ N, and suppose ck ∈
C∞(R;R), gk ∈ (C∞ + Hs

b)(M ;S2bT ∗M) for 1 6 k 6 N ; for r ∈ R, define
the map

g : Hs,r
b (Ω)−,• → (C∞ +Hs,r

b )(M ;S2bT ∗M), g(u) =
N∑
k=1

ck(u)gk,

and assume g(0) = gdS. Moreover, define

q(u, bdu) =
N ′∑
j=0

uej
Nj∏
k=1

Xjku, ej +Nj > 2, Xjk ∈ (C∞ +H∞b )Vb(M),

and let further L ∈ Diff1
b with real coefficients. Then there is r∗ ∈ R such

that for all r > r∗, the following holds: For small R > 0, there exists Cf > 0
such that for all f ∈ Hs−1,r

b (Ω;R)−,• with norm 6 Cf , the equation

(�g(u) + L)u = f + q(u, bdu)

has a unique solution u ∈ Hs,r
b (Ω;R)−,• with norm 6 R, and in the

topology of Hs−1,r
b (Ω)−,•, u depends continuously on f . If one in fact has

f ∈ Hs′−1,r
b (Ω;R)−,• for some s′ ∈ (s,∞], then u ∈ Hs′,r

b (Ω;R)−,•.
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Remark 8.21. — Notice that the structure of lower order terms is com-
pletely irrelevant here! One could in fact let L depend on u in a Lipschitz
fashion and still have well-posedness.

Proof of Theorem 8.20. — Let r0 < 0 as given by Lemma 7.3, and sup-
pose r > −r0. As in the proof of Lemma 7.5, we obtain for u ∈ Hs,r

b (Ω)−,•
with ‖u‖ 6 R, R > 0 sufficiently small, a backward solution operator

Sg(u) : H−1,r
b (Ω)−,• → H0,r

b (Ω)−,•

for �g(u) + L, with uniformly bounded operator norm. Now, if we take
r > r∗ with r∗ > −r0 sufficiently large, Sg(u) restricts to an operator

Sg(u) : Hs−1,r
b (Ω)−,• → Hs,r

b (Ω)−,•.

Indeed, given v ∈ H0,r
b (Ω)−,• solving �g(u)v ∈ Hs−1,r

b (Ω)−,•, we apply the
propagation near radial points, Theorem 6.10, this time propagating regu-
larity away from the boundary, and the real principal type propagation and
elliptic regularity iteratively to prove v ∈ Hs,r

b (Ω)−,•; the last application
of the radial points result requires that r be larger than an s-dependent
quantity, hence the condition on r∗ in the statement of the theorem. From
here, a Picard iteration argument, namely considering

u 7→ Sg(u)(f + q(u, bdu)),

gives existence and well-posedness. The higher regularity statement can be
proved as in the proof of Theorem 8.10. �

A slightly more elaborate version of this theorem, applied to the Einstein
vacuum equations, should enable us to construct vacuum asymptotically de
Sitter spacetimes as done in the Kerr setting in [10]. In fact, apart from
constructing appropriate initial data, this should work in the Kerr-de Sit-
ter setting as well, yielding the existence of dynamical vacuum black holes
in de Sitter spacetimes; the point here is that for the backward problem,
one works in decaying spaces, where one has non-trapping estimates in
the smooth setting, as proved in [20] by a positive commutator argument,
which, along the lines of the proofs in §6, holds in the non-smooth setting as
well.(37) We point out however that the authors of [10] consider a character-
istic problem, whereas our analysis, without further modifications, would
require initial data on spacelike hypersurfaces placed beyond the horizons,
which makes the construction of initial data much more difficult.

(37) Indeed, the latter has recently been shown in [18].
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