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MAXIMALITY OF HYPERSPECIAL COMPACT
SUBGROUPS AVOIDING BRUHAT–TITS THEORY

by Marco MACULAN

Abstract. — Let k be a complete non-archimedean field (non trivially valued).
Given a reductive k-group G, we prove that hyperspecial subgroups of G(k) (i.e.
those arising from reductive models of G) are maximal among bounded subgroups.
The originality resides in the argument: it is inspired by the case of GLn and avoids
all considerations on the Bruhat–Tits building of G.
Résumé. — Soit k un corps non-archimédien complet et non trivialement va-

lué. Étant donné un k-groupe réductif G, nous démontrons que les sous-groupes
hyperspéciaux de G(k) (c’est-à-dire ceux qui proviennent des modèles réductifs de
G) sont maximaux parmi les sous-groupes bornés. La nouveauté réside dans l’argu-
ment suivant : inspiré par le cas de GLn, il n’utilise pas la théorie de Bruhat–Tits.

1. Introduction

1.1. Background

Over the complex numbers, a connected linear algebraic group G is re-
ductive if and only if it contains a Zariski-dense compact subgroup. If G is
semi-simple such a subgroup corresponds to a maximal real Lie subalgebra
of LieG on which the Killing form is negative definite.
If one replaces the field of complex numbers by the field of p-adic ones

(or, more generally, any finite extension of it) an analogue characterisation
holds: a connected linear algebraic group G is reductive if and only if G(Qp)
contains a maximal compact subgroup [18, Propositions 3.15–16]. In this
case, a maximal compact subgroup is of the form G(Zp) for a suitable
integral model G of G.

Keywords: reductive group, local field, Bruhat–Tits building, hyperspecial subgroup.
Math. classification: 20E28, 20E42, 14L15, 14G20, 14M15.



2 Marco MACULAN

Reversing the logic one might wonder, given an integral model G of G,
whether the compact subgroup G(Zp) is maximal. It has to be (according
to work of Bruhat, Hijikata, Rousseau, Tits among others) if the special
fibre of G is a reductive group over Fp – the associated compact subgroup is
then called hyperspecial, whence the title of the article. The purpose of the
present paper is to expound a proof of this result without using the theory
of Bruhat–Tits building (and the combinatorics needed to construct it).

1.2. Statement of the results

In order to be more precise and to state the main theorem in its full
generality, let k be a non-archimedean field (that we suppose complete and
non-trivially valued), k◦ its ring of integers and k̃ its residue field. Let G
be a reductive k◦-group(1) and G its generic fibre. The main result is the
following:

Theorem 1.1. — The subgroup G(k◦) is a maximal bounded subgroup
of G(k).

When G is split this theorem can be deduced from [7, §3.3 and §8.2] tak-
ing in account Exemple 6.4.16(b), loc. cit.. Note that, under the hypothesis
of G being split, Theorem 1.1 is due to Bruhat over a p-adic field [6, 5]. The
quasi-split case, i.e. when G contains a Borel subgroup defined over k, is
covered by [8, Théorème 4.2.3] and the general case, by [20, Théorème 5.1.2]
(the existence of the reductive model G implies that G splits over a non-
ramified extension [11, Theorem 6.1.16]).
The subgroups of G(k) of the form G(k◦) are called hyperspecial. When

the residue field k̃ is finite, the existence of a k◦-reductive model G of G is
equivalent to G being quasi-split over k and being split over a non-ramified
extension [10, Theorem 2.6]. In particular, although maximal compact sub-
groups always exist for an arbitrary reductive group over a locally compact
field, hyperspecial subgroups do not.
Hyperspecial subgroups are anyway crucial objects in the study of repre-

sentations of p-adic groups and, even though Theorem 1.1 is a basic result,

(1)Let G be a group S-scheme. We say that G is reductive (resp. semi-simple) if it
verifies the following conditions:

(1) G is affine and smooth over S;
(2) for all s ∈ S, the s̄-algebraic group Gs̄ := G ×S s̄ is connected and reductive

(resp. connected and semi-simple).
Here s̄ denotes the spectrum of an algebraic closure of the residue field κ(s) at s. See [12,
XIX, Définition 2.7].
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MAXIMALITY OF HYPERSPECIAL COMPACT SUBGROUPS 3

all the proofs I am aware of rely on the deep knowledge of the combinatorics
of G(k) which comes at the end of Bruhat–Tits theory. More precisely, one
sees G(k◦) as the stabiliser of a (hyperspecial) vertex of the Bruhat–Tits
building B(G, k), which is a maximal bounded subgroup. This exploits im-
plicitly that the integral model G induces a Tits system on G(k) (when k
is discretely valued) and a valued root datum of G(k) (when the valuation
is dense).
Instead, the proof of Theorem 1.1 presented here elaborates on the ar-

gument for the case GLn, using tools from algebraic geometry involving
flag manifolds of G. When k is a p-adic field the advantage of the present
approach is that it avoids all the computations contained in [15] needed in
order to show that G(k) admits a Tits system. Let us recall that for the
general linear group the proof of Theorem 1.1 goes as follows:

(1) Consider the norm ‖(x1, . . . , xn)‖ = max{|x1|, . . . , |xn|} on kn. The
subgroup of GLn(k) of elements letting ‖ · ‖ invariant is GLn(k◦).

(2) If H is a bounded subgroup containing GLn(k◦) consider the norm
‖ · ‖H defined for every x ∈ kn by ‖x‖H := suph∈H ‖h(x)‖. The
ratio of the norms ‖ · ‖H/‖ · ‖ gives rise to a well-defined function
φ : Pn−1(k)→ R+ which is clearly GLn(k◦)-invariant.

(3) Since the group GLn(k◦) acts transitively on Pn−1(k), φ must be
constant. In particular, H is contained in GLn(k◦).

The problem with passing from GLn to an arbitrary reductive k-group
G is that the latter does not have a canonical representation on which one
can consider norms. We prefer to interpret Pn−1 as a flag variety of GLn
and the norm ‖ · ‖ as the metric that it induces on the line bundle O(1).
Moreover, we think at the latter as the metric naturally induced by the
line bundle O(1) on Pn−1 over the ring of integers k◦.
When treating the case of an arbitrary reductive k◦-group G of generic

fibre G, this suggests to replace:

— the projective space Pn−1
k by the variety X = Bor(G) of Borel

subgroups of G;

— the line bundle O(1) by the anti-canonical bundle L = −KX of X;

— the norm ‖ · ‖ by the metric ‖ · ‖L on L induced by the line bundle

L = (det Ω1
X/k◦)∨ ⊗ α∗(det LieG)∨

on the k◦-scheme of Borel subgroups X = Bor(G) of G, where α is
the structural morphism of X and LieG the Lie algebra of G.
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4 Marco MACULAN

Note that, when G = GLn, these new choices do not correspond to the
original ones so that even in this case we get a new (but slightly more
complicated) proof.
The construction of the metric ‖ · ‖L is inspired by the embedding of

the Bruhat–Tits building in the flag varieties defined by Berkovich and
Rémy-Thuillier-Werner [19].
The anti-canonical bundle L of X has a natural structure of G-linearised

sheaf, that is, G acts linearly on the fibres on L respecting the action on
X. We can therefore consider the stabiliser StabG(k)(‖ · ‖L) in G(k) of the
metric ‖ · ‖L (see also Paragraph 2.3).

Theorem 1.2. — Let us suppose that G is semi-simple and quasi-split.
Then,

StabG(k)(‖ · ‖L) = G(k◦).

Theorem 1.2 is the critical result that we need to prove Theorem 1.1
when G is quasi-split. It corresponds indeed to step (1) in the proof in the
case G = GLn,k◦ , whereas step (2) is trivial and step (3) is a standard fact
in the theory of reductive k◦-groups (see Proposition 4.2).

To show Theorem 1.2 we reduce the problem to studying the intersection
of the stabiliser with the unipotent radical radu(B) of a Borel subgroup B
of G. Then, identifying radu(B) with the open subset Opp(B) of Borel
subgroups opposite to B, it remains to understand the behaviour of the
metric ‖ · ‖L on Opp(B, k): this boils down to a basic fact in the theory of
Schubert varieties over the residue field k̃ (see Proposition 4.4).

Instead if G is not quasi-split (hence the residue field infinite), then
X(k) is empty by definition and the metric ‖ · ‖L gives no information.
To get round this problem we remark that, for every analytic extension(2)

K of k, G(K◦) is the K-holomorphically convex envelope of G(k◦) (see
Definition 6.1). The key point here is that, the residue field being infinite,
the k̃-valued points of G are Zariski-dense in the special fibre of G.

Then, choosing an analytic extension K that splits G, we deduce the
maximality of G(k◦) from the maximality of G(K◦), which holds by the
quasi-split case.

(2) i.e. a complete valued field endowed with an isometric embedding k → K.

ANNALES DE L’INSTITUT FOURIER
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To conclude let us remark that the construction of the metric can be
generalised to any type of parabolic subgroups of G. When G is semi-
simple and the type is k-rational(3) and non-degenerate(4) , the stabiliser is
still G(k◦). Since these facts are of no use in the present paper we do not
treat them.

1.3. Organisation of the paper

In Section 2 we introduce the notations that we use throughout the paper
and we recall some basic facts on reductive groups. In Section 3 we show
how Theorem 1.1 follows from Theorem 1.2 when G is quasi-split. The
proof of Theorem 1.1 for G quasi-split is given in Section 5, based on some
preliminary facts established in Section 4. Finally in Section 6 we show how
to reduce to the quasi-split case.

1.4. Acknowledgements

I would like to thank B. Rémy for the interest he showed on this result,
the accurate reading of a first draft of this paper and his commentaries. I
warmly thank A. Thuillier for interesting discussions, M. Brion for point-
ing out to me references for Lemma 4.3 and B. Conrad for giving me an
alternative argument for Proposition 4.2. I also thank G. Ancona for the
valuable suggestions about the presentation.

I would like to thank the referee for its careful reading, his advices on
the presentation and the suggestion to prove Theorem 1.2 when the group
is quasi-split which permitted me to give a more elementary treatment.(5)

2. Notations, reminders and definitions

2.1. Notations and conventions

Let us list some notations that we use throughout the paper:
— k is a non-archimedean field, k◦ its ring of integers and k̃ its residue

field;
(3)Namely, the corresponding connected component of the variety of parabolic subgroups
Par(G) has a k-rational point.
(4)That is, the restriction of a parabolic subgroup of type t to every quasi-simple factor
H of G is not the whole H (see [19, 3.1]).
(5) In a previous version of the paper I proved Theorem 1.2 only when the residue field
was finite and used Berkovich geometry when the residue field was infinite.
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6 Marco MACULAN

— G is a reductive k◦-group;
— X is the k◦-scheme of Borel subgroups Bor(G), that is, the k◦-

scheme representing the functor that associates to a k◦-scheme S
the set of Borel subgroups of the reductive S-group G×k◦ S (cf. [12,
XXII, Corollaire 5.8.3]);

— L is the invertible sheaf (det ΩX/k◦)∨ ⊗ α∗(det LieG)∨ on X (it is
a line bundle because X is smooth by loc. cit.), where α is the
structural morphism of X over Spec k◦;

— G, X, L are respectively the generic fibre of G, X , L and by G̃, X̃,
L̃ their special fibre;

— ‖ · ‖L is the metric on L associated to L, that we consider as a
continuous function ‖ · ‖L : V(L, k) → R+ (see definition in Para-
graph 2.3).

— for every Borel subgroup B we denote by Opp(B) the k◦-scheme of
Borel subgroups opposite to B, that is, the k◦-scheme representing
the functor that associates to a k◦-scheme S the set of Borel sub-
groups of GS := G ×k◦ S such that the intersection with B ×k◦ S is
a maximal S-torus of GS . A similar notation is also used for Borel
subgroups of G and G̃ (cf. [12, XXII, Proposition 5.9.3(ii)]).

— In this paper we refer to [14, Corollaire 1.11] as “Hensel’s Lemma”.

2.2. Reminders

— For a reductive group over a general base, the notion of quasi-split
is fairly involved [12, XXIV, 3.9]. Nonetheless, thanks to [12, XXIV,
Proposition 3.9.1], the k◦-reductive group G is quasi-split if and only
if G is.

— The k◦-scheme X is projective and smooth (see [11, Theorem 5.2.11]
or [12, XXII, 5.8.3(i)]) and the invertible sheaf L is ample. Indeed,
L can also be constructed as follows: if U → X is the universal Borel
subgroup and LieU is the Lie algebra of U , then L is the dual of
det LieU [11, Theorem 2.3.6 and Remark 2.3.7].
This construction also shows that the adjoint action of G induces

a natural equivariant action of G on L [12, I, Définition 6.5.1]. The
equivariant action on L induces for all integer n a linear action of G
on the global sections H0(X ,L⊗n) [12, I, Lemme 6.6.1]. We always
consider these actions as tacitly understood.

ANNALES DE L’INSTITUT FOURIER
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— For a Borel subgroup B of G the scheme Opp(B) of Borel subgroups
of G opposite to B is an open affine subscheme of X = Bor(G) [12,
XXVI, Corollaire 4.3.4 and Corollaire 4.3.5].

— The total space of L is the k-scheme V(L) representing the functor
that associates to a k-scheme S the set of couples (x, s) made of
a S-valued point x : S → X and a section s ∈ H0(S, x∗L) [13,
1.7.10].(6)

2.3. Definitions

— A subset S ⊂ G(k) is said to be bounded if there exists a closed
embedding G ⊂ Ank such that S in contained in An(k◦) (this gen-
eralises [3, 1.1, Definition 2] when k is not discretely valued).

— A metric on L is a function ‖ · ‖ : V(L, k) → R+, (x, s) 7→ ‖s‖(x)
verifying the following properties for all k-points (x, s) of V(L):
– ‖s‖(x) = 0 if and only if s = 0;
– ‖λs‖(x) = |λ|‖s‖(x) for all λ ∈ k.

— The metric ‖·‖L is defined as follows. A k-point of V(L) corresponds
to the data of a point x ∈ X(k) and a section s ∈ x∗L. By the valu-
ative criterion of properness, the point x lifts to a unique morphism
of k◦-schemes εx : Spec k◦ → X and the k◦-module ε∗xL is free of
rank 1 (thus it is a lattice the K-line x∗L). Pick a generator s0 of
the k◦-module ε∗xL and set, for all s = λs0 with λ ∈ k,

‖s‖L(x) := |λ|.

The real number ‖s‖L(x) does not depend on the chosen generator
s0, so this gives a well-defined function ‖ · ‖L : V(L, k)→ R+,

‖(x, s)‖L := ‖s‖L(x).

It is easily seen that ‖ · ‖L is continuous on V(L, k) and bounded
on bounded subsets. Similarly, for every integer n, one constructs
the metric ‖ · ‖L⊗n on L⊗n associated to L⊗n.

— The group G(k) acts on the set of metrics on L. Indeed, given a
metric ‖ · ‖ and g ∈ G(k), the function (x, s) 7→ ‖g−1 · (x, s)‖ is
again a metric (because G(k) acts linearly on the fibres of L).

(6) In loc. cit. the k-scheme V(L) is denoted V(L∨).

TOME 67 (2017), FASCICULE 1



8 Marco MACULAN

We denote by StabG(k)(‖ · ‖L) the stabiliser of the metric ‖ · ‖L
with respect to this action. More explicitly, StabG(k)(‖ · ‖L) is the
set of points g ∈ G(k) such that, for all k-points (x, s) of V(L), we
have

‖g · s‖L(g · x) = ‖s‖L(x).

3. Proof of Theorem 1.1 in the quasi-split case

In this section we admit temporarily Theorem 1.2 and we prove the
following:

Theorem 3.1. — Let us suppose G quasi-split. Then, G(k◦) is a maxi-
mal bounded subgroup of G(k).

Proof. — We may assume that G is semi-simple. Indeed, if it is not the
case, we consider the derived group D of G (which is a semi-simple k◦-
group scheme [12, XXII, Théorème 6.2.1(iv)]) and the identity component
of the center Z of G (which is a k◦-torus). The map π : D ×k◦ Z → G
given by multiplication is an isogeny [12, XXII, Proposition 6.2.4]. If H is
a bounded subgroup of G(k) containing G(k◦), then the subgroup π−1(H)
contains D(k◦)×Z(k◦) and is bounded because π is a finite morphism(7) .
Since Z(k◦) is the maximal bounded subgroup of Z(k) (Proposition 4.6),
we are left with proving that D(k◦) is a maximal bounded subgroup of
D(k).

Let us henceforth suppose that G is semi-simple. Let H be a bounded
subgroup containing G(k◦) and let us consider the metric ‖ · ‖H on L|X(k)
defined, for every point x ∈ X(k) and every section s ∈ x∗L, by

‖s‖H(x) := sup
h∈H
‖h · s‖L(h · x).

Note that ‖ · ‖H takes real values because H is bounded and ‖ · ‖L is
continuous and bounded. The ratio of the metrics ‖ · ‖H and ‖ · ‖L defines
a function

φ = ‖ · ‖H
‖ · ‖L

: X(k) −→ R+,

(7) If V,W are k-schemes of finite type and f : V → W is a finite morphism, then the
inverse image of a bounded subset of W (k) is bounded. Since finite morphisms are
projective, in order to prove this statement, one is immediately led back to prove it
when V = Pn ×k W and f is the projection on the second factor. This latter statement
is clear because Pn(k) is bounded (the proof given in [3, 1.1, Proposition 6] when k is
discretely valued generalises without problems to the non-discretely valued case).

ANNALES DE L’INSTITUT FOURIER
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which is invariant under the action of G(k◦). Since G(k◦) acts transi-
tively on X(k) (Proposition 4.2 (2)), the function φ must be constant.
Thus H is contained in StabG(k)(‖ · ‖L) and, according to Theorem 1.2, we
conclude. �

4. Some preliminary facts

In this section we collect some facts that will be used during the proof of
Theorem 1.2. Some of them are standard facts but we included their proof
for the sake of completeness.

4.1. On the scheme of Borel subgroups

A perfect field F is said to be of cohomological dimension 6 1 if every ho-
mogeneous space under a connected linear algebraic group has a F -rational
point [21, §2.2, III, Théorème 1 and §2.3, Corollaire 1]. The only examples
of fields of cohomological dimension 6 1 we are interested in are finite fields
(“Lang’s theorem” [1, Corollary 16.5(i)]).

Proposition 4.1. — Let us suppose that the residue field k̃ is perfect
of cohomological dimension 6 1 and let G be a k◦-reductive group. Then,
its generic fibre G is quasi-split.

Proof. — The special fibre X̃ of X is a homogeneous space under the
action of the connected group G̃. Therefore, by definition of field of co-
homological dimension 6 1, it admits a k̃-rational point. Thanks to the
smoothness of X and Hensel’s lemma, such a rational point can be lifted
to a k◦-valued point of X , that is, to a Borel subgroup B of G. The generic
fibre of B does the job. �

Proposition 4.2. — Let us suppose k̃ arbitrary and G quasi-split.
Then,

(1) every Borel subgroup B of G contains a maximal torus of G;
(2) G(k◦) acts transitively on X(k);
(3) (Iwasawa decomposition) for every Borel subgroup B of G, we have

G(k) = G(k◦) ·B(k).

Proof.
(1) [12, XII, Corollaire 5.9.7].

TOME 67 (2017), FASCICULE 1
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(2) We can apply [12, XXVI, Corollaire 5.2]. Indeed, if B is a Borel
subgroup of G, by (1) it contains a maximal torus T and we can
consider the Borel subgroup B′ opposite to B with respect to T [12,
XXII, Proposition 5.9.2].

(3) Since X is proper, the valuative criterion of properness entails the
equality X (k◦) = X(k), which, according to (2), gives

G(k◦)/B(k◦) = G(k)/B(k).

The result follows immediately. �

4.2. Size of global sections of the anti-canonical bundle

Let us start by recalling a basic fact in the theory of Schubert varieties
over a field.

Lemma 4.3. — Let F be a field. Let H be a quasi-split reductive F -
group and P a Borel subgroup ofH. Let Y be the variety of Borel subgroups
of H and M the anti-canonical bundle of Y . Then,

(1) there exists a unique (up to scalar factor) non-zero eigenvector in
H0(Y,M) for P ;

(2) the locus where such an eigenvector does not vanish is the open
subset Opp(P ) ⊂ Y made of Borel subgroups opposite to P .

Proof. — When H is split, Y is the Schubert variety associated to the
maximal element w0 of the Weyl group of H (with respect to the Bruhat
order) and Opp(P ) is the corresponding Bruhat cell – see, for instance, [4,
Proposition 1.4.5], [22, §8.5.7] or [16, §4] for a thorough discussion of these
aspects. The quasi-split case follows by Galois descent. �

Let us go back to the general notation introduced in Section 2.

Proposition 4.4. — Let us suppose G quasi-split and let B be a Borel
subgroup. Let s ∈ H0(X ,L) be an eigenvector for B such that its reduction
s̃ is non-zero. Then,

{x ∈ X(k) : ‖s‖L(x) = 1} = Opp(B, k◦),

where B is the Borel subgroup of G lifting B and Opp(B) is the open subset
of Bor(G) made of Borel subgroups opposite to B.

Remark 4.5. — This statement is a “coordinate-free” analogue of [19,
Proposition 2.18(i)] (in the sense that we do not need to consider a maximal
split k-torus of G and the corresponding roots).

ANNALES DE L’INSTITUT FOURIER
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Proof. — Let x ∈ X(k). First of all, applying Lemma 4.3 with F = k

and H = G, let us remark that we have ‖s‖L(x) does not vanish exactly
when x belongs to Opp(B, k). Furthermore, the equality ‖s‖L(x) = 1 is
equivalent to say that the reduction s̃ ∈ H0(X̃, L̃) of s does not vanish at
the reduction x̃ ∈ X̃(k̃) of x.

If B̃ denotes special fibre of B, then s̃ is a non-zero eigenvector for B̃.
Therefore, applying again Lemma 4.3 to F = k̃ and H = G̃, we obtain
that s̃ does not vanishes precisely on the open subset Opp(B̃) of X̃ made
of Borel subgroups of G̃ opposite to B̃. Let Bx the Borel subgroup of G
associated to x. Summing up we have:

‖s‖L(x) 6= 0 ⇐⇒ the generic fibre of Bx is opposite to B,

‖s‖L(x) = 1 ⇐⇒ the generic and the special fibre of Bx are
respectively opposite to B and B̃.

In other words, ‖s‖L(x) = 1 if and only if x ∈ Opp(B, k◦). �

4.3. Compact subgroups of tori

Given a torus T over a complete non-archimedean field k, the set of its
k-rational points contains a unique maximal bounded subgroup UT .(8)

It is not true in general that UT is the group of k◦-valued points of a
k◦-torus T . When k is discretely valued, UT coincides with the set of k◦-
valued points of the identity component T of the Néron model of T [8,
4.4.12] but, if the splitting extension of T is ramified, then the special fibre
of T may not be a torus [8, 4.4.13]. Anyway, this is true if T is already the
generic fibre of k◦-torus :

Proposition 4.6. — Let T be a k◦-torus and T its generic fibre. Then,
T (k◦) is the unique maximal bounded subgroup of T (k).

Proof. — If T ' Grm,k◦ is split, then Grm(k◦) is the unique maximal
bounded subgroup of Grm(k). In general there exists a finite unramified
extension K of k such that TK := T ×k◦ K◦ is split and, by the split
case, T (K◦) is the unique maximal bounded subgroup of T (K). It follows
that T (K◦) ∩ T (k) = T (k◦) is the unique maximal bounded subgroup of
T (k). �

(8) Indeed, if T ' Gr
m,k is split one takes UT = Gr

m(k◦). If T is not split, let k′ be a
finite separable extension splitting T and let T ′ = T ×k k

′. Then, UT = UT ′ ∩ T (k).

TOME 67 (2017), FASCICULE 1



12 Marco MACULAN

4.4. Boundedness of the stabiliser

In this section we establish that the stabiliser StabG(k)(‖·‖L) is a bounded
subset of G(k). Let us begin with two results that we need in the proof.

Lemma 4.7. — Let n > 1 be such that L⊗n is very ample. If G is semi-
simple, then the natural representation ρ : G → GL(H0(X,L⊗n)) is finite
as a morphism of k-schemes.

Proof. — We may assume that k is algebraically closed. We prove that
Ker ρ is finite, which clearly implies the statement.
Since X embeds G-equivariantly in P(H0(X,L⊗n)∨), then Ker ρ is con-

tained in the stabiliser of every point of X. That is, Ker ρ is contained in
the intersection of all Borel subgroups. In other words, the identity compo-
nent of Ker ρ is the radical of G, which is trivial since G is semi-simple [1,
§11.21]. �

Lemma 4.8. — Let V be a finite dimensional k-vector space and let ‖·‖
be a norm on V . Then the following subgroup of GL(V, k),

StabGL(V,k)(‖ · ‖) := {g ∈ GL(V, k) : ‖g · v‖ = ‖v‖ for all v ∈ V },

is bounded.

Proof. — Let us see GL(V ) as a closed subscheme of the affine scheme
End(V )×k End(V ) through the closed embedding g 7→ (g, g−1). If we con-
sider the subset

E = {φ ∈ End(V, k) : ‖φ(v)‖ 6 ‖v‖ for all v ∈ V },

then we have StabGL(V,k)(‖ · ‖) = (E ×E)∩GL(V, k). Therefore it suffices
to show that the subset E is bounded. Let V1, V2 be k◦-lattices of V such
that the associated norms on V satisfy, for all v ∈ V ,

‖v‖1 6 ‖v‖ 6 ‖v‖2,

(they exist because the norms on V are all equivalent). It follows, through
the canonical isomorphism End(V ) = Homk(V, k)⊗k V , that E is a subset
of

Homk◦(V2, k
◦)⊗k◦ V1.

In particular E is bounded by definition. �

Proposition 4.9. — If G is semi-simple and quasi-split, then the sta-
biliser StabG(k)(‖ · ‖L) is bounded.
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Proof. — Let n > 1 be an integer such that L⊗n is very ample, let
V := H0(X,L⊗n) and let ρ : G→ GL(V ) be the representation induced by
the equivariant action of G on L⊗n. According to Lemma 4.7, ρ is a finite
morphism.
For every global section s ∈ V let us set

‖s‖sup := sup
x∈X(k)

‖s‖L⊗n(x).

Remark that ‖ · ‖sup is a norm on V because X(k) is non-empty and thus,
by the Zariski-density of G(k) in G, Zariski-dense in X [9, Theorem 1.1].
The subgroup S = StabG(k)(‖ · ‖L) fixes the norm ‖ · ‖sup, therefore its

image in GL(V, k) through ρ is bounded (Lemma 4.8). Since ρ is a finite
morphism, S must be bounded too. �

5. Proof of Theorem 1.2

In this section we prove Theorem 1.2 and therefore we suppose that the
group G is semi-simple and quasi-split.

In order to prove Theorem 1.2, we start by noticing that the metric ‖·‖L
is invariant under G(k◦). Indeed, let x ∈ X(k), g ∈ G(k◦) and let us denote
by εx, εg·x the unique k◦-valued points of X that lift, by valuative criterion
of properness, respectively the points x and g ·x. Since G acts equivariantly
on L, the multiplication by g induces an isomorphism of k◦-modules

ε∗xL
∼−→ ε∗g·xL,

extending the isomorphism of k-vector spaces x∗L→ (g ·x)∗L. For a section
s ∈ x∗L let us write g · s its image in (g · x)∗L. Since the isomorphism is
defined at the level of k◦-modules, if s0 is a generator of the k◦-module ε∗xL,
then g · s0 generates the k◦-module ε∗g·xL. In particular, for every section
s ∈ x∗L, we have

‖g · s‖L(g · x) = ‖s‖L(x).
We are thus left with proving the inclusion

(5.1) StabG(k)(‖ · ‖L) ⊂ G(k◦).

Since G is supposed to be quasi-split, it contains a Borel subgroup B

and by the Iwasawa decomposition (Proposition 4.2 (3)), we have

G(k) = G(k◦) ·B(k).

Therefore, in order to prove the inclusion (5.1), it suffices to prove the
following :
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Lemma 5.1. — With the notations just introduced, let B be the unique
Borel subgroup of G lifting B. Then, we have

StabG(k)(‖ · ‖L) ∩B(k) = B(k◦).

Proof of Lemma 5.1. — Let us simplify the notation by writing S in-
stead of StabG(k)(‖ · ‖L). Let T be a maximal k◦-torus of B (it exists by
Proposition 4.2 (1)) and radu(B) be the unipotent radical of B. Let T and
radu(B) be their generic fibres.
The inclusion T ⊂ B induces an isomorphism T ' B/ radu(B) [12, XXVI,

Proposition 1.6]. Thanks to this identification, let us write π : B → T the
quotient map.

Claim. — We have the following equalities:

S ∩ T (k) = T (k◦), π(S ∩B(k)) = T (k◦).

Proof of the Claim. — Since the stabiliser S is a bounded subgroup
(Proposition 4.9), the subgroups S∩T (k), π(S∩B(k)) of T (k) are bounded
too. Therefore they must be contained in T (k◦) because the latter is the
unique maximal bounded subgroup of T (k) (Proposition 4.6).
On the other hand S contains G(k◦) by hypothesis and thus it con-

tains T (k◦). So both S ∩ T (k) and π(S ∩B(k)) contain T (k◦), whence the
claim. �

Since B(k) is the semi-direct product of radu(B, k) and T (k), in order
to conclude the proof of Lemma 5.1, it is sufficient to prove the following:

Lemma 5.2. — With the notations introduced above, we have

StabG(k)(‖ · ‖L) ∩ radu(B, k) = radu(B, k◦).

Proof of Lemma 5.2. — Let s ∈ H0(X ,L) be an eigenvector for B whose
reduction s̃ is non-zero. Then, by Proposition 4.4 we have

Opp(B, k◦) = {x ∈ X(k) : ‖s‖L(x) = 1}.

Since the subgroup S ∩ radu(B, k) fixes the metric, Opp(B, k◦) is stable
under the action of S ∩ radu(B, k).
On the other hand, we can identify in a B-equivariant way Opp(B) with

the unipotent radical of B. To do this, let Bop be the Borel subgroup of G
opposite to B relatively to T . Then the map radu(B) → Opp(B) defined
by b 7→ bBopb−1 is an isomorphism [12, XXVI, Corollaire 4.3.5].
Through this identification, the action of radu(B) on Opp(B) becomes

the action of radu(B) on itself by left multiplication. Moreover, saying
that Opp(B, k◦) is stable under the action of S ∩ radu(B) translates into
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the the fact that the unipotent radical radu(B, k◦) is stable under the left
multiplication by S ∩ radu(B). This obviously implies that S ∩ radu(B) is
contained in radu(B, k◦), which concludes the proof of Lemma 5.2, thus of
Lemma 5.1 and Theorem 1.2. �

6. Reduction to the quasi-split case

In this section we deduce Theorem 1.1 when G is not quasi-split from
Theorem 3.1. The reduction to the quasi-split case makes an essential use
of the concept of holomorphically convex envelope, that we pass in review
in the first paragraph.

6.1. Holomorphically convex envelopes

We briefly discuss holomorphically convex envelopes. The naive point
of view we opt for, far from being well-suited to study holomorphically
convex spaces, will suffice to draw the result that we are interested in (cf.
Proposition 6.3).

Definition 6.1. — Let V be a affine k-scheme of finite type, S ⊂ V (k)
a bounded subset and K be an analytic extension of k. Let K[V ] be the
K-algebra of regular functions on V ×k K. Then, for every f ∈ K[V ], let
us set

‖f‖S := sup
s∈S
|f(s)|.

The K-holomorphically convex envelope of S is the subset

ŜK := {x ∈ V (K) : |f(x)| 6 ‖f‖S for all f ∈ K[V ]}.

Proposition 6.2. — Let f : V → W be a closed immersion between
affine k-schemes of finite type. Let S ⊂ V (k) be a bounded subset and K
an analytic extension of k. Then,

f(ŜK) = f̂(S)K .

The proof is left to reader as a direct consequence of the definitions.

Proposition 6.3. — Let H be a smooth affine group k◦-scheme with
connected geometric fibres. Let us suppose that its special fibre H̃ is uni-
rational and that the residue field k̃ is infinite.
Then, for every analytic extension K of k, the K-holomorphically convex

envelope of H(k◦) is H(K◦).
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We will use the previous Proposition only when H is a reductive k◦-
group: over a field reductive groups are indeed unirational varieties [9,
Theorem 1.1] so that the hypotheses are fulfilled.
In order to prove Proposition 6.3, let H be the generic fibre of H and let

K[H], K◦[H] be respectively the k-algebra of regular functions of H ×k K
and the k◦-algebra of regular functions on H×k◦ K◦. For every f ∈ K[H]
let us set

‖f‖K◦[H] := inf{|λ| : f/λ ∈ K◦[H], λ ∈ K×}.

The function ‖ · ‖K◦[H] is a semi-norm on the K-algebra K[H] and it
takes values in |K|. This very last property is crucial for us and it is trivial
if the valuation of K is discrete, while, when the valuation is dense, it is
known to experts in non-archimedean geometry. A proof of this is given in
Appendix A (cf. Proposition A.1) as I cannot point out a suitable reference.
Coming back to the proof of Proposition 6.3, let us remark that we have

H(K◦) = {h ∈ H(K) : |f(h)| 6 ‖f‖K◦[H] for all f ∈ K[H]},

so that it suffices to prove the following:

Lemma 6.4. — For every f ∈ K[H] we have

‖f‖K◦[H] = ‖f‖H(k◦) := sup
h∈H(k◦)

|f(h)|.

Proof of the Lemma. — Since the norm ‖·‖K◦[H] takes values in |K|, we
may assume ‖f‖K◦[H] = 1. With this hypothesis for every point h ∈ H(k◦)
we have |f(h)| 6 1, thus proving the lemma amounts to find a k◦-valued
point h of H such that |f(h)| = 1.
Let H̃ be the special fibre of H and let K̃[H̃] be the K̃-algebra of regular

functions on H̃K̃ := H̃ ×k̃ K̃. With this notation f belongs to K◦[H] and
its reduction f̃ ∈ K̃[H̃] is non-zero. Since the field k̃ is infinite and H̃ is
supposed to be unirational, the set of k̃-rationals points H̃(k̃) is Zariski-
dense in H̃K̃ . Therefore there exists a k̃-rational point of H̃ on which f̃

does not vanish. Since H is smooth, we can lift such a point to a point
h ∈ H(k◦) by means of Hensel’s Lemma. Clearly h is the point that we
were looking for. �
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Remark 6.5. — In the proof of the preceding proposition we showed that
k◦[H] is the k◦-subalgebra of k[H] made of regular functions f such that
|f(g)| 6 1 for all h ∈ H(k◦). Adopting the terminology of Bruhat–Tits [8,
Définition 1.7.1], one would say that the k◦-scheme H is étoffé.

6.2. Proof of the Theorem

Let us complete the proof of Theorem 1.1 when G is not quasi-split. Let
us recall that if G is not quasi-split then the residue field k̃ is necessarily
infinite (see Proposition 4.1). Let us begin with the following technical
result:

Lemma 6.6. — Let H be a bounded subgroup of G(k). Then, there are
an analytic extension K of k and a faithful representation ρ : GK → GLn,K
such that

ρ(H) ⊂ GLn(K◦).

Moreover, if the valuation of k is discrete one can take K = k.

We postpone the proof of the previous Lemma to the end of the proof of
Theorem 1.1. Let H be a bounded subgroup of G(k) containing G(k◦) and
let K and ρ be as in the statement of the previous lemma. Up to extending
K we may suppose that GK◦ is split.

Since ρ is a closed immersion, the K-holomorphically convex envelope
of ρ(H) coincides with ρ(ĤK) (see Proposition 6.2). Therefore, by the pre-
ceding Lemma,

ρ(ĤK) ⊂ ̂GLn(K◦)K = GLn(K◦),

where the last equality follows from Proposition 6.3 applied to the group
H = GLn,K◦ . We have therefore the following chain of inclusions :

G(K◦) = Ĝ(k◦)K ⊂ ĤK ⊂ ρ−1(GLn(K◦)),

where the first equality is given by Proposition 6.3 applied with H = G.
Now we can conclude thanks to Theorem 1.1 in the split case: indeed,
ρ−1(GLn(K◦)) is a bounded subgroup containing G(K◦) and since GK◦ is
split by hypothesis, we have

G(K◦) = ĤK = ρ−1(GLn(K◦)),

which concludes the proof of Theorem 1.1. �

TOME 67 (2017), FASCICULE 1



18 Marco MACULAN

Let us finally prove Lemma 6.6:
Proof of Lemma 6.6. — Let us first suppose that the valuation of k

is discrete. Let ρ0 : G → GLn,k be any faithful representation and let us
consider E0 := (k◦)n. Then, the k◦-submodule of kn,

E :=
∑
h∈H

h · E0,

is bounded (as a subset of Kn) because H is bounded. In particular, there
exists λ ∈ k× such that E ⊂ λE0. Since k◦ is noetherian, every submodule
of E0 is finitely generated. Thus E is a torsion-free, finitely generated k◦-
module such that E ⊗k◦ k = kn (it contains E0). In other words, E is a
lattice of kn and thus there exists g ∈ GLn(k) such that g · E = E0. One
concludes by setting ρ := gρ0g

−1.
If the valuation is not discrete (or, more precisely, if the field k is not

maximally complete) some further work is required because of the existence
of norms that are not “diagonalisable”. Let ρ0 : G→ GLn,k be any faithful
representation as before, K a maximally complete extension of k and let
us consider the norm on Kn,

‖(x1, . . . , xn)‖0 := max{|x1|, . . . , |xn|}.

Since the subgroup H is bounded, the function

‖x‖ := sup
h∈H
‖h · x‖0,

is real-valued and it is a norm onKn verifying the non-archimedean triangle
inequality. Since K is maximally complete, there exists a basis v1, . . . , vn
of Kn and positive real-numbers r1, . . . , rn such that

‖x1v1 + · · ·+ xnvn‖ = max{r1|x1|, . . . , rn|xn|},

for all x1, . . . , xn ∈ K [2, 2.4.1 Definition 1 and 2.4.4 Proposition 2]. Up
to extending further K, we may assume that the real numbers r1, . . . , rn
belong to the value group of K. Thus, up to rescaling the basis, we may
suppose ri = 1 for all i, so that the norm ‖·‖ is associated with a K◦-lattice
of Kn. One finishes the proof as in the discretely-valued case. �

Appendix A. Semi-norm associated to an integral model

Let A be a torsion-free k◦-algebra of finite type and let A := A ⊗k◦ k.
Since A is torsion-free, it injects in A and we shall freely consider it as a
subset of A. For every f ∈ A we set

‖f‖A := inf{|λ| : f/λ ∈ A for all λ ∈ k×}.
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Proposition A.1. — The semi-norm ‖ · ‖A takes values in |k|.

Since I am not able to point out a suitable reference, I sketch here a
proof. Before giving the argument, let us fix some notation. Let Â be the
completion of A with respect to the semi-norm ‖ · ‖A: we still denote by
‖ · ‖A the semi-norm induced on Â. The completion Â of A, seen as a
k◦-subalgebra of Â, verifies the following chain of inclusions:

{f ∈ Â : ‖f‖A < 1} ⊂ Â ⊂ {f ∈ Â : ‖f‖A 6 1}.

(A posteriori, once we know that the Proposition holds, the second inclusion
will be an equality.)
When A is the ring of polynomials k◦[t1, . . . , tn], the semi-norm ‖ · ‖A is

the Gauss norm on polynomials: explicitly, for a polynomial f of the form∑
α∈Nn fαt

α1
1 · · · tαn

n , we have

‖f‖A = max
α∈Nn

|fα|.

Thus the completion Â is the so-called Tate algebra k{t1, . . . , tn} and
the semi-norm ‖ · ‖A takes values in |k|.
Proof. — The statement is trivial if the valuation is discrete, so let us

suppose that the valuation is dense. Let φ : T = k◦[t1, . . . , tn] → A be a
surjective homomorphism of k◦-algebras. We adopt for T notations sim-
ilar to the ones for A. The homomorphism φ induces a surjective(9) and
bounded(10) homomorphism of k-Banach algebras,

φ̂ : T̂ −→ Â.

The open mapping theorem shows that the norm ‖ · ‖T attains a mini-
mum on the subset made of elements g ∈ T̂ such that φ̂(g) = f [2, 1.1.5
Definition 1 and 5.2.7 Theorem 7]. If such a minimum is attained in g0, it
suffices to show

‖f‖A = ‖g0‖T .

(9)Because of the equalities T̂ = T̂ ⊗k◦ k and Â = Â ⊗k◦ k, it suffices to show that the
induced homomorphism φ : T̂ → Â is surjective.

Let λ ∈ k be a non-zero element such that |λ| < 1. For every positive integer n let us
set Λn := k◦/λnk◦, An := A⊗k◦ Λn and Tn := T ⊗k◦ Λn. The completion T̂ (resp. Â)
is naturally identified with the projective limit of the Tn’s (resp. of the An’s). For every
n, let In be the kernel of the surjective homomorphism Tn → An induced by φ. Then
the exact sequence of projective systems,

0 −→ (In)n −→ (Tn)n −→ (An)n −→ 0,
satisfies the Mittag-Leffler condition (even better, for every n the map In+1 → In is
surjective). Therefore, the induced map between projective limits T̂ → Â is surjective.
See [17, Chapter 1, Lemma 3.1 and Exercise 3.15].
(10)That is, for every f ∈ T̂ , we have ‖φ(f)‖A 6 ‖f‖T .
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The inequality ‖f‖A 6 ‖g0‖T is clear because of the boundedness of the
homomorphism φ̂. Let us suppose by contradiction ‖f‖A < ‖g0‖T . Up to
rescaling g0 we may suppose ‖g0‖T = 1 (it is crucial here ‖·‖T takes values
in |k|). By density of the valuation, there exists λ ∈ k such that |λ| > 1
and ‖λf‖A < 1 hence λf belongs to A. Since φ̂ is surjective, there exists
g1 ∈ T̂ such that φ(g1) = λf . Therefore, φ(g1/λ) = f and

‖g1/λ‖T < ‖g1‖T 6 1,

contradicting the minimality of g0. �
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