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VOLUMES OF STRATA OF MODULI SPACES OF
QUADRATIC DIFFERENTIALS: GETTING EXPLICIT

VALUES

by Elise GOUJARD

Abstract. — The volumes of strata of Abelian or quadratic differentials play
an important role in the study of dynamics on flat surfaces, related to dynamics in
polygonal billiards. This article applies all known approaches to compute volumes
in the quadratic case and provides explicit values of volumes of the strata of mero-
morphic quadratic differentials with at most simple poles in all dimensions up to
10.
Résumé. — Les volumes de strates de différentielles abéliennes ou quadratiques

jouent un rôle important dans l’étude de la dynamique sur les surfaces plates, en
lien avec la dynamique des billards polygonaux. Dans cet article nous utilisons
toutes les approches connues pour calculer les volumes dans le cas quadratique et
fournissons des valeurs explicites pour les volumes de toutes les strates de différen-
tielles quadratiques méromorphes à pôles au plus simples jusqu’en dimension 10.

1. Introduction

1.1. Flat surfaces, quadratic differentials, moduli spaces and
volumes of strata

A meromorphic quadratic differential q with at most simple poles on
a Riemann surface S of genus g defines a flat metric on S with conical
singularities. If q is not the global square of a holomorphic 1-form on S (also
called Abelian differential), the metric has a non-trivial linear holonomy
group, and in this case (S, q) is called a half-translation surface. In this
paper, if it is not precised, we consider only quadratic differentials satisfying
the previous condition. If α = {α1, . . . , αn} ⊂ {−1} ∪ N is a partition of

Keywords: flat surfaces, quadratic differentials, volumes, strata.
Math. classification: 30F30, 14N10, 32G15.



2204 Elise GOUJARD

4g−4, Q(α) denotes the moduli space of pairs (S, q) as above, where q has
exactly n singularities of orders given by α. It is a stratum in the moduli
space Qg of pairs (S, q) with no additional constraints on q. Similarly if
β = {β1, . . . , βm} ⊂ N is a partition of 2g − 2, H(β) denotes the moduli
space of Abelian differentials with zeros of degree β.
In the following we will refer to a half-translation surface (S, q) simply

as S.
Any flat surface (S, q) in Q(α) admits a canonical ramified double cover

Ŝ
p→ S such that the induced quadratic differential on Ŝ is a global

square of an Abelian differential, that is p∗q = ω2 and (Ŝ, ω) ∈ H(β). Let
Σ = {P1, . . . Pn} denote the singular points of the quadratic differential on
S, and Σ̂ = {P̂1, . . . P̂N} the singular points of the Abelian differential ω
on Ŝ. Note that the pre-images of poles Pi are regular points of ω so do not
appear in the list Σ̂. The subspace H1

−(Ŝ, Σ̂;C) antiinvariant with respect
to the action of the hyperelliptic involution provides local coordinates in
the stratum Q(α) in the neighborhood of S.

Convention 1. — Following [1] we denote by Q1(α) the hypersurface in
Q(α) of flat surfaces of area 1/2 such that the area of the double cover is 1.

The stratum Q(α) is a complex orbifold of dimension 2g + n − 2, and
it is equipped with a natural PSL(2,R)-invariant measure µ, called
Masur–Veech measure, induced by the Lebesgue measure in period coordi-
nates. This measure defines a measure µ1 on Q1(α) in the following way: if
E is a subset of Q1(α), we denote by C(E) the cone underneath E in the
stratum Q(α):

C(E) = {S ∈ Q(α) s.t. ∃r ∈ (0, 1), S = rS1 with S1 ∈ E}

and we define

µ1(E) = 2d · µ(C(E)),

with d = dimCQ(α), that is, the measure dµ disintegrates in dµ =
r2d−1drdµ1. With this convention the volume of a stratum Q(α) is then
given by:

VolQ1(α) = 2dVolC(Q1(α)).

There are several possible choices for the normalization of µ, two of
them being commonly used: namely the choice of Athreya–Eskin–Zorich,
described in [1] and recalled in §2, and the choice of Eskin–Okounkov,
described in [11] and recalled on §5.1.

ANNALES DE L’INSTITUT FOURIER
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1.2. Historical remarks

In the case of Abelian differentials, volumes of strata with respect to
the Masur–Veech measure were computed by Eskin and Okounkov ([10]),
and by Kontsevich and Zorich in some low genus cases ([24]). The first
authors used representation theory and modular forms, and their approach
allowed them to prove the rationality of volumes which was conjectured by
Kontsevich and Zorich, that is

VolH1(β) = r · π2g, r ∈ Q,

where g is the genus of the surfaces in the stratum H(β). They also com-
puted algorithmically the exact values of the volumes of strata up to
genus 10. Zorich used a combinatorial approach to compute explicitly the
volumes of some strata in low genus.
Similar approaches were developed in the quadratic case. Eskin and Ok-

ounkov applied in [11] similar methods as in the Abelian case, but this case
presents many extra difficulties. Nevertheless, the rationality of volumes is
still valid, that is

(1.1) VolQ1(α) = r · π2geff , r ∈ Q,

where geff = ĝ − g and ĝ is the genus of the double cover Ŝ for S ∈ Q(α)
(cf. Lemma 5.9).
In the case of genus 0 surfaces, Athreya–Eskin–Zorich developed two par-

allel approaches that leaded to the explicit computation of volumes. The
first one ([2]) is combinatorial and is based on a formula of Kontsevich
([15]). The second one develops the study of Siegel–Veech constants: they
give a formula relating Siegel–Veech constants and volumes (based on the
classification of configurations in [20], [3]), and since the Siegel–Veech con-
stants in genus 0 are known thanks to the Eskin–Kontsevich–Zorich formula
([8]), they deduce the volumes of strata for genus 0.

Independently Mirzakhani proved in [21] a formula relating the volumes
of the principal strata Q(14g−4) with the intersection pairings of tautolog-
ical classes on moduli spaces of Riemann surfaces.
However, up to the present paper, none of the algorithm was implemented

to produce explicit values of the rational numbers r in (1.1) for g > 0.
The strata of moduli spaces of quadratic differentials may be discon-

nected [18]. Approximate values of volumes of connected components of
strata of small dimension are computed in [5]: note that for now this exper-
imental method is the only one that provides numerical values of volumes
of Qreg(9,−1) and Qirr(9,−1) separately.

TOME 66 (2016), FASCICULE 6
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1.3. Motivation

Values of volumes of moduli spaces of quadratic differentials arise in sev-
eral problems related to billiards in polygons and interval exchange trans-
formations.

In fact volumes are directly related to Siegel–Veech constants that give
the asymptotic of the number of closed geodesics in flat surfaces, and the
asymptotic of the number of closed trajectories in the corresponding polyg-
onal billiards. Furthermore, the Siegel–Veech constants are related to the
sum of the Lyapunov exponents of the Hodge bundle along the Teichmüller
geodesic flow over the stratum by a formula of Eskin–Kontsevich–Zorich [8].
These Lyapunov exponents give precious quantitative information about
the dynamics in corresponding billiards: Using these exponents Delecroix,
Hubert and Lelièvre computed the diffusion rate in the wind-tree billiard [6]
(see also [7] for series of families of wind-tree billiards): they show that this
diffusion rate is exactly 2/3, so the dynamics differs radically from the
dynamics of the random walk in the plane (diffusion rate 1/2).
The explicit formulas relating volumes of strata and Siegel–Veech con-

stants are given in [9] for the Abelian case, and in [13] for the quadratic
case, using the work of Masur–Zorich [20].

The aim of this paper is to provide explicit exact values of volumes
of strata, in order to get new explicit values of Siegel–Veech constants
using [13], and consequently new sums of Lyapunov exponents. In particular
this procedure can be applied to genus one surfaces (where there is only
one Lyapunov exponent) to give new results in the vein of [7] and [1].

Furthermore this paper is the occasion to clean up all normalizations
once for all, and to explain clearly how to pass from one to another, in
order to make the values of volumes directly usable in any normalization.

1.4. Non-varying strata

Evaluating volumes of strata is related with counting problems on half-
translation surfaces. This link can be useful to compute volumes explicitly
in some special cases.

For the strata of quadratic differentials in genus 0, Athreya–Eskin–Zorich
gave an explicit formula relating Siegel–Veech constants and volumes of
strata in [1]. The Eskin–Kontsech–Zorich formula (Theorem 2 of [8]) gives
here the values of the Siegel–Veech constants for the strata. So they deduced
the values of volumes.

ANNALES DE L’INSTITUT FOURIER
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In higher genera, the relation between Siegel–Veech constants and vol-
umes is given in [13]. But values of Siegel–Veech constants are not known
in general, only numerical approximations can be obtained by simulating
Lyapunov exponents and using the formula of Eskin–Kontsevich–Zorich [8].

However for some special strata, called “non-varying”, Chen and Möller
showed in [4] that the sum of Lyapunov exponents is the same for the entire
stratum and for all Teichmüller curves inside the stratum. For those strata
they computed the constant sum of Lyapunov exponents, so we obtain
the Siegel–Veech constants by applying the formula of Eskin–Kontsevich–
Zorich.

All these strata have their boundary strata that are also either non-
varying, or hyperelliptic and connected, or of genus 0, so we can use the
recursions given by the relations

carea(Q(α)) =
Explicit polynomials in volumes of boundary strata

Vol(Q1(α))
given in [13] to compute the exact values of their volumes.
This method is applied in [13] for a bunch of examples. The results are

coherent with those of the other sections.

1.5. Structure of the paper

We first recall the convention of Athreya–Eskin–Zorich [1] for the nor-
malization of the volumes. In section 3 we compute volumes of hyperelliptic
components of strata using the known values of volumes in genus 0. Then
we illustrate the combinatorial approach in genus different of 0 in section 4.
Finally we follow the Eskin–Okounkov approach to compute all volumes up
to dimension 10 (around 300 strata).

Most sections of this paper are written with respect to the convention
of [1], the last section uses the convention of Eskin–Okounkov [11] and gives
the normalization factor between the two conventions. In Appendix A we
give all volumes written in the Athreya–Eskin–Zorich convention up to
dimension 10.

1.6. Acknowledgments
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2. Description of the Athreya–Eskin–Zorich’s convention
on volumes

Choosing a normalization for the volume element on a strata Q(α) is
equivalent to choose a lattice in the space H1

−(Ŝ, Σ̂;C) which gives the
local model of the stratum Q(α) around S. The volume is then normalized
by declaring that the covolume of the lattice is 1.

Convention 2. — Following the convention of [1] we choose, as lattice
in H1

−(Ŝ, Σ̂;C) of covolume 1, the subset of those linear forms which take
values in Z⊕ iZ on H−1 (Ŝ, Σ̂;Z), that we will denote by (H−1 (Ŝ, Σ̂;Z))∗C.

In other words the local image of this lattice under the period map is
the lattice (Z⊕ iZ)dimC in CdimC where dimC is the complex dimension of
Q(α).

This convention implies that the non zero cycles in H1(S,Σ,Z) (that is,
those represented by saddle connections joining two distinct singularities
or closed loops non homologous to zero) have half-integer holonomy, and
the other ones (closed loops homologous to zero) have integer holonomy.
We denote by VolnumbQ(α) the volume of the stratum Q(α) when the

zeros and poles are numbered and by VolunnumbQ(α) the volume of the
stratum when they are not. We have the following relation:

(2.1) VolnumbQ1(αm1
1 , αm2

2 , . . . , αms
s )

= m1!m2! . . .ms!
|Γ(α)| ·VolunnumbQ1(αm1

1 , αm2
2 , . . . , αms

s )

ANNALES DE L’INSTITUT FOURIER
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where Γ(α) denotes the group of symmetries of all surfaces in the stratum
Q(α). By symmetry of a surface in Q(α) we mean an automorphism of the
flat surface. It preserves the set of singularities, permuting the labels of the
singularities of same order. In general, surfaces in a stratum do not share
any symmetry: some of them can be very symmetric (orbifold locus), but
most of them are not. In some special cases (as Q(−14) or hyperelliptic
components), some symmetries are common to all surfaces, defining the
group Γ(α). We abuse notation by denoting by |Γ(α)| the cardinal of the
group of permutations of the labels of the singularities induced by Γ(α).

Convention 3. — We choose to label all zeros and poles. In other terms,
we compute the volumes VolnumbQ1(α) that we will simply denote by
VolQ1(α) in the rest of the paper.

Let γ be a saddle connection on S. We denote by γ′ and γ′′ its two lifts
on Ŝ. If [γ] = 0 in H1(S,Σ;C), then [γ′] + [γ′′] = 0 in H1(Ŝ, Σ̂;C), and in
this case we define [γ̂] := [γ′]. In the other case we have [γ′] + [γ′′] 6= 0 and
we define [γ̂] := [γ′]− [γ′′]. We obtain an element of H−1 (Ŝ, Σ̂;C).

For a primitive cycle [γ] in H1(S,Σ,Z), that is, a saddle connection
joining distinct zeros or a closed cycle (absolute cycle), the lift [γ̂] is a
primitive element of H−1 (Ŝ, Σ̂,Z).
We recall the construction given in [1] of a basis of H−1 (Ŝ, Σ̂,Z) from a

basis of H1(S,Σ,Z).

2.1. Basis of H−1 (Ŝ, Σ̂,Z)

Let k be the number of poles in Σ, a the number of even zeros and b the
number of odd zeros (of order > 1). Assume that the zeros are numbered
in the following way: P1, . . . Pa are the even zeros, Pa+1, . . . , Pa+b are the
odd zeros and Pa+b+1, . . . , Pn the poles, and take a simple oriented broken
line P1, . . . Pn−1. Take each saddle connection γi represented by [Pi, Pi+1]
for i going from 1 to n− 2, and a basis {γn−1, . . . , γn+2g−2} of H1(S,Z).
Then we have (cf. [1, §3.1]):

Lemma 2.1 (Athreya–Eskin–Zorich). — The family {γ̂1, . . . , γ̂n+2g−2}
is a basis of H−1 (Ŝ, Σ̂,Z).

This lemma will be useful for the computations of the next two sections.

TOME 66 (2016), FASCICULE 6
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3. Using hyperellipticity

We begin with hyperelliptic components of strata: the values of their
volumes are easier to compute since they are related to values of volumes
in genus 0, that are computed in [1].

3.1. Volumes of hyperelliptic components of strata of quadratic
differentials

The strata of the moduli spaces of quadratic differentials have one or two
connected components: for genus g > 5 there are two components when
the stratum contains a hyperelliptic component (cf. [18]). For genus g 6 4
some strata are hyperelliptic and connected (cf. [17]): namely Q(12,−12)
and Q(2,−12) in genus 1, Q(14), Q(2, 12), and Q(2, 2) in genus 2. For
these strata and for hyperelliptic components of strata in higher genus the
volume is easier to compute.

Proposition 3.1. — The volumes of hyperelliptic components of strata
of quadratic differentials are given by the following formulas (in conven-
tion [1]):

– First type (k1 > −1 odd, k2 > −1 odd, (k1, k2) 6= (−1,−1)):
If k1 6= k2:

(3.1) VolQhyp1 (k2
1, k

2
2) = 2d

d! π
d k1!!

(k1 + 1)!!
k2!!

(k2 + 1)!!
Otherwise:

(3.2) VolQhyp1 (k4
1) = 3 · 2d

d! π
d

(
k1!!

(k1 + 1)!!

)2

– Second type (k1 > −1 odd, k2 > 0 even):

(3.3) VolQhyp1 (k2
1, 2k2 + 2) = 2d

d! π
d−1 k1!!

(k1 + 1)!!
k2!!

(k2 + 1)!!

– Third type (k1, k2 even):

(3.4) VolQhyp1 (2k1 + 2, 2k2 + 2) = 2d+1

d! πd−2 k1!!
(k1 + 1)!!

k2!!
(k2 + 1)!!

The same formula holds for k1 = k2.
In these formulas d = k1 + k2 + 4 is the complex dimension of the strata.

ANNALES DE L’INSTITUT FOURIER
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Example 3.2. — For the five strata that are connected and hyperelliptic
we obtain:

VolQ1(12,−12) =
π4

3 = 30ζ(4) VolQ1(14) =
π6

15 = 63ζ(6)(3.5)

VolQ1(2,−12) =
4π2

3 = 8ζ(2) VolQ1(2, 12) =
2π4

15 = 12ζ(4)(3.6)

VolQ1(2, 2) =
4π2

3 = 8ζ(2)(3.7)

For an alternative computation of the volume of Q(2, 12) using graphs, see
Appendix B.

Remark 3.3. — In Section 5 and Appendix A, the surfaces will be
counted modulo symmetries. In particular it changes the volume of the
third type of hyperelliptic components by a factor 1/2 (hyperelliptic invo-
lution). For the two first types, labelling the zeros kills this symmetry, so
the two conventions for the evaluation of the volumes coincide.

Proof. — We recall here the three types of strata that contain hyperel-
liptic components (cf. [17]):

– First type:

Qhyp(k2
1, k

2
2) π−→ Q(k1, k2,−12g+2)

for k1 > −1 odd, k2 > −1 odd, (k1, k2) 6= (−1,−1), g =
1
2 (k1 + k2) + 1 (g is the genus of the surfaces in Q(k1, k2,−12g+2)) .
The map π is a ramified double covering having ramifications points
over 2g+ 2 poles. Note that for ki = −1 there are 2g+ 3 poles and(2g+3

1
)
choices for the branch points in the base, so 2g + 3 choices

for π.
– Second type:

Qhyp(k2
1, 2k2 + 2) π−→ Q(k1, k2,−12g+1)

for k1 > −1 odd, k2 > 0 even, g = 1
2 (k1 + k2 + 3). The ramification

points are 2g + 1 poles and the zero of order k2. Note that for
k1 = −1 there are 2g + 2 poles and

(2g+2
1
)
choices for the cover π.

– Third type:

Qhyp(2k1 + 2, 2k2 + 2) π−→ Q(k1, k2,−12g)

for k1, k2 even, g = 1
2 (k1 +k2) + 2. The ramification points are over

all the singularities.

TOME 66 (2016), FASCICULE 6
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We introduce the following notation common to the three types of hy-
perelliptic components:

Qhyp(α) π−→
I:1
Q(β)

with α = (αm1
1 , . . . , αms

s ) and β = (βn1
1 , . . . , βnr

r ), where I is the number
of choices for the cover: I = 1 except for the special cases (k1 = −1)
mentioned above.
Let d = dimCQ(β) be the complex dimension of the stratum that we

consider.
Recall that, by definition, the volume of the hyperboloid of surfaces of

area equal to 1/2 is given by the volume of the cone underneath times the
real dimension of the stratum:

VolQ1(β) = 2d ·Vol{S ∈ Q(β), area(S) 6 1/2}

Let S be a point in Q1(β), and let S′ be one of the I possible lifts π∗(S).
As S is of area 1/2, S′ is of area 1 so belongs to Qhyp2 (α). So the cone
underneath Q1(β) is in 1 : I correspondence with the cone underneath
Qhyp2 (α). Now we want to compare the volume elements of Qhyp(α) and
Q(β). So we have to understand how the lattice (H−1 (Ŝ, Σ̂;Z))∗C is lifted by
π∗ and compare it with the lattice (H−1 (Ŝ′, Σ̂′;Z))∗C, where Ŝ and Ŝ′ are
the orientation double covers of S and S′ respectively.
For the first type we have the following commutative diagram:

H(k1 + 1, k2 + 1)

��

H((k1 + 1)2, (k2 + 1)2)oo

��
Q(k1, k2,−12g+2) Qhyp(k2

1, k
2
2)π

I:1
oo

On S ∈ Q(k1, k2,−12g+2) we consider the saddle connections defined by
taking a broken line joining all the singularities except one pole, as in the
picture below, such that a joins the two zeros, b joins a zero to a pole, and
ai, bi join the remaining poles except the last one, for i going from 1 to g.
Then â, b̂, â1, . . . , b̂g is a primitive basis of H−1 (Ŝ, Σ̂;Z) (cf. Lemma 2.1). On
the other hand consider the saddle connections on Qhyp(k2

1, k
2
2) constructed

using a, b, a1, . . . bg in the following way: for all ai and bi and for b, take the
combination of the two lifts by π to obtain primitive cycles Ai, Bi, and B
in H1(S′,Σ′,Z). Take only one of the two preimages of a to get a primitive
cycle A. Then Â, B̂, Â1, . . . , B̂g define a primitive basis of H−1 (Ŝ′, Σ̂′;Z)
(same arguments as in Lemma 2.1).

ANNALES DE L’INSTITUT FOURIER
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Q(β)

H(β′)

Qhyp(α)

H(α′)

π

σd σu

s

ai

b
a

âi
b̂

â

Ai

B
A

Âi

B̂

Â

On the picture σu and σd are the involutions of the double covers and s
is the hyperelliptic involution.
Since â is twice longer than a, the corresponding complex coordinate

satisfies
dâ = 4da.

So in local coordinates volume elements are given by:

dνdown = dâ db̂dâ1 . . . db̂g = 4ddadbda1 . . . dbg

and
dνup = dÂdB̂ dÂ1 . . . dB̂g = 4ddAdB dA1 . . . dBg

with dA = π∗(da), dB = 4π∗(db), dAi = 4π∗(dai) and dBi = 4π∗(dbi).
So we obtain the following relation between the volume elements:

(3.8) dνup = 4d−1π∗(dνdown)

The computation of dνup for the other types of connected components
is completely similar to this case, and we get that Equation (3.8) holds in
all cases.
So now we have all the elements to compute the relation between

VolQ1(β) and VolQhyp1 (α):

VolunnumbQhyp1 (α) = 2dVolunnumb{S′ ∈ Qhyp(α), area(S′) 6 1/2}

= 2d · 1
2d Volunnumb{S ∈ Qhyp(α), area(S) 6 1}

= 2d
2d · I · 4

d−1 Volunnumb{S ∈ Q(β), area(S) 6 1/2}

= I · 2d−2 VolunnumbQ1(β)

TOME 66 (2016), FASCICULE 6
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Using Convention 3 and (2.1) we get:

VolQhyp1 (α) =
m1! . . .ms!
|Γhyp(α)| · I · 2

d−2 · |Γ(β)|
n1! . . . nr!

VolQ1(β)

Note that, for the first two types, the hyperelliptic involution (which is
the only common symmetry to all surfaces in the component) exchanges
the zeros which are preimages of the same zero downstairs. So for these
types |Γhyp(α)| = 2. For the third type |Γhyp(α)| = 1, since the action of
the hyperelleptic involution on the zeros is trivial.
Downstairs there is no symmetry for each stratum that we consider so

|Γ(β)| = 1 for each β.
For the special cases where ki = −1, e.g.Qhyp(k2

1,−12)→ Q(k1,−12g+3),
the factor I is exactly the multiplicity of the poles in the base (2g+3 in the
example), so this factor is compensated by the factor nr! corresponding to
the multiplicity of the poles in the numerator.
The values of the volumes of strata of quadratic differentials in genus 0

are given in [1], Theorem 1.1:

(3.9) VolQ1(β1, . . . , βn) = 2π2
n∏
i=1

v(βi),

with

v(n) =
n!!

(n+ 1)!! · π
n ·

{
π when n is odd
2 when n is even

for n ∈ {−1, 0} ∪ N and with

n!! = n(n− 2)(n− 4) · · · ,

by convention (−1)!! = 0!! = 1.
In particular we have:

– for the first type (k1 > −1 odd, k2 > −1 odd, (k1, k2) 6= (−1,−1),
d = 2g + 2):

VolQ1(k1, k2,−1d) = 2πd k1!!
(k1 + 1)!! ·

k2!!
(k2 + 1)!! ,

– for the second type (k1 > −1 odd, k2 > 0 even, d = 2g + 1):

VolQ1(k1, k2,−1d) = 4πd−1 k1!!
(k1 + 1)!! ·

k2!!
(k2 + 1)!! ,

– for the third type (k1, k2 even, d = 2g):

VolQ1(k1, k2,−1d) = 8πd−2 k1!!
(k1 + 1)!! ·

k2!!
(k2 + 1)!! .

So we obtain the result. �
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3.2. Volumes of hyperelliptic components of strata of Abelian
differentials

Similarly we compute the volumes of the hyperelliptic components of
Abelian differentials (for the needs of [13]). To match with Convention 1
we will consider H1/2 the hypersurface of surfaces with area 1/2. We follow
also Convention 3 for these connected components and use the equality
VolHhyp1/2 (α) = VolnumbHhyp1/2 (α).

Proposition 3.4. — The volumes of hyperelliptic components of strata
of Abelian differentials with area 1/2 are given by the following formulas:

VolHhyp1/2 (k − 1) =
2k+2

(k + 2)! ·
(k − 2)!!
(k − 1)!! · π

k+1(3.10)

VolHhyp1/2

((
k

2 − 1
)2
)

=
2k+3

(k + 2)! ·
(k − 2)!!
(k − 1)!! · π

k(3.11)

Remark 3.5. — Here again, if we choose to follow the Eskin–Okounkov
convention and count surfaces modulo symmetries, the volume of the com-
ponent Hhyp1/2 (k − 1) will be twice smaller.

Proof. — We recall here the two types of strata of Abelian differentials
that contain hyperelliptic components (cf. [16]):

– First type (g > 2):

Hhyp(2g − 2) π // Q(2g − 3,−12g+1)

– Second type (g > 2):

Hhyp((g − 1)2) π // Q(2g − 2,−12g+2)

In both cases, π is an isomorphism. By conventions 2 and 1, the volume
elements are chosen to be invariant under this isomorphism, so we have:

VolunnumbHhyp1 (2g − 2) = VolunnumbQ1(2g − 3,−12g+1)

VolunnumbHhyp1 ((g − 1)2) = VolunnumbQ1(2g − 2,−12g+2)

TOME 66 (2016), FASCICULE 6



2216 Elise GOUJARD

So considering the naming of the singularities we obtain:

VolHhyp1 (2g − 2) =
1

(2g + 1)! VolQ1(2g − 3,−12g+1)

=
2

(2g + 1)! ·
(2g − 3)!!
(2g − 2)!! · π

2g

VolHhyp1 ((g − 1)2) =
2!
2 VolunnumbHhyp1 ((g − 1)2)

=
1

(2g + 2)! VolQ1(2g − 2,−12g+2)

=
4

(2g + 2)! ·
(2g − 2)!!
(2g − 1)!! · π

2g

By plugging values of volumes given in (3.9). For the first type, for k =
2g−1 we have dimCH(k−1) = 2g = k+1. For the second type, for k = 2g
we have dimCH

((
k
2 − 1

)2) = 2g + 1 = k + 1. Finally, note that

VolH1/2(β) = 2dimCH(β) VolH1(β). �

4. Counting diagrams

For strata of complex dimension d 6 5, we follow the combinatorial
approach introduced by Zorich ([24]) in the Abelian case, Athreya Eskin
and Zorich ([2]) in the quadratic case for genus 0.
The general idea is to count “integer points” in a large ball in the stratum,

that is, surfaces corresponding to points of the normalization lattice in the
stratum.

The relation between volume and number of lattice points is given in
§2.3 of [2]:

Proposition 4.1 (Athreya–Eskin–Zorich).

VolQ1(α) = 2d · lim
N→∞

N−d

·(Number of lattice points of area at most N/2 in Q(α))(4.1)

Here we recall briefly the techniques of Athreya, Eskin and Zorich to
count integer points (or square-tiles surfaces, or pillowcase covers) in
genus 0, and explain how generalize them to higher genera.

A flat surface (S, ω) corresponding to an integer point, i.e. a point in the
lattice (H−1 (Ŝ, Σ̂;Z))∗C in local coordinates, can be decomposed into hori-
zontal cylinders with half-integer or integer widths, with zeros and poles
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lying on the boundaries of these cylinders, that are called singular layers
in [2]. Each layer defines a ribbon graph (graph with a tubular neighbor-
hood inside the surface), called map in combinatorics. A zero of order αi
belonging to a layer corresponds to a vertex of valency αi+ 2 in the associ-
ated graph, and edges of the graph emerging from this vertex correspond to
horizontal rays emerging from the zero in the surface. The graph is metric:
edges have half-integer lengths. A ribbon graph or a map carries naturally
a genus: it is the minimal genus of the surface in which it can be embedded.
So a ribbon graph associated to a singular layer in S has a genus lower or
equal to the genus g of S. Also a ribbon graph has some faces corresponding
to the connected components of its complementary in the minimal surface
in which it can be embedded. In our case faces correspond to cylinders
emerging from the layer. In genus 0 each face corresponds to a distinct
cylinder, in higher genus some cylinders may have both of their boundaries
glued to the same layer. For a ribbon graph Γ we have the Euler relation:

χΓ = 2− 2gΓ = VΓ − EΓ + FΓ

where gΓ is the genus of Γ, VΓ, EΓ and FΓ the number of vertices, edges
and faces of Γ respectively. In the figure below we represent the two maps
with one 4-valent vertex: one is of genus 0 and has 3 faces, the other is of
genus 1 and has 1 face.

genus 0

aa

genus 1

= a

We encode the decomposition of the surface S into horizontal cylinders
in a supplementary graph T , by representing each singular layer by a point
in this graph and each cylinder emerging from a layer by an edge emerging
from the corresponding vertex. So a layer with k faces corresponds to a
k-valent vertex in T . We record also the information on the order of the
zeros lying in each layer, and on the genus of the ribbon graph: that gives
a decoration of the graph T . For surfaces S of genus 0 this graph is a tree.
As an example we consider a surface in Q(2, 12) represented by the fol-

lowing graph:
On the left we figure the graph T . The lower vertex represents a ribbon

graph of genus 1 with two zeros of order 1 (two 3-valent vertices): the
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1(1, 1)

w1

w2

0(2)

l4

l3

l5

l2 l1

corresponding layer is drawn on the right. The higher vertex corresponds
to the ribbon graph of genus 0 with one 4-valent vertex (zero of order 2)
drawn on the right. The width wi of the cylinders and the lengths li of the
edges of the ribbon graphs are also recorded.
Below is a flat representation of a surface corresponding to the configu-

ration described above.

1

2 1

3 4 5 3 4 5

Note that the genus of S is the sum of the genera of the vertices of T ,
and the genus created by loops in the graph T : namely, the dimension of
the homology of the graph T . In the example, the surface is of genus 2.
Note also that horizontal cylinders in S which are homologous to 0 cor-

respond to separating edges on the graph T . It will be useful because with
Convention 2, the width w of a cylinder is an integer if its waist curve is
homologous to 0, and half-integer otherwise. In the example w1 is integer
and w2 half-integer (furthermore here w1 is necessarily equal to 2w2).
We have to choose the li such that the length of the boundaries of the

faces of the ribbon graphs Γj correspond to the wk. In the example we
have necessarily w2 = l1 = l2 and w1 = 2l1 = 2w1 = 2(l3 + l4 + l5). So
we have only one choice for l1 and l2 and exactly

∑w1−2
i=1 (i− 1) = (w1−2)2

2
choices for (l3, l4, l5) (see also Lemma C.1 in Appendix C), because with
the Convention 2, w2 is an integer and the li are half-integer.
To count surfaces of area lower than N/2 corresponding to lattice points,

we have to sum on the possible graphs T and on the possible corresponding
layers Γ, the number of distinct flat surfaces of this combinatorial type. So
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for a fixed graph T and fixed layers Γi we have to count the number of twists
tj , widths wi, heights hi and lengths of saddle connexions li satisfying the
combinatorial configuration, and such that the area w ·h =

∑
i wihi is lower

or equal to N/2. More precisely by (4.1) we have to get the asymptotic of
this number as N goes to infinity. In the example all the li are half-integer,
h1, t1, h2, t2 also because they are coordinates of saddle connexions that are
non homologous to zero, w2 is half-integer and w1 is integer. Twists t1 and
t2 take respectively 2w1 and 2w2 half-integer values. We have already seen
that the li take (w1−2)2

2 values (with the condition w1 = 2w2). So we want
to find the asymptotic when N → +∞ of

∑
w1h1+w2h26N/2

w1∈N,
w2,h1,h2∈N/2

2w12w2
(w1−2)2

2 1{w1=2w2} =
∑

w(h1+2h2)6N/2
w∈N,

h1,h2∈N/2

8w2 (2w−2)2

2

Remark that since we want only the term of highest order in N we just
need to take the term of highest order in wi, so we can replace (2w−2)2

2 by
(2w)2

2 = 2w2. In general the asymptotic for such sums is given by Lemma 3.7
of [2]. For this particular case, it is given by Lemma C.3 of Appendix C,
and we obtain N5

10 (32ζ(4)− 33ζ(5)).
This approach is somehow limited because we need to known all the

ribbon graphs of a certain type and the number of these ribbon graphs
increases fast as the dimension of the stratum grows. So we apply this
method to strata of complex dimension d 6 5, using the complete descrip-
tion of ribbon graphs with at most 5 edges given in [14]: recall that a zero
of order αi corresponds in the ribbon graph to a vertex with αi + 2 adja-
cent edges, so the maximal number of edges of a ribbon graph in a stratum
Q(α1, . . . , αn) is∑n

i=1(αi + 2)
2 = 2g − 2 + n = dimCQ(α1, . . . , αn).

In genus 0, Athreya, Eskin and Zorich were able to compute the volumes
of all strata of type Q(1k,−1k+4) with this method because they used a
formula which gives directly the number of ways the cylinders of widths wi
can be glued at a vertex j of a tree T . This formula was deduced from a
formula of Kontsevich by a recurrence on the number of poles. The formula
of Kontsevich works also for higher genus, but for distinct widths wi, and
since cylinders can form some loops in the surface, it is not obvious to get
a general formula for the higher genus case, even for the strata Q(1k,−1l).
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Convention 4. — In the following we write the half-integers in lower
case and the integers in capitals.

4.1. First example: Q(5,−1)

We use here the method described above to compute by a simple hand
calculation the volume of Q(5,−1). In this case, there are only two possible
graphs T , and for each graph, only two possible layers. This gives four
configurations (note that here we do not speak about configurations of
ĥomologous cylinders, but about configurations of horizontal cylinders for
integer surfaces in the stratum). The computations of the asymptotics are
detailed in the appendix C.

– Configuration 1:

0

w1 w2

l2 l4

l3
l1

Figure 4.1. Configuration 1

Convention 2 implies that all parameters wi, hi, ti, li are half-
integers. The possible lengths of the waist curves of the cylinders
are l3, l4, l2 + 2l1 and l2 + l3 + l4. Since l2 + l3 + l4 > l3 and
l2 + l3 + l4 > l4 we should have l3 = l4 and l2 + 2l1 = l2 + 2l3:{

w1 = l3 = l4

w2 = l2 + 2l1 = l2 + 2l3

There is one way to find such (l1, l2, l3, l4), if 2w1 < w2. The
contribution to the counting for this configuration is:∑

(w1h1+w2h2)6N/2

4w1w2(1{2w1<w2}) =
∑

(W1H1+W2H2)62N

W1W2(1{2W1<W2})
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– Configuration 2:

0

w1 w2

l2
l3

l4
l1

Figure 4.2. Configuration 2

All parameters are half-integers. The possible lengths for the
waist curves of the cylinders are l4, l3 + l4 , l2 + l3 and l2 + 2l1.
Since l3 + l4 > l4 and the situation{

l4 = l2 + 2l1
l3 + l4 = l2 + l3

is impossible, the only remaining case is:{
w1 = l4 = l2 + l3

w2 = l3 + l4 = l2 + 2l1

This implies that l3 = l1 and there is only one way to find such li,
but only if w1 < w2 < 2w1. The contribution to the counting is:∑

(w1h1+w2h2)6N/2

4w1w2(1{w1<w2<2w1})

=
∑

(W1H1+W2H2)62N

W1W2(1{W1<W2<2W1})

Summing the contributions of the 2 first configurations gives:∑
(W ·H)62N

W1W2(1{2W1<W2} + 1{W1<W2<2W1})

=
∑

W.H62N
W1W21{W1<W2}

∼ 1
2

(2N)4

4! (ζ(2))2 =
N4(ζ(2))2

3
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– Configuration 3:

1

w

l3

l2

l1

l4

Figure 4.3. Configuration 3

All parameters are half-integers. The two lengths are 2l1 +2l2 +l3
and l3 + 2l4 so we should have l4 = l2 + l1 in order that the two are
equal. Then we search the number of (l1, l2, l3) such that w = l3 +

2(l1 + l2). It is a polynomial of w with leading term
1
4

(2w)2

2 =
w2

2 .
The contribution to the counting is:

∑
wh6N/2

2w
3

2 =
∑

WH62N

(
W

2

)3
∼ 1

8
(2N)4

4 ζ(4) =
ζ(4)

2 N4

– Configuration 4:

1

w

l3

l1

l4

l2

Figure 4.4. Configuration 4

All parameters are half integers. The lengths for the waist curves
are 2l1 + l2 + l3 and 2l4 + l2 + l3, so we have l1 = l4. The number

of solutions of w = 2l1 + l2 + l3 is approximately
1
2

(2w)2

2 = w2.
The contribution to the counting for this configuration:

∑
wh6N/2

2w3 =
∑

WH62N
2
(
W

2

)3
= 21

8
(2N)4

4 ζ(4) = ζ(4)N4.

ANNALES DE L’INSTITUT FOURIER



VOLUMES OF STRATA 2223

– Total:
The sum of the 4 contributions is:

N4

(
(ζ(2))2

3 + 3
2ζ(4)

)
=

7π4N4

2 · 33 · 5

We obtain:

VolQ(5,−1) = 2 dimCQ(5,−1) 7
2 · 33 · 5π

4 = 22 · 7
33 · 5π

4

4.2. Second example: Q(3,−13)

As previously we compute the volume of this stratum by using the
method described in §4.

– Configuration 1:

0

w l1

l3
l2

l4

Figure 4.5. Configuration 1

All parameters are half-integers. The constraints are given by:
w = l3 + 2l4 = l3 + 2l1 + 2l2. There are ∼ 1

4
(2w)2

2 = w2

2 choices for
the li. There are 6 ways to give name to the poles. The contribution
to the counting is

6
∑

w.h6N/2

2ww
2

2 = 6
∑

WH62N

(
W

2

)3
∼ 3

4
(2N)4

4 ζ(4) = 3ζ(4)N4

– Configuration 2:

0

0

w1

w2

l3
l4

l2

l1

Figure 4.6. Configuration 2
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The parameter w1 = W1 is an integer and all remaining parame-
ters are half-integers. Note that here there are 3 ways to give names
to the poles. The equations{

w2 = l2 = l3

W1 = 2l1 + l2 + l3 = 2l4
have one solution if W1 > 2w2.
The contribution of this configuration is:

3
∑

W1h1+w2h26N/2

2w12w21{W1>2w2} = 6
∑

2W1H1+W2H262N
W1W21{W1>W2}

– Configuration 3:

0

0

w1

w2

l1
l4

l3

l2

Figure 4.7. Configuration 3

The parameter w1 = W1 is an integer and all remaining parame-
ters are half-integers. Note that here there are 3 ways to give names
to the poles.
Two ribbon graphs are possible for the second layer:

1

22 1 2

2

For the first ribbon graph, the equations{
W1 = 2l4 = l1 + l2

w2 = l1 = l2 + 2l3
have one solution if w2 < W1 < 2w2.
For the second ribbon graph, the equations{

W1 = 2l4 = l1

w2 = l2 + 2l3 = l2 + l1

have one solution if W1 < w2.
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The total number of solutions is then:

1{w2<W1<2w2} + 1{W1<w2} = 1{W1<2w2} − 1{W1=w2}︸ ︷︷ ︸
negligible

This gives a contribution:

3
∑

W1h1+w2h26N/2

2w12w21{W1<2w2} = 6
∑

2W1H1+W2H262N
W1W21{W1<W2}

Summing the contributions of configurations 2 and 3 we get:

6
∑

2W1H1+W2H262N
W1W2 = 1

46
∑

W ·H62N
W1W2

∼ 3
2

(2N)4

4! (ζ(2))2 = 5N4

2 ζ(4)

– Configuration 4:

1

0

w

l4

l3

l1

l2

Figure 4.8. Configuration 4

The parameter w = W is an integer and all remaining parameters
are half-integers. Note that here also there are 3 ways to give name
to the poles.
The constraints are:

W = 2l4 = 2(l1 + l2 + l3)

So there are ∼ W 2

2 ways to choose (l1, . . . , l4).
The contribution of this configuration is:

3
∑

W.h6N/2

2WW 2

2 = 3
∑

WH6N

W 3 ∼ 3N4

4 ζ(4)

– The sum of all contributions is 25N4

4 ζ(4) so it gives

VolcompQ(3,−13) = 50ζ(4) = 5π4

9
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5. Computing generating functions following [11]

In the Abelian case, volumes of strata were computed up to genus 20
by Eskin–Okounkov using representation theory and modular forms. In
the quadratic case, they developed a similar theory but some additional
difficulties arise for the computation of volumes. The aim of this section is
to recall the procedure to compute volumes using these results, to explain
where the difficulties occur in the computations, to compute finally as many
volumes as possible in the quadratic case, and to give the normalization
factor between their convention and the convention of [1].

In this section we introduce a new notation for simplicity:

Definition 5.1. — Let Q̃(α) denote the moduli space of pairs (S, q) of
Riemann surfaces S and meromorphic quadratic differentials q with exactly
n singularities of orders given by α1, . . . αn, where q is allowed to be a global
square of an Abelian differential.

Note that if there is at least one zero of odd multiplicity then Q̃(α) =
Q(α) otherwise Q̃(α) = Q(α) ∪H(α/2).

5.1. Convention for the normalization of the volume:
description of the lattice

The convention of Eskin and Okounkov for the normalization of the
volume element is slightly different from the previous one, due to Athreya,
Eskin and Zorich. In particular the “integer points” in the strata will be also
tiled by squares, but the chosen lattice differs. In fact here lattice points
are covers of the torus in the Abelian case, and covers of the pillow in the
quadratic case, with some constraints that we recall here.

5.1.1. Abelian case

Let T2 = C/(Z+ iZ) be the standard torus. For a given stratum H(β) =
H(β1, . . . , βn), fix n points Pi in T2, and denote µi = βi + 1 for i = 1 . . . n.
Then the chosen lattice for this stratum is the following:

Lab(H(β)) = {S ∈ H(β); S is a cover of T2 ramified over each Pi
with ramification profile µi}
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We denote

Covd(µ) = Card{S ∈ Lab(H(β)), S is of degree d}.

We introduce also the number

w(µ) = |µ|+ l(µ),

where l(µ) is the number of parts in µ.

5.1.2. Quadratic case

Let Q̃(α) be a stratum of quadratic differentials. The set of singulari-
ties (α1, . . . , αn) corresponds a couple of partitions (µ, ν) by the following
formulas: assume that the even zeros are the b first ones, then we define

µi = αi
2 + 1 for i = 1 . . . b

νi = αi+b + 2 for i = 1 . . . n− b.

This gives a 1:1 correspondence between sets of singularity orders of qua-
dratic differentials and couples of partitions, the second being a partition
of an even number into odd parts (correspondence between [1] and [11] no-
tation). Let B = T2/± (called “pillow”) and fix b points Pi on it (outside
of the corners). In this setting, the chosen lattice is the following:

Lquad(Q̃(α)) = {S ∈ Q̃(α); ∃d > 0, S is a 2d cover of B ramified

over each Pi with ramification profile (µi, 12d−µi),

over 0 with ramification profile (ν, 2d−|ν|/2)

and over the three other corners with ramification profile (2d)}

We denote

Cov2d(µ, ν) = Card{S ∈ Lquad(Q̃(α)), S is of degree 2d}.

We introduce also the following number:

w(µ, ν) = |µ|+ l(µ) + |ν|/2.

We can express all data for S ∈ Lquad(Q̃(α)) in terms of µ and ν:
– genus g = 1

2 (|µ| − l(µ) + |ν|/2− l(ν)) + 1 (∗)
– genus of the double cover ĝ = |µ| − l(µ) + |ν|/2− l(ν)/2 + 1
– efficient genus geff = 1

2 (|µ| − l(µ) + |ν|/2)
– complex dimension dimC = |µ|+ |ν|/2
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5.2. Computation of volumes in the Abelian case

We recall here some of the results of [10] that are used to compute vol-
umes. Let introduce the following generating functions (here we modify the
notations of [10] into notations of [11]):

Z(µ; q) =
∑
d>1

Covd(µ)qd

Z ′(µ; q) =
∑
d>1

Cov′d(µ)qd =
Z(µ; q)
Z(∅; q)

that enumerate covers and covers without unramified components respec-
tively. Here

Z(∅; q) =
∏
n>1

(1− qn)−1

is the generating function for the unramified coverings.
Finally we denote

Z◦(µ; q) =
∑
d>1

Cov◦d(µ)qd

the generating function for the connected coverings.
Introducing the q-bracket of a shifted symmetric function F :

〈F 〉q =
1

Z(∅; q)
∑
λ∈Π

q|λ|F (λ)

where Π denote the set of partitions, Eskin and Okounkov showed ([10,
Proposition 2.11]):

Proposition 5.2.
Z ′(µ; q) = 〈fµ1 . . . fµn〉q,

where fµi(λ) = fµi,1,...,1(λ) is the central character of an element of cycle-
type (µi, 1, . . . , 1) in the representation λ.

The algebra Λ∗ of shifted symmetric functions is generated by the func-
tions:

pk(λ) =
∞∑
i=0

[(λi − i+ 1
2)k − (i+ 1

2)k] + (1− 2−k)ζ(−k).

The decomposition of the functions fµi
in term of the pk is known (see [19]

for example), so the q-brackets of products of function fi are polynomials
in the q-brackets of products of functions pk, that are quasi-modular forms
of weight w(µ) (see [10, §5.1]).
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The generating function Z ′ is then totally described, and so is Z◦ by
inclusion-exclusion (cf. [10, Proposition 2.11]). To extract from this gener-
ating function the values of the volumes they show that ([10, Proposition 1.6
and Proposition 3.2]):

Proposition 5.3.

Z◦(µ; q) ∼ dimR(H(β)) Vol(H1(β)) · |µ|!
(1− q)|µ|

as q → 1

Their method to compute the volumes is then the following:
• They compute the coefficient corresponding to the highest weight in
the decomposition of the fµi in the algebra basis of pk (Theorem 5.5)

• They compute the highest term in the asymptotic of the q-brackets
of products of pk as q goes to 1 (Theorem 6.7)

• They obtain the volume thanks to the previous proposition (Propo-
sition 1.6 and 3.2.)

5.3. Computation of volumes in the quadratic case

First let us recall the main results of [11], and then let us detail the
computations in this case. Similarly to the case of Abelian differentials, we
introduce the following generating functions:

Z(µ, ν; q) =
∑
d>1

Cov2d(µ, ν)q2d

Z ′(µ, ν; q) =
∑
d>1

Cov′2d(µ, ν)q2d =
Z(µ, ν; q)
Z(∅, ∅; q)

Z(∅, ∅; q) =
∏
n>1

(1− q2n)−1/2

Z◦(µ, ν; q) =
∑
d

Cov◦2d(µ, ν)q2d

enumerating the covers, the covers without unramified connected compo-
nents,the unramified covers, the connected covers respectively.
The algebra Λ∗ of shifted symmetric functions is now enlarged to the

algebra Λ generated by the functions pk as before and the functions pk
defined by:

pk(λ) =
∞∑
i=1

[
(−1)λi−i+1(λi − i+ 1

2)k − (−1)−i+1(−i+ 1
2)k
]

+ ck,
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where the ck are determined by the expansion∑
k

zk

k!pk(∅) =
1

ez/2 + e−z/2
.

For any function F the authors of [11] introduce the w-bracket as:

〈F 〉w =
1

Z(∅, ∅; q)
∑
λ∈BΠ

q|λ|w(λ)F (λ),

with

w(λ) =
(

dimλ

|λ|!

)
f2,2,...,2(λ)

for λ ∈ BΠ, where BΠ denote the set of balanced partitions, that is,
partitions λ such that p0(λ) = 1/2. For the aim of this section we only need
to resume the results of [11], so we do not explain the possible interpretation
of the objects that we consider.
The authors of [11] show the following formula, similar to the Abelian

case:

Proposition 5.4.

Z ′(µ, ν; q) =
〈
fν,2,2,...,2

f2,2,...,2

∏
i

fµi

〉
w

The underlying sum in this formula begins for partitions of max(|ν|, µi).
Similarly to the Abelian case we can extract the volumes from the asymp-

totic of the generating function as q → 1. Assume first that Q̃(α) = Q(α).

Proposition 5.5. — Let dimC = dimC(Q(α)) and dimR = 2 dimC.
Then:

Z◦(µ, ν; q) ∼ VolEO(Q1(α))
dimR

(dimC)!
(1− q)dimC

as q → 1

Proof. — Introducing

Z◦2D(µ, ν) =
D∑
d=1

Cov◦2d(µ, ν)

and following the proof of [10, Proposition 1.6], we get:

Z◦2D(µ, ν) ∼ ρ(Q1(µ, ν))(2D)dimC as D →∞,

where

ρ(Q1(µ, ν)) =
VolEO(C(Q1(α)))

dimR(Q(α)) .
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Following the proof of Proposition 3.2 in [10] we get:

1
1− q2Z

◦(µ, ν; q) =
∞∑
d=1

q2dZ◦2d(µ, ν)

∼
∞∑
d=1

q2dρ(Q1(µ, ν))(2d)dimC as q → 1

∼ ρ(Q1(µ, ν))
∑
d

q2dddimC as q → 1

∼ ρ(Q1(µ, ν))
2dimCΓ(dimC +1)
(1− q2)dimC +1 as q → 1

which ends the proof. �

If Q(α) 6= Q̃(α) then one should first extract the purely quadratic
contribution Z◦quad(µ, ν; q) (see §5.7), and then the same result holds for
Z◦quad(µ, ν; q).

The method for the Abelian case does not applied here, because there is
no equivalent of Theorem 5.5 and Theorem 6.7 of [10] here (see [22]). Let
us explain how to compute the volumes in this case.

The principal result of their article ([11, Theorem 1]) is:

Theorem 5.6 (Eskin–Okounkov). — Z ′(µ, ν; q) is a polynomial in
E2(q2), E2(q4), and E4(q4) of weight w(µ, ν)

Examples of such generating functions are given in [11, Appendix A].
The procedure to compute volumes is then the following:
(1) Compute the coefficients of the polynomial Z ′ in E2(q2), E2(q4),

E4(q4) (see §5.6)
(2) Deduce Z◦ from Z ′ (see §5.5)
(3) Compute the asymptotic development as q goes to 1 of Z◦ (see §5.4)
The first step constitutes the main part of the computations. We explain

first how to make the last step, since it is the easiest.
Two additional steps are required to compare these volumes to the pre-

vious computed ones, they are described in §5.7 and §5.8.

5.4. Step 3: Computing the asymptotic development of Z◦

After the second step (see §5.5), we obtain Z◦ as a polynomial in E2(q2),
E2(q4), E4(q4).
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Let q = e2iπτ , q̃ = eiπ/2τ , and h = −2iπτ so q = e−h. We use the
(quasi)-modular transformations:

E2(q2) = −π
2

h2E2(q̃2)− 1
4h

E2(q4) = − π2

4h2E2(q̃)− 1
8h

E4(q4) = π4

16h4E4(q̃)

Finding the asymptotic development as q → 1 is equivalent to finding the
asymptotic development as h→ 0.
Recall that with the convention of [11], we have the following develop-

ments:

E2(q) = − 1
24 + q + 3q2 + 4q3 + 7q2 + 6q5 + 12q6 + . . .

E4(q) = 1
240 + q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + . . .

Note that, except for the constant terms, all terms in the development
of E2(q̃2), E2(q̃), and E4(q̃) are negligible compared to any power of h as
h→ 0.

It means that making the following replacements:

(5.1)


E2(q2)←→

π2

24 · h2 −
1

4h
E2(q4)←→

π2

4 · 24 · h2 −
1

8h
E4(q4)←→

π4

16 · 240 · h4

we obtain exactly the asymptotic development of Z◦ as h→ 0.

5.5. Step 2: From possibly disconnected covers to connected
covers

Define a substratum of a stratum Q(α) as a stratum which singularity
orders belong to the set {α1, . . . αn} of singularity orders of Q(α). Define
a decomposition of Q(α) into substrata as an union of substrata of Q(α),
such that the total set of singularity orders corresponds to {α1, . . . αn}. For
example Q(−14) ∪ Q(4, 12,−12) is a decomposition of Q(4, 12,−16) into
substrata. For a fixed Q(α), the set of decompositions of Q(α) is naturally
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partially ordered. For example, here is the diagram of the poset of the
decompositions of Q(4, 12,−16) into substrata:

Q(4, 12,−16)

Q(4,−14)∪ Q(−14)∪ Q̃(4)∪ Q(1,−15)∪
Q(12,−12) Q(4, 12,−12) Q(12,−16) Q(4, 1,−1)

Q̃(4) ∪Q(12,−12) ∪Q(−14)

Such a poset possess a well-defined Möbius function µ, defined as the
inverse of the zeta function ζ(x, y) = 1 ∀x 6 y (see Chapter 3 of [23]
for a reference on posets and Möbius functions). From the decomposition
formula

Z ′(x) =
∑
y6x

Z◦(y) ∀x

we deduce in particular, using the Möbius inversion:

Z◦(1̂) =
∑
y61̂

Z ′(y)µ(y, 1̂),

which is precisely the wanted formula. For the previous example we have
the corresponding values of µ(y, 1̂), for y element of the poset:

1

−1 −1 −1 −1

2

For this example note that there is no difference with the Abelian case
([10, §2.2]). But in general, since there are some symmetries in the decom-
position into substrata, and since the even zeros are numbered, we need to
modify the Möbius function. We inverse the more general formula

Z ′(x) =
∑
y6x

Z◦(y)a(y, x) ∀x

where a(x, x) 6= 0 ∀x, using the inverse of the function a that we denote
µa (which exists, [23, Proposition 3.6.2]). The function a takes care of the
possible symmetries and the numbering of the even zeros. As in the classical
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case the values of the Möbius function µa(y, 1̂) can be computed recursively
using the relation

(µaa)(x, y) =
∑

x6z6y

µa(x, z)a(z, y) = δ(x, y).

Instead of writing a complicated general formula for the function a we
prefer to explicit this function for three representative examples.

5.5.1. Symmetries: Q(32,−110) and Q(8,−112)

The symmetries in the decomposition into substrata occur when some
substrata are equal. For example the stratum Q(32,−16) decomposes into
Q(3,−13)∪Q(3,−13), so the decomposition into connected components is:

Z ′(∅, [52, 16]) = Z◦(∅, [52, 16]) + Z◦(∅, [52, 12])Z◦(∅, [14]) + 1
2Z
◦(∅, [5, 13])2

More generally we have to divide by the cardinality of the symmetric group
that permutes the equal components in the counting, in order not to count
the same surface twice. For the stratum Q(32,−110) we have the following
decomposition:

A = Q(32,−110)

B = Q(3,−13) ∪Q(3,−17) C = Q(−14) ∪Q(32,−16)

D = Q(3,−13) ∪Q(3,−13) E = Q(32,−12)∪
∪Q(−14) Q(−14) ∪Q(−14)

We give below the table for the function a and the corresponding values of
µa(y, 1̂).

a(y, x) A B C D E

A 1
B 1 1
C 1 1
D 1/2 1 1/2 1
E 1/2 1 1

1

−1 −1

1
1
2
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This diagram gives the following inclusion-exclusion formula:

Z◦(∅, [52, 110]) = Z ′(∅, [52, 110])− Z ′(∅, [5, 13])Z ′(∅, [5, 17])

− Z ′(∅, [14])Z ′(∅, [52, 16]) + Z ′(∅, [5, 13])2Z ′(∅, [14])

+ 1
2Z(∅, [52, 12])Z ′(∅, [14])

For the stratum Q(8,−112), the group S3 acts on the three substrata
Q(−14), which gives a factor 1/6.

A = Q(8,−112)

B = Q(8,−18) ∪Q(−14)

C = Q(8,−14) ∪Q(−14) ∪Q(−14)

D = Q(8,−14) ∪Q(−14) ∪Q(−14) ∪Q(−14)

a(y, x) A B C D

A 1
B 1 1
C 1/2 1 1
D 1/6 1/2 1 1

1

−1

1/2

−1/6

5.5.2. Numbering of the even zeros: Q(23,−12)

Noting that the even zeros are numbered by definition, because they arise
as branching points over numbered distinct ramification points on the base,
we see that there are three ways to decompose the stratum Q(23,−12) into
Q(22) ∪ Q(2,−12). So we obtain the following functions a and µa for this
stratum:

A = Q(23,−12)

B = Q(22) ∪Q(2,−12)

a(y, x) A B

A 1
B 3 1

1

−1 −1 −1
−3
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5.6. Step 1: Computing the generating function as a polynomial
in quasi-modular forms

5.6.1. First method

The first method consists to apply naively Proposition 5.4 and compute
the first terms in the development. We denote QMF2(Γ0(2)) the algebra of
quasi-modular forms generated by E2(q2), E2(q4), E4(q4), QMF2(Γ0(2))w
its Q-subspace of weight w (i.e. generated by monomials of weight smaller
or equal to w), and lQMF2

w the dimension of QMF2(Γ0(2))w as a Q-vector
space. Then it suffices to compute strictly more than lQMF2

w terms in the
development of Z ′ to find the linear dependance between Z ′ and the ele-
ments of QMF2(Γ0(2))w as a Q-vector space. Since the developments are in
powers of q2, that means that we have to compute all values of the central
characters for balanced partitions up to 2(lQMF2

w + 1). This method is very
limited because this number grows fast and the character computations
become too slow (see Table 5.1 and 5.2).

w 2 4 6 8 10

lQMF2
w 3 7 13 22 34

lΛw 5 20 65 185 481

lΛ
∗

w 2 5 11 22 42

Table 5.1. Table of dimensions of QMF2(Γ0(2)),Λ,Λ∗ as Q-vector-spaces

5.6.2. Second method

The second method consists to apply the intermediary result of [11] in
the proof of the quasi-modularity of Z ′ ([11, Theorem 2]):

Theorem 5.7 (Eskin–Okounkov). — The ratio gν(λ) =
fν,2,...,2

f2,2,...,2
is the

restriction of a unique function gν ∈ Λ of weight |ν|/2 to the set of balanced
partitions.
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In other words it means that the ratios
fν,2,...,2

f2,2,...,2
are polynomials in pk

and pk of degree |ν|/2, where the degree of a monomial is obtained by
summing the weights w(pk) = k + 1 and w(pk) = k. The computation is
then reduced to the computation of the w-brackets of monomials in pk and
pk as polynomials in E2(q2), E2(q4), E4(q4). To resume, the method here
consists to:

(1) Compute the coefficients of the polynomial gν in the pk and pk
(2) Compute the coefficients of the polynomials fµi in the pk
(3) Compute the coefficients of all polynomials 〈pi1 . . . pirpj1 . . . pjs

〉w in
E2(q2), E2(q4), E4(q4).

Note that for the first step we have to compute the values of gν on a
priori at least lΛ|ν|/2 + 1 distinct balanced partitions, of length at least |ν|,
where lΛw denotes the dimension of the subspace Λw of Λ composed by
polynomials in pk and pk of weight smaller than w (see Table 5.1). But
another constraint appears here. Remark that

p1(λ) = |λ| −
1
24,

and that Λ2k contains the monomials pi11 . . . pis1 with i1 + · · ·+ is 6 k. Each
monomial pi1(λ) is a polynomial in |λ| of degree i. It implies that these
monomials are linearly dependent on small sets of partitions. So we have
to compute the values of gν on partitions with at least |ν|/4 + 1 distinct
lengths. Note that the number of balanced partitions of length comprised
between |ν| and |ν| + |ν|/4 is bigger than lΛw, so it suffices to compute gν
on all these partitions to obtain its coefficients. The relation on p1 is the
only constraint for the choice of the set of partitions that appeared in the
numerical simulations. The Table 5.2 compares the lengths of the partitions
involved in the two methods, so it becomes clear that the second method
is more efficient.
For the second step we can use explicit formulas given in [19] for example,

so this step presents no difficulties. Note that his conventions differs from
the ones of [11].

Finally for the third step we have to compute w-brackets of monomials
in pk and pk, and express them in term of polynomials in E2(q2), E2(q4),
E4(q4). This can be done be computing the first terms of these brackets
in the development in powers of q. Note that this time, we do not have to
compute all characters, but only the dimension, and the central characters
of fixed-point free involutions f2,2,...,2, which are given by explicit formulas
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([11, equation (8)]). We noticed numerically that up to weight 12, all these
w-brackets are of pure weight.

Computations giving the values of Appendix A were made using Pari.
Note that for weight 10 we used the fact that numerically the w-brackets

of polynomials in pi, pi are of pure weight.

w 2 4 6 8 10
Method 1 2-8 2-16 2-28 2-46 2-70
Method 2 4-6 8-12 12-18 16-24 20-30

Table 5.2. Table of lengths of balanced partitions whose characters
are computed in the two methods, for a stratum with only odd zeros
(w(µ, ν) = |ν|/2)

5.7. Step 4: Getting the purely quadratic contribution in the
case of strata with even zeros

Note that for strata with only even zeros, we count covers that possi-
bly correspond to Abelian differentials. Let Z◦quad(µ, ∅; q) be the generating
function for connected covers that correspond to purely quadratic differen-
tials.

Proposition 5.8.
Z◦quad(µ, ∅; q) = Z◦(µ, ∅; q)− 2l(µ)−1Z◦ab(µ; q2),

where Z◦ab(µ; q) is the generating function corresponding to the stratum
H(β).

Proof. — Any connected cover of degree 2d of the pillow that corresponds
to the square of an Abelian differential has the form

π : S π′→ T2 σ→ T2/± = B.

Let z1, . . . , zl(µ) be the ramification points in B, and z′1, . . . z
′
l(µ), z

′′
1 ,

. . . , z′′l(µ) their lift to the torus by σ. Then π′ is a ramified cover of de-
gree d of T2, ramified over l(µ) points x1, . . . xl(µ) with profile µi over xi,
where xi is either z′i or z′′i . There are 1

22l(µ) choices for such a π′, corre-
sponding to the choice of the xi’s: the factor 1

2 is due to the symmetry
induced by the double cover involution, which exchanges (z′1, . . . , z′l(µ)) and
(z′′1 , . . . , z′′l(µ)). �
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5.8. Step 5: Normalization factor between the two conventions
on volumes

In genus 0, [1]-lattice points are represented by square-tiled pillowcases
surfaces of equivalently by chess-colored surfaces ([1, Lemma B.1]). This
is a direct consequence of the fact that in genus 0 all loops have trivial
homology classes. Note that this is not anymore the case for higher genera
surfaces.

Lemma 5.9. — We have the following normalization factor between the
volumes:

VolAEZ(Q(α)) = 4dimC

2l(µ) ·
∏

mi! ·VolEO(Q(α)),

where the mi’s are the multiplicities of the odd zeros in α, and l(µ) is the
number of the even zeros.

Proof. — The factor
∏
mi! corresponds to the labeling of the odd sin-

gularities (the even ones are labeled in the [11]-convention because they
correspond to branching points over distinct points z1, . . . zl(µ) on B).

Assume first that there are no even zeros. Take a surface that corresponds
to a [11]-lattice point, that is, a pillowcase cover. By convention since there
are no even zeros all zeros project to the same corner of the pillow, the
other three corners lift as regular points. That means that the surface is in
fact tiled by squares of size 1 × 1 (so twice larger as the pillow), so it is a
square-tiled pillowcase cover (see [1]). On such a surface all relative cycles
have holonomy in Z + iZ. In particular our preferred basis in H1

−(Ŝ, Σ̂;C)
have holonomy in 2Z + 2iZ. In other words the image of the [11]-lattice
under the period map is (2Z+ 2iZ)dimC . By definition the image of the [1]-
lattice is (Z + iZ)dimC so it is clear that in this case the covolumes of the
lattices are related by a factor 4dimC :

Covol(LEO) = 4dimC Covol(LAEZ).

Now if there are some even zeros, let z = (z1, . . . , zl(µ)) be a l(µ)-tuple of
points in [0, 1]× [0, 1/2]. For such a z we want to compare the pillowcases
covers with these points as ramification points corresponding to even zeros
(profile (µi, 1, . . . , 1) over zi), to the square-tiled pillowcases covers, with
profile (ν, 2µ, 2 . . . , 2) over 0. The later surfaces form as previously a lattice
of covolume 4dimC Covol(LAEZ) in H1

−(Ŝ, Σ̂;C). For the first surfaces, the
holonomy of a relative cycle from an odd zero to the i-th even zero is in
Z + iZ ± zi. It means that, for a fixed z, there are 2l(µ) more pillowcases
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covers with ramification over z than square-tiled pillowcases covers. So we
get

1
2l(µ) VolEO = Volsqp = 1

4dimC
VolAEZ . �

Using this normalization factor, we give all volumes of strata of dimension
up to 10 in Appendix A. Note that these values coincide with the ones
computed in the previous sections.

5.9. Conclusion

The rationality of volumes follows from all the results of [11], we detail
here the proof since it follows from all the detailed steps of the computation
of volumes.

Proposition 5.10. — Any stratum Q(α) of quadratic differentials has
a rational Masur–Veech volume in the following sense:

∃r ∈ Q, VolQ1(α) = r · π2geff

Proof. — First note that the chosen normalization for the volume does
not affect the result by §5.8. Note that for a stratum defined by partitions
µ, ν, we have the following relations

dimC = 2geff + l(µ)
w(µ, ν) = dimC +l(µ).

First the order of Z ′(µ, ν; q) as q → 1 is smaller than w(µ, ν) by the main
result of [11]. The order of Z◦(µ, ν; q) as q → 1 is exactly dimC. Note that
if the stratum has no even zeros, the result is immediate since in this case
dimC = w(µ, ν) = 2geff so only the highest order terms count in (5.4), and
for these terms the order of π in the numerator coincide with the order
of h in the denominator. If the stratum has l(µ) > 0 even zeros, in (5.4),
the second highest order term (in 1/h) will be used instead of the terms in
1/h2, l(µ) times, such that the final order is dim = w− l(µ). This decreases
the power of π by 2l(µ) to give finally 2geff = w− 2l(µ). If the stratum has
only even zeros the contribution of Abelian covers is given by Z◦(µ, q2).
We use the same modular transformations as (5.4) and an additional one
for E6, so the result is also true in this case. �
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Appendix A. Table of volumes

d g Stratum Vol
2 0 Q(−14) 2π2

3 1 Q(2,−12) 4/3π2

4 0 Q(1,−15) π4

4 1 Q(12,−12) 1/3π4

4 1 Q(3,−13) 5/9π4

4 2 Q(5,−1) 28/135π4

4 2 Q(22) 2/3π2

5 0 Q(2,−16) 8/3π4

5 1 Q(4,−14) 2π4

5 1 Q(2, 1,−13) π4

5 2 Q(6,−12) 184/135π4

5 2 Q(4, 1,−1) 8/15π4

5 2 Q(2, 12) 2/15π4

5 2 Q(3, 2,−1) 10/27π4

5 3 Q(8) 10/27π4

6 0 Q(12,−16) 1/2π6

6 0 Q(3,−17) 3/4π6

6 1 Q(13,−13) 11/60π6

6 1 Q(3, 1,−14) 1/3π6

6 1 Q(5,−15) 7/10π6

6 2 Q(14) 1/15π6

6 2 Q(3, 12,−1) 1/9π6

6 2 Q(32,−12) 53/270π6

6 2 Q(5, 1,−12) 7/30π6

6 2 Q(7,−13) 27/50π6

6 3 Q(5, 3) 14/243π6

6 3 Q(7, 1) 18/175π6

6 3 Q(9,−1) 15224/42525π6

6 1 Q(22,−14) 136/45π4

6 2 Q(4, 2,−12) 28/15π4

6 2 Q(22, 1,−1) 4/5π4

6 3 Q(42) 4/5π4

6 3 Q(6, 2) 104/135π4

7 0 Q(4,−18) 32/15π6

7 0 Q(2, 1,−17) 4/3π6

7 1 Q(6,−16) 64/27π6

d g Stratum Vol
7 1 Q(4, 1,−15) 10/9π6

7 1 Q(2, 12,−14) 5/9π6

7 1 Q(3, 2,−15) 53/54π6

7 2 Q(8,−14) 163/81π6

7 2 Q(6, 1,−13) 188/225π6

7 2 Q(4, 12,−12) 10/27π6

7 2 Q(4, 3,−13) 2/3π6

7 2 Q(2, 13,−1) 17/90π6

7 2 Q(3, 2, 1,−12) 1/3π6

7 2 Q(5, 2,−13) 2863/4050π6

7 2 Q(23,−12) 256/15π4

7 3 Q(10,−12) 512/315π6

7 3 Q(8, 1,−1) 40/63π6

7 3 Q(6, 12) 232/945π6

7 3 Q(6, 3,−1) 776/1701π6

7 3 Q(4, 3, 1) 32/189π6

7 3 Q(5, 4,−1) 56/135π6

7 3 Q(32, 2) 977/8505π6

7 3 Q(5, 2, 1) 7/45π6

7 3 Q(7, 2,−1) 81/175π6

7 3 Q(4, 22) 4/3π4

7 4 Q(12) 5614/6075π6

8 0 Q(13,−17) 1/4π8

8 0 Q(3, 1,−18) 3/8π8

8 0 Q(5,−19) 5/8π8

8 0 Q(22,−18) 32/9π6

8 1 Q(14,−14) 1/10π8

8 1 Q(3, 12,−15) 13/72π8

8 1 Q(32,−16) 13/42π8

8 1 Q(5, 1,−16) 3/8π8

8 1 Q(7,−17) 45/56π8

8 1 Q(4, 2,−16) 16/5π6

8 1 Q(22, 1,−15) 104/63π6

8 2 Q(15,−1) 29/840π8

8 2 Q(3, 13,−12) 23/378π8

8 2 Q(32, 1,−13) 104/945π8
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d g Stratum Vol
8 2 Q(5, 12,−13) 47/360π8

8 2 Q(5, 3,−14) 17/72π8

8 2 Q(7, 1,−14) 429/1400π8

8 2 Q(9,−15) 9383/12600π8

8 2 Q(42,−14) 396/175π6

8 2 Q(6, 2,−14) 11936/4725π6

8 2 Q(4, 2, 1,−13) 118/105π6

8 2 Q(22, 12,−12) 76/135π6

8 2 Q(3, 22,−13) 190/189π6

8 3 Q(32, 12) 859/22680π8

8 3 Q(33,−1) 4499/68040π8

8 3 Q(5, 13) 49/1080π8

8 3 Q(5, 3, 1,−1) 17/216π8

8 3 Q(52,−12) 421/2520π8

8 3 Q(7, 12,−1) 143/1400π8

8 3 Q(7, 3,−12) 51/280π8

8 3 Q(9, 1,−12) 9383/37800π8

8 3 Q(11,−13) 4506281/7144200π8

8 3 Q(6, 4,−12) 7792/4725π6

8 3 Q(8, 2,−12) 3362/1701π6

8 3 Q(42, 1,−1) 32/45π6

8 3 Q(6, 2, 1,−1) 1264/1575π6

8 3 Q(4, 2, 12) 44/135π6

d g Stratum Vol
8 3 Q(4, 3, 2,−1) 116/189π6

8 3 Q(3, 22, 1) 16/63π6

8 3 Q(5, 22,−1) 424/675π6

8 3 Q(24) 704/315π4

8 4 Q(7, 5) 12/125π8

8 4 Q(9, 3) 8261/71442π8

8 4 Q(11, 1) 2197/12250π8

8 4 Q(13,−1) 25/49π8

8 4 Q(62) 2888/2835π6

8 4 Q(8, 4) 200/189π6

8 4 Q(10, 2) 1936/1575π6

9 0 Q(6,−110) 64/35π8

9 0 Q(4, 1,−19) 16/15π8

9 0 Q(2, 12,−18) 2/3π8

9 0 Q(3, 2,−19) π8

9 1 Q(8,−18) 8/3π8

9 1 Q(6, 1,−17) 56/45π8

9 1 Q(4, 12,−16) 743/1260π8

9 1 Q(4, 3,−17) 71/72π8

9 1 Q(4, 12,−16) 1531/2520π8

9 1 Q(4, 3,−17) 19/18π8

9 1 Q(2, 13,−15) 151/504π8

9 1 Q(3, 2, 1,−16) 529/1008π8

d g Stratum Vol
9 1 Q(5, 2,−17) 17/16π8

9 1 Q(23,−16) 302/63π6

9 2 Q(10,−16) 1408/525π8

9 2 Q(8, 1,−15) 835/756π8

9 2 Q(6, 12,−14) 2183/4725π8

9 2 Q(6, 3,−15) 935/1134π8

9 2 Q(4, 13,−13) 103/504π8

9 2 Q(4, 3, 1,−14) 10/27π8

9 2 Q(5, 4,−15) 709/900π8

9 2 Q(2, 14,−12) 43/420π8

9 2 Q(3, 2, 12,−13) 557/3024π8

9 2 Q(32, 2,−14) 1879/5670π8

9 2 Q(5, 2, 1,−14) 533/1350π8

9 2 Q(7, 2,−15) 639/700π8

9 2 Q(4, 22,−14) 356/105π6

9 2 Q(23, 1,−13) 178/105π6

9 3 Q(12,−14) 173521/72900π8

9 3 Q(10, 1,−13) 3392/3675π8

9 3 Q(8, 12,−12) 835/2268π8

9 3 Q(8, 3,−13) 158233/238140π8

9 3 Q(6, 13,−1) 209/1350π8

9 3 Q(6, 3, 1,−12) 29/105π8

9 3 Q(6, 5,−13) 1439/2430π8
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d g Stratum Vol
9 3 Q(4, 14) 401/5670π8

9 3 Q(4, 3, 12,−1) 10/81π8

9 3 Q(4, 32,−12) 167/756π8

9 3 Q(5, 4, 1,−12) 709/2700π8

9 3 Q(7, 4,−13) 3009/4900π8

9 3 Q(3, 2, 13) 4/63π8

9 3 Q(32, 2, 1,−1) 841/7560π8

9 3 Q(5, 2, 12,−1) 2147/16200π8

9 3 Q(5, 3, 2,−12) 2297/9720π8

9 3 Q(7, 2, 1,−12) 429/1400π8

9 3 Q(9, 2,−13) 1788611/2381400π8

9 3 Q(42, 2,−12) 3496/1575π6

9 3 Q(6, 22,−12) 106112/42525π6

9 3 Q(4, 22, 1,−1) 1018/945π6

9 3 Q(23, 12) 22/45π6

9 3 Q(3, 23,−1) 1577/1701π6

9 4 Q(14,−12) 27560896/13395375π8

9 4 Q(12, 1,−1) 2639/3375π8

9 4 Q(10, 12) 1024/3375π8

9 4 Q(10, 3,−1) 512/945π8

9 4 Q(8, 3, 1) 40/189π8

9 4 Q(8, 5,−1) 335/729π8

9 4 Q(6, 32) 769/5103π8

d g Stratum Vol
9 4 Q(6, 5, 1) 619/3375π8

9 4 Q(7, 6,−1) 387/875π8

9 4 Q(5, 4, 3) 11/81π8

9 4 Q(7, 4, 1) 23/125π8

9 4 Q(9, 4,−1) 33814/70875π8

9 4 Q(52, 2) 343253/2551500π8

9 4 Q(7, 3, 2) 3/20π8

9 4 Q(9, 2, 1) 2959/13500π8

9 4 Q(11, 2,−1) 32141083/53581500π8

9 4 Q(43) 58/45π6

9 4 Q(6, 4, 2) 6716/4725π6

9 4 Q(8, 22) 791/486π6

9 5 Q(16) 1042619/661500π8

10 0 Q(14,−18) 1/8π10

10 0 Q(3, 12,−19) 3/16π10

10 0 Q(32,−110) 9/32π10

10 0 Q(5, 1,−110) 5/16π10

10 0 Q(7,−111) 35/64π10

10 0 Q(4, 2,−110) 128/45π8

10 0 Q(22, 1,−19) 16/9π8

10 1 Q(15,−15) 163/3024π10

10 1 Q(3, 13,−16) 1159/12096π10

10 1 Q(32, 1,−17) 47/288π10

d g Stratum Vol
10 1 Q(5, 12,−17) 113/576π10

10 1 Q(5, 3,−18) 139/432π10

10 1 Q(7, 1,−18) 5/12π10

10 1 Q(9,−19) 385/432π10

10 1 Q(42,−18) 416/135π8

10 1 Q(6, 2,−18) 29632/8505π8

10 1 Q(4, 2, 1,−17) 682/405π8

10 1 Q(22, 12,−16) 499/567π8

10 1 Q(3, 22,−17) 733/486π8

10 2 Q(16,−12) 337/18144π10

10 2 Q(3, 14,−13) 403/12096π10

10 2 Q(32, 12,−14) 8302/136080π10

10 2 Q(33,−15) 3247/30240π10

10 2 Q(5, 13,−14) 103/1440π10

10 2 Q(5, 3, 1,−15) 37/288π10

10 2 Q(52,−16) 233/864π10

10 2 Q(7, 12,−15) 1697/10080π10

10 2 Q(7, 3,−16) 491/1680π10

10 2 Q(9, 1,−16) 4037/10080π10

10 2 Q(11,−17) 35113/36288π10

10 2 Q(6, 4,−16) 38432/14175π8

10 2 Q(8, 2,−16) 1838/567π8

10 2 Q(42, 1,−15) 17503/14175π8
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d g Stratum Vol
10 2 Q(6, 2, 1,−15) 19576/14175π8

10 2 Q(4, 2, 12,−14) 1501/2430π8

10 2 Q(4, 3, 2,−15) 2503/2268π8

10 2 Q(22, 13,−13) 874/8505π8

10 2 Q(3, 22, 1,−14) 3775/6804π8

10 2 Q(5, 22,−15) 85969/72900π8

10 3 Q(3, 15) 13/1134π10

10 3 Q(32, 13,−1) 16459/816480π10

10 3 Q(33, 1,−12) 1843/51030π10

10 3 Q(5, 14,−1) 13/540π10

10 3 Q(5, 3, 12,−12) 167/3888π10

10 3 Q(5, 32,−13) 6029/777760π10

10 3 Q(52, 1,−13) 1859/20160π10

10 3 Q(7, 13,−12) 4211/75600π10

10 3 Q(7, 3, 1,−13) 2027/20160π10

10 3 Q(7, 5,−14) 259/1200π10

10 3 Q(9, 12,−13) 372713/2721600π10

10 3 Q(9, 3,−14) 16819/68040π10

10 3 Q(11, 1,−14) 7476157/21432600π10

10 3 Q(13,−15) 12725/14112π10

10 3 Q(62,−14) 5608672/2679075π8

10 3 Q(8, 4,−14) 53245/23814π8

10 3 Q(10, 2,−14) 276352/99225π8

d g Stratum Vol
10 3 Q(6, 4, 1,−13) 13166/14175π8

10 3 Q(8, 2, 1,−13) 2525/2268π8

10 3 Q(42, 12,−12) 17503/42525π8

10 3 Q(6, 2, 12,−12) 6572/14175π8

10 3 Q(42, 3,−13) 301/405π8

10 3 Q(6, 3, 2,−13) 63862/76545π8

10 3 Q(4, 2, 13,−1) 2353/11340π8

10 3 Q(4, 3, 2, 1,−12) 1261/3402π8

10 3 Q(5, 4, 2,−13) 19291/24300π8

10 3 Q(3, 22, 12,−1) 3811/20412π8

10 3 Q(32, 22,−12) 25517/76545π8

10 3 Q(5, 22, 1,−12) 9643/24300π8

10 3 Q(7, 22,−13) 647/700π8

10 4 Q(34) 407867/18370800π10

10 4 Q(5, 32, 1) 1541/58320π10

10 4 Q(52, 12) 268/8505π10

10 4 Q(52, 3,−1) 755/13608π10

10 4 Q(7, 3, 12) 37/1080π10

10 4 Q(7, 32,−1) 1523/25200π10

10 4 Q(7, 5, 1,−1) 259/3600π10

10 4 Q(72,−12) 42083/252000π10

10 4 Q(9, 13) 23881/510300π10

10 4 Q(9, 3, 1,−1) 16819/204120π10
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d g Stratum Vol
10 4 Q(9, 5,−12) 34133/194400π10

10 4 Q(11, 12,−1) 7476157/64297800π10

10 4 Q(11, 3,−12) 32116747/154314720π10

10 4 Q(13, 1,−12) 12725/42336π10

10 4 Q(15,−13) 3075526457/3857868000π10

10 4 Q(8, 6,−12) 59270/35721π8

10 4 Q(10, 4,−12) 914432/496125π8

10 4 Q(12, 2,−12) 1295123/546750π8

10 4 Q(62, 1,−1) 1808/2625π8

10 4 Q(8, 4, 1,−1) 3746/5103π8

10 4 Q(10, 2, 1,−1) 151936/165375π8

10 4 Q(6, 4, 12) 193604/637875π8

10 4 Q(8, 2, 12) 1241/3402π8

10 4 Q(6, 4, 3,−1) 4636/8505π8

10 4 Q(8, 3, 2,−1) 233833/357210π8

10 4 Q(42, 3, 1) 400/1701π8

10 4 Q(6, 3, 2, 1) 752/2835π8

d g Stratum Vol
10 4 Q(5, 42,−1) 15596/30375π8

10 4 Q(6, 5, 2,−1) 474376/820125π8

10 4 Q(4, 32, 2) 163/810π8

10 4 Q(5, 4, 2, 1) 44617/182250π8

10 4 Q(7, 4, 2,−1) 7269/12250π8

10 4 Q(5, 3, 22) 6704/32805π8

10 4 Q(7, 22, 1) 727/2625π8

10 4 Q(9, 22,−1) 28968137/40186125π8

10 5 Q(9, 7) 54527/441000π10

10 5 Q(11, 5) 618346469/4546773000π10

10 5 Q(13, 3) 19615/116424π10

10 5 Q(15, 1) 3719141/14553000π10

10 5 Q(17,−1) 2778996658/3978426375π10

10 5 Q(82) 40606/32805π8

10 5 Q(10, 6) 272768/212625π8

10 5 Q(12, 4) 29197/20250π8

10 5 Q(14, 2) 24718528/13395375π8

For more values of volumes, see the author’s webpage [12].
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Appendix B. Alternative computation of volume

We give here an alternative computation of the volume of the hyperellip-
tic stratum Q(2, 12) (§3), using the method of diagrams counting described
in §4. This allows us to check one more time that our choices of normal-
ization for the volumes are consistent. Furthermore this example is a good
representative of the general case: it illustrates how multi-zeta values ap-
pear in the computations and how they compensate to give at the end the
expected value for the total volume of the stratum.
The diagrams for Q(2, 12) are given in Figure B.1, as well as the number

of choices for the lengths of the saddle connections (l1, . . . , lk), the weight
of each configuration (taking into account the symmetries), and the con-
tributions to the total counting, that are computed using Appendix C.

Summing all the contributions we get
6N5

5 ζ(4) so by (4.1), we obtain:

VolQ(2, 12) = 12ζ(4) =
2π4

15 ,

which coincides with the value found in (3.6).

Appendix C. Toolbox

Recall that

ζ(2) =
π2

6 , ζ(4) =
π4

90 so (ζ(2))2 =
5
2ζ(4).

Recall the definition of the multiple zeta functions:

ζ(s1, . . . , sk) =
∑

n1>···>nk>0

1
ns11 . . . nsk

k

Lemma C.1.

∀m > 2,
∑
k>0

1
(2k + 1)m = 2m − 1

2m ζ(m)(C.1)

∀m > 1,
N∑
i=1

im ∼
N→∞

Nm+1

m+ 1(C.2)

∀m > 1, Card{(l1, . . . , lm)∈Nm|N=2l1+ . . .+2lj+ lj+1+ . . .+ lm}

∼
N→∞

Nm−1

2j(m− 1)!
(C.3)
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Diagrams (l1, . . . , lk) weight Contribution

0

w1w2 (w2 − w1)1{w2>w1} 1
4N5

15
ζ(2)ζ(3)

1{w2>w1} 1 O(N4)

1

w (2w)3

2 · 3! 1
8N5

15
ζ(5)

1

W1

w2

0

W11{W1>2w2}
1

4

W11{W1<2w2}
1

4

N5

30
ζ(2)ζ(3)

0

W1

w2

0

W 2
1

2
1{W1=2w2}

1

2
· 1
3

N5

60
(32ζ(4)− 33ζ(5))

1

1

W
W

W 2

2

1

3
· 1
4

N5

60
ζ(5)

0

W2

w3

0

w1

1{w1>w3,W2=2w1}
1

2

1{w3>w1,W2=2w1}
1

2

N5

30
(8ζ(2)2 − 9ζ(2)ζ(3))

Figure B.1. Diagrams for Q(2, 12)
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We recall the following standard fact ([2, Lemma 3.7]):

Lemma C.2 (Athreya–Eskin–Zorich).∑
H·W6N

W∈Nk,W∈Nk

W a1+1
1 . . .W ak+1

k ∼ Na+2k

(a+ 2k)! ·
k∏
i=1

(ai + 1)ζ(ai + 2),

where a =
∑k
i=1 ai.

We will need the following variations of the previous lemma:

Lemma C.3.∑
W (H1+2H2)62N

Wm ∼ Nm+1

2(m+ 1)
(
2m+1ζ(m)− (2m+1 + 1)ζ(m+ 1)

)
(C.4)

∑
W1(H1+2H2)
+W2H362N

W 2
1W2 ∼

N5

30 (8(ζ(2))2 − 9ζ(2)ζ(3))(C.5)

Proof. — Proof of (C.4):

A =
∑

W (H1+2H2)62N

Wm

=
∑

WH62N
Wm Card{(H1, H2) ∈ N2 s.t. H = H1 + 2H2}

Since 2H2 is even and goes from 2 to H − 1 or H − 2 depending on the
parity of H, we have :

Card{(H1, H2) s.t. H = H1 + 2H2} = bH − 1
2 c.

A ∼
∑

WH62N
WmbH − 1

2 c =
∑

W (2K+1)62N

WmK +
∑

W (2K+2)62N

WmK

∼
∑
K>1

K

(
1

m+ 1

(
2N

2K + 1

)m+1
+ 1
m+ 1

(
2N

2K + 2

)m+1
)

using (C.2). So

A = Nm+1

m+ 1

2m+1
∑
K>0

K

(2K + 1)m+1︸ ︷︷ ︸
S1(m)

+
∑
K>0

K

(K + 1)m+1︸ ︷︷ ︸
S2(m)


2S1(m) +

∑
K>0

1
(2K + 1)m+1 =

∑
K>0

1
(2K + 1)m
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So using (C.1) we obtain:

S1(m) = 1
2m+2 ((2m+1 − 2)ζ(m)− (2m+1 − 1)ζ(m+ 1))

Similarly,
S2(m) = ζ(m)− ζ(m+ 1),

which gives the result.
Proof of (C.5): As for (C.4) we have:∑

W1(H1+2h2)
+W2H362N

W 2
1W2 =

∑
W1(2K+1)

+W2H362N

W 2
1W2K +

∑
W1(2K+2)

+W2H362N

W 2
1W2K

Following the proof of Lemma 3.7 in [2], we introduce x1 =
W1(2K + 1)

2N

and x2 =
W2H3

2N . We obtain for the first sum

∑
W1(2K+1)

+W2H362N

W 2
1W2K ∼

∑
K>0,
H>1

∫
∆2
K

(
x12N

2K + 1

)2(
x22N
H

)
2N

2K + 1dx1
2N
H
dx2

= (2N)5
∫

∆2
x2

1x2dx1dx2
∑
K,H

K

(2K + 1)3
1
H2

where ∆2 denotes the simplex x1 + x2 6 1 in R2
+, and∫

∆2
x2

1x2dx1dx2 = 2!
5! .

Note that∑
K>0,H>1

K

(2K + 1)3
1
H2 = S1(2)ζ(2) =

1
16(6(ζ(2))2 − 7ζ(2)ζ(3))

with S1(m) defined on the proof of (C.4). Similarly, we obtain that∑
W1(2K+2)+W2H362N

W 2
1W2K = (2N)5 2!

5!
1
8((ζ(2))2 − ζ(2)ζ(3)),

which gives the result. �
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