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ON THE MINIMAL NUMBER OF PERIODIC ORBITS
ON SOME HYPERSURFACES IN R2n

by Jean GUTT & Jungsoo KANG (*)

Abstract. — We study periodic orbits of the Reeb vector field on a nondegen-
erate dynamically convex starshaped hypersurface in R2n along the lines of Long
and Zhu [24], but using properties of the S1- equivariant symplectic homology. We
prove that there exist at least n distinct simple periodic orbits on any nondegen-
erate starshaped hypersurface in R2n satisfying the condition that the minimal
Conley–Zehnder index is at least n − 1. The condition is weaker than dynamical
convexity.
Résumé. — Nous étudions les orbites périodiques du champ de Reeb sur les

hypersurfaces non-dégénérées et dynamiquement convexes de R2n en suivant les
travaux de Long et Zhu mais en utilisant l’homologie symplectique S1-équivariante.
Nous démontrons qu’il existe au moins n orbites simples de Reeb sur toute hyper-
surface étoilï¿½e et non dégénérée de R2n satisfaisant la condition que le plus petit
indice de Conley–Zehnder est au moins n − 1. Cette dernière condition est plus
faible que celle de convexité dynamique.

1. Introduction

We consider a starshaped hypersurface Σ in R2n endowed with the stan-
dard contact form α which is the restriction of the 1-form λ on R2n defined
by

λ = 1
2

n∑
j=1

(xjdyj − yjdxj).

The Reeb vector field Rα associated to a contact form α is the unique
vector field on Σ characterized by: ι(Rα)dα = 0 and α(Rα) = 1. Since this

Keywords: Reeb dynamics, Equivariant symplectic homology, Index jump.
Math. classification: 53D10, 37J55.
(*) This paper was written while JG was a postdoc at UC Berkeley under the supervision
of Michael Hutchings.
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vector field does not vanish anywhere, there are no fixed points of its flow,
and periodic orbits are the most noticeable objects of its flow.
The existence of a periodic orbit is known from Rabinowitz [25] and a

long-standing question is to know the (minimal) number of geometrically
distinct periodic orbits of (Σ, α). This question has been studied in depth
in the lowest dimensional case, in which the question is nontrivial, i.e. for
a hypersurface Σ ⊂ R4 in [8, 12, 13, 17, 18, 19, 21]. It turns out that, in
this case, (Σ, α) carries at least two simple periodic orbits and if there are
more than two simple periodic orbits, infinitely many of them are guaran-
teed generically. In higher dimensions, nearly all known multiplicity results
concern hypersurfaces in R2n which satisfy some geometric conditions and
appear in [2, 10, 11, 24, 32, 33].
This paper is based on the approach due to Long and Zhu [24]. They

prove a certain lower bound on the number of simple periodic orbits on a
strictly convex hypersurface. In particular, they show that this lower bound
equals n if the hypersurface is strictly convex and nondegenerate(1) . In their
proof, strict convexity plays a role twice. First they use the fact that the
index of periodic orbits behaves very well under iteration in the strictly
convex case. We show here that this remains true under the more general
assumption of dynamical convexity. Recall that (Σ, α) is dynamically con-
vex if every periodic orbit has Conley–Zehnder index at least n+ 1; this is
the case whenever Σ is strictly convex. Secondly, they use a result of [10]
to get information about the interval where the indices of periodic orbits
of (Σ, α) sit. For this they use the Clarke dual action functional, which
exists only when Σ is strictly convex. By using the positive S1-equivariant
symplectic homology instead, we observe that the idea of [24] works under
a weaker assumption and proves a stronger statement. We now state the
results proven in this paper.
A simple periodic orbit is called even if the Conley–Zehnder indices of all

its iterates have the same parity; or, equivalently, if the linearized Poincaré
return map has a number of real negative eigenvalues which is a multiple
of 4.

Theorem 1.1. — If a starshaped hypersurface (Σ, α) in R2n is nonde-
generate and dynamically convex, there are at least n even simple periodic
orbits. Moreover if there are precisely n simple periodic orbits, all periodic
orbits have different indices.

(1)A hypersurface is nondegenerate if all the periodic orbits are nondegenerate, i.e. 1 is
not an eigenvalue of the linearized Poincaré return map; see Section 2.1

ANNALES DE L’INSTITUT FOURIER



MINIMAL NUMBER OF PERIODIC ORBITS 2487

This Theorem is proved in Section 3 as Theorem 3.1, with the dynamical
convexity assumption slightly weakened.

A diffeomorphism f : (Σ, α)→ (Σ, α) is called an (anti-)strict contacto-
morphism if f∗α = α (if f∗α = −α). Next corollary directly follows from
the fact that an (anti-)strict contactomorphism maps a periodic orbit γ to
a periodic orbit γ′ = f ◦γ (respectively γ′(t) = f

(
γ(T − t)

)
) with the same

period T and the same Conley–Zehnder index.

Corollary 1.2. — Suppose that a nondegenerate starshaped hyper-
surface (Σ, α) in R2n is dynamically convex and possesses precisely n sim-
ple periodic orbits. If there is a (anti-)strict contactomorphism from (Σ, α)
to itself, all periodic orbits are invariant under it.

An interesting class of (anti-) strict contactomorphisms arises when the
hypersurface Σ is invariant under a symmetry of (R2n = Cn, λ). For exam-
ple, let f : Cn → Cn, (z1, . . . , zn) 7→ (e2q1πizz, . . . , e

2qnπizn), q1, . . . , qn ∈ N
or (z1, . . . , zn) 7→ (z̄1, . . . , z̄n) and assume Σ is invariant under f , i.e.
f(Σ) = Σ. Then the corollary yields that if there are precisely n peri-
odic orbits, all of them are symmetric (i.e. invariant under the symmetry).
In low dimensional cases, this result is proved in [22, 30] for a particular
symmetry, but without the nondegeneracy assumption.

A nondegenerate contact form α is called perfect if the number of good
periodic nondegenerate orbits with Conley Zehnder index k is equal to the
dimension of the k-th positive S1-equivariant symplectic homology group.
The following corollary generalizes a result due to Gürel [14]. We note
from Theorem 1.1 that if (Σ, α) is dynamically convex and has precisely n
periodic orbits, it is perfect by degree reason (see Section 3).

Corollary 1.3. — Suppose that a nondegenerate contact form α on
a starshaped hypersurface Σ in R2n is perfect. Then there are precisely n
even simple periodic orbits.

This is proved as Corollary 3.3 in Section 3.
A natural question is whether dynamical convexity is necessary for multi-

plicity results. The following Theorem (proven as Theorem 3.4 in Section 3)
is our partial answer.

Theorem 1.4. — Let (Σ, α) be a nondegenerate starshaped hypersur-
face in R2n such that every periodic orbit has Conley–Zehnder index at
least n− 1. Then Σ possesses at least n simple periodic orbits.

We point out that every periodic geodesic flow of a Finsler n-sphere has
at least Conley–Zehnder index n − 1 under a certain pinching condition.

TOME 66 (2016), FASCICULE 6
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Under this pinching condition and nondegeneracy, Wang [31, Theorem 1.2]
proved a conjecture of Anosov on the number of periodic geodesics on
Finsler spheres. The proof of Theorem 1.4 can be used to give an alternative
rather short proof of this result. This will be discussed in a future paper.
It is easy to show that every nondegenerate starshaped hypersurface

in R2n has two periodic orbits, see for example [14, 20]. The following
statement shows that if two periodic orbits on (Σ, α) do not satisfy a certain
action-index resonance relation, there has to be a third one. This can be
thought of as a generalisation of a theorem due to Ekeland and Hofer [10,
Corollary 1] (or see [9, Corollary V.3.17]).

Proposition 1.5. — Let (Σ, α) be a nondegenerate starshaped hyper-
surface in R2n, for n odd, with two simple periodic orbits γ and δ. Then Σ
carries another simple periodic orbit unless

(1.1) A(γ)
µ̂CZ(γ) = A(δ)

µ̂CZ(δ)
where µ̂CZ and A stand for the mean Conley–Zehnder index and the action
respectively.

The rest of the paper is divided into three sections. Section 2.1 is de-
voted to Long’s index iteration formula and gives a proof of our slight
generalisation of the common index jump Theorem due to Long and Zhu.
In Section 2.2, we recall the properties of positive S1-equivariant symplec-
tic homology that we need. Section 3 contains the proofs of Theorem 1.1,
Corollary 1.3, and Theorem 1.4. Section 4 is entirely devoted to the proof
of Proposition 1.5.

Acknowledgements

JG thanks Peter Albers for his kind and fruitful hospitality in Münster
and acknowledges support from the BAEF. JK is supported by DFG grant
KA 4010/1-1.

2. The main tools

2.1. Index iterations

The Conley–Zehnder index associates an integer to any continuous path
ψ defined on the interval [0, 1] with values in the group Sp(R2n−2) of
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2(n− 1) × 2(n− 1) symplectic matrices, starting from the identity and
ending at a matrix which does not admit 1 as an eigenvalue. This index
is used, for instance, in the definition of the grading of Floer homology
theories. If the path ψ were a loop with values in the unitary group, one
could define an integer by looking at the degree of the loop in the circle
defined by the (complex) determinant -or an integer power of it. One uses
a continuous map ρ from the symplectic group Sp(R2n−2) into S1 and an
“admissible” extension of ψ to a path ψ̃ : [0, 2]→ Sp(R2n−2) in such a way
that ρ2◦ψ̃ : [0, 2]→ S1 is a loop. The Conley–Zehnder index of ψ is defined
as the degree of this loop

µCZ(ψ) := deg(ρ2 ◦ ψ̃).

Let φt denotes the flow of the Reeb vector field Rα on a starshaped hy-
persurface Σ in R2n endowed with the standard contact form α. The
linearized flow Tφt respects the splitting TΣ = RRα ⊕ kerα, we have
Tφt|kerα : kerα→ kerα. Throughout the paper we assume that all the pe-
riodic orbits (including all iterates) are nondegenerate; this means that 1 is
not an eigenvalue of the linearized Poincaré return map TφT |kerα(γ(0)) of
a periodic orbit γ : [0, T ]→ (Σ, α) with γ(0) = γ(T ) and γ̇(t) = Rα(γ(t)).
The Conley–Zehnder index of a periodic orbit γ is defined by

µCZ(γ) := µCZ(ψγ)

where ψγ(t) ∈ Sp(R2n−2), t ∈ [0, 1] is the linearized flow TφTt|kerα(γ(0))
expressed in a symplectic trivialization of kerα along γ extendable over
a capping disk of γ. For a complete presentation of the Conley–Zehnder
index we refer to [1, 7, 15, 23, 26, 27]. The mean Conley–Zehnder index of
a periodic orbit γ is defined to be

µ̂CZ(γ) := lim
k→∞

µCZ(γk)
k

.

To begin with, we recall Long’s index iteration formula in the nondegen-
erate case, and immediate consequences of this formula which are used in
the proofs of our results; the proof of this theorem can be found in [23,
Section 8.3] or in [20, Theorem 3.2].

Theorem 2.1 ([23]). — Given a nondegenerate periodic orbit γ, so that
all its iterates are nondegenerate, there exist an integer p ∈ Z, an integer
q ∈ [ 0 , n − 1 ] and q irrational numbers θj in [ 0 , 1 ], such that, for any
positive integer ` ∈ N, the Conley–Zehnder index of the `-th iterate of γ is

TOME 66 (2016), FASCICULE 6
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given by

(2.1) µCZ(γ`) = `p+ 2
q∑
j=1
b`θjc+ q

where brc denotes the largest integer which is lower or equal to r, and
where q can be n− 1 only when p is even. In particular,

(2.2) µCZ(γ) = p+ q, µ̂CZ(γ) = p+ 2
q∑
j=1

θj ,

and

(2.3)
∣∣µCZ(γ`)− ` µ̂CZ(γ)

∣∣ < n− 1.

Moreover if µCZ(γ) > n − 1 + c for some c ∈ N ∪ {0}, then p > c and
µCZ(γ`+1) > µCZ(γ`) + c. The Conley–Zehnder indices of all even (resp.
odd) iterates of a periodic orbit have the same parity.

An alternative way to see (2.3) is presented in [27, Lemma 3.4].
The following theorem, called the common index jump theorem due to

Long and Zhu [24, Theorem 4.3], is a key tool of the paper. We include
a proof of the theorem stated below, because their idea in fact proves a
slightly generalised statement which will be used later in the paper. In the
original proof, they used Bott’s iteration formula and included the degen-
erate case; here we treat the nondegenerate case which is simple enough
for a proof only using Long’s iteration formula.

Theorem 2.2 ([24]). — Let γ1, . . . , γk be simple periodic orbits on a
given contact manifold of dimension 2n− 1. Assume that all the iterates of
the periodic orbits are nondegenerate and that all the mean indices of the
periodic orbits are positive; µ̂CZ(γi) > 0 for all i ∈ [ 0 , k ]. Then, for any
given M ∈ N, there exist infinitely many N ∈ N and (m1, . . . ,mk) ∈ Nk
such that for any m ∈ {1, . . . ,M}

µCZ
(
γ2mi−m
i

)
= 2N − µCZ(γmi ) and µCZ

(
γ2mi+m
i

)
= 2N + µCZ(γmi )

and
2N − (n− 1) 6 µCZ(γ2mi

i ) 6 2N + (n− 1).

Proof. — Let v be the vector in Rk+
∑k

i=1
qi defined by

v :=
(

1
µ̂CZ(γ1) , . . . ,

1
µ̂CZ(γk) ,

θ1,1

µ̂CZ(γ1) , . . . ,
θ1,q1

µ̂CZ(γ1) ,
θ2,1

µ̂CZ(γ2) , . . . ,
θk,qk

µ̂CZ(γk)

)
.

ANNALES DE L’INSTITUT FOURIER
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where µCZ(γ`i ) = `pi + 2
∑qi
j=1b`θi,jc + qi. Consider the closure of the

projection on the torus T k+
∑k

i=1
qi = Rk+

∑k

i=1
qi/Zk+

∑k

i=1
qi of the set

{k′v}k′∈N; it is a closed subgroup of the torus T k+
∑k

i=1
qi . Hence any neigh-

bourhood of the neutral element of the torus contains the image of an in-
finite number of elements of the set {k′v}k′∈N. Hence, if we denote by [a]
the non integer part of a, [a] := a − bac, for any given ε > 0, there exist
infinitely many N ∈ N such that all[

Nθi,j
µ̂CZ(γi)

]
and

[
N

µ̂CZ(γi)

]
are in [ 0 , ε [ or in ] 1− ε , 1 [.

WithN as above, if
[

N

µ̂CZ(γi)

]
is in [ 0 , ε [ definemi :=

⌊
N

µ̂CZ(γi)

⌋
and ηi = 1.

Then

[2miθi,j ] =
[⌊

N

µ̂CZ(γi)

⌋
2θi,j

]
=
[

2Nθi,j
µ̂CZ(γi)

−
[

N

µ̂CZ(γi)

]
2θi,j

]

lies in [0 ,4ε [∪ ]1−4ε ,1[. If
[

N

µ̂CZ(γi)

]
is in ]1−ε ,1[, definemi :=−

⌊
−N

µ̂CZ(γi)

⌋
and ηi = −1 . Then

[2miθi,j ] =
[
−
⌊
−N

µ̂CZ(γi)

⌋
2θi,j

]
=
[

2Nθi,j
µ̂CZ(γi)

+
[
−N

µ̂CZ(γi)

]
2θi,j

]

lies in [ 0 , 4ε [ ∪ ] 1−4ε , 1 [. Observe that
[
−N

µ̂CZ(γi)

]
is in [ 0 , ε [. Hence, with

our definitions, we always have

(2.4)
[ ηiN

µ̂CZ(γi)

]
∈ [ 0 , ε [, mi := ηi

⌊
ηiN

µ̂CZ(γi)

⌋
,

and [2miθi,j ] ∈ [ 0 , 4ε [ ∪ ] 1− 4ε , 1 [.

For each i ∈ {1, . . . ,m}, we denote by Ei the set

Ei :=
{
j ∈ {1, . . . , qi}

∣∣ [2miθi,j ] ∈ [ 0 , 4ε [
}

and by Eci its complementary (Eci := {1, . . . , qi} \ Ei).
Given a positive integer M we pick the ε such that

4ε < min
{
θi,j , [2θi,j ] , . . . , [Mθi,j ] , 1− θi,j , [1− 2θi,j ] , . . . ,

. . . , [1−Mθi,j)] , 1
6qi ,

1
µ̂CZ(γi)

∣∣∀i, j}.
For any N corresponding as above to this ε and with the corresponding
mi, we have,[

2miθi,j
]
< 4ε ∀j ∈ Ei and 1−

[
2miθi,j

]
< 4ε ∀j ∈ Eci .

TOME 66 (2016), FASCICULE 6
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Thus we have
[
2miθi,j

]
− θi,j < 4ε − θi,j < 0 and

[
2miθi,j

]
+ θi,j < 1 for

all j ∈ Ei, and
[
2miθi,j

]
− θi,j > 1 − 4ε − θi,j > 0 and

[
2miθi,j

]
+ θi,j >

1− 4ε+ θi,j > 1 for all j ∈ Eci , so that

(2.5)

{
b2miθi,jc = b(2mi − 1)θi,jc and
[2miθi,j ] = [(2mi − 1)θi,j ] + θi,j

for j ∈ Eci ,{
b2miθi,jc = b(2mi − 1)θi,jc+ 1 and
[2miθi,j ] = [(2mi − 1)θi,j ] + θi,j − 1

for j ∈ Ei,{
b2miθi,jc = b(2mi + 1)θi,jc and
[(2mi + 1)θi,j ] = [2miθi,j ] + θi,j

for j ∈ Ei,{
b2miθi,jc = b(2mi + 1)θi,jc − 1 and
[(2mi + 1)θi,j ] = [2miθi,j ] + θi,j − 1

for j ∈ Eci .

Equation (2.2) reads µ̂CZ(γi) = pi + 2
∑qi
j=1 θi,j and yields:

2mipi + 2
qi∑
j=1
b2miθi,jc = 2miµ̂CZ(γi) + 2

qi∑
j=1

(
b2miθi,jc − 2miθi,j

)
= ηi

⌊
ηiN

µ̂CZ(γi)

⌋
2µ̂CZ(γi)− 2

qi∑
j=1

[
2miθi,j

]
= 2N − ηi

[
ηiN

µ̂CZ(γi)

]
2µ̂CZ(γi)− 2

qi∑
j=1

[
2miθi,j

]
;

with our choices of ε, N mi’s and ηi’s, using (2.4) and the fact that the
µ̂CZ(γi)’s are positive, we have∣∣∣∣∣∣2mipi + 2

qi∑
j=1
b2miθi,jc − 2N + 2#Eci

∣∣∣∣∣∣
6 2

∑
j∈Ec

i

(
1−

[
2miθi,j

])
+ 2

∑
j∈Ei

([
2miθi,j

])
+
[

ηiN

µ̂CZ(γi)

]
2µ̂CZ(γi)

< 8ε#Eci + 8ε#Ei + 2εµ̂CZ(γi) = 8qiε+ 2µ̂CZ(γi)ε < 1.
Since the difference of two integers is still an integer, this in turn implies

(2.6) 2mipi + 2
qi∑
j=1
b2miθi,jc = 2N − 2#Eci .

Equation (2.1) gives µCZ(γ2mi
i ) = 2mipi + 2

∑qi
j=1b2miθi,jc+ qi; hence

µCZ(γ2mi
i ) = 2N − 2#Eci + qi ∈ [ 2N − (n− 1) , 2N + (n− 1) ]

ANNALES DE L’INSTITUT FOURIER



MINIMAL NUMBER OF PERIODIC ORBITS 2493

and this proves the last part of the statement. We now compute
µCZ(γ2mi±1

i ), using equation (2.1) and relations (2.5) and (2.6):

µCZ(γ2mi−1
i ) = 2mipi − pi + 2

qi∑
j=1
b(2mi − 1)θi,jc+ qi

= 2N + 2
qi∑
j=1

(
b(2mi − 1)θi,jc − b2miθi,jc

)
− pi + qi − 2#Eci

= 2N + 2
∑
j∈Ei

(−1)− pi + qi − 2#Eci = 2N − pi − qi

= 2N − µCZ(γi)

and

µCZ(γ2mi+1
i ) = 2mipi + pi + 2

qi∑
j=1
b(2mi + 1)θi,jc+ qi

= 2N + 2
qi∑
j=1

(
b(2mi + 1)θi,jc − b2miθi,jc

)
+ pi + qi − 2#Eci

= 2N + 2
∑
j∈Ec

i

1 + pi + qi − 2#Eci = 2N + µCZ(γi).

More generally,for any positive integer 1 6 m 6M , we have

µCZ(γ2mi+m
i ) = 2mipi +mpi + 2

qi∑
j=1
b(2mi +m)θi,jc+ qi

= 2N+2
qi∑
j=1

(
b(2mi+m)θi,jc−b2miθi,jc

)
+mpi+qi−2#Eci

= 2N+mpi+2
qi∑
j=1

(
b(2mi +m)θi,jc − b(2mi + 1)θi,jc

)
+qi

= 2N+mpi+2
qi∑
j=1

(⌊[
(2mi + 1)θi,j

]
+ (m− 1)θi,j

⌋)
+qi

= 2N+mpi+2
qi∑
j=1
bmθi,jc+ qi = 2N + µCZ(γmi )

In the fourth equality we used the identity

ba+ bc = bac+ b[a] + bc, ∀a, b ∈ R hence ba+ bc − bac = b[a] + bc

for a = (2mi + 1)θi,j and b = (m− 1)θi,j . For the last equality we compute
that if j ∈ Ei,⌊[

(2mi + 1)θi,j
]

+ (m− 1)θi,j
⌋

=
⌊[

2miθi,j
]

+mθi,j
⌋

= bmθi,jc

TOME 66 (2016), FASCICULE 6
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using (2.5) and the fact that [mθi,j ]+[2miθi,j ] < [mθi,j ]+4ε < 1. If j ∈ Eci ,⌊[
(2mi + 1)θi,j

]
+ (m− 1)θi,j

⌋
= bmθi,j − 1 + [2miθi,j ]c = bmθi,jc

using again (2.5) and the fact that 1 − [2miθi,j ] < 4ε < 1 − [mθi,j ]. The
computation for µCZ(γ2mi−m

i ) is analogous. �

2.2. Positive S1-equivariant symplectic homology

Symplectic homology is defined for a compact symplectic manifold with
nondegenerate contact type boundary. Very roughly, it is the semi-infinite
dimensional Morse homology for the symplectic action functional defined
on the contractible component of the free loop space of such symplectic
manifolds. In our situation, a nondegenerate starshaped hypersurface Σ
in R2n is a contact type boundary of the compact region bounded by Σ.
The version of homology which we will use is the so called positive S1-
equivariant symplectic homology for (Σ, α) ⊂ R2n with rational coefficients,
denoted by SHS1,+

∗ (Σ,R2n;Q). The S1-action we are referring to is the
reparametrization action on the free loop space and by positive we mean
that only periodic orbits of the Reeb vector field are taken into account.
Rather than giving a precise definition we recall some important properties
of it. For details we refer the reader to [4, 5, 6, 16, 28, 29]. We can think
that the chain complex for SHS1,+

∗ (Σ,R2n;Q) is built over unparametrized
periodic orbits of (Σ, α) with grading given by the Conley–Zehnder index,
in light of [5], see also [16, 20]. The differential is counting gradient flow
trajectories of the action functional between periodic orbits modulo the
S1-action, which solve a certain elliptic PDE. Moreover bad periodic orbits
do not contribute to this homology. Recall that a periodic orbit γ is called
good if the parity of its Conley–Zehnder index is the same as that of the
underlying simple orbit and is called bad otherwise.

More precisely, for any large real number K, there exists an integer
N , such that the S1-equivariant symplectic homology SHS1,+

∗ (Σ,R2n;Q),
truncated at level K for the action, and up to degree N , is the limit of
homologies which can be computed via a spectral sequence for which the
complex of the first page up to degree N is spanned by the good periodic
orbits on the boundary ∂Σ of period at most K, graded by their Conley–
Zehnder index, and with a differential ∂, so that the action A(γ) :=

∫
γ
α

of a periodic orbit decreases along ∂ (see [16]).
The following computation is by now well known.

ANNALES DE L’INSTITUT FOURIER



MINIMAL NUMBER OF PERIODIC ORBITS 2495

Theorem 2.3. — Let Σ be a nondegenerate starshaped hypersurface in
R2n. Then we have

SHS1,+
∗ (Σ,R2n;Q) ∼=

Q if ∗ ∈ n− 1 + 2N>1

0 otherwise.

It implies in particular that for each non negative integer m there exists
at least one good periodic orbit of Conley–Zehnder index n + 1 + 2m. It
also implies that if there exists a good periodic orbit with Conley–Zehnder
index equal to n+ 2m, then there must exist at least 1 extra good periodic
orbit of order n + 2m + 1 or n + 2m − 1. Remark that the hypersurface
is perfect if and only if for each integer m > 0 there is exactly one good
periodic orbit with Conley Zehnder index n+1+2m and there are no good
periodic orbit of any other Conley Zehnder index.

3. Multiplicity of periodic orbits

We denote by Pn+1 the set of periodic orbits on (Σ, α) whose Conley–
Zehnder indices are congruent to n+ 1 modulo 2.

Theorem 3.1. — Let (Σ, α) be a nondegenerate starshaped hypersur-
face in R2n. Suppose that every simple periodic orbit in Pn+1 has Conley–
Zehnder index at least n+1. Then (Σ, α) possesses at least n simple periodic
orbits, all iterations of which are in Pn+1.

Proof. — Knowing the positive S1-equivariant symplectic homology from
Theorem 2.3, which has generators in all degrees which are congruent to
n+ 1 modulo 2, no iterate of a simple periodic orbit not in Pn+1 can gen-
erate a nonzero homology class since if some iterate of this is in Pn+1, it is
a bad periodic orbit. We can assume without loss of generality that there
are only a finite number of simple periodic orbits in Pn+1, say γ1, . . . , γk.
Periodic orbits with Conley–Zehnder indices at least n + 1 have positive
mean indices (cf. equation (2.3)) and thus by Theorem 2.2, with M = 1,
there exists an interval

] 2N − (n+ 1) , 2N + (n+ 1) [

for some N ∈ N, in which the Conley–Zehnder index of precisely one iterate
of each of those orbits sits. Indeed, we have, with the notations of that
theorem,

µCZ
(
γ2mi−1
i

)
= 2N − µCZ(γi) 6 2N − (n+ 1),

µCZ
(
γ2mi+1
i

)
= 2N + µCZ(γi) > 2N + (n+ 1)
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and, by Long’s iteration formula (Theorem 2.1) µCZ
(
γki
)
< µCZ

(
γk+1
i

)
for

all k ∈ N. In view of Theorem 2.3 again, there must be generators in the
n degrees which correspond to the Conley–Zehnder indices in the interval
(i.e. indices 2N − (n−1), 2N − (n−3), . . . , 2N + (n−3), 2N +n−1). Since
they can only correspond to γ2m1

1 , . . . , γ2mk
k , all of them have to be good

and k > n. �

This together with the following corollary prove Theorem 1.1.

Corollary 3.2. — If a nondegenerate dynamically convex starshaped
hypersurface (Σ, α) in R2n possesses precisely n simple periodic orbits, then
all periodic orbits are in Pn+1 and all Conley–Zehnder indices of periodic
orbits are different.

Proof. — The first assertion directly follows from the theorem. If two
periodic orbits have the same index n − 1 + 2k with k ∈ N, there would
exist a good periodic orbit with index n+2k or n+2(k+1) by Theorem 2.3
and this is not in Pn+1. �

Corollary 3.3. — Suppose that a nondegenerate contact form α on
a starshaped hypersurface Σ in R2n is perfect. Then there are precisely n
even simple periodic orbits.

Proof. — From Theorem 3.1, we know that there are at least n even sim-
ple periodic orbits since perfectness implies dynamical convexity. Indeed if
there is a periodic orbit whose Conley–Zehnder index is less than n+1, per-
fectness is violated since SHS1,+

n+1 (Σ,R2n;Q) is the first nonzero homology
group, see Theorem 2.3. Now we show that there are at most n even simple
periodic orbits, see also [14, Corollary 1.6]. Assume by contradiction that
there are more than n even simple periodic orbits. We choose n + 1 even
simple periodic orbits and then apply Theorem 2.2. Then there are n + 1
good periodic orbits with index sitting in [ 2N − (n − 1) , 2N + (n − 1) ].
By Theorem 2.3, this contradicts the perfectness assumption. �

This proves Corollary 1.3. Next we provide a proof of Theorem 1.4.

Theorem 3.4. — Let (Σ, α) be a nondegenerate starshaped hypersur-
face in R2n such that all periodic orbits have Conley–Zehnder index at least
n− 1. Then (Σ, α) possesses at least n simple periodic orbits.

Proof. — We study the complex built with the good periodic orbits and
see its compatibility with the positive S1-equivariant symplectic homology
computation in Theorem 2.3. Due to Theorem 3.1, we may assume that
there is a periodic orbit Γ whose Conley–Zehnder index is n − 1. Using
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the same argument as in Theorem 3.1, we know that there exist at least
n − 2 geometrically distinct simple periodic orbits γ1, . . . , γn−2 for which
all iterates are in Pn+1: we assume that the only simple periodic orbits in
Pn+1 are γ1, . . . , γk. Since periodic orbits with Conley–Zehnder indices at
least n−1 have positive mean indices (cf. equation (2.3)), by Theorem 2.2,
with M = 1, there exists an interval

] 2N − n+ 1 , 2N + n− 1 [

for some N ∈ N, in which the Conley–Zehnder index of precisely one iterate
of each of those orbits sits. Indeed, we have, with the notations of that
theorem,

µCZ
(
γ2mi−1
i

)
= 2N − µCZ(γi) 6 2N − n+ 1,

µCZ
(
γ2mi+1
i

)
= 2N + µCZ(γi) > 2N + n− 1

and, by Long’s iteration formula (Theorem 2.1) µCZ
(
γki
)
6 µCZ

(
γk+1
i

)
for all k ∈ N. In view of Theorem 2.3 again, there must be generators in
the n − 2 degrees which correspond to the Conley–Zehnder indices in the
interval (i.e. indices 2N − n+ 3, 2N − n+ 5, . . . , 2N + n− 5, 2N + n− 3).
They can only correspond to γ2m1

1 , . . . , γ2mk
k , all of them have to be good

so k > n− 2.
We also know that SHS1,+

n−1 = 0; since we have a generator Γ in the
chain complex in that degree, there must exist a good periodic orbit δ
of index n. Observe that δ cannot be an iterate of Γ or any of the γi’s
because of the parity of its index (it would be a bad orbit). This shows
that either we already have n simple periodic orbits and there is nothing
more to prove, or Γ is one of the orbits γi’s, say Γ = γ1. We assume by
contradiction that γ1, . . . , γn−2, δ are the only simple periodic orbits. We
can also assume that γ1 is the only periodic orbit of Conley–Zehnder index
n−1. Indeed another periodic orbit of index n−1 would imply the existence
of a second orbit δ̃ of index n; it would be geometrically distinct from δ

since µCZ(δm+1) > µCZ(δm) + 1 and we would have shown the existence of
n simple periodic orbits.

Thus we can assume that µCZ(γ2
1) > n + 1 and µCZ(γi) > n + 1 for all

i ∈ {2, . . . , n− 2}. Hence by Theorem 2.1,

µCZ(δs) > µCZ(δ), µCZ(γsi ) > µCZ(γi)

for all i ∈ {2, . . . , n− 2} and for all integers s > 2. Since all γ1, . . . , γn−2, δ

have positive mean Conley–Zehnder indices, we can apply Theorem 2.2.
Let (N,m1, . . . ,mn−2,mδ) ∈ Nn be given by Theorem 2.2 for M = 2. We
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have, for all integers s > 2 and for all i ∈ {2, . . . , n− 2}:

µCZ(γ2m1−s
1 ) 6 µCZ(γ2m1−2

1 ) = 2N − µCZ(γ2
1) 6 2N − n− 1

< µCZ(γ2m1−1
1 ) = 2N − n+ 1

and 2N + n− 1 = µCZ(γ2m1+1
1 ) < µCZ(γ2m1+2

1 ) 6 µCZ(γ2m1+s
1 ).

µCZ(γ2mi−s
i ) < µCZ(γ2mi−1

i ) 6 2N − n− 1

and 2N + n+ 1 6 µCZ(γ2mi+1
i ) < µCZ(γ2mi+s

i ).

µCZ(δ2mδ−s) < µCZ(δ2mδ−1) = 2N − n

and 2N + n = µCZ(δ2mδ+1) < µCZ(δ2mδ+s).

Hence the only periodic orbits whose Conley–Zehnder indices lie in [2N−n,
2N+n ] are δ2mδ−1 with index 2N−n, γ2m1−1

1 with index 2N−n+1, the
n−1 orbits γ2mi

i , 16 i6 n−1, whose indices are in ]2N−n+1, 2N+n−1[∩
{n+ 1 + 2N}, δ2mδ+1 with index 2N + n, γ2m1+1

1 with index 2N + n− 1,
and δ2mδ with index in [2N − (n − 1), 2N + (n − 1)]. We distinguish two
cases, whether δ2mδ is good or bad.

Case 1. — The even iterates of δ are good. Then the index of δ2mδ sits in
[ 2N−n+2 , 2N+n−2 ] and the orbit generates a 1-dimensional piece in the
complex and also in the homology since γ2m1−1

1 , γ2m1
1 , . . . γ

2mn−2
n−2 , γ2m1+1

1
have to generate all homology classes of SHS1,+ with degrees in [2N −
n+ 1, 2N + n− 1] and therefore δ2mδ is a cycle and not a boundary. This
contradicts the computation of SHS1,+ given in Theorem 2.3.

Case 2. — The even iterates of δ are bad. We claim that µCZ(δ3) > n+3.
Indeed by Theorem 2.1, µCZ(δ3) > n+2 and µCZ(δ3) 6= n+2 since otherwise
µCZ(δ) = p + q with p = 1 and q = n − 1 which contradicts the fact that
p must be even if q = n − 1 (cf. Theorem 2.1). This implies in particular
that there are no periodic orbits of index n+ 2, therefore there is only one
periodic orbit of index n+ 1. By Theorem 2.2, we know that

#
{
µ−1

CZ(2N + n+ 1
)
} = 1 and #

{
µ−1

CZ(2N + n− 1)
}

= 1

and they generate the nonzero homology classes of SHS1,+ in each degree.
But δ2mδ+1 is a good orbit of index 2N + n, thus generates a homology
class which is a contradiction with the computation of SHS1,+ given in
Theorem 2.3. �
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4. Third periodic orbit

This section is devoted to the proof of Proposition 1.5. Let (Σ, α) be
a nondegenerate starshaped hypersurface in R2n. In the case n = 2, if
there are precisely two periodic orbits, it is known that there is the action-
index resonance relation between them, i.e. (1.1) holds, see [3, 14]. Now
we consider the cases when n > 3. From Theorem 2.3, we need at least
one simple periodic orbit γ ∈ Pn+1 to generate non-zero homology classes.
Theorem 1.4 shows that there are at least n simple periodic orbits if all
their Conley Zehnder indices are at least n − 1, so we may assume that
µCZ(γ) 6 n − 3. Theorem 2.3 says that the cohomoly vanishes in any
degree 6 n − 3, so we know that there is another simple periodic orbit δ
such that δ` is good with µCZ(δ`) ∈ {µCZ(γ) − 1, µCZ(γ) + 1} for some
` ∈ N. Note that if some iterates of δ are in Pn+1, they are bad. We assume
for a contradiction that γ and δ are the only simple periodic orbits. Note
that both periodic orbits have positive mean indices since otherwise we
need an additional periodic orbit to meet the homology computation in
Theorem 2.3, in view of (2.3). Indeed, if the mean index is not positive,
the indices of all iterates are less than n− 1. Denoting as before by N the
set of strictly positive integers, we also may assume that

(4.1) {µCZ(γk) | k ∈ N} = min{µCZ(γk) | k ∈ N} − 2 + 2N

since otherwise, by Theorem 2.2, there is an infinite number of q’s in the set
n− 1 + 2N which do not belong to {µCZ(γk) | k ∈ N} and this immediately
guarantees an additional periodic orbit.

4.1. First case: A(γ)
µ̂CZ(γ)

> A(δ)
µ̂CZ(δ)

Since bad periodic orbits do not have any contribution to the homology
SHS1,+, we consider in this section the Conley–Zehnder index only defined
on the set G of good periodic orbits:

µCZ : G → Z.

Observe from (2.3) that µCZ(γk) = r implies kµ̂CZ(γ) ∈ ] r − (n − 1) , r +
(n− 1) [ and thus

(r + n− 1) A(γ)
µ̂CZ(γ) > A(γk) = kA(γ) > (r − n+ 1) A(γ)

µ̂CZ(γ) .
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Similarly µCZ(δ`) = r±1 implies `µ̂CZ(δ) ∈] r−1− (n−1) , r+1+(n−1) [
and

(r − n) A(δ)
µ̂CZ(δ) < A(δ`) = `A(δ) < (r + n) A(δ)

µ̂CZ(δ) .

Hence

A(γk) > A(δ`) when r − n+ 1
r + n

A(γ)
µ̂CZ(γ) >

A(δ)
µ̂CZ(δ) .

Now, since A(γ)
µ̂CZ(γ)

> A(δ)
µ̂CZ(δ)

we choose C > 0 so that for all R > C one has

R− n+ 1
R+ n

A(γ)
µ̂CZ(γ) >

A(δ)
µ̂CZ(δ) .

If κ0 ∈ N is such that such that 2κ0 + n + 1 > C, then, for any κ > κ0,
whenever µCZ(γk) = 2κ+ n+ 1 and µCZ(δ`) ∈ {µCZ(γk)− 1, µCZ(γk) + 1}
for some k, ` ∈ N we have

(4.2) A(γk) > A(δ`).

Since SHS1,+
∗ is Q for ∗ ∈ 2N + n− 1 and 0 for ∗ ∈ 2Z + n, all high good

iterates of δ must be killed by good iterates of γ due to (4.2). Since the
action decreases along the differential ∂ the equation (4.2) implies

(4.3) #µ−1
CZ(2κ+ n) + 1 = #µ−1

CZ(2κ+ n+ 1), κ > κ0

and

(4.4) ∂2κ+n+2 : SCS
1,+

2κ+n+2
0−→ SCS

1,+
2κ+n+1, κ > κ0.

where SCS1,+ is the chain complex spanned by the (unparametrized) good
periodic orbits of period at most K >> 0 and ∂ is the differential. Since
µ̂CZ(γ) > 0 and µ̂CZ(δ) > 0, we can choose M ∈ N sufficiently large such
that for any k >M ,
(4.5)
µCZ(γk) > 2κ0 +n+3+2(n−1) and µCZ(δk) > 2κ0 +n+3+2(n−1).

According to Theorem 2.2, we can find (N,mγ ,mδ) ∈ N3 with N > κ0 +n

satisfying, for 1 6 m 6M

µCZ(γ2mγ−m) = 2N − µCZ(γm), µCZ(γ2mγ+m) = 2N + µCZ(γm)(4.6)

and

µCZ(δ2mδ−m) = 2N − µCZ(δm), µCZ(δ2mδ+m) = 2N + µCZ(δm).(4.7)

Using (2.3), we have µCZ(γk+i) − µCZ(γk) > −2(n − 1) for any k, i ∈ N
because µCZ(γk+i) − µCZ(γk) = µCZ(γk+i) − (k + i) µ̂CZ(γ) + i µ̂CZ(γ) −(
µCZ(γk) − k µ̂CZ(γ)

)
. In particular, for any m′ > M , µCZ(γ2mγ−m′) <
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µCZ(γ2mγ−M ) + 2(n − 1) and µCZ(γ2mγ+m′) > µCZ(γ2mγ+M ) − 2(n − 1).
Equations (4.5) and (4.6) yield that for any m′ >M ,

(4.8) µCZ(γ2mγ−m′) 6 2N − n+ 1, µCZ(γ2mγ+m′) > 2N + 2κ0 + n+ 3.

One could deduce a better estimate for µCZ(γ2mγ−m′) but the estimate
mentioned is enough for the proof. The same holds for δ: for any m′ >M ,

(4.9) µCZ(δ2mδ−m′) 6 2N − n+ 1, µCZ(δ2mδ+m′) > 2N + 2κ0 + n+ 3.

From Theorem 2.2, we also know

(4.10) µCZ(γ2mγ ) 6 2N + n− 1, µCZ(δ2mδ) 6 2N + n− 1.

Moreover, the fact that both µ̂CZ(γ) and µ̂CZ(δ) are positive together
with (2.3) imply that for all k ∈ N, µCZ(γk) and µCZ(δk) are bigger than
−n+ 1 and therefore

(4.11) µCZ(γ2mγ−m) < 2N + n− 1, µCZ(δ2mδ−m) < 2N + n− 1.

for all 1 6 m 6 M due to (4.6) and (4.7). From (4.8), (4.9), (4.10),
and (4.11), we deduce that if

µCZ(γk), µCZ(δ`) ∈ [2N + n, 2N + 2κ0 + n+ 2],

then k, ` ∈ N are of the form

k = 2mγ +m, ` = 2mδ + m̃ for some 1 6 m, m̃ 6M.

Hence µCZ(γk) = 2N + r with n 6 r 6 2κ0 + n + 2 implies k = 2mγ + m

for some 1 6 m 6 M , hence µCZ(γm) = r. Reciprocally if µCZ(γk′) = r

then r 6M by (4.5) so that µCZ(γ2mγ+k′) = 2N + r. The same is true for
the indices if the iterates of δ. Hence

#µ−1
CZ(r) = #µ−1

CZ(2N + r), n 6 r 6 2κ0 + n+ 2.

Since N > κ0 + n we use equation (4.3) with r = n− 1 + 2q and the above
to obtain

(4.12) #µ−1
CZ(n− 2 + 2q) + 1 = #µ−1

CZ(n− 1 + 2q), 1 6 q 6 κ0 + 1.

This implies that the differential ∂n : SCS1,+
n → SCS

1,+
n−1 vanishes. Indeed if

this were not true, the differential ∂∗ would be nonzero for all ∗ = 2q+n, q 6
κ0 + 1 to obtain the homology results of Theorem 2.3, in view of (4.12).
This would contradicts (4.4). This implies that(

SCS
1,+
∗ , ∂∗

)
∗∈I , I = Z ∩ [−n+ 3, n− 1]

TOME 66 (2016), FASCICULE 6



2502 Jean GUTT & Jungsoo KANG

is a chain complex with zero homology in view of Theorem 2.3 again. We
claim that this is impossible by showing that∑

q∈(2Z+n+1)∩I

#µ−1
CZ(q) >

∑
q∈(2Z+n)∩I

#µ−1
CZ(q).

Observe from (4.8) that µCZ(γk) = 2N + q with q ∈ [0, n− 1] implies that
k = 2mγ + k0 with −M 6 k0 6 M ; and, by (4.6), q = µCZ(γk0) if k0 > 0
and q = −µCZ(γ|k0|) if k0 < 0. Conversely, if µCZ(γk0) is q (or −q) for some
k0 ∈ N, then µCZ(γ2mγ+k0) (or µCZ(γ2mγ−k0)) is 2N + q. The same holds
for δ. Hence

#
(
µ−1

CZ(−q) ∪ µ−1
CZ(q)

)
= #µ−1

CZ(2N + q), 0 6 q 6 n− 1

except in the case where γ2mγ or δ2mδ is good and has index 2N + q.
Therefore we have

(4.13) eγ +
∑

q∈(2Z+n+1)∩I

#µ−1
CZ(q) =

∑
q∈(2Z+n+1)∩[0,n−1]

#µ−1
CZ(2N + q)

where eγ = 1 if γ2mγ is good and otherwise eγ = 0. We set eδ ∈ {0, 1} in
the same way and have

(4.14) eδ +
∑

q∈(2Z+n)∩I

#µ−1
CZ(q) =

∑
q∈(2Z+n)∩[0,n−2]

#µ−1
CZ(2N + q)

Since we have assumed that n > 3, #((2Z + n + 1) ∩ I) > 2. Therefore
using (4.3), (4.13), and (4.14) we deduce∑
q∈(2Z+n+1)∩I

#µ−1
CZ(q) =

∑
q∈(2Z+n+1)∩[0,n−1]

#µ−1
CZ(2N + q)− eγ

>
∑

q∈(2Z+n)∩[0,n−2]

#µ−1
CZ(2N + q) + #((2Z + n+ 1) ∩ [0, n− 1])− eγ

>
∑

q∈(2Z+n)∩I

#µ−1
CZ(q) + 2 + eδ − eγ >

∑
q∈(2Z+n)∩I

#µ−1
CZ(q).

This proves the claim and hence the first case.

4.2. Second case: A(γ)
µ̂CZ(γ)

< A(δ)
µ̂CZ(δ)

We derive a contradiction in a similar manner to the first case. In the
same way as before, the condition A(γ)

µ̂CZ(γ)
< A(δ)

µ̂CZ(δ)
implies that there is

κ0 ∈ N such that for any κ > κ0, if µCZ(γk) > 2κ + n + 1 and µCZ(δ`) ∈
{µCZ(γk)− 1, µCZ(γk) + 1} for some k, ` ∈ N, then

A(γk) < A(δ`).
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As before, this implies that

(4.15) #µ−1
CZ(2κ+ n+ 1) = #µ−1

CZ(2κ+ n+ 2) + 1, κ > κ0

and

(4.16) ∂2κ+n+1 : SCS
1,+

2κ+n+1
0−→ SCS

1,+
2κ+n, κ > κ0.

We choose (N,mγ ,mδ) ∈ N3 to satisfy (4.5) and (4.6) as in case one to
obtain as before

#µ−1
CZ(r) = #µ−1

CZ(2N + r), n 6 r 6 2κ0 + n+ 2.

and with N > κ0 + n we use equation (4.15) and the above to obtain the
counterpart of (4.12)

(4.17) #µ−1
CZ(n+ 2q) + 1 = #µ−1

CZ(n− 1 + 2q), 1 6 q 6 κ0 + 1.

This implies that the differential ∂n+1 : SCS
1,+

n+1 → SCS
1,+

n vanishes. Indeed
if it did not vanish, then by induction, using (4.17), all ∂n−1+2q would not
vanish for 1 6 q 6 κ0 + 1 and this would contradict (4.16). Therefore the
chain complex (

SCS
1,+
∗ , ∂∗)∗∈I , I ′ = Z ∩ [−n+ 3, n]

has vanishing homology. However this is impossible if n is odd. Indeed,
(4.13) and (4.14) become, with the same notation,

eγ +
∑

q∈(2Z+n+1)∩I′
#µ−1

CZ(q) =
∑

q∈(2Z+n+1)∩[0,n−1]

#µ−1
CZ(2N + q)

eδ +
∑

q∈(2Z+n)∩I′
#µ−1

CZ(q) =
∑

q∈(2Z+n)∩[0,n]

#µ−1
CZ(2N + q)

where eγ = 1 if γ2mγ is good and otherwise eγ = 0 and similarly for
eδ ∈ {0, 1}. We now use (4.15) and get∑
q∈(2Z+n+1)∩I′

#µ−1
CZ(q) =

∑
q∈(2Z+n+1)∩[0,n−1]

#µ−1
CZ(2N + q)− eγ

=
∑

q∈(2Z+n)∩[1,n]

#µ−1
CZ(2N + q) + #((2Z + n+ 1) ∩ [0, n− 1])− eγ

>
∑

q∈(2Z+n)∩I′
#µ−1

CZ(q) + 2− α+ eδ − eγ >
∑

q∈(2Z+n)∩I′
#µ−1

CZ(q)− α.

Where α = #µ−1
CZ(0) if n is even and α = 0 if n is odd. This proves the

second case when n is odd, and hence finishes the proof of Proposition 1.5.
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