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POTENTIALLY CRYSTALLINE DEFORMATION RINGS
IN THE ORDINARY CASE

by Brandon LEVIN & Stefano MORRA (*)

Abstract. — We study potentially crystalline deformation rings for a resid-
ual, ordinary Galois representation ρ : GQp → GL3(Fp).We consider deformations
with Hodge-Tate weights (0, 1, 2) and inertial type chosen to contain exactly one
Fontaine-Laffaille modular weight for ρ. We show that, in this setting, the poten-
tially crystalline deformation space is formally smooth over Zp and any potentially
crystalline lift is ordinary. The proof requires an understanding of the condition
imposed by the monodromy operator on Breuil modules with descent datum, in
particular, that this locus mod p is formally smooth.
Résumé. — Nous étudions les anneaux de déformation potentiellement cris-

tallins pour une représentation Galoisienne ordinaire ρ : GQp → GL3(Fp). Nous
considérons des déformations à poids de Hodge-Tate (0, 1, 2) et type inertiel choisi
de telle sorte qu’il contient un poids Fontaine-Laffaille pour ρ et un seul. Nous
montrons que dans cette situation l’espace de déformation potentiellement cristal-
lin est formellement lisse sur Zp et que tout relèvement potentiellement cristallin
de ρ est ordinaire. La preuve nécessite une étude fine des conditions imposées par
l’opérateur de monodromie sur les modules de Breuil avec donnée de descente,
en particulier que la fibre spéciale du lieu de monodromie est formellement lisse
sur Fp.

1. Introduction

One of the aims of the p-adic Local Langlands correspondence is a de-
scription of p-adic automorphic forms in terms of Galois parameters. From
this perspective, Serre-type weight conjectures (cf. [28], [9], [20], [17]) are
the first milestone to investigate a p-modular correspondence ([3], [8], [5])

Keywords: potentially crystalline deformation rings, Serre-type conjectures, integral p-
adic Hodge theory.
Math. classification: 11F33.
(*) The authors express their gratitude to Florian Herzig for his suggestions, insight
and remarks. For several enlightening discussions while conceiving this work the second
author would like to thank Christophe Breuil, Ariane Mézard and Benjamin Schraen.
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and predict the structure of certain local deformation rings which are rel-
evant for the refined modularity lifting techniques ([24], [19]).
The Breuil-Mézard conjecture ([6], [7], [12]) is intimately related to the

above phenomena and gives an explicit relation between the irreducible
components of the special fiber of local deformation rings and the repre-
sentation theory of GLn(Fq). In the case of GL2, the conjecture is known
in the potentially Barsotti-Tate case by [19] using modularity lifting tech-
niques. In general, the conjecture is closely related to deep modularity
results ([12, Theorem 5.5.2]). In this paper, we confirm an instance of the
Breuil-Mézard conjecture for potentially crystalline deformation rings for
GL3 with Hodge-Tate weights (0, 1, 2).
Let us be more precise. If ρ : GQp → GLn(F) is a continuous Galois

representation, where F/Fp is a finite extension (the “field of coefficients”)
one can consider the Galois deformation ring R�,τ,λρ parameterizing poten-
tially semistable lifts of ρ having constraints from p-adic Hodge theory -a
p-adic Hodge type λ ∈ Zn and an inertial type τ : IQp

→ GLn(E), where
IQp

is the inertia subgroup of GQp
and E/Qp is a finite extension of Qp,

with residue field F.
If λ = (λ1, . . . , λn) with λi < λi+1 (i.e., regular Hodge-Tate weights),

then one can naturally associate a semisimple GLn(Fp)-representation
F (λ, τ) with F coefficients to the constraints (λ, τ); in particular, if σ
denotes a weight, i.e. an isomorphism class of irreducible GLn(Fp)-repre-
sentation, we can consider the multiplicity mσ(λ, τ) ∈ N of σ appearing in
F (λ, τ).

Conjecture 1.1 (Breuil-Mézard conjecture). — There exists integers
µσ(ρ) ∈ N such that, for any regular Hodge type λ ∈ Zn and any inertial
type τ , one has

HS
(
R�,τ,λρ ⊗ F

)
=
∑
σ

mσ(λ, τ)µσ(ρ)

where HS
(
R�,τ,λρ ⊗ F

)
denotes the Hilbert-Samuel multiplicity of the spe-

cial fiber of the deformation space R�,τ,λρ .

When the Hodge type is given by λ = (0, 1, . . . , n−1) then F (λ, τ) is the
mod-p reduction of an automorphic type, and the Serre weight conjectures
can be considered as a prediction for the intrinsic multiplicities µσ(ρ). As
soon as n > 3, several complications arise in questions related to Breui-
Mézard and modularity lifting. On the representation theory side, the mod
p irreducible representations of GLn(Fp) no longer arise as reductions of
lattices in algebraic representations over Zp. This leads to the phenomenon
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of shadow weights (see [20], [13, §6]). On the Galois side, the integral p-
adic Hodge theory used to study potentially crystalline deformation rings
of type λ becomes more subtle.

More precisely, let K/Qp finite extension (which we assume to be totally
ramified for simplicity) and let π be a uniformizer of K. Choose a compat-
ible system of p-power roots π1/pn and define K∞ = ∪nK(π1/pn) ⊂ K. Let
GK denote the absolute Galois group of K and let GK∞ := Gal(K/K∞).
In general, the restriction functor

Repcris
GK (Qp)→ RepGK∞ (Qp)

is fully faithful and its image is contained in the finite height GK∞-repre-
sentations ([22, Corollary 2.1.14]). Both these categories are described by
linear algebra data using p-adic Hodge theory. From that perspective, the
essential image of the functor is characterized by a Griffiths transversality
condition. In the Barsotti-Tate case (i.e., height 6 1), Griffiths transversal-
ity is always satisfied and this gives more precise control over Barsotti-Tate
deformation rings. The difficulty that arises in higher weight situations is
to understand which representations of GK∞ descend to (potentially) crys-
talline representations of GK (integrally as well). In this paper, we address
this question for tamely potentially crystalline deformation rings for Qp

and GL3 with Hodge-Tate weights (0, 1, 2) with some assumptions on ρ.
In order to state the main theorem, we let ρ : GQp → GL3(F) be an

ordinary three dimensional Galois representation of the form

(1.1) ρ|IQp
∼=

 ωa2+2 ∗ ∗
0 ωa1+1 ∗
0 0 ωa0


where ω : IQp

→ Fp denotes the mod p cyclotomic character and ai ∈ N.
Recall that ω̃ : IQp → Z×p denotes the Teichmüller lift of ω.

Theorem 1.2 (Theorem 5.7). — Let ρ : GQp
→ GL3(F) be an ordinary

Galois representation as in (1.1). Assume that the integers ai ∈ N verify
a1 − a0, a2 − a1 > 3 and a2 − a0 < p − 4 and define the inertial type
τ

defi= ω̃a2 ⊕ ω̃a1 ⊕ ω̃a0 .
Let R�,(0,1,2),cris,τ

ρ be the framed potentially crystalline deformation ring
for ρ, with Galois type τ and Hodge type (0, 1, 2) and assume that
SpfR�,(0,1,2),cris,τ

ρ is non-empty. Then R
�,(0,1,2),cris,τ
ρ is formally smooth

of relative dimension 12.

Theorem 1.2 is obtained by explicitly constructing a formally smooth
morphism R�,τ

M
→ R

�,(0,1,2),cris,τ
ρ , where R�,τ

M
is a moduli space of strongly

TOME 66 (2016), FASCICULE 5
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divisible modules M lifting ρ which we can control by means of integral
p-adic Hodge theory. There are two key ingredients. First, for our choice of
τ , a detailed study of the filtration and Frobenius building on techniques
of [4] shows that any strongly divisible module lifting ρ is ordinary. This
gives us a formally smooth family of ordinary quasi-Breuil modules (i.e.,
with no monodromy operator). Secondly, as a consequence of the genericity
assumptions on τ , the condition imposed by the existence of monodromy
on an ordinary rank 3 Breuil module mod p turns out to be exceedingly
simple. In this case, the vanishing of a single variable of the smooth family
of quasi-Breuil modules.
We now briefly discuss how Theorem 1.2 is predicted by the Breuil-

Mézard conjecture. Recall that isomorphism classes of regular Serre weights
are in bijection with triples (a2, a1, a0) ∈ Z3 satisfying p−1 > a2−a1, a1−
a0 > 0 and p− 1 > a0 > 0. In the hypotheses of Theorem 5.7, the inertial
type τ contains exactly one weight σ(a2, a1, a0) in the conjectural set of
Serre weights for ρ; it is an obvious weight for ρ in the terminology of [18],
in the Fontaine-Laffaille range. In particular, the Breuil-Mézard conjec-
ture then predicts that R�,(0,1,2),cris,τ

ρ should be formally smooth and so
Theorem 1.2 confirms an instance of the conjecture for GL3.

Remark 1.3. — While proving Theorem 1.2, we also explicitly exhibit
the geometric Breuil-Mézard conjecture of [12] in this setting. Namely,
we show that the special fiber of SpfR�,(0,1,2),cris,τ

ρ inside the unrestricted
universal framed Galois deformation space coincides with the special fiber
of the (Fontaine-Laffaille) crystalline deformation ring with Hodge-Tate
weights (a2 + 2, a1 + 1, a0).

As a consequence of our careful study of the filtration and Frobenius on
strongly divisible modules, we get the following corollary:

Theorem 1.4. — Let ρ : GQp → GL3(F) be an ordinary Galois repre-
sentation as in (1.1). Assume that the inertial type τ is as in Theorem 5.7
and that the integers ai verify p − 4 > a2 − a1, a1 − a0 > 3. Then, any
potentially crystalline lift ρ of ρ, with Hodge type (0, 1, 2) and inertial type
τ is ordinary.

We remark that for Theorem 1.4, we do not require a Fontaine-Laffaille
condition on the inertial weights.

Remark 1.5. — Work in progress of the two authors and Bao V. Le
Hung and Daniel Le will use Kisin modules with descent datum to study
potentially crystalline deformation rings for GL3 for more general ρ (for
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example, semi-simple) where one expects the deformation ring not to be
formally smooth. This will have applications to Serre weight conjectures,
Breuil-Mézard and modularity lifting.

The paper is organized as follows.
In §2, we recall various categories of semilinear algebra objects with

descent data: Breuil modules, strongly divisible lattices, étale ϕ-modules.
We elucidate the relations among such categories and with the categories
of Galois representations. We work in families, i.e. allowing coefficients in
local, complete, Noetherian OE-algebras.
The technical heart of the paper is in §3. After proving the uniqueness of

framed Breuil moduleM associated to ρ, we perform a p-adic convergence
argument which provides us with a complete description of the filtration
and Frobenius on strongly divisible lattices lifting ρ.

In §4, we study the monodromy operator on Breuil modules associated
to ρ. The main result, Proposition 4.3, provides us with explicit equations
for the space of Breuil modules sitting inside the space of finite height
modules.
The main results of the paper are in §5. We employ the techniques of [14,

§7] to study the moduli space R�,τ
M

of framed strongly divisible modules
liftingM. From the formal smoothness of the special fiber we deduce the
main result on the formal smoothness of the potentially crystalline defor-
mation ring over Zp (Theorem 5.7). For this, we use the technique of [7]
to compare the deformation space of strongly divisible lattices and the
potentially crystalline deformation ring (5.5).

1.1. Notations

We write εp for the p-adic cyclotomic character and ω for its mod p

reduction. We normalize the Hodge-Tate weights in such a way that εp has
a Hodge–Tate weight −1.

We consider the tamely, totally ramified extension K/Qp defined by
K

defi= Qp( e
√
−p) where e = p − 1. Recall that the choice of a uniformizer

π ∈ K provides us with a character

ω̃π : Gal(K/Qp) → Z×p

σ 7→ σ(π)
π

which induces an isomorphism ωπ : Gal(K/Qp)
∼→ F×p after reduction

modulo p. If no confusion is possible, we will simply write ω instead of ωπ.

TOME 66 (2016), FASCICULE 5
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We fix a finite extension E/Qp such that Hom(K,E) = Hom(K,Qp). We
write OE for its ring of integers, F its residue field and $ = $E ∈ OE to
denote an uniformizer. If x ∈ Fp, we write x̃ to denote its Teichmüller lift
and, conversely, the mod p reduction of an element x ∈ Zp will be denoted
by x.
We fix an embedding K ↪→ E. Nothing in what follows depends on this

choice. We usually write R (resp. R) to denote a local, complete noetherian
OE-algebra (resp. local artinian F-algebra). If R is such an algebra, we
write R to denote its special fiber R ⊗OE F. All the representations and
modules considered in this paper will be realized over one of the above
rings E, OE , R.

Given a potentially semistable p-adic representation ρ : GQp → GLn(E),
we write WD(ρ) to denote the associated Weil-Deligne representation as
defined in [11], Appendix B.1. We refer to WD(ρ)|IQp

as the inertial type
associated to ρ. Note that, in particular, WD(ρ) is defined via the covariant
Dieudonné module Dst(ρ) defi= lim−→

H/Qp

(Bst ⊗Qp ρ)GH .

2. Integral p-adic Hodge Theory

The aim of this section is to recall and extend a comparison result be-
tween Fontaine-Laffaille modules and Breuil modules with coefficients.

We write SZp to denote the usual Breuil ring: the p-adic completion of
the divided power envelope of Zp[u] with respect to the ideal generated by
the Eisenstein polynomial E(u) defi= ue + p (compatibly with the divided
power on the ideal pZp[u]). We write SFp

defi= SZp/
(
p,FilpSZp

)
, recalling

that SFp
∼= Fp[u]/(uep).

If R (resp. R) is a local noetherian OE-algebra (resp. local artinian F-
algebra), we write SR (resp. SR) to denote the mR-adic completion of
the ring SZp ⊗Zp R (resp. the ring SFp ⊗Fp R). Note that SFp ⊗Fp R

∼=
R[u]/(uep). If the rings R, R are clear from the context, we simply write
S, S.

The rings SZp , SFp are endowed with additional structures. Namely,
we have a continuous, semilinear Frobenius ϕ (defined by ϕ(u) = up), a
monodromy operator N = −u d

du and a continuous semilinear action of
∆ defi= Gal(K/Qp) (defined by ĝ · u defi= ω(g)u). By base change, we obtain
the evident additional structures (Frobenius, monodromy and ∆ action)
on SR, SR, endowing R, R with the trivial Frobenius, monodromy and
∆-action.

ANNALES DE L’INSTITUT FOURIER
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We now introduce the various categories of modules (Breuil modules,
strongly divisible modules, étale ϕ-modules) and their relation to Galois
representations.
A Breuil module overR is the datum of a quadruple (MR,FilrMR,ϕr,N)

where

(1) M defi= MR is a finitely generated, free SR-module;
(2) FilrM is a SR-submodule ofM, verifying uerM⊆ FilrM;
(3) the morphism ϕr : FilrM→M is ϕ-semilinear and the associated

fibered product SFp ⊗Fp FilrM→M is surjective;
(4) the operator N : M → M is R-linear and satisfies the following

properties:
(a) N(P (u)x) = P (u)N(x)+N(P (u))x for all x ∈M, P (u) ∈ SR;
(b) ueN(FilrM) ⊆ FilrM;
(c) ϕr(ueN(x)) = N(ϕr(x)) for all x ∈ FilrM.

A morphism of Breuil modules is defined as an SR-linear morphism which
is compatible, in the evident sense, with the additional structures (mon-
odromy, Frobenius, filtration). If R is clear from the context, we simply
writeM instead ofMR.

A descent data relative to Qp on a Breuil moduleM is the datum of an
action of ∆ on M by semilinear automorphisms and which are compati-
ble, in the evident sense, with the additional structures on M. We write
R-BrModrdd to denote the category of Breuil modules with descent data
and R coefficients.

We recall ([21], §2.2.1) that R-BrModrdd is an exact category and we have
an exact, faithful, contravariant functor

T∗st : R-BrModrdd → RepR(GQp)

MR 7→ Tst(M) defi= Hom(MR, Â)

where Â is the period ring defined in [13, §3.2] based on [1, §2.2].
We define, in the evident analogous way, the category R-BrModrdd,0 of

quasi-Breuil module with descent data and coefficients: the objects and
morphisms are defined as for R-BrModrdd, the only difference being that
we do not requireM to be endowed with a monodromy operator.

Recall that for a sequence (pn)n ∈
(
Qp

)N verifying ppn = pn−1 for all
n we define the Kummer extension (Qp)∞

defi= ∪n∈NQp(pn). We have a
faithful functor T∗qst : R-BrModrdd → RepR(G(Qp)∞) by replacing Â with
Acris. The functors T∗st, T∗qst verify the obvious compatibilities with respect

TOME 66 (2016), FASCICULE 5
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to the restriction and forgetful functors: T∗qst(M) = T∗st(M)|G(Qp)∞
ifM∈

R-BrModrdd.
A Fontaine-Laffaille module (MR,Fil•MR, φ•) over R is the datum of
(1) a finite free R-module M = MR;
(2) a separated, exhaustive and decreasing filtration {FiljM}j∈Z onM

by R submodules which are direct summands (the Hodge filtration);
(3) a linear Frobenius isomorphism φ• : gr•M →M

Defining the morphisms in the obvious way, we obtain the abelian cate-
gory R-FL of Fontaine-Laffaille modules over R. Given a Fontaine-Laffaille
module M as above, the set of its Hodge-Tate weights is defined as

HT defi=
{
i ∈ N, rkR

(
FiliM

Fili+1M

)
6= 0
}
.

Definition 2.1. — Let M be a Fontaine-Laffaille module over R. An
R-basis f = (f1, . . . , fn) on M is compatible with the filtration if for all
i ∈ N there exists ji ∈ N such that FiliM =

∑n
j=ji R · fj . In particular,

the principal symbols (gr(f1), . . . , gr(fn)) provide an R-basis for gr•M .

Given a Fontaine-Laffaille module and a compatible basis f , it is conve-
nient to describe the Frobenius action via a matrix Matf (φ•) ∈ GLn(R),
defined in the obvious way using the principal symbols (gr(f1), . . . , gr(fn))
as a basis on gr•M .

It is customary to write R-FL[0,p−2] to denote the full subcategory of
R-FL formed by those modules M verifying Fil0M = M and Filp−1M = 0
(it is again an abelian category). We have the following description of mod
p Galois representations of GQp

via Fontaine-Laffaille modules:

Theorem 2.2. — There is an exact, fully faithful contravariant functor

T∗cris : R-FL[0,p−2] → RepR(GQp
)

We finally recall the categories of étale ϕ-modules over R((π)) introduced
by Fontaine ([15]). Let Fp((p)) be the field of norms associated to (Qp, p).
In particular, p is identified with a sequence (pn)n ∈

(
Qp

)N verifying ppn =
pn−1 for all n. We define the category R-Mod whose objects are free R⊗Fp
Fp((p))-modules of finite rank D endowed with a semilinear Frobenius map
ϕ : D→ D whose action is étale.
A formal modification (allowing R-coefficients) of work of Fontaine [15]

provides an anti-equivalence

R-Mod
∼−→ RepR(G(Qp)∞)

D 7−→ Homϕ

(
D,Fp((p))sep) .

ANNALES DE L’INSTITUT FOURIER
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Let us consider π defi= e
√
−p ∈ K. We can fix a sequence (πn)n ∈

(
Qp

)N

such that πen = pn for all n ∈ N and which is compatible with the
norm maps K(πn+1) → K(πn) (cf. [4, Appendix A]). Letting K∞

defi=
∪n∈NK(πn), we have a canonical isomorphism Gal(K∞/(Qp)∞)→ ∆ and
we identify ω to a character on Gal(K∞/(Qp)∞).
The field of norms Fp((π)) associated to (K,π) is then endowed with an

action of ∆ given by ĝ · π = ω(g)π. We can therefore define the category
R-Moddd of étale (ϕ,R⊗Fp Fp((π)))-modules with descent data: an object
D is defined in the analogous, evident way as for the category R-Mod,
but we moreover require that D is endowed with a semilinear action of
Gal(K∞/(Qp)∞) and the Frobenius ϕ is Gal(K∞/(Qp)∞)-equivariant.

By allowing R-coefficients we deduce from [21, Appendix A], (building
on the classical result of Fontaine) the anti-equivalence

R-Moddd
∼−→ RepR(G(Qp)∞)

D 7→ Homϕ (D,Fp((π))sep) .

The main result concerning the relations between the various categories
and functors introduced so far is the following:

Proposition 2.3. — There exist faithful functors

MFp((π)) : R-BrModrdd → R-Moddd

and
F : R-FL[0,p−2] → R-Mod

fitting in the following commutative diagram:

R-BrModrdd
MFp((π)) //

T∗st

��

R-Moddd

Hom(_,Fp((p))s)

xx
RepR(GQp

) Res // RepR(G(Qp)∞)

R-FL[0,p−2]

T∗cris

OO

F // R-Mod

Hom(_,Fp((p))s)

ff
_⊗Fp((p))Fp((π))

OO

where the the functor Res ◦ T∗cris is fully faithful.

The functors MFp((π)), F are defined in [21, Appendix A], building on
the classical work of Breuil [2] and Caruso-Liu [10].

TOME 66 (2016), FASCICULE 5



1932 Brandon LEVIN & Stefano MORRA

In certain cases, the description of the functor MFp((π)) is particularly
concrete. Assume that the Breuil module MR has rank n, with descent
data associated to a niveau one Galois type τ : IQp

→ GLn(OE).
By fixing a framing τ = ωa1⊕. . . ωan we have a basis (e1, . . . , en) forMR

and a system of generators (f1, . . . , fn) for FilrMR which are compatible
with τ :

ĝ · ei = (ωai(g)⊗ 1)ei, ĝ · fi = (ωai(g)⊗ 1)fi
for all i = 1, . . . , n and all g ∈ ∆ (cf. [21, §2.2.3]).
In this case we say that e, f are compatible with the Galois type τ , or

that e, f are a framed basis and a framed system of generators respectively
(in the terminology of [21] one would say that MR is of type τ , cf. [21,
Definition 2.2.6]).

Lemma 2.4. — LetM be a Breuil module of rank n over R, with descent
data associated to a Galois type τ : IQp

→ GLn(OE) and let e, f be a
basis forM and a system of generators for FilrM respectively, which are
moreover compatible with τ .

Write V = Ve,f ∈ Mn(R ⊗F S) for the matrix giving the coordinates
of f in the basis e and A

defi= Mate,f (ϕr) ∈ GLn(R ⊗F S) for the matrix
describing the Frobenius action onM with respect to e, f .
Then there exists a basis e for MFp((π))(M

∗) (where M∗ denotes the
associated dual Breuil module, cf. [13, discussion before Corollary 3.2.9]),
compatible with the dual descent data, such that the Frobenius action is
described by

Mate(φ) = V̂ t
(
Â−1)t ∈Mn(R⊗Fp Fp[[π]])

where V̂ , Â are lifts of V, A in Mn(R ⊗Fp Fp[[π]]) via the reduction mor-
phism R⊗Fp Fp[[π]]� R⊗Fp S.

We now recall some result in characteristic zero. Fix a positive inte-
ger r < p − 1 and let R be a complete local noetherian OE-algebra. The
category R-Modrdd of strongly divisible R-modules (in Hodge-Tate weights
[0, r], with descent data) consists of finitely generated free SR-modulesM
together with a sub SR-module FilrM, additive maps ϕr : FilrM → M,
N : M → M and SR-semilinear bijections ĝ : M → M for each g ∈ ∆
such that the following conditions hold:

• FilrM contains (FilrSR)M;
• FilrM∩ IM = IFilrM for all ideals I of R;
• ϕr(sx) = ϕ(s)ϕ(x) for all s ∈ SR and x ∈M;
• ϕr(FilrM) generatesM over SR;
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• N(sx) = N(s)x+ sN(x) for all s ∈ SR and x ∈M;
• Nϕr = pϕrN ;
• E(u)N(FilrM) ⊂ FilrM;
• for all g ∈ ∆, ĝ commutes with ϕr and N , and preserves FilrM;
• ĝ1 ◦ g2 = ĝ1 ◦ ĝ2 for all g1, g2 ∈ ∆.

The morphisms are S-module homomorphisms that preserve FilrM and
commute with ϕr, N , and the descent data action.

We have a contravariant functor (cf. [27, §4 and Corollary 4.12]) T∗st :
R-Modrdd → RepR(GQp) which is compatible with reduction mod p:

T∗st(M)⊗R F ∼= T∗st(M⊗R F).

Let RepK-st,[−r,0]
OE (GQp

) be the category of GQp
-stable OE-lattices in-

side E-valued, finite dimensional p-adic Galois representation of GQp
be-

coming semi-stable over K and with Hodge–Tate weights in [−r, 0]. We
have a contravariant functor T∗st : OE-Modrdd → RepK-st,[−r,0]

OE (GQp
) where

RepK-st,[−r,0]
OE (GQp

) is the category of GQp
-stable OE-lattices inside E-

valued, finite dimensional p-adic Galois representation of GQp
becoming

semi-stable over K and with Hodge–Tate weights in {−r, 0} (cf. [13, Sec-
tion 3.1], where the functor would be noted by TQp

st )
The following deep theorem provides the link between lattices in po-

tentially semi-stable Galois representations and strongly divisible modules
over OE :

Theorem 2.5 ([26], [13]). — The contravariant functor

T∗st : OE-Modrdd → RepK-st,[−r,0]
OE (GQp

)

establishes an anti-equivalence of categories if r < p− 1.
Moreover, by letting ρ defi= T∗st(M) ⊗OE E and D∗st(ρ) be the associated

contravariant filtered (ϕ,N)-module, we have an isomorphism

(2.1) M⊗SOE E
∼= D∗st(ρ)

via the base change SOE → E defined by u 7→ 0.

As for Breuil modules, we can define the category of quasi-strongly di-
visible R-modules R-Modrdd,0, where we omit the requirement for a mon-
odromy operator (cf. [26, §2]). Again we have a contravariant functor T∗qst
towards the category of G(Qp)∞ -representations over OE , inducing an anti-
equivalence:
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Theorem 2.6 ([26]). — The contravariant functor

T∗qst : OE-Modrdd,0 → RepK-st,[−r,0]
OE (G(Qp)∞)

establishes an anti-equivalence of categories if r < p− 1.

Here, we wrote RepK-st,[−r,0]
OE (G(Qp)∞) to denote the category of G(Qp)∞ -

stable OE-lattices inside E-valued, finite dimensional p-adic Galois rep-
resentation of GQp becoming semi-stable over K and with Hodge–Tate
weights in [−r, 0].
We will be mainly concerned with the covariant version of the above

functors towards Galois representations. For this reason we define Trst :
R-Modrdd → RepR(GQp) and Trst : R-BrModrdd → RepR(GQp

) via

Trst(M̂) defi=
(

T∗st(M̂)
)∨
⊗ εrp, Trst(M) defi= (T∗st(M))∨ ⊗ ωr

respectively (where we write •∨ to denote the usual linear dual).

3. Ordinary strongly divisible lattices

The aim of this section is to describe quasi-strongly divisible lattices
(with a carefully chosen descent datum) associated to potentially crys-
talline lift of an ordinary residual Galois representation. We first study the
filtration modulo p and then lift to OE . We perform a p-adic convergent
argument generalizing the technique from [4, §5] for GL2 to diagonalize
the Frobenius in this setting. The main result is Theorem 3.7.
Let ρ : GQp → GL3(F) be a continuous Galois representation. We as-

sume that ρ is ordinary, of the form

ρ ∼

 ωa2+2µα2 ∗ ∗
0 ωa1+1µα1 ∗
0 0 ωa0µα0


where µαi denotes the unramified character on Zp verifying µαi(p) = αi ∈
E× and where the exponents ai ∈ N verify

(3.1) a1 − a0, a2 − a1 > 3, and a2 − a0 < p− 4

Provided the conditions (3.1) we say that ρ is strongly generic.
It will be convenient to introduce the following notation for the subquo-

tients of ρ: for i ∈ {0, 1} (resp. j ∈ {0, 1, 2}) we define:

ρj
defi= ωaj+jµαj , ρi,i+1

defi=
(
ωai+1+i+1 ∗

0 ωai+1

)
.

With this formalism, we have ρ0,2
defi= ρ.
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3.1. Filtration on ordinary quasi-strongly divisible modules

We show here that the relative position of the descent data τ and the
inertial weights of ρ provide strong constraints on the filtration of strongly
divisible lattices lifting ρ. The main result is Theorem 3.1, which is the first
step in the proof of Theorem 3.7.
We keep the notations of the previous section. In particular, ρ : GQp →

GL3(F) is as in section 1.1. In all what follows, M (resp. M) denotes a
quasi-strongly divisible module (resp. quasi-Breuil module) with descent
data such that T2

qst(M) is a lift of ρ|G(Qp)∞
(resp. such that T2

st(M) ∼=
ρ|G(Qp)∞

). We fix once and for all a niveau 1 descent data τ on M (resp.
M), of the form τ

defi= ω̃a0 ⊕ ω̃a1 ⊕ ω̃a2 . We refer to τ as a principal series
type.
If M is such a module, we have a SOE -basis e = (e0, e1, e2) which is

compatible with the action of ∆ (the tame descent). The goal of this section
is to prove the following result describing the filtration Fil2M:

Theorem 3.1. — Let T2
qst(M) defi= ρ be a lift of ρ|G(Qp)∞

, with principal
series type τ . Assume that the integers a0, a1, a2 verify the strong genericity
assumption (3.1).
There exists an SOE -basis (e0, e1, e2) for M, compatible the residual

Galois action, such that

Fil2M = 〈e0, E(u)e1, E(u)2e2〉SOE + FilpSOE · M.

The remainder of this section is devoted to the proof of Theorem 3.1 and
the first step is to study the filtration on the associated quasi-Breuil module
M := M ⊗SOE S. We start from recalling results from [21] concerning
quasi-Breuil modules and their subobjects. Recall that K0 = Qp in our
setting.

Definition 3.2. — Let M be an object in F-BrModrdd,0. An S-sub-
module N ⊆ M is said to be a quasi-Breuil submodule if N fulfills the
following conditions:

(i) N is an S-direct summand inM;
(ii) N is stable under the descent data;

(iii) the Frobenius ϕr on FilrM restricts to a ϕ-semilinear morphism
N ∩ FilrM→N .

The relevant properties concerning quasi-Breuil submodules are summa-
rized in the following statements. Their proofs are all contained in [21,
Appendix A].
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Proposition 3.3. — LetM be an object in F-BrModrdd,0 and let N ⊆
M be a quasi-Breuil submodule. Then the S-modules N ,M/N are natu-
rally objects in F-BrModrdd,0 and the sequence

0→ N →M→M/N → 0

is exact in F-BrModrdd,0.
Moreover, with the above notion of exact sequence, the category

F-BrModrdd,0 is an exact category and Trqst is an exact functor.

From [21, Proposition 2.2.4 and 2.2.5], we deduce the following important
result:

Proposition 3.4. — LetM∈ F-BrModrdd,0 be a quasi-Breuil module.
The functor Trqst induces an order preserving bijection:

Θ :
{
quasi-Breuil submod. inM

} ∼→ {
G(Qp)∞ -subrep. inTrqst(M)

}
which canonically identifies Θ(M)/Θ(N ) with Trqst(M/N ) for any quasi-
Breuil submodule N ⊆M.

By Proposition 3.4, for 0 6 i 6 j 6 2 there are unique subquotientsMi,j

ofM such that T2
qst(Mi,j) ∼= ρi,j |G(Qp)∞

.
In particular, we have T2

qst(Mi,i) ∼= ωai+iµαi |G(Qp)∞
for all 0 6 i 6 2.

Lemma 3.5. — Assume that ρ is strongly generic (3.1). For 0 6 i 6 2
we have

Fil2Mi,i = uieMi,i

andMi,i = (F[u]/uep)ei where ∆ acts on ei by ωai .

Proof. — Specializing [14, Lemma 3.3.2] to our situation, we have that
Fil2Mi,i = urMi,i, and Mi,i = (F[u]/uep)ei where ∆ acts on ei by the
character ωk with 0 6 r 6 2(p− 1) and k ≡ p(k + r) mod p− 1. Further-
more, since ρi,i|IQp

= ωai+i, we have

ai + i ≡ k + p
r

p− 1 mod p− 1.

By the first congruence, p − 1 | r so r ∈ {0, p − 1, 2(p − 1)}. SinceM has
tame descent given by τ , we know k ∈ {aj}j=0,1,2. The second congruence
becomes

ai − aj + i ≡ 0, 1 or 2 mod p− 1

which is not possible unless i = j by our genericity assumption. �
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Proposition 3.6. — Assume ρ|G(Qp)∞

defi= T2
qst(M) is strongly generic.

There exists a basis (e0, e1, e2) on M, compatible with the descent data,
such that Fil2M is described by

Fil2M = 〈e0, u
ee1, u

2ee2〉S .

Proof. — We fix a basis e = (e0, e1, e2) on M, compatible with the de-
scent data. We use the same notation for the image of the elements ei in
the various subquotients ofM, this will cause no confusion. By Lemma 3.5,
Mi is generated by ei and Fil2Mi = uieMi for all i.
From the exact sequences 0 → Fil2Mi+1 → Fil2Mi,i+1 → Fil2Mi → 0

and Lemma 3.5 it follows that Fil2M admits a system of generators f =
(f0, f1, f2), compatible with the descent data, such that

Mate,f
(
Fil2M

)
=

 1 0 0
(x0 + x1u

e)ue−(a1−a0) ue 0
(z0 + z1u

e)ue−(a2−a0) (y0 + y1u
e)ue−(a2−a1) u2e


where xi, yi, zi ∈ F. We can assume that x1 = 0 and write x = x0 in
what follows. Indeed, as e − (a1 − a0) > 0, Nakayama’s lemma shows
that (f0 − x1u

e−(a1−a0)f1, f1, f2) is still a system of generators for Fil2M,
compatible with the descent data. We also note that y0 = 0 since Fil2M⊃
u2eM (in particular, u2ee1 ∈ Fil2M).
We finally deduce that the S-module Fil2M is generated by the fol-

lowing elements (described in their coordinates with respect to the basis
(e0, e1, e2)):

f0
defi=

 1
xue−(a1−a0)

(z0 + z1u
e)ue−(a2−a0)

 ,

f1
defi= ue

 0
1
yue−(a2−a1)

 , f2
defi= u2e

 0
0
1

 .

By letting e′0
defi= f0, e′1

defi= e1 + yue−(a2−a1)e2, we immediately see that
(e′0, e′1, e2) is a basis onM with the required properties. �

Thanks to Proposition 3.6, we are able to describe the filtration on the
quasi-strongly divisible moduleM.
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3.1.1. Proof of Theorem 3.1

Let (m̃0, m̃1, m̃2) be an S
defi= SOE basis for M, compatible with the

descent data. Let (e0, e1, e2) denote a basis forM satisfying the condition
from Proposition 3.6.
Since(

Fil2M/Fil2S · M
)
ω̃a0 �

(
Fil2M/Fil2S · M

)
ω̃a0

= 〈e0, u
e−(a1−a0)uee1〉Sω0

+ u2e · (M)
ω̃a0

we have a lift ẽ0 ∈ Fil2M of e0. Notice that, by Nakayama’s lemma, the
family (ẽ0, m̃1, m̃2) is again a basis for M, compatible with the descent
data.
Let D defi= M⊗Zp Qp. By virtue of [21, Lemma 2.3.9], the ω̃a0 -isotypical

component
(
Fil2D/Fil2SE · D

)
ω̃a0 is described as follows in terms of coor-

dinates with respect to the basis (ẽ0, m̃1, m̃2):

(
Fil2D/Fil2SE · D

)
ω̃a0 =

〈 1
0
0

, E(u)

 1
0
0

, E(u)

 0
b′1u

e−(a1−a0)

b′2u
e−(a2−a0)

〉
E

for some (b′1, b′2) ∈ P1
E(E).

The OE-saturation of the latter space is now easy to determine, and
we get

(
Fil2M/Fil2SOE · M

)
ω̃a0

=
〈 1

0
0

, E(u)

 1
0
0

, E(u)

 0
b1u

e−(a1−a0)

b2u
e−(a2−a0)

〉
OE

for some (b1, b2) ∈ P1
OE (OE).

Moreover, the ω̃a1 -isotypical component of Fil2D/Fil2SE ·D is described
by

(
Fil2D/Fil2SE · D

)
ω̃a1

=
〈 ua1−a0

0
0

, E(u)

 ua1−a0

0
0

, E(u)

 0
c′1
c′2u

e−(a2−a1)

〉
E
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for some (c′1, c′2) ∈ P1
E(E), hence(

Fil2M/Fil2SOE · M
)
ω̃a1

=
〈 ua1−a0

0
0

, E(u)

 ua1−a0

0
0

, E(u)

 0
c1
c2u

e−(a2−a1)

〉
OE

for some (c1, c2) ∈ P1
OE (OE).

In particular, we have

(
Fil2M/Fil2S · M

)
ω̃a1 ⊆

〈 ua1−a0

0
0

〉
OE

+ E(u) ·
(
M
)
ω̃a1 ,

and since(
Fil2M/Fil2S · M

)
ω̃a1 �

(
Fil2M/Fil2S · M

)
ω̃a1

= 〈ua1−a0e0, u
ee1〉S

ω̃0
+ u2e (M)

ω̃a1 ,

a lift f1 ∈
(
Fil2M

)
ω̃a1 of a generator of

(
Fil2M/Fil2S · M

)
ω̃a1 has the

form f1 = λ0u
a1−a0 ẽ0 + E(u)ẽ1 for some λ0 ∈ OE and some element

ẽ1 ∈
(
M
)
ω̃a1 .

We deduce that E(u)ẽ1 ∈
(
Fil2M

)
ω̃a1 , as well as E(u)ẽ1 ≡ E(u)e1

modulo ($E ,Fil2SOE ). Hence, ẽ1 ≡ e1 modulo ($E , u
e(p−1)). It follows

that (ẽ0, ẽ1, m̃2) is again a basis forM (compatible with the descent data).
In terms of coordinates with respect the basis (ẽ0, ẽ1, m̃2), we now have(

Fil2M/Fil2SOE · M
)
ω̃a0

=
〈 u[a0−a1]

0
0

, E(u)

 u[a0−a1]

0
0

, E(u)

 0
1
0

〉
OE

.

If we now let ẽ2
defi= m̃2 it is elementary to conclude that, in the basis

(ẽ0, ẽ1, ẽ2), we have

Fil2M = 〈E(u)j ẽj , j ∈ {0, 1, 2}〉SOE + FilpSOE · M.

as claimed.

3.2. Diagonalization of the Frobenius action

The aim of this section is to provide quasi-strongly divisible modules
M lifting M with a gauge basis (i.e., a basis for the filtration on which
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the Frobenius is diagonal). We keep the notations from previous sections.
In particular, we let M denote a quasi-strongly divisible modules over
SOE with principal series descent data τ and such that T2

qst (M) ⊗OE
F ∼= ρ|G(Qp)∞

. Let us fix a framing on τ , i.e. a basis of eigenvector on the
underlying vector space of τ .

From [21, Lemma 2.2.7] (and the fact that SOE is a local ring) we deduce
the existence of a basis e defi= (e0, e1, e2) forM and a system of generators
f

defi= (f0, f1, f2) for Fil2M modulo FilpSOEM such that

ĝ(ei) = ω̃ai(g)ei, ĝ(fi) = ω̃ai(g)fi

for all i ∈ {0, 1, 2}. We say that e, f are compatible with the descent
datum τ .

The main result of this section is a complete description of
Fil2M/(FilpSOE · M) and the Frobenius action ϕr on M in terms of a
framed basis e, and generators f .

Theorem 3.7. — LetM be a quasi-strongly divisible lattice with tame
descent data of type τ ∼= ω̃a0 ⊕ ω̃a1 ⊕ ω̃a2 where a0, a1, a2 are strongly
generic (3.1). Fix a framing on τ , a framed basis e = (e0, e1, e2) onM and
assume that Fil2M/(FilpSOE · M) is generated by (e0, E(u)e1, E(u)2e2).
Then there exists a basis e(∞) defi= (e(∞)

0 , e
(∞)
1 , e

(∞)
2 ) forM, and a system

of generators f (∞) defi= (f (∞)
0 , f

(∞)
1 , f

(∞)
2 ) for Fil2M/(FilpSOE ·M) compa-

tible with the framing on τ and such that:

Mate(∞)([f (∞)
0 , f

(∞)
1 , f

(∞)
2 ])

=

 1 0 0
ue−(a1−a0)v

(∞)
1,0 E(u) 0

ue−(a2−a0)v
(∞)
2,0 ue−(a2−a1)E(u)v(∞)

2,1 E(u)2


Mate(∞),f(∞)(ϕ2) =

λ0 0 0
0 λ1 0
0 0 λ2


where λi ∈ O×E and v(∞)

1,0 , v
(∞)
2,1 ∈ OE , v

(∞)
2,0 ∈ OE ⊕ E(u)OE .

The proof of theorem 3.7 relies on a delicate p-adic convergence argument
and occupies the remainder of this section.
Remark 3.8.
(1) The statement and proof of Theorem 3.7 generalizes, mutatis mu-

tandis, to an n dimensional ordinary representation. Because of the
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technicality of the computations in the GLn case, and for sake of
readability, we focus only on the case n = 3 (so r = 2).

(2) Similarly, Theorem 3.7 is stated for strongly divisible lattices with
OE-coefficient, but the statement and the proof generalizes line to
line when SOE is replaced by SR, where R is a local, complete
noetherian OE-algebra which is p-flat (cf. with [4] Proposition 5.4
and [14], beginning §7.4, where the similar situation in the GL2
case is discussed).

3.2.1. Linear algebra with coefficients

The goal of this section is to develop and collect results of linear algebra
with coefficients over a certain family of closed subrings of SOE . It is the
natural generalization of [21], §2.2.3 in characteristic zero.
In all what follows, we take r = 2 though the results can be generalized

to r < p− 1. Define

R
defi= (SOE )

ω̃0 =
⊕̂

i>0
OE ·

uie

i! .

We have a natural filtration FiliR defi= FiliSOE ∩R on R and we note that
R is stable under the Frobenius on SOE . As R is complete and separated
for the p-adic topology we have⋂

n∈N

(
OE + pn+1R

)
= OE .

The following closed ideals will be important for the p-adic convergence
argument.

J defi=
(
pFil2R,Fil3R

)
= Fil2R · (p,Fil1R), I defi= pFil1R.

We collect some important lemmas on the nature of the filtration on R.

Lemma 3.9. — Let p > n > 1 and i > n be integers. We have the
following relation in the Breuil ring R:

uie

i! ∈
(
n−1⊕
k=0

pn−kOEE(u)k
)

+ E(u)n ·
(⊕̂

i>0
OE · E(u)i

)
.

In particular for 3 6 i 6 p− 1 we have

ϕ2(ui) ∈ ui ·
(
pi + pI + J

)
and, more generally

R =
(
OE ⊕OEE(u)⊕OEE(u)2)+ I + J .
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Proof. — In all what follows we work modulo E(u)n ·R. We have:

uei

i! =
n−1∑
k=0

E(u)k

k!
1

(i− k)! (−p)
i−k

and hence we are done once we can show that

(i− k)− (i− k)− Sp(i− k)
p− 1 > n− k

where Sp(t) denotes the sum of the digits in the p-adic development of
t ∈ N.

If i 6 p− 1 this is obvious. Else, we show that (i− k)− (i−k)−Sp(i−k)
p−1 >

p− k. Defining as ∈ {0, . . . , p− 1} via i− k =
∑
s>0 asp

s we have

(i− k)− (i− k)− Sp(i− k)
p− 1 = a0 +

∑
s>1

as

(
ps − ps − 1

p− 1

)
;

if i =
∑
s bsp

s > p > k with bs ∈ {0, . . . , p− 1} then either a0 = b0 − k > 0
and bs 6= 0 for some s > 1 or a0 = p+ b0 − k.

The last two statements now follow: from the above and the definition
of J , I we have ⊕̂

i>3
OE ·

uie

i! ⊆ J + pI + p3OE

and u2e ∈ OEE(u)2 + I + p2OE , ue ∈ OEE(u) + pOE . �

We introduce below the formalism of linear algebra with coefficients. It
is the characteristic zero version of the formalism introduced in [21, §2.3.2].

Definition 3.10. — Let 0 6 a0 6 a1 6 a2 6 e be the integers as-
sociated to the niveau one descent data. For a pair (ai, aj) let [ai − aj ] ∈
{0, . . . , e−1} be defined by [ai − aj ] ≡ −(ai−aj) modulo e. The R-module
of matrices with descent data is defined as:

Mdd,3(R) defi=
{
M ∈ M3(SOE ), s.t. Mi,j = u[ai−aj ]mi,j with mi,j ∈ R

}
The following result is an elementary check in linear algebra:

Lemma 3.11. — The subset Mdd,3(R) is a subring of M3(SOE ). More-
over, if M ∈ Mdd,3(R), then the adjugate matrix Madj is again an element
of Mdd,3(R).

We introduce certain natural subsets of Mdd,3(R):
• GLdd,3(R) the group of invertible elements in Mdd,3(R);
• Bdd,3(R) ⊂ GLdd,3(R) the subgroup of upper triangular matrices;
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• Uopp
dd,3(R) ⊂ GLdd,3(R) the subgroup of strictly lower triangular

unipotent matrices;
• Ldd,3(R) ⊂Mdd,3(R) the multiplicative monoid of lower triangular

matrices.
• T3(OE) is the subgroup of diagonal matrices with scalar entries.

If M1, M2 ∈Mdd,3(R) and K is an ideal of R it is customary to write:

M1 ≡M2 modK

to mean that M1 = M2 + M ′ for some M ′ ∈ Mdd,3(K). Also, if M ∈
Mdd,3(R) we write Madj to denote its adjugate.

We record two elementary manipulations between matrices with descent
data:

Lemma 3.12. — Let A =
(
u[ai−aj ]ai,j

)
i,j
∈ Mdd,3(R) and W =(

u[ai−aj ]wi,j
)
i,j
∈Mdd,3(R). Assume moreover that W ∈ Uopp

dd,3(R). Then

(W ·A)i,j =


u[ai−aj ]

(
ai,j+ue

( i−1∑
k=0

wi,kak,j
))

if j > i

u[ai−aj ]
(
ai,j+ue

( i−1∑
k=j+1

wi,kak,j
)

+
j∑

k=0
wi,kak,j

)
if j < i

Proof. — Omitted. �

Lemma 3.13. — Let W =
(
u[ai−aj ]wi,j

)
i,j

be an element in Uopp
dd,3(R).

Assume that wi,j ∈
⊕i−j

k=0 E(u)kOE for all 0 6 j 6 i 6 2. Then

W adj =
(
u[ai−aj ]wadj

i,j

)
i,j
∈ Uopp

dd,3(R)

satisfies wadj
i,j ∈

⊕i−j
k=0 E(u)kOE for all 0 6 j 6 i 6 2.

Proof. — Omitted. �

The following Lemma plays a crucial role in the p-adic convergence argu-
ment. It describes the effect of the Frobenius on the elements in Mdd,3(R).

Lemma 3.14. — Let n > 0 and let M ∈ GLdd,3(R). If n > 1, assume
further that M ∈ T3(OE) + Mdd,3(pnR).

(i) If [ai − aj ] > 3 for all 0 6 i, j 6 2 then

ϕ (M) ∈ T3(OE) + Mdd,3(pnJ + pnI + pn+1R)

and M ≡ ϕ (M) mod pnR.
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(ii) If M ∈ T3(OE) + Mdd,3
(
pn(p,Fil1R)

)
then

ϕ (M) ∈ T3(OE) + Mdd,3
(
pn+1R

)
and M ≡ ϕ (M) mod pnR.

Proof. — As ϕ(E(u)) ∈ pR×, claim (ii) is obvious for any n > 0.
Let us consider (i). Note first that if x ∈ R×, then we can always write

x ∈ x0 + (p, Fil1R) for some x0 ∈ O×E . If A ∈ Mdd,3(R) and since we
assume [ai − aj ] > 3 for all 0 6 i, j,6 3, we deduce from Lemma 3.9 that
ϕ (A) ∈Mdd,3(J + pI + p3R) as soon as A(i,i) ∈ Fil1R.
Hence, if M ∈ GLdd,3(R) if n = 0 (resp. M ∈ T3(OE) + Mdd,3(pnR)

when n > 1) we can always write M ∈ TM + A + Mdd,3(pn(p,Fil1R))
for some A ∈ Mdd,3(pnR) verifying A(i,i) ∈ pn(p,Fil1R) and some TM ∈
T(OE); the first claim follows. �

3.3. Proof of Theorem 3.7

The proof of Theorem 3.7 is a p-adic convergence procedure. It involves
an induction argument which consists in a careful change of basis on M.
We again specialize to the case of n = 3 (so r = 2) though the procedure
works more generally for ordinary families. We continue to assume that the
triple (a0, a1, a2) is strongly generic.

If e = (e0, e1, e2), f = (f0, f1, f2) are a basis for M and a generating
family of Fil2M/(FilpSOE ·M), which are compatible with the framing on
τ , we define the element V = Ve,f ∈Mdd,3(R) such that

f0 = e · V

 1
0
0

 , f1 = e · V

 0
1
0

 , f2 = e · V

 0
0
1


(roughly speaking, V ∈Mdd,3(R) is the matrix of the filtration onM).
Let Mate,f (ϕ2) ∈ GLdd,3(R) be the matrix such that

ϕ2(f0) = e ·Mate,f (ϕ2)

 1
0
0

 , ϕ2(f1) = e ·Mate,f (ϕ2)

 0
1
0

 ,

ϕ2(f2) = e ·Mate,f (ϕ2)

 0
0
1

 .

(i.e. Mate,f (ϕ2) is the matrix of the Frobenius with respect to f).
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We establish some preliminary lemmas to perform the induction argu-
ment to prove Theorem 3.7. The first lemma lets us translate the effect of a
change of basis on the matrices describing the Frobenius and the filtration.

From now on any basis e = (e0, e1, e2) and system of generators f =
(f0, f1, f2) for Fil2M/(FilpSOE ·M) are always understood to be compat-
ible with the framing on τ .

Lemma 3.15. — Let A ∈ GLdd,3(R). Let e′ defi= e · A be a new SOE -
basis for M, compatible with the framing on τ . Assume that there exist
B ∈ GLdd,3(R) and V ′ ∈ Mdd,3(R) satisfying

AV ′ = V B.

The elements

f ′0
defi= e′ · V ′

 1
0
0

 , f ′1
defi= e′ · V ′

 0
1
0

 , f ′2
defi= e′ · V ′

 0
0
1


form a system of SOE -generators for FilrM/ (FilpSOE · M). If we further
assume that A = Mate,f (ϕr), then we have

(3.2) Mate′,f ′(ϕ2) = ϕ(B).

Proof. — The elements f ′0, f ′1, f ′2 are obviously in Fil2M and, since B
is invertible, they form a system of SOE generators for Fil2M modulo
FilpSOE ·M. The last statement is a simple translation of the definition of
Mate′,f ′(ϕ2), Mate,f (ϕ2), recalling that ϕ2 is ϕ-semilinear. �

The previous Lemma will be widely used when A,B ∈ T3(OE) +
Mdd,3 (pnR), for n > 1. We now give a criterion for when we can find
a V ′ = Ve′,f ′ which allows us to perform change of basis as in Lemma 3.15:

Lemma 3.16. — Let V ∈ Mdd,3(R) be a matrix associated to the fil-
tration Fil2M onM. Then V adj ∈ E(u)Mdd,3(R). Moreover:

(i) Let A ∈ GLdd,3(R) and assume there exists V ′ ∈ Mdd,3(R) such
that

1
E(u)V

adjAV ′ ∈ E(u)2GLdd,3(R) + Mdd,3(J ).

Then, there exist B ∈ GLdd,3(R) + Mdd,3(p,Fil1R) such that

AV ′ = V B.
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(ii) Let A ∈ T3(OE) + Mdd,3 (pnR) and assume there exists V ′ ∈
Mdd,3(R) such that

1
E(u)V

adjAV ′ ∈ E(u)2T3(OE) + Mdd,3(pnJ ).

Then, there exist B ∈ T3(OE) + Mdd,3(pn(p,Fil1R)) such that

AV ′ = V B.

Proof. — The first assertion is clear from the height condition.
We prove (i), the proof of (ii) being identical. Let us write

1
E(u)V

adjAV ′ = E(u)2(B +N0)

where B ∈ GLdd,3(R) and N0 ∈ Mdd,3
(
(p,Fil1SOE )

)
.

We obtain

E(u)2V · (B +N0) = 1
E(u) (V · V adj)AV ′ = E(u)2AV ′

and the statement follows. �

The proof of Theorem 3.7 is now a p-adic approximation argument, in
which we distinguish two steps. The first one (Proposition 3.17) shows that
at the 2n-th step of the p-convergence argument we are able to make the
ϕr-action lower triangular modulo pn+1.

Proposition 3.17 (Even case). — Let A0 ∈ GLdd,3(R) and, for n > 1,
let A2n ∈ T3(OE) + Mdd,3 (pnR).
Let

V (2n) =

 1 0 0
u[a1−a0]v

(2n)
1,0 1 0

u[a2−a0]v
(2n)
2,0 u[a2−a1]v

(2n)
2,1 1

Diag(1, E(u), E(u)2)

for some elements v(2n)
1,0 , v

(2n)
2,1 ∈ OE , v

(2n)
2,0 ∈ OE ⊕ E(u)OE .

Then there exist elements v(2n+1)
1,0 , v

(2n+1)
2,1 ∈ OE , v(2n+1)

2,0 ∈ OE⊕E(u)OE
such that:

(3.3) 1
E(u)V

(2n),adjA(2n)V
(2n+1)

∈

{
E(u)2Bdd,3(R) + Mdd,3 (J ) if n = 0

E(u)2 (T3(OE) + Ldd,3 (pnR)) + Mdd,3 (pnJ ) if n > 1
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where

V (2n+1) defi=

 1 0 0
u[a1−a0]v

(2n+1)
1,0 1 0

u[a2−a0]v
(2n+1)
2,0 u[a2−a1]v

(2n+1)
2,1 1

Diag(1, E(u), E(u)2).

In particular, any element B2n ∈ GLdd,3(R) + Mdd,3
(
(p,Fil1R)

)
de-

duced from the equation (3.3) via Lemma 3.16 verifies:
(i) B2n ∈ Bopp

dd,3(R) + Mdd,3((p,Fil1R)) if n = 0;
(ii) B2n ∈ T3(OE) + Ldd,3(pnR) + Mdd,3

(
pn(p,Fil1R)

)
if n > 0.

In a similar fashion, we can diagonalize the ϕr-action modulo pn+1 at
the step 2n+ 1:

Proposition 3.18 (Odd case). — Let n > 0 and let

A2n+1 ∈ T3(OE) + Mdd,3 ((pnJ + pnI)) + Mdd,3(pn+1R).

Let

V (2n+1) =

 1 0 0
u[a1−a0]v

(2n+1)
1,0 1 0

u[a2−a0]v
(2n+1)
2,0 u[a2−a1]v

(2n+1)
2,1 1

Diag(1, E(u), E(u)2)

for some elements v(2n+1)
1,0 , v

(2n+1)
2,1 ∈ OE , v(2n+1)

2,0 ∈ OE ⊕ E(u)OE .
Then there exist elements v(2n+2)

1,0 , v
(2n+2)
2,1 ∈ OE , v(2n+2)

2,0 ∈ OE⊕E(u)OE
such that

(3.4) 1
E(u)V

(2n+1),adjA(2n+1)V
(2n+2) ∈ E(u)2T3(OE) + Mdd,3 (pnJ )

where

V (2n+2) defi=

 1 0 0
u[a1−a0]v

(2n+2)
1,0 1 0

u[a2−a0]v
(2n+2)
2,0 u[a2−a1]v

(2n+2)
2,1 1

Diag(1, E(u), E(u)2).

In particular, any elementB2n+1GLdd,3(R)+Mdd,3
(
(p,Fil1R)

)
deduced

from the equation (3.4) via Lemma 3.16 verifies:

B2n+1 ∈ T3(OE) + Mdd,3
(
pn(p,Fil1R)

)
.

The proof of Proposition 3.17, 3.18, which is the key technical part in
the approximation argument, is carried out in section §3.4 below.

We now show how Proposition 3.17 and 3.18 let us perform the p-adic
convergence argument giving rise to Theorem 3.7.
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Lemma 3.19 (even ⇒ odd). — Let n ∈ N and write

1
E(u)V

(2n),adjA(2n)V
(2n+1) = E(u)2 (B2n)

where V (2n), V (2n+1), A(2n) and B2n are as in the statement of Proposi-
tion 3.17.
Then the element A2n+1

defi= ϕ (B2n) veryfies the hypotheses of Proposi-
tion 3.18.

Proof. — It is an immediate consequence of Lemma 3.14 (i). �

Lemma 3.20 (odd ⇒ even). — Let n ∈ N and write

1
E(u)V

(2n+1),adjA(2n+1)V
(2n+2) = E(u)2B2n+1

where V (2n+1), V (2n+2), A(2n+1) and B2n+1 are as in the statement of
Proposition 3.18.
Then the element A2n+2

defi= ϕ
(
B2n+1) veryfies the hypotheses of Propo-

sition 3.17.

Proof. — It is an immediate consequence of Lemma 3.14 (ii). �

3.4. Proofs of Propositions 3.17, 3.18

3.4.1. The even case

In order to lighten notations we write

A
defi= A2n, V (2n) = V ·Diag(1, E(u), E(u)2),

V (2n+1) = V ′ ·Diag(1, E(u), E(u)2)

for appropriate V, V ′ ∈ Uopp
dd,3(R), and define

vi,j
defi= (V ′)i,j .

We therefore have
1

E(u) · V
(2n),adj = Diag(E(u)2, E(u), 1)V adj

and W defi= V adj = (u[ai−aj ]wi,j) ∈ Uopp
dd,3(R).
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An immediate computation gives:

(3.5) Diag(E(u)2, E(u), 1) ·WAV ′ ·Diag(1, E(u), E(u)2)︸ ︷︷ ︸
1

E(u)V
(2n),adjA(2n)V (2n+1)

∈ Ldd,3(R) + Mdd,3 ((pnJ )) .

so that, using Lemma 3.12 and A ∈ GL3(R) we see that (WAV ′)i,i ∈
Ai,i + pn(p,Fil1R). Hence the diagonal entries in the LHS of (3.5) lie
actually in E(u)2O×E + pnJ .
In order to establish Proposition 3.17 we are therefore left to find, for

i > j, elements vi,j ∈ R in such a way that

(3.6)
(
Diag(E(u)2, E(u), 1) ·WAV ′ ·Diag(1, E(u), E(u)2)

)
i,j

≡ 0 modulou[ai−aj ] ·
(
pnFil2R

)
that is to say (

WAV ′
)
i,j
≡ 0 modulou[ai−aj ] ·

(
pnFili−jR

)
.

for 2 > i > j > 0.
Let us write WA = (u[ai−aj ]mi,j)i,j ∈ GLdd,3(R) where mi,j ∈ R. Then

the condition (3.6) is equivalent to following systems of linear equations:

(3.7) D0

(
m1,1 m1,2
uem2,1 m2,2

)
︸ ︷︷ ︸

M0

(
v1,0
v2,0

)
≡ −D0

(
m1,0
m2,0

)
modulo pnFil2R

(where D0
defi= Diag

(
E(u)u[a1−a0], u[a2−a0])) and

(3.8) E(u)u[a2−a1]m2,2 · v2,1 ≡ −E(u)u[a2−a1]m2,1 modulo pnFil2R

We have mi,i ∈ R× so thatM0, m2,2 are invertible and we are left to define(
v1,0
v2,0

)
defi= −M−1

0 ·
(
m1,0
m2,0

)
, v2,1

defi= −m−1
2,2m2,1.

Note that the elements v1,0, v2,1 can be assumed to be in OE and v2,0 can
be assumed to be in OE ⊕ E(u)OE . This concludes the proof of Proposi-
tion 3.17.

3.4.2. The odd case

As for the previous paragraph, in order to lighten notations we write
A

defi= A2n+1 and

V (2n+1) defi= VDiag(1, E(u), E(u)2), V (2n+2) = V ′Diag(1, E(u), E(u)2)
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for appropriate V, V ′ ∈ Uopp
dd,3(R) and vi,j

defi= (V ′)i,j .
We therefore have

1
E(u)V

(2n+1),adj = Diag(E(u)2, E(u), 1)V adj

and W defi= V adj = (u[ai−aj ]wi,j) ∈ Uopp
dd,3(R) for some wi,j ∈ R.

Since A ∈ T3(OE) + Mdd,3 (pnR), we see that (W ·A)i,j ≡ 0 modulo pn
whenever j > i, hence

(3.9) Diag(E(u)2, E(u), 1)WAV ′Diag(1, E(u), E(u)2)︸ ︷︷ ︸
1

E(u)V
(2n+1),adjA(2n+1)V (2n+2)

∈ Ldd,3(R) + Mdd,3 (pnJ ) .

Again, an immediate manipulation (using Lemma 3.12 and the fact that
A ∈ T3(OE) + Mdd,3 (pnR)) shows that

(WAV ′)i,i ∈ Ai,i + (pn(p,Fil1R))

so that the diagonal entries in the LHS of (3.9) lie actually in E(u)2O×E +
pnJ .
In order to establish Proposition 3.18 we are left to determine, for 2 >

i > j > 0, the elements vi,j ∈ R in such a way that

(3.10)
(

Diag(E(u)2, E(u), 1)WAV ′Diag(1, E(u), E(u)2)
)
i,j

≡ 0 modulo u[ai−aj ] · (pnJ ) ,

that is to say

(WAV ′)i,j ∈ u[ai−aj ] ·
(
pn
(
pFili−jR,Fili−j+1R

))
(for 2 > i > j > 0) with the additional requirements that

(3.11) v1,0, v2,1 ∈ OE , v2,0 ∈ OE ⊕ E(u)OE .

Let us write WA = (u[ai−aj ]mi,j)i,j ∈ GLdd,3(R). Then we have

(3.12) mi,j ∈ wi,jAj,j + pnJ + pnI + pn+1R

for all 0 6 i, j 6 2, as A ∈ T3(OE) + Mdd,3
(
pnJ + pnI + pn+1R

)
. In

particular, mj,j ∈ R×.
Moreover, by hypotheses we have V1,0, V2,1 ∈ OE and V2,0 ∈ OE ⊕

E(u)OE so that, using Lemma 3.13 we obtain:

(3.13) w2,1, w1,0 ∈ OE , w2,0 ∈ OE ⊕ E(u)OE .
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As we did in the previous paragraph (the proof of the even case 3.17) we
are left consider the following systems of linear equations

(3.14) D0

(
m1,1 m1,2
uem2,1 m2,2

)
︸ ︷︷ ︸

M0

(
v1,0
v2,0

)
≡ −D0

(
m1,0
m2,0

)
modulo pnJ

where D0
defi= Diag(E(u)u[a1−a0], u[a2−a0]) and

(3.15) E(u)u[a2−a1]m2,2v2,1 ≡ −E(u)u[a2−a1]m2,1 modulo pnJ .

Then condition (3.10) is now translated into the existence of solutions
to (3.14), (3.15), where vi,j verify moreover (3.11).

By (3.12) and (3.13) we have m2,2 ∈ O×E + pnJ + pnI + pn+1R and

M0 ∈
(

O×E 0
(OE ⊕ E(u)OE) O×E

)
+ M2(pnJ + pnI + pn+1R);

and hence, by Lemma 3.13 we have

(3.16) M−1
0 ∈

(
O×E 0

(OE ⊕ E(u)OE) O×E

)
+ M2(pnJ + pnI + pn+1R).

If we define v2,1
defi= −m2,2m2,1 and(

v1,0
v2,0

)
defi= −M−1

0 ·
(
m1,0
m2,0

)
we deduce from (3.16), (3.13) (and the important fact that pn+1R ∈
pn+1OE + pnI + pnJ , cf. Lemma 3.9) that

v1,0, v2,1 ∈ OE + (pnJ , pnI) , v2,0 ∈ OE ⊕ E(u)OE + (pnJ , pnI) .

Hence

v1,0, v2,1 ∈ OE + pn+1E(u)OE + pnJ , v2,0 ∈ OE ⊕ E(u)OE + pnJ

and since E(u) ·
(
pn+1E(u)OE

)
∈ pnJ we deduce that the elements vi,j

defined this way verify condition (3.14) and can be assumed, without loss
of generality, to verify condition (3.11).
This ends the proof of Proposition 3.18.

4. Monodromy on Breuil modules

The aim of this section is to give necessary and sufficient conditions on
“ordinary” quasi-Breuil modules with descent data to admit a monodromy
operator.
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More precisely, we consider quasi-Breuil modulesM over R with descent
data of principal series type τ = ω̃a0 ⊕ ω̃a1 ⊕ ω̃a2 , where the integers ai
verify the strongly genericity assumption (3.1) which arise as reductions
modulo p of families of the form given in Theorem 3.7. The main result is
Proposition 4.3. The proof is a fairly direct computation with the matrix
for N relying crucially on the genericity condition on the descent data.

From Proposition 3.4 we have a lattice of quasi-Breuil submodules ofM,
whose constituentsMi,j are characterized by T2

qst(Mi,j) ∼= ρi,j |G(Qp)∞
. In

particular, we have a filtration with rank one quotients:

(4.1) 0 ⊆M2 ⊆M2,1 ⊆M.

We can describe quasi-Breuil modulesM (with principal series type τ)
such that T2

qst(M) ∼= ρ|G(Qp)∞
:

Proposition 4.1. — LetM ∈ F-BrMod2
dd,0 be a quasi-Breuil module

such that T2
st(M) ∼= ρ|G(Qp)∞

, where ρ is ordinary Fontaine-Laffaille and
strongly generic. Assume thatM has descent data of type τ .

There exists a framed basis e = (e0, e1, e2) and a framed system of gen-
erators f = (f0, f1, f2) for Fil2M such that:

Mate(Fil2M) =

 1 0 0
u[a1−a0]v1,0 ue 0

u[a2−a0](v2,0 + uev′2,0) ue+[a2−a1]v2,1 u
2e

 ,

Mate,f (ϕ2) =

 α0 0 0
0 α1 0
0 0 α2


(4.2)

where vi,j , v′2,0 ∈ F, αi ∈ F×.

Proof. — In what follows, we write S0 to denote the ω0-isotypical com-
ponent of S (i.e. S0 = F[ue]/uep).

As in the proof of Proposition 3.6 we see that there exists a basis e =
(e0, e1, e2) and a system of generators f = (f0, f1, f2), compatible with
both the framing on τ and the filtration (4.1), and such that

V
defi= Mate([f0, f1, f2]) =

 1 0 0
u[a1−a0]v1,0 ue 0
u[a2−a0]v2,0 u

e+[a2−a1]v2,1 u
2e


where v1,0, v2,1 ∈ F and v2,0 ∈ F ⊕ ueF. As e, f are compatible with the
filtration (4.1) we moreover deduce that A defi= Mate,f (ϕ2) ∈ GLdd,3

(
S0
)
is

actually in Bopp
3,dd

(
S0
)
, the Borel of lower triangular matrices.
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We now apply Lemma 3.15: it is easy to see that there exists matrices
V ′ ∈ Ldd,3

(
S0
)
and B ∈ Bopp

dd,3
(
S0
)
such that

AV ′ ∈ V B + u3eMdd,3
(
S0
)

and therefore A′ defi= ϕ(B) is the matrix of the Frobenius action onM with
respect to the basis e′ defi= e · A and the system of generators f ′ defi= eV ′.
Note that, as A, V ′ are lower triangular, the new basis e′ and new system
of generators f ′ are compatible with the filtration (4.1).
We can now repeat the argument: at the end of the second iteration we

end up with a framed basis for M and a framed system of generators for
Fil2M which are compatible with both the framing on τ and the filtra-
tion (4.1), as in the statement. �

Let R be a complete local Noetherian F-algebra with residue field F.

Definition 4.2. — Let M be a quasi-Breuil module over R with de-
scent datum. We say that a framed basis e and a framed system of gener-
ators f for Fil2(M) is in ordinary form if

Mate(Fil2M) =

 1 0 0
u[a1−a0]v1,0 ue 0

u[a2−a0](v2,0 + uev′2,0) ue+[a2−a1]v2,1 u
2e


and

Mate,f (ϕ2) =

 α0 0 0
0 α1 0
0 0 α2


where vi,j , v′2,0 ∈ R, αi ∈ R

×.

The above definition is closely related to the notion of gauge basis (5.1).
The main difference being that here we are specifying both e and f . We
are now in the position of state the main result of this section.

Proposition 4.3. — LetM ∈ R-BrMod2
dd,0 be a quasi-Breuil module

with a framed basis e = (e0, e1, e2) and a framed system of generators f =
(f0, f1, f2) for Fil2M in ordinary form (4.2). Assume a0, a1, a2 satisfy the
strong genericity hypothesis (3.1). ThenM is endowed with a monodromy
operator if and only if v2,0 = 0.
In this case, one has

N =

 0 0 0
u[a1−a0]P1,0(ue) 0 0
u[a2−a0]P2,0(ue) u[a2−a1]P2,1(ue) 0



TOME 66 (2016), FASCICULE 5



1954 Brandon LEVIN & Stefano MORRA

where Pi+1,i = αi+1α
−1
i [ai+1 − ai]vi+1,iu

e[ai+2−ai] for i = 0, 1 and

P2,0 = −α2α
−1
0 (v′2,0([a2 − a0]− 1)− v1,0v1,2[a1 − a0])ue[a2−a0].

The rest of this section is devoted to the proof of Proposition 4.3. From
now on, we fix a quasi-Breuil module M over R with descent data τ in
ordinary form. To lighten notations, we write S = SR = R[u]/(uep) and,
as in the proof of Proposition 4.1, we write S0 to denote the ω0-isotypical
component of S. As the monodromy operator is compatible with the descent
data, we deduce from [13], Lemma 3.3.2 that the action of a monodromy
N onM is described by

N =

 0 0 0
u[a1−a0]P1,0(ue) 0 0
u[a2−a0]P2,0(ue) u[a2−a1]P2,1(ue) 0


in the basis e for some Pi,j(ue) ∈ S0.

Recall that the monodromy operator N satisfies
(i) ueN(fi) ∈ Fil2M;

(ii) ϕ2(ueN(fi)) = N(ϕ2(fi))
and the usual Leibnitz relation

(4.3) N(Q(u) · x) = −u ∂

∂u
(Q(u))x+Q(u)N(x)

for any Q(u) ∈ S, x ∈ M. We will write NS to denote the monodromy
−u ∂

∂u on S.
Proof of Propostion 4.3. — SinceM is in ordinary form, we can define

the subquotients inMi,j as we did forMi,j . Let us first considerM2,1. A
simple computation, using the Leibniz relation (4.3) gives

N(f1) = −ef1 + ue+[a2−a1]

 0
0
P2,1(ue)

− [a2 − a1]v2,1

 0
0
1


hence ueN(f1) = uef1 + u[a2−a1](P2,1(ue)− [a2 − a1]v2,1)f2 ∈ Fil2M.

Using (4.3) and noticing that ϕ(Q(ue)) = Q(0) for any Q(ue) ∈ S0, we
further obtain

ϕ2(ueN(f1)) = u[a2−a1]ue[a2−a1]α2(P2,1(0)− [a2 − a1]v2,1)e2,

and asM is ordinary we have

N(ϕ2(f1)) = α1u
[a2−a1]P2,1(ue)e2.

Hence, from (ii) we deduce P2,1(ue) = −α2α
−1
1 [a2 − a1]v2,1u

e[a2−a1].
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By a similar argument withM1,0, we deduce that P1,0(ue) = −α1α
−1
0 v1,0

·[a1−a0]ue[a1−a0]. Note that both P2,1(ue) and P1,0(ue) are in Fil2S by the
genericity condition.
We now consider N(f0). A laborious manipulation but without difficul-

ties, using the Leibniz relation and the definition of f1 provides us with the
following:

ueN(f0) = ue

 0
u[a1−a0]P1,0(ue)
u[a2−a0]P2,0(ue)

 +NS(u[a1−a0]v1,0)

 0
1
0


+ u[a1−a0]v1,0

 0
0
u[a2−a1]P2,1(ue)


+NS(u[a2−a0](v2,0 + uev′2,0))

 0
0
1


∈ u[a1−a0] (P1,0(ue)− [a1−a0]v1,0) f1 + u[a2−a0](1− [a2−a0])v′2,0f2

+ ue
(
u[a2−a1]+[a1−a0] (−v2,1P1,0(ue) + v1,0v2,1[a1−a0])

+u[a2−a0] (P2,0(ue)− v2,0[a2−a0])
)
e2 + ueFil2M

(where we used that ueP2,1(ue)e2 ∈ ueFil2M).
Since we assume e > a2 − a1, a1 − a0 > 0 we have [a2 − a1]− [a1 − a0] =

e+ [a2 − a0]. Therefore

ueN(f0) ∈ u[a1−a0](P1,0(ue)− [a1−a0]v1,0)f1

+u[a2−a0](−v2,1P1,0(ue)+v1,0v2,1[a1−a0]+(1− [a2−a0])v′2,0
)
f2

+ ueu[a2−a0](P2,0(ue)−v2,0[a2−a0])e2 + ueFil2M

so that Griffiths’ transversality is verified if and only if

(4.4) P2,0(ue)− v2,0[a2 − a0] ∈ ueS0.

Let us write P2,0(ue) = v2,0[a2−a0]+ueP̃2,0(ue) for some P̃2,0(ue) ∈ S0.
We now have

ueN(f0) ∈ u[a1−a0] (P1,0(ue)− [a1 − a0]v1,0) f1

+ u[a2−a0](− v2,1P1,0(ue) + v1,0v2,1[a1 − a0]

+ (1− [a2 − a0])v′2,0 + P̃2,0(ue)
)
f2

+ ueFil2M
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hence, imposing condition (ii), we deduce that:

α0P2,0(ue) = ue[a2−a0]α2
(
− v2,1P1,0(0) + v1,0v2,1[a1 − a0]

+ (1− [a2 − a0])v′2,0 + P̃2,0(0)
)
.

In particular, P2,0(ue) ∈ u2eS0 by the genericity assumption. Returning
to (4.4), we conclude that

[a2 − a0] v2,0 = 0 ,

P2,0(ue) = −α2α
−1
0
(
v′2,0([a2 − a0]− 1)− v1,0v2,1[a1 − a0]

)
ue[a2−a0].

This proves the only if direction.
For the converse, it is enough to notice that, by virtue of the previous

computations, a monodromy N :M→M defined by

N(e0) defi= −α1α
−1
0 v1,0[a1 − a0]ue[a1−a0]e1

+ α2α
−1
0
(
v1,0v2,1[a1 − a0]− v′2,0([a2 − a0]− 1)

)
ue[a2−a0]e2,

N(e1) defi= −α2α
−1
1 v2,1[a2 − a1]ue[a2−a1]e2,

N(e2) defi= 0

verifies both conditions (i) and (ii), and the quasi-Breuil moduleM is thus
equipped with the structure of a Breuil module. �

Remark 4.4. — Following the same technique, it is possible to determine
the monodromy operator even when the type τ lies in the upper alcove.
More precisely, if τ = ωa2 ⊕ ωa1 ⊕ ωa0 , where (a2, a1, a0) ∈ X∗+(T) is a
restricted, generic dominant weight in the upper alcove, then an ordinary
quasi-Breuil module as in (4.2) is endowed with a monodromy operator if
and only if [a2−a0]v2,0 = [a1−a0]v1,0v2,1. This question is further explored
in [25].

5. Potentially crystalline deformation rings

In this section we explicitly compute certain potentially crystalline de-
formation rings with niveau 1 type. The main result is Theorem 5.7. We
recall that ρ : GQp → GL3(F) is ordinary, of the form

ρ|IQp
∼=

 ωa2+2 ∗1 ∗
0 ωa1+1 ∗2
0 0 ωa0


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verifying the genericity hypothesis a1− a0, a2− a1 > 3, a2− a0 < p− 4. As
before we fix the principal series tame type τ defi= ω̃a2 ⊕ ω̃a1 ⊕ ω̃a0 .

If R is a complete local Noetherian OE-algebra, recall from Section 2 the
following categories of semilinear algebra data:

R-Mod2
dd

⊗OEF
��

// R-Mod2
dd,0

⊗OEF
��

R-BrMod2
dd

// R-BrMod2
dd,0

endowed with faithful, covariant functors T2
x towards Galois (with x ∈

{st, qst}), verifying the natural, evident compatibilities with respect to the
forgetful, restriction and mod-p reduction functors.

Definition 5.1. — LetM ∈ OE-Mod2
dd be a strongly divisible lattice

of type τ such that T2
st(M)⊗ F ∼= ρ. A basis e = (e0, e1, e2) onM is said

to be a gauge basis for M if e is compatible with the descent data and
there exists f = (f0, f1, f2) ∈ Fil2M such that

Mate([f0, f1, f2]) =

 1 0 0
u[a1−a0]x E(u) 0

u[a2−a0](y′ + E(u)y) E(u)u[a2−a1]z u2e


and Mate,f (ϕ2) = Diag(α0, α1, α2), where x, y, y′, z ∈ OE and αi ∈ O×E .
If R is a complete local Noetherian OE-algebra we define in an anal-

ogous way the notion of gauge basis for modules M ∈ R-Mod2
dd,M ∈

R-BrMod2
dd (resp. M ∈ R-Mod2

dd,0,M ∈ R-BrMod2
dd,0) of type τ such

that T2
st(M)⊗R F ∼= ρ (resp. T2

qst(M)⊗R F ∼= ρ|G(Qp)∞
).

A morphism of strongly divisible lattices with gauge basis (M1, e1) →
(M2, e2) is defined as a morphism M1 → M2 in OE-Mod2

dd such that
ei,1 7→ ei,2 for i ∈ {0, 1, 2}. We have the analogous definition for a morphism
of R-valued (quasi)-strongly divisible lattices and (quasi)-Breuil modules,
where R is a complete local Noetherian OE-algebra (resp. F-algebra).

We record the following:

Lemma 5.2. — Let M ∈ OE-Mod2
dd be a strongly divisible lattice of

type τ such that T2
st(M)⊗F ∼= ρ. ThenM is endowed with a gauge basis e.

Moreover if e, e′ are two gauge bases onM, then there exists t ∈ T3(OE)
such that e = e′ · t.

If R is a complete local noetherian OE-algebra we have the evident,
analogous statement for Breuil modules and quasi-Breuil modules with R-
coefficients.
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Proof. — The fact thatM is endowed with a gauge basis is immediate
from Theorem 3.7. Moreover, given two gauge basis e, e′ forM, one has

ê′• = s•ê•

for • ∈ {0, 1, 2}) and s• ∈ (S)×
ω̃0 (the latter denoting the invertible element

in the ω̃0-isotypical component of the Breuil ring S).
As ê′, ê are gauge basis, the effect of the change of basis on the Frobenius

action gives

α′• = ϕ(s•)
s•

α•

for • ∈ {0, b, a}. As x•
defi= α′•α

−1
• ∈ O×E one deduces that s• ∈ Sϕ=x• = OE .

The statement for Breuil modules and quasi-Breuil modules with R

coefficients is deduced following the analogous argument, using Proposi-
tion 4.1. �

In what follows, we need the unicity of Breuil modules M verifying
T2

st(M) = ρ. The following proposition shows that this is the case when
the descent datum onM is sufficiently generic with respect to the inertial
weights of ρss.

Proposition 5.3. — Let M1,M2 ∈ F-BrMod2
dd be Breuil modules

with descent data of type τ . Assume that T2
st(Mi) ∼= ρ for i ∈ {1, 2},

where ρ is ordinary Fontaine-Laffaille and strongly generic as in (3.1).
Then we have an isomorphism of Breuil modulesM1

∼−→M2.

Proof. — LetM∈ F-BrMod2
dd be a Breuil module with descent data of

type τ .
By Proposition 4.3 we have a gauge basis e and a system of generators

f for Fil2M such that:

Mate(Fil2M0) =

 1 0 0
u[a1−a0]x ue 0
ueu[a2−a0]y ueu[a2−a1]z u2e

 ,

Mate,f (ϕ2) = Diag(α0, α1, α2)

for some x, y, z ∈ F, αi ∈ F×. By Lemma 2.4 the (F((π)), φ)-module M
defi=

MFp((π))(M
∗) is described by

Mate(φ) =

 1 π[a1−a0]x πe+[a2−a0]y

0 πe πe+[a2−a1]z

0 0 π2e

Diag(α−1
0 , α−1

1 , α−1
2 ).
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By considering the change of basis e′
defi= (πa0e0, π

a1e1, π
a2e2) (i.e., by

considering the ωa0-isotypical component of M), we obtain

Mate′(φ) =

 πa0 πe(a1+1)x πe(a2+2)y

0 πe(a1+1) πe(a2+2)z

0 0 πe(a2+2)

Diag(α−1
0 , α−1

1 , α−1
2 ).

which shows that M is the base change to F((π)) of the (F((p)), φ)-module
M0 defined by

Matf(φ) =

 α−1
0 α−1

1 x α−1
2 y

0 α−1
1 α−1

2 z

0 0 α−1
2

Diag(pa0 , pa1+1, pa2+2).

for an appropriate basis f on M0. Hence, the (F((p)), φ)-module M0(−a0)
defined by

Matf(φ) =

 α−1
0 α−1

1 x α−1
2 y

0 α−1
1 α−1

2 z

0 0 α−1
2

Diag(1, pa1−a0+1, pa2−a0+2)

verifies Hom(M0(−a0),Fp((p))s) ∼= ρ⊗ ω−a0 |G(Qp)∞ .
By an evident change of basis and Proposition 2.3 we deduce that

M0(−a0) = F(M) where M is the Fontaine-Laffaille module in Hodge-
Tate weights (0, a1− a0 + 1, a2− a0 + 2) and whose Frobenii are described,
in an appropriate basis, by

Mat(φ•) =

 1 x y

0 1 z

0 0 1

Diag(α−1
0 , α−1

1 , α−1
2 ).

We now specialize to our situation: for i ∈ {1, 2} we have:

Mate(Fil2Mi) =

 1 0 0
u[a1−a0]xi ue 0
ueu[a2−a0]yi u

eu[a2−a1]zi u
2e

 ,

Mate,f (ϕ2) = Diag(α0, α1, α2)

for some xi, yi, zi ∈ F (and the αi ∈ F× uniquely determined by ρi(Frobp))
we deduce the Fontaine-Laffaille modules Mi, in Hodge-Tate weights
(0, a1 − a0 + 1, a2 − a0 + 2) Frobenii

Mat(φ•) =

 1 xi yi
0 1 zi
0 0 1

Diag(α−1
0 , α−1

1 , α−1
2 ).
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As have T2
st(M1) ∼= T2

st(M2) by assumption we deduce that the
Fontaine-Laffaille modules above are isomorphic. By [21, Lemma 2.1.7],
any change of basis on Mi which is compatible with both the Hodge and
the submodule filtration on Mi is diagonal; in other words, one has 1 x1 y1

0 1 z1
0 0 1

 =

 1 x2 y2
0 1 z2
0 0 1

Diag(λ, µ, ν)

for some λ, µ, ν ∈ F×. We deduce an isomorphism of Breuil modules with
gauge basisM1

∼−→M2 defined by e1 7→ e2 ·Diag(λ, µ, ν). �

We fix a pair (M, e) where M ∈ F-BrMod2
dd has type τ and verifies

T2
st(M) ∼= ρ and e is a gauge basis on it. The basic setup will be similar to

§7.4 of [14]. We now introduce the following deformation rings.
(1) R�ρ

defi= R
�,(0,1,2),cris,τ
ρ is the framed potentially crystalline deforma-

tion ring of ρ, with Galois type τ and p-adic Hodge type (0, 1, 2);
(2) RτM,∞ represents the deformation functor of pairs (M, ê) whereM

is a quasi-strongly divisible module liftingM and ê is a gauge basis
onM reducing to the gauge basis e onM.

(3) RτM represents the deformation functor of pairs (M, ê) as in 2)
whereM is now a strongly divisible lattice.

(4) R�,τ
M

represents deformation functor of triples (M, ê, ρ) where the
pair (M, ê) is as in 3) and ρ ∼= T2

st(M) (i.e., the pair (M, ê) comes
with a framing on T2

st(M));
(5) R�M parameterizing pairs (M, ρ) where M is as in 3) and ρ ∼=

T2
st(M) (i.e. we fix a framing on T2

st(M)).
The relationship between the various deformation rings is summarized

in the following diagram:

(5.1) SpfR�,τ
M

f.s.

zz

f.s.

$$
SpfRτM,∞ SpfRτM

? _oo SpfR�M
∼ // SpfR�ρ

Morphisms labelled f.s. are easily seen to be formally smooth. Since the
existence of monodromy is a closed condition, the leftmost arrow is a closed
immersion. We will show that the rightmost arrow is an isomorphism in
Theorem 5.5 below.

We now deduce the two important consequences of our work in the pre-
vious sections:
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Lemma 5.4. — The rings RτM⊗OE F, RτM,∞⊗OE F are formally smooth
of dimension 6 and 7 respectively. Moreover we have a closed immersion

Spf(RτM)× F ↪→ Spf(RτM,∞)× F

which realizes Spf(RτM)× F as a linear subspace in Spf(RτM,∞)× F

Proof. — By Theorem 3.7, Proposition 4.1 and Lemma 5.2 we see that
Spf(RτM,∞) is formally smooth, of relative dimension 7 over OE with a
universal family of “ordinary” quasi-Breuil modules.
By Proposition 4.3, it follows immediately that RτM ⊗OE F is formally

smooth, of relative dimension 6 and the closed immersion in the statement
of the Lemma is defined by X7 = 0, if X1, . . . , X7 is a system of local
coordinates on Spf(RτM,∞)× F. �

Theorem 5.5. — The natural map SpfR�M → SpfR�ρ is an isomor-
phism.

Proof. — By Theorem 2.5, Lemma 5.2 and the uniqueness of Proposi-
tion 5.3 we deduce that the forgetful functor induces an isomorphism on
generic fibers

Spf(R�M)×Qp
∼−→ Spf(R�ρ )×Qp.

As R�ρ is flat over OE , it suffices to show that Spf(R�M)−→Spf(R�ρ ) is a
closed immersion, i.e. that the induced map

(5.2) Hom(R�M,F[ε])→ Hom(R�ρ ,F[ε])

between the reduced tangent spaces is injective.
This can be done by Galois descent via Proposition 2.3, following the

technique of the proof of Proposition 5.3. More precisely, let (N , ρ) be a
point in Hom(R�M,F[ε]). By Lemma 5.2 N is endowed with a gauge basis
e = (e0, e1, e2); in particular we have

Mate([f0, f1, f2]) =

 1 0 0
u[a1−a0]x ue 0
ueu[a2−a0]y ueu[a2−a1]z u2e

 ,

Mate,f (ϕ2) = Diag(α0, α1, α2)

(5.3)

where f = (f0, f1, f2) is a system of generators for Fil2N and x, y, x ∈ F[ε],
αi ∈ F[ε]×.
As in the proof of Proposition 5.3, we deduce that

ρ ∼= T∗cris(N)⊗ ωa0
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where N is a Fontaine-Laffaille module over F[ε], in Hodge-Tate weights
(0, a1 − a0 + 1, a2 − a0 + 2) and Frobenii given by:

Mat(φ•) =

 1 x y

0 1 z

0 0 1

Diag(α−1
0 , α−1

1 , α−1
2 ).

Hence, the image of the reduced tangent map (5.2) consists of Fontaine-
Laffaille tangent vectors, and the map is therefore injective. �

The following elementary result is the reason we only needed to compute
the monodromy on the special fiber:

Proposition 5.6. — Let R be a complete local Noetherian OE-algebra
with residue field F. If R⊗OE F is formally smooth of dimension d and R
is flat over OE , then R is formally smooth over OE of dimension d.

Proof. — As the special fiber R ⊗OE F is formally smooth over F, we
have an isomorphism R ⊗OE F = F[[x1, . . . , xd]]. Choose any lifts x̃i ∈ mR

where mR is the maximal ideal of R. By Nakayama, we have a surjective
map

OE [[X1, . . . , Xn]]→ R

which is an isomorphism on the special fiber. As R is OE-flat, the above
map is in fact an isomorphism. �

We are now ready to prove our main result:

Theorem 5.7. — Let R�,(0,1,2),cris,τ
ρ be the framed potentially crys-

talline deformation ring for ρ, with Galois type τ and p-adic Hodge type
(0, 1, 2). Assume that SpfR�,(0,1,2),cris,τ

ρ is non-empty. Then R�,(0,1,2),cris,τ
ρ

is formally smooth over OE of relative dimension 12.

Proof of Theorem 5.7. — By Theorem 5.5, we have SpfR�M is non-
empty and flat over OE . Thus, the same is true for SpfR�,τ

M
and SpfRτM.

Combining Lemma 5.4 and Proposition 5.6, we deduce that RτM is formally
smooth over OE .
From diagram (5.1), we deduce that SpfR�M is formally smooth over OE .

The relative dimension follows from [23, Theorem 3.3.8] given that R�ρ is
formally smooth over OE . �

Remark 5.8. — The condition that SpfR�,(0,1,2),cris,τ
ρ is non-empty

arises because we only compute the monodromy on the special fiber. As a
result, we do not exhibit any potentially crystalline lifts of ρ. This prob-
lem is addressed in [25]. In personal correspondence, Hui Gao informed us
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that he was able independently to prove that the ring SpfR�,(0,1,2),cris,τ
ρ in

Theorem 5.7 is non-empty ([16]).

We can also deduce the following:

Corollary 5.9. — The ring RτM,∞ is formally smooth over OE of
relative dimension 7. Assume that RτM ⊗OE E is non-empty, then SpfRτM
is formally smooth over OE of dimension 6 respectively.

Proof. — It follows immediately from Proposition 5.6 and Lemma 5.4 if
the rings are OE-flat. The ring RτM,∞ is flat since we produced families of
quasi-strongly divisible modules liftingM in §3. If RτM⊗OEE is non-empty
then so is R�ρ ⊗OEE and so we can argue as in the proof of Theorem 5.7. �
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