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LOCAL AND INFINITESIMAL RIGIDITY OF SIMPLY
CONNECTED NEGATIVELY CURVED MANIFOLDS

by Kingshook BISWAS

Abstract. — Let (X, g0) be a simply connected Riemannian manifold with
sectional curvature K 6 −1. For a metric g on X which is equal to g0 outside a
compact the identity map of X induces a conformal map îdg0,g : ∂g0 X → ∂gX
between the boundaries at infinity of X with respect to g0 and g. We define a
function S(g) on the space of geodesics of (X, g0), called the integrated Schwarzian
of g, which measures the deviation of this conformal map from being Moebius. We
use the integrated Schwarzian to prove local and infinitesimal rigidity results for
such metric deformations.
Résumé. — Soit (X, g0) un variété Riemannienne simplement connexe à cour-

bure K 6 −1. Pour une métrique g qui est égale à g0 en dehors d’un compact
l’identité de X s’étend à une application conforme îdg0,g : ∂g0 X → ∂gX entre les
bords à l’infini de X par rapport à g0 et g. On définit une fonction S(g) sur l’espace
des geodésiques de (X, g0), appelé le Schwarzian integré de g, qui quantifie la dé-
viation de cette application d’être Moebius. On utilise le Schwarzian integré pour
démontrer des théorèmes de rigidité locale et infinitesimale pour tels déformations
métriques.

1. Introduction

The problems we consider in this article are motivated by rigidity results
for negatively curved manifolds. Two cases have been intensively studied,
namely closed negatively curved manifolds, and compact negatively curved
manifolds with convex boundary. In both cases rigidity results have been
obtained, to the effect that metric deformations preserving some form of
a “length spectrum” are trivial, i.e. are isometric. For closed negatively
curved manifolds, the role of length spectrum is played by the marked
length spectrum, i.e. the function on free homotopy classes of closed curves

Keywords: Negatively curved manifolds, Moebius, cross-ratio.
Math. classification: 53C24.



2508 Kingshook BISWAS

which assigns to a homotopy class the length of the unique closed geodesic
in that class, while for compact negatively curved manifolds with boundary,
the role of length spectrum is played by the boundary distance function, i.e.
the function which assigns to pairs of points on the boundary the geodesic
distance between them.
To put the corresponding results in a general context, we may consider

the moduli space M(X) of negatively curved metrics on a manifold X,
i.e. the quotient of the space of negatively curved metrics on X by the
natural action of the group of diffeomorphisms of X. We are then given a
“length spectrum map” L : M(X) → CR+ which assigns to a negatively
curved metric g a length function L(g) : C → R+, where C is a space
parametrizing a certain collection of geodesics (in the two cases mentioned
above, C would be the set of free homotopy classes of closed curves and
the set of pairs of distinct points on the boundary respectively). There are
then three rigidity questions one may pose: global rigidity (injectivity of
the map L), local rigidity (local injectivity of L) and infinitesimal rigidity
(injectivity of the differential of L).
We mention briefly some results obtained in the two cases previously

mentioned. Guillemin and Kazhdan [7] proved an infinitesimal rigidity re-
sult for closed negatively curved surfaces. Otal proved that global rigidity
holds for closed negatively curved surfaces [8] (giving an affirmative answer
to the “marked length spectrum rigidity” problem of Burns–Katok [4] in
dimension 2), and also for compact negatively curved surfaces with con-
vex boundary [9]. Croke and Sharafutdinov have proven that infinitesi-
mal rigidity holds for closed negatively curved n-manifolds [6], and Croke–
Dairbekov–Sharafutdinov [5] have also proven a local rigidity result for
compact negatively curved n-manifolds with convex boundary.

We prove local and infinitesimal rigidity results in a third case not pre-
viously considered, namely that of simply connected complete negatively
curved manifolds. This is similar to the second case, only now the boundary
is at infinity. In this case given a complete negatively curved metric g0 on a
simply connected manifold X, say with sectional curvatures bounded above
by −1 so that X with the distance function induced by g0 is a CAT(−1)
space, while there is no natural notion of a length spectrum for the metric
g0, there is, given a compactly supported deformation g of g0, a well-defined
notion of a relative length spectrum for the pair (g0, g1). This is given by
a function Sg0(g) : ∂2

g0
X → R of pairs of distinct points on the boundary

at infinity ∂g0X of X with respect to g0, called the integrated Schwarzian
of g with respect to g0, which is a renormalized version of the boundary
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LOCAL AND INFINITESIMAL RIGIDITY 2509

distance function, measuring the difference between the g0 and g distances
between pairs of points on the boundary at infinity.
The integrated Schwarzian was first introduced in [1] in the study of Moe-

bius and conformal maps between boundaries of CAT(−1) spaces. We recall
that the boundary at infinity ∂X of a CAT(−1) space X carries a natural
family of metrics called visual metrics. These metrics are Moebius equiva-
lent to each other (i.e. the metric cross-ratios all coincide), and in particular
conformal to each other, hence the notions of Moebius and conformal maps
between boundaries of CAT(−1) spaces are well-defined, independent of
choices of visual metrics (for basic properties of CAT(−1) spaces and their
boundaries see [2], [3]). Given a conformal map between two boundaries
f : ∂X → ∂Y , the integrated Schwarzian of f is a function S(f) : ∂2X → R
which measures the deviation of the conformal map f from being Moebius.
In the case of a pair of negatively curved metrics g0, g1 as above with g−g0
compactly supported, the identity map id : (X, g0) → (X, g) extends in
fact to a conformal homeomorphism îdg0,g : ∂g0X → ∂gX. The integrated
Schwarzian of g with respect to g0 is then defined to be the integrated
Schwarzian of the conformal map îdg0,g. It turns out that the integrated
Schwarzian vanishes if the boundary map îdg0,g : ∂g0X → ∂gX is Moebius,
and conversely in the presence of a lower curvature bound for g0, îdg0,g is
Moebius if Sg0(g) vanishes.
We prove the following infinitesimal rigidity result:

Theorem 1.1. — Let (X, g0) be a complete simply connected Riemann-
ian manifold with sectional curvatures bounded above by −1. Let (gt)06t61
be a 1-parameter family of Riemannian metrics on X such that:

(1) The symmetric (0, 2)-tensors gt − g0, 0 6 t 6 1 are compactly sup-
ported with supports contained in a fixed compact C ⊂ X.

(2) The sectional curvatures of the metrics gt, 0 6 t 6 1 are bounded
above by −1.

(3) The metrics gt, 0 6 t 6 1 depend smoothly on the parameter t, i.e.
the map [0, 1]×X → T ∗X�2, (t, x) 7→ gt(x) is smooth.

(4) All the boundary maps îdg0,gt : ∂g0X → ∂gtX, 0 6 t 6 1, are
Moebius.

Then there is a 1-parameter family of diffeomorphisms ft : X → X such
that f∗t gt = g0. Moreover there is a compact K ⊂ X such that ft = idX
on X −K for 0 6 t 6 1.

TOME 66 (2016), FASCICULE 6
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There are two main steps in the proof of the above theorem. The first is
to prove a formula for the first variation of the integrated Schwarzian,

d

dt
2Sg0(gt) = Igt(ġt) ◦ îdg0,gt

where Igt denotes the ray transform of the metric gt and ġt the symmetric
(0, 2)-tensor d

dt (gt). Here by the ray transform of a metric g we mean the
map which assigns to a compactly supported symmetric (0, 2)-tensor u the
function Ig(u) : ∂2X → R on the space of bi-infinite geodesics ofX obtained
by integrating u along geodesics (when u is thought of as a function on the
unit tangent bundle). This formula is an analogue of a formula for the
first variation of the boundary distance function in the case of a compact
manifold with boundary, and indeed is proved by passing to the limit in
this formula.
The second step is to prove that the kernel of the ray transform consists

of exact symmetric (0, 2)-tensors, i.e. symmetric (0, 2)-tensors arising as
Lie derivatives of the metric with respect to vector fields. The analogous
statement in the case of a compact manifold with boundary is known, and
again the statement in the simply connected case is proved by passing
to the limit. Combining these two steps, it follows that each ġt is exact,
and integrating the corresponding vector fields gives the required family of
diffeomorphisms (ft)06t61.
We also prove a local rigidity result:

Theorem 1.2. — Let (X, g0) be a complete simply connected Riemann-
ian manifold with sectional curvature bounded above by −1. Given a com-
pact K ⊂ X and 0 < α < 1, there is an ε > 0 such that the following
holds:
Let g be a metric with sectional curvatures bounded above by −1 such

that the support of g−g0 is contained in K, and such that the C2,α norm of
g − g0 is less than ε. If the boundary map îdg0,g : ∂g0X → ∂gX is Moebius
and V olg0(K) = V olg(K) then g is isometric to g0.

The proof of the above theorem follows along lines very similar to Croke–
Dairbekov–Sharafutdinov’s proof of local rigidity for compact manifolds
with convex boundary, and is essentially an adaptation of their proof to
the case at hand.

The paper is organized as follows. In Section 2 we recall background
material on Moebius maps, conformal maps and the integrated Schwarzian,
in the context of general CAT(−1) spaces. In Section 3 we consider the
integrated Schwarzian in the case of a compactly supported deformation of
a complete simply connected negatively curved Riemannian manifold, and
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LOCAL AND INFINITESIMAL RIGIDITY 2511

derive the variational formula described above. In Section 4 we prove the
assertion about the kernel of the ray transform. Finally in Section 5 we put
these ingredients together to prove Theorems 1.1 and 1.2.

2. Moebius maps, conformal maps and the integrated
Schwarzian

The material in this section is taken from [1].

Definition 2.1. — A homeomorphism between metric spaces f :
(Z1, ρ1)→ (Z2, ρ2) with no isolated points is said to be conformal if for all
ξ ∈ Z1, the limit

dfρ1,ρ2(ξ) := lim
η→ξ

ρ2(f(ξ), f(η))
ρ1(ξ, η)

exists and is positive. The positive function dfρ1,ρ2 is called the derivative
of f with respect to ρ1, ρ2. We say f is C1 conformal if its derivative is
continuous.
Two metrics ρ1, ρ2 inducing the same topology on a set Z, such that Z

has no isolated points, are said to be conformal (respectively C1 conformal)
if the map idZ : (Z, ρ1)→ (Z, ρ2) is conformal (respectively C1 conformal).
In this case we denote the derivative of the identity map by dρ2

dρ1
.

Definition 2.2. — Let Z be a set with at least four points. For a metric
ρ on Z we define the metric cross-ratio with respect to ρ of a quadruple of
distinct points (ξ, ξ′, η, η′) of Z by

[ξξ′ηη′]ρ := ρ(ξ, η)ρ(ξ′, η′)
ρ(ξ, η′)ρ(ξ′, η)

Definition 2.3. — Amap between metric spaces f : (Z1, ρ1)→ (Z2, ρ2)
is said to be Moebius if it preserves metric cross-ratios. A map f is locally
Moebius if every ξ ∈ Z1 has a neighbourhood U such that f|U is Moebius.
Two metrics ρ1, ρ2 on a set Z are Moebius equivalent if the identity map
id : (Z, ρ1)→ (Z, ρ2) is Moebius.

We recall the following facts:

Proposition 2.4. — We have the following:
(1) A locally Moebius map between metric spaces with no isolated

points is C1 conformal.
(2) A Moebius map f : (Z1, ρ1)→ (Z2, ρ2) between metric spaces with

no isolated points satisfies the “geometric mean-value theorem”:

ρ2(f(ξ), f(η))2 = dfρ1,ρ2(ξ)dfρ1,ρ2(η)ρ1(ξ, η)2

TOME 66 (2016), FASCICULE 6
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Let X be a CAT(−1) space. We recall that the boundary at infinity of X,
denoted by ∂X, comes equipped with a family of metrics (ρx)x∈X called
visual metrics, defined by ρx(ξ, η) = exp(−(ξ|η)x), where (.|.)x denotes
the Gromov inner product (extended to the boundary) with respect to
the basepoint x. These metrics are all Moebius equivalent, so the notions
of Moebius and conformal maps between boundaries of CAT(−1) spaces
f : ∂X → ∂Y are well-defined independent of the choices of visual metrics
on ∂X and ∂Y . For (ξ, η) ∈ ∂2X, we denote the bi-infinite geodesic in X
with endpoints ξ, η also by (ξ, η).

Definition 2.5. — Let f : ∂X → ∂Y be a conformal map between
boundaries of CAT(−1) spaces equipped with visual metrics. The inte-
grated Schwarzian of f is the function S(f) : ∂2X → R defined by

S(f)(ξ, η) := log(dfρx,ρy (ξ)dfρx,ρy (η)) (ξ, η) ∈ ∂2X

where x, y are any two points x ∈ (ξ, η), y ∈ (f(ξ), f(η)) (it is easy to see
that the quantity defined above is independent of the choices of x and y).

It is easy to see (using the geometric mean-value theorem) that the in-
tegrated Schwarzian of a Moebius map is identically zero. We recall that a
CAT(−1) space is said to be geodesically complete if every geodesic segment
can be extended to a bi-infinite geodesic. The choice of the name integrated
Schwarzian is perhaps explained by the following theorem from [1], which
asserts that just as the classical Schwarzian derivative determines when a
conformal map of C is Moebius, for conformal maps between boundaries
of certain CAT(−1) spaces the integrated Schwarzian plays a similar role:

Theorem 2.6. — Let X be a simply connected complete Riemannian
manifold with sectional curvatures satisfying −b2 6 K 6 −1 for some
b > 1, and let Y be a proper geodesically complete CAT(−1) space. A C1

conformal map f : U ⊂ ∂X → V ⊂ ∂Y between open subsets of ∂X, ∂Y
is Moebius on U (i.e. preserves cross-ratios) if and only if its integrated
Schwarzian S(f) vanishes on ∂2U . Two C1 conformal maps f, g : U ⊂
∂X → V ⊂ ∂Y differ by post-composition with a Moebius map h : V → V

if and only if their integrated Schwarzians coincide, S(f) = S(g).

We recall that the Busemann function of a CAT(−1) space X is the
function B : ∂X ×X ×X → R defined by

B(ξ, x, y) := lim
a→ξ

(dX(x, a)− dX(y, a))

where a ∈ X converges radially towards ξ.

ANNALES DE L’INSTITUT FOURIER



LOCAL AND INFINITESIMAL RIGIDITY 2513

We have the following formula for the derivatives of visual metrics on
∂X:

dρy
dρx

(ξ) = exp(B(ξ, x, y)) ξ ∈ ∂X, x, y ∈ X.

3. The integrated Schwarzian for compactly supported
deformations

Let (X, g0) be a complete simply connected Riemannian manifold with
sectional curvatures bounded above by −1. Let g be a Riemannian metric
on X with sectional curvatures bounded above by −1 such that the sym-
metric (0, 2)-tensor g − g0 is compactly supported. Note that (X, g0) and
(X, g) are both CAT(−1) spaces. We denote the corresponding distance
functions on X by dg0 , dg, the boundaries by ∂g0X, ∂gX and the visual
metrics by ρx,g0 , ρx,g, x ∈ X.
Lemma 3.1. — The identity map id : (X, g0) → (X, g) extends to a

locally Moebius homeomorphism îdg0,g : ∂g0X → ∂gX (in particular the
boundary map is conformal).
Proof. — Clearly id : (X, g0) → (X, g) is bi-Lipschitz, hence extends to

a homeomorphism îdg0,g : ∂g0X → ∂gX. Fix a basepoint x0 ∈ X and let
B ⊂ X be a large g0-ball around x0 containing the support of g−g0. Given
a point ξ0 ∈ ∂g0X, we may choose a neighbourhood U of ξ0 small enough
such that for all ξ, η ∈ U, ξ 6= η, the bi-infinite g0-geodesic with endpoints
ξ, η lies outside B. We may also choose x1 lying along the g0-geodesic ray
joining x0 to ξ0 far enough from x0 such that for all ξ ∈ U , the g0-geodesic
ray joining x1 to ξ lies outside B. Since g0-geodesics lying outside B are
also g1-geodesics, it follows that îdg0,g : (U, ρx1,g0)→ (V = îdg0,g(U), ρx1,g)
is an isometry. Since the metrics ρx0,g0 , ρx1,g0 are Moebius equivalent, as
are the metrics ρx0,g, ρx1,g, it follows that îdg0,g : (U, ρx0,g0)→ (V, ρx0,g) is
Moebius. �

Definition 3.2. — The integrated Schwarzian of g with respect to g0 is
defined to be the integrated Schwarzian of the above conformal boundary
map, Sg0(g) := S(îdg0,g) : ∂2

g0
X → R.

The following lemma says that the integrated Schwarzian may be viewed
as a renormalized limit of boundary distance functions:
Lemma 3.3. — For (ξ, η) ∈ ∂2

g0
X, the following limit exists and equals

the integrated Schwarzian:

lim
p,q∈(ξ,η),p→ξ,q→η

(dg(p, q)− dg0(p, q)) = Sg0(g)(ξ, η)

TOME 66 (2016), FASCICULE 6
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Proof. — Let f = îdg0,g. Let γ0 : R → X be the unique bi-infinite
g0-geodesic with endpoints γ0(−∞) = η, γ0(+∞) = ξ in ∂g0X, and let
γ : R → X be the unique bi-infinite g-geodesic with endpoints γ(−∞) =
η′ := f(η), γ(+∞) = ξ′ := f(ξ) in ∂gX. By definition, dg0(γ0(t), γ(t)) is
bounded as t → −∞ and as t → +∞. Since g − g0 is compactly sup-
ported, for R > 0 large enough, γ+

R := γ|[R,+∞) and γ−R := γ|(−∞,−R] are
g0-geodesic rays with endpoints ξ, η respectively in ∂g0X.
Let xt = γ0(t), yt = γ0(−t) for t > 0. For t > 0 large enough, let

x′t ∈ γ+
R , y

′
t ∈ γ−R be such that B(ξ, xt, x′t) = 0, B(η, yt, y′t) = 0, where

B : ∂g0X × X × X → R is the Busemann function of (X, g0). Note that
dg0(xt, x′t) → 0, dg0(yt, y′t) → 0 as t → +∞ by exponential convergence of
asymptotic geodesic rays in the CAT(−1) space (X, g0).

From the formula for the derivatives of visual metrics, we have
dρxt,g0

dρx′t,g0

= dρyt,g0

dρy′t,g0

= 1

Since in the previous Lemma we saw that the restrictions of f to small
neighbourhoods U,U ′ of ξ, η respectively were isometries f : (U, ρx′t,g0) →
(f(U), ρx′t,g), f : (U, ρy′t,g0) → (f(U), ρy′t,g) for t large enough, it follows
that

dfρxt,g0 ,ρx′
t
,g

(ξ) = dfρyt,g0 ,ρy′
t
,g

(η) = 1

Hence by definition of the integrated Schwarzian and the chain rule we have

Sg0(g)(ξ, η) = log dfρxt,g0 ,ρx′
t
,g

(ξ) + log dfρxt,g0 ,ρx′
t
,g

(η)

= log dfρxt,g0 ,ρx′
t
,g

(η)

= log
dρy′t,g

dρx′t,g
(η) + log dρxt,g0

dρyt,g0

(η)

= dg(x′t, y′t)− dg0(xt, yt)

= dg(xt, yt)− dg0(xt, yt) + o(1)

as t→ +∞, since for t large, we have

dg(x′t, xt) = dg0(x′t, xt)→ 0, dg(y′t, yt) = dg0(y′t, yt)→ 0.

The result follows. �

We also have the following elementary lemma:

Lemma 3.4. — There is a constant C > 0 such that for any p, q ∈ X
we have

|dg(p, q)− dg0(p, q)| 6 C

ANNALES DE L’INSTITUT FOURIER
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Proof. — Let B be an open g0-ball containing the support of g − g0.
Since B is compact we may assume that p, q are not both contained in B.
We give the proof only in the case when both p and q lie outside B, the
argument being similar in the other case when one of the two points lies
outside B and the other inside B.
Let γ0, γ be g0 and g geodesics respectively joining p, q. If either one of

the curves γ0, γ does not intersect B then neither does the other (since a
g0-geodesic lying entirely outside B is also a g-geodesic and vice-versa, and
g0, g-geodesics joining points are unique) and dg(p, q) = dg0(p, q). Other-
wise choose points a, b on γ0∩∂B and points a′, b′ on γ∩∂B such that the g0-
geodesic segments [p, a] and [b, q] and the g-geodesic segments [p, a′], [b′, q]
are all disjoint from B, then

|dg(p, a′)− dg0(p, a)| = |dg0(p, a′)− dg0(p, a)| 6 dg0(a′, a),
|dg(b′, q)− dg0(b, q)| = |dg0(b′, q)− dg0(b, q)| 6 dg0(b′, b),

while |dg(a′, b′)− dg0(a, b)| is bounded by diamg(B) + diamg0(B), so that
|dg(p, q)− dg0(p, q)| 6 diamg(B) + 3diamg0(B). �

We now consider a 1-parameter family of Riemannian metrics (gt)06t61
on X satisfying the following hypotheses:

(1) There is a fixed compact K containing the supports of the sym-
metric (0, 2)-tensors gt − g0, 0 6 t 6 1.

(2) The sectional curvatures of the metrics gt, 0 6 t 6 1, are bounded
above by −1.

(3) The metrics gt, 0 6 t 6 1 depend smoothly on the parameter t, i.e.
the map [0, 1]×X → T ∗X�2, (t, x) 7→ gt(x) is smooth.

Lemma 3.5. — Fix p, q ∈ X, p 6= q. Let a = dg0(p, q), and for 0 6 t 6 1,
let γt : [0, a] → X be the unique gt-geodesic segment with endpoints p, q.
Then the map [0, 1]× [0, a]→ X, (t, s) 7→ γt(s) is smooth.

Proof. — Let expt : TpX → X denote the exponential mapping of the
metric gt based at p. By smooth dependence of solutions to ODE’s on initial
conditions and on coefficients, the map Φ : [0, 1] × TpX → X, (t, v) 7→
expt(v) is smooth. Since the metrics gt are nonpositively curved, for each t
there is a unique vt ∈ TpX such that Φ(t, vt) = q. Moreover each map expt
is a diffeomorphism, hence applying the Implicit Function Theorem to Φ
it follows that the map t 7→ vt is smooth. Since γt(s) = Φ(t, (s/a)vt), the
lemma follows. �

For notational convenience, given a symmetric (0,m)-tensor field u on
X and a tangent vector ξ ∈ TX, we denote u(ξ, . . . , ξ) by simply u(ξ).

TOME 66 (2016), FASCICULE 6
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Lemma 3.6. — With the same notation as above, we have:
d

dt

(
dgt(p, q)2 − dg0(p, q)2

dg0(p, q)

)
=
∫ a

0
ġt(γ̇t(s)) ds

where ġt is the symmetric (0, 2)-tensor d
dt (gt).

Proof. — This formula may be found in [10]. We reproduce the proof for
the benefit of the reader. It suffices to prove the formula for t = 0. Let
γt(s) = (γit(s)), gt = (gt,ij), ġ0 = (fij) in local coordinates. We have (using
Einstein summation convention)

dgt(p, q)2

dg0(p, q) =
∫ a

0
gt,ij(γt(s))γ̇it(s)γ̇

j
t (s) ds

Differentiating the above equality with respect to t and putting t = 0 gives
d

dt |t=0

(
dgt(p, q)2 − dg0(p, q)2

dg0(p, q)

)
=
∫ a

0
fij(γ0(s))γ̇i0(s)γ̇j0(s) ds+A

where A is the integral

A =
∫ a

0

(
∂

∂xk
g0,ij(γ0(s))γ̇i0(s)γ̇j0(s) ∂

∂t |t=0
γkt (s)

+ 2g0,ij(γ0(s))γ̇i0(s) ∂
∂t |t=0

γ̇jt (s)
)
ds

Now the integral A is equal to zero, since ∂
∂tγt(0) = ∂

∂tγt(a) = 0, and the
curve γ0 is an extremal of the energy functional

E0(γ) =
∫ a

0
g0,ij(γ(s))γ̇i(s)γ̇j(s) ds

The lemma follows. �

Denote by C∞c (T ∗X�2) the space of smooth compactly supported sym-
metric (0, 2)-tensors on X.

Definition 3.7. — Let g be a complete Riemannian metric on X with
sectional curvatures bounded above by −1. The ray transform of g is the
linear map

Ig : C∞c (T ∗X�2)→ Cc(∂2
gX)

f 7→
(
Ig(f) : (ξ, η) 7→

∫ ∞
−∞

f(γ̇(ξ,η)(s)) ds
)

where γ(ξ,η) is the unique (up to translation) bi-infinite g-geodesic with
unit g-speed and endpoints γ(ξ,η)(−∞) = η, γ(ξ,η)(+∞) = ξ. The domain
of Ig is the space of smooth symmetric (0, 2)-tensors on X with compact
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support, and the range the space of continuous functions on ∂2
gX with

compact support.

We can now prove the first variation formula for the integrated
Schwarzian:

Theorem 3.8. — With the same notation as above, for (ξ, η) ∈ ∂2
g0
X

we have:
d

dt
2Sg0(gt)(ξ, η) =

(
Igt(ġt) ◦ îdg0,gt

)
(ξ, η)

Proof. — For R > 0, let pR = γ(ξ,η)(R), qR = γ(ξ,η)(−R) where γ(ξ,η) is a
bi-infinite unit speed g0-geodesic with endpoints ξ, η. Let γt,R : [−R,R]→
X be the unique gt-geodesic segment with endpoints pR, qR. Define real-
valued functions on [0, 1] by

hR : t 7→ dgt(pR, qR)2 − dg0(pR, qR)2

dg0(pR, qR)
Then it is easy to see using Lemma 3.3 and Lemma 3.4 that the pointwise
limit as R→ +∞ of the functions hR is the function h : t 7→ 2Sg0(gt)(ξ, η).
Moreover from Lemma 3.6 it follows that each hR is differentiable with
derivative

h′R : t 7→
∫ R

−R
ġt(γ̇t,R(s)) ds

By Lemma 3.6, γt,R depends smoothly on t, hence h′R is continuous
and hR is in fact C1. Moreover as R → +∞, for each fixed t it follows
from a standard argument for CAT(−1) spaces that the gt-geodesic
segments γt,R converge uniformly on compacts to a bi-infinite gt-geodesic
γt : R → X with endpoints îdg0,gt(ξ), îdg0,gt(η), which is unit speed
(because dgt(pR, qR)/dg0(pR, qR) → 1 as R → +∞). The same argument
for CAT(−1) spaces also gives that the convergence of γt,R to γt is uniform
in t (the upper bound on the distance between γt,R and γt only depends on
the upper sectional curvature bound for gt, which is −1 independent of t,
and on the visual distance ρx,gt(îdg0,gt(ξ), îdg0,gt(η)), which is bounded
below by a positive constant independent of t for a fixed basepoint x ∈ X).
Again due to negative curvature, C0-convergence of γt,R to γt actually
implies C1-convergence of γt,R to γt. It follows that as R → +∞, the
functions h′R converge uniformly to the function

f : t 7→
∫ ∞
−∞

ġt(γ̇t(s)) ds =
(
Igt(ġt) ◦ îdg0,gt

)
(ξ, η)

It follows that h is C1 with derivative equal to f . �
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We will need the following lemma in the proof of the local rigidity result:

Lemma 3.9. — Let g1 be a negatively curved metric on X with g1 − g0
compactly supported, then for any (ξ, η) ∈ ∂2

g0
X we have:

Ig0(g1 − g0)(ξ, η) > 2Sg0(g1)(ξ, η)

Proof. — For p, q ∈ X and i = 0, 1 let γip,q : [0, dg0(p, q)] → X be the
unique gi-geodesic joining p to q. Letting p, q tend to ξ, η radially along g0
geodesics, we have:

Ig0(g1 − g0)(ξ, η)

= lim
p→ξ,q→η

(∫ dg0 (p,q)

0
g1((γ0)′(t))dt−

∫ dg0 (p,q)

0
g0((γ0)′(t))dt

)

> lim
p→ξ,q→η

(∫ dg0 (p,q)

0
g1((γ1)′(t))dt−

∫ dg0 (p,q)

0
g0((γ0)′(t))dt

)

= lim
p→ξ,q→η

(
d2
g1

(p, q)
dg0(p, q) − dg0(p, q)

)

= lim
p→ξ,q→η

(dg1(p, q)− dg0(p, q))
(
dg1(p, q) + dg0(p, q)

dg0(p, q)

)
= 2Sg0(g1)(ξ, η)

where in the last step we have used Lemmas 3.3 and 3.4. �

4. The kernel of the ray transform

We keep the notation of the previous section. For m > 1 we denote by
σ : T ∗X⊗m → T ∗X�m the symmetrization operator on (0,m) tensors. Co-
variant differentiation with respect to the Levi–Civita connection of g0 de-
fines an operator ∇g0 : Γ(T ∗X⊗m)→ Γ(T ∗X⊗m+1) (where for E a vector
bundle over X, Γ(E) denotes as usual the space of smooth sections of E).
Restricting to symmetric tensors and composing with the symmetrization
operator, we obtain a differential operator acting on symmetric tensors,

dg0 := σ ◦ ∇g0 : Γ(T ∗X�m)→ Γ(T ∗X�m+1)

For m = 1, if u ∈ Γ(T ∗X) is a smooth 1-form, then the symmetric
(0, 2)-tensor dg0u coincides with the Lie derivative Lvg0 where v ∈ Γ(TX)
is the vector field dual to u with respect to the metric g0. For m > 1,
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u ∈ Γ(T ∗X�m), and any g0-geodesic γ : (a, b)→ X, the following equality
is valid:

d

dt
(u(γ̇(t))) = (dg0u)(γ̇(t))

It follows immediately that for a smooth compactly supported 1-form v,
we have Ig0(dg0v) = 0. Conversely we have the following:

Theorem 4.1. — Let f ∈ Γ(T ∗X�2) be a smooth symmetric (0, 2)-
tensor field with compact support. If Ig0(f) = 0 then f = dg0v for some
v ∈ Γ(T ∗X) with compact support. Moreover the support of v only depends
on the support of f .

The proof of the above theorem will follow easily from the characteriza-
tion of the kernel of the ray transform on a completely dissipative Riemann-
ian manifold given by Sharafutdinov in [10]. In order to state his result, we
first recall the relevant notions from [10].

Definition 4.2. — A compact Riemannian manifold with boundary
(M, g0) is called a completely dissipative Riemannian manifold (or CDRM
for short) if the following conditions are satisfied:

(1) The boundary ∂M is strictly convex, i.e. the second fundamental
form of the boundary is positive-definite.

(2) For every x ∈ M and every ξ ∈ TxM − {0} the maximal geodesic
γ with initial conditions γ(0) = x, γ′(0) = ξ is defined on a finite
interval.

It is not hard to see in our situation that any closed g0-metric ballM ⊂ X
is a CDRM. We define for M a CDRM the following:

∂T 1
±M := {(x, ξ) ∈ T 1M |x ∈ ∂M,± < ξ, ν(x) >> 0}

where ν(x) denotes the outward normal to the boundary.

Definition 4.3. — Let (M, g0) be a CDRM. The ray transform of M
is the linear operator IM defined by

IM : Γ(T ∗M�2)→ C∞(∂T 1
+M)

u 7→

(
IM (u) : (x, ξ) 7→

∫ 0

τ−(x,ξ)
u(γ̇(x,ξ)(s)) ds

)
where γ(x,ξ) : [τ−(x, ξ), 0]→M is the maximal geodesic with initial condi-
tions γ(x,ξ)(0) = x, γ′(x,ξ)(0) = ξ.

We may now state a version of Sharafutdinov’s result suited to our pur-
poses:
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Theorem 4.4. — Let (M, g0) be a CDRM of nonpositive sectional cur-
vature and let f ∈ Γ(T ∗M�2). If IM (f) = 0 then f = dg0v for some
v ∈ Γ(T ∗M) such that v|∂M = 0.

Proof of Theorem 4.1. — Given f ∈ Γ(T ∗X�2) with compact support
such that Ig0(f) = 0, choose a closed g0-metric ball M containing the
support of f in its interior. Then M is a CDRM, and moreover, since the
support of f is contained inM , the integral of f over any maximal geodesic
of M coincides with the integral of f over the extension of the geodesic
segment to a bi-infinite geodesic ofX. Hence the equality Ig0(f) = 0 implies
IM (f|M ) = 0. Applying the previous theorem, there exists v ∈ Γ(T ∗M)
such that f|M = dg0v and v|∂M = 0. Extending v to be zero outside M so
that v has compact support the conclusion of the theorem follows. �

5. Proofs of theorems

5.1. Infinitesimal rigidity

Proof of Theorem 1.1. — Since Sg0(gt) = 0 for 0 6 t 6 1, it follows from
Theorem 3.8 that Igt(ġt) = 0 for 0 6 t 6 1. By Theorem 4.1, this implies
existence of vector fields vt for 0 6 t 6 1 such that ġt = Lvtgt. Moreover
by the hypothesis on the supports of gt − g0, it follows that the supports
of the vector fields vt are contained in a fixed compact. Hence we may
integrate to obtain a 1-parameter family of diffeomorphisms ft : X → X

which are equal to the identity outside a fixed compact, such that f∗t gt = g0
for 0 6 t 6 1. �

5.2. Local rigidity

We first recall some lemmas and notation from [5].
Let (M, g0) be a CDRM. We denote by δg0 the divergence operator of

the metric g0 acting on symmetric tensors, which is a first-order differen-
tial operator formally adjoint to the operator dg0 (we refer to [10] for the
precise definition). Symmetric tensors f such that δg0(f) = 0 are called
“solenoidal”.
For k > 1 an integer and 0 < α < 1 a real number, we denote by

Ck,α(T ∗M�2) the space of Ck,α-smooth symmetric (0, 2) tensor fields on
M . Endowing Ck,α(T ∗M�2) with the natural Ck,α topology turns it into
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a topological Banach space, i.e. a topological vector space whose topology
can be defined by some norm making it a Banach space.
We denote by Diffk,α0 (M) the set of all Ck,α-smooth diffeomorphisms

of M that are the identity on the boundary, and endow Diffk,α0 (M) with
the natural Ck,α topology (defined using some finite atlas; the resulting
topology is independent of the choice of atlas).
Theorem 2.1 of [5] states:

Theorem 5.1 ([5]). — For every neighborhood U ⊂Diffk,α0 (M) of the
identity there is a neighborhood W ⊂ Ck,α(T ∗M�2) of the metric tensor
g0 such that for every metric g ∈ W there exists a diffeomorphism φ ∈ U
for which the tensor field φ∗g is solenoidal, i.e., δg0(φ∗g) = 0.

The metric g0 defines in the usual way inner products on all spaces of
tensor fields onM , in particular on Γ(T ∗M�2); we denote the inner product
on this space by (., .)L2(T∗M�2). Then Proposition 4.1 of [5] states:

Proposition 5.2 ([5]). — There is an ε > 0 such that if f ∈ C0(T ∗M�2)
satisfies ||f ||C0(T∗M�2) < ε and V olg0+f (M) 6 V olg0(M) then

(g0, f)L2(T∗M�2) 6
2
3 ||f ||

2
L2(T∗M�2)

The following lemma follows from the arguments in §6 of [5]:

Lemma 5.3 ([5]). — SupposeM is nonpositively curved. There is a con-
stant C > 0 and a quadratic first-order differential operator L on functions
on ∂T 1

+M such that for any f ∈ C2,α(T ∗M�2) such that δg0(f) = 0 and
f|∂M = 0,

||f ||2L2(T∗M�2) 6 C
∫
∂T 1

+M

L(IM (f))dΣ2n−2

where dΣ2n−2 denotes the natural Liouville volume form on the manifold
∂T 1

+M induced by the metric g0.

The arguments used to prove Lemma 6.1 of [5] yield the following:

Lemma 5.4 ([5]). — There is a constant C > 0 such that the following
holds:
If f ∈ C2,α(T ∗M�2) is such that IM (f) > 0 on all of ∂+T

1M , then∫
∂T 1

+M

L(IM (f))dΣ2n−2 6 C||f ||C2(g0, f)L2(T∗M�2)

We now have all the ingredients required to prove Theorem 1.2:
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Proof of Theorem 1.2. — LetM be a closed g0-ball containing the given
compact K in its interior. Let g be a metric on X with sectional curvatures
bounded above by −1 such that the support of g − g0 is contained in K,
îdg0,g is Moebius and V olg(K) = V olg0(K). By Theorem 5.1, we may
choose an ε > 0 such that if ||g − g0||C2,α(T∗M�2) < ε then there is a
diffeomorphism φ ∈Diff2,α

0 (M) such that δg0(φ∗g) = 0 on M . Extending
φ to be the identity outside M , the same identity δg0(φ∗g) = 0 holds on
X. Let g1 be the metric φ∗g on X, then îdg0,g1 is also Moebius (since
φ = id outside M), V olg1(M) = V olg0(M), and the tensor f := g1 − g0
has support contained inM and vanishes identically on ∂M . It also follows
from Theorem 5.1 that given ε′ > 0 we can always choose ε > 0 small
enough such that f satisfies ||f ||C2,α(T∗M�2) < ε′. Thus choosing ε > 0
small enough we may ensure that Proposition 5.2 applies to f , so that the
hypothesis V olg1(M) = V olg0(M) implies that

(g0, f)L2(T∗M�2) 6
2
3 ||f ||

2
L2(T∗M�2)

Since the support of f is contained inM , we have that for any v ∈ ∂T 1
+M ,

if ξ, η ∈ ∂g0X denote the endpoints of the bi-infinite g0-geodesic with initial
velocity v, then

IM (f)(v) = Ig0(f)(ξ, η) > 2Sg0(g1)(ξ, η) = 0

(using Lemma 3.9 and the fact that îdg0,g1 is Moebius).
It now follows from Lemmas 5.3 and 5.4 that there are constants

C1, C2 > 0 such that

||f ||2L2(T∗M�2) 6 C1

∫
∂T 1

+M

L(IM (f))dΣ2n−2

6 C1C2||f ||C2(T∗M�2)(g0, f)L2(T∗M�2)

6 C1C2ε
2
3 ||f ||

2
L2(T∗M�2)

thus choosing ε small enough so that ε · C1C2
2
3 < 1 implies that

||f ||2L2(T∗M�2) = 0, so f = 0 on M and hence on all of X, so g1 = g0,
and g is isometric to g0. �
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