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ON STRONG PROPERTY (T) AND FIXED POINT
PROPERTIES FOR LIE GROUPS

by Tim DE LAAT,
Masato MIMURA & Mikael DE LA SALLE (*)

Abstract. — We consider certain strengthenings of property (T) relative to
Banach spaces. Let X be a Banach space for which the Banach–Mazur distance to a
Hilbert space of all k-dimensional subspaces grows as a power of k strictly less than
one half. We prove that every connected simple Lie group of sufficiently large real
rank has strong property (T) of Lafforgue with respect to X. As a consequence,
every continuous affine isometric action of such a high rank group (or a lattice
in such a group) on X has a fixed point. For the special linear Lie groups, we
also present a more direct approach to fixed point properties, or, more precisely,
to the boundedness of quasi-cocycles. We prove that every special linear group of
sufficiently large rank satisfies the following property: every quasi-1-cocycle with
values in an isometric representation on X is bounded.
Résumé. — Nous considérons certains renforcements de la propriété (T) Bana-

chique. Soit X un espace de Banach pour lequel la distance de Banach–Mazur à un
espace euclidien de tout sous-espace de dimension k croît comme une puissance de
k strictement inférieure à un demi. Nous prouvons que tout groupe de Lie simple
connexe et de rang réel suffisament grand a la propriété (T) renforcée de Lafforgue
relativement à X. Par conséquent toute action continue par isométries affines d’un
tel groupe (ou d’un réseau dans un tel groupe) sur X a un point fixe. Pour les
groupes spéciaux linéaires, nous présentons aussi une approche plus directe aux
propriétés de point fixe. Plus précisément nous prouvons que tout groupe spécial
linéaire de rang suffisament grand a la propriété suivante : tous ses quasi-1-cocycles
à valeurs dans une représentations isométrique sur X sont bornés.
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1. Introduction and statement of the main results

A locally compact group has property (T) if its trivial representation
is isolated in the unitary dual of the group equipped with the Fell topol-
ogy. This property was introduced in 1967 by Kazhdan in order to show
that certain groups are finitely generated [13]. Since then, property (T) has
been a key ingredient in several striking results in different areas of math-
ematics. It is well known that connected higher rank simple Lie groups,
i.e. connected simple Lie groups with real rank at least 2, and their lattices
satisfy property (T).
This article deals with three strengthenings of property (T) relative to

Banach spaces, namely Lafforgue’s strong property (T), property (FX) (for
a Banach space X) of Bader, Furman, Gelander and Monod and property
(FFX), which was defined by the second-named author. We mainly consider
the question whether high rank simple Lie groups satisfy these strength-
enings with respect to certain natural classes of Banach spaces. In this
article, we will only work with real Lie groups and real Banach spaces. A
posteriori, all results also hold for complex Banach spaces by considering
them as real ones.
The first version of property (T) with respect to a Banach space X, de-

noted by property (TX), was given by Bader, Furman, Gelander and Monod
in terms of representations having almost invariant vectors [1] (see also Def-
inition 3.5). The definition of Lafforgue’s strong property (T) (see [16], [17])
is based on the characterization of property (T) in terms of the existence
of a Kazhdan projection in the universal C∗-algebra C∗(G) of G, i.e. a
self-adjoint idempotent P such that for every unitary representation π of
G, the operator π(P ) is a projection onto the subspace of π(G)-invariant
vectors. If we consider isometric representations on a Banach space X in-
stead of unitary representations, we obtain a version of property (T) with
respect to X, which we denote by (Tproj

X ), where the superscript “proj”
stands for “projection”. Allowing the representations on X to have small
exponentional growth gives the definition of Lafforgue’s strong property
(T) with respect to X. We refer to Section 4 for details. Strong property
(T) originated from Lafforgue’s work on the Baum–Connes Conjecture.
In general, property (Tproj

X ) and property (Tstrong
X ) are strictly stronger

than property (TX). To see this, note that if π is a representation of G on
a Banach space X such that the representation π : G → B(X/Xπ(G)) has
almost invariant vectors, then for every measure m on G with

∫
1dm = 1,

we have ‖π(m)‖B(X/Xπ(G)) > 1. In particular, π(m) is at distance at least 1
from any projection onto the space Xπ(G) of invariant vectors. However, for
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a superreflexive Banach space X, property (TX) is equivalent to a “non-
uniform version” of property (Tproj

X ) [14] (see also [6]).
Our first result states that for a large class E of Banach spaces, every

connected simple Lie group of sufficiently large real rank has strong prop-
erty (T) with respect to the Banach spaces in E . Let us make this statement
precise. For a Banach space X, we consider the sequence

dk(X) = sup{d(E, `2dimE) | E ⊂ X,dimE 6 k},

where d denotes the Banach–Mazur distance (see Section 2.2). This se-
quence gives quantitative information on the geometry of the Banach space
X and describes, in a way, how similar X is to a Hilbert space. It is classi-
cal [12] that for every X and every k > 1, we have dk(X) 6 k 1

2 . Let β < 1
2 .

In what follows, we consider Banach spaces X for which

(1.1) ∃C > 0 such that dk(X) 6 Ckβ for all k > 1.

Theorem A. — For every β < 1
2 , there exists an integer N > 2 such

that every connected simple Lie group G of real rank at least N has strong
property (T) with respect to the Banach spaces satisfying (1.1).

Remark 1.1.
(i) By [16, Proposition 4.3] (see also [17, Proposition 5.2]), it is known

that strong property (T) passes to cocompact lattices. Hence, it is
immediate that Theorem A also holds for cocompact lattices inG. It
is not known whether strong property (T) passes to non-cocompact
lattices.

(ii) It is known from the work of Lafforgue [16] and the work of Liao [19]
that for a non-Archimedean local field F , any connected almost
F -simple algebraic group with F -split rank at least 2 has strong
property (T) with respect to all Banach spaces with type > 1 (the
notion of type is recalled in Section 2.2). One of the numerous char-
acterizations of the fact that a Banach space X has type > 1 is that
limk→∞ k−

1
2 dk(X) = 0, and it is an open problem whether all Ba-

nach spaces of type > 1 satisfy (1.1) for some β < 1
2 (see [31, Prob-

lem 27.6]). It is natural to expect that as in the non-Archimedean
case, every connected simple Lie group G of real rank at least 2
has strong property (T) with respect to the Banach spaces of type
> 1. This is still open. The first steps towards such a result were
provided in [29] and [15], the main results of which imply that ev-
ery connected simple Lie group with real rank at least 2 has strong
property (T) with respect to the Banach spaces satisfying (1.1) for
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β < 1
10 . Theorem A is another step towards a real analogue of

Lafforgue’s and Liao’s results.
(iii) In [14, Theorem 5.8], the first-named author and the third-named

author showed that for every β < 1
2 , there exists anN > 2 such that

every connected simple Lie groupG of real rank at leastN has prop-
erty (Tproj

X ) with respect to the superreflexive Banach spaces satis-
fying (1.1). The condition that the space is superreflexive was used
through a result of Shalom asserting that isometric representations
of semisimple Lie groups on superreflexive Banach spaces have the
Howe-Moore property (see [1, Theorem 9.1]). In fact, a much older
result of Veech [32] asserts that the same conclusion holds more
generally for reflexive spaces. This implies that [14, Theorem 5.8]
(and hence also [14, Theorem 1.4]) also holds more generally for
reflexive spaces. Theorem A provides a strengthening of the result
in [14]. Indeed, we prove strong property (T) rather than property
(T), and the (super)reflexivity assumption is not needed. However,
in [14], the condition on N is N > max{8, 2

1−2β − 1}, whereas here
we have the stronger condition N > max{8, 3

1−2β − 3}. We refer to
the beginning of Section 4 for further comparison between Theo-
rem A and the work in [14].

(iv) As in [29] and [15], the conclusion of Theorem A also holds with
N > max(8, 3

1−2β−3) ifX is a complex interpolation space between
a Banach space satisfying (1.1) and an arbitrary Banach space. It
is unknown whether there exists a Banach space satisfying (1.1) for
some β < 1

2 (or more generally a space of type > 1) which is not
a complex interpolation space between a space satisfying (1.1) for
β = 10−10 and an arbitrary Banach space.

It was proved by Lafforgue that if G has strong property (T) with respect
to X ⊕ C, then every continuous affine isometric action of G on X has a
fixed point, i.e. G has property (FX) in the terminology of [1]. Hence, as a
consequence of Theorem A, we obtain the following result.

Theorem B. — For every β < 1
2 , there exists an integer N > 2 such

that every continuous affine isometric action of a connected simple Lie
group G of real rank at least N on a Banach space X satisfying (1.1) has
a fixed point, i.e. the group G has property (FX).

Although it is not known whether strong property (T) passes to non-
cocompact lattices, it is known from [1] that under certain conditions prop-
erty (FX) with respect to a class of Banach spaces passes from a locally
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compact group to its lattices. These conditions are satisfied, and we obtain
the following corollary.

Corollary C. — For every β < 1
2 , there exists an integer N > 2 such

that every lattice in a connected simple Lie group of real rank at least N
has property (FX) for every Banach space X satisfying (1.1).

Remark 1.2.

(i) Theorem B (as well as the result of the first-named author and the
third-named author mentioned above) corroborates a conjecture
of Bader, Furman, Gelander and Monod, asserting that connected
semisimple Lie groups with higher rank simple factors and finite
center and lattices in such groups have property (FX) for every
superreflexive Banach space X (see [1, Conjecture 1.6] for a more
precise and slightly stronger formulation of this conjecture).

(ii) Contrary to the case of Hilbert spaces, in which property (T) is
equivalent to property (FH), in general property (FX) is not implied
by property (TX) or property (Tproj

X ). Theorem B was therefore not
a formal consequence of [14], not even for superreflexive spaces.

(iii) A formal consequence of Theorem B is that for G and X as in the
theorem, the group G has property (FX): every uniformly equicon-
tinuous affine action of G on X has a fixed point. Indeed, for a
uniformly equicontinuous affine action of G on X, there is an equiv-
alent norm on X for which the action is affine and isometric, and
replacing the norm on X by an equivalent norm preserves condi-
tion (1.1) without changing β.

A second application of strong property (T) is as follows: if a locally
compact group G has strong property (T) (actually property (Tproj) is
enough) with respect to a class E of Banach spaces that is stable under
taking vector-valued L2-spaces, then the expanders coming from a lattice
in G do not coarsely embed into any Banach space in E . This was proved
by Lafforgue in [16] (see also [17]). However, it turns out that for this result
on the non-coarse-embeddability of expanders, one does not need the full
strength of strong property (T) or property (Tproj). In [14], the first-named
author and the third-named author observed that in fact a form of Banach
property (T) for a restricted family of representations (namely certain rep-
resentations on vector-valued L2-spaces) suffices to prove this result. This
allowed them to prove that if X satisfies (1.1), then the expanders coming
from connected simple Lie groups with sufficiently high real rank do not
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coarsely embed into X, even though they could not prove property (Tproj
X )

when X is not reflexive.
Recently, Oppenheim showed that certain groups that are not realized as

lattices in Lie groups, e.g. certain groups acting on simplicial complexes and
certain (Kac–Moody–)Steinberg groups, satisfy a Banach space strength-
ening of property (T) that he calls robust Banach property (T) [27]. This
property is slightly weaker than strong property (T), but still has the same
consequences (on property (FX) and the non-coarse-embeddability of ex-
panders) as strong property (T).
A second direction that we investigate in this article is a more direct ap-

proach to fixed point properties, or, more precisely, to boundedness prop-
erties of (quasi-)1-cocycles. We are able to use this approach in the setting
of special linear Lie groups. A locally compact group G is said to have
property (FFX) if for every isometric representation ρ : G → O(X), any
quasi-1-cocycle c : G→ X into ρ is bounded (see Section 3.3 for definitions
and details). Our main result on property (FFX) is as follows.

Theorem D. — For every β < 1
2 , there exists an integer N > 3 such

that SL(N,R) has property (FFX) for all X satisfying (1.1).

Remark 1.3.
(i) Property (FFX) is a boundedness property for continuous rough ac-

tions, i.e. actions up to a uniformly bounded error, by affine isome-
tries on X. It was introduced by the second-named author in [20]
as a Banach space version of property (TT) of Monod (see [24]).

(ii) For general X, it is not the case that property (FFX) implies prop-
erty (FX). For example, letX = `10 denote the zero-sum subspace of
`1 over a countable set. Now [1, Example 2.23] shows that any (infi-
nite) countable discrete group fails to have property (F`1

0
), whereas

we will see in Remark 5.6 that SL(4,Z) has property (FF`1
0
).

However, if X satisfies the property that every continuous group
action on X by affine isometries with bounded orbits has a global
fixed point, then property (FFX) implies property (FX). Note that
every reflexive Banach space satisfies this property, as follows from
the Ryll-Nardzewski fixed point theorem. Hence, Theorem D estab-
lishes property (FX) for high rank special linear Lie groups with
respect to large classes of (in particular reflexive) Banach spaces.
This approach is more direct than the approach through strong
property (T).

(iii) In comparison with [26, Theorem 1.4], Theorem D and Corollary 5.5
are of special interest if the corresponding isometric representation

ANNALES DE L’INSTITUT FOURIER
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is not coming from the contragredient representation of an isometric
representation on a separable Banach space.

In the proof of Theorem D, we will deduce property (FFX) from the
aforementioned property (Tproj

X ). In the study of property (FX) in [1], a
version of the Howe–Moore property in the setting of superreflexive Banach
spaces due to Shalom is used (see Appendix 9 in [1]). As mentioned before,
the Howe–Moore property holds more generally in the setting of reflexive
Banach spaces, as was proved by Veech [32], but we do not see how to extend
the arguments to Banach spaces for which the Howe-Moore property does
not hold. In this article, we exploit a different method, based on previous
work of the second-named author [20].
This article is organized as follows. We recall some preliminaries in Sec-

tion 2. In 3, we give precise definitions of strong property (T), property
(FX) and property (FFX), we provide certain relevant background infor-
mation, and we explain how Corollary C follows from Theorem B. We prove
Theorem A in Section 4. Theorem D is proved in Section 5.

Acknowledgements

We thank the referee for several valuable suggestions and remarks that
improved the content of the article. We also thank the organizers of the In-
ternational Conference on Banach methods in Noncommutative Geometry
at Wuhan University, where the work that lead to this article was initiated.

2. Preliminaries

2.1. Polar decomposition of Lie groups

Let G be a connected (semi)simple Lie group with Lie algebra g. A
polar/KAK decomposition of G is given by G = KAK, where K is such
that its Lie algebra k comes from a Cartan decomposition g = k + p and
A is an abelian Lie group such that its Lie algebra a is a maximal abelian
subspace of p. The real rank of G is defined as the dimension of a. In
general, given a polar decomposition g = k1ak2 of an element g, where
k1, k2 ∈ K and a ∈ A, the element a is not uniquely determined. However,
after choosing a set of positive roots and restricting to the closure A+ of the
positive Weyl chamber A+, we still have the decomposition G = KA+K,
but now, the element a ∈ A+ in the decomposition g = k1ak2 is uniquely
determined. For details on this decomposition, we refer to [11, Section IX.1].

TOME 66 (2016), FASCICULE 5
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2.2. Geometry of Banach spaces

Two Banach spaces X and Y are said to be C-isomorphic if there exists
an isomorphism u : X → Y such that ‖u‖‖u−1‖ 6 C. The infimum of
such constants C is called the Banach–Mazur distance between X and Y
and is denoted by d(X,Y ). It is known that if X has dimension k, then
d(X, `2k) 6 k

1
2 . We have equality for X = `1k, i.e. d(`1k, `2k) = k

1
2 for all

k > 1.
Let (gi)i∈N be a sequence of independent complex Gaussian N (0, 1) ran-

dom variables defined on some probability space (Ω,P). A Banach space X
is said to have type p > 1 if there exists a constant T such that for all n ∈ N
and all x1, . . . , xn ∈ X, we have ‖

∑
i gixi‖L2(Ω;X) 6 T (

∑
i ‖xi‖p)

1/p. The
best T is denoted by Tp(X). A Banach spaceX is said to have cotype q 6∞
if there exists a constant C such that for all n ∈ N and all x1, . . . , xn ∈ X,
we have (

∑
i ‖xi‖q)

1/q 6 C‖
∑
i gixi‖L2(Ω;X). The best C is denoted by

Cq(X).
Hilbert spaces have type 2 and cotype 2. It was proved by Kwapień

that this property characterizes the Banach spaces that are isomorphic to
a Hilbert space. Superreflexive spaces have nontrivial type. On the other
hand, there are spaces of nontrivial type that are not even reflexive. For
every q > 2, there are Banach spaces that are not reflexive but have type
2 and cotype q [28].

For details on the Banach–Mazur distance, type and cotype, we refer
to [31].

2.3. Representations

In this article, we consider linear representations of locally compact
groups on Banach spaces that are strongly continuous, i.e. the map G→ X

given by g 7→ π(g)x is continuous for every x ∈ X. Whenever a represen-
tation occurs, it is always assumed to be linear and strongly continuous,
unless explicitly stated otherwise.
For a Banach space X, we denote by O(X) the group of invertible linear

isometries from X to X. An isometric representation of a locally compact
group G is a (strongly continuous linear) representation π : G→ O(X).

If m is a compactly supported signed Borel measure on G and π : G →
B(X) is a representation, we denote by π(m) the operator defined by
π(m)ξ =

∫
π(g)ξdm(g) (Bochner integral) for all ξ ∈ X.

ANNALES DE L’INSTITUT FOURIER
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The contragredient representation tπ of a representation π of G on X

is the representation of G on X∗ given by g 7→ π(g−1)∗. It might not be
strongly continuous, even not if π is.

2.4. From estimates on invariant coefficients to estimates on
finite type coefficients

In our proof of Theorem A, we will use the following result, which was
proved in [29, Proposition 2.8] under the assumption that U is abelian. The
setting is the following. Let K be a compact Lie group with a left-invariant
Riemannian metric d, let U ⊂ K×K be a closed subgroup. Let λ be the left
regular representation of K on L2(K). We denote by u · k the action of an
element u = (k′, k′′) ∈ U on an element k ∈ K by left-right multiplication.
For k ∈ K we denote by Uk ⊂ U the stabilizer of k for the action of U
on K. If ρ is a finite-dimensional unitary representation of U on a Hilbert
space V , we denote by Vk ⊂ V the space of ρ(Uk)-invariant vectors in V ,
and by Pk ∈ B(V ) the orthogonal projection onto Vk.

Proposition 2.1. — For every k0 ∈ K and every finite-dimensional
unitary representation ρ of U on V , there exists a constant CV,k0 > 0
such that the following holds: for every Banach space X, every isometric
representation π : K → O(X) and every map f : B(X) → V of the form
f(a) =

∑n
i=1〈aξi, ηi〉vi satisfying

• ξi ∈ X, ηi ∈ X∗ and vi ∈ V ,
•
∑n
i=1 ‖ξi‖X‖ηi‖X∗‖vi‖V 6 1,

• f(π(k′)aπ(k′′−1)) = ρ(k′, k′′)f(a) for all a ∈ B(X) and (k′, k′′) ∈ U ,
we have

‖f(π(k))− f(π(k0))‖V 6

CV,k0

(
d(k, k0) +

∥∥∥∥(∫
U

(λ(u · k)− λ(u · k0))du
)
⊗ IdX

∥∥∥∥
B(L2(K;X))

)
for all k ∈ K such that dim(Vk) = dim(Vk0).

We do not know whether the assumption dim(Vk) = dim(Vk0) is neces-
sary. At least in the case of K = SO(n) and U = SO(n − 1) × SO(n − 1)
(Lemma 4.2) of the case of [15] the proposition holds without this assump-
tion, because the norm in B(L2(K)) of

∫
U

(λ(u · k)− λ(u · k0))du is greater
than 1 otherwise.

We will use the following lemma.

TOME 66 (2016), FASCICULE 5
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Lemma 2.2. — Let K, k0, U and V be as above. Then there exists a
Lipschitz map ψ : K → B(V ) such that

(1) ψ(u · k) = ψ(k)ρ(u−1) for every u ∈ U ,
(2) for v1, v2 ∈ V , the functions 〈ψ(·)v1, v2〉 are coefficients of λ,
(3) ψ(k0) = Pk0 .

Proof. — Denote by F the set of functions φ : K → B(V ) such that for
all v1, v2 ∈ V , the function 〈φ(·)v1, v2〉 for v1, v2 ∈ V is a coefficient of
a finite-dimensional representation of K. Note that every function in F

is C∞ (and hence Lipschitz) and satisfies (2) by the Peter-Weyl theorem.
For a continuous function φ : K → B(V ), consider the function ψ(k) =∫
U
φ(u · k)ρ(u)du. Then ψ ∈ F if ϕ ∈ F and ψ(u · k) = ψ(k)ρ(u−1). In

particular, for u ∈ Uk0 we have ψ(k0) = ψ(k0)ρ(u−1) and ψ(k0) vanishes
on the orthogonal complement of Vk0 . We claim that there is a choice of
φ ∈ F such that ψ(k0) has rank dim(Vk0). Before we prove the claim, let
us explain how it implies the lemma. First, by replacing φ by Aφ for some
A ∈ B(V ) satisfying Aψ(k0) = Pk0 (such an A exists because ψ(k0) has the
same kernel as Pk0), we can assume that ψ(k0) = Pk0 , so that (3) holds.
We already explained that ψ is Lipschitz and that (1) and (2) hold. Hence
ψ satisfies all the conditions in the lemma.
Let us now prove the claim. Denote by O ⊂ K the U -orbit of k0 (this is a

closed subset of K), and let s : O → U be a measurable section, i.e. a mea-
surable map satisfying s(u · k0) ∈ uUk0 for every u ∈ U . Then if φ : O →
B(V ) is defined by φ(x) = ρ(s(x))−1, we see that

∫
φ(u · k0)ρ(u)du =∫

ρ(s(u · k0)−1u)du acts as the identity on Vk0 , and therefore, since it van-
ishes on V ⊥k0

, it is equal to Pk0 . By a density argument, this implies that
there is a continuous function φ : O → B(V ) such that

∫
φ(u · k0)ρ(u)du

is arbitrarily close to Pk0 , and in particular it has rank dim(Vk0). By the
Tietze extension theorem, we can extend φ to a continuous function on K.
For this φ, it holds that ψ(k0) has rank dim(Vk0). By the density of F in
the space of continuous functions from K to B(V ), the claim follows. �

The next lemma is where the assumption dim(Vk) = dim(Vk0) is used.

Lemma 2.3. — There exists a constant CV,k0 > 0 such that

‖Pk − Pk0‖ 6 CV,k0d(k, k0)

for every k such that dim(Vk0) = dim(Vk).

Proof. — Let ψ be a function given by Lemma 2.2, with Lipschitz con-
stant Lip(ψ). Take k such that dim(Vk0) = dim(Vk); denote by d this
common dimension. By (1) in Lemma 2.2, ψ(k) vanishes on the orthogonal
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complement of Vk, and therefore ψ(k) has rank at most d. If d(k, k0) >
(10Lip(ψ))−1 the inequality is obvious with CV0,k = 20Lip(ψ) because
‖Pk − Pk0‖ 6 2. We can therefore assume that d(k, k0) < (10Lip(ψ))−1.
This implies that ‖ψ(k)−Pk0‖ < 1/10, and therefore ‖ψ(k)∗ψ(k)−Pk0‖ <
1
3 . This implies that the self-adjoint matrix ψ(k)∗ψ(k) has d eigenvalues
in the interval [ 2

3 ,
4
3 ] and dim(V ) − d eigenvalues in the interval [0, 1

3 ]. By
a rank consideration the dim(V ) − d smallest eigenvalues vanish, and the
eigenvectors corresponding to the d eigenvalues in [ 2

3 ,
4
3 ] span Vk. If f is a

Lipschitz function on R which is equal to 0 at 0 and 1 on [ 2
3 ,

4
3 ] we therefore

have f(ψ(k)∗ψ(k)) = Pk and f(Pk0) = Pk0 . The conclusion follows because
A 7→ f(A) is Lispschitz on the self-adjoint linear maps on V . �

Proof of Proposition 2.1. — If V is the trivial representation, we have

‖f(π(k))− f(π(k0))‖V 6
∥∥∥∥(∫

U

(λ(u · k)− λ(u · k0))du
)
⊗ IdX

∥∥∥∥
B(L2(K;X))

for all k ∈ K by [29, Proposition 2.7].
If V is not the trivial representation, we can reduce to the case of the

trivial representation. Indeed, let ψ be as in Lemma 2.2. Since ψ(u · k) =
ψ(k)ρ(u−1) for all k ∈ K and u ∈ U , the map from K to V given by
k 7→ ψ(k)f(π(k)) is U -invariant and we claim that it can be decomposed
as k 7→

∑m
i=1〈(λ⊗π)(k)ξ̃i, η̃i〉wi for

∑m
i=1 ‖ξ̃i‖L2(K;X)‖η̃i‖L2(K;X∗)‖wi‖V 6

C, where C depends on ψ only. This decomposition can be obtained by
taking an orthonormal basis (e1, . . . , ed) of V and writing each function
〈ψ(·)vi, ej〉 as a coefficient of the left-regular representation λ of K as fol-
lows: 〈ψ(·)vi, ej〉 = 〈λ(·)ai,j , bi,j〉 for some ai,j , bi,j ∈ L2(K) of norm less
than (C‖vi‖)

1
2 . This gives that ψ(k)vi =

∑d
j=1〈λ(·)ai,j , bi,j〉ej and hence

ψ(k)f(π(k)) =
n∑
i=1

d∑
j=1
〈(λ⊗ π)(k)ai,j ⊗ ξi, bi,j ⊗ ηj〉ej ,

which is of the announced form with m = nd. Observe also that for all
k ∈ K,

(2.1) f(π(k)) ∈ Vk

because for every u ∈ Uk, ρ(u)f(π(k)) = f(π(u · k)) = f(π(k)). Therefore,
by the previous case for the representation λ⊗π and by (3) of Lemma 2.2,

(2.2) ‖ψ(k)f(π(k))− f(π(k0))‖V

6 C

∥∥∥∥(∫
U

(λ(u · k)− λ(u · k0))du
)
⊗ IdX

∥∥∥∥
B(L2(K;X))
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for all k ∈ K. By using the triangle inequality and (2.1), we obtain

‖f(π(k))− f(π(k0))‖V
6 ‖ψ(k)f(π(k))− f(π(k0))‖V + ‖ψ(k)− Pk‖B(V )‖f(π(k))‖V

for all k ∈ K. Estimating the first term by (2.2), using the fact that ψ is a
Lipschitz map and Lemma 2.3, which implies that

‖ψ(k)− Pk‖B(V ) 6 ‖ψ(k)− ψ(k0)‖B(V ) + ‖Pk0 − Pk‖B(V ) 6 C
′d(k, k0)

for some constant C ′ > 0, and using the inequality ‖f(π(k))‖ 6 1 for all
k ∈ K, the proposition follows. �

3. Strong property (T), property (FX) and property
(FFX)

Recall that in this article, representations of locally compact groups on
Banach spaces are always assumed to be linear and strongly continuous,
unless explicitly stated otherwise.

3.1. Strong property (T)

Strong property (T) was introduced by Lafforgue as an obstruction to a
certain approach to the Baum–Connes Conjecture [16, 17]. It is defined in
terms of the existence of a self-adjoint idempotent (the Kazhdan projection)
in a certain completion of the space of compactly supported continuous
functions on the group. In this article, we use the following more flexible
definition of strong property (T), as introduced by the third-named author
in [29]. Recall first that a length function on a locally compact group G is
a continuous function ` : G → R+ such that `(g−1

1 ) = `(g1) and `(g1g2) 6
`(g1) + `(g2) for all g1, g2 ∈ G.

Definition 3.1. — A locally compact group G has strong property
(T) with respect to a class E of Banach spaces (denoted by (Tstrong

E )) if for
every length function ` on G there is a sequence of compactly supported
symmetric Borel measures mn on G such that for every Banach space
X in E there exists a constant t > 0 such that the following holds: for
every representation π : G → B(X) with ‖π(g)‖B(X) 6 Let`(g) for some
L ∈ R+, the sequence π(mn) converges in the norm topology on B(X) to
a projection onto the π(G)-invariant vectors of X.

ANNALES DE L’INSTITUT FOURIER



STRONG PROPERTY (T) AND FIXED POINT PROPERTIES 1871

If one takes E to be the class of Hilbert spaces, this definition is equivalent
to Lafforgue’s original definition of strong property (T), which is denoted by
(Tstrong

Hilbert). If E is taken to be the class of Banach spaces with nontrivial type,
the above definition is equivalent to Lafforgue’s strong Banach property
(T), denoted (Tstrong

Banach). The equivalences are shown in [29, Section 2.9]. We
sometimes use the notation (Tstrong

X ) for strong property (T) with respect
to the isomorphism class of X.
The work in [16] implies that connected simple Lie groups with real

rank 1 do not have (Tstrong
Hilbert). Furthermore, Lafforgue showed that SL(3,R)

has (Tstrong
Hilbert), and the third-named author proved that SL(3,R) has

(Tstrong
E4

) in [29], where, for r > 2, the class Er is a certain class of Banach
spaces containing the Hilbert spaces, many superreflexive spaces and some
non-reflexive spaces. In [15], the first-named author and the third-named
author extended this result, by proving that connected simple Lie groups
with real rank at least 2 have (Tstrong

E10
).

3.2. Property (FX)

Definition 3.2. — Let X be a Banach space. A locally compact group
G has property (FX) if every continuous affine isometric action of G on X
has a fixed point.

This property was introduced in [1]. In that article, it is proved that if G
is a connected simple Lie group with real rank at least 2 and finite center or
a lattice in such a group, then G has property (FX) for every subspace or
quotient X of an arbitrary Lp-space, where 1 < p <∞ (see [1, Theorem B]
for a more general and precise statement). This result and its proof were
the motivation for the conjecture of Bader, Furman, Gelander and Monod
mentioned in Remark 1.2, (i).
We now explain that Theorem B implies Corollary C.
Proof of Corollary C. — Let G be a locally compact group, and let Γ be

a lattice in G, i.e. a discrete subgroup with finite invariant measure. It was
proved in [1, Proposition 8.8] that (FX) for Γ follows from (FL2(G/Γ;X)) for
G provided that Γ is a so-called 2-integrable lattice in G (see [1] or [15] for
definitions). Also, Shalom proved that all lattices in a higher rank algebraic
group are 2-integrable, and this was extended to simple Lie groups of higher
rank in [15, Proposition 7.1]. Therefore, all we have to show to justify the
implication Theorem B =⇒ Corollary C is that if β < 1

2 and X is a
Banach space satisfying (1.1), then also L2(Ω, µ;X) satisfies (1.1) for every
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probability measure space (Ω, µ). This is certainly well-known. One quick
argument is to use inequality (6) from [14] which, together with the Fubini
Theorem, implies that dk(L2(Ω, µ;X)) 6 2dk(X) for all k > 1. �

3.3. Property (FFX)

Definition 3.3. — Let G be a locally compact group, let X be a
Banach space, and let ρ : G → O(X) be an isometric representation. A
continuous map c : G→ X is called a quasi-1-cocycle into ρ if

sup
g1,g2∈G

‖c(g1g2)− c(g1)− ρ(g1)c(g2)‖ <∞.

The above quantity is called the defect of the quasi-1-cocycle c.

Definition 3.4. — A locally compact group G is said to have property
(FFX) if for every isometric representation ρ : G → O(X), every quasi-1-
cocycle c : G→ X into ρ is bounded.

Let us recall the relation of property (FFX) to bounded cohomology. It
is known that a locally compact group G has property (FFX) if and only
if the following two statements are satisfied:

(i) for every isometric representation ρ : G → O(X), the comparison
map

Ψ2
c : H2

cb(G;X, ρ)→ H2
c (G;X, ρ)

from the second continuous bounded cohomology group to the sec-
ond continuous cohomology group with coefficients in (X, ρ) is in-
jective;

(ii) for every continuous action of G on X by affine isometries, some
(or equivalently every) G-orbit is bounded.

We refer to item (ii) in [24, Corollary 13.1.10] for the proof of the above
equivalence, and we refer the reader to [25] and [24, Chapter V.13] for a
comprehensive treatment of quasi-cocycles and bounded cohomology.
Generally, for a Banach space X, the boundedness property (statement

(ii) above) may be weaker than property (FX). However, if X satisfies
the property that every continuous group action on X by isometries with
bounded orbits has a global fixed point, for instance, if X is reflexive,
then it is equivalent to the fixed point property (recall Remark 1.3). We
in addition mention that property (FFX) is, in general, strictly stronger
than property (FX) for such an X. For example, certain infinite hyperbolic
groups have property (T), and hence property (FH). On the other hand, it
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is well known that any infinite hyperbolic group fails to have property (TT)
of Monod (see [9] and [23]), which is the Hilbert space version of property
(FFX).
In our arguments, we need some more notions and certain relative ver-

sions of the properties recalled above. Firstly, we recall the following notion
from [1] (see also [20]). Let G be a compactly generated locally compact
group (note that every connected locally compact group is compactly gen-
erated), and let S be a compact generating set of G. Recall that an isomet-
ric representation π : G → O(Y ) does not have almost invariant vectors if
there exists an ε = ε(G,S, π) > 0 such that for any η ∈ Y \ {0}, we have
sups∈S ‖π(s)η − η‖ > ε‖η‖.

Definition 3.5. — Let G be a compactly generated locally compact
group with compact generating set S, let H be a closed subgroup of G, and
let X be a Banach space.

(1) Suppose, in addition, that H is a normal subgroup of G. The pair
G.H is said to have relative property (TX) if the following condition
is satisfied: for every isometric representation ρ : G → O(X), the
corresponding induced representation ρ : G → O(X/Xρ(H)) does
not have almost invariant vectors. Here Xρ(H) is the subspace of
X consisting of all ρ(H)-invariant vectors. (Indeed, because H is
normal, ρ induces an isometric representation on X/Xρ(H), which
we write as ρ.) We define κ(G,H, S, ρ) as the supremum of the
constants ε(G,S, ρ).
The group G has property (TX) if G . G has relative property

(TX).
(2) We say that the pair G > H is said to have weak relative property

(TX) if the following holds: for any isometric representation ρ : G→
O(X), there exists a strictly positive constant ε̃ such that for any
ξ ∈ X,

sup
s∈S
‖ρ(s)ξ − ξ‖ > ε̃ sup

h∈H
‖ρ(h)ξ − ξ‖.

We set κ̃(G,H, S, ρ) as the supremum of such ε̃.
(3) The pair G > H has relative property (FFX) if for every isometric

representation ρ : G→ O(X), any quasi-1-cocycle c : G→ X into ρ
is bounded on H.

The group G has property (FFX) in the sense of Definition 3.4 if
G > G has relative property (FFX).

Let us point out that for a reflexive Banach space X, relative property
(TX) for G . H coincides with weak relative property (TX) for G . H.
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Indeed, in that case, for any isometric representation ρ : G → O(X) and
for any ξ ∈ X, the inequality

2‖ξ‖X/Xρ(H) > sup
h∈H
‖ρ(h)ξ − ξ‖X > ‖ξ‖X/Xρ(H)

holds, where ξ 7→ ξ denotes the quotient map X � X/Xρ(H). The inequal-
ity on the right side uses the reflexivity assumption on X (see Lemma 5.1).
On the other hand, the inequality on the left side always holds, and hence
relative property (TX) implies weak relative property (TX) for anyX. More
precisely, 2κ̃(G,H, S, ρ) > κ(G,H, S, ρ) > κ̃(G,H, S, ρ) holds as long as X
is reflexive, and the inequality on the left side holds without any assump-
tion on X. In general case, however, we do not know whether the latter
property is strictly weaker. In Proposition 5.2, which is a key proposition
in Section 5, we only need to assume the latter property.
We remark that the properties above are independent of the choices of S,

despite the fact that the constants κ(G,H, S, ρ) and κ̃(G,H, S, ρ) depend
on S.

4. Strong property (T) for high rank Lie groups

In this section, we prove Theorem A. The main point is to prove the
theorem for G = SL(N,R) (Proposition 4.3), in which case the measures
mn appearing in Definition 3.1 are the uniform measures on the setsKgnK,
where K = SO(N) is the maximal compact subgroup of G and (gn) is a
well-chosen sequence in G tending to infinity. The fact that the sequence
π(mn) has a limit in the norm topology for a specific sequence gn was
essentially already proved in [14]. The fact that, unlike in the rank two case
(see [16, 17, 19, 15]), we cannot take any sequence (gn) tending to infinity,
makes our task of identifying the limit with a projection onto the invariant
vectors significantly harder. The main technical improvement compared
to [14] is that, at the cost of increasing the value of N , we manage to prove
the convergence of π(mn) under much weaker conditions on the sequence
(gn) (see (4.8)). In particular, this allows us to show that limk,n→∞ π(mk ∗
mn) also converges to limn π(mn), which was the first obstacle encountered
in [14] to prove strong property (T).
Fix n > 3. In what follows, operators, functions and constants may im-

plicitly depend on n. Considering SO(n−1) as the subgroup of SO(n) fixing
the first coordinate vector e1 ∈ Rn, and using the identification Sn−1 ∼=
SO(n−1)\SO(n) through SO(n−1)k 7→ k−1e1, we can view L2(Sn−1) as a
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subspace of L2(SO(n)). Let λ denote the left-regular representation, and de-
fine the operator Tδ on L2(SO(n)) by Tδ =

∫
SO(n−1)×SO(n−1) λ(uku′)dudu′

for k ∈ SO(n) satisfying k11 = δ. Here, k11 denotes the entry in the first
row and first column of k. The operator Tδ does not depend on the choice of
k, since

∫
SO(n−1)×SO(n−1) λ(uku′)dudu′ depends only on k11. Note that Tδ

maps the subspace L2(Sn−1) to itself and is zero on its orthogonal comple-
ment, so that Tδ can be considered as an operator on L2(Sn−1). For more
details on and related use of the operator Tδ, we refer to [16, 18, 29, 15, 14].
The following result is [14, Lemma 5.4].

Lemma 4.1. — Let n > 3, and let X be a Banach space for which there
exist β < 1

2 (1 − 1
n−1 ) and C ′ > 0 such that dk(X) 6 C ′kβ for all k > 1.

Then there exist αX ∈ (0, 1) and CX > 0 such that for all δ, δ′ ∈ [−1, 1],

(4.1) ‖(Tδ − Tδ′)⊗ IdX‖B(L2(SO(n);X)) 6 CX max(|δ|αX , |δ′|αX ).

Moreover, αX and CX depend on β and C ′ only.

The way we apply the preceding lemma is through the following result,
which is an extension of [14, Lemma 5.6] and follows from Proposition 2.1.

Lemma 4.2. — Let n > 3, and let X be a Banach space satisfying (4.1)
for some αX ∈ (0, 1) and CX > 0, and all δ, δ′ ∈ [−1, 1]. Let k̃0 denote
an element of SO(n) with (k̃0)11 = 0 (the upper left entry of k̃0 equals 0).
Suppose that V is a finite-dimensional unitary representation of SO(n−1).
Then there exists a constant C(X,V ) (depending on X and V ) such that
for all isometric representations π : SO(n)→ O(X), all SO(n−1)-invariant
vectors ξ ∈ X and all SO(n − 1)-equivariant linear maps q : X → V , the
function ϕ given by ϕ(k̃) = q(π(k̃)ξ) satisfies

‖ϕ(k̃)− ϕ(k̃0)‖V 6 C(X,V )(d(k̃, k̃0) + |k̃11|αX )‖ξ‖X‖q‖X→V
for all k̃ ∈ SO(n). Here d denotes some fixed distance on SO(n) coming
from an invariant Riemannian metric.

Proof. — If |k̃1,1| = 1 there is nothing to prove, so we can assume that
|k̃1,1| < 1. Apply Proposition 2.1 with K = SO(n), U = SO(n−1)×SO(n−
1), the representation ρ of U on V given by ρ(u, u′)v = u ·v for (u, u′) ∈ U ,
and the function f(a) = q(aξ). The assumption that dim(Vk̃) = dim(Vk̃0

)
holds because if |k̃1,1| < 1, the groups Uk̃ and Uk̃0

are both conjugate to the
subgroup SO(n−2) (as a diagonal subgroup of SO(n−2)×SO(n−2) ⊂ U).
The term ∥∥∥∥(∫

U

(λ(u · k)− λ(u · k0))du
)
⊗ IdX

∥∥∥∥
B(L2(K;X))
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is equal to
‖(T

k̃11
− T0)⊗ IdX‖B(L2(SO(n);X)),

which is less than CX |k̃11|αX by Lemma 4.1. �

For δ ∈ [−1, 1], let k̃δ ∈ SO(n) denote a rotation by angle θ = arccos(δ) ∈
[0, π] in the plane generated by the first two coordinate vectors of Rn. Then
(k̃δ)11 = δ and d(k̃δ, k̃0) = O(|δ|), and the corresponding special case of
the inequality of Lemma 4.2 is

(4.2) ‖ϕ(k̃δ)− ϕ(k̃0)‖V 6 C(X,V )|δ|αX‖ξ‖X‖q‖X→V ,

perhaps with a different constant C(X,V ). In particular,

(4.3)
∣∣‖ϕ(k̃δ)‖V − ‖ϕ(k̃0)‖V

∣∣ 6 C(X,V )|δ|αX‖ξ‖X‖q‖X→V .

For an integerN , equip SL(N,R) with the length function defined by `(g) =
max(log ‖g‖, log ‖g−1‖), where ‖·‖ denotes the operator norm for operators
on the Euclidean space RN . We will use that

(4.4) `(g) 6 N log ‖g−1‖ for all g ∈ SL(N,R).

Before we turn to strong property (T) for the group SL(N,R), we first
explain its polar decomposition. We briefly recalled the basics of this de-
composition in Section 2.1. It is well-known that the group SO(N) is a
maximal compact subgroup of SL(N,R). Therefore, SL(N,R) admits a po-
lar decomposition of the form SL(N,R) = SO(N) · A · SO(N), and A is
given by

A = {diag(eα1 , . . . , eαN ) | α1 + . . .+ αN = 0}.
If we restrict to A+ = {diag(eα1 , . . . , eαN ) | α1 + . . . + αN = 0, α1 >
. . . > αN}, we still have SL(N,R) = SO(N) · A+ · SO(n), and moreover,
the element a ∈ A+ is uniquely determined.
Let m ∈ N. In what follows, for r, s, t ∈ R satisfying r + s + t = 0, we

denote by D(r, s, t) the diagonal matrix in SL(3m,R) with m eigenvalues
equal to er, and m ones equal to es, and the other m eigenvalues equal to
et, in such a way that the eigenvalues are ordered as follows: D(r, s, t) =
diag(er, . . . , er, es, . . . , es, et, . . . , et).
For u > 0, let mu denote the compactly supported probability measure

on SL(3m,R) defined by

mu(f) =
∫

SO(3m)

∫
SO(3m)

f(kD(u, 0,−u)k′)dkdk′,

where dk and dk′ denote the normalized Haar measure on SO(3m). In the
following proposition, we consider a certain sequence of such measures. In
the following, we will take m = n− 2, where n > 3.
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The main task in the rest of this section is to prove the following propo-
sition, which implies Theorem A.

Proposition 4.3. — Let n > 3, and let (mu)u∈R+ be the family of
measures on SL(3n− 6,R) as defined above. Then for every Banach space
satisfying (4.1) and every representation π : SL(3n−6,R)→ B(X) satisfy-
ing supg∈G e−γ`(g)‖π(g)‖ <∞ for some γ < αX

3n−6 , there exists an operator
P in B(X) such that

(i) the operator P is a projection onto the subspace Xπ(G) of π(G)-
invariant vectors in X,

(ii) we have limu→∞ e(αX2 −(3n−6)γ)u‖π(mu)− P‖B(X) = 0.

Note that the measure mu is just the uniform probability measure on
the subset SO(3n− 6) ·D(u, 0,−u) · SO(3n− 6) of SL(3n− 6,R).
Proof of Theorem A using Proposition 4.3. — Let β < 1

2 , and take
n > 3 to be the smallest natural number such that β < 1

2 (1 − 1
n−1 ).

Put N = 3n − 6. It follows directly from Proposition 4.3 and Lemma 4.1
that SL(N,R) has strong property (T) with respect to the Banach spaces
satisfying (1.1).
It follows from a result of Dynkin in [7] (see [8] for a translation) that

every connected simple Lie group with real rank N > 9 contains a closed
analytic subgroup locally isomorphic to SL(N,R) (see [14, Lemma 4.6] for
more details). By a similar argument as in the proof of [16, Corollaire 4.1]
(see also the proof of [15, Theorem A]), strong property (T) with respect
to the Banach spaces satisfying (1.1) now follows for connected simple Lie
groups with real rank at least N . �

Proof of Proposition 4.3

The rest of this section is devoted to the proof of Proposition 4.3. The
proof follows the same strategy as the proof of strong property (T) for
SL(3,R) relative to the class of Hilbert spaces, which is due to Lafforgue [16,
Section 2] (see also [29] for strong property (T) for this group relative
to certain Banach spaces). However, identifying the operator P with the
projection onto the π(G)-invariant vectors in X involves new ideas and
techniques.
From now on, we fix n, X, π and γ as in the statement of Proposition 4.3.

We put G = SL(3n− 6,R) and K = SO(3n− 6). By renorming X with the
equivalent norm given by assigning the number supk∈K ‖π(k)x‖ to x ∈ X,
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we may assume that the restriction of π to SO(3n − 6) is isometric. We
still denote this norm by ‖.‖. Let L = supg∈SL(3n−6,R) e

−γ`(g)‖π(g)‖, and
for g ∈ G, let m̃g denote the uniform probabilty measure on KgK, i.e.,

m̃g(f) =
∫
K

∫
K

f(kgk′)dkdk′,

so that the measures mu of the proposition are given by mu = m̃D(u,0,−u).
The proof now proceeds in three steps. The first step is a straightforward

adaptation of an argument from [14].

Step 1. — The net of operators (π(mu)) has a limit P in the norm topol-
ogy of B(X) as u→∞ and conclusion (ii) of Proposition 4.3 holds.

As mentioned before, the difficulty is to identify P as a projection onto
the invariant vectors.

Step 2. — The operator P is a projection.
Step 3. — The image of P is the spaceXπ(G) consisting of π(G)-invariant

vectors.

For the proof of Step 1, we first prove two lemmas, which generalize
certain results from [14, Section 4] to the setting of representations that
are not necessarily isometric.

Lemma 4.4. — For K-invariant unit vectors ξ ∈ X and η ∈ X∗, set
ϕ(g) = 〈π(g)ξ, η〉. Also, let D = diag(ev1 , . . . , ev3n−6) ∈ SL(3n − 6,R) be
a diagonal matrix with min(v1, . . . , v3n−6) = v2n−3 = . . . = v3n−6 = t for
some t < 0. Suppose i < j 6 2n − 4, and let D′ = diag(ev′1 , . . . , ev

′
3n−6) ∈

SL(3n− 6,R) be another diagonal matrix with entries equal to those of D
except the i-th and the j-th entry, and also satisfying v′i, v′j > t. Then

|ϕ(D)− ϕ(D′)| 6 2C̃XL2e−αX(µ−t)−(3n−6)γt,

where µ = min{vi, vj , v′i, v′j}.

Proof. — Let A = diag(ea1 , . . . , ea3n−6) be the matrix in SL(3n − 6)
with ai = vi+vj−t

2 , aj = t
2 and al = vl

2 if l /∈ {i, j}. Using (4.4) and
min{al | l = 1, . . . , 3n− 6} = t

2 , we see that `(A) 6 −(3n− 6) t2 .
Let K ′ ⊂ K be the subgroup of K that acts as the identity on the

orthogonal complement of the space spanned by the i-th, the j-th and the
last n − 2 basis vectors of R3n−6. The group K ′ is isomorphic to SO(n)
and its subgroup U ′ that fixes the i-th coordinate vector of R3n−6 is a copy
of SO(n − 1) contained in the centralizer of A. In particular, the vectors
π(A)ξ and π(A)∗η are U ′-invariant vectors of norm less than ‖π(A)‖ 6
Le−(3n−6)γ t2 .
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Let kδ ∈ K be a rotation of angle arccos(δ) ∈ [0, π] in the plane generated
by the i-th and j-th coordinate vectors of R2. Notice that kδ belongs to K ′
and corresponds to the element k̃δ ∈ SO(n) under a correct identification
of the pairs (K ′, U ′) and (SO(n),SO(n− 1)). Then (4.2) implies that

(4.5) |ϕ(AkδA)− ϕ(Ak0A)| 6 C̃X |δ|αXL2e−(3n−6)γt

for some constant C̃X depending on X. Indeed, in the case that V in (4.2)
is the trivial representation, which is exactly the case we are dealing with
here, we denote the constant C(X,V ) by C̃X .

The matrix AkδA satisfies AkδAel = e2alel if l /∈ {i, j}, and on the plane
span{ei, ej}, it acts as

Bδ =
(

evi+vj−tδ −e
vi+vj

2
√

1− δ2

e
vi+vj

2
√

1− δ2 etδ

)
.

By computation, it follows that there exists a δ ∈ [−1, 1] such that the
matrix Bδ for this value of δ belongs to SO(2)diag(evi , evj )SO(2). This
implies that AkδA ∈ KDK. By a similar argument, there exists a δ′ ∈
[−1, 1] such that Akδ′A ∈ KD′K, so that by the K-bi-invariance of ϕ and
using the triangle inequality, we obtain

|ϕ(D)− ϕ(D′)| 6 C̃X(|δ|αX + |δ′|αX )L2e−(3n−6)γt.

Since the upper left entry of(
evi+vj−tδ −e

vi+vj
2
√

1− δ2

e
vi+vj

2
√

1− δ2 etδ

)
is smaller than or equal to the norm of this matrix, we get the inequality
evi+vj−t|δ| 6 emax(vi,vj), and in particular |δ| 6 et−µ. Similarly, |δ′| 6 et−µ.
This proves the lemma. �

Lemma 4.5. — For K-invariant unit vectors ξ ∈ X and η ∈ X∗, set
ϕ(g) = 〈π(g)ξ, η〉 as above. Then for all u > 0 and δ > 0 satisfying δ < u,

|ϕ(D(u, 0,−u))−ϕ(D(u+δ,−δ,−u))| 6 (2n−4)C̃XL2e−αX(u−δ)+(3n−6)γu.

Proof. — This lemma follows directly by applying Lemma 4.4 n−2 times.
�

Now we can prove Step 1.
Proof of Step 1. As a particular case of Lemma 4.5, for |δ| 6 u

2 , we have

|ϕ(D(u, 0,−u))− ϕ(D(u+ δ,−δ,−u))| 6 (2n− 4)C̃XL2e−(αX2 −(3n−6)γ)u.

TOME 66 (2016), FASCICULE 5



1880 Tim DE LAAT, Masato MIMURA & Mikael DE LA SALLE

By our assumption on γ, we know that αX
2 − (3n − 6)γ > 0. By applying

Lemma 4.5 to the representation g 7→ π((gt)−1) we obtain

|ϕ(D(v, 0,−v))− ϕ(D(v, δ,−v − δ))| 6 (2n− 4)C̃XL2e−(αX2 −(3n−6)γ)v

if |δ| 6 v
2 . Setting v = u + δ, these two inequalities imply that for all δ

satisfying 0 < δ 6 u
2 ,

|ϕ(D(u, 0,−u))−ϕ(D(u+ δ, 0,−u− δ))| 6 (4n− 8)C̃XL2e−(αX2 −(3n−6)γ)u.

Suppose u, v > 0. Taking the supremum over all K-invariant unit vectors
ξ and η, we obtain

‖π(mu)− π(mv)‖B(X) 6 (4n− 8)C̃XL2e−(αX2 −(3n−6)γ)u

if 0 < u < v 6 3
2u. This implies that the (π(mu))u∈R+ satisfies the Cauchy

criterion. Hence, it has a limit P satisfying (ii). �

We now turn to the remaining steps of the proof. The key point for Step 2
is the following lemma.

Lemma 4.6. — For K-invariant unit vectors ξ ∈ X and η ∈ X∗, let
ϕ(g) = 〈π(g)ξ, η〉 as above. Again, let D = diag(ev1 , . . . , ev3n−6) ∈ SL(3n−
6,R) be a diagonal matrix with v1 > . . . > v3n−6 such that v2n−3 = . . . =
v3n−6 = t for some t < 0 and vn−2 > 0. Let s = 1

2n−4
∑3n−6
i=1 |vi|. Then

(4.6) |ϕ(D)− ϕ(D(s, 0,−s))| 6 6(n− 2)C̃XL2e−(αX−(3n−6)γ)|t|.

Proof. — Set k = n − 2, and let j be an index such that vj > 0 and
vj+1 6 0. Then the assumptions on the vi’s imply that n− 2 6 j 6 2n− 4
(i.e., k 6 j 6 2k) and

(4.7)
j∑
i=1

vi = −
3k∑

i=j+1
vi = 1

2

3k∑
i=1
|vi| = ks.

Put Dj := D. For each i satisfying 1 6 i < j, we construct a diagonal
matrix Di as follows. Consider first the auxiliary diagonal matrix D̃i having
the same eigenvalues as Di+1 except for its (i+ 1)th one, which equals the
(i+1)th eigenvalue of D(s, 0,−s), and its first eigenvalue, which is modified
in such a way that D̃i has determinant 1. If i > k, we set Di := D̃i. If i < k,
the first eigenvalue of D̃i may not be the largest. However, we can rearrange
the i first eigenvalues in decreasing order (without changing the last 3k− i
eigenvalues), and we define Di to be this rearranged matrix.
By construction, the (i + 1)th until the jth eigenvalue of Di coincide

with those of D(s, 0,−s), whereas the last 3k − j ones coincide with those
of D. Since D1 has determinant 1, the first eigenvalue λ of D1 satisfies
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1 = λe(k−1)s∏3k
i=j+1 e

vi = λe−s by (4.7), so that λ = es. Similarly, by (4.7),
we see that for i < k, the largest eigenvalue of Di is greater than or equal
to es.

For each i satisfying 1 6 i < j, we apply Lemma 4.4 and obtain

|ϕ(Di+1)− ϕ(D̃i)| 6 2C̃XL2e−αX(µ−t)−(3n−6)γt,

where eµ is the minimum of the first and the (i + 1)th eigenvalues of D̃i

and of Di+1. Using that eµ > 1 and that ϕ(D̃i) = ϕ(Di), we obtain that
|ϕ(Di+1)− ϕ(Di)| 6 2C̃XL2e−(αX−(3n−6)γ)|t|. Summing over i, we obtain

|ϕ(D)− ϕ(D1)| 6 2jC̃XL2e−(αX−(3n−6)γ)|t|.

Conjugating by the Cartan automorphism θ : g 7→ (gt)−1, the above pro-
cedure and inequality (for the representation π ◦ θ and for D replaced by
θ(D1), which satisfies the assumption of the lemma for t = −s) yields

|ϕ(D1)− ϕ(D(s, 0,−s))| 6 2(3k − j)C̃XL2e−αXs+(3n−6)γs.

By (4.7), we have |t| 6 s, and hence

|ϕ(D)− ϕ(D(s, 0,−s))| 6 6kC̃XL2e−(αX−(3n−6)γ)|t|. �

Let D denote the set of all matrices satisfying the assumptions of
Lemma 4.6, i.e. matrices of the form diag(ev1 , . . . , ev3n−6) ∈ SL(3n− 6,R)
with v1 > . . . > v3n−6 such that v2n−3 = . . . = v3n−6 = t for some t < 0 and
vn−2 > 0. A direct consequence of Step 1 and Lemma 4.6 is the following:

(4.8) lim
D∈D, `(D)→∞

‖π(m̃D)− P‖B(X) = 0.

This we can use to give a proof of Step 2.
Proof of Step 2. Firstly, note that we can rephrase (4.8) to

lim
g∈KDK, `(g)→∞

‖π(m̃g)− P‖ = 0.

Consider the sequence (Di)i∈N in D given by Di = D(2i,−i,−i). We claim
that for all i, j ∈ N and k ∈ K, we have DikDj ∈ KDK. This claim implies
that for all i ∈ N, we have

(4.9) π(m̃Di)P = lim
j→∞

∫
K

π(m̃DikDj )dk = P.

From letting i tend to infinity, we can conclude that P 2 = P . This proves
that P is a projection.
It remains to prove the claim. To this end, we prove that g :=DikDjk

−1 ∈
KDK. Equivalently, we have to show that the n− 2 smallest singular val-
ues of g are equal and that the (n− 2)-th largest singular value is greater
than 1. Without loss of generality, we can assume that i 6 j. Note that
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Di acts as e−iId on a subspace of dimension 2n − 4 of R3n−6 and that
(kDjk

−1) acts as e−jId on another subspace of dimension 2n − 4. Hence,
g acts as e−(i+j) on the intersection of these subspaces, which has di-
mension at least n − 2. Moreover, since ‖g−1‖ 6 ‖D−1

i ‖‖D
−1
j ‖ 6 ei+j ,

we see that e−(i+j) is actually a singular value of g with multiplicity at
least n − 2, and that it is the smallest singular value. It remains to show
that the (n − 2)-th largest singular value of g is greater than 1, or equiv-
alently, to find a subspace of dimension n − 2 on which ‖gx‖ > ‖x‖.
This subspace is, in fact, the image of span{e1, . . . , en−2} under k. In-
deed, for an x in this subspace, we have ‖kDjk

−1x‖ = e2j‖x‖. Therefore,
‖gx‖ > ‖D−1

i ‖−1‖kDjk
−1x‖ > e2j−i‖x‖ > ‖x‖. This proves the claim. �

The key to Step 3 is the following lemma.

Lemma 4.7. — Let ξ be a K-invariant unit vector of X, let V be a
nontrivial irreducible representation of K, and let q : X → V be a norm-1
K-equivariant linear map. Then

lim
D∈D,`(D)→∞

‖q(π(D)ξ)‖V = 0.

Proof of Lemma 4.7. — Take ξ, V and q as in the statement of the
lemma. We will apply (4.2) to the restriction of π to various subgroups
isomorphic to SO(n) in K = SO(3n − 6) and to the restriction to these
subgroups of the map K 3 k 7→ q(π(AkA)ξ) for suitable choices of di-
agonal matrices A. Suitable means that A commutes with the copy of
SO(n − 1) in the subgroup isomorphic to SO(n) in K under considera-
tion. First the same proof as for the K-bi-invariant coefficients (Step 1
and Lemma 4.6) shows that limD∈D,`(D)→∞ ‖q(π(D)ξ)‖V exists, since the
function g 7→ ‖q(π(g)ξ)‖V isK-bi-invariant and, by (4.3), satisfies the same
local Hölder continuity estimates as the K-bi-invariant coefficients of π. To
prove that this limit equals zero, we therefore only have to prove that

lim
t→∞

‖q(π(D(t, 0,−t))ξ)‖V = 0.

For i, j ∈ {1, 2, . . . , 3n− 6} satisfying i 6= j, let us introduce the subgroup
SOi,j of SO(3n−6) that acts as the identity on span{ek | k /∈ {i, j}}, where
ek denotes the kth coordinate basis vector of R3n−6. Thus, for i 6= j, the
group SOi,j is isomorphic to SO(2). Consider i 6 n − 2 < j 6 2n − 4.
Let f : Rn → R3n−6 be an isometry sending the first coordinate vector of
Rn to ei, the second to ej and the orthogonal complement of the first two
coordinate vectors to span{ek | 2n − 4 < k 6 3n − 6}. The map f allows
us to identify SO(n) with the subgroup of the elements of K that are the
identity on the orthogonal complement of the image of f , and through
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this identification SO(n− 1) consists of the elements that are the identity
on the orthogonal complement of {ej} ∪ {ek | k > 2n − 4}. Consider the
diagonal matrix A that has the same entries as D( t2 , 0,−

t
2 ) except for the

ith eigenvalue, which is equal to et, and the jth one, which is equal to e− t2 .
By construction, A commutes with SO(n−1) and `(A) = t. Consider, as in
the proof of Lemma 4.4, kδ ∈ K a rotation of angle arccos(δ) ∈ [0, π] in the
plane generated by the i-th and j-th coordinate vectors of R2. Then (4.2)
implies that

‖q(π(AkδA)ξ)− q(π(Ak0A)ξ)‖V 6 C(X,V )|δ|αL2e2γt.

Then AkδA coincides with D(t, 0,−t) on span{ek | k /∈ {i, j}}, and in the
plane span{ei, ej} its matrix is given by(

et 0
0 e−t/2

)(
δ −

√
1− δ2

√
1− δ2 δ

)(
et 0
0 e−t/2

)
∈ SO(2)

(
exδ 0
0 eyδ

)
SO(2)

for some xδ, yδ ∈ R satisfying xδ > yδ and xδ+yδ = t. If Dδ is the diagonal
matrix with the same diagonal entries as D(t, 0,−t) except for the ith

one, which is exδ , and the jth one, which is eyδ , then in particular AkδA ∈
SOi,jDδSOi,j . As in the proof of [14, Lemma 4.3], there exists a δ satisfying
|δ| 6 e−t such that xδ = t and yδ = 0, implying that Dδ = D(t, 0,−t).
For δ = 0, we have xδ = yδ = t

2 , and, in particular, D0 commutes with
SOi,j . Hence q(π(Ak0A)ξ) = q(π(D0)ξ) is SOi,j-invariant, and the previous
inequality becomes

‖q(π(D(t, 0,−t)ξ))− q(π(D0)ξ)‖V 6 C(X,V )C2e−(α−2γ)t,

which goes to zero as t → ∞ by our assumption on γ. Hence,
q(π(D(t, 0,−t)ξ)) is at distance o(1) from the subspace Vi,j ⊂ V of SOi,j-
invariant vectors. This holds for i 6 n − 2 < j 6 2n − 4. Similarly,
by conjugating by the Cartan automorphism g 7→ (gt)−1, we see that
q(π(D(t, 0,−t)ξ)) is at distance o(1) from the subspace of SOi,j-invariant
vectors for all n − 2 < j 6 2n − 4 < i. Hence, q(π(D(t, 0,−t)ξ)) is at
distance o(1) from the intersection ∩i,jVi,j of these subspaces, which is
the subspace of vectors in V invariant under all the subgroups SOi,j for
i 6 n−2 < j 6 2n−4 or n−2 < j 6 2n−4 < i. But these subgroups gen-
erate the whole group K and V is assumed to have no nonzero K-invariant
vectors. This proves that q(π(D(t, 0,−t)ξ)) is at distance o(1) from 0. �
We can now conclude the proof of Proposition 4.3 by giving the proof of

Step 3.
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Proof of Step 3. As in the proof of Step 2, we set Di = D(2i,−i,−i),
and we will use that DiKDj ⊂ D for all i, j.

To see that Lemma 4.7 indeed implies that every vector ξ in the image of
P is π(G)-invariant, observe firstly that it is clear that ξ is π(K)-invariant,
because each measure mu is left K-invariant. Writing

π(D1)ξ = lim
j→∞

π(D1)π(m̃Dj )ξ = lim
j

∫
K

π(D1kDj)ξdk

and recalling that D1kDj ∈ KDK for all k ∈ K, we see that q(π(D1)ξ) = 0
for every V and q : X → V as in Lemma 4.7. By the Peter-Weyl theorem
for representations of compact groups on Banach spaces (see [29, Theo-
rem 2.5]), this implies that π(D1)ξ is π(K)-invariant. From (4.9), we obtain

ξ = π(m̃D1)Pξ =
∫
K

π(k)π(D1)ξdk,

and it follows that ξ = π(D1)ξ. Hence, ξ is invariant under π(g) for all g
in the closed subgroup of G generated by D1 and K, which is exactly the
group G. �

5. Property (FFX) for SL(N,R) and SL(N,Z)

In this section, we present a proof of Theorem D, without appealing to
strong property (T). Instead, we will deduce Theorem D from property
(TX) for SL(N,R), which has been obtained in [14] for reflexive Banach
spaces by a much simpler argument than that in the proof of Theorem A.
For non-reflexive Banach spaces, property (TX) for SL(N,R) is a particular
case of Theorem A for isometric representations, and (although all steps are
needed) obtaining just property (TX) for SL(N,R) along the lines of the
proof of Theorem A involves simpler computations, as one does not have to
take care of the growth of the representations. From this, we will be able to
deduce the boundedness property of (quasi-)1-cocycles. In [1], an argument
of this sort was provided for simple algebraic groups. However, there a
Howe–Moore type property for isometric representations on superreflexive
Banach spaces due to Shalom (see Appendix 9 in [1]) is used, and it is not
known how to extend their arguments beyond the reflexive case. In this
article, we utilize a different method, namely, “increasing the rank of the
group”. This part of the argument is established in Proposition 5.2 and
is based on previous work of the second-named author [20]. We will first
state a lemma, which we strictly speaking do not need in order to prove
the proposition. The reason for stating this lemma is the key role it plays
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if X is reflexive, and because it motivates us to consider the seminorm N
for a general X in the proof of Proposition 5.2.

Lemma 5.1. — LetW be a topological group, and let (Y, π) be a weakly
almost periodicW -space, i.e. a Banach space Y with an isometric represen-
tation π : W → O(X) with relatively weakly compact orbits (i.e. the weak
closure is weakly compact). Then for any η ∈ Y , we have supw∈W ‖π(w)η−
η‖ > ‖η‖, where ξ 7→ ξ denotes the quotient map Y � Y/Y π(W ).

Proof. — Let η ∈ Y , and let B denote the closure of the convex hull of
the set {π(w)η | w ∈ W}. Then B is weakly compact because the convex
hull of a relatively weakly compact set is relatively weakly compact. By the
Ryll-Nardzewski fixed point theorem, there exists a π(W )-fixed point in B.
If supw∈W ‖π(w)η− η‖ < ‖η‖, then B ∩Y π(W ) = ∅, but this is absurd. �

The main step in the proof of Theorem D is to prove the following propo-
sition. We state it in a full generality. Recall that for an associative and
unital topological ring (not necessarily commutative) A and for n > 2, the
matrix ei,j(a), where a ∈ A, 1 6 i 6 n and 1 6 j 6 n with i 6= j, de-
notes the element in Mat(n,A) whose diagonal entries are all 1 and whose
off-diagonal entries are 0 for all but the (i, j)-th one, which equals a. We
call such a matrix an elementary matrix. The elementary group E(n,A)
denotes the multiplicative group generated by all elementary matrices in
Mat(n,A) equipped with the natural topology induced from the topology
on A. Note that by the commutation relation [ei,j(a1), ej,k(a2)] = ei,k(a1a2)
for i 6= j 6= k 6= i and a1, a2 ∈ A, the group E(n,A) is compactly generated
if the ring A is compactly generated and n > 3. If A is a commutative and
euclidean ring (such as R or Z), then E(n,A) coincides with SL(n,A).

Proposition 5.2. — Let A be an associative and unital topological ring
that is compactly generated, let X be a Banach space and n > 2. Assume
that the pair E(n,A) n An > An has weak relative property (TX). Then
the pair E(n+ 1, A) nAn+1 > An+1 has relative property (FFX).

We refer to Definition 3.5 for the notion of weak relative property (TX)
and relative property (FFX). Proposition 5.2 is a generalization of [20,
Theorem 6.4] beyond the superreflexive case. The essential idea of the first
part of the proof comes from [20, Section 3], but we include a full proof
for completeness. The proof is formulated as quantitatively as possible in
terms of the norm bound of quasi-1-cocycles.
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Proof. — Let Q be a symmetric (i.e. closed under taking the additive
inverse) compact generating set of A that contains the identity 1. Let G =
E(n+ 1, A)nAn+1, and realize G inside E(n+ 2, A) by putting E(n+ 1, A)
in the upper left corner of E(n + 2, A) and H := An+1 in the first n + 1
entries of the (n+ 2)-th column. Then the set S := {ei,j(q) ∈ E(n+ 2, A) |
i 6= j, q ∈ Q}∩G is a compact generating set of G. We define H1, H2 < H in
the following way: H1 ∼= A is the additive group inside H on the (1, n+ 2)-
th entry of E(n + 2, A), and H2 ∼= An is the additive group inside H
corresponding to the “rest of H”, i.e. the (2, n + 2)-th, (3, n + 2)-th, . . .
and (n+ 1, n+ 2)-th entries of E(n+ 2, A). We define S0 ⊂ S as the set of
all elements of S whose (i, 1)-th entry is zero for i = 2, . . . , n + 1. Finally,
define G1, G2 < G and L / G1 by

G1 :=


 1 (v′)t 0

0 γ′ 0
0 0 1

∣∣∣∣∣∣ γ′ ∈ E(n,A), v′ ∈ An
 ,

G2 :=


 1 0 0

0 γ′ v′

0 0 1

∣∣∣∣∣∣ γ′ ∈ E(n,A), v′ ∈ An
 , and

L := {g ∈ G1 | γ′ = In} .

Let ρ : G→ O(X) be an isometric representation. Because H is normal in
G, the representation ρ can be restricted to Xρ(H) as an isometric repre-
sentation of G. Let c : G→ X be a quasi-1-cocycle into ρ. Then c induces
a map c : G → X/Xρ(H), and c is a quasi-1-cocycle into ρ. Define ∆ < ∞
as the defect of c and M <∞ as sups∈S ‖c(s)‖.
For x ∈ X let us denote N (x) = supw∈H ‖ρ(w)x−x‖. Then N is a ρ(G)-

invariant seminorm on X (recall that H is normal in G), which plays the
role of ‖ · ‖X/Xρ(H) . In fact, if the representation (X, ρ) is weakly almost
periodic (see [2] for the definition), which is in particular the case if X
is reflexive, then ‖x‖X/Xρ(H) 6 N (x) 6 2‖x‖X/Xρ(H) (see the discussion
following Definition 3.5).
The proof roughly consists of three parts. Firstly, we will show that

suph∈H N (c(h)) <∞. One of the crucial points is that H1 commutes with
S0. Therefore, for any h ∈ H1 and s ∈ S0, we have that

‖ρ(s)c(h)− c(h)‖ 6 ‖c(sh)− c(s)− c(h)‖+ ∆
6 ‖c(hs)− c(h)‖+M + ∆
6 ‖ρ(h)c(s)‖+M + 2∆
6 2(M + ∆).
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Another point is that the pairs G1 > L and G2 > H2 are isomorphic copies
of the pair E(n,A)nAn > An (note that γ′ should be changed to (γ′−1)t to
construct a concrete group isomorphism for the first pair, but that E(n,A)
and E(n,A)∩S are, as sets, stable under taking this operation). Therefore,
by assumption, the minimum κ̃ of κ̃(G1, L, S0∩G1, ρ |G1) and κ̃(G2, H2, S0∩
G2, ρ |G2) is strictly positive (see Definition 3.5 for these constants). Hence,
supw∈L ‖ρ(w)c(h)−c(h)‖ 6 2κ̃−1(M+∆) and supw∈H2 ‖ρ(w)c(h)−c(h)‖ 6
2κ̃−1(M+∆). The third point is thatH ⊂ LH2LH2. Hence, for any h ∈ H1,
we have that

sup
w∈H

‖ρ(w)c(h)− c(h)‖ 6 8κ̃−1(M + ∆),

or equivalently, N (c(h)) 6 8κ̃(M + ∆) for all h ∈ H1. We can apply
the same reasoning with H1 replaced by the additive group sitting at the
(i, n+ 2)-th entry for 1 6 i 6 n+ 1. At the end we get

sup
c∈H
N (c(h)) 6 (n+ 1)κ̃(8M + 9∆),

which verifies our assertion above.
Secondly we claim that, in fact, N (c(·)) is bounded on the whole group

G. A key step in the proof of this claim is the identity (γ, 0)(In+1, u) =
(In+1, γu)(γ, 0), where we write g = (γ, u) where γ ∈ E(n + 1, A) and
u ∈ An+1. We identify v ∈ An+1 with (In+1, v) ∈ H. Then, from the
identity above and the quasi-1-cocycle relation, for any γ ∈ E(n + 1, A)
and u ∈ An+1, we have that

(5.1) ‖c(γu)− ρ((γ, 0))c(u)− (I − ρ(γu))c((γ, 0))‖ 6 2∆.

By passing to N , using that N (x) 6 2‖x‖ and that N is ρ(G)-invariant,
we obtain that

N (ρ(γu)c((γ, 0))− c((γ, 0))) 6 4∆ +N (c(γu)) +N (c(u))

6 2(n+ 1)κ̃−1(8M + 11∆)

by the boundedness of N (c(·)) on H, as we have showed in the first step.
DenoteM ′ = 2(n+1)κ̃−1(8M+11∆). Fix γ ∈ E(n+1, A) and move u ∈ H
arbitrarily. Then

sup
w∈H

N (ρ(w)c((γ, 0))− c((γ, 0))) 6M ′.

Now fix w ∈ H and denote xn = 1
n

∑n−1
i=0 ρ(iw)c((γ, 0)), where iw =

w + · · · + w (i times). By using that N is a seminorm, we have
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N (xn − c((γ, 0))) 6 M ′. In particular, ‖(I − ρ(w))(xn − c((γ, 0)))‖ 6 M ′.
This implies that

‖(I − ρ(w))c((γ, 0))‖ 6M ′ + ‖(I − ρ(w))xn‖

= M ′ + 1
n
‖c((γ, 0))− ρ(nw)c((γ, 0))‖

6M ′ + 2
n
‖c((γ, 0))‖

By taking n → ∞, we obtain that ‖(I − ρ(w))c((γ, 0))‖ 6 M ′ for any
w ∈ H, and hence that N (c((γ, 0))) 6 M ′, as requested. From this, it is
easy to see that N (c(·)) is bounded on the whole G, as we claimed. In what
follows, we only need the boundedness on E(n+ 1, A).
Finally, we will prove that c itself is bounded on H. By (5.1) and what

we just proved in the second step, we conclude that for any γ ∈ E(n+1, A)
and any u ∈ H,

‖c(γu)‖ 6M ′ + 2∆ + ‖c(u)‖.

The final observation is that every element v ∈ H ' An+1 can be written
as the sum of (at most) n+1 elements of the form γu, where γ ∈ E(n+1, A)
and u ∈ S ∩H. This leads us to the inequality

sup
v∈H
‖c(v)‖ 6 (n+ 1)(M ′ +M + 3∆) 6 (n+ 1)2κ̃−1(17M + 25∆),

which completes our proof. �

We also state the following easy observation for the proof of Theorem D.

Lemma 5.3. — Let A be an associative and unital topological ring that
is compactly generated, let X be a Banach space and n > 2. Assume that
E(n,A) has property (TX). Then the pair E(n,A) n An > An has weak
relative property (TX).

Proof. — In a similar way as in the proof of Proposition 5.2, take a
natural embedding of E(n,A) nAn into E(n+ 1, A) that sends E(n,A) to
the upper left corner of E(n+1, A) and An to the first n entries of the (n+1)-
th column. We identify E(n,A) and An with their respective images under
this embedding. Let Q be a compact generating set of A that contains 1. Let
S be defined as S := {ei,j(q) ∈ E(n+1, A) | i 6= j, q ∈ Q}∩ (E(n,A) nAn).
In what follows, we will show that for any isometric representation ρ of
E(n,A) nAn on X,

κ̃2 >
1

n(2κ̃−1
1 + 1)

,

ANNALES DE L’INSTITUT FOURIER



STRONG PROPERTY (T) AND FIXED POINT PROPERTIES 1889

where

κ̃1 := κ̃(E(n,A),E(n,A), S ∩ E(n,A), ρ |E(n,A)), and
κ̃2 := κ̃(E(n,A) nAn, An, S, ρ).

This assertion will immediately prove the lemma.
Fix such a ρ and take an arbitrary ξ ∈ X. We define b : E(n,A)nAn → X

by b(g) := ρ(g)ξ−ξ. This defines a 1-cocycle into ρ (in fact, a 1-coboundary
into ρ), and hence b satisfies the cocycle relation b(g1g2) = b(g1)+ρ(g1)b(g2)
for all g1, g2 ∈ E(n,A). In particular, by the triangle inequality, for every
g1, g2 ∈ E(n,A) nAn, we have ‖b(g1g2)‖ 6 ‖b(g1)‖+ ‖b(g2)‖.
By the definition of κ̃1, we have that

κ̃1 sup
γ∈E(n,A)

‖b(γ)‖ 6 sup
s∈S∩E(n,A)

‖b(s)‖ 6 sup
s∈S
‖b(s)‖.

Note that κ̃1 > 0 by assumption. Then, by the triangle inequality,

sup
h′∈E(n,A)·S·E(n,A)

‖b(h′)‖ 6 (2κ̃−1
1 + 1) sup

s∈S
‖b(s)‖.

Here E(n,A) · S · E(n,A) denotes the product subset in E(n,A) nAn.
Finally, note that, as in the final observation in proof of Proposition 5.2,

any h ∈ An may be be written as the product of (at most) n elements in
the set E(n,A) · S · E(n,A). Therefore, we conclude that

sup
h∈An

‖b(h)‖ 6 n(2κ̃−1
1 + 1) sup

s∈S
‖b(s)‖,

which verifies our assertion above. �

From Lemma 5.3 we can in fact conclude weak relative property (TX)
for the pair E(n,A) nAn > E(n,A) nAn.

Proof of Theorem D. — Let β < 1
2 , and let X be a Banach space satisfy-

ing (1.1). Instead of appealing to strong property (T), we employ property
(TX). As we argued after Definition 3.5 it follows from Theorem A that
for such an X, there exists an N ′ such that SL(N ′,R) has property (TX).
In the case that X is reflexive, the proof of this assertion is considerably
less involved than the proof of the full result of Theorem A and follows
from the work of [14] and using the Howe-Moore property from [32] (see
Remark 1.1). Even if X is not reflexive, the proof is simpler, because here
we only have to deal with isometric representations.
Hence, it follows that SL(N ′,R) has property (TX). Then, by Lemma 5.3,

the pair SL(N ′,R) nRN ′ > RN ′ satisfies weak relative property (TX).
By applying Proposition 5.2 for A = R, it follows that the pair

SL(N ′ + 1,R) n RN ′+1 > RN ′+1 has relative property (FFX). This im-
plies that for every isometric representation ρ : SL(N ′+ 2,R)→ O(X) and
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any quasi-1-cocycle c : SL(N ′ + 2,R) → X into ρ, there exists a constant
M > 0 such that

sup

‖c(g)‖

∣∣∣∣∣∣ g ∈
⋃

i6=j,16i6N ′+2,16j6N ′+2
{ei,j(a) | a ∈ R}

 6M.

In order to see this, embed SL(N ′ + 1,R) n RN ′+1 into SL(N ′ + 2,R)
in several ways (more precisely, choose several different entries among
{1, 2, . . . , N ′ + 2}).

Finally, observe that SL(N ′+2,R) is boundedly generated by elementary
matrices in Mat(N ′ + 2,R), i.e. there exists an integer k = k(N ′ + 2) such

that SL(N ′+ 2,R) =
(⋃

i 6=j{ei,j(a) | a ∈ R}
)k

. This easily follows because
R is a field. We conclude that for c as above,

sup
g∈SL(N′+2,R)

‖c(g)‖ 6 kM + (k − 1)∆ (<∞),

where ∆ is the defect of c. Therefore, N := N ′ + 2 satisfies our conditions.
�

Remark 5.4. — The group E(n,A) can be viewed as the elementary
Chevalley group E(Φ, A) associated with the root system Φ of type An−1.
If we consider the case where A is commutative, then an assertion similar
to Proposition 5.2 holds for elementary Chevalley groups associated with
reduced irreducible classical root systems of other types. However, if the
root system is not simply-laced, the proof needs more care. From this, it is
probably possible to extend the result of Theorem D to connected simple
Lie groups of sufficiently large rank.
Another remark is that Proposition 5.2 can be generalized to the case of

(Kac–Moody–)Steinberg groups, in the sense of [10, Subsection 6.1], with
appropriate pairs of groups if the ring A is discrete (cf. [10, Appendix A]).
This version of the result is used by the second-named author in [21].

The proof of Theorem D implies the following corollary, which will play
a key role in [22].

Corollary 5.5. — For every β < 1
2 , there exists an N such that for

any X satisfying (1.1), the group SL(N,Z) has property (FFX).

Proof. — Property (TX) for SL(N ′,Z) can be decuded from the corre-
sponding assertion with A = R by the method of L2-induction (see [1]).
From this, together with Lemma 5.3, we obtain weak relative property (TX)
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for the pair SL(N ′ + 1,Z) n ZN ′+1 > ZN ′+1. Then we can apply Proposi-
tion 5.2 for A = Z and proceed along the same lines as in the proof of The-
orem D. Note that in the case of A = Z, unlike that of A = R, the bounded
generation (of SL(N,Z) by elementary matrices for N > 3) is highly non-
trivial. This was proved by Carter and Keller [5], see also [30]. �

We finally point out that regarding property (FFX), we do not know a
direct argument of taking inductions to (L2-integrable) lattices if (X, ρ) is
not the contragredient representation of an isometric representation on a
dual Banach space. The problem lies in the deduction of the boundedness of
the original quasi-cocycle from that of the induced quasi-cocycle. This issue
becomes harmless if we treat fixed point properties instead of boundedness
properties (and thus the proof of Corollary C works without any issues).
Burger and Monod [4, Corollary 11] resolved the problem above in the
affirmative if the original isometric representation (X, ρ) is separable and
contragredient.

Remark 5.6. — As announced in Remark 1.3, we sketch the proof of
the fact that SL(4,Z) has property (FF`1

0
). First, we use the fact that the

distance function on `1, i.e. the map (ξ, η) 7→ ‖ξ − η‖`1 , is a conditionally
negative defnite kernel (for definitions and details we refer to [3, Appen-
dix C]). It is well known that the pair SL(2,Z) n Z2 > Z2 has relative
property (T) (see [3]), which is equivalent to “relative property (FH)”. By
combining these facts, we may conclude that for any affine isometric action
of SL(2,Z) n Z2 on any closed subspace of `1, its Z2-orbits are bounded.
From this, it is not difficult to see that the pair SL(2,Z) n Z2 > Z2 has
weak relative property (T`1

0
). Indeed, observe that the countable direct `1-

sums of `10 is isometrically isomorphic to a closed subspace of `1. If κ̃ in
the current setting were zero for some isometric representation, then by
taking an `1-direct sum in an appropriate manner, we could construct an
affine isometric action of SL(2,Z)nZ2 on some closed subspace of `1 whose
Z2-orbits are unbounded. This is absurd, and we are done. Then, Propo-
sition 5.2 implies that the pair SL(3,Z) n Z3 > Z3 has relative property
(FF`1

0
). The aforementioned bounded generation of Carter and Keller ends

our proof.
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