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NODAL INTERSECTIONS FOR RANDOM WAVES ON
THE 3-DIMENSIONAL TORUS

by Zeév RUDNICK, Igor WIGMAN & Nadav YESHA (*)

Abstract. — We investigate the number of nodal intersections of random
Gaussian Laplace eigenfunctions on the standard three-dimensional flat torus with
a fixed smooth reference curve, which has nowhere vanishing curvature. The ex-
pected intersection number is universally proportional to the length of the reference
curve, times the wavenumber, independent of the geometry. Our main result gives
a bound for the variance, if either the torsion of the curve is nowhere zero or if the
curve is planar.
Résumé. — Nous étudions le nombre d’intersections nodales des fonctions

propres gaussiennes aléatoires du Laplacien sur le tore plat à trois dimensions avec
une courbe régulière de référence fixée de courbure partout non-nulle. Le nombre
d’intersections moyen est toujours proportionnel à la longueur de la courbe de
référence, multipliée par le nombre d’onde et est indépendant de la géométrie.
Notre résultat principal est une borne sur la variance, lorsque la torsion de la
courbe est partout non-nulle ou lorsque la courbe est planaire.

1. Introduction

1.1. Toral nodal intersections

Let Td = Rd/Zd be the standard flat d-dimensional torus and C ⊂ Td
a fixed reference curve(1) . Given a real-valued eigenfunction F (x) of the
Laplacian

−∆F = 4π2E · F ,

Keywords: Nodal line, torus, Laplace eigenfunctions, variance, test curve, intersection
points, curvature, asymptotics.
Math. classification: 60G15, 11P21.
(*) The research leading to these results has received funding from the European Re-
search Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreements no 320755 (Z.R.) and no 335141 (I.W.), and from the
Friends of the Institute for Advanced Study (Z.R.).
(1)By a curve we always mean a parameterized, compact, immersed curve.
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we wish to study the number of intersections

Z(F ) := #{x ∈ Td : F (x) = 0} ∩ C

of the nodal set of F with the reference curve C as a function of the corre-
sponding eigenvalue.
In dimension d = 2, if the curve is smooth and has nowhere vanishing

curvature, then deterministically for every eigenfunction, the number of
nodal intersections satisfies [3, 4]

E1/2

(logE)5/2 � Z(F )� E1/2;

here and everywhere f � g (equivalently f = O (g)) means that there exists
a constant C > 0 such that |f | 6 C|g|. For the upper bound we require
that C is real-analytic, in particular it is shown that C is not contained in
the nodal set for E sufficiently large. One can improve the lower bound to
Z(F )� E1/2 conditionally on a certain number-theoretic conjecture [4].

In this note we deal with dimension d = 3. If we consider the intersection
of the nodal set with a fixed real-analytic reference surface Σ ⊂ T3 with
nowhere-zero Gauss–Kronecker curvature, then for E sufficiently large, Σ is
not contained in the nodal set [2], the length of the intersection of Σ with the
nodal set is�

√
E [3], and the nodal intersection is non-empty [3]. However,

for the intersection of the nodal set with a fixed reference curve (where we
expect only finitely many points), the following examples indicate that one
cannot expect to have any deterministic bounds on the number of nodal
intersections.

Example 1.1. — Take the eigenfunctions of the form

Fk(x1, x2, x3) = sin(2πkx1);

their nodal surfaces are the planes
{
x ∈ T3 : x1 ∈ 1

2kZ
}
and any curve lying

on the plane x1 = 1/2π does not intersect these, whereas a curve on the
plane x1 = 0 is lying inside all of these nodal surfaces. We observe that the
curves in this example are planar.

Example 1.2. — Let F0 (x, y) be an eigenfunction on the two-dimen-
sional torus with eigenvalue 4π2E2

0 , and S0 a curved segment contained
in the nodal set, admitting an arc-length parameterization γ0 : [0, L] →
S0, with curvature κ0(t) = |γ′′0 (t)| > 0. For n > 0 let Fn (x, y, z) =
F0 (x, y) cos (2πnz), an eigenfunction on T3 with eigenvalue 4π2(E2

0 + n2).
Let C be the parametric curve γ (t) =

(
γ0( t√

2 ), t√
2

)
. A computation shows

that the curvature is κ(t) = 1
2κ0( t√

2 ) > 0, and that the torsion is τ(t) =

ANNALES DE L’INSTITUT FOURIER
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± 1
2κ0( t√

2 ) 6= 0, so that C is non-planar. Clearly C is contained in the nodal
set of Fn for all n. Thus even in the non-planar case, we can have the
reference curve C contained in the nodal set for arbitrarily large E.

Question 1.3. — Does there exist a non-planar curve C with no nodal
intersections, E arbitrarily large?

1.2. Arithmetic random waves

As there is no deterministic bound on Z(F ) in dimension 3, we investigate
what happens for “typical” eigenfunctions. Let E(E) be the set of lattice
points lying on a sphere

E(E) = {~x ∈ Z3 : |~x|2 = E},

and let
N = NE := #E(E).

The Laplace spectrum on T3 is of high multiplicities, with the dimension
of an eigenspace corresponding to an eigenvalue 4π2E being of size NE ≈
E1/2±o(1). The eigenfunctions corresponding to the eigenvalue 4π2E are of
the form

(1.1) F (x) = FE (x) = 1√
NE

∑
µ∈E(E)

aµe
2πi〈µ,x〉.

We consider random Gaussian eigenfunctions (“arithmetic random
waves” [11]) by taking the coefficients aµ to be standard complex Gaussian
random variables, independent save for the relations a−µ = aµ, making F
real-valued.

1.3. Statement of the main results

Theorem 1.4. — Let C ⊂ T3 be a smooth curve of length L, with
nowhere zero curvature. Assume further that one of the following holds:

(1) C has nowhere-vanishing torsion;
(2) C is planar (so that the torsion vanishes identically).

Then for all ε > 0, as E →∞ along integers E 6≡ 0, 4, 7 mod 8, the number
of nodal intersections satisfies

lim
E→∞

E 6≡0,4,7 mod 8

Prob
(∣∣∣∣Z(F )√

E
− 2√

3
L

∣∣∣∣ > ε

)
→ 0.

TOME 66 (2016), FASCICULE 6
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Note that the condition E 6≡ 0, 4, 7 mod 8 is natural, as otherwise E =
4aE′ with E′ 6≡ 7 mod 8 (if E′ ≡ 7 mod 8 then E is not a sum of three
squares and hence does not yield a Laplace eigenvalue); then an eigenfunc-
tion of eigenvalue 4π2E is necessarily of the form F (x) = H(2ax) with H
an eigenfunction of eigenvalue E′. Hence any question on the nodal set of
F reduces to the corresponding question on the nodal set of eigenfunctions
with eigenvalue E′ = E/4a (which may be trivial, e.g. if E = 4a).
To prove Theorem 1.4 we compute the expected value of Z with respect

to the Gaussian measure defined on the eigenspace as above to be

E(Z) = 2√
3
L
√
E,

and give an upper bound for the variance:

Theorem 1.5. — Let C ⊂ T3 be a smooth curve, with nowhere-zero
curvature. Assume also that either C has nowhere-vanishing torsion, or C
is planar. Then for E 6≡ 0, 4, 7 mod 8,

(1.2) Var
(
Z√
E

)
� 1

Eδ

for all δ < 1/3 in case C has nowhere vanishing torsion, and all δ < 1/4 in
case C is planar.

Remark 1.6. — If C is real-analytic and non-planar, so that the torsion is
not identically zero, but may vanish at finitely many points, the result (1.2)
above is valid with some δ = δC > 0, see §5.3.

1.4. Outline of the paper and the key ideas

We prove the approximate Kac–Rice formula (briefly explained in §1.5)
in §2, followed by a study of certain oscillatory integrals on the curve in §3.
The arithmetic heart of the paper is §5, where we bound the second moment
of the covariance function and its derivatives, following some background on
the arithmetic of sums of three squares in §4, expanded on in Appendix A.

A similar result to Theorem 1.5 was proved in the two-dimensional case
for C ⊂ T2 having nowhere-zero curvature [12]. In that case the authors
found that the precise asymptotic behaviour of the nodal intersections vari-
ance is non-universal, namely dependent on both the angular distribution
of the lattice points E (E) and the geometry of C. In the 3-dimensional case
we were only able to obtain an upper bound (1.2) on the variance, which

ANNALES DE L’INSTITUT FOURIER
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implies the “almost-all” statement of Theorem 1.4. These two cases dif-
fer both in terms of analytic and arithmetic ingredients; the arithmetic of
ternary quadratic forms differs significantly from that of binary quadratic
forms.

1.5. An approximate Kac–Rice formula

We end this Introduction with a discussion of a key step in our work, the
approximate Kac–Rice formula.

By restricting the arithmetic random waves (1.1) along C, the problem of
nodal intersections count is reduced to evaluating the number of zeros (zero
crossings) of a random (nonstationary) Gaussian process. The Kac–Rice
formula is a standard tool or meta-theorem for expressing the (factorial)
moments of the zero crossings number of a Gaussian process precisely in
terms of certain explicit integrals with integrands depending on the given
process. It is then easy to evaluate the expected number of zeros precisely
and explicitly via an evaluation of a standard Gaussian expectation.
For the variance, or the second factorial moment, the validity of the

Kac–Rice formula is a very subtle question with a variety of sufficient con-
ditions known in the literature (e.g. [8, 1]). While the classical treatise [8]
requires the non-degeneracy of the (Gaussian) distribution of the values of
the given process at two points together with their derivatives, only the
non-degeneracy of the values distribution (at two points) is required for
the more modern treatment [1], which, to the best knowledge of the au-
thors, is the weakest known sufficient condition for the validity of Kac–Rice.
Unfortunately, even this weaker condition may fail in our case.

In order to treat this situation (§2) we divide the interval into many
small subintervals of length commensurable to the wavelength 1√

E
and

decompose the total variance as a sum over pairs of subintervals of zero
number covariances (2.14). We were able to prove the validity of Kac–Rice
for most of the pairs of subintervals that includes all the diagonal pairs
(i.e. the variance of nodal intersections along sufficiently small curves), and
bound the contribution of the other pairs via a simple Cauchy–Schwartz
argument. The price is that along the way we incur an error term, hence
yielding an approximate Kac–Rice (Proposition 2.2) reducing a variance
computation to an estimate for some moments of the covariance function
and its derivatives; such a strategy was also used in [12, 7]. The remaining
part of this paper is concerned with proving such an estimate on the second
moment of the covariance function and a couple of its derivatives.

TOME 66 (2016), FASCICULE 6
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We finally record that we may omit a certain technical assumption made
in our previous work on the two-dimensional case [12] by using the more
general form of the Kac–Rice formula as in [1] (vs. [8]). Given an integer
m expressible as a sum of 2 squares we defined the probability measure

τm =
∑
‖λ‖2=m

δλ/
√
m

on the unit circle S1 ⊆ R2 supported on all the lattice points λ ∈ Z2

lying on the centered radius-
√
m circle in R2 projected to the unit circle.

In [12, Theorem 1.2] we evaluated the variance of the number of nodal
intersections under the assumption that the Fourier coefficient τ̂m(4) is
bounded away from ±1 (i.e. τm bounded away from the singular measures
1
4 (δ±1 + δ±i) and its π/4-tilted version). Using [1] makes that assumption
no longer necessary.

2. An approximate Kac–Rice formula

2.1. The Kac–Rice premise

Let d > 3, and C ⊆ Td be a smooth curve. Let F be the arithmetic
random wave

F (x) = 1√
NE

∑
µ∈E(E)

aµe
2πi〈µ,x〉

(with the obvious generalization of all the previous notation to higher di-
mensions d > 3). We wish to study the number Z(F ) of nodal intersections
of F with C by restricting F to C as follows.
Let γ : [0, L] → R be a unit speed parameterization of C. We restrict F

to C by defining the random Gaussian process

(2.1) f(t) = F (γ(t))

on [0, L]. It is then obvious that the nodal intersections number Z(F ) is
equal to the number of the zeros of f . The Kac–Rice formula (see e.g. [8],
[1]) is a standard tool (meta-theorem) for evaluating the expected number
and higher (factorial) moments of zeros of a “generic” process: let X : I →
R be a (a.s. C1-smooth, say) random Gaussian process on an interval I ⊆ R,
and Z = ZI;X the number of zeros of X on I. For m > 1 and distinct
points t1, . . . , tm ∈ I denote ϕt1,t2,...,tm(u1, . . . um) to be the (Gaussian)
probability density function of the random vector (X(t1), . . . X(tm)) ∈ Rm.

ANNALES DE L’INSTITUT FOURIER
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Then, under appropriate assumptions on X, the m-th factorial moment of
Z is given by

(2.2) E
[
Z [m]

]
=
∫
Im
Km(t1, . . . , tm) dt1 . . . dtm,

where

Z [m] :=
{
Z(Z − 1) · · · (Z −m+ 1) 1 6 m 6 Z
0 otherwise,

and Km, given by

(2.3) Km(t1, . . . tm) =ϕt1,...,tm(0, . . . , 0)
×E
[
|X ′(t1) . . . X ′(tm)|

∣∣X(t1) = 0, . . . , X(tm) = 0
]
,

is the m-th zero-intensity of Z. Note that for the Gaussian case

(2.4) ϕt1,...,tm(0, . . . , 0) = 1
(2π)m/2

√
detA

with A the covariance matrix of the values (X(t1), . . . , X(tm)), provided
that detA 6= 0, or, equivalently, that the distribution of (X(t1), . . . , X(tm))
is non-degenerate.
The validity of the meta-theorem (2.2) was established under a number of

various scenarios. Originally the result (2.2) was proven to hold [8] provided
that for all distinct points t1, . . . , tm ∈ I the distribution of the Gauss-
ian vector (X(t1), . . . , X(tm), X ′(t1), . . . X ′(tm)) ∈ R2m is non-degenerate.
This non-degeneracy condition was relaxed(2) [1], as in the following theo-
rem:

Theorem 2.1 ([1, Theorem 6.3]). — Let X : I → R be a Gaussian
process having C1 paths and m > 1. Assume that for every m pairwise
distinct points t1, . . . , tm ∈ I, the joint distribution of (X(t1), . . . X(tm)) ∈
Rm is non-degenerate. Then (2.2) holds.

The cases m = 1, 2 are of our particular interest (see the following sec-
tions). The main problem is that form = 2 even the weaker non-degeneracy
hypothesis in Theorem 2.1 may not be satisfied for our process f as in (2.1);
to resolve this issue we will decompose the interval I = [0, L] into small
subintervals, and apply Kac–Rice for each pair of the subintervals to de-
velop “approximate Kac–Rice” formula following an idea from [12] in the
two-dimensional case (see §2.4).

(2)This fortunate fact simplifies our treatment of the approximate Kac–Rice formula
below (though it is possible to work [12] with the more restrictive version to obtain the
same results).

TOME 66 (2016), FASCICULE 6
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The covariance function of the centered Gaussian random field F reads

rF (x, y) := E [F (x)F (y)] = 1
NE

∑
µ∈E

cos (2π 〈µ, y − x〉)

for x, y ∈ Td. As F is stationary (rF depending on y − x only), we may
think of rF as a function of one variable on Td. The covariance function of
f is

r(t1, t2) = rf (t1, t2) := E [f(t1)f(t2)] = rF (γ(t1)− γ(t2)) .

Therefore, f is a centered unit variance Gaussian process (non-stationary);
r(t1, t2) 6= ±1 if and only if the joint distribution of f(t1), f(t2) is non-
degenerate, so the probability density ϕt1,t2 of the Gaussian random vector
(f(t1), f(t2)) exists. Denote

r1 := ∂r

∂t1
, r2 := ∂r

∂t2
, r12 := ∂2r

∂t1∂t2
,

and let

(2.5) R2(E) :=
∫

[0,L]2

(
r2 + (r1/

√
E)2 + (r2/

√
E)2 + (r12/E)2

)
dt1dt2

be the sum of second moments of r and its few normalized derivatives along
C; we will control the various quantities via R2 (see Proposition 2.2 below).
Later we will show that R2(E) is decaying with E (§5).

Proposition 2.2 (Approximate Kac–Rice formula). — We have

Var
(
Z√
E

)
= O(R2(E))

with R2 is given by (2.5).

The rest of this section is dedicated to the proof of Proposition 2.2, finally
given in §2.4, following some preparations.

2.2. Expectation

Since f is a centered unit variance Gaussian process with C1 paths (in,
particular, the non-degeneracy condition of Theorem 2.1 is automatically
satisfied), we may use the Kac–Rice formula (2.2); for m = 1 it reads

(2.6) E[Z] =
∫
I

K1(t) dt

ANNALES DE L’INSTITUT FOURIER



NODAL INTERSECTIONS 2463

with
K1(t) = 1√

2π
· E
[
|f ′(t)|

∣∣∣ f(t) = 0
]
,

the “zero density” of f (here (2.4) reads ϕt(0) = 1√
2π ). Let Γ be the co-

variance matrix of (f(t), f ′(t)):

Γ(t) =
(
r(t, t) r1(t, t)
r2(t, t) r12(t, t)

)
.

Lemma 2.3. — For a smooth curve of length L, the expectation of nodal
intersections number is given by

E[Z] = L
2√
d
·
√
E

Proof. — Since f is unit variance, it is immediate that for every t ∈ [0, L]
we have r1(t, t) = r2(t, t) = 0, so

Γ(t) =
(

1
α

)
,

where
α := r12(t, t) = −γ̇(t)tHrF (0, 0)γ̇(t)

and HrF is the Hessian of rF (see e.g. [12]). Since HrF (0, 0) is a scalar
matrix [13]

HrF (0, 0) = −4
d
π2E · Id

it follows that
α = 4

d
π2E.

The distribution of f ′(t) conditional on f(t) = 0 is centered Gaussian with
variance α. Recall that for X ∼ N(0, σ2) we have E(|X|) = σ

√
2/π, so

(2.7) K1(t) = 1
π

√
α = 2√

d

√
E

independent of x, and the statement of the lemma follows upon substitut-
ing (2.7) into (2.6). �

2.3. Variance

For m = 2 the Kac–Rice formula (2.2) reads

(2.8) E[Z2 −Z] =
∫
I×I

K2(t1, t2) dt1dt2

TOME 66 (2016), FASCICULE 6
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with K2, the “2-point correlation function”, defined for r(t1, t2) 6= ±1 as
(see (2.3) and (2.4))

K2(t1, t2) = 1
2π
√

1− r2
· E
[
|f ′(t1)| · |f ′(t2)|

∣∣∣ f(t1) = f(t2) = 0
]
,

holding (Theorem 2.1) provided that for all t1 6= t2 we have r(t1, t2) 6= ±1
(equivalently, the distribution of (f(t1), f(t2)) is non-degenerate). Equiva-
lently, the zero number variance is given by (cf. (2.6))

(2.9) Var (Z) =
∫
I×I

(K2(t1, t2)−K1(t1)K1(t2)) dt1dt2 + E [Z] .

As it was mentioned above, in our case the assumption that r(t1, t2) 6= ±1
for all t1 6= t2 may not be satisfied, and, as explained in [12], it is easy to
construct an example of a curve where the Kac–Rice formula for the second
factorial moment (2.8) does not hold. To resolve this situation we will divide
the interval I = [0, L] into small subintervals, and note that the proof of [1]
Theorem 6.3 yields that if J1, J2 ⊆ I are two disjoint subintervals, then
(recall that we denoted ZJ to be the number of zeros of f on a subinterval
J ⊆ I)

(2.10) E[ZJ1 · ZJ2 ] =
∫

J1×J2

K2(t1, t2) dt1dt2,

provided that for all t1 ∈ J1, t2 ∈ J2,

r(t1, t2) 6= ±1.

The 2-point correlation function was evaluated [12] explicitly to be

(2.11) K2(t1, t2) = 1
π2(1− r2)3/2 · µ · (

√
1− ρ2 + ρ arcsin ρ),

where

(2.12) µ = µE(t1, t2) =
√
α(1− r2)− r2

1 ·
√
α(1− r2)− r2

2,

and

(2.13) ρ = ρE(t1, t2) = r12(1− r2) + rr1r2√
α(1− r2)− r2

1 ·
√
α(1− r2)− r2

2

(it follows from the derivation of (2.11) that |ρ| 6 1).

ANNALES DE L’INSTITUT FOURIER
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2.4. Proof of Proposition 2.2

Before giving the proof of Proposition 2.2 we will have to do some
preparatory work. To overcome the above-mentioned obstacle we let c0
be a sufficiently small constant to be chosen below, and decompose the
interval [0, L] into small intervals of length roughly c0 · 1√

E
so that we can

apply Kac–Rice on the corresponding diagonal cubes. To be more concrete,
let k = bL ·

√
E
c0
c + 1 and δ0 = L

k , and divide the interval [0, L] into the
subintervals Ii = [(i− 1)δ0, iδ0] where i = 1, . . . , k. Note that δ0 � 1√

E
.

With Zi denoting the number of zeros of f on Ii (i = 1, . . . , k) we have

(2.14) Var(Z) =
∑
i,j

Cov(Zi,Zj).

Our first goal is to give an upper bound for the individual summands
in (2.14); to this end we need the following lemmas, whose proofs are post-
poned till §2.5:

Lemma 2.4. — There exists a constant c0 > 0 sufficiently small, such
that
for all t1 6= t2 ∈ [0, L] with |t2 − t1| < c0/

√
E we have

r(t1, t2) 6= ±1.

Lemma 2.5 (Uniform bound on the 2-point correlation function around
the diagonal). — For all 0 < |t2 − t1| < c0/

√
E we have

K2(t1, t2) = O(E).

Corollary 2.6. — We have

Cov(Zi,Zj) = O(1),

uniformly for all i, j and E (the implied constant is universal).

Proof of Corollary 2.6 assuming lemmas 2.4–2.5. By Lemma 2.4,
r(t1, t2) 6= ±1 for all t1 6= t2 in every diagonal cube I2

i . Hence (Theo-
rem 2.1 applied on the interval Ii corresponding to a diagonal cube I2

i ) we
can apply Kac–Rice (2.9) to compute the variance of Zi:

Var (Zi) =
∫
I2
i

(K2(t1, t2)−K1(t1)K1(t2)) dt1dt2 + E [Zi] .

By Kac–Rice we have

E [Zi] =
∫
Ii

K1(t) dt = δ0 ·
2√
d

√
E;

TOME 66 (2016), FASCICULE 6
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using Lemma 2.5 we conclude that

Var (Zi)� Eδ2
0 +
√
Eδ0 � 1.

This proves the statement of the corollary for i = j; the result for arbitrary
i, j follows from the above and the Cauchy–Schwartz inequality

Cov(Zi,Zj) 6
√

Var (Zi) ·Var (Zj). �

Definition 2.7 (Singular and nonsingular cubes).
(1) Let

Sij = Ii × Ij = [iδ0, (i+ 1)δ0]× [jδ0, (j + 1)δ0]

be a cube in [0, L]2. We say that Sij is a singular if it contains a
point (t1, t2) ∈ Sij satisfying

|r(t1, t2)| > 1/2.

(2) The union of all the singular cubes is the singular set

B = BE =
⋃

Sij singular
Sij .

Note that since r/
√
E is a Lipschitz function with a universal constant

(independent of E), if Sij is a singular cube, then

|r(t1, t2)| > 1/4

everywhere on Sij , provided that c0 is chosen sufficiently small. Using the
above it is easy to obtain the following bound on the number of singular
cubes:

Lemma 2.8. — The number of singular cubes is bounded above by

E ·
∫

[0,L]2

r2(t1, t2)dt1dt2.

Proof. — Using the Chebyshev–Markov inequality, we see that

meas (B)�
∫

[0,L]2

r2(t1, t2) dt1dt2.

The statement of this lemma follows from the fact that the volume of each
cube is � 1/E. �

ANNALES DE L’INSTITUT FOURIER



NODAL INTERSECTIONS 2467

With Lemma 2.8 together with Corollary 2.6 it is easy to bound the con-
tribution to (2.14) of all (i, j) corresponding to singular cubes Sij (i.e. “sin-
gular contribution”), see the proof of Proposition 2.2 below. Next we will
deal with the nonsingular contribution. Here the Taylor expansion of K2
as a function of r and its scaled derivatives around r = r1 = r2 = r12 = 0
(up to the quadratic terms) is valid; it will yield the following result, whose
proof will be given postponed in §2.5.

Lemma 2.9. — For (t1, t2) outside the singular set we have

(2.15) |K2(t1, t2)−K1(t1)K1(t2)|

= E ·O
(
r2 + ( r1√

E
)2 + ( r2√

E
)2 + (r12

E
)2
)
.

We are finally in a position to give a proof to the main result of this
section.

Proof of Proposition 2.2. — First, it is easy to bound the total contribu-
tion of the singular set to (2.14) (i.e. all i, j with Sij singular): Lemma 2.8
and Corollary 2.6 imply that it is bounded by

(2.16)
∑

(i,j): Sij⊆B

Cov(Zi,Zj) = O

E · ∫
[0,L]2

r2(t1, t2) dt1dt2

 .

Next we deal with the indexes (i, j) corresponding to nonsingular Sij .
We observe that, by the definition, for such a nonsingular cube Sij , nec-

essarily for every (t1, t2) ∈ Sij ,

r(t1, t2) 6= ±1.

As this is a sufficient condition for the application of Kac–Rice
formula (2.10) for computation of Cov(Zi,Zj), bearing in mind (2.15) it
yields that for Sij nonsingular (this in particular implies i 6= j),

Cov(Zi,Zj) =
∫
Sij

(K2(t1, t2)−K1(t1)K1(t2)) dt1dt2

= O

E · ∫
Sij

(
r2 +(r1/

√
E)2 +(r2/

√
E)2 +(r12/E)2

)
dt1dt2

.
Hence the total contribution of the nonsingular set to (2.14) is O(E·R2(E)).
As the total contribution of the singular set to (2.14) was bounded in (2.16),
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and obviously ∫
[0,L]2

r2(t1, t2) dt1dt2 6 R2(E),

this concludes the proof of Proposition 2.2. �

2.5. Proofs of the auxiliary lemmas 2.4, 2.5 and 2.9

Proof of Lemma 2.4. — For t1 ∈ [0, L] fixed, we compute the Taylor
expansion of r(t1, t2) around t2 = t1. Recall that

r(t1, t2) = rF (γ(t1)− γ(t2)) = 1
N

∑
µ∈E

cos (2π 〈µ, γ(t1)− γ(t2)〉) .

Thus, r(t1, t1) = 1, r2(t1, t1) = 0 and r22(t1, t1) = γ̇(t1)tHrF (0)γ̇(t1) = −α.
Moreover, we clearly have r222(t1, t2) = O(E3/2), and therefore

r(t1, t2) = 1− α

2 (t2 − t1)2 +O

((√
E(t2 − t1)

)3
)
.

Hence, for t2 − t1 � 1/
√
E we have

1− r2(t1, t2) = α(t2 − t1)2 +O

((√
E(t2 − t1)

)3
)

= α(t2 − t1)2
(

1 +O
(√

E(t2 − t1)
))

,

(2.17)

so there is a constant c0 > 0 sufficiently small, such that 1 − r2(t1, t2) is
strictly positive for 0 < |t2 − t1| < c0/

√
E. �

Proof of Lemma 2.5. — The function

(2.18) G(ρ) := 2
π

(√
1− ρ2 + ρ arcsin ρ

)
satisfies 2

π 6 G 6 1. Hence, by the explicit form (2.11) of the 2-point
correlation function K2 we obtain that

K2(t1, t2)�

√(
α
(
1− r2)− r2

1
) (
α
(
1− r2)− r2

2
)

(1− r2)3 .

For t2 − t1 � 1/
√
E we have

r1(t1, t2) = α(t2 − t1)
(

1 +O
(√

E(t2 − t1)
))

,

r2(t1, t2) = −α(t2 − t1)
(

1 +O
(√

E(t2 − t1)
))

.
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Using (2.17) we get that

α(1− r2)− r2
1 = α2(t2 − t1)2

(
1 +O

(√
E(t2 − t1)

))
− α2(t2 − t1)2

(
1 +O

(√
E(t2 − t1)

))
= O

(
E5/2(t2 − t1)3

)
and likewise

α(1− r2)− r2
2 = O

(
E5/2(t2 − t1)3

)
,

so

K2(t1, t2)�
O
(
E5/2(t2 − t1)3)

α3/2(t2 − t1)3
(

1 +O
(√

E(t2 − t1)
)) = O(E),

assuming 0 < |t2−t1| < c0/
√
E for a sufficiently small constant c0 > 0. �

Proof of Lemma 2.9. — Recall from (2.11) that

(2.19) K2(t1, t2) = 1
2π ·

1
(1− r2)3/2 ·G(ρ) · µ

where G, µ and ρ are defined respectively in (2.18), (2.12) and (2.13). Note
that for every |ρ| 6 1,

G(ρ) = 2
π

+O
(
ρ2) .

For r, r1/
√
E, r2/

√
E, r12/E small, we have

ρ = O (r + r12/E) .

Moreover, since |ρ| 6 1, this bound holds for every (t1, t2). Thus, for every
(t1, t2) we have

G(ρ) = 2
π

+O
(
r2 + (r12/E)2

)
.

For every (t1, t2),

µ = α+ E ·O
(
r2 + (r1/

√
E)2 + (r2/

√
E)2

)
,

and for r bounded away from ±1 we have
1

(1− r2)3/2 = 1 +O
(
r2) .

Substituting all the expansions in (2.19), we get that

K2(t1, t2) = α

π2 + E ·O
(
r2 + (r1/

√
E)2 + (r2/

√
E)2 + (r12/E)2

)
.

The statement of the lemma now follows, recalling that by (2.7), K1(t) =√
α/π for all t ∈ [0, L]. �
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3. Oscillatory integrals and curvature

In this section we investigate certain oscillatory integrals on curves which
arise in our work. A key role is played by the differential geometry of the
curve.

3.1. Differential geometry of 3-dimensional curves

For a smooth curve in R3, with arc-length parameterization γ : [0, L]→
C ⊂ R3, so that T (t) = γ′(t) is the unit tangent, the curvature of γ at γ(t)
is κ(t) = ||γ′′(t)||. We assume that κ(t) never vanishes, so that γ′′(t) =
κ(t)N(t) with N(t) the unit normal, and under the same assumption the
torsion τ(t) is B′(t) = −τ(t)N(t) where B = T ×N is the binormal vector.
The orthonormal basis (T,N,B) is called the Frenet–Serret frame of the
curve. Recall the Frenet–Serret formulas

T ′(t) = κ(t)N(t)

N ′(t) = −κ(t)T (t) +τ(t)B(t)

B′(t) = −τ(t)N(t)

so in particular

T ′′ (t) = κ′ (t)N (t)− κ2 (t)T (t) + κ (t) τ (t)B (t) .

Let Kmin and Kmax the minimal and the maximal curvature of C respec-
tively. Since the curvature is assumed to be nowhere vanishing, we have

0 < Kmin 6 κ (t) 6 Kmax.

3.2. Oscillatory integrals

Recall the classical form of Van der Corput Lemma: let [a, b] be a finite
interval, φ ∈ C∞ [a, b] a smooth and real valued phase function, and A ∈
C∞ [a, b] a smooth amplitude. For λ > 0 define the oscillatory integral

I (λ) :=
∫ b

a

A (t) eiλφ(t)dt.
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Lemma 3.1 (Van der Corput). — For k > 2, if
∣∣φ(k)

∣∣ > 1, then, as
λ→∞,

|I (λ)| � 1
λ1/k (‖A‖∞ + ‖A′‖1) .

If |φ′| > 1 and φ′ is monotone, then

|I (λ)| � 1
λ

(‖A‖∞ + ‖A′‖1) .

The implied constants are absolute.

Remark 3.2. — If |φ′| > 1 then, independent of the monotonicity hy-
pothesis on φ′,

|I (λ)| � b− a+ 2
λ

(‖A‖∞ + ‖A′‖1) .

3.3. Curves with nowhere vanishing torsion

Assume that the curve C has nowhere vanishing torsion, so that 0 <

Tmin 6 |τ (t) | 6 Tmax, where Tmin and Tmax are the minimal and maximal
absolute value of the torsion of C respectively. Consider a unit vector ξ ∈ S2,
and the phase function

(3.1) φξ (t) := 〈ξ, γ (t)〉

for t ∈ [0, L]. We define an oscillatory integral

I (λ, ξ) :=
∫ L

0
A (t) eiλφξ(t)dt.

We apply Lemma 3.1 to give an upper bound (uniform in ξ) for I (λ, ξ):

Proposition 3.3. — Let C be a smooth curve with nowhere vanishing
curvature and torsion. Then

I (λ, ξ)�C
1

λ1/3 (‖A‖∞ + ‖A′‖1) .

Proof. — We have

φ′ξ (t) = 〈ξ, T (t)〉 ,(3.2)
φ′′ξ (t) = κ (t) 〈ξ,N (t)〉 ,(3.3)

and

φ′′′ξ (t) = κ′ (t) 〈ξ,N (t)〉 − κ2 (t) 〈ξ, T (t)〉+ κ (t) τ (t) 〈ξ,B (t)〉 .

Since (T,N,B) is an orthonormal basis for R3, we know that

(3.4) 1 = |ξ|2 = |〈ξ, T (t)〉|2 + |〈ξ,N (t)〉|2 + |〈ξ,B (t)〉|2 .
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Now let

c = min
(

1
3 ,
K2

minT
2
min

48 ‖κ′‖2
∞
,
K2

minT
2
min

48K4
max

)

(if ‖κ′‖∞ = 0 omit the middle term). If |〈ξ, T (t)〉|2 > c, then
∣∣∣φ′ξ (t)

∣∣∣ >
√
c. If |〈ξ,N (t)〉|2 > c, then

∣∣∣φ′′ξ (t)
∣∣∣ > √cKmin. Otherwise, i.e. if both

|〈ξ, T (t)〉|2 < c and |〈ξ,N (t)〉|2 < c, then necessarily |〈ξ,B (t)〉|2 > 1
3 , so∣∣φ′′′ξ (t)

∣∣ > KminTmin√
3

−K2
max
√
c− ‖κ′‖∞

√
c >

KminTmin

2
√

3
.

Note that
∥∥∥φ′ξ∥∥∥∞ 6 1,

∥∥∥φ′′ξ∥∥∥∞ 6 Kmax,

∥∥φ′′′ξ ∥∥∞ 6 (‖κ′‖2
∞ +K4

max +K2
maxT

2
max

)1/2
.

Using again the Frenet–Serret formulas, we can also get an upper bound
in the same fashion for the fourth derivative, say∥∥∥φ(4)

ξ

∥∥∥
∞
6 C = C (Kmax, Tmax, ‖κ′‖∞ , ‖κ′′‖∞ , ‖τ ′‖∞) .

Assume now that
∣∣∣φ′ξ (t0)

∣∣∣ > √c for some t0 ∈ [0, L]. Then for every t such

that |t− t0| 6
√
c

2Kmax
we have

√
c−
∣∣φ′ξ (t)

∣∣ 6 ∣∣φ′ξ (t0)
∣∣−∣∣φ′ξ (t)

∣∣ 6 ∣∣φ′ξ (t)− φ′ξ (t0)
∣∣ 6 |t− t0|∥∥φ′′ξ∥∥∞ 6 √c2

so
∣∣∣φ′ξ (t)

∣∣∣ > √c2 . Similarly, if
∣∣∣φ′′ξ (t0)

∣∣∣ > √cKmin or
∣∣∣φ′′′ξ (t0)

∣∣∣ > KminTmin
2
√

3 ,
then φ′′ξ or φ′′′ξ is bounded away from zero on some interval around t0, with
length independent of ξ. Hence the interval [0, L] may be divided into a
finite, independent of ξ, number of subintervals, such that for every ξ either
φ′ξ, or φ′′ξ , or φ′′′ξ is bounded away from zero on each of the subintervals.
We conclude the proof of the proposition by an application of Lemma 3.1
and the remark following it. �

3.4. Real analytic curves

Assume now that C is a real analytic, non-planar curve with nowhere
zero curvature. Then the torsion of C has finitely many zeros, each of them
is of finite order. We have already treated the case when the torsion is
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nowhere zero. Assume now, without loss of generality, that there is exactly
one point t0 ∈ [0, L] with zero torsion of order m > 1, namely

(3.5) τ (t0) = · · · = τ (m−1) (t0) = 0, τ (m) (t0) 6= 0.

Recall that under the notation of the previous section

I (λ, ξ) :=
∫ L

0
A (t) eiλφξ(t)dt.

We prove the following result.

Proposition 3.4. — Let C be a non-planar real analytic curve with
nowhere zero curvature, which has exactly one point with zero torsion of
order m > 1. Then

I (λ, ξ)�C
1

λ1/(m+3) (‖A‖∞ + ‖A′‖1) .

Proof. — Using the Frenet–Serret formulas and (3.5), we get that

φ
(m+3)
ξ (t0) = P (t0) 〈ξ, T (t0)〉+Q (t0) 〈ξ,N (t0)〉

+ κ (t0) τ (m) (t0) 〈ξ,B (t0)〉

where P,Q are polynomials in κ, κ′, . . . , κ(m+1).
Choose

c = min
(

1
3 ,
κ (t0)2 (

τ (m) (t0)
)2

48P (t0)2 ,
κ (t0)2 (

τ (m) (t0)
)2

48Q (t0)2

)
(if P (t0) = 0 or Q (t0) = 0, omit the corresponding terms). As in the proof
of Proposition 3.3, by the orthonormality of (T,N,B), either

∣∣∣φ′ξ (t0)
∣∣∣ > √c,∣∣∣φ′′ξ (t0)

∣∣∣ > κ (t0)
√
c, or (if both φ′ξ (t0) , φ′′ξ (t0) are small) |〈ξ,B (t0)〉|2 > 1

3 .
Hence ∣∣∣φ(m+3)

ξ (t0)
∣∣∣ > 1√

3
κ (t0) |τ (m) (t0) | − P (t0)

√
c−Q (t0)

√
c

>
1

2
√

3
κ (t0) |τ (m) (t0) |.

Since all the derivatives of φξ are bounded from above, uniformly w.r.t.
ξ, we conclude that either the first, the second or the (m + 3)-th deriva-
tive of φξ is bounded away from zero on an interval around t0 of length
independent of ξ. Outside that interval the torsion doesn’t vanish, so that
in a neighborhood (of length independent of ξ) around any point outside
this interval, either the first, or the second, or the third derivative of φξ
is bounded away from zero. Dividing the interval [0, L] to a finite number
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(independent of ξ) of subintervals, and applying Lemma 3.1 to each of the
subintervals, we finally deduce the statement of Proposition 3.4. �

4. Background on sums of three squares

A positive integer E is a sum of three squares if and only if E 6= 4a(8b+7).
Let E(E) be the set of solutions

E(E) = {~x ∈ Z3 : |~x|2 = E}

and denote by N = NE the number of solutions

N = NE := #E(E) .

Gauss’ formula expresses NE in terms of class numbers. For E square-free,
it says that

#E(E) = 24h(dE)
wE

(
1−

(
dE
2

))
where dE , h(dE) and wE are the discriminant, class number and the number
of units in the quadratic field Q(

√
−E). Using Dirichlet’s class number for-

mula, one may then express #E(E) by means of the special value L(1, χdE )
of the associated quadratic L-function: If E 6≡ 7 mod 8 is square-free then

NE = cE
√
E · L(1, χdE )

where cE only depends on the remainder of E modulo 8. We may bound
the number #E(E) of such points as

#E(E)� E1/2+ε

for all ε > 0.
The existence of a primitive lattice point (i.e. ~x = (x1, x2, x3) with

gcd(x1, x2, x3) = 1 and ‖x‖2 = E) is equivalent to E 6≡ 0, 4, 7 mod 8. If
it is indeed the case, then Siegel’s theorem yields a lower bound

(4.1) #E(E)� E1/2−ε.

A fundamental result conjectured by Linnik (established by himself under
the Generalized Riemann Hypothesis), is that for E 6≡ 0, 4, 7 mod 8, the
points

Ê(E) := 1√
E
E(E) ⊂ S2

obtained by projecting to the unit sphere, become equidistributed on
the unit sphere with respect to the normalized Lebesgue measure as
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E → ∞. This was proved unconditionally by Duke [9], and Golubeva and
Fomenko [10].

The “Riesz s-energy” of N points x1, . . . , xN on S2 is defined as

(4.2) Es(x1, . . . , xN ) :=
∑
i 6=j

1
|xi − xj |s

.

A forthcoming result of Bourgain, Rudnick and Sarnak [5] (announced in [6]
for the electrostatic case s = 1) yields a precise asymptotic expression for
Es(Ê(E)): for every 0 < s < 2 if E →∞ such that E 6= 0, 4, 7 mod 8, then
there exists some δ > 0 so that

(4.3) Es(Ê(E)) = I(s)N2 +O(N2−δ)

with

I(s) =
∫
S2

1
|x− x0|s

dσ(x) = 21−s

2− s ,

with x0 ∈ S2 any point on the sphere, and dσ the Lebesgue measure,
normalized to have unit area.
As the details of (4.3) have not appeared at the time of writing, we will

prove the following simple bound, which suffices for Theorem 1.5:

Proposition 4.1. — Fix 0 < s 6 1. Then for E 6≡ 0, 4, 7 mod 8,

Es(Ê(E))� N2Eη, ∀η > 0 .

The proof of Proposition 4.1 will be given in Appendix A.

5. The second moment of r and its derivatives

We wish to bound the second moment of the covariance function r and
its derivatives. It is here that we need the full arithmetic input described
in §4. Recall that

r(t1, t2) = rF (γ(t1)− γ(t2)) = 1
N

∑
µ∈E

cos (2π 〈µ, γ(t1)− γ(t2)〉)

= 1
N

∑
µ∈E

e (〈µ, γ(t1)− γ(t2)〉) .
(5.1)
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5.1. Non-planar curves

Recall that given E we defined R2(E) as in (2.5). Proposition 2.2 shows
that in order to bound the nodal intersections variance from above it is
sufficient to bound R2(E), which is claimed in the following proposition
for the non-planar case.

Proposition 5.1. — Assume that the curve C is smooth, with nowhere
zero curvature and torsion. Then for every η > 0 we have

(5.2) R2(E)� 1
E1/3−η .

Remark 5.2. — For real-analytic non-planar curves with non-vanishing
curvature, the same argument as below, invoking Proposition 3.4 instead
of Proposition 3.3, yields

(5.3) R2(E)� 1/Eδ

for some δ = δ(C) > 0.

Proof. — In what follows we will establish the following bounds on the
2nd moment of r and some of its normalized derivatives along C: for all
η > 0 we have ∫∫

[0,L]2

r(t1, t2)2dt1dt2 �
1

E1/3−η ,(5.4)

∫∫
[0,L]2

(
ri(t1, t2)/

√
E
)2

dt1dt2 �
1

E1/3−η (i = 1, 2),(5.5)

and ∫∫
[0,L]2

(r12(t1, t2)/E)2 dt1dt2 �
1

E1/3−η .(5.6)

The statement (5.2) of Proposition 5.1 will follow at once upon substitut-
ing (5.4), (5.5) and (5.6) into the definition (2.5) of R2(E).
First we show (5.4). Squaring out and integrating (5.1), we find∫∫

[0,L]2

r(t1, t2)2 dt1dt2 = 1
N2

∑
µ∈E

∑
µ′∈E

∫∫
[0,L]2

e(〈µ− µ′, γ(t1)− γ(t2)〉) dt1dt2

= L2

N
+ 1
N2

∑
µ6=µ′

∣∣∣∣∣
∫ L

0
e(〈µ− µ′, γ(t)〉) dt

∣∣∣∣∣
2

.
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Since γ has nowhere vanishing curvature and torsion, we deduce from
Proposition 3.3 that∫ L

0
e(〈µ− µ′, γ(t)〉) dt� 1

|µ− µ′|1/3 ,

which yields∫∫
[0,L]2

r(t1, t2)2 dt1dt2 = L2

N
+O

 1
N2

∑
µ6=µ′

1
|µ− µ′|2/3

 .

The summation inside the error term O(· · · ) is 1/E1/3 times the “Riesz
2/3-energy” of the set of projected lattice points Ê(E) = 1√

E
E(E) ⊂ S2.

By Proposition 4.1,∑
µ̂,µ̂′∈Ê
µ̂6=µ̂′

1
|µ̂− µ̂′|2/3 � N2 · Eη, ∀η > 0,

and hence
1
N2

∑
µ6=µ′

1
|µ− µ′|2/3 = 1

E1/3
1
N2

∑
µ̂,µ̂′∈Ê
µ̂6=µ̂′

1
|µ̂− µ̂′|2/3 �

1
E1/3−η ,

which yields (5.4).
Now we turn to proving (5.5). We have

1
2πi
√
E
r1(t1, t2) = 1

N

∑
µ

〈
µ

|µ|
, γ̇(t1)

〉
e2πi〈µ,γ(t1)−γ(t2)〉.

Denote
Aµ,µ′(t) =

〈
µ

|µ|
, γ̇(t)

〉〈
µ′

|µ′|
, γ̇(t)

〉
.

Then

(5.7)
∫∫

[0,L]2

∣∣∣∣ 1
2π
√
E
r1(t1, t2) dt1dt2

∣∣∣∣2 = L

N2

∑
µ

∫ L

0
Aµ,µ(t1) dt1

+ 1
N2

∑
µ,µ′∈E
µ6=µ′

∫ L

0
Aµ,µ′(t1)e2πi〈µ−µ′,γ(t1)〉 dt1

∫ L

0
e2πi〈µ′−µ,γ(t2)〉 dt2.

To evaluate the main term, we use the fact (see [13, Lemma 2.3]) that for
every v ∈ Rd,

1
N

∑
µ∈E
〈µ, v〉2 = E

d
‖v‖2

.

TOME 66 (2016), FASCICULE 6



2478 Zeév RUDNICK, Igor WIGMAN & Nadav YESHA

Hence,
L

N2

∑
µ

∫ L

0
Aµ,µ(t1) dt1 = L2

dN
.

As for the off-diagonal terms, note that ‖Aµ,µ′‖∞ 6 1,
∥∥A′µ,µ′

∥∥
∞ 6 2Kmax,

so by Proposition 3.3 each of the two last integrals in (5.7) is bounded above
by 1/|µ − µ′|1/3. From here we continue as in the proof of (5.4) to obtain
the estimate ∫∫

[0,L]2

(
r1(t1, t2)/

√
E
)2

dt1dt2 �
1

E1/3−η , ∀η > 0

and a similar proof yields the same bound for the (normalized) second
moment of r2.

Finally we turn to proving (5.6). We have∫∫
[0,L]2

∣∣∣∣ 1
4π2E

r12(t1, t2) dt1dt2
∣∣∣∣2

= 1
N2

∑
µ

∫∫
[0,L]2

Aµ,µ(t1)Aµ,µ(t2) dt1dt2

+ 1
N2

∑
µ,µ′∈E
µ6=µ′

∣∣∣∣∣
∫ L

0
Aµ,µ′(t)e2πi〈µ−µ′,γ(t)〉

∣∣∣∣∣
2

dt, .

The diagonal term is bounded above by L2/N ; by Proposition 3.3 the
off-diagonal terms are bounded above by 1/|µ − µ′|1/3, so we similarly
deduce (5.6). �

5.2. Planar curves

The goal of this section is proving the following estimate on R2 for C
planar.

Proposition 5.3. — Assume that C is a smooth planar curve, with
nowhere zero curvature. Then for all η > 0

(5.8) R2(E)� 1
E1/4−η .

We will now collect a few results needed for Proposition 5.3, whose proof
is given towards the end of this section. In this section we assume that
C is a smooth planar curve with nowhere zero curvature, so that τ ≡ 0;
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the binormal vector B is constant in this case. Let ε = ε (E) be a small
parameter, µ 6= µ′ ∈ E (E), λ = λ (µ, µ′) = |µ− µ′| and ξ = ξ (µ, µ′) =
µ−µ′

|µ−µ′| . We will reuse the definition (3.1) of φξ.

Lemma 5.4. — For all ξ ∈ S2 and for all t ∈ [0, L] either
∣∣∣φ′ξ (t)

∣∣∣ > √ε,
or
∣∣∣φ′′ξ (t)

∣∣∣ > √εKmin, or otherwise

|〈ξ,B〉|2 > 1− 2ε.

Proof. — This follows from (3.4) via (3.2) and (3.3). �

Lemma 5.5. — Let µ, µ1, µ2 be distinct points on the sphere
√
ES2,

and assume that 〈
µi − µ
|µi − µ|

, B

〉
>
√

1− 2ε

for i = 1, 2. Then |µ2 − µ1| 6 16
√
εE.

Proof. — Let vi = µi−µ
|µi−µ|−B (i = 1, 2), so that |vi|2 = 2−2

〈
µi−µ
|µi−µ| , B

〉
6

4ε. We write
µi = µ+ |µi − µ| (B + vi) .

Taking norms we get

0 = |µi − µ|2 + 2 |µi − µ| 〈µ,B + vi〉 ,

so that
|µi − µ| = −2 〈µ,B〉 − 2 〈µ, vi〉 ,

and therefore

µi = µ− 2 〈µ,B〉B − 2 〈µ, vi〉 (B + vi)− 2 〈µ,B〉 vi.

By Cauchy–Schwartz 〈µ, vi〉 6 2
√
εE, and 〈µ,B〉 6

√
E, and that implies

|µ2 − µ1| 6 16
√
εE. �

We are now in a position to prove Proposition 5.3.

Proof of Proposition 5.3. In what follows we will establish the following
bounds on the 2nd moment of r and some of its normalized derivatives
along C (assumed to be planar, with nowhere zero curvature):∫∫

[0,L]2

r(t1, t2)2 dt1dt2 = O

(
1

E1/4−η

)
,(5.9)

∫∫
[0,L]2

(
ri(t1, t2)/

√
E
)2

dt1dt2 = O

(
1

E1/4−η

)
,(5.10)
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i = 1, 2, and

(5.11)
∫∫

[0,L]2

(r12(t1, t2)/E)2 dt1dt2 = O

(
1

E1/4−η

)
.

First we prove (5.9). If B is the constant binormal to the curve, then∫∫
[0,L]2

r(t1, t2)2dt1dt2 = L2

N
+ 1
N2

∑
µ6=µ′

|〈ξ(µ,µ′),B〉|261−2ε

I (|µ− µ′|, ξ)2

+ 1
N2

∑
µ6=µ′

|〈ξ(µ,µ′),B〉|2>1−2ε

I (|µ− µ′|, ξ)2
(5.12)

(here A, the amplitude involved in I(λ, ξ), is A(t) ≡ 1).
To bound the first summation in (5.12) we observe that for µ, µ′ with

|〈ξ (µ, µ′) , B〉|2 6 1− 2ε

we have, thanks to Lemma 5.4, that for every t ∈ [0, L] either
∣∣∣φ′ξ (t)

∣∣∣ > √ε
or
∣∣∣φ′′ξ (t)

∣∣∣ > √εKmin. Hence Lemma 3.1, using the same arguments as in
the proof of Proposition 3.3, yields the following bound, uniform in ξ:

I (λ, ξ) =
∫ L

0
A(t)eiλφξ(t)dt

�C min
{
‖A‖∞ ,

1
(
√
ελ)1/2 (‖A‖∞ + ‖A′‖1)

}
.

(5.13)

We may then bound the first summation in (5.12) as

1
N2

∑
µ6=µ′

|〈ξ(µ,µ′),B〉|261−2ε

I (|µ− µ′|, ξ)2

� 1
N2

∑
µ6=µ′

|µ−µ′|61/
√
ε

1 + 1
N2

∑
µ6=µ′

|µ−µ′|>1/
√
ε

1√
ε |µ− µ′|

� 1
N2

∑
µ

#
{
µ′ : |µ− µ′| 6 1/

√
ε
}

+ 1√
εN2

∑
µ6=µ′

1
|µ− µ′|

.

(5.14)

The second summation in the r.h.s. of (5.14) is 1/E1/2 times the “Riesz 1-
energy” of the set of projected lattice points Ê(E) = 1√

E
E(E) ⊂ S2, which
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by Proposition 4.1 is bounded by∑
µ̂,µ̂′∈Ê
µ̂6=µ̂′

1
|µ̂− µ̂′|

� N2 · Eη, ∀η > 0,

or,
1√
εN2

∑
µ6=µ′

1
|µ− µ′|

� E−1/2+η
√
ε

, ∀η > 0.

For every η > 0, the number of lattice points in a spherical cap of
radius r on the sphere RS2 can be easily shown to be O(Rη (1 + r)) (e.g. [3,
Lemma 2.2]), so that the total number of solutions to |µ − µ′| 6 1/

√
ε is

O (Eη/
√
ε). Hence, the first summation in the r.h.s. of (5.14) isO (Eη/

√
εN),

and (5.14) is

(5.15) 1
N2

∑
µ6=µ′

|〈ξ(µ,µ′),B〉|261−2ε

I (|µ− µ′|, ξ)2 � Eη−1/2
√
ε

.

For the second summation on the r.h.s. of (5.12) we bound each of the
integrals I (|µ− µ′|, ξ) from above trivially by 1, yielding

(5.16) 1
N2

∑
µ6=µ′

|〈ξ(µ,µ′),B〉|2>1−2ε

I (|µ− µ′|, ξ)2

� 1
N2

∑
µ

#
{
µ′ : |〈ξ (µ, µ′) , B〉|2 > 1− 2ε

}
.

Using Lemma 5.5, we see that all of the lattice points satisfying

|〈ξ (µ, µ′) , B〉|2 > 1− 2ε

are contained in two spherical caps of radius �
√
εE so that the total

number of solutions to |〈ξ (µ, µ′) , B〉|2 > 1 − 2ε is O
(
Eη
(

1 +
√
εE
))

.
Therefore

1
N2

∑
µ6=µ′

|〈ξ(µ,µ′),B〉|2>1−2ε

I (|µ− µ′|, ξ)2 �
Eη
(

1 +
√
εE
)

N

� Eη−1/2 +
√
εEη.

(5.17)
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Substituting (5.15) and (5.17) into (5.12) yields the inequality

(5.18)
∫∫

[0,L]2

r(t1, t2)2dt1dt2 = L2

N
+O

(
Eη−1/2
√
ε

+
√
εEη

)
.

The estimate (5.9) follows by making the optimal choice ε=E−1/2 in (5.18).
The proofs of (5.10) and (5.11) are very similar to the above (cf. the

proofs of (5.5) and (5.6) within the proof of Proposition 5.1); we omit the
details. �

Remark 5.6. — It is possible to slightly improve the exponent of the
bound (5.8) in Proposition 5.3 by using a better estimate for the number
of lattice points in spherical caps ([3, Proposition 1.4]).

5.3. Concluding the proof of Theorem 1.5

Proof. — Use Proposition 2.2 together with either Proposition 5.1 for the
nowhere vanishing torsion case or Proposition 5.3 for the planar case. �

We finally record that the proof above will give the result described in
Remark 1.6 for C non-planar and analytic, by invoking the bound (5.3)
instead of Proposition 5.1.

Appendix A. A simple upper bound for the Riesz energy

We now prove Proposition 4.1. Recall that the Riesz energy of the pro-
jected lattice points is

Es(Ê(E)) :=
∑

µ 6=ν∈E

1∣∣∣ µ√
E
− ν√

E

∣∣∣s .
We use a dyadic subdivision to treat the double sum above, noting that for
distinct lattice points µ 6= ν ∈ E , we have 1 < |µ− ν| 6 2

√
E:∑

µ6=ν∈E

1
|µ− ν|s

=
∑

162k62
√
E

∑
2k6|µ−ν|<2k+1

1
|µ− ν|s

�
∑

2k62
√
E

1
2ks

∑
µ∈E

#{ν ∈ E : |µ− ν| < 2k+1}
(A.1)

The number of lattice points in a spherical cap of radius r on the sphere√
ES2 is bounded by O(Eη (1 + r)) for all η > 0 [3, Lemma 2.2], so that

#{ν ∈ E : |µ− ν| < 2k+1} � Eη2k, ∀η > 0.
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Inserting into (A.1) gives, for 0 6 s 6 1, and all η > 0,∑
µ 6=ν∈E

1
|µ− ν|s

�
∑

2k62
√
E

∑
µ∈E

1
2ks 2kEη

= NEη
∑

2k62
√
E

2k(1−s) � NE(1−s)/2+η logE .

(the factor of logE is needed if s = 1).
Now insert Siegel’s lower bound (4.1) on the number of lattice points:

E1/2−δ � N , for all δ > 0, to bound the RHS above by

NE(1−s)/2+η logE = NE1/2−η · E−s/2+2η logE � N2E−s/2+3η, ∀η > 0.

This gives ∑
µ6=ν∈E

1
|µ− ν|s

� N2E−s/2+3η, ∀η > 0,

and hence (replacing η by η/3), for 0 < s 6 1, the Riesz energy of the
projected lattice points is bounded by

Es(Ê(E)) :=
∑

µ6=ν∈E

1∣∣∣ µ√
E
− ν√

E

∣∣∣s � N2Eη, ∀η > 0 .

This concludes the proof of Proposition 4.1.
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