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GRADED TWISTING OF CATEGORIES AND
QUANTUM GROUPS BY GROUP ACTIONS

by Julien BICHON,
Sergey NESHVEYEV & Makoto YAMASHITA (*)

ABSTRACT. — Given a Hopf algebra A graded by a discrete group together
with an action of the same group preserving the grading, we define a new Hopf
algebra, which we call the graded twisting of A. If the action is by adjoint maps,
this new Hopf algebra is a twist of A by a pseudo-2-cocycle. Analogous construc-
tion can be carried out for monoidal categories. As examples we consider graded
twistings of the Hopf algebras of nondegenerate bilinear forms, their free products,
hyperoctahedral quantum groups and g-deformations of compact semisimple Lie
groups. As applications, we show that the analogues of the Kazhdan—Wenzl cate-
gories in the general semisimple case cannot be always realized as representation
categories of compact quantum groups, and for genuine compact groups, we ana-
lyze quantum subgroups of the new twisted compact quantum groups, providing a
full description when the twisting group is cyclic of prime order.

RESUME. A une algebre de Hopf A graduée par un groupe et munie d’une
action de ce méme groupe préservant cette graduation, nous associons une nouvelle
algébre de Hopf, que nous appelons le twist gradué de A. Quand ’action est de type
adjoint, cette nouvelle algébre de Hopf est un twist de A par un pseudo-2-cocycle.
Une construction similaire est effectuée au niveau des catégories monoidales. Nous
étudions les exemples des algeébres de Hopf des formes bilinéaires non dégénérées,
leurs produits libres, les groupes quantiques hyperoctaédraux, et les g-déformations
des groupes de Lie compacts semi-simples. En application, nous montrons que les
analogues des catégories de Kazhdan—Wenzl dans le cas semi-simple général ne
peuvent pas toujours étre réalisées comme catégories de représentations de groupes
quantiques compacts, et pour les groupes compacts usuels, nous décrivons comple-
tement les sous-groupes quantiques du nouveau groupe quantique twisté, dans le
cas ou le groupe twisteur est d’ordre premier.
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Introduction

Various forms of twisting constructions have appeared in the theory of
quantum groups since the famous proof of the Kohno—Drinfeld theorem by
Drinfeld [17], where he studied twistings of quasi-Hopf algebras and showed
that the quantized universal enveloping algebras are twists of the usual
universal enveloping algebras equipped with the associators defined by the
Knizhnik—Zamolodchikov equation. On the dual side of quantized function
algebras, the corresponding procedure for 2-cocycle twisting appeared in a
work of Doi [16], which clarified the relation between the multiparametric
deformations of GL(n) by Takeuchi [33] and Artin—Schelter—Tate [1] for
different parameters.

In the present paper we study twistings of Hopf algebras by a particular
class of pseudo-2-cocycles (meaning that the new coproduct is still strictly
associative) and related generalizations. One feature of twisting by pseudo-
2-cocycles is that the corresponding tensor category of corepresentations
is perturbed in a very controlled way, whereas the 2-cocycle twisting does
not change the category at all. Specifically, the new Hopf algebra has the
same combinatorial structure of corepresentations in terms of fusion rules,
quantum dimensions, and classical dimensions, so that the perturbation is
very mild.

The motivation for this paper stems from the previous work of the sec-
ond and third authors [30] which gave quantum group realizations of the
Kazhdan—Wenzl categories [24], which are the representation categories
of SL,(n) with nontrivial associators given by 3-cocycles on the chain group
of the category. It turns out that a similar construction can be carried out
starting from a I'-grading on a Hopf algebra A and an action by the same
discrete group I' preserving the grading. If, moreover, the automorphisms
defining the action are adjoint, then the failure of lifting the action to a
homomorphism from I" into the group H'(A) of characters of A (with con-
volution product) gives rise to a pseudo-2-cocycle and therefore to a new
associator on the monoidal category of corepresentations of A. By allowing
non-adjoint actions, we further expand the scope of our twisting procedure,
resulting in categories which have different fusion rules than the original
ones. The procedure can also be formulated at the level of monoidal cate-
gories.

In more detail, our twisting consists of two quite elementary steps. The
first step is to take the crossed products (smash products), which give
Hopf algebras from group actions on Hopf algebras. In the framework of
monoidal categories an analogous construction was given by Tambara [35].
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GRADED TWISTING BY GROUP ACTIONS 2301

The second step is to take the diagonal subalgebra or diagonal subcategory
inside the crossed product (see Section 2 for precise formulations) using the
grading. The compatibility between the grading and the action ensures that
we obtain a Hopf algebra or a monoidal category as a result.

We provide applications of our framework to two general problems in
quantum group theory.

(i) The first is the quantum group realization problem for the Kazhdan—
Wenzl type categories, mentioned above. The precise formulation is as fol-
lows: given a compact quantum group G and a 3-cocycle ¢ on the chain
group of its representation category, is the twisted category (Rep G)¢ (with
associator given by c¢) still the representation category of a compact quan-
tum group, or in other words, does it admit a unitary fiber functor? Us-
ing [28], we give a necessary and sufficient condition in order that (Rep G)°
admits a dimension preserving fiber functor when G is coamenable (Corol-
lary 3.11). We then show that the analogues of the Kazhdan—Wenzl cate-
gories in the semisimple case cannot be always realized as representation
categories of compact quantum groups (Corollary 3.13).

In case G is the g-deformation of a compact semisimple Lie group, our
procedure for finding pseudo-2-cocycles boils down to a construction of
cochains on the dual of the maximal torus with coboundary living on the
dual of the center, which has been discussed in [29, 30]. While this might
look like a very special construction, we prove, that for ¢ > 0, ¢ # 1,
up to coboundaries there are no other unitary pseudo-2-cocycles with the
corresponding associator given by a 3-cocycle on the chain group (Theo-
rem 3.12).

(ii) The second problem is the determination of the quantum subgroups
of the twisted quantum groups. We provide a full answer if our compact
quantum group is obtained as the graded twisting of a genuine compact
group by a cyclic group of prime order (Theorem 4.3). This is a wide
generalization of the description of the quantum subgroups of SU_;(2) by
Podle$ [31], and complements the previous work of the first author and
Yuncken [14] on a similar problem for 2-cocycle twistings. Similarly to [14],
our analysis is based on a careful study of irreducible representations of the
twisted algebra of regular functions.

The paper is organized as follows. Section 1 contains some background
material on graded categories and Hopf algebras, group actions and crossed
products.

In Section 2 we give a detailed presentation of our twisting procedure,
first for monoidal categories and then for Hopf algebras. We then consider

TOME 66 (2016), FASCICULE 6
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several examples arising from Hopf algebras of nondegenerate bilinear forms
and their free products.

In Section 3 we specialize to the case of Hopf algebras of regular functions
on compact quantum groups and consider more examples coming from free
orthogonal and unitary quantum groups, half-liberations of orthogonal and
unitary groups, hyperoctahedral quantum groups, and g-deformations of
compact semisimple Lie groups. We then discuss the realization problem
for the Kazhdan-Wenzl type categories.

In Section 4 we further specialize to Hopf algebras of regular functions
on genuine compact groups and study the problem of describing quantum
subgroups of the corresponding twisted compact quantum groups.

ACKNOWLEDGEMENT. — The authors would like to thank the reviewer
for careful reading of the manuscript, which led to elimination of several
inaccuracies and to improvement of the presentation.

1. Preliminaries

Throughout the whole paper we denote by K a commutative field, and
by I' a discrete group. We consider only vector spaces, algebras, etc., over K.
When we talk about x-structures, we assume that K = C.

1.1. Graded categories

A T'-graded category C is a K-linear category with full subcategories C,
for g € T, such that any object X in C admits a unique (up to isomor-
phism) decomposition X ~ @4ecrX, with X, € Cg such that X, = 0 for all
but a finite number of g’s, and there are no nonzero morphisms between
objects in C4 and Cj for g # h. Let us say that the grading is full if the
subcategories C, are strictly full, i.e., closed under taking isomorphic ob-
jects. Clearly, any grading uniquely extends to a full grading, and we do
not lose generality by imposing this condition.

We say that C is a I'-graded monoidal category if in addition it is a
monoidal K-linear category, such that 1 € C. and the monoidal structure
satisfies X ® Y € Cyy, for all homogeneous objects X € C; and Y € Cy,.

In the semisimple case there is a universal grading. Namely, assume
that C is an essentially small semisimple monoidal K-linear category with
simple unit. Then the chain group Ch(C) of C is the group generated by the
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formal symbols [X] for the simple objects X of C, subject to the relation
[X][Y] = [Z] whenever Z appears as a subobject of X ® Y. Note that if X
is simple and there exists a right dual XV of X, then the class [X V] defines
the inverse of [X] in Ch(C). Of course the left duals have the same property.

The chain group defines a Ch(C)-grading on C in the obvious way: C,
consists of direct sums of simple objects X such that [X] = g. The following
is immediate by definition.

LEMMA 1.1. — IfC is an essentially small semisimple monoidal K -linear
category with simple unit, then to be given a full I'-grading on C is equiv-
alent to be given a group homomorphism Ch(C) — T.

The chain group can also be described as follows. For a tensor functor
F:C — C denote by Aut®(F) the group of natural monoidal automor-
phisms of F. The following result is more or less known. For the repre-
sentation category of a compact group G, it reduces to Miiger’s result [26]
which states that Ch(Rep G) is the Pontryagin dual of the center of G,
while for the fusion categories it is proved in [22].

PROPOSITION 1.2. — Assume that C is an essentially small semisimple
monoidal K-linear category with simple unit, such that End¢(U) = K for
any simple object U. Then there is a natural group isomorphism

Hom(Ch(C), K*) ~ Aut®(Id¢),

where the group structure of Hom(Ch(C), K*) is given by pointwise mul-
tiplication.

Proof. — Let ¢ be a group homomorphism from Ch(C) to K*. We can
define a natural transformation f‘;}: X — X by setting 5‘;{ = ¢([X])tx for
simple X and extending it to general objects of C by direct sum decompo-
sition into simple objects. The group homomorphism property of ¢ implies
that £2 belongs to Aut®(Ide). Tt is straightforward to see that ¢ — £% is a
group homomorphism.

Reversing the above correspondence, starting from ¢ € Aut®(Idc), we
can define a map ¢*: Ch(C) — K* by the characterization ¢¢([X])tx =
Ex. As Exgy = &x ® &y, any subobject Z of X ® Y satisfies £ =
#5([X])¢S([Y])tz. Thus, ¢¢ is a group homomorphism. It is clear from the
construction that & — ¢¢ and ¢ — £? are inverse to each other. |

Next, let us translate the above to the algebraic framework of represen-
tation category of counital coalgebras. Denote by KT the group algebra
of I over K. For a coalgebra A denote by Corep(A) the category of fi-
nite dimensional left comodules over A. Recall that a homomorphism of
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coalgebras f: A — B is said to be cocentral if

fla@) ®a) = flae) ®aq)

holds for any a € A. This condition is equivalent to saying that the image
of the transpose map f': B* — A* lies in the center of the algebra A* of
linear functionals on A, endowed with the convolution product.

LEMMA 1.3. — For any coalgebra A there is a one-to-one correspon-
dence between

(i) full T'-gradings on Corep(A);
(if) I-gradings on A such that A(A,) C Ay ® Ay for all g € T;
(iii) cocentral coalgebra homomorphisms A — KT

Similarly, if A is a Hopf algebra, then there is a one-to-one correspondence
between

(i) full T-gradings on the monoidal category Corep(A);
(ii") I'-gradings on A such that A(Agy) C Ag ® Ay and AgAy, C Agy, for
all g,h €T;
(iii’) cocentral Hopf algebra homomorphisms A — KT.

Proof. — This is a routine verification, but let us present a brief argu-
ment for the reader’s convenience.

Assume (i), so that we are given a full I'-grading on C = Corep(A). It
is well-known that every element a € A generates a finite dimensional left
subcomodule, namely, the linear span of a <1 ¢ = ¢(a(1))a(z) for ¢ € A*. It
follows that if we denote by A, the subspace of A consisting of elements
that generate subcomodules belonging to C4, then A = @g4ecrAy. Moreover,
for any ¢ € A*, the map a — ¢>a = ¢(a(2))a(r) is a homomorphism of left
A-comodules. Since any A-comodule homomorphism of A, to Aj is zero
for g # h, we must have A(4,) C A, ® Ay, and we obtain (ii).

Next, given a I'-grading on A as in (ii), we define f: A — KT by f(a) =
¢(a)g for a € Ay Then f is cocentral. Note that the grading on A is
recovered from f by Ay ={a € Alan) ® flap) =a® g}

Finally, given a cocentral coalgebra homomorphism f: A — KT, any
comodule over A can be considered as a comodule over KT, that is, as a
I'-graded vector space. The cocentrality assumption implies that this I'-
grading respects the A-comodule structure. Hence we obtain a I'-grading
on Corep(A).

The equivalence of (i')—(iii’) can be argued in the same way. For example,
from (ii’), when a € A, and b € Ay, one obtains f(a)f(b) = e(a)e(b)gh =
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e(ab)gh = f(ab), hence f is a bialgebra homomorphism, thus it is a Hopf
algebra homomorphism. g

Let us note that if any (or all) of the above conditions (i')—(iii’) holds,
the antipode S of A satisfies S(A,) = A,-1 for each g, since it is the
unique linear map satisfying S(a())az) = €(a)l = a@q)S(agz)) and we
know that 1 € A.. Moreover, Lemma 1.1 states the following in this setup.
If C = Corep(A) for a cosemisimple Hopf algebra A, we have a surjective
cocentral Hopf algebra homomorphism A — K Ch(Corep(4)), and any
cocentral Hopf algebra homomorphism A — KT factors through it.

1.2. Group actions on monoidal categories

Given a group I', consider the monoidal category I with objects the el-
ements of I, no nontrivial morphisms, and with the tensor structure given
by the product in I'. Assume that C is a monoidal K-linear category, and
denote by Aut®(C) the monoidal category of monoidal autoequivalences
of C, with the tensor structure given by the composition of monoidal func-
tors. Then a (weak) action of T on C is a tensor functor I — Aut®(C), see,
e.g., [35].

Spelling out the meaning of this definition, an action of I on C is de-
fined by monoidal autoequivalences a9 of C and natural monoidal isomor-
phisms 79" from a9a” to a9" such that

(1.1) n? " ad (k) = nolEpoh,
This can be explicitly written as the equality of morphisms
hk h,k hk_gh .
n% " ad(ny") =n% "ik(x)' agahak(X) %aghk(X).

Note also that the monoidality of 79" means commutativity of the following
diagrams:

g.h
Moy

(X QY) — 2 L WX ®Y)

af(a™(X) ® a™(Y)) a?(X) @ a?™(Y),

kng‘/@w7

ada(X) ® ada(Y)

where o denotes the monoidal structure of a9.

TOME 66 (2016), FASCICULE 6
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We will denote an action by a pair (o, n) as above. Replacing the functor
T — Aut®(C) by a naturally monoidally isomorphic one, we may, and will,
assume that a® = Id¢ and n®9 and 79 are the identity isomorphisms.
An action is called strict if we have equality of monoidal autoequivalences
h = a9" as well as the equalities 79" = ¢ for all g and h. An example of
a strict action can be obtained by taking C = Corep(A) for a Hopf algebra
A and an action of I' on A by Hopf algebra automorphisms.

ada

By Tambara’s result [35], if I" acts on C, we can construct a new monoidal
category C Xq,, I over K, analogous to the crossed product construction of
Hopf algebras. The underlying linear category is the same as the Deligne
product C X Cr, where Cr is the monoidal category over K whose simple
classes are given by the elements of T'. In other words, Cr = Corep(KT)
is the category of finite dimensional I'-graded vector spaces. The monoidal
structure of C X Cr is given by (X K g) @ (Y K h) = (X ® a9(Y)) K gh at
the level of objects, and by (T'H ¢,) @ (S ) = (T ® a9(5)) W ¢4y for
T e C(X,W)and S € C(Y, Z). The tensor unit is given by 1 X e, while the
new associativity morphisms ® are given by

(1.2) (L®a“27)(L®(L®n9’h))_1¢XLghk:
(XNgYRMNRZKE—> XKRge (YRAe ZKE),

where ® denotes the associativity morphisms in C.

In what follows we will be particularly interested in actions («,n) such
that a9 is naturally monoidally isomorphic to the identity functor on C for
all g € T'. In this case choose such isomorphisms (9: a9 — Id¢, with (¢ = ¢,
and define natural monoidal automorphisms p9" of Ide by

(1.3) po oyl = ¢h o
LEMMA 1.4. — The natural isomorphisms pu9" satisfy the cocycle iden-
tity

o ghok h.k  g,hk
px ekt = e

Proof. — This follows immediately by multiplying (1.1) on the left by
¢9" and using the definition of u. |

If C is essentially small, so that Aut®(Ide) is a group, then this can be
formulated by saying that u = (u9"), 1 is an Aut®(Idc)-valued 2-cocycle
on T, where Aut®(Idc) is considered as a trivial I'-module.

Our main example of this situation is as follows. Consider a Hopf alge-
bra A. We let H'(A) denote the group of algebra homomorphisms 4 — K,
with convolution product (1 * v)(a) = p(aq))v(a()). Similarly, H; (A) de-
notes the subgroup of H!(A) formed by strongly central (or lazy) elements,
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i.e., those w € H'(A) such that w %1 = ¢ * w. If A is finite dimensional,
so that A* is again a Hopf algebra, then H'(A) is the group of group-like
elements in A* and H}(A) is the subgroup of group-like elements that are
central in A*.

Suppose that we are given a group homomorphism I' — H'(A)/H}(A).
Lifting it to a map I' — H'(A) we get a pair (¢, ), where ¢ is a map
I' — H'(A), g — ¢,, and p is a 2-cocycle on I' with values in the trivial
I-module H}(A), such that

¢e:57 ¢g*¢h:¢gh*ﬂ(gvh):ﬂ(gah)*¢gh~
Note that for g € T', we have ¢, ' = ¢g—1 % u(g,g~") ", and p(g,g7") =
(971, g). Define an action of I on A by the Hopf algebra automorphisms
agla) = ¢g>a<d, = ¢, (ap))a@ dylags))
= (9,97 ) (S(aq)))dg-1(acz))ac dg(ac),
which depends only on the initial homomorphism I' — H'(A)/H}(A). We
call such actions almost adjoint.

We then get a strict action of I' on C = Corep(A), which we continue
to denote by a: given a corepresentation 6: V— AV, we let o9(V, ) =
(V, (g ® t)d). The autoequivalences a9 are isomorphic to Id¢c. Namely, for
every X = (V,0) € C consider the representation 7wx of the algebra A* on V
defined by mx (w) = (w®¢)d. Then the morphisms (% = 7x(¢y): a9(X) —
X define a natural monoidal isomorphism ¢9: a9 — Id¢. The corresponding
cocycle (u9"), 5 defined by (1.3) is given by

(1.4) p" = mx (u(g, h)).

2. Graded twisting
2.1. Categorical formulation

Let (a,n) be an action of I' on a I'-graded monoidal K-linear category C.
We say that («,n) is an invariant action if each a9 preserves the homoge-
neous subcategories Cp, for all h € T.

DEFINITION 2.1. — Given an invariant action (o, n) of I on C, we denote
by Ch(@n) the full monoidal K -linear subcategory of C Xa,n ' obtained by
taking direct sums of the objects X W g for g € I' and X € Cy, and call
ch(@m) the graded twisting of C by the action of T'. For strict actions we
write Cb.

TOME 66 (2016), FASCICULE 6
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By construction, Ct(®" is equivalent to C as a I'-graded K-linear cate-
gory. Identifying C and C*(®" as K-linear categories, we may express the
twisted monoidal structure as an operation on C given by X ®4,,Y = X ®
a9(Y) if X € Cq4. However, in some cases instead of changing the monoidal
structure we can change the associativity morphisms in C. Namely, we have
the following result.

THEOREM 2.2. — Assume an invariant action («,n) of I' on C is such
that o ~ Id¢ for all ¢ € TI'. Choose natural monoidal isomorphisms
¢9: a9 — Id¢ and define a cocycle = (u9"), n, by (1.3). Then

(i) there are new associativity morphisms ®* on C such that
=1 uL")Ne: (XRY)®Z > X (Y ®Z)

for X € Cj and Y € Cy;
(ii) there is a monoidal equivalence F': CH(®") — (C,®") defined by
F(XXg) =X for X € Cy4, with the tensor structure

Fo: FIXKg) @ FYXh) - F(XXKgY Xh)
represented by (1 ® ¢9)™1: X @Y = X ® ay(Y) for X € Cy and
Y €.

Proof. — Part (i) follows easily from the cocycle property of u, but it will
also follow from the proof of (ii) (cf. [17]). For part (ii), in turn, it suffices to
check that (F, Fy) transforms the associator on C*(®) into ®*. Recalling
formula (1.2) for the associator on C x4, I', this amounts to verifying the
equality

21) (@)@ @) e(e )TN e ) @)
=) e ™ e (o)

of morphisms (X ® V) ® Z - X ® a9(Y ® a"(Z)) for X € Cy, Y € Cy,
Z € Cy.

The assumption that ¢ is a natural isomorphism of monoidal functors
implies that (¢9)~! = a3(¢? ® ¢9)~L. Using also that ("¢9 = p9"¢9hnsh,
we see that the right hand side of (2.1) equals

(t®af)e®(@n™") (e (¢ @) e.

But this equals the left hand side of (2.1) by naturality of ®. a

In the semisimple case the new associativity morphisms can be expressed
in terms of usual 3-cocycles as follows.

ANNALES DE L’INSTITUT FOURIER



GRADED TWISTING BY GROUP ACTIONS 2309

PRrROPOSITION 2.3. — Let C be as in the previous theorem. Moreover,
assume that C is essentially small, semisimple, with simple unit, such that
Ende(U) = K for any simple object U. Let q: Ch(C) — T' denote the
homomorphism corresponding to the I'-grading on C. Then there is a well-
defined cocycle ¢ € Z3(Ch(C); K*) such that

c(g,h kg = qu(g)’q(h)

for any g, h,k € Ch(C) and any simple object Z € C with [Z] = k.

Proof. — By Proposition 1.2, for any s,t € I' we can define a homomor-
phism Ch(C) — K* by [Z] = p3". This shows that the map c: Ch(C)® —
K* in the formulation is well-defined. The cocycle identity for ¢ can be
checked directly, but it also follows from the pentagon relation for ®#, as

O* =¢(g,h, k)P (XQY)®Z - X (Y ®2)
for [X]=g, [Y]=h and [Z] = k. O

Remark 2.4. — The cocycle ¢ in the previous proposition does not nec-
essarily descend to I'. Nevertheless, if I is abelian, then c at least descends
to the abelianization of Ch(C), since the homomorphism Ch(C) — K*,
[Z] + p', in the above proof factors through Ch(C)2P.

Remark 2.5. — Assume (o, n) is an action of I" on a I'-graded monoidal
K-linear category C. Let us say that the action is equivariant if o9(Cp) =
Cyng—1 holds for any g,h € I'. If « is strict, then C is called a crossed
I-category over K [37, Section VI|. For any equivariant action we have
X ®a9 (Y) € Cyy1ng = Chg, which implies that X Mgt @ Y K h~!
belongs to Cpy ® (hg)~*. Thus, the objects of the form X K g~! for X € C,
span a monoidal subcategory C* (™ which is equivalent to C as a I-graded
K-linear category. We note that if I' is abelian, then the notions of invariant
and equivariant actions are the same, but the monoidal categories C% (")
and CH(®") are not equivalent in general, see Section 2.3.

2.2. Hopf algebraic formulation

Let A be a Hopf algebra. Assume we are given a I'-grading on A such
that A(Ay) C Ay ® Ay and AgA, C Ay, for all g,h € T'. An action a of T
on A by Hopf algebra automorphisms is called invariant if ag(An) = Ap
for all g,h € T.

By Lemma 1.3 these assumptions can be formulated by saying that we
are given a cocentral Hopf algebra homomorphism p: A — KT and an
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action a of I' on A such that pa, = p for all g € I'. We then say that
the pair (p, @) is an invariant cocentral action of T' on A. Any such action
defines a strict invariant action of I" on Corep(A) and therefore we get a
twisted category Corep(A). We want to define a Hopf algebra of which
Corep(A)b® is the corepresentation category.

Consider the crossed product A x, I'. We realize it as the tensor product
A ® KT with the twisted product (¢ ® ¢)(b ® h) = aay(b) @ gh. It is a
Hopf algebra with the tensor product of original coproducts A(a ® g) =
a(1) ® g ®agz) ® g, the counit e(a ® g) = £(a), and the antipode S(a® g) =
S(ag-1(a) ® g™t

From this presentation it is straightforward that we have a monoidal
equivalence

Corep(A x4, ') ~ Corep(A) x4 T

The rigidity of the full monoidal subcategory Corep(A)“* C Corep(A) x4, T
is also easy to see. It follows that the matrix coeflicients of corepresenta-
tions of A x4 I' lying in Corep(A4)® span a Hopf subalgebra of A xi, T
with corepresentation category Corep(A4)»*. We thus arrive at the follow-
ing definition.

DEFINITION 2.6. — Given an invariant cocentral action (p,«) of T' on
a Hopf algebra A, the graded twisting of A by the action of I" is the Hopf
subalgebra Av"®) of Ax,T" spanned by the elements of the form a®g with
acAy={acAlaq ®plag) =a®g} and g € I'. If p is unambiguous
from the context, we will also denote this Hopf algebra by Ab¢.

By construction we have Corep(A%®) ~ Corep(A)%®, but of course no
categorical considerations are needed just to define A%®. Observe that by
working with homogeneous components we immediately see that A®) ¢
A x, T is a sub-bialgebra, while the fact that it is closed under the antipode
follows from S(Ay) C Ag-1.

The following description of A»“ is very useful.

PrOPOSITION 2.7. — The crossed product A x, I' becomes a KT'-co-
module by the coaction

(2.2) AxoeT = (A%, T)® KT, a®gHa(1)®g®p(a(2))g_1,

the space (A x, T')°KT of invariant elements (that is, elements x satisfying
x+— 1 ® 1 for the above coaction) coincides with A%, and the map

G A= AV = (A x T)°ET g acy @ plagz))
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is a coalgebra isomorphism. Moreover, the map p = e @ t: a ® g +— €(a)g
restricts to a cocentral Hopf algebra homomorphism A%® — KT satisfying

pj =p-

Proof. — This is easily verified by working with homogeneous compo-
nents of A. 0

We now describe the graded twisting operation in terms of pseudo-
2-cocycles, when the action is almost adjoint. Recall that a linear map
o € (A® A)* is said to be a pseudo-2-cocycle (see [19] for an equivalent
formulation) if it is convolution invertible, the product

AxA> (a, b) — a(a(l),b(l))o_l(a(g), b(g))a(g)b(g) €A

is associative with the initial 1 still being the unit, and the bialgebra A°
equipped with the initial coproduct and the new product is a Hopf alge-
bra. The pseudo-2-cocycle o defines then a quasi-tensor equivalence (tensor
equivalence “minus compatibility with the associators”) between Corep(A)
and Corep(A?), which is a tensor equivalence if and only if o is a 2-cocycle
in the usual sense [16], see, e.g., [17, 32].

Assume that we have an almost adjoint action (p,«) on A as at the
end of Section 1.2. Thus « is defined by a pair (¢, 1) consisting of a map
¢: T — H'(A) and a 2-cocycle pu: I'? — H}(A). Recall that u can be con-
sidered as a cocycle with values in Aut®(IdCorep( 4)) by (1.4). Consider the
associativity morphisms ®# on Corep(A) defined by p as described in The-
orem 2.2. By that theorem we have a monoidal equivalence Corep(A%H®) ~
(Corep(A), ®*). From this get a fiber functor F': (Corep(A), ®*) — Vectx
which is the forgetful functor on morphisms and objects, while its tensor
structure Fh: F(X) ® F(Y) — F(X ®Y) is given by tx ® my(¢,) for
X € Corep(A),. It follows that F, ' defines a pseudo-2-cocycle on A such
that the twisting of A by this pseudo-cocycle gives A»“. Let us formulate
this more precisely.

Extend the maps ¢, and ¢, ' on I' to KT by linearity, so that ¢, ' =
>, Tgdy " for @ = 37 wgg in KT. Similarly, extend p by bilinearity to a
map KI' @ KT' — H}(A) . Define

(23) 0: A®A— K,
a @b ¢ (0) = u(p(a)), S(p(a@))) (S (b)) s (piac)) (be2))-
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THEOREM 2.8. — Assume an almost adjoint invariant cocentral action
(p,a) of T on A is defined by a pair (¢, ) as above. Then

(i) the element o € (A® A)* defined by (2.3) is a pseudo-2-cocycle
on A, with the convolution inverse given by

oL ARAS K, a®b— Gp(a)(D);
(ii) the map j: A — A x,T defines a Hopf algebra isomorphism of the
twist A° of A by o onto A%® C A x,T.

Proof. — The theorem follows from the preceding discussion, but let us
give an explicit argument.

Denote by ¢’ the map defined in (i). Recall that if a € A;, we have
p(a) = e(a)g. For any b € A, we thus have

(00" )a®@b) = dr (b)) Epae)) (bez)
= e(a)dy " (b)) dy(bez)) = e(a)e(b).

By linearity in a, we obtain that o * ¢’ is equal to € ® €. By a similar
argument we also obtain ¢’ * 0 = € ® €, hence ¢/ = 0! as claimed.

Next, we claim that for any elements a, b, and ¢ of A, we have

(24) o™ aqy, bayeay)o ™ (b, c@)a(ag), bea))o(a@)buay, cm)
= p(p(a), p(b))(e).
First notice that ¢, (bc) = ¢z, (b)z, (c) holds for z € KT, which is by
definition true if z is actually in I', and in general follows from that by
linearity. This implies
oM (a, baye))o by, €2) = bpia) (01) 1)) o) (€2)
= Dp(aqry) (0(1)) Pplaca)) (€(1)) Pp(b)) (€2))-

Next, the cocycle property of p can be expressed as ¢, * ¢y = Py yq, *
w2y, Y(2)), which is again easy to see on group elements. Thus, the above
expression is equal to

Pp(acy) (0(1)) Pplabey) (€))(P(ags)), p(be))) (c2)),

which by the cocentrality of p is equal to

1(p(ac)), P(0))(€(1)) Pp(agabie)) (€2)) Pplacs)) (b3))
= p(p(a)), p(bay))(cy)o ™ (a@)be)s c2))o ™ (a), b))
This clearly implies (2.4).
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Recall that the associativity condition for the twisted product in the
definition of a pseudo-2-cocycle means that, although the right hand side
of (2.4) is not e(abc), it defines a central 3-form, that is,

u(p(aq)), p(b)))(cay)a@be)ce) = mplae), P(be)))(c@))am)ba)cq).-

But this is an immediate consequence of the cocentrality of p and the
centrality of u(g, h).
We thus get a bialgebra A% with product given by

a-b=o(aq)b))aebe o (a@),be)-

If a; € Ag, the right hand side becomes

by ' (b1))aghe2)dg(bz)) = agorg(b).

This shows that A; > a4 — a4 ® ¢ is indeed an algebra homomorphism
from A° to A x4 T, and induces a bialgebra isomorphism A% ~ A®%,
Hence A” is a Hopf algebra as well, and this proves (i) and (ii). O

Remark 2.9. — 1t follows from Equation 2.4 that o is a 2-cocycle if and
only if u is the trivial map, i.e., if and only if ¢ : I' — H'(A) is a group
morphism.

We end the section with a discussion of the Grothendieck ring of a twisted
graded Hopf algebra. Denote by K(A) the Grothendieck ring of the ten-
sor category Corep(A). By the Jordan—Hoélder theorem, the isomorphism
classes of simple objects form a basis of the underlying group, and in the
cosemisimple case it can be identified with the subring of A generated by
the characters of the simple corepresentations. An invariant cocentral ac-
tion (p,a) on A defines an action of I' on K(A), which is trivial when
the action is almost adjoint, and in this case we have K(A) ~ K(A"?) as
rings, which follows directly either from Proposition 2.7 or Theorem 2.8.
When the invariant cocentral action is not almost adjoint, the coalgebras A
and A% are still isomorphic, hence their Grothendieck groups are isomor-
phic. At the ring level, we have the following result, which follows directly
from Corep(A)»* = Corep(A»*) as well.

PROPOSITION 2.10. — Given an invariant cocentral action (p,a) of T
on A, we have a ring isomorphism

K(A") = (K(A) » 1)@k,

where T' acts on K(A) by the functoriality of the functor K.
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2.3. Invariant cocentral actions by abelian groups

There is a slight asymmetry in our construction. If we start with an
invariant cocentral action of I on a Hopf algebra, then we get a new twisted
Hopf algebra, but an action of I" is no longer defined on it. This is in itself
not surprising, as typically the symmetries of deformations should also
deform. The situation is better for abelian groups.

Thus, in this section we specialize to the case when T is abelian to have
an extra symmetry in our construction.

DEFINITION 2.11. — We denote by D(I') the category whose objects
are the triples (A, p,«), where (p,«) is an invariant cocentral action of T’
on a Hopf algebra A, and whose morphisms (A,p,a) — (B,q, ) are the
Hopf algebra homomorphisms f: A — B such that qf = p and B,f = oy
for any g € T.

In other words, the morphisms in D(T") are the I'-equivariant homomor-
phisms of I'-graded Hopf algebras.

LEMMA 2.12. — IfT is abelian and (A, p, «) is an object of D(T'), then
ay(j(a)) = jlag(a)) for g € T defines an object (A%, p, &) of D(T'), where j
is the map defined in Proposition 2.7.

Proof. — We have a well-defined action of T' on A x, I' by the Hopf
algebra automorphisms

ag(a®h) = ay(a) @ h.
By restriction we get the required action of I' on AH<. (|

Given objects (A,p,a) and (B,q,B) and a morphism f: (A,p,a) —
(B,q,0) in D(T'), the natural extension f ® ¢ is a Hopf algebra homo-
morphism between the crossed products by I', and by restriction we obtain
a Hopf algebra homomorphism A»® — B%8. Moreover if I is abelian, it is
a morphism from (A%%,p, &) to (B%?, g, B) in the category D(T"). Therefore
our graded twisting procedure defines an endofunctor of the category D(T'),
which is, as we shall see soon, an autoequivalence.

Since T is abelian, the set of its endomorphisms End(T") has a ring struc-
ture, with the product given by composition (¢ - 9)(g) = ¢(1»(g)) and the
sum given by pointwise product (¢+)(g) = ¢(g)1(g). Using this structure,
one obtains the ‘azx + b’ semigroup structure on End(I")?, whose product is
given by

(b1,%1) - (P2,02) = (¢1 + Y1 - P2, 91 - 2).
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Let us show next that there is a right action of this semigroup on the
category D(T') such that the twisting functor (A, p,a) — (A», P, &) corre-
sponds to the action by the element (¢,¢) in this semigroup.

If ¢ € End(T") and (A,p,«) € D(T'), the composition a¢ defines again
an invariant cocentral action of I'. Moreover, for each g € T', the maps
g = a9 ®ton AXge I define an action on At? Thus we can define an
endofunctor F§ on D(I') by setting F§ (A, p, a) = (Ab2? 5 &). We need to
verify the additivity in ¢.

LEMMA 2.13. — Let ¢,v¢ be endomorphisms of T, and (A, p,a) be an
object of D(T'). Then A%*(®+¥) is naturally isomorphic to (A%“¢)43%  given
by the map ag ® g +— a4y ® g ® g for ag € Ay.

Proof. — The map in the assertion is induced by the I'-graded coalgebra
isomorphisms j: A — AH*(@+¥) and j2: A — (AH*?)5%% . Hence we only
need to verify that it is compatible with the algebra structures.

If ay € Ay and by, € Ap, one has

((ag ® 9) © g)((bn @ h) @ h) = ((ag ® g)dy(g)(bn @ h)) @ gh
= ((ag @ ag(g)ry(g) (bn)) © h) @ h.
Since ag(g)y(g) = Qg(g)y(g), ONe sees the compatibility with the algebra
structures. O

It follows from the lemma that the graded twisting functor is indeed
an autoequivalence of D(T"), with inverse given by the functor (A, p, a) —
(Ab(=9) 5 &), where — is the automorphism of T' given by —u(g) = g~ .

As an immediate and useful consequence, we have the following result.

LEMMA 2.14. — Let (A,p,«) and (B, q, ) be objects in D(I"). Assume
that we have a Hopf algebra map

f:B— Ab®
inducing a morphism (B, q, 8) — (A%, p,&) in D(T). Then f is an isomor-
phism if and only if there exists a Hopf algebra map
fliA— Bty

inducing a morphism (A,p,a) — (B"#(=9) §, B) such that (f' ® v)f and
(f ® 1) f" are the canonical isomorphisms B ~ B*Y and A ~ A'°, respec-
tively.

Next, define FJ)”(A,p, a) = (A, p, ar)).

LEMMA 2.15. — The endofunctors Fj and F' satisfy the equation
FE) = Fily o
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Proof. — Expanding the definitions, we see that both F| e Ve and FJ' Fyj. "
send the object (A4,p,a) to (AH*?, B, av). O

By this lemma, we obtain a right action of the (az + b)-semigroup of
End(T") on D(T"), defined by

(A7p7 a) : (¢7 ’l/)) = F'ZZan(A?p? a) = (At’a¢,ﬁ7 dw)'

As an example, with the automorphism —:(g) = ¢!, the action of (—¢, —t)
defines an involution on D(T).

2.4. Examples

To illustrate the graded twisting procedure, we end the section with
examples.

Example 2.16. — First let us explain the relation of quantum SL(2) for
the parameters g and —q (see [30] for the compact case). At the categorical
level this can be explained also from the universality of the Temperley—Lieb
category, see [20, Remark 2.2].

Denote by a,b,c,d the standard generators of O(SLy(2)). There is a
cocentral Hopf algebra map

p: O(SLy(2) = K2, (Ccl Z)H(g 2)

where g denotes the generator of Zs. There is also an involutive Hopf alge-
bra automorphism a = o, of O(SL4(2)) defined by

a b (@ b\ (¢ O a b -1 0
c d — d) \0 —i)\c d 0 i)’
It is straightforward to check that there exits a Hopf algebra map
ta (@ b a®g b®g
osL-y2) oty (¢ 0] (000 10)

which is easily seen to be an isomorphism. Note that the above cocentral
action also induces a cocentral action of Zy on O(By), the quotient of
O(SLy(2)) by the ideal generated by ¢, and that similarly O(B_,) is a
graded twist of O(By). In addition, suppose that K contains the imaginary

unit 7. Since
a b . i 0
c d 0 —z

extends to an algebra homomorphism O(SL,(2)) — K, the pair (p,«)
becomes an almost adjoint invariant cocentral action of Zy on O(SL,(2)).
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Example 2.17. — The example of O(SL4(2)) has the following natu-
ral generalization. Let E € GL(n, K) and consider the Hopf algebra B(E)
defined by Dubois-Violette and Launer [18]: B(E) is the algebra gener-
ated by a;;, 1 < i,j < n, subject to the relations E~'a'Ea = I, =
aE~'a'E, where a is the matrix (a;;) (for an appropriate matrix E,, one
gets O(SL,(2)), see [18]). Just as before, there is a cocentral Hopf algebra
map

p: B(E) — KZQ, Qij — (Sijg.

Consider now a matrix @Q € GL(n, K) such that Q? = £I,, and Q'EQ = E.
Such a matrix defines an involutive Hopf algebra automorphism a¢ of B(E)
with ag(a) = QaQ™!, and we get an almost adjoint invariant cocentral
action (p,aq) of Zy on B(E). Again a direct verification provides a Hopf
algebra morphism

B(EQ™") = B(EQ) — B(E)"?, ajj  aij ®g
which is shown to be an isomorphism using Lemma 2.14.

Example 2.18. — To finish the section with a cocentral action that
is not almost adjoint, we examine an example related to free products.
Let A be a Hopf algebra endowed with a cocentral surjective Hopf algebra
map p: A — KZsy. Consider the free product Hopf algebra A x A (as an
algebra, it is the free product of A with itself in the category of unital K-
algebras). It admits the cocentral Hopf algebra map A x A — KZy whose
restriction to each copy is p, that we still denote p. Let « be the Hopf
algebra automorphism of Ax A that exchanges the two copies of A. We get a
cocentral action (p, ) of Zg on Ax A, and hence a graded twisting (AxA)H®.
The simple corepresentations of (A * A)%% can be labeled by the reduced
words on those of A (since the same is true for the free product, see [13]),
and the fusion rules can be computed from those of A, see Proposition 2.10.

Now let A = B(FE) as in the previous example. Put F = E'E~1 and
consider the universal cosovereign Hopf algebra H(F') (see [11], these are
the Hopf algebraic generalizations of the universal compact quantum groups
from [38]), which is the algebra generated by w;;, vi;, 1 < ¢,j < n, subject
to the relations

wot = I, = vtu, Fu'Flw=1I,=vFuF!

where u, v are the matrices (u;;), (v;;) respectively. We can then directly
verify that the correspondence

u—aYeg v EdPE Y ey
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defines a Hopf algebra homomorphism H(F) — (B(E) x B(E))>*, where
the superscript refers to the numbering of copies inside the free product.
To prove that this is an isomorphism, one constructs a cocentral action
(¢, ) of Zy on H(F): the cocentral Hopf algebra map is q: H(F) — K,
wij, vij > 0;;9, and the Zo-action on H(F) is given by B(u) = (E~!)'vE?
and B(v) = E'u(E~1)! One then checks the existence of a Hopf algebra
map

B(E)*B(E) = H(F)"?, aV—uwg, o~ (EHvE' ey

and using Lemma 2.14 we conclude that H(F) is a graded twist of B(E) *
B(E). The details are left to the reader.

It seems that the graded twisting picture is the simplest way to describe
the corepresentations of H(F) [3, 11, 13, 15] when F is of type E‘E~1.

Several other examples will be examined, at the compact quantum group
level, in the next sections.

3. Compact quantum groups

In this section we specialize to the case of compact quantum groups. In
particular, we assume that K = C. We refer the reader to [27] for basic
terminology.

3.1. Twisting regular functions of compact quantum groups

We work with Hopf algebras A = O(G) of regular functions of compact
quantum groups. This simply means that A is assumed to be a Hopf x*-
algebra such that every finite dimensional corepresentation is unitarizable,
or equivalently, A is generated as an algebra by matrix coefficients of fi-
nite dimensional unitary corepresentations, see [25, Section 11.3.1] or [27,
Section 1.6].

We denote the dual algebra of O(G) by U(G). It is a x-algebra, with
the *-structure defined by w*(a) = w(S(a)*) for w € U(G) and a € O(G).
More generally, we write U(G™) for the dual of O(G)®™. We denote by
A: U(G) = U(G x G) the ‘coproduct’” map which is the dual of the product
O(G) ® O(G) = O(G). We also write Rep G instead of Corep(O(G)), and
Ch(G) instead of Ch(Corep(O(Q))).

When dealing with compact quantum groups, we require invariant co-
central actions (p, ) to be x-preserving. In other words, we assume that
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the action satisfies ag4(a)* = a4(a*). Note that we automatically have
a* € O(G)y-1 for a € O(G)y. Indeed, such a is of the form (we,, ® ¢)(U)
for a unitary representation U € (RepG), and &,n € Hy, where we
put we ,(T) = (T€,n) for T € B(Hy). The involution is characterized
by (wey ® )(U)* = (wne ® S)(U), and S(O(G)y) = O(G)y-1 (see re-
mark after Lemma 1.3) implies a* € O(G),-1. Moreover, the correspond-
ing cocentral homomorphism 7: O(G) — CI' becomes a *-homomorphism
with respect to the standard s-structure g* = ¢g~' on CI. Indeed, if
a € O(G)y, then m(a) = e(a)g, and since € is a *-homomorphism, we
get m(a)* = e(a*)g! = n(a*).

In this case the twisted Hopf algebra O(G)%® is again a Hopf *-algebra,
with the x-structure inherited from Ax,I". Hence it is the algebra of regular
functions on a compact quantum group, which we denote by G*°.

While in the noncoamenable case it is hard to relate the C*-norms on
O(GH*) to those on O(G), the reduced norms can be easily related as
follows.

PROPOSITION 3.1. — The C*-algebra C,.(G"*) coincides with the norm
closure of O(G)"“* in the reduced crossed product C,.(G) x4, I

Proof. — The Haar state on O(G) x,I" coincides with the composition of
the Haar state on O(G) with the canonical conditional expectation O(G) X4
I' - O(G), a® g+ dg.ca. It follows that the completion of O(G) x4 ' in
the corresponding GNS-representation coincides with C,.(G) X4, I'. Since
the Haar state on O(G)% is the restriction of that on O(G) x, I, we get
the assertion. g

As is common in operator algebra, from now on we denote the elements
a®ge€O(G)x, T by a),.

Let us now say a few words about the case of an almost adjoint action.
Denote by Hl(é; T), resp. by H(, (C?, T), the subgroup of H*(O(G)), resp. of
H}(O(G)), consisting of unitary elements. Then, when talking about com-
pact quantum groups, we assume that an almost adjoint action is given
by a pair (¢, ) such that ¢ takes values in H'(G;T), while yu is a cocy-
cle with values in H}, (G;T). Given such an invariant cocentral action, we
get a cocycle ¢ € Z3(Ch(G); T) by Proposition 2.3 and a pseudo-2-cocycle
o € U(G x G) by Theorem 2.8. This pseudo-cocycle is unitary, and in our
present notation identity (2.4) becomes

31) (oA)(eH1®e Hoeo1)(A®)(c)=c in UG x G x G),
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where we view c as an element of U (G?) using the embedding of the function
algebra on Ch(G)? into U(G?) dual to p®3: O(G)®* — (CCh(G))®3, and
we omit the notation for the convolution product on U(G"™).

Remark 3.2. — The compact group T'= H 1(CAT'; T) is a closed subgroup
of G: the surjective Hopf *-algebra homomorphism O(G) — O(T) maps
a € O(Q) into the function that takes value u(a) at u € T. If Ch(QG) is
abelian, then its dual H, é(é ; T) is a central subgroup of T, and the pseudo-
2-cocycle o is in U(T x T). If furthermore T is abelian, then o can be
regarded as a 2-cochain on T’ whose coboundary is the inverse of the lift of
the 3-cocycle ¢ on Ch(G) to T'.

3.2. Orthogonal, hyperoctahedral and unitary quantum groups

In this section we consider some concrete examples of our twisting pro-
cedure.

Example 3.3 (Orthogonal quantum groups). — Let F € M,(C) be a
matrix satisfying FF = cI,,, ¢ € R*. Recall that the free orthogonal group
O} [38, 2] is defined as follows. The algebra O(O7}.) is the universal unital
x-algebra generated by entries of an n-by-n matrix U = (u;;),; subject to
the relations U*U = UU* = I,, and FUF~! = U, where U = (uf;)i ;- The
C*-envelope of O(07.) is denoted by A,(F).

It is easy to check that, as a Hopf algebra, O(OJ},C) is the Hopf algebra
B((F~1)!) in Example 2.17. The considerations there can be easily adapted:
let @ € GL(n,C) be a unitary matrix such that Q% = +1I,,, Q'FQ = F. We
obtain an almost adjoint invariant cocentral action ag of Zs on O(OF),
corresponding to the group homomorphism Zy — H'(OF; T)/H(l); (Of;T)
sending the nontrivial element to the class of @, with ag(U) = QUQ ™!, and
a twisted compact quantum group (O})5*<. Similarly to Example 2.17, the
compact quantum group (0})4“@ is isomorphic to O;Qt.

If F' = I,,, then O}, is denoted by O, and the C*-envelope of O(O;) is
denoted by A,(n). A matrix @ as before is a real orthogonal matrix with
Q? = £1,,, and there are two cases:

(i) Q2 = I,,: in this case the matrix @ is symmetric and 05 is isomor-
phic to O

(ii) @ = —1I,: in this case necessarily n is even and the matrix Q is
anti-symmetric. Without changing the isomorphism class of 05,
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we can assume [12] that @ is the matrix

0 Im
J2m—<_]—m Om)

The category Rep(O;")@ is the nontrivial twist (Rep O, ®) for
the associator ® acting on the three-fold tensor product of irre-
ducible representations U,/ ® Uyj2 ® Ugja by (—1)*0F¢, where
Ua /2 is the irreducible representation of spin a/2 for a € N.

For n = 2, we have A,(J2) ~ C(SU(2)), while A,(2) ~ C(SU_1(2)), so we
recover the twisting of SU(2) into SU_;(2) in [30].

The above procedure for twisting O3, works for any quantum subgroup
Zy ¢ H C OF,, such that Jy,, € H'(H;T). We will have a brief look at
two examples of this situation.

Example 3.4 (Half-liberated orthogonal quantum groups). — Recall [8]
that the half-liberated orthogonal quantum group O is defined as fol-
lows: O(0) is the quotient of O(O;") by the relations abc = cba, a,b,c €
{uij}. We get a twisted half-liberated orthogonal quantum group O%, =
(03,,)"*%2m , with O(0%, ) the quotient of O(OF, ) by the same relations
as above.

Example 3.5 (Hyperoctahedral quantum groups). — Recall [6, 10] that
the hyperoctahedral quantum group H; is defined as follows: O(H,}) is
the quotient of O(O;}) by the relations w;ju, = 0 = ujuy; if j # k. We
obtain a twisted hyperoctahedral quantum group HJ}M, with O(Hzm) the
quotient of (’)(O}Qm) by the relations u;jup = 0if i + &k = m 4+ 1 and
j+l#m+1,ori+k#m+1and j+1=m+ 1. Similar considerations
also work for the hyperoctahedral series H{Y) € H; C HE' considered in [7].

Example 3.6 (Unitary quantum groups). — Recall that the free unitary
quantum group U [39] is defined as follows: the algebra O(U;) is the
universal unital x-algebra generated by entries of an n-by-n matrix U =
(u;;)i.; subject to the relations U*U = UU* = I, and UU* = I,, = U'U,
where U = (uj;); ;. The C*-envelope of O(U}) is denoted by Ay (n).

We have O(U;}) ~ H(I,) as Hopf algebras, where H(I,,) is the Hopf
algebra of Example 2.18, and the constructions there can be adapted easily,
showing that O(U;") is a graded twist of O(O;") * O(O;}).
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The above construction works for any quantum group H with Zy C H C
O;F, to produce a graded twisting of O(H )+ O(H). To conclude the section,
we briefly mention two more examples.

Example 3.7 (Half-liberated unitary quantum groups). — We put H =
Oy above. The twisted version of O(O) x O(0%) we obtain is O(U}),
defined in [9], i.e., the quotient of O(U;}) by the relations ab*c = cb*a,
a,b,ce {u;}.

Example 3.8. — Now put H = O,,. Then the twisted version of O(0,,)*
0(0,) we obtain is O(U¥), recently defined in [5], i.e., the quotient of
O(U;}) by the relations ab* = ba*, a,b € {u;;}.

3.3. Twisting and coamenability

Let us return to the general case of compact quantum groups. Recall that
a compact quantum group G is called coamenable if the counit on O(G)
extends to a bounded linear functional on C,.(G), in which case the C*-
algebra C,.(G) coincides with the C*-envelope of O(G) and we simply
write C(G). In this section we explore implications of coamenability for
twisting.

We start with the following simple observation.

PRrROPOSITION 3.9. — Let G be a coamenable compact quantum group
and (p,a) be an invariant cocentral action of I' on O(G). Then the image
of p is contained in CT'y for an amenable subgroup I'y of ', and the compact
quantum group G is coamenable.

Proof. — First of all observe that the cocentral surjective homomor-
phism of Hopf x-algebras O(G) — CCh(G) realizes the dual quantum
group of Ch(G) as a quantum subgroup of G. Since coamenability passes
to quantum subgroups, the quantum group C/h(E) must be coamenable,
hence Ch(G) is amenable. The I'-grading on O(G) is defined by a homo-
morphism Ch(G) — T'. Hence the image T'y of Ch(G) in I' is amenable.

By Proposition 3.1, we have C,.(G"*) C C(G)x,I'g. Since the counit map
e: C(G) — CisT-equivariant, it induces a *-homomorphism e®¢: C(G) X,
g — Cx,.Ty=C:(Ty). The counit on C,.(G"*) is the composition of this
homomorphism with the counit C;(I'y) — C. Hence it is bounded. O

If « is almost adjoint, the above result follows also from the fact that G
and G%® have the same fusion rules and the classical dimension functions,
see [4] or [27, Section 2.7].
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Our goal is to show that coamenability puts restrictions on applicability
of our twisting procedure. We start with an auxiliary categorical consider-
ation. Let A be an essentially small rigid C*-tensor category. (We assume
that the C*-tensor categories that we consider in this section have simple
units and are closed under finite direct sums and subobjects.) Consider the
set I 4 of isomorphism classes of simple objects in A. For every s € I4
choose a representative Us. For every object U let I'yy € B(€%(I14)) be the
operator such that its matrix coefficient corresponding to s,t € [ is the
multiplicity of Us in U ® Uy.

Given another rigid C*-tensor category B and a unitary tensor func-
tor F': A — B, the functor I is called amenable if the fusion ring of A
is amenable (see [23]) and |Ty| = d®(F(U)) for every object U in A,
where d® denotes the quantum dimension. It is shown in [28] that once
the fusion ring of A is amenable, there exists a universal amenable func-
tor II: A — P. Furthermore, such a universal amenable functor can be
constructed as follows. Assume A is a subcategory of a rigid C*-tensor cat-
egory B such that ||I'y|| = d®(U) for all objects U in .A. For every object U
in A choose a standard solution (Ry, RU) of the conjugate equations for U
in A. Then there exists a unique positive automorphism a;; of U in B such
that ((+ ® abﬂ)RU, (aE1/2 ® t)Ry) is a standard solution of the conjugate
equations for U in B. Then as P we can take the C*-tensor subcategory
of B generated by A and the morphisms ay, and as II we can take the
embedding functor. In fact, this description of IT: A — P was given in [28,
Section 4] for strict C*-tensor categories. But since every category is equiv-
alent to a strict one, it is clear that it remains true in general.

Consider now a coamenable compact quantum group G. Coamenability
means exactly that the canonical fiber functor Rep G — Hilb is amenable.
In this case it can be shown, see [29, Theorem 2.1], that the universal
amenable unitary tensor functor is the restriction functor Rep G — Rep K,
where K C G is the maximal closed quantum subgroup of Kac type, that
is, O(K) is the quotient of O(G) by the two-sided ideal generated by the
elements a — S?(a) for a € O(G).

Before we formulate the main result of this section, let us also intro-
duce another piece of notation. Given a cocycle ¢ € Z3(Ch(G); T), denote
by (Rep G)° the monoidal category Rep G with the new associativity mor-
phisms such that (U@ V)@ W — U ® (V ® W) is the scalar morphism
c(g, h,k) for [U] = g, [V] = h and [W] = k. We can also assume that the

cocycle c¢ is normalized,

cle,g,h) = c(g,e,h) = c(g,h,e) =1,
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without loss of generality.

THEOREM 3.10. — Let G be a coamenable compact quantum group
with maximal closed quantum subgroup K of Kac type. Assume we are
given a 3-cocycle ¢ € Z3(Ch(G);T). Then Ch(G) is a quotient of Ch(K)
and the restriction functor (Rep G)¢ — (Rep K)° is a universal amenable
unitary tensor functor.

Proof. — The first statement is obvious, since the cocentral Hopf algebra
homomorphism O(G) — C Ch(G) factors through O(K) by the maximality
of K.

Next, consider the Woronowicz character p € U(G). For every representa-
tion U € B(Hy)®O(G) of G it defines an operator py = (¢®p)(U) on Hy.
Then Rep K can be described as the C*-tensor subcategory of Hilb; gener-
ated by Rep G and the morphisms py, see the proof of [29, Theorem 2.1].
In order to connect this with the above discussion of the construction of
amenable functors, recall that py are exactly the morphisms ay we dis-
cussed above for the categories Reg G C Hilb; and a suitable choice of
standard solutions in Rep G.

Consider the restriction functor (Rep G)¢ — (Rep K)°. This functor is
amenable, since the new associativity morphisms change neither fusion
rules nor quantum dimensions. In order to show that this functor is univer-
sal we have to find the morphisms ay relating solutions of the conjugate
equations in (Rep G)¢ and (Rep K)¢, and then show that (Rep K)¢ is gener-
ated by (Rep G)¢ and these morphisms. Given an irreducible representation
U of G of degree g € Ch(G) and a standard solution (Ry, Ryr) of the conju-
gate equations for U in Rep G, the pair (R§;, R§;) = (Ry,c(g™t, 9,97 ) Ry)
forms a standard solution for U in (Rep G)°. From this it becomes clear
that the morphism ay in (Rep K)° such that ((¢® ai/g) <, (a[_,l/2 ®1)RE)
is a standard solution of the conjugate equations for U in (Rep K)¢ is the
same as in the case of the trivial cocycle, that is, ay = py.

It remains to show that (Rep K)° is generated by (Rep G)¢ and the mor-
phisms py. Take representations U and V' of G. Then the fact that Rep K is
generated as a C*-tensor category by Rep G and the morphisms py means
that any morphism U|x — V|x can be written as a linear combination of
compositions of morphisms U’ — V' in Rep G and morphisms of the form
tx ® py ® tz. But the same compositions makes sense in (Rep K)¢, with
any distribution of brackets on X ® Y ® Z. Hence the tensor category gen-
erated by (Rep G)¢ and py contains all morphisms U — V in (Rep K)°.
This proves the assertion. O
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The above theorem can be used to simplify the considerations in [29,
Section 3.1]. More importantly for the present work, it gives the following.

COROLLARY 3.11. — Under the assumptions of the theorem, a unitary
fiber functor F': (Rep G)® — Hilby such that dim F(U) = dimU for all U
exists if and only if there exists a unitary fiber functor (Rep K)¢ — Hilby.

Proof. — Since a unitary fiber functor F': (Rep G)® — Hilby such that
dim F(U) = dimU is amenable, by universality it must factor through
(Rep K)¢, in a unique up to a natural unitary monoidal isomorphism way.
This proves the corollary in one direction, and the other direction is obvious.
(It is worth recalling that since (Rep K)¢ is amenable, any unitary fiber
functor (Rep K)® — Hilby is dimension-preserving.) O

Therefore if, for example, there are no unitary fiber functor (Rep K)¢ —
Hilby, then for any twist G of G we cannot have the category (Rep G)¢
as the representation category of G4,

3.4. Drinfeld—Jimbo deformations of compact Lie groups

Consider a compact simply connected semisimple Lie group G and, for
g > 0, its g-deformation G,. (In fact, with a suitable definition of ¢-
deformation, everything what follows remains true in the non-simply-con-
nected case.) We denote the coproduct on U(Gy) by Aq.

Let T" be the maximal torus in G which remains undeformed in G4. The
center Z(G) of G is well-known to be contained in T', and its dual is P/Q,
where P and @ are the weight and root lattices, respectively. It is also
known that for ¢ # 1 we have

HY(G;T)=T and Ch(G,) = Z(G) = P/Q.

In particular, we are in the setting of Remark 3.2, so our construction of
pseudo-2-cocycles simply produces particular 2-cochains on T = P with
coboundary living on P/@. The following result shows that there is es-
sentially no other way of constructing pseudo-2-cocycles with coboundary
living on Ch(Gy).

THEOREM 3.12. — With the above notation, assume q > 0, ¢ # 1, and
c € Z3(P/Q;T). Then the following conditions are equivalent:

(i) there is a unitary fiber functor F': (Rep G4)¢ — Hilby such that
dim F(U) = dimU for all finite dimensional unitary representa-
tions U of Gy;
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(ii) there exists a unitary o € U(Gy x G4) such that
(32) (@A) (1 eo ) ee (B @) =

(iii) there exists a unitary o satisfying (3.2) obtained by the construc-
tion in Theorem 2.8 (for a quotient T' of P/Q) and an action of T’
on Cr(Gy));

(iv) the lift of ¢ to P is a coboundary;

(v) the cocycle c vanishes on \3(P/Q) C H3(P/Q;Z).

Furthermore, if these conditions are satisfied, then all unitaries o satis-
fying (3.2) have the form

o= (u@u)fA(u)",

where w € U(G,) Is a unitary element and f is a T-valued 2-cochain on P
such that 0f = c 1.

Proof. — The equivalence of (i) and (ii) is a simple consequence of the
definitions and is well-known to be true for any compact quantum group
and a unitary associator ¢ on its representation category.

Since ¢ # 1, the maximal closed quantum subgroup of Gy of Kac type
is T', see [36, Lemma 4.10] or [29, Theorem 3.1]. Therefore by Corollary 3.11,
if (i) is satisfied then there exists a unitary fiber functor (Rep T')° — Hilby,
so by the analogue of equivalence between (i) and (ii) for T" instead of G4
we conclude that ¢ is a coboundary on P. Thus (i) implies (iv).

The equivalence of (iv) and (v) is proved in [30, Corollary A.4]. In [30,
Theorem 3.1 and Corollary A.4] it is also shown that (iv) implies (iii).
Finally, (iii) obviously implies (ii).

Assume now that conditions (i)—(v) are satisfied and choose a T-valued
2-cochain f on P such that f = ¢~ !. Consider the quantum group G{;
obtained by twisting the product on O(G,) by f, or in other words, by
replacing the coproduct on U(G,) by A{; = qu()f*l. Take any unitary
o satisfying (3.2). Then, since f also satisfies (3.2), the unitary Q = o f !
is a dual 2-cocycle on Gg, that is,

Q@ 1) (Al ®)(Q) = (1o Al)Q).
By [29, Corollary 3.3], any such cocycle is cohomologous to a cocycle on P,
that is, there exist a unitary v € U(G)) = U(G,) and a cocycle w €
Z%(P;T) such that Q = (u ® u)wﬁg(u)_l. Then 0 = (u® u)waq(u)_l
and O(wf) = c7L. O
The above theorem shows that if A3(P/Q) # 0, e.g., G = SU(2)3, any
choice of ¢ which is nontrivial on A3(P/Q) leads to the absence of unitary
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fiber functors on (Rep G)° preserving the classical dimension. This gives
a partial answer to the question of existence of fiber functors on (Rep G)°
raised in [30].

It is still possible, however, that there are fiber functors of a different
dimension. Of course, if such functors exist, they are not defined by pseudo-
cocycles. Let us show that at least for some ¢ such functors do not exist.

COROLLARY 3.13. — Assume that a cocycle ¢ € Z3(P/Q;T) does not
vanish on A*(P/Q). Then there exists an interval (a,b) C R containing 1
such that for all ¢ € (a,b), ¢ # 1, there are no unitary fiber functors
(Rep G¢)¢ — Hilby.

Proof. — Choose a self-conjugate faithful unitary representation U of G.
Denote by the same symbol U the corresponding representation of Gj.
Choose an interval (a,b) C R such that dim,U < dimU + 1 for ¢ €
(a,b). Then for any unitary fiber functor F': (Rep G4)¢ — Hilb; we have
dim F(U) = dimU. But there exists only one dimension function on the
representation ring of G with value dim U on the class of U, see the proof
of [40, Theorem 19]. Therefore F' preserves the classical dimension, and by
the above theorem we know that such a functor does not exist for ¢ # 1. 0O

4. Compact groups

In this section we consider genuine compact groups G, and study the
problem of describing closed quantum subgroups of G,

4.1. Quantum subgroups

Let us start with a short general discussion of quotients of A»®. Let
(p, @) be an invariant cocentral action of I" on a Hopf algebra A. The basic
construction is the following. Let I be a I'-stable Hopf ideal of A such that
I C Ker(p), m: A — A/I be the quotient map, p be the induced cocentral
homomorphism of Hopf algebras p: A/I — KT', and & be the induced
action a: I' — Aut(A4/I) of I on the quotient. Then (p, &) is again an
invariant cocentral action of I' on A/I. The map n®¢: Ax,I' = (A/1)x5T
is a homomorphism of Hopf algebras, so by restriction it defines a Hopf
algebra homomorphism A»* — (A/I)"*. As n(A,) = (A/I),, this map is
surjective, so (A/I)%® is a quotient of AH?.
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Let us characterize the quotients of A»® that arise in this manner. For
any g € I', the restriction of ay ® ¢ defines a I'-graded coalgebra automor-
phism of A%, (As we observed in Section 2.3, this is an algebra automor-
phism if " is abelian, but not in general.) We say that a subspace X C A%®
is I'-stable if (g ® ¢)(X) C X holds for any g € T".

PROPOSITION 4.1. — Let (p,«) be an invariant cocentral action of T’
on A, and let f: A% — B be a surjective Hopf algebra map such that
J = Ker(f) is a I'-stable Hopf ideal with J C Ker(p). Then there exists
a I-stable Hopf ideal I C A satistying I C Ker(p), such that (A/I)"* is
isomorphic to B as a Hopf algebra.

Proof. — Using the I'-graded coalgebra isomorphism j, we put I =
j~Y(J). Thus, an element a = >, g with ag € Ay belongs to I if and
only if Zg ag ® g belongs to J. We claim that I is a I'-stable Hopf ideal of
A with I C Ker(p).

The first observation is that I is a coideal, since j is a coalgebra map
and J is a coideal. Next, by pj = p, J C Ker(p) implies I C Ker(p). Since j
intertwines oy with ag ® ¢, we also see that I is I'-stable.

In order to show that I is also an ideal, let us note that since .J is a coideal
contained in Ker(p), the map J — J ® KT',  — (1) ® p(x(2)), defines a
coaction of I" on J. Hence J decomposes into homogeneous components, so
thatif a = > a4 € A, then the element j(a) belongs to J if and only if each
Jj(ag) = ag ® g belongs to J. Combining the homogeneous decomposition
a = >, ag and the antipode formula S(j(ag)) = j(S(ay-1(ay))), we see
that I is stable under the antipode.

Now, suppose that a = Zg ag € I, and let b = Y, by, for b, € Ap, be
another element. Then for any g, h, we have a; ® g € J, which implies that
(ag®g)(ag-1(bn) ®h) = azb, ® gh € J. Thus we obtain ayby, € I, so that I
is a right ideal, hence a I'-invariant Hopf ideal as claimed.

We can therefore form the Hopf algebra (A/I)%® as above, and the
canonical projection m: A — A/I induces a surjective Hopf algebra map
T®u: AY* — (A/I)%*. Looking at the homogeneous elements in the kernel,
we see that J is exactly the kernel of this projection. O

Let us now turn to the case of compact groups. So from now on we as-
sume that K = C and A = O(G), the Hopf #-algebra of regular functions
on a compact group G. Then the category Corep(A) = Rep G is semisim-
ple and has a commutative chain group, namely, the Pontryagin dual of
the center Z(G) of G. Therefore, since a I'-grading is given by a homo-
morphism Ch(G) — T and only depends on the (abelian) image of this
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homomorphism, the group I' can be assumed, without loss of generality, to
be abelian.

We denote by i: I' — Z(G) the homomorphism dual to Ch(G) — T.
A function f € O(G) belongs to the homogeneous subspace O(G), for
some g € T if and only if f(i(¢)x) = 9 (g)f(x) holds for any ¢ € T' and
any ¢ € G. Moreover, the decomposition of f according to the grading
O(G) = @4erO(G), is given by

£=3"fo where fy(a) = /w T,

ger

where the integration is with respect to the normalized Haar measure on I.
This decomposition holds as well for any f € C(G), at least if the conver-
gence of > fy is understood in L*(@).

Assume next we are given an invariant cocentral action of I' on O(G). It
must be given by a continuous action a: I' ~ GG by group automorphisms
leaving z(f) pointwise invariant. We denote by the same symbols «y these
automorphisms of G and the corresponding automorphisms of C(G), so
that o, (f)(z) = f(ay ' (2)).

The coaction of T' on O(G) x4 I' defined in Proposition 2.7 can be re-
garded as an action of I. As I' is abelian, this is an action by #-algebra
automorphisms. Explicitly, this action arises from the action of I' on C (@)
by translations and from the dual action on C(G) %, I'. We denote this
combined action by tr x&, so

(4.1) (tr X&)y (fAg) = P(9) f(i(3) ) Ag-
Therefore Propositions 2.7 and 3.1 imply that for this action of I' on
C(G) x4 ' we have

O(G"*) = (O(G) xa T)" and C(G") = (C(G) xa T

Note that as any compact group is coamenable, by Proposition 3.9 the
quantum group G%® is coamenable as well, so the notation C(G%?) is
unambiguous.

Finally, the automorphisms «, of C(G) extend to the crossed product
C(G) %o T by ag(fAn) = ag(f)An. On O(G**), this is what we denoted
by a4 ® ¢ above.

With this setup, Proposition 4.1 (which is easily seen to remain true for
Hopf x-algebras) translates into the following.

PROPOSITION 4.2. — Let G be a compact group, I' a discrete abelian
group, i: I' = Z(G) a continuous homomorphism, and « an action of T'

A

on G by group automorphisms that leave i(I") pointwise invariant, so that
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we can define the twisted compact quantum group G*%. Assume J is a Hopf
x-ideal in O(G"*) such that ay(J) = J for all g € T' and J is contained
in the kernel of the homomorphism p: O(G) x4, ' — O(I), fAg = fle)g.

Then J is defined by a closed a-invariant subgroup H of G containing (1),
so that O(G»*)/J ~ O(H"®).

In order to formulate our main result we need to introduce more notation.
Under the assumptions of the above proposition, define an action of I' x I
on G by homeomorphisms by

(4.2) (9:¥).x = ag(i(¥)x) = i()ag(x).
Consider the following subsets of G:
Greg = {7 € G | the stabilizer of z in T x T is trivial},

A

Gi={z e G| ay(z) €i(l)x, Vg €T},
G'={zcG|ay(r) ==, VYgeT}CG.
Our goal is to prove the following theorem.

THEOREM 4.3. — Iiet G, T, i, a be as in Proposition 4.2, and assume
that T is finite and i: I' — Z(QG) is injective. Assume also that one of the
following conditions holds:

(i) A°T'=0and G = Greg UG ; or
(ii) G = Greg UGT.
Then there is a one-to-one correspondence between
— Hopf x-ideals J C O(G%*) with O(G"%)/J noncommutative, and

A

— closed a-invariant subgroups of G containing i(I') and an element
Of Gleg-

Remark 4.4. — If I is a cyclic group of prime order, then G = G UG,
so condition (i) is satisfied.

4.2. Irreducible representations

The proof of Theorem 4.3 is based on a classification of the irreducible
representations of C(G%®). Let us record some C*-algebraic facts that we
will use.

When A is a C*-algebra, we denote the set of equivalence classes of its
irreducible representations by A. We need a very particular case of the
Mackey-type analysis of crossed product C*-algebras A = C(X) x T' [41].
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Namely, let X be a compact topological space, and I" be a finite abelian
group acting on X. Then the irreducible representations of C(X) x I" are
parametrized by the pairs ([x], ), where [z] is a class in X/T and ¢ is a
character on the stabilizer group St, of x. The irreducible representation
corresponding to such a pair is given as the induction of the representation
ev, @y on C(I'r) @ C*(Sty) to C(T'z) x T’ composed with the restriction
homomorphism C(X)xT' — C(I'z) xI". In fact, all we need to know is that
any irreducible representation of C'(X) x I' factors through C(T'z) x T" for
some x € X, which is just the first easy step in the Mackey-type analysis.

Recall also that if A C B is an inclusion of C*-algebras, then any irre-
ducible representation of A appears as a subrepresentation of some irre-
ducible representation of B.

Turning to C(G%?), from the above discussion we conclude that any
irreducible representation of C(G*%) factors through C(G**) — C(I'z) x
I', where z € G and T'z = {ogy(2)}ger. Instead of the T-orbit of x it
is convenient to consider the larger (I' x I')-orbit. The point is that the
image of C(G**) in C((I'xI").z) x T coincides with the fixed point algebra
(C((T x T).z) F)f with respect to the action of I' defined by (4.1). It
follows that every irreducible representation 7 of C'(G“) factors through
(C(Or) x F)f for a uniquely defined (I' x I)-orbit O, in G. Under the
assumption of Theorem 4.3, we just need to consider two types of orbits.

First consider a (I’ x T')-orbit O in Gyeg. Then O can be (I' x I')-equi-
variantly identified with I" x I'. Therefore to understand the corresponding
representations it suffices to observe the following.

LEMMA 4.5. — Consider the action of T on C(I'xT") by translations and
the action of I on C(I'x ') xT' defined similarly to (4.1) as the combination
of the action by translations on C(T' x I') and the dual action on C*(T).
Then (C(T x I') x T)F =~ Mat;p((C).

Proof. — Indeed, the algebra C(I' xI') x T is the direct sum of the blocks
C(I' x {¢}) x I' =~ Mat)p|(C) over ¢ € I, while the action of I' permutes
these blocks. O

Therefore every (I' x f‘)—orbit O in Geg determines a unique up to equiv-
alence irreducible representation of C'(G%%). Explicitly, for every z € G we
have a representation of p, of C(G) x T on £2(T'z) defined by

p:r(f)‘g)éah(z) = f(agh(x))éagh(x)‘
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If z € O, then p;|c(gt.«) is the required representation corresponding to O,
since it factors through (C(O) % I‘)f and has dimension |T|.

Let us also note that since the kernel of the map C(G**) — (C(O) x F)f
is a- and a-invariant, the class of the representation corresponding to O is
a- and G-invariant.

Next, consider an orbit O in G;. Fix a point x € O. Then we have
ag(z) = i(Bg)zr for a uniquely defined By € I'. We thus get a homo-
morphism B*: I' — I'. The bijective map O = i(D)z — T, i()z — 1,
intertwines the action of I' x T' on (") with the action (g,v)n = Bgin.
Therefore it suffices to understand the algebra (C(T') x F)f.

LEMMA 4.6. — Assume we are given a homomorphism B: ' — . De-
fine an action § of T on C(T') by B,(f)(¥) = f(B; '), and consider the
action tr x3 of I on C(f‘) x5 I defined similarly to (4.1). If either AT =0
or B is trivial, then the algebra (C(I) x I‘)f is abelian and the dual
action [ defines a free transitive action of I' on its spectrum.

Proof. — If we view elements of T as functions on I', then (C/(I") x4 I‘)f
is spanned by the unitaries uy = gAy. We have

ugun = gBg(h)Agh = h(Bg)ugh.

Therefore we see that (C(I) x F)f is a twisted group C*-algebra of T'. If
A’T = 0 or B is trivial, then the corresponding 2-cocycle is a coboundary,
and (C(T') x4 F)f ~ C*(T') via an isomorphism ¢ that maps u4 into a
scalar multiple of A, € C*(T). As C*(T') =~ C(I") is abelian, we get the first
statement in the formulation, and since the isomorphism ¢ intertwines B
with the standard dual action on C*(I"), we get the second statement as
well. O

Thus, under the assumption of Theorem 4.3, every orbit O in Gy (which
is just GT for the case (ii)) gives us a set of |I'| one-dimensional representa-
tions, on which I" acts transitively. Note again that since the kernel of the
map C(GH*) — (C(0) x F)f is a-invariant, the action of I' leaves this set
invariant.

To summarize, we get the following classification.

PROPOSITION 4.7. — Under the assumption of Theorem 4.3, consider
the action of T x T' on C(Gt®) defined by a and &, that is, (g,)[r] =

[71’0[5107;1]. Then the set C'(G*®) consists of points of two types:

(i) every (T x T)-orbit in Gyeg defines a point in C(GH*) that is
represented by a |T'|-dimensional representation and is stabilized
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by T' x f; namely, the point is represented by p.|c(gt.«y for any
2 € Greg In the original orbit;
(ii) every I-orbit in Gy defines a T-orbit in C(/Gf\a) consisting of ||
one-dimensional representations; this orbit is invariant under the
action of T.
In particular, T[z] C T[x] for any [r] € C@), and the set of T-orbits
in C’(/Gt\a) is canonically identified with the set of (I' x I")-orbits in G.

4.3. Classification of noncommutative quotients

We still need some preparation in order to apply our description of irre-
ducible representations to the classification of quantum subgroups.

LEMMA 4.8. — Let G be a compact quantum group and let I be a Hopf
x-ideal of O(G). Then

I= N Ker(p),

peCL(G), p(1)=0
where C,(G) denotes the C*-envelope of O(G).

Proof. — It suffices to show that O(G)/I admits a faithful representation
on a Hilbert space. But this is true, since O(G)/I, being generated by
matrix coefficients of finite dimensional unitary corepresentations, is the
Hopf x-algebra of regular functions on a compact quantum group. ]

For T € B(H), let T* be the transpose operator acting on H* =~ H.
In terms of the latter space, we have T%¢ = T*£. Then, whenever 7 is a

representation of C(G) x4 I'; we obtain another representation 7¥ defined
by z — 7V (z) = n(S(z))".

LEMMA 4.9. — For any v € Gy and 9 € f, the representation
pi(p)lo(arey is a subrepresentation of (p. ® py)lc(at.ey-

Proof. — Since the counit of C(G) x4 I' coincides with p., the lemma
is true for ¢y = e € I'. But since Piw) = Peliy, Dby = (Gy @ 1)A and
Pz ~ pzGy by Proposition 4.7(i), the lemma is then true for any 1. O

Proof of Theorem 4.3. — Assume that J C O(G%®) is a Hopf *-ideal
with O(G*%)/J noncommutative. We want to apply Proposition 4.2 and
for this we have to show that J is a-invariant and contained in the kernel
of the homomorphism 7: O(G) x4 ' = O(I'). We start by establishing the
second property.
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First we note that on O(G%®) the homomorphisms O(G) x4, T — O(I)
given by fA, — f(e)g and f\, — fi coincide. Therefore on O(G**) the
homomorphism p can be identified with ByerPi(y)-

By Lemma 4.8, there exists an irreducible representation = of C(G“%)
such that J C Ker(r) and 7(C(G"%)) is noncommutative. Since J is a
Hopf ideal, we have J C Ker(r ® 7). As 7 cannot be one-dimensional,
by Proposition 4.7 the representation m must be equivalent to ps|c(gt.e)
for some x € Greg. But then (®w€f pi(w)) lc (e is a subrepresentation of
7 ® 7" by Lemma 4.9, hence J C Ker(p). It follows, in particular, that J
is invariant under the coaction of I', that is, under the dual action & of I.

In order to prove that J is a-invariant, by Lemma 4.8 it suffices to show
that if 7w is an irreducible representation of C(G%%) with J C Ker(n),
then J C Ker(waj ). But this is clear, since we already proved that .J is
I-invariant, and I'[x] € I'[x] by Proposition 4.7.

Therefore by Proposition 4.2 the Hopf x-ideal J is defined by a unique
closed a-invariant subgroup H of G containing i(I'), so that O(G4*)/.J =
O(H"*). By the above argument p,|o(Gt.« factors through O(H"®). This
is possible only when x € H. |

Example 4.10. — As a first illustration of Theorem 4.3, let us give the
description of the nonclassical quantum subgroups of SU_;(2), due to Po-
dles [31]. Recall first from [30] and Example 3.3 above that SU_;(2) can be
obtained from SU(2) by our general twisting procedure, via the Zs-action

(=)

Therefore the non-classical quantum subgroups of SU_;(2) correspond to
the closed subgroups of SU(2) containing {£I5}, stable under the previous

Zo-action and containing an element (CCL Z) with abed # 0.

Example 4.11. — Let £ € T be a root of unity of order N > 2, and
consider the compact quantum group Ug(2), which is the compact form
of GL¢ ¢-1(2) [34]. Thus, O(GL¢¢-1(2)) = O(Ug(2)) is generated as a *-

algebra by the elements (u;)7 ;—

1 subject to the relations
— _ -1
UigUi1 = §U;1 U2, ugpule =& UrkUzk,
-2
ug1u12 = & “ur2uar, U112z = U22U11,

and that the matrix u = (uy;)7 ;=1 € Ma(O(Ug(2)) is unitary. It is well-
known [34] that GL¢ ¢-1(2) is a cocycle twisting of GL(2). One can also
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check that this cocycle arises from our recipe in Section 3. To be specific,
let g be a generator of Zy, and consider the Zy-action

a b\ [a &
(0 0)- (e 50)

The Pontryagin dual of Zy embeds into the center of U(2) in such a way
that the defining representation u of U(2) has degree g. Then it follows
from the definition that the resulting twisting of U(2) is Ug(2). At N =2,
i.e. & = —1, the description of the non-classical quantum subgroups of
U_;(2) is similar to the one given for SU_1(2) in the previous example.

The subset U(2)% consists of the subgroup of diagonal matrices. If we
further assume that N is odd, we have a decomposition U(2) = U(2)eg U
U(2)%~ . Thus, in this case Theorem 4.3 implies that the non-classical quan-
tum subgroups of U¢(2) correspond to the closed subgroups of U(2) stable
under the operations

b k kflb
(z d) = (fifllc €£kd )a k,lEZ

and containing a nondiagonal element.

Remark 4.12. — Note that although U¢(2) is a cocycle twisting of U(2)
in the usual sense, the techniques of [14] do not work well for this example,
because C'(U¢(2)) does not have any irreducible representation of dimen-
sion N2 (the order of the twisting subgroup Zy x Zy), which would be
required to apply Theorem 3.6 in [14], and here our present graded twist-
ing procedure is better adapted to the study of quantum subgroups. In
yet another direction, note as well that [21] (where a different convention
for parameter « is used than in [34]) also studies quantum subgroups of
GL, 3(n) under certain restrictions on (o, 8), but the framework there is
strictly that of non semisimple (and hence non compact) quantum groups,
and these results do not apply to Ug(2).

Example 4.13. — Let 7 = (11,...,Tn—1) € u”~! and consider the quan-
tum group SU” (n) defined in [30], corresponding to the graded twisting of
SU(n) associated to the cocentral Z,-action given by the embedding of Z,
into the center of SU(n) and by a(u;;) = yivjfluij, where ; = H1<T<i Ty
It follows from Theorem 4.3 that if n > 3 is prime, the non-classical quan-
tum subgroups of SU”(n) correspond to the closed subgroups of SU(n)
stable under the operations

(gZJ) = (gk(717;1)lgl])a k7l €Z
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where ¢ is a root of unity of order n, and containing an element g = (g;;)
with %’yj_l = 1 for some indices i, j.
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