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UNFOLDINGS AND DEFORMATIONS OF RATIONAL
AND LOGARITHMIC FOLIATIONS

by Ariel MOLINUEVO (*)

Abstract. — We study codimension one foliations in projective space Pn over
C by looking at its first order perturbations: unfoldings and deformations. We give
special attention to foliations of rational and logarithmic type.

For a differential form ω defining a codimension one foliation, we present a
graded module U(ω), related to the first order unfoldings of ω. If ω is a generic
form of rational or logarithmic type, as a first application of the construction of
U(ω), we classify the first order deformations that arise from first order unfoldings.
Then, we count the number of isolated points in the singular set of ω, in terms of
a Hilbert polynomial associated to U(ω).

We review the notion of regularity of ω in terms of a long complex of graded
modules that we also introduce in this work. We use this complex to prove that,
for generic rational and logarithmic foliations, ω is regular if and only if every
unfolding is trivial up to isomorphism.
Résumé. — Nous étudions des feuilletages de codimension un dans l’espace

projectif Pn sur C en regardant leurs perturbations du premier ordre: déploiements
et déformations. Nous prêtons une attention particulière aux feuilletages rationnels
et logarithmiques.

Pour une forme différentielle ω définissant un feuilletage de codimension un,
nous présentons un module gradué U(ω), lié aux déploiements du premier ordre de
ω. Si ω est une forme générique de type rationnel ou logarithmique, comme une
première application de la construction de U(ω), nous classifions les déformations
du premier ordre qui apparaissent à partir des déploiements du premier order.
Ensuite, nous comptons le nombre de points isolés dans l’ensemble singulier de ω,
en termes d’un polynôme de Hilbert associé à U(ω).

Nous revoyons la notion de régularité de ω en termes d’un complexe long de
modules gradués que nous introduisons dans ce travail. Nous utilisons ce complexe
pour prouver que, pour des feuilletages rationnels et logarithmiques génériques, ω
est régulièr si et seulement si tout déploiement est trivial modulo isomorphisme.

Keywords: foliations, codimension one, unfoldings, deformations.
Math. classification: 37F75, 14D20, 14B10.
(*) The author was fully supported by CONICET, Argentina.
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1. Introduction

An algebraic foliation of codimension one and degree e− 2 in projective
space Pn over C, is given by a global section ω of the sheaf of twisted
differential 1-forms Ω1

Pn(e) that verifies the Frobenius integrability condi-
tion ω ∧ dω = 0. The space of such foliations forms a projective variety
F1(Pn)(e). For arbitrary n and e not much is known about the irreducible
components of F1(Pn)(e). We refer the reader to [22] and [4] where they
classify the space of foliations of degree 1 and 2 respectively in Pn.
There are two natural ways to make a first order perturbation of a codi-

mension one foliation defined by ω, namely first order deformations and
unfoldings. The first order deformations, are given by a family of differ-
ential forms ωε parameterized by an infinitesimal parameter ε, such that
ωε is integrable for every fixed ε and at the origin coincides with ω up to
scalar multiplication. On the other side, first order unfoldings have a more
restrictive definition; they are given by a codimension one foliation ω̃ε in
an infinitesimal neighborhood of Pn, such that its restriction to the central
fiber gives the original form ω up to scalar multiplication. As we will see
later in Section 2.2, if ω is an integrable global section of Ω1

Pn(e), then first
order deformations and unfoldings can be parameterized by the C-vector
spaces

D(ω) =
{
η ∈ H0 (Ω1

Pn(e)
)

: ω ∧ dη + dω ∧ η = 0
}/

C.ω

U(ω) =
{

(h, η) ∈ H0 ((OPn × Ω1
Pn

)
(e)
)

: hdω = ω ∧ (η − dh)
}/

C.(0, ω)

respectively. As expected, the vector space D(ω) can be identified with the
Zariski tangent space at ω, see [7] or [18]. Denoting by K(ω) the integrating
factors of ω as in Definition 2.10, both types of perturbations can be related
via the exact sequence

0 // K(ω) // U(ω) // D(ω).

C. Camacho and A. Lins-Neto, in [3], define the following notion of reg-
ularity of an integrable, homogeneous, differential 1-form and prove an
associated stability result. By looking at ω as a homogeneous affine form
in Cn+1, ω is said to be regular if for every a < e the graded complex of
homogeneous elements

(1.1) TCn+1(a− e) // Ω1
Cn+1(a) // Ω2

Cn+1(a+ e)
X � // LX(ω)

η ω M η := ω ∧ dη + dω ∧ η� //

ANNALES DE L’INSTITUT FOURIER
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has trivial homology in degree 1, where LX(ω) is the Lie derivative of
ω with respect to the vector field X and in parenthesis we indicate the
homogeneous component of the given degree.
As a first step towards classifying the space of foliations, we studied

the function a 7−→ ϕω(a) := dimC (Ker(ω M −)(a)), for every a ∈ N.
Even if the application η 7→ ω M η is a differential operator, we prove
in Theorem 6.8 that the values of ϕω grow polynomially. Then, there is
a Hilbert polynomial associated to ϕω exposing discrete invariants. The
study of the behavior of ϕω and the information attached to its Hilbert
polynomial took us to a deeper knowledge of first order unfoldings and
deformations that we present in this paper.

?

Rational and logarithmic foliations define irreducible components of the
space of codimension one foliations, as it is shown by X. Gómez Mont
and A. Lins-Neto in [14] and later by F. Cukierman, J. V. Pereira and
I. Vainsencher in [7] for rational foliations and O. Calvo Andrade in [1]
for logarithmic foliations. Rational and logarithmic foliations in Pn can be
given, respectively, by differential forms of the type

ωR = rFdG− sGdF and ωL =
(

s∏
i=1

fi

)
s∑
i=1

λi
dfi
fi
,

for polynomials F and G of degree r and s, and polynomials fi of degree
di and scalars λi such that

∑s
i=1 λidi = 0 for s > 2.

In [7] the authors proves the infinitesimal stability of a generic rational
foliation ωR, showing that D(ωR) is generated by perturbations of the
parameters F and G. On the other side, using [1] one can only show that the
perturbations of the parameters fi and {λi} generate all the deformations
of the space of logarithmic foliations as a set, i.e., disregarding the sheaf
structure along with any algebraic multiplicity that may arise from the
equation ω ∧ dω = 0. This way, we get a partial description of D(ωL) in
terms of the parameters defining ωL, as we will see in Corollary 2.17.
Let us denote by (Cn+1, 0) the infinitesimal analytic neighborhood of

the origin in Cn+1. Since ω defines a global foliation in Pn, it is natural to
look at the germ of analytic foliation induced by ω in (Cn+1, 0). The space
of analytic germs Uhol(ω) of first order unfoldings of ω, has an analogous
definition to the projective one. As we will see in Section 2.3, one can
associate to Uhol(ω) an ideal Ihol(ω) of the space of holomorphic function
germs, who allows us to study Uhol(ω) with a nicer structure. We refer
to [34] for a complete exposition on this.

TOME 66 (2016), FASCICULE 4



1586 Ariel MOLINUEVO

In [33] and [32], T. Suwa was able to find generators of Ihol(ω) for generic
foliations of rational and logarithmic type, showing that

(1.2) Ihol(ωR) = (F,G) and Ihol(ωL) = (F1, . . . , Fs)

where Fi =
∏
j 6=i fj . The lack of this ideal structure in the global projective

case, makes difficult to recover the information made available by (1.2) to
study first order unfoldings of rational and logarithmic foliations.
To bypass this situation, we propose a new definition of a graded module

U(ω) over the ring S of homogeneous coordinates in Pn, that we call the
module of graded projective unfoldings associated to ω. If R denotes the
radial vector field and Ω1

S the module of differential 1-forms of S over C,
we define U(ω) as

U(ω) =
{

(h, η) ∈ S × Ω1
S : LR(h) dω = LR(ω) ∧ (η − dh)

}/
S.(0, ω),

and refer to Definition 3.1 for the details on the module structure of U(ω).
With this module, we can emulate the situation in the infinitesimal analytic
case and define, by projecting on the first coordinate, a graded ideal I(ω)
on S. By doing so, we can rapidly translate the results of T. Suwa shown
in (1.2), to global foliations in Pn.
As a first application of U(ω), we were able to classify which first or-

der deformations come from first order unfoldings. See Theorem 4.1 and
Theorem 4.3 for a complete statement of the following results.

Theorem 1. — Let ωR be a generic rational foliation in Pn. Then, the
following sequence is exact

0 // K(ωR) // U(ωR) // D(ωR) // 0.

Theorem 2. — Let ωL be a generic logarithmic foliation in Pn and
write as D(ω, f) the subspace of D(ωL) consisting of the perturbations of
the parameters {fi}. Then, π2 is not en epimorphism and the following
sequence is exact

0 // K(ωL) // U(ωL) π2 // D(ωL) // D(ωL)/D(ωL, f) // 0.

It is well known that the singular set of an integrable form ω ∈
H0 (Ω1

Pn(e)
)
, i.e. the space Sing(ω) where ω vanishes, has always a codi-

mension two component where dω is generically not null, named the Kupka
component. The characterization of other components of Sing(ω) is un-
known.
The singular set of foliations of logarithmic type, under some genericity

conditions, was studied by F. Cukierman, M. Soares and I. Vainsencher
in [8]. The authors show that the singular set decomposes as the disjoint

ANNALES DE L’INSTITUT FOURIER



UNFOLDINGS AND DEFORMATIONS 1587

union Sing(ω) = Z ∪ Q, where Z is the Kupka set of codimension 2 and
Q is a finite set of NωL points counted with multiplicity. They also give
a closed formula to compute NωL ; such computation is done by using a
particular formula to obtain the Segre class of the singular scheme of a
normal crossing divisor.
In Section 5 we give another application of the graded module U(ω) by

counting, in a rather simple way, the isolated points of the singular set of
logarithmic foliations. See Theorem 5.4 for a complete statement of:

Theorem 3. — Let ωL be a generic logarithmic foliation in Pn and,
as above, decompose Sing(ωL) = Z ∪ Q. Let U(ω) denote the classes of
isomorphisms of graded projective unfoldings of ω, and PU(ωL) its Hilbert
polynomial. Then PU(ωL) is constant and

PU(ωL) ≡ NωL .

As always, if ω defines a codimension 1 foliation in Pn, in Section 2.2 we
associate to ω a graded S-linear complex L•(ω) defined as

L•(ω) : TS
dω∧ // Ω1

S
dω∧ // Ω3

S
dω∧ // . . .

The module U(ω) and the complex L•(ω) are closely related by the follow-
ing result. See Theorem 3.9 for a complete statement:

Theorem 4. — Let ω be a codimension one foliation in Pn. If we denote
by Z1(L•(ω)) and H1(L•(ω)) the cycles and homology of L•(ω) in degree
1 respectively, then

(1.3) Z1(L•(ω))/S.ω ' U(ω) and H1(L•(ω)) ' U(ω).

In Section 6 we review the notion of regularity of C. Camacho and A.
Lins-Neto, defined via differential operators in terms of the linear complex
L•(ω). As an application of L•(ω) and the isomorphisms in (1.3) above, we
can completely reformulate regularity of rational and logarithmic foliations
in terms of unfoldings in the following way. See Theorem 6.10 for a complete
statement:

Theorem 5. — Let ω be a generic rational or logarithmic foliation in
Pn. Then ω is regular if and only if every first order unfolding of ω is trivial
up to isomorphism.

In Section 5 we make some explicit computations with the help of a
computer, to show the behavior of U(ω) on low degrees. We finally add an
appendix where we give a simplified proof of Theorem 1.

TOME 66 (2016), FASCICULE 4
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2. Preliminaries

Along this section we present the basic definitions and results that we
are going to use on the rest of the work.

2.1. Codimension 1 algebraic foliations

In the definition of foliations that we propose, we stress the relative
nature of differential forms. The reason for doing so, is for being able to
distinguish first order deformations and unfoldings just as foliations over
different base spaces.

Let us consider two algebraic varieties T and B, such that T is of finite
type over B. We will write Ω1

T |B(L) for the twisted sheaf of differentials
1-forms of T over B, for some invertible sheaf L on T .

Definition 2.1. — We will say that a generically rank 1 subsheaf F =
(ω) of Ω1

T |B(L) is an algebraic foliation of codimension 1 on T over B, if ω
is a non zero global section of H0(Ω1

T |B(L)) generating F , such that verifies
the Frobenius integrability condition ω∧dω = 0. We will write F1(T |B)(L)
for the space of this foliations.

In the case where B = Spec(C), we will just write Ω1
T (L) and F1(T )(L).

Given a foliation F = (ω), any multiple of ω by a global section of O∗T
defines the same foliation. We then have

F1(T |B)(L) = {ω ∈ H0(Ω1
T |B(L))

/
H0(O∗T ) : ω ∧ dω = 0}.

We are primarily interested in the case where T = Pn, in this case a
foliation F = (ω) is given by a subsheaf of Ω1

Pn(e) := Ω1
Pn ⊗ OPn(e), for

some e > 2. For such a foliation, the degree is defined to be the number of
common tangencies with a generic line in Pn which is equal to e− 2.

ANNALES DE L’INSTITUT FOURIER
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Fixing homogeneous coordinates x0, . . . , xn, let us fix S = C[x0, . . . , xn]
the ring of homogeneous coordinates of Pn and ΩrS the module of differential
r-forms of S over C. The global section ω can be written as

ω =
n∑
i=0

Aidxi ∈ Ω1
S

where the Ai’s are homogeneous polynomials of degree e−1, that verify the
integrability condition ω∧dω = 0 and the property of descent to projective
space. This condition can be stated as the vanishing of the contraction of
ω with the radial field R =

∑n
i=0 xi

∂
∂xi

.
As we are going to fix one generator for each foliation we might refer

simply as ω to the foliation F = (ω) and note the space of codimension 1
foliations of degree e− 2 in Pn as F1(Pn)(e).
The quotient H0 (Ω1

Pn(e)
) /
H0 (O∗Pn) identifies with PN , for a suitable

N , by looking at the scalar coefficients of a differential 1-form ω. Then, the
equation ω ∧ dω = 0 defines an homogeneous ideal F in such coefficients.
The algebraic variety structure of F1(Pn)(e) is then given by Proj(S/F ) ⊂
PN .
The Koszul complex associated to ω ∈ Ω1

S , K•(ω), can be defined as

K•(ω) : S
ω∧ // Ω1

S
ω∧ // Ω2

S
ω∧ // . . .

We can use K•(ω) to compute the codimension of the singular set of ω, by
the well known result:

Theorem 2.2. — For ω ∈ Ω1
S the following are equivalent:

(1) codim(Sing(ω)) > k
(2) H l(K•(ω)) = 0 for all l < k

Proof. — See [24, Appendix, p. 172] or [25, Appendix, p. 87] for
two proofs with different level of generalities in the local holomorphic
setting and [12, Theorem 17.4, p. 424] for a purely algebraic proof of our
statement. �

Remark 2.3. — If ω ∈ F1(Pn)(e) we always have H2(K•(ω)) 6= 0. This
can be seen by looking at the class of dω in H2(K•(ω)); the integrabil-
ity condition on ω makes dω a 2-cycle and, by a matter of degree in the
homogeneous polynomial coefficients, it can not be border.
The homology in degree 1 is trivial only in the case where ω is irreducible,

i.e., if it is not of the form f.ω′, for some not invertible function f and a
1-form ω′.

TOME 66 (2016), FASCICULE 4
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2.2. Unfoldings and deformations

Let us write C[ε] for the ring of dual numbers C[t]/(t2) and D =
Spec(C[ε]) for the infinitesimal neighborhood of order one. Let us con-
sider the morphism i : Pn → Pn×D, defined by the inclusion to the closed
point of D.

Definition 2.4. — A first order deformation of a foliation F = (ω) ∈
F1(Pn)(e), is given by a foliation Fε = (ωε) ∈ F1(Pn × D|D)(OPn×D(e))
such that i∗Fε ' F . We can synthesize this situation with the commutative
diagram

Pn
F

i //

��

Pn ×D

π

��

Fε�i∗oo

Spec(C) // D

where π is the projection to D. We will say deformation or first order
deformation indistinctly.

The condition i∗Fε ' F allows us to choose ωε = ω + εη where η ∈
H0 (Ω1

Pn(e)
)
. The integrability condition applied to ωε, gives the formula

ω M η = 0

recalling that we write ω M η for ω ∧ dη + dω ∧ η, as in (1.1).

Definition 2.5. — A first order unfolding of a foliation F = (ω) ∈
F1(Pn)(e) is given by a foliation F̃ε = (ω̃ε) ∈ F1(Pn×D)(OPn×D(e)) such
that i∗F̃ε ' F . We can synthesize this situation with the commutative
diagram

Pn
F

i //

��

Pn ×D

��

F̃ε
�i∗oo

Spec(C) // Spec(C)
We will say unfolding or first order unfolding indistinctly.

The condition i∗Fε ' F allows us to choose ω̃ε = ω + εη + hdε where
η ∈ H0 (Ω1

Pn(e)
)
and h ∈ H0(OPn(e)). The integrability condition applied

to ω̃ε can be computed as
ω̃ε ∧ dω̃ε = (ω + εη + hdε) ∧ d(ω + εη + hdε)

= ω ∧ dω + ε(ω M η) + ( hdω − ω ∧ (η − dh) ) ∧ dε = 0.

ANNALES DE L’INSTITUT FOURIER
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We then have

ω̃ε ∧ dω̃ε = 0 ⇐⇒
{
ω M η = 0
hdω = ω ∧ (η − dh).

Proposition 2.6. — Following the situation above, if hdω=ω∧(η−dh)
then ω M η = 0.

Proof. — If we apply the exterior differential to hdω = ω ∧ (η − dh) we
get 2dh∧dω = −ω∧dη+dω∧η. Instead, if we multiply hdω = ω∧ (η−dh)
by η− dh we get dh∧ dω = dω∧ η. Putting together both formulas we find
our result. �

In both cases, perturbing in the direction of ω, i.e. taking η = ω, defines
the trivial deformation or unfolding.

Definition 2.7. — Let F = (ω) ∈ F1(Pn)(e). We define the C-vector
spaces parameterizing deformations and unfoldings as

D(ω) =
{
η ∈ H0 (Ω1

Pn(e)
)

: ω M η = 0
}/

C.ω

U(ω) =
{

(h, η) ∈ H0 ((OPn × Ω1
Pn

)
(e)
)

: hdω = ω ∧ (η − dh)
}/

C.(0, ω).

We will call D(ω) and U(ω) deformations and unfoldings respectively, if no
confusion can arise.

Definition 2.8. — Two deformations (unfoldings) Fε and F ′ε (F̃ε and
F̃ ′ε) of a given foliation F ∈ F1(Pn)(e) are said to be isomorphic, if there
is an isomorphism φ : Pn ×D → Pn ×D such that

(2.1) i∗φ = IdPn and Fε ' φ∗F ′ε
(
F̃ε ' φ∗F̃ ′ε

)
.

The structure sheaf OPn×D is isomorphic to two copies of OPn , iden-
tifying 1 and ε with the canonical vectors. This way, we can decompose
an isomorphism φ of deformations or unfoldings, as φ = φ1 + εφ2, for
φ1, φ2 ∈ PGL(n,C).
The first condition in (2.1) allows us to write φ = IdPn +εφ2. Let us now

consider the vector field X =
∑
i,j (φ2)ij xi

∂
∂xj

induced by φ2, and write
iX for the contraction with X. If ωε = ω+εη and ω̃ε = ω+εη+hdε defines
a deformation and an unfolding of ω ∈ F1(Pn)(e) respectively, by straight
forward computation, we get the formulas

(1) φ∗ωε = ω + ε(LX(ω) + η)
(2) φ∗ω̃ε = ω + ε(LX(ω) + η) + (iXω + h)dε.

TOME 66 (2016), FASCICULE 4



1592 Ariel MOLINUEVO

Denote by TPn the tangent sheaf in Pn.

Definition 2.9. — The spaces of deformations and unfoldings mod-
ulo isomorphism of F = (ω) ∈ F1(Pn)(e) are the quotients D(ω) :=
D(ω)/CD(ω) and U(ω) := U(ω)/CU (ω) where

CD(ω) =
{
LX(ω) : X ∈ H0 (TPn(0))

}
CU (ω) =

{
(iX (ω), LX(ω)) : X ∈ H0 (TPn(0))

}
.

Definition 2.10. — The space K(ω) of integrating factors of F =
(ω) ∈ F1(Pn)(e) is given by

K(ω) =
{
F ∈ H0 (OPn(e)) : Fdω = ω ∧ (−dF )

}
.

By Definition 2.10 and Proposition 2.6, we immediately see the exactness
of the following sequence, that relates integrating factors, unfoldings and
deformations of ω:

(2.2) 0 // K(ω) i1 // U(ω) π2 // D(ω)
h � // (h, 0)

(h, η) � // η

2.3. Local setting and Cartan’s Magic Formula

Given a foliation defined by ω ∈ F1(Pn)(e), we can look at the local fo-
liation induced by ω by restricting to an open set of Pn, or by pullbacking
ω to the affine cone in Cn+1. Adopting the former procedure, we keep the
homogeneity of ω and we are able to grade the spaces of unfoldings and
deformations in the local algebraic setting in Cn+1, or in the holomorphic
infinitesimal setting in (Cn+1, 0). We show this in Section 2.3.1 below and
fix some notation. Then, in Section 2.3.2, we recall Cartan’s Magic Formula.
With this formula, we can decompose affine differential forms as a closed
form plus a form which descends to projective space. This last decompo-
sition, which is elementary, is crucial to linearize the notion of unfolding
and to connect unfoldings with the notion of regularity, as we will do in
Section 3.2 and Section 6, respectively.

2.3.1. Local setting

We will denote with a subscript hol the analogous definitions with the
preceding section of deformations, unfoldings and isomorphism classes of

ANNALES DE L’INSTITUT FOURIER
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unfoldings, relative to the space of germs of holomorphic foliations in
(Cn+1, 0).

For example, for a germ of holomorphic foliation υ in (Cn+1, 0), we have

Uhol(υ) =
{

(h, η) ∈ O(Cn+1,0) × Ω1
(Cn+1,0) : hdυ = υ ∧ (η − dh)

}/
O(Cn+1,0).(0, υ)

where O(Cn+1,0) and Ω1
(Cn+1,0) are, respectively, the germs of holomorphic

functions and differential 1-forms in (Cn+1, 0). By projecting the first co-
ordinate of Uhol(υ), we get the ideal Ihol(υ) ⊂ O(Cn+1,0)

(2.3) Ihol(υ) =
{
h ∈ O(Cn+1,0) : hdυ = υ ∧ η̃ for some η̃ ∈ Ω1

(Cn+1,0)

}
.

As we will prove later in Proposition 3.6, in the case where υ is an
irreducible foliation, there is an isomorphism Uhol(υ) ' Ihol(υ).
Let us denote TS to the module of vector fields, which we define as

TS = Ω−1
S the dual of the module of differential 1-forms. We assign to the

elements dxi and ∂
∂xi

degrees +1 and −1 respectively. As in the introduc-
tion, if M is a graded S-module or a C-vector space, we will write M(k)
for its homogeneous component of degree k.
By changing in the preceding section Pn by Cn+1, we end up with the

definitions of algebraic deformations, unfoldings and isomorphism classes
of unfoldings. We will note them with a subscript alg.

By pullbacking with the application π : Cn+1\{0} → Pn, a differential
form ω ∈ F1(Pn)(e) defines a foliation in the affine space Cn+1, or in
(Cn+1, 0). We will commit a small abuse of notation and keep writing as
ω the pullbacked differential form, seen in Cn+1 or in (Cn+1, 0) as well.
Being ω homogeneous, the spaces of holomorphic and algebraic unfoldings
are enriched with a natural graded structure. Then, we can decompose

(2.4) Uhol(ω) =
∏
a∈N

Uhol(ω)(a) and Ualg(ω) =
⊕
a∈N

Ualg(ω)(a),

where Uhol(ω)(a) and Ualg(ω)(a) can be readily identified.

Remark 2.11. — Taking a = e, the degree of ω, we have isomorphisms

(2.5) Uhol(ω)(e) ' Ualg(ω)(e) ' U(ω)

showing that any unfolding of a projective foliation in Pn, can be obtained
as the homogeneous component of some holomorphic germ of unfolding in
(Cn+1, 0), or, also, as some algebraic unfolding in Cn+1. Proceeding in an
analogous way to equations (2.4) and (2.5), we can conclude that the same
statement holds for algebraic deformations in Pn.
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2.3.2. Cartan’s Magic Formula

Following Cartan’s Magic Formula, we can compute compute the Lie
derivative of a differential form τ , with respect to a vector field X, as

LX(τ) = iXdτ + diXτ

see e.g. [35].
Let us take τ ∈ ΩrS(p) and R ∈ TS(0), the radial vector field. In this

case, the formula above gives the equality

(2.6) LR(τ) = diRτ + iRdτ = pτ

which allows us to decompose τ = τd + τr, where τd and τr are the exact
and radial terms respectively, see e.g. [22].
Let us recall that if F is an OPn -module, then the functor Γ∗ defines a

graded S-module as Γ∗(F) =
⊕

a∈ZH
0(F(a)). By looking at (2.6), we can

define the graded morphism C : Ω1
S → Γ∗(OPn × Ω1

Pn) as C =
⊕

a∈N Ca,
where Ca is given by the formula

(2.7) Ω1
S(a) Ca // H0 ((OPn × Ω1

Pn

)
(a)
)

η
(
− 1
a iRη,

1
a iRdη

)� //

The following property is immediate:

Proposition 2.12. — The application C : Ω1
S → Γ∗(OPn×Ω1

Pn) defines
an isomorphism in each homogeneous component.

We will usually write Ca(η) = (h, ηr). We adopt the minus sign to be
able to write η = ηr − dh which has a direct relation with the definition of
unfolding.

2.4. Rational and logarithmic foliations

Along this section, we present the definitions of rational and logarithmic
foliations and we fix some genericity conditions. Then, we recall some im-
portant results attached to this type of foliations that we will use later: the
characterization of the first order deformations and the characterization of
the ideal Ihol associated to first order unfoldings.

Definition 2.13. — A rational foliation of type (r, s) in F1(Pn)(e), is
defined by an ωR ∈ H0 (Ω1

Pn(e)
)
of the form

ωR = rFdG− sGdF,
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where F and G are homogeneous polynomials of degrees r and s respec-
tively, and r + s = e. The Zariski closure in F1(Pn)(e) of foliations of
this type defines the set of rational foliations which will be denoted as
R(n, (r, s)). We define the generic open set UR ⊂ R(n, (r, s)) as

(2.8) UR = {ω ∈R(n, (r, s)) : codim(Sing(dω))> 3, codim(Sing(ω))> 2}.

First order deformations of rational foliations are studied in the works [14]
and [7]. The latter, takes into account the scheme structure of codimension
one foliations and proves, among other things, that F1(Pn)(e) is generically
reduced at a rational foliation. We recall from [7, Proposition 2.4, p. 693]
the following result.

Theorem 2.14. — Let ωR ∈ UR ⊂ F1(Pn)(e). Then, the first order
deformations of ωR are given by the perturbations of the parameters F
and G

D(ωR) = Span ({η ∈R(n, (r, s)) : η = rfdG−sGdf or η = rFdg−sgdF})
/
C.ωR.

In the case of germs of holomorphic foliations in (Cn+1, 0), let us refer to
a rational foliation as generic in an analogous sense to (2.8). We can recall
from [33, Proposition 1.7, p. 102] the following result.

Theorem 2.15. — Let υ ∈ Ω1
(Cn+1,0) define a generic rational foliation

in (Cn+1, 0). If υ is of the form fdg − gdf , then Ihol(υ) = (f, g).

Definition 2.16. — A logarithmic foliation of type (d1, . . . , ds) in
F1(Pn)(e), is defined by an ωL ∈ H0 (Ω1

Pn(e)
)
of the form

(2.9) ωL =
(

s∏
i=1

fi

)
s∑
i=1

λi
dfi
fi
,

where s > 3 and
(1) (λ1, . . . , λs) ∈ Λ(s) := {(λ1, . . . , λs) ∈ Cs : λ1d1 + . . .+ λsds = 0}
(2) fi is homogeneous of degree di and d1 + . . .+ ds = e.

The Zariski closure in F1(Pn)(e) of foliations of this type defines the set
of logarithmic foliations which will be denoted as L(n, d). We define the
generic open set UL ⊂ L(n, d) as

(2.10) UL =
{
ω ∈ L(n, (d)) : ω verifies (a) and (b) below

}
,

writing ω = (
∏s
i=1 fi)

∑s
i=1 λi

dfi

fi
we have the conditions:

(a) D = {f1. . . . .fs = 0} is a normal crossing divisor
(b) λi 6= λj( 6= 0) for every i 6= j.
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We will usually note d, λ and f the s-uples involved in the expression of
a logarithmic foliation. Noting Fi =

∏
j 6=i fj , we will frequently write ωL as

ωL =
s∑
i=1

λi Fi dfi.

Let us fix ωL as in (2.9) and define the spaces of perturbation of param-
eters of ωL as
D(ωL, f) = Span

(
{ηgi
∈L(n, λ) : ηgi

equals ωL with fi changed by gi}
)/

C.ωL
D(ωL, λ) = Span

(
{ηµ ∈L(n, µ) : ηµ equals ωL with λ changed by µ}

)/
C.ωL.

By direct computation, it is straight forward to check that D(ωL, f) and
D(ωL, λ) are subspaces of D(ωL).
Logarithmic foliations has been studied in [1] where it is shown that they

are an irreducible component of the space of codimension one foliations.
The analytic (set theoretical) approach of this work, allows us to compute
first order deformations of ωL in the space of foliations with its reduced
scheme structure F1

red(Pn)(e).
Regarding the scheme structure of F1(Pn)(e), there is an ongoing work

by F. Cukierman et al., see [5], where they show that F1(Pn)(e) is gener-
ically reduced at a logarithmic foliation. We will not use this result at all.
However, the effects of the reduced structure of F1(Pn)(e) can be immedi-
ately understood in our statements.
To take into account Calvo’s results in F1(Pn)(e), first we give to the

set of codimension one foliations in Pn the reduced structure F1
red(Pn)(e),

see [29, II, §3, Theorem 2, p. 88], and consider the natural inclusion

F1
red(Pn)(e) �

� // F1(Pn)(e).

This map induces another inclusion of Zariski tangent spaces, see [29, III,
§4, pp. 170-171],

TωF1
red(Pn)(e) �

� // TωF1(Pn)(e)

for every closed point ω. Then, by [18, II, Exercise 2.8, p. 80], we can always
identify first order deformations with Zariski tangent spaces

Dred(ω) = TωF1
red(Pn)(e) and D(ω) = TωF1(Pn)(e),

and decompose D(ω) as

(2.11) D(ω) = Dred(ω)
⊕

D+(ω)

where D+(ω) := D(ω)
/
Dred(ω) can be seen as the first order deformations

arising from the non-reduced structure of F1(Pn)(e) at ω.
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From [1] we can state the following decomposition of D(ωL).

Theorem 2.17. — Following the notation above, there exists an open
Zariski set U ⊂ L(n, d) ⊂ F1(Pn)(e) such that if ωL ∈ U then the first
order deformations of ωL can be decomposed as

D(ωL) = D(ωL, f)
⊕

D(ωL, λ)
⊕

D+(ωL).

Proof. — By (2.11) we just need to show that

Dred(ωL) = D(ωL, f)
⊕

D(ωL, λ).

For doing this, from [1, Theorem 4.1, p. 766] and [1, Corollary 4.2, p. 766],
we can consider the following parametrization map

P(Λ(s))×
s∏
i=1

P
(
H0 (OPn(di))

) ϕ // L(n, d) ⊂ F1
red(Pn)(e)

(λ, f)
∑s
i=1 λi Fi dfi

� //

The differential of ϕ at a point (λ, f) can be computed as

(2.12) dϕ|(λ,f)(µ, g) = ηµ +
s∑
i=1

ηgi .

This formula its obtained by looking at the pullback

Λ(s)×
s∏
i=1

H0 (OPn(di))
π∗ϕ // L(n, d) ⊂ Ω1

S

/
C

which is a multilinear application, see [10, Chap. VIII, 8.1.4 p. 152].
Taking bases of the vector spaces involved, the multilinearity of π∗ϕ

also allows us to express π∗ϕ(λ, f) in terms of algebraic operations on the
coordinates of (λ, f). The same goes for dπ∗ϕ and, passing to the quotient,
to dϕ. Thus, the determinant of dϕ will be an isomorphism in an open
Zariski set U ⊂ L(n, d).
Finally, taking (λ, f) ∈ ϕ−1(U), (2.12) shows that D(ωL, f) and

D(ωL, µ) are in direct sum and, by a dimensional argument, they span
all the tangent space of F1

red(Pn)(e) at ωL. �

In the case of germs of holomorphic foliations in (Cn+1, 0), let us refer to
a logarithmic foliation as generic in an analogous sense to (2.10). We can
recall from [32, Proposition 1.7, p. 102] the following result.

Theorem 2.18. — Let υ ∈ Ω1
(Cn+1,0) define a generic logarithmic foli-

ation in (Cn+1, 0). If υ is of the form υ =
∑s
i=1 λi Fi dfi, then Ihol(υ) =

(F1, . . . , Fs).
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3. Graded projective unfoldings

Along this section, let us fix ω ∈ F1(Pn)(e) and regard it as an affine
form in Ω1

S .
Here we present our main objects of study, which are the module of

graded projective unfoldings U(ω) and the linear complex L•(ω). The main
idea behind U(ω) is to be able to extend local properties to global ones.
The complex L•(ω) allows us to understand first order unfoldings in terms
of a linear operator and to connect them to the notion of regularity.

3.1. Graded projective unfoldings

Definition 3.1. — We define the S-module of graded projective un-
foldings of ω as

U(ω) =
{

(h, η) ∈ S × Ω1
S : LR(h) dω = LR(ω) ∧ (η − dh)

}/
S.(0, ω).

For a ∈ N, the homogeneous component of degree a can be written as

U(ω)(a) =
{

(h,η)∈ (S×Ω1
S)(a) : a h dω = e ω ∧ (η−dh)

}/
S(a−e).(0,ω).

For (h, η) ∈ U(ω)(a) and f ∈ S(b), the graded S-module structure is defined
via the formula

f · (h, η) :=
(
fh, (a+b)

a fη + 1
a (a h df − b f dh)

)
∈ U(ω)(a+ b).

Proposition 3.2. — If the pair (h, η) ∈ U(ω)(a), then (h, η) ∈
H0 ((OPn × Ω1

Pn

)
(a)
)
.

Proof. — By contracting the equation ah dω = e ω ∧ (η − dh) with
the radial field R, we can see that iRη = 0. This shows that the pair
(h, η) defines a global section of

(
OPn × Ω1

Pn

)
(a) as the name of U(ω)

suggests. �

Definition 3.3. — We define the isomorphism classes of graded pro-
jective unfoldings, as the quotient U(ω) := U(ω)/CU(ω). For a ∈ N, an
homogeneous component of degree a of CU(ω), is defined as

CU(ω)(a) =
{(

iXω,
a iXdω + e diXω

e

)
: X ∈ TS(a−e)

}/
S(a− e).(0, ω).

Emulating the situation in (Cn+1, 0) of (2.3), we define:
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Definition 3.4. — Let π1 : U(ω) → S be the projection to the first
coordinate. We define the graded ideals of S associated to ω as

I(ω) = π1(U(ω)) =
{
h ∈ S : hdω = ω ∧ η̃ for some η̃ ∈ Ω1

S

}
J(ω) = π1(CU(ω)) = {iX(ω) ∈ S : X ∈ TS} .

Remark 3.5. — From (2.4), we can see that Ihol(ω) is a graded ideal, so
is generated by polynomials. Then, I(ω) ' Ihol(ω) and from Theorem 2.15
and Theorem 2.18 we get the generators of I(ω) as well.

Proposition 3.6. — The projection π1 : U(ω) −→ S induces the iso-
morphism

U(ω) ' I(ω)/J(ω).
And, in the case where ω is irreducible, we also have U(ω) ' I(ω).

Proof. — Let us consider (h, η1), (h, η2) ∈ (S × Ω1
S)(a) such that

a hdω = e ω ∧ (η1 − dh)
a hdω = e ω ∧ (η2 − dh).

Then ω∧ (η1− η2) = 0. In the case where ω is irreducible, there must exist
f ∈ S(a − e) such that η1 − η2 = fω. This way the classes of (h, η1) and
(h, η2) coincide in U(ω), which shows that U(ω) ' I(ω). By doing the same
for elements of the form

(
iXω,

a iXdω+e diXω
e

)
we can see the isomorphism

CU(ω) ' J(ω).
Regardless the irreducibility of ω, putting together both arguments we

have that U(ω) ' I(ω)/J(ω). �

Remark 3.7. — For (h, η) ∈ (S × Ω1
S)(a) the application (h, η) 7→(

h, aη+(e−a)dh
e

)
gives isomorphisms between Ualg(ω)(a) and U(ω)(a). The

twisted S-module structure of U(ω) is motivated by the ideal structure of
I(ω) seen through this isomorphism.

3.2. The complex L•(ω)

The equivalence between the conditions ω ∧ dω = 0 and dω ∧ dω = 0,
allows us to define the following complex:

Definition 3.8. — We define the graded complex L•(ω) of S-modules
associated to ω, as

L•(ω) : TS
dω∧ // Ω1

S
dω∧ // Ω3

S
dω∧ // . . .
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where Ls(ω) = Ω2s−1
S for s > 0 and the 0-th differential is defined as

dω ∧ X := iXdω. The grading of L•(ω) is given by the decomposition
L•(ω) =

⊕
a∈N L

•(ω)(a), where L•(ω)(a) is the complex of finite vector
spaces

L•(ω, a) : TS(a− e) dω∧ // Ω1
S(a) dω∧ // Ω3

S(a+ e) dω∧ // . . . .

As usual, we note Zk(−) and Bk(−) for the cycles and borders of degree
k, respectively, of the given complex.
Recall from (2.7) the definition of the isomorphism C : Ω1

S → Γ∗(OPn ×
Ω1

Pn) and let us consider the inclusion i : Γ∗(OPn × Ω1
Pn)→ S × Ω1

S .

Theorem 3.9. — The composition i◦C : Ω1
S → S×Ω1

S induces isomor-
phisms

Z1(L•(ω))
/
S.ω ' U(ω) and H1(L•(ω)) ' U(ω).

Proof. — Let us consider η ∈ Ω1
S(a) such that dω ∧ η = 0. Applying

i ◦ Ca(η) = (h, ηr), we can decompose it as η = ηr − dh. By contracting
with the radial field we have

iR(dω ∧ (ηr − dh)) = 0 ⇐⇒ a h dω = e ω ∧ (ηr − dh).

On the other side, consider a pair (h, η′) ∈ (S × Ω1
S)(a) such that

(3.1) a h dω = e ω ∧ (η′ − dh).

Following Proposition 3.2, we now that (h, η′) is in the image of i ◦ C for
some η = η′−dh. Multiplying (3.1) by η′−dh we obtain dω∧(η′−dh) = 0.
Since i ◦ C(ω) = ω, passing to the quotient of S.ω we finally have the

isomorphism
Z1(L•(ω))

/
S.ω ' U(ω).

Let us consider now an element
(
iXω,

a iXdω+e diXω
e

)
∈ CU(ω)(a). By

the equality

a iXdω + e diXω

e
− diXω = a

e
iXdω = dω ∧

(a
e
X
)

We then have that i◦C also induces an isomorphism between B1(L•(ω))
/
S.ω

and CU(ω) and the result follows. �

Corollary 3.10. — Following the conditions of Theorem 3.9, we can
also write H1(L•(ω)) ' I(ω)/J(ω).
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4. Deformations modulo unfoldings

In this section we apply Suwa’s local results on rational and logarithmic
foliations in the global projective setting using the graded module U(ω). By
doing so, we classify which first order deformations arise from first order
unfoldings, see Theorems 4.1 and 4.3, respectively.

4.1. Rational foliations

Theorem 4.1. — Let ωR ∈ UR ⊂ R(n, (r, s)) be a generic rational
foliation. Then, the following sequence is short exact

0 // K(ωR) i1 // U(ωR) π2 // D(ωR) // 0

Proof. — By Remark 3.5 and Theorem 2.15 we have I(ωR) = (F,G).
By the genericity conditions, ωR = rFdG − sGdF is irreducible and then
π1 : U(ωR)→ I(ωR) is an isomorphism. It is straight forward to check that
π1 verifies π−1

1 (F ) = (F, 0) ∈ U(ωR)(r) and π−1
1 (G) = (G, 0) ∈ U(ωR)(s).

Since U(ωR) = U(ωR)(e), we just need to find which elements appear in
U(ωR)(e) by the action of S defined in Definition 3.1, applied to (F, 0) and
(G, 0).
Let us consider g ∈ S of degree s = e−r. Multiplying g · (F, 0) we obtain

g · (F, 0) =
(
gF, 1

r ( r F dg − s g dF )
)
∈ U(ωR)(e).

In the same way, taking f ∈ S(r) and multiplying f · (G, 0), we will have

f · (G, 0) =
(
fG, 1

s ( sGdf − r f dG )
)
∈ U(ωR)(e).

Looking at the second coordinate of this elements and using the classifica-
tion of D(ωR) from Theorem 2.14, the result follows. �

Remark 4.2. — A simplified proof of the above result can be given by
checking the equality of the dimensions of the vector spaces I(ωR)(e) and
D(ωR). Also, we give another proof following the ideas of [33], see Ap-
pendix 6.1, without using Theorem 2.14. Anyway, we write our previous
demonstration not because of its comparison with these two alternative
computations, but because of its natural extension to the case of logarith-
mic foliations, in which case we do not know any other proof to our result.
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4.2. Logarithmic foliations

From (2.11) and Theorem 2.17, recall the open Zariski set U and the
decomposition D(ωL) = D(ωL, f)

⊕
D(ωL, λ)

⊕
D+(ωL).

Theorem 4.3. — Let ωL =
∑s
i=1 λi Fi dfi ∈ UL ∩ U ⊂ L(n, d) be a

generic logarithmic foliation. Then π2 is not an epimorphism and its image
is D(ωL, f), making the following sequence to be exact

0 // K(ωL) i1 // U(ωL) π2 // D(ωL) π // D(ωL, λ)
⊕
D+(ωL) // 0

where the last projection is the natural one.

Proof. — From the decomposition of D(ωL) from Theorem 2.17, we just
need to show that the image of π2 is exactly D(ωL, f) to get our result.

By Remark 3.5 and Theorem 2.18 we have I(ωL) = (F1, . . . , Fs). For
i = 1, . . . , s we want to find θi such that (Fi, θi) ∈ U(ωL)(bi), where bi =
e− di. Once we find this elements, we will be able to get the generators of
U(ωL)(e) = U(ωL) using the action of Definition 3.1.
One might think that a perturbation induced by Fi =

∏
j 6=i fj is going

to be normal to the direction given by fi, and so, that i ∂
∂fi

θi = 0. By
the transversality of the {fi}, we might deal with them as a system of
parameters and compute i ∂

∂fi

dfj = 0, for i 6= j, and i ∂
∂fi

dfj = 1, for i = j.
With this assumptions, fix i and contract the following equation by the
vector field ∂

∂fi
:

bi Fi dωL = e ωL ∧ (θi − dFi) ,
then, we can effectively clear θi as

θi = bi
eλi

s∑
j=1
j 6=i

(λj − λi) Fjidfj + dFi.

Now, it is immediate to see that π−1
1 (Fi) = (Fi, θi) ∈ U(ωi)(bi).

Let us take g ∈ S(di) and compute the multiplication

g · (Fi, θi) =
(
gFi,

e
bi
gθi + 1

bi
( bi Fi dg − di gdFi )

)
.

Expanding θi in the second coordinate, we found that
1
λi
g

s∑
j=1
j 6=i

(λj − λi) Fji dfj + e
bi
g dFi + Fi dg − di

bi
g dFi

= 1
λi

∑
j 6=i

λj gFji dfj + λi Fi dg

 ∈ D(ωL, f)
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Even more, π2(g · (Fi, θi)) is exactly the perturbation of ωL, given by re-
placing fi by g. Doing the same for every i = 1, . . . , s we conclude that the
image of π2 : U(ωL)→ D(ωL) is D(ωL, f). �

5. The singular set

In Section 5.1, we use the decomposition of the singular set of a foliation
ω ∈ F1(Pn)(e), given by [8], and count the isolated points of Sing(ω)
using the Hilbert polynomial of U(ω), see Theorem 5.4. In Section 5.2, we
show that the dimension of the classes of isomorphism projective unfoldings
U(ω) = U(ω)(e), does not succeed compute the number of isolated points
of the singular set of ω, by making some explicit computations.

5.1. Counting isolated points of the singular set

Through this section we want to consider a foliation ω ∈ F1(Pn)(e) of
rational or logarithmic type. For that, we are going to extend the notation
of a logarithmic form ω as

(5.1) ω =
s∑
i=1

λi Fi dfi

to the case where s > 2. We will say that ω is generic if ω is in the generic
open sets UR or UL.
Let us name Di the hypersurfaces defined by the functions fi and Dij the

intersections Di∩Dj . We define the ideals Lij and L =
⋂
i<j Lij associated

to the varieties Dij and Z =
⋃
Dij respectively.

From [32, Lemma 1.4, p. 8] we have:

Proposition 5.1. — Let ω ∈ UL ⊂ L(n, d) be a generic logarithmic
foliation. Then I(ω) = L.

Let state the following result from [8, Theorem, p. 3]. Even if the authors
focus in logarithmic foliations, there are no constrains to the case where
s = 2, which we consider here as well.

Proposition 5.2. — Let ω ∈ F1(Pn)(e) be a generic rational or loga-
rithmic foliation. We can decompose the singular set of ω as the disjoint
union

Sing(ω) = Z ∪Q
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where Z =
⋃
i<j Dij and Q is a set of finite points in Pn, consisting of

N(n, d) points counted with multiplicity. Even more, if any di > 1 then
N(n, d) > 0.

Before stating our result, we need a technical definition.

Definition 5.3. — We are going to say that two graded S-modules M
and N are stably isomorphic M 's N , if there exists k0 ∈ N such that
M(k) ' N(k) for every k > k0.

Theorem 5.4. — Let ω ∈ F1(Pn)(e) be a generic rational or logarith-
mic foliation. Then, the Hilbert polynomial PU(ω) of U(ω) is constant and
verifies

PU(ω) ≡ N(n, d),

where N(n, d) is the number of isolated points of Sing(ω), counted with
multiplicities.

Proof. — Let us call OSing(ω), OZ and OQ to the structural sheafs of
the correspondent varieties in Pn, from Proposition 5.2. Being the union
between Z and Q disjoint, we have the exact sequence of sheafs

0 // OQ // OSing(ω) // OZ // 0.

Because of the annihilation of the higher cohomology of OQ, applying the
functor Γ∗ we get an exact sequence of graded S-modules

(5.2) 0 // Γ∗OQ // Γ∗OSing(ω) // Γ∗OZ // 0.

We can define another exact sequence of graded S-modules with the
ideals I(ω) and J(ω) as

(5.3) 0 // I(ω)/J(ω) // S/J(ω) // S/I(ω) // 0.

Writing ω as

ω =
s∑
i=1

λi Fi dfi =
n∑
i=0

Ai dxi

we rapidly see that J(ω) = (A0, . . . , An), which implies Γ∗OSing(ω) 's
S/J(ω). On the other side, by Propositions 5.1 and 5.2 we have I(ω) =
L = (F1, . . . , Fs) which implies Γ∗OZ 's S/I(ω).
Comparing (5.2) with (5.3), by the additivity of the Hilbert polynomial,

we find the equalities

POQ
= PSing(ω) − POZ

= PS/J(ω) − PS/I(ω) = PI(ω)/J(ω).

Again, since dim(OQ) = 0 we have that POQ
≡ N(n, d) and by Proposi-

tion 3.6 we get our result. �
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5.2. Some examples

We can reformulate Theorem 5.4 in the following way:

Theorem 5.4’. — Let ω ∈ F1(Pn)(e) be a generic rational or logarith-
mic foliation. Then, there exits aω ∈ N such that, for a > aω, we have

dimC
(
U(ω)(a)

)
= N(n, d).

We tried to see if the aω above, could be taken lower than the degree e
of ω, to be able to compute N(n, d) with U(ω). By explicit computations
we found a negative answer for that.
For example, following the notation of (5.1), let us take ω(1,4) ∈ UR ⊂

R(3, (1, 4)) defined with

f1 = x1 and f2 = x4
1 + x4

2 + x4
3 + x4

4

and ω(1,2,3) ∈ UL ⊂ L(3, (1, 2, 3)) defined with

f1 = x1

f2 = x2
1 − x2

2 + ix2
3 − ix2

4

f3 = x2
1x2 + x1x

2
3 + x2

2x4 + x3x
2
4

λ1 = 1 λ2 = i

λ3 = −2
3(1 + i).

With the help of a computer running [11] and [15], we can compute the
dimensions of U(ω)(a) for enough a ∈ N and see that they stabilize in
N(n, d), after the degree e of the respective differential form. We summarize
that information in the following table:

dimC
(
U(ω)(a)

)
a 1 2 3 4 5 6 7 . . . N(3, d)

ω(4,1) 4 10 17 23 26 27 27 . . . 27
ω(1,2,3) 0 1 5 11 17 21 22 . . . 22

where we write inside a box the dimension dimC
(
U(ω)(e)

)
= dimC

(
U(ω)

)
.

6. Regularity

Along this section, let us fix ω ∈ F1(Pn)(e) and regard it as an affine form
in Ω1

S . We first extend the complex involved in the definition of regularity
to a long complex C•(ω) of differential operators over S, see Definition 6.3.
Then, we prove that the cycles and borders of C•(ω) and L•(ω) are iso-
morphic, see Theorem 6.8, relating the notion of regularity to the linear
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complex L•(ω). Finally, we show that the notion of regularity can be com-
pletely reinterpreted in terms of unfoldings, for the case of rational and
logarithmic foliations, see Theorem 6.10.

6.1. The complex C•(ω)

Let us recall the notion of regularity introduced in [3, p. 17]:

Definition 6.1. — Let ω0 be an integrable, homogeneous differential
1-form in Ω1

S(e). Then, ω0 it is said to be regular if for every a < e the
sequence

TS(a− e)
L(ω0) // Ω1

S(a) ω0M // Ω3
S(a+ e)

X
� // LX(ω0)

η � // ω0 M η

is exact in degree 1, i.e., Im(L−(ω0)) = Ker(ω0 M −).

We are going to extend the definition of the differential operator ω0 M −
to the exterior algebra ΩS =

⊕
r>0

ΩrS . Let τ ∈ ΩrS and κ(r) := r+1
2 , then we

define
ω0 M τ := ω0 ∧ dτ + κ(r) dω0 ∧ τ.

Proposition 6.2. — A differential form ω0 ∈ H0 (Ω1
Pn(e)

)
is integrable

if and only if (ω0 M ) ◦ (ω0 M ) ≡ 0.

Proof. — Let us take τ ∈ ΩrS(p). Evaluating we get

(6.1) ω0 M (ω0 M τ) =
(
2(κ(r) + 1)

)
ω0 ∧ dω0 ∧ dτ

+
(
κ(r)(κ(r) + 1)

)
dω0 ∧ dω0 ∧ τ.

If we suppose that ω0 is integrable, from (6.1) the first implication is clear.
For the other implication, take τ ∈ ΩrS(p) and decompose it as τ = τr+τd,

using (2.6). First equalize (6.1) to 0, considering τ = τr only.
By applying the exterior differential to ω0 M (ω0 M τ) and contracting

with the radial field R, we see that

2e ω0 ∧ dω0 ∧ dτr + p dω0 ∧ dω0 ∧ τr = 0.

If we choose p such that the 2-uplas of coefficients (2(κ(r)+1), κ(r)(κ(r)+1))
and (2e, p) are linearly independent, we can cancel terms and see

dω0 ∧ dω0 ∧ τr = 0.
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Now equalize (6.1) to 0 considering τ = τd. We immediately get dω0∧dω0∧
τd = 0. This way we see that dω0 ∧ dω0 ∧ τ = 0 for every τ ∈ ΩrS(p) and
the result follows. �

For ω ∈ F1(Pn)(e), the above property allows us to define the complex
of C-vector spaces C•(ω) in the following way.

Definition 6.3. — We define the graded complex C•(ω) associated to
ω, as

C•(ω) : TS
ωM // Ω1

S
ωM // Ω3

S
ωM // . . .

where Cs = Ω2s−1
S for s > 0 and the 0-th differential is defined as ω M X :=

LX(ω) = iXdω+diXω. The grading of C•(ω) is given by the decomposition
C•(ω) =

⊕
a∈N C

•(ω)(a), where C•(ω)(a) is the complex of finite vector
spaces

C•(ω, a) : TS(a− e) ωM // Ω1
S(a) ωM // Ω3

S(a+ e) ωM // . . . .

Remark 6.4. — Let d : M → M be a C-linear function, and M an S-
module. We say that d is a differential operator (of order 1) over S if, for
every f ∈ S, the application m 7→ d(f.m) − f.d(m) is S-linear on M . It
is immediate to check that the complex C•(ω) is a complex of differential
operators over S.

Since C•(ω) is not S-linear, we will not find a morphism of complexes
between C•(ω) and L•(ω). Anyway, we will be able to find C-linear iso-
morphisms on every degree, but one. For being able to compare these two
complexes we need the following technical elements:

Definition 6.5. — A 5-uple of indexes (r, s, p, a, e) ∈ Z5 is going to be
said admissible if a, p ∈ N, e > 2, r > −1 and{

s = κ(r)
p = e(s− 1) + a = e

(
r−1

2
)

+ a.

Lemma 6.6. — The 5-uple of indexes (r, s, p, a, e) ∈ Z5 is admissible if
and only if the following equalities hold

Cs(ω, a) = Ls(ω, a) = ΩrS(p).
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Definition 6.7. — Let us consider (r, s, p, a, e) ∈ Z5 an admissible uple
of indexes. We define the family of graded linear maps {ϕsa : ΩrS → ΩrS},
such that in each homogeneous component of degree p, ϕsa is defined by

ΩrS(p)
ϕs

a // ΩrS(p)
τ = τr + τd

(
eκ(r)− p

)
τr + eκ(r)τd� //

for s > 1. For s = 0, ϕsa : TS → TS is the identity map.

Theorem 6.8. — Let ω ∈ F1(Pn)(e) and (r, s, p, a, e) ∈ Z5 admissible,
such that a 6= e. Then, the family {ϕsa} induces isomorphisms of C-vector
spaces

Zs(C•(ω)) ' Zs(L•(ω)) and Bs(C•(ω)) ' Bs(L•(ω)).

Proof. — Since a 6= e, eκ(r)−p 6= 0 and then the ϕsa are all isomorphisms
over ΩrS(p). We just need to show that ϕsa sends isomorphically the kernel
of ω M − to the kernel of dω ∧ −.
Let us take τ ∈ ΩrS(p) such that ω M τ = 0. Decomposing τ = τr + τd as

in (2.6), we have

(6.2) ω M τ = ω ∧ dτr + κ(r) dω ∧ τr + κ(r) dω ∧ τd = 0.

Applying exterior differential and contracting with R we get

(6.3) e ω ∧ dτr + p dω ∧ τr = 0.

Operating with eqs. 6.2 and 6.3, we can write

dω ∧
((
eκ(r)− p

)
τr + eκ(r)τd

)
= dω ∧ ϕsa(τ) = 0

from where we get one implication.
Let us suppose now that dω ∧ τ = 0. Differentiating and contracting as

before, we end up noticing that (6.3) still holds. If we apply the inverse
function to τ

(ϕsa)−1(τ) = 1
eκ(r)− pτr + 1

eκ(r)τd

and compose with ω M −, we find the expression

(6.4) ω ∧
(

1
eκ(r)− pdτr

)
+ κ(r)
eκ(r)− pdω ∧ τr + 1

e
dω ∧ τd.
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Since dω ∧ dτr = −dω ∧ τd, we can simplify (6.4) and see that

e ω ∧ dτr + eκ(r) dω ∧ τr −
(
eκ(r)− p

)
dω ∧ τr

equals the right side of (6.3). We conclude that ω M
(

(ϕsa)−1 (τ)
)

= 0.
For the case where r = −1, let us consider X ∈ TS(b), with b = a−e 6= 0.

Suppose

(6.5) ω M X = iXdω + diXω = 0.

Contracting with R we get iXω = 0, which implies diXω = 0. Together
with (6.5) we see that dω ∧X = iXdω = 0.

Finally, suppose that iXdω = 0. Contracting with R we get the other
necessary term to obtain the formula ω M X = 0. �

Corollary 6.9. — For every a 6= e we have

dimC (Hs(C•(ω, a)) = dimC (Hs(L•(ω, a))) .

Applying Corollary 6.9 above, we can state our final result and relate
regularity to first order unfoldings.

Theorem 6.10. — Let ω ∈ F1(Pn)(e) be a generic rational or logarith-
mic foliation. Then, ω ∈ Ω1

S(e) is regular if and only if U(ω) = 0.

Proof. — Using Corollary 3.10 and Corollary 6.9 we have that ω is reg-
ular if and only if (I(ω)/J(ω)) (a) = 0 for every a < e.
If ω is of type (1, . . . , 1) we rapidly see that I(ω) = J(ω).
By the definition of J(ω) and by Theorem 2.15 or Theorem 2.18, we

now that I(ω) and J(ω) are generated in degrees lower than e. Suppose
ω is of type (d1, . . . , ds) and some dk > 1. Then, ω is not regular since
I(ω)(e− dk) 6= 0 and J(ω)(e− dk) = 0.
Putting together Corollary 3.10, Proposition 5.2 and Theorem 5.4, we

see that N(n, d) = PI(ω)/J(ω) 6= 0 what forces (I(ω)/J(ω))(e) = U(ω) to
be 6= 0. �

By the above proof we can also claim:

Corollary 6.11. — Let ω ∈ F1(Pn)(e) be a generic rational or loga-
rithmic foliation of type d = (d1, . . . , ds) for s 6 n+ 1. Then, ω ∈ Ω1

S(e) is
regular if and only if d = (1, . . . , 1).
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Appendix

We can make an analytic proof of Theorem 4.1 without the need of the
classification of D(ωR) of Theorem 2.14:
Alternative proof of Theorem 4.1. — Let us consider η ∈ H0 (Ω1

Pn(e)
)

such that verifies the equation

(A.1) ωR ∧ dη + dωR ∧ η = 0.

Let us pullback ωR and η to the affine space Cn+1 and take a point p
such that

dωR(p) = (r + s)df1(p) ∧ df2(p) 6= 0.
Then functions f1, f2 are transversal in a neighborhood W of p and we can
choose a coordinate system of the form (W,ϕ) such that ϕ =
(f1, f2, ϕ1, . . . , ϕ`).
In this neighborhood, η can be written as

η = hf1 df1 + hf2 df2 +
∑̀
i=1

hi dϕi

and dη as

dη =
(
∂hf2

∂f1
− ∂hf1

∂f2

)
df1 ∧ df2 +

∑̀
i=1

(
∂hi
∂f1
− ∂hf1

∂ϕi

)
df1 ∧ dϕi

+
∑̀
i=1

(
∂hi
∂f2
− ∂hf2

∂ϕi

)
df2 ∧ dϕi +

∑̀
i,j=1
i<j

(
∂hj
∂ϕi
− ∂hi
∂ϕj

)
dϕi ∧ dϕj .

Using the formulas above we can expand (A.1) and get

ωR ∧ dη + dωR ∧ η

=
∑̀
i=1

[
rf1

(
∂hi
∂f1
− ∂hf1

∂ϕi

)
+ sf2

(
∂hi
∂f2
− ∂hf2

∂ϕi

)]
df1 ∧ df2 ∧ dϕi

+
∑̀
i,j=1
i<j

rf1

(
∂hj
∂ϕi
− ∂hi
∂ϕj

)
df2 ∧ dϕi ∧ dϕj

−
∑̀
i,j=1
i<j

sf2

(
∂hj
∂ϕi
− ∂hi
∂ϕj

)
df1 ∧ dϕi ∧ dϕj = 0.

From the last two summations we obtain the equality ∂hj

∂ϕi
= ∂hi

∂ϕj
for

every i, j.
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Now, let us take k ∈ {1, . . . , `} and define the primitive function h =∫
hkdϕk. We can compute a partial derivative of h in W as

∂h

∂ϕi
=
∫
∂hk
∂ϕi

dϕk =
∫

∂hi
∂ϕk

dϕk = hi

and then, express the differential of h as

dh = ∂h

∂f1
df1 + ∂h

∂f2
df2 +

∑̀
i=1

hi dϕi.

If we consider the 1-form

η − dh =
(
hf1 −

∂h

∂f1

)
df1 +

(
hf2 −

∂h

∂f2

)
df2

we clearly have dωR ∧ (η − dh) = 0.
Both ωR and η are homogeneous of degree e and descend to projective

space. Let us restrict to the homogeneous part of degree e of the previous
equation and call he the homogeneous component of h of that degree. We
can contract the equation dωR ∧ (η − dhe) = 0 with the radial field R and
get

hedω = ω ∧ (η − dhe)
showing that the pair (he,η)∈U(ωR) and projects to the deformation η. �
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