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ON A MOTIVIC INVARIANT OF THE ARC-ANALYTIC
EQUIVALENCE

by Jean-Baptiste CAMPESATO

Abstract. — To a Nash function germ, we associate a zeta function similar
to the one introduced by J. Denef and F. Loeser. Our zeta function is a formal
power series with coefficients in the Grothendieck ring M of AS-sets up to R∗-
equivariant AS-bijections over R∗, an analog of the Grothendieck ring constructed
by G. Guibert, F. Loeser and M. Merle. This zeta function generalizes the previous
construction of G. Fichou but thanks to its richer structure it allows us to get a
convolution formula and a Thom–Sebastiani type formula.

We show that our zeta function is an invariant of the arc-analytic equivalence, a
version of the blow-Nash equivalence of G. Fichou. The convolution formula allows
us to obtain a partial classification of Brieskorn polynomials up to arc-analytic
equivalence by showing that the exponents are arc-analytic invariants.
Résumé. — À un germe Nash, nous associons une fonction zêta similaire à la

fonction zêta motivique de J. Denef et F. Loeser. Il s’agit d’une série formelle à
coefficients dans un anneau de GrothendieckM des ensembles AS au-dessus de R∗
à AS-bijection R∗-équivariante près. Cet anneau de Grothendieck est analogue à
celui construit par G. Guibert, F. Loeser et M. Merle. Cette fonction zêta généralise
les précédentes constructions de G. Fichou. Sa richesse algébrique permet d’obtenir
une formule de convolution ainsi qu’une formule de type Thom–Sebastiani.

On démontre que la fonction zêta considérée dans cet article est un invariant
de l’équivalence arc-analytique, une caractérisation de l’équivalence blow-Nash de
G. Fichou. La formule de convolution permet d’obtenir une classification partielle
des polynômes de Brieskorn à équivalence arc-analytique près. Plus précisément,
on montre que le type arc-analytique d’un tel polynôme détermine ses exposants.

1. Introduction

In the context of motivic integration, J. Denef and F. Loeser [11, 15]
associate a formal power series to a function f : X → A1 defined on a
non-singular (scheme theoric) algebraic variety. This power series, called

Keywords: real singularities, Nash functions, motivic integration, arc-analytic functions,
blow-Nash equivalence, arc-analytic equivalence.
Math. classification: 14P20, 14E18, 14B05.



144 Jean-Baptiste CAMPESATO

the motivic zeta function of f , comes in various forms by modifying the
ring where its coefficients lie. For instance J. Denef and F. Loeser work
with the classical Grothendieck ring of algebraic varieties in order to define
the naive motivic zeta function or with an equivariant Grothendieck ring
which encodes actions of the roots of unity in order to define the equivari-
ant motivic zeta function. This equivariant structure allows them to get a
convolution formula [13] which computes a modified equivariant zeta func-
tion of f ⊕ g(x, y) = f(x) + g(y) by applying coefficientwise a convolution
product to the modified equivariant zeta functions of f and g.

The key lemma for the motivic change of variables formula [12] ensures
that their zeta functions are rational. Thus they admit a limit at infinity
whose multiplication by −1 is called motivic Milnor fibers since their known
realizations coincide with the ones of the classical Milnor fiber. The convo-
lution formula induces a Thom–Sebastiani type formula for these motivic
Milnor fibers.
Similarly S. Koike and A. Parusiński [24] associate to a real analytic

function germ a formal power series with coefficients in Z using the Euler
characteristic with compact support. This way they define a naive zeta
function and two zeta functions with sign (a positive one and a negative
one) which play the role of the equivariant zeta function. Particularly these
zeta functions with sign admit formulas similar to the ones of Denef–Loeser
such as a convolution formula. Thanks to an adaptation to the real analytic
case of the key lemma for the motivic change of variables formula, it turns
out that Koike–Parusiński zeta functions are invariants of the blow-analytic
equivalence of T.-C. Kuo [27] for real analytic germs.
G. Fichou [16] brings a richer structure by using the virtual Poincaré

polynomial [16, 30, 31] for AS-sets instead of the Euler characteristic with
compact support. This way he defines a naive zeta function and two zeta
functions with sign. In order to get a rationality formula, he has to restrict
to Nash functions. For this reason he introduces a semialgebraic version of
the blow-analytic equivalence for Nash germs, called the blow-Nash equiv-
alence. As it is not known if this relation is an equivalence relation, he
introduces a more general notion of blow-Nash equivalence [17] in terms of
Nash modifications which is an equivalence relation but two Nash germs
which are blow-Nash equivalent in this sense have to satisfy an additional
condition to ensure they have the same zeta functions. Recently one uses
a third definition of the blow-Nash equivalence, that is midway between
the both previous ones [18, 19, 20] by adding the above cited additional
condition, but it was not obvious originally whether it is an equivalence
relation. We show it in Corollary 7.10 by using the notion of arc-analytic
equivalence that we introduce in Section 7.
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ON A MOTIVIC INVARIANT OF THE ARC-ANALYTIC EQUIVALENCE 145

G. Guibert, F. Loeser and M. Merle [22] introduce an equivariant
Grothendieck ring for actions of the multiplicative group on (scheme theo-
ric) algebraic varieties over some fixed algebraic variety (this Grothendieck
ring is equivalent to the one of Denef–Loeser for actions of the roots of
unity). In this paper we first adapt this framework to AS-sets up to R∗-
equivariant AS-bijections over R∗.
This will allow us to define a local zeta function similar to the one of

Fichou but with additional structures. After having highlighted the links
between our zeta function to the ones of Koike–Parusiński and Fichou, we
show that our zeta function is also rational.

The main part of this work consists in proving that our additional struc-
tures permit to define a convolution formula allowing us to compute the zeta
function of f ⊕ g. More precisely, we construct a new convolution product
on our Grothendieck ring which is compatible with a modified zeta function
in the following sense. If we apply coefficientwise this convolution product
to the modified zeta functions of f and g, we get the modified zeta function
of f ⊕ g.
We may notice that this modified zeta function has already appeared

in [13] and [24] in their respective settings. In a way similar to [24] we
prove that our modified zeta function contains the same information as our
zeta function.

The next part of this paper is devoted to the study of the behavior
of our zeta function under the blow-Nash equivalence. To this purpose we
introduce a new relation, the arc-analytic equivalence, we show that it is an
equivalence relation and that allows us to avoid using Nash modifications.
Moreover, we show that the arc-analytic equivalence coincides with the
blow-Nash equivalence in the sense of [18, 19, 20]. Our zeta function and
the ones of Fichou are invariants of this relation.

Finally, the convolution formula allows us to prove that the exponents
of Brieskorn polynomials are invariants of the arc-analytic equivalence.

Acknowledgements. I would like to express my gratitude to my thesis
advisor Adam Parusiński for his support and helpful discussions during the
preparation of this work.

2. Geometric framework

K. Kurdyka [28] introduced semialgebraic arc-symmetric subsets of Rd
which are semialgebraic subsets of Rd such that given a real analytic arc on
Rd either this arc is entirely included in the subset or it meets it at isolated
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146 Jean-Baptiste CAMPESATO

points only. We are going to work with AS-sets, a slightly different notion
introduced by A. Parusiński [34].

Definition 2.1 ([34]). — We say that a semialgebraic subset A ⊂ PnR
is an AS-set if for every real analytic arc γ : (−1, 1) → PnR such that
γ((−1, 0)) ⊂ A there exists ε > 0 such that γ((0, ε)) ⊂ A.

Definition 2.2. — By an AS-map we mean a map between AS-sets
whose graph isAS and by anAS-isomorphism we mean a bijection between
AS-sets whose graph is AS.

Remark 2.3 ([34, Remark 4.2]). — The family AS is the boolean algebra
spanned by semialgebraic arc-symmetric subsets of PnR (in the sense of [28,
Définition 1.1]). Moreover closed (for the Euclidean topology) AS-sets are
exactly the semialgebraic arc-symmetric subsets of PnR.

The following proposition results from the proof of [34, Theorem 2.5]. It
is an AS version of [28, Théorème 1.4].

Proposition 2.4. — The closedAS-subsets of PnR are exactly the closed
sets of a noetherian topology on PnR.

Definition 2.5. — Let Y,X, F be three AS-sets and p : Y → X be an
AS-map. We say that p is a locally trivial AS-fibration with fibre F if every
x ∈ X admits an open AS neighborhood U such that ϕ : p−1(U)→ U ×F
is an AS-isomorphism such that the following diagram commutes

p−1(U)
ϕ

'
//

p
""

U × F

prU
||

U

The following proposition is a direct consequence of the noetherianity of
the AS topology.

Proposition 2.6. — A locally trivial AS-fibration p : Y → X with
fibre F is a piecewise trivial fibration with fiber F , i.e. we may break X into
finitely many AS-sets X =

⊔k
α=1Xα such that p−1(Xα) is AS-isomorphic

to Xα × F .

Nash maps and Nash manifolds were introduced by J. Nash in [32] con-
sidering real analytic functions satisfying non-trivial polynomial equations.
M. Artin and B. Mazur gave a new description of these objects in [3] in
terms of maps which can be lifted to polynomial maps on non-singular
irreducible real algebraic sets.

ANNALES DE L’INSTITUT FOURIER



ON A MOTIVIC INVARIANT OF THE ARC-ANALYTIC EQUIVALENCE 147

The benefits of Nash functions is that they share good algebraic prop-
erties with polynomial functions and good geometric properties with real
analytic geometry.

Definition 2.7 (Nash functions and Nash maps [6, 32]). — Let U ⊂ Rd
be an open semialgebraic subset. A function f : U → R is said to be Nash
if it satisfies one of the two following equivalent conditions:

(1) f is semialgebraic and C∞.
(2) f is analytic and satisfies a nontrivial polynomial equation.

A map f : U → Rn is Nash if its coordinate functions are Nash.

Remark 2.8. — Obviously, the zero locus of a Nash function is an
AS-set.

Definition 2.9. — A Nash submanifold of dimension d is a semial-
gebraic subset M of Rn such that for every x ∈ M there exist an open
semialgebraic neighborhood U of x in Rn, an open semialgebraic neighbor-
hood V of 0 in Rn and a Nash isomorphism ϕ : U → V such that ϕ(x) = 0
and ϕ(M ∩ U) = (Rd × {0}) ∩ V .

Example 2.10 ([6, Proposition 3.3.11]). — Let V ⊂ Rd be a non-sin-
gular(1) algebraic set. Then, by the Jacobian criterion [6, Proposition 3.3.8]
and the Nash inverse theorem [6, Proposition 2.9.7], V is a Nash subman-
ifold of Rd. ·�
Proposition 2.11. — Let f : V → R be a Nash function defined on

an algebraic set V . There exists σ : Ṽ → V a finite sequence of (algebraic)
blowings-up with non-singular centers such that Ṽ is non-singular and f◦σ :
Ṽ → R has only normal crossings(2) .

Proof. — Let G(x, y) =
∑p
i=0Gi(x)yp−i be a non-trivial polynomial

such that G(x, f(x)) = 0. We may assume that Gp 6= 0. Then f divides Gp
seen as a Nash function.
There exists a finite sequence of algebraic blowings-up with non-singular

centers such that Gp ◦ σ is monomial, thus f ◦ σ is monomial. �

3. A Grothendieck ring

In this section we adapt the Grothendieck ring introduced in [22] to our
framework over R. The classical Grothendieck ring of AS-sets doesn’t allow
(1)Every point of V are non-singular in the same dimension, see [6, Definition 3.3.4].
(2) i.e.every x ∈ Ṽ admits an open AS-neighborhood such that f ◦ σ equals a monomial
times a nowhere vanishing function on this neighborhood.

TOME 67 (2017), FASCICULE 1



148 Jean-Baptiste CAMPESATO

one to get a convolution formula similar to the one of Section 6 and the lack
of real roots of unity prevents us from using an equivariant Grothendieck
ring similar to the one of [11] or [14] as in [13].

Definition 3.1. — We denote by K0(AS) the free abelian group
spanned by symbols [X] where X ∈ AS with the relations

(1) If there is a bijection whose graph is AS between X and Y then
[X] = [Y ]

(2) If Y ⊂ X is a closed AS-subset then [X \ Y ] + [Y ] = [X]
Moreover we have a ring structure induced by the cartesian product:

[X × Y ] = [X][Y ]

The unit of the sum is 0 = [∅] and the one of the product is 1 = [pt].

Remark 3.2. — The group K0(AS) is well-defined since AS is a set.

Remark 3.3. — If A,B ∈ AS then [A t B] = [A] + [B]. We may prove
this observation using that an AS-set may be written as a finite disjoint
union of locally closed AS-sets.

We denote by LAS = [R] the class of the affine line and by MAS =
K0(AS)

[
L−1
AS
]
the localization by the class of the affine line.

We define the category Varnmon whose objects are AS-sets X endowed
with an AS action of R∗ (i.e. the graph of the map R∗ ×X → X defined
by (λ, x) 7→ λ · x is AS) together with an AS-map ϕX : X → R∗ such that
ϕX(λ · x) = λnϕX(x).

A morphism is an equivariant AS map f : X → Y over R∗, i.e. f(λ ·x) =
λ · f(x) and the following diagram commutes

X
f //

ϕX   

Y

ϕY~~
R∗

Definition 3.4. — We denote by Kn
0 the free abelian group spanned

by the symbols [ϕX : R∗ � X → R∗] where ϕX : R∗ � X → R∗ ∈ Varnmon with
the relations

(1) If there is f : X → Y an equivariant bijection over R∗ whose graph
is AS, i.e.

X
f

'
//

ϕX   

Y

ϕY~~
R∗

ANNALES DE L’INSTITUT FOURIER



ON A MOTIVIC INVARIANT OF THE ARC-ANALYTIC EQUIVALENCE 149

then [ϕX : R∗ � X → R∗] = [ϕY : R∗ � Y → R∗]
(2) If Y is a closed AS-subset of X invariant by the action of R∗ then

[ϕX : R∗ � X → R∗] =
[
ϕX|X\Y : R∗ � X \ Y → R∗

]
+
[
ϕX|Y : R∗ � Y → R∗

]
(3) Let ϕ : R∗ � τY → R∗ ∈ Varnmon and ψ = ϕ ◦ prY : Y × Rm → R∗.

Let σ and σ′ be two actions on Y × Rm that are two liftings of
τ on Y , i.e. prY (λ ·σ x) = prY (λ ·σ′ x) = λ ·τ prY (x). Then ψ :
R∗ � σ(Y × Rm)→ R∗ and ψ : R∗ � σ′(Y × Rm)→ R∗ are in Varnmon
and we add the relation(3)

[ψ : R∗ � σ(Y × Rm)→ R∗] = [ψ : R∗ � σ′(Y × Rm)→ R∗]

Moreover,Kn
0 has a ring structure given by the fiber product over R∗ where

the action is diagonal. Furthermore the class 1n = [id : R∗ � R∗ → R∗],
where R∗ acts on R∗ by λ · a = λna, is the unit of this product.

Finally, the cartesian product induces a structure of K0(AS)-algebra by

K0(AS)→ Kn
0 , [A] 7→ [A] · 1n = [A× R∗ → R∗]

where the action of R∗ on A is trivial. Particularly we set Ln = LAS1n =
[prR∗ : R× R∗ → R∗] ∈ Kn

0 andMn = Kn
0
[
L−1
n

]
.

Notation 3.5. — We may simply denote [ϕX : R∗ � σX → R∗] by [ϕX , σ].

We consider the directed partial order ≺ on N \ {0} defined by

n ≺ m⇔ ∃k ∈ N \ {0}, n = km

For n ≺ m, we define the morphism θmn : Varmmon → Varnmon which keeps
the same object, the same morphism but which replaces the action by
λ ·n x = λk ·m x. Thus (Varnmon)n>1 is an inductive system and we set
Varmon = lim−→Varnmon. We define K0 = lim−→Kn

0 and M = lim−→M
n in the

same way.
Thereby K0 has a natural structure of K0(AS)-algebra and M has a

natural structure ofMAS -algebra. The product unit of K0 is 1 = lim−→1n ∈
K0. We notice that lim−→Ln = LAS1 ∈ K0 (for the scalar multiplication)
and we denote this class by L. We also notice thatM = K0

[
L−1].

Remark 3.6. — L = [prR∗ : R× R∗ → R∗]

We have a forgetful morphism of K0(AS)-modules

· : Kn
0 → K0(AS)

(3)This relation will allow us to focus on the angular component, we can move out the
other coefficients, e.g. in the rationality formula.

TOME 67 (2017), FASCICULE 1



150 Jean-Baptiste CAMPESATO

induced by
[ϕX : R∗ � X → R∗] ∈ Kn

0 7→ [X] ∈ K0(AS)
This morphism isn’t compatible with the ring structures as shown in the
next example. It extends to a morphism of K0(AS)-modules

· : K0 → K0(AS)

and to two morphisms ofMAS -modules

· :Mn →MAS and · :M→MAS

Example 3.7.
1 = [R∗] = LAS − 1 6= 1 ∈ K0(AS) ·�

Remark 3.8. — Let A ∈ K0 and n ∈ N so that A
Ln ∈M then(

A

Ln

)
= A

LnAS
∈MAS

4. The motivic local zeta function

In [11] and [15], J. Denef and F. Loeser introduced and studied a mo-
tivic global zeta function and defined the motivic Milnor fiber as a limit
of this zeta function. In their framework, the realizations of the motivic
Milnor fiber and the classical Milnor fiber coincide for the known additive
invariants.

In real geometry, a similar work was first initiated by S. Koike and
A. Parusiński [24] using the Euler characteristic with compact support.
They defined a naive motivic local zeta function for real analytic func-
tions. They also introduced a positive and a negative zeta function in order
to study the equivariant side. Next, G. Fichou [16] defined similar zeta
functions of Nash functions using the virtual Poincaré polynomial. These
constructions are used to classify real singularities respectively in terms of
blow-analytic [26, 27] and blow-Nash equivalences.

Following J. Denef and F. Loeser, as well as G. Guibert, F. Loeser and
M. Merle [22], we introduce a motivic local zeta function for Nash germs
with coefficients in M. This way, we obtain a richer zeta function which,
in particular, encodes the equivariant aspects. By means of a resolution,
we show that this zeta function is rational as all of the above-cited zeta
functions. Finally, we shall exhibit the links with the zeta functions of
S. Koike and A. Parusiński as well with those of G. Fichou.

ANNALES DE L’INSTITUT FOURIER



ON A MOTIVIC INVARIANT OF THE ARC-ANALYTIC EQUIVALENCE 151

4.1. Definition

Definition 4.1. — For M a Nash manifold, we set

L(M) = {γ : (R, 0)→M, γ real analytic}

and
Ln(M) = L(M)/∼n

where γ1 ∼n γ2 ⇔ γ1 ≡ γ2 mod tn+1 in a local Nash coordinate system
around γ1(0) = γ2(0).

We have truncation maps

πn : L(M)→ Ln(M) and πmn : Lm(M)→ Ln(M)

where m > n. These maps are surjective.

J. Nash first studied truncation of arcs on algebraic varieties in order to
study singularities in 1964 [33]. They were then studied by K. Kurdyka,
M. Lejeune-Jalabert, A. Nobile, M. Hickel and many others. They are a
centerpiece of motivic integration developped by M. Kontsevich and then
by J. Denef and F. Loeser.

If h : M → N is Nash, then h∗ : L(M) → L(N) and h∗n : Ln(M) →
Ln(N) are well-defined and the following diagram commutes

L(M) h∗ //

πm
����

L(N)

πm
����

Lm(M) h∗m //

πmn ����

Lm(N)

πmn����
Ln(M) h∗n // Ln(N)

We refer the reader to [7, §2.4] for the properties of Ln(M) and L(M).

Let f : (Rd, 0)→ (R, 0) be a Nash germ and let, for n > 1,

Xn(f) =
{
γ ∈ Ln(Rd), γ(0) = 0, f(γ(t)) ≡ ctn mod tn+1, c 6= 0

}
Then Xn(f) is Zariski-constructible and [Xn(f)] is well-defined in Kn

0 by
the morphism ϕ : Xn(f) → R∗ with ϕ(γ) = ac(fγ) = c and the action of
R∗ given by λ · γ(t) = γ(λt).

Definition 4.2. — The motivic local zeta function of f is defined by

Zf (T ) =
∑
n>1

[Xn(f)]L−ndTn ∈MJT K

TOME 67 (2017), FASCICULE 1



152 Jean-Baptiste CAMPESATO

Example 4.3. — Let fεk = εxk where ε ∈ {±1}. Then

Zfε
k
(T ) = [fεk : R∗ → R∗] L−1T k

1− L−1T k

Indeed

[Xn(fεk)]L−n =
{

[fεk : R∗ → R∗]L−q if n = kq

0 otherwise ·�

4.2. Link with previously defined motivic real zeta functions

4.2.1. Koike–Parusiński zeta functions

Definition 4.4. — We denote by K0(SA) the free abelian group
spanned by symbols [X] where X is semialgebraic with the relations

(1) If there is a semialgebraic homeomorphism X → Y then [X] = [Y ].
(2) If Y ⊂ X is closed-semialgebraic then [X \ Y ] + [Y ] = [X].

Moreover we have a ring structure induced by the cartesian product
(3) [X × Y ] = [X][Y ].

Remark 4.5 ([35]). — The Grothendieck ring of semialgebraic sets up
to semialgebraic homeomorphisms is isomorphic to Z via the Euler char-
acteristic with compact support, thus every additive invariant factorises
through the Euler characteristic with compact support.

Notation 4.6. — We set LSA=[R]∈K0(SA) andMSA=K0(SA)
[
L−1
SA

]
.

Remark 4.7. — K0(SA) ' Z 'MSA

Remark 4.8. — The cartesian product induces a structure of K0(AS)-
module (resp.MAS -module) on K0(SA) (resp.MSA).

Proposition 4.9. — The maps

F> : Varnmon −→ SA

(X,σ, ϕ : X → R∗) 7−→ ϕ−1(R>0)

F< : Varnmon −→ SA

(X,σ, ϕ : X → R∗) 7−→ ϕ−1(R<0)

induce morphisms of K0(AS)-modules (resp.MAS -modules)

F> : K0 → K0(SA) (resp. F> :M→MSA)
F< : K0 → K0(SA) (resp. F< :M→MSA)

ANNALES DE L’INSTITUT FOURIER



ON A MOTIVIC INVARIANT OF THE ARC-ANALYTIC EQUIVALENCE 153

Remark 4.10. — These morphisms are not compatible with the ring
structures. Particularly, the following computation shows that the unit is
not mapped to the unit

χc(F>(1)) = χc(R>0) = −1 6= 1 = χc(pt)

Remark 4.11. — Given a rational fraction in MJT K, we can’t directly
apply the forgetful morphism or the morphisms F>, F< to the coefficients
in the numerator and the denominator. We first have to develop it in series.
For example, whereas

∑
n>1 1T

n = T
1−T ∈ K0JT K, we have∑

n>1
1Tn = (LAS − 1) T

1− T 6=
(LAS − 1)T

(LAS − 1)− (LAS − 1)T ∈ K0(AS)JT K

This phenomenon is due to the fact that these morphisms are not compat-
ible with the ring structures.

Remark 4.12. — Let A ∈ K0 then F ε
(
A
Ln
)

= F ε(A)
Ln
SA

where ε ∈ {<,>}.

Proposition 4.13. — Given f : (Rd, 0) → (R, 0) a Nash germ, we re-
cover from Zf (T ) the motivic zeta functions considered by S. Koike and
A. Parusiński [24] applying the previous morphisms and the Euler charac-
teristic with compact support at each coefficient:

Zχcf (T ) =
∑
n>1

χc

(
[Xn(f)]

)
(−1)ndTn ∈ ZJT K

and

Zχc,εf (T ) =
∑
n>1

χc (F ε ([Xn(f)])) (−1)ndTn ∈ ZJT K

where ε ∈ {>,<}.

4.2.2. Fichou zeta functions

C. McCrory and A. Parusiński [30] proved that there exists a unique ad-
ditive invariant of real algebraic varieties which coincides with the Poincaré
polynomial for compact non-singular varieties. This construction relies on
the weak factorization theorem [1] in order to describe the Grothendieck
ring of real algebraic varieties in terms of blowings-up. Then G. Fichou [16]
extended this construction to AS-sets up to Nash isomorphisms. Using an
extension theorem of F. Guillén and V. Navarro Aznar [23], C. McCrory
and A. Parusiński [31] proved the virtual Poincaré polynomial is in fact an
invariant of AS-sets up to bijections with AS graph.

TOME 67 (2017), FASCICULE 1



154 Jean-Baptiste CAMPESATO

Theorem 4.14 (The virtual Poincaré polynomial for AS-sets [16, 30,
31]). — There is a unique map β : AS → Z[u] which factorises through
K0(AS) as a ring morphism β : K0(AS)→ Z[u],

AS
β //

##

Z[u]

K0(AS)
β

::

such that
• If X ∈ AS is non-empty, then deg β(X) = dimX and the leading

coefficient is positive.
• IfX∈AS is compact and non-singular, β(X) =

∑
idimHi(X,Z2)ui.

Remark 4.15. — We recall the argument of the proof of [31, Theo-
rem 4.6] which explains why the virtual Poincaré polynomial is an invariant
of AS-sets up to AS-isomorphism. Let f : X → Y be an AS-isomorphism
(i.e. a bijection whose graph is AS). First we may break X into a finite de-
composition of locally compact AS-sets, X = tXi. Since f : Xi → f(Xi)
is semialgebraic we may break Xi into a finite decomposition of semial-
gebraic sets Xi = tXij , where f : Xij → f(Xij) is continuous. As ex-
plained in the proof of [31, Theorem 4.6], we may assume that Xij ∈ AS
using the AS-closure and the noetherianity of the AS-topology. Now we
repeat these arguments to f−1 : f(Xij) → Xij in order to get a finite
decomposition X = tXijk of X into locally compact AS-sets such that
f : Xijk → f(Xijk) is a homeomorphism whose graph is AS. By [31,
Proposition 4.3], β(Xijk) = β(f(Xijk)). We conclude using the additivity
of the virtual Poincaré polynomial.

Proposition 4.16. — The maps

F+ : Varnmon −→ AS
(X,σ, ϕ : X → R∗) 7−→ ϕ−1(1)

F− : Varnmon −→ AS
(X,σ, ϕ : X → R∗) 7−→ ϕ−1(−1)

induce morphisms of K0(AS)-algebras (resp.MAS -algebras)

F+ : K0 → K0(AS) (resp. F+ :M→MAS)
F− : K0 → K0(AS) (resp. F− :M→MAS)

Remark 4.17. — Let A ∈ K0 then F ε
(
A
Ln
)

= F ε(A)
LnAS

where ε ∈ {−,+}.
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Proposition 4.18. — Given f : (Rd, 0) → (R, 0) a Nash germ, we
recover from Zf (T ) the motivic zeta functions considered by G. Fichou
in [16][17] applying the previous morphisms and the virtual Poincaré poly-
nomial at each coefficient:

Zβf (T ) =
∑
n>1

β
(

[Xn(f)]
)
u−ndTn ∈ Z[u, u−1]JT K

and

Zβ,εf (T ) =
∑
n>1

β (F ε ([Xn(f)]))u−ndTn ∈ Z[u, u−1]JT K

where ε ∈ {+,−}.

4.3. Rationality of the motivic local zeta function

4.3.1. Change of variables key lemma

The following lemma is a version of Denef–Loeser change of variables
key lemma [12, Lemma 3.4] adapted for our framework. Denef–Loeser key
lemma was introduced in order to generalize Kontsevich transformation
rule.

Lemma 4.19 (Change of variables key lemma [7, Lemma 4.5]). — Let
h : M → Rd be a proper generically one-to-one Nash map with M a non-
singular Nash variety. For e ∈ N, let

∆e = {γ ∈ Ln(M), ordt Jach(γ) = e}

Then for n > 2e, h∗n(πn∆e) is an AS-set and h∗n : πn∆e → h∗n(πn∆e) is
a piecewise trivial fibration(4) with fiber Re.

4.3.2. Monomialization

Let f : (Rd, 0) → (R, 0) be a Nash function. By Proposition 2.11 there
exists h : Y → Rd a finite sequence of algebraic blowings-up such that
f ◦ h and the jacobian determinant Jach have simultaneously only normal
crossings.

(4)We mean that we may break h∗n(πn∆e) into disjoint AS parts Bi such that h−1
∗n (Bi)

is AS and AS-isomorphic to Bi × Re.
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We denote by X0(f) = f−1(0) the zero locus of f . We denote by (Ei)i∈A
the irreducible AS components of h−1(X0(f)) and we set

Ni = ordEi f ◦ h

and
νi − 1 = ordEi Jach

We use the usual stratification of Y : for I ⊂ A, we set EI = ∩i∈IEi and
E•I = EI \ ∪j∈A\IEj . Thus Y = tI⊂AE•I and E∅ = Y \ h−1(X0).

For I 6= ∅, we define UI using the following classical construction [37,
3.2 Existence Theorem](5) .
Let (Uk, x) (resp. (Ul, x′)) be a coordinate system on Y around E•I with

Uk (resp. Ul) an open AS set such that (f ◦ h)|Uk = u(x)
∏
i∈I x

Ni
i with u

a unit and Ei : xi = 0 (resp. (f ◦h)|Ul = u(x′)
∏
i∈I x

′Ni
i with u′ a unit and

Ei : x′i = 0).
Assume that Uk∩Ul 6= ∅. Then on Uk∩Ul we have x′i = αkli (x)xi with αkli

a unit so that f ◦σ(x′) =u′(x′)
∏
i∈I x

′
i
Ni =

(
u′(x′)

∏
i∈I α

kl
i (x)Ni

)∏
i∈I x

Ni
i

hence u(x) = u′(x′)
∏
i∈I α

kl
i (x)Ni . We index a family of such Uk covering

E•I by k ∈ K. Then set

T =
{

(x, (ai), k) ∈ E•I × (R∗)|I| ×K, x ∈ Uk
}

and UI = T/∼ where

(x, (ai), k) ∼ (y, (bi), l)⇔
{
x = y

bi = αkli (x)ai

so that pI : UI → E•I is a locally trivial AS-fibration with fiber (R∗)|I|.
For x ∈ Uk we define fkI : (E•I ∩ Uk)× (R∗)|I| → R∗ by

fkI (x, (ai)) = u(x)
∏
i∈I

aNii

This induces a map fI : UI → R∗.
Let NI = gcdi∈I(Ni) then there are αi ∈ Z such that NI =

∑
i∈I αiNi.

We consider the action τ of R∗ on UI locally defined by

λ · (x, (ai)i) = (x, (λαiai)i)

Definition 4.20. — The class [fI : UI → R∗, τ ] is well-defined in KNI
0 .

We shall simply denote it by [UI ].

(5)Using the adjunction formula, we may prove that UI is in fact the fiber product of
the Ui|E•

I
, i ∈ I, where Ui is the complement of the null section of the normal bundle

of Ei in Y . Then fI : UI → R∗ is just the map induced by f ◦ h.

ANNALES DE L’INSTITUT FOURIER



ON A MOTIVIC INVARIANT OF THE ARC-ANALYTIC EQUIVALENCE 157

Proposition 4.21. — [UI ] = (LAS − 1)|I|[E•I ] ∈ K0(AS)

Proof. — By Proposition 2.6, we have E•I =
⊔k
α=1Xα where

p−1
I (Xα) ' Xα × (R∗)|I|

Thus, in K0(AS), we have

[UI ] =
k∑

α=1
[p−1
I (Xα)] =

k∑
α=1

[Xα](LAS − 1)|I|

= [E•I ](LAS − 1)|I| ∈ K0(AS) �

4.3.3. A rational expression of the motivic local zeta function

The following theorem is similar to the rationality results for the zeta
functions of [15, 16, 22, 24, 29] in their respective frameworks.

Theorem 4.22 (Rationality formula). — Let f : (Rd, 0) → (R, 0) be a
Nash germ. Let h : (Y, h−1(0))→ (Rd, 0) be as in Section 4.3.2. Then

Zf (T ) =
∑

∅6=I⊂A

[
UI ∩ (h ◦ pI)−1(0)

]∏
i∈I

L−νiTNi
1− L−νiTNi

Proof. — The sum

[Xn(f)] =
∑
e>1

[Xn(f) ∩ h∗n∆e]

is finite since for γ = h∗nϕ ∈ Xn(f)∩∆e we have ordt Jach(ϕ) =
∑

(νi−1)ki
and ordt fγ =

∑
Niki where ki = ordEi ϕ.

By the change of variables key Lemma 4.19 we have

[Xn(f) ∩ h∗n∆e] = [h−1
∗nXn(f) ∩∆e]L−e

Next

[h−1
∗nXn(f) ∩∆e]L−e =

∑
∅6=I⊂A

[h−1
∗nXn(f) ∩∆e ∩ E•I ]L−e

and

h−1
∗nXn(f) ∩∆e ∩ E•I

=

γ ∈ Ln(Y ), γ(0) ∈ E•I ∩ h−1(0),

∑
i∈I ki(νi − 1) = e,∑
i∈I kiNi = n,

ki = ordEi γ


Let γ ∈ Ln(Y ) with γ(0) ∈ E•I then acf◦h(γ) = fI (γ(0), (ac γi)i∈I) and
ordt(f ◦ h)(γ(t)) =

∑
i∈I kiNi where ki = ordEi γ. The action λ · γ(t) =
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γ(λt) of R∗ on Ln(Y ) induces an action σ of R∗ on UI locally defined
by λ · (x, (ai)i) = (x, (λkiai)i). We have fI(λ · (x, (ai)i)) = λnfI(x, (ai)i)
where n =

∑
i∈I kiNi. So the class [fI : UI → R∗, σ] is well-defined in

Kn
0 . Let β = n

NI
, and consider the action σ′ of R∗ on UI locally defined

by λ · (x, (ai)i) = (x, (λβαiai)i), then [fI , σ′] is well-defined in Kn
0 and

[fI , σ′] = [fI , τ ] in K0.
We locally define WI and gI : WI → R∗ by

WI|U = {(x, r) ∈ (E•I ∩ U)× R∗, u(x)rNI 6= 0}

and gI|U (x, r) = u(x)rNI . We locally define an action of R∗ on WI by
λ · (x, r) = (x, λ

n
NI r) then [gI : WI → R∗] is well-defined in Kn

0 . Next

UI
ψ−→
'
WI ×

{
a ∈ (R∗)I ,

∏
a
Ni
NI
i = 1

}
where ψ and ψ−1 are locally defined

by

ψ(x, a) =
(
x, r =

∏
a
Ni
NI
i , (r−αiai)i

)
and

ψ−1(x, r, a) = (x, (rαiai)i)

Thus, by 3.4 (3), we have [fI , σ] = [fI , σ′] ∈ Kn
0 since

prWI
ψ(λ ·σ y) = λ · prWI

ψ(y) = prWI
ψ(λ ·σ′ y)

So [fI , σ] = [fI , τ ] inK0 (the last one being the class [UI ] of Definition 4.20).
Then, we have

Zf (T ) =
∑
n>1

∑
e>1

∑
∅ 6=I⊂A

∑
k∈N|I|∑
kiNi=n∑

ki(νi−1)=e

[
UI ∩ (h ◦ pI)−1(0)

]
L−
∑

ki−eTn

=
∑

∅ 6=I⊂A

[
UI ∩ (h ◦ pI)−1(0)

] ∑
k∈(N\{0})|I|

L−
∑

kiνiT
∑

kiNi

=
∑

∅ 6=I⊂A

[
UI ∩ (h ◦ pI)−1(0)

]∏
i∈I

L−νiTNi
1− L−νiTNi

�

Definition 4.23. — Denote by MJT Ksr the M-submodule of MJT K
spanned by 1 and finite products of terms of the forms LνTN

1−LνTN and 1
1−LνTN

where N ∈ N>0 and ν ∈ Z.

Remark 4.24. — There exists a unique morphism ofM-modules

lim
T∞

:MJT Ksr →M
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such that, for (νi, Ni)i∈I ∈ (Z×N>0)I and (νj , Nj)j∈J ∈ (Z×N>0)J where
I and J are two finite sets, we have

lim
T∞

∏
i∈I

LνiTNi
1− LνiTNi

∏
j∈J

1

1− LνjTNj

 =
{

(−1)|I| if J = ∅
0 otherwise

Definition 4.25. — Let f : (Rd, 0)→ (R, 0) be a Nash germ. By The-
orem 4.22,

Sf = − lim
T∞

Zf (T ) ∈M

is well-defined. It is called the motivic Milnor fiber of f .

Remark 4.26. — Given h as in Section 4.3.2, we have the following
explicit formula

Sf =
∑

∅ 6=I⊂A
(−1)|I|+1 [UI ∩ (h ◦ pI)−1(0)

]
Example 4.27. — Let f(x, y) = x3 − y3, let h be the blowing-up along

the origin.
In the y-chart, h is given by h(X,Y ) = (XY, Y ) then

fh(X,Y ) = Y 3(X3 − 1)

where E1 : Y = 0 is the exceptional divisor and E2 : X3 − 1 = 0 is the
strict transform. We also have

Jach(X,Y ) =
∣∣∣∣ Y X

0 1

∣∣∣∣ = Y

And after the change of variables Ỹ = Y and X̃ = X − 1 we get

fh(X̃, Ỹ ) = Ỹ 3X̃(X̃2 + 3X̃ + 3)

where E1 : Ỹ = 0 and E2 : X̃ = 0.
In the x-chart, h is given by h(X ′, Y ′) = (X ′, X ′Y ′) then

fh(X ′, Y ′) = X ′3(1− Y ′3)

where E1 : X ′ = 0 and E2 : 1− Y ′3 = 0.
We also have

Jach(X ′, Y ′) =
∣∣∣∣ 1 0
Y ′ X ′

∣∣∣∣ = X ′

And after the change of variables X̃ ′ = X ′ and Ỹ ′ = Y ′ − 1 we get

fh(X̃ ′, Ỹ ′) = X̃ ′3Ỹ ′(−Ỹ ′2 − 3Ỹ ′ − 3)

where E1 : X̃ ′ = 0 and E2 : Ỹ ′ = 0.
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Thus N1 = 3 and N2 = 1, i.e. f ◦ h−1(0) = 3E1 + 1E2. Also ν1 = 2 and
ν2 = 1.
Notice that (X ′, Y ′) =

(
XY, 1

X

)
and thus that

(X̃ ′, Ỹ ′) =
(
Ỹ (X̃ + 1), X̃ −1

X̃ + 1

)
and

(X̃, Ỹ ) =
(
Ỹ ′
−1

Ỹ ′ + 1
, X̃ ′(Ỹ ′ + 1)

)
.

Now we can construct f{1} : U{1} → R∗, f{2} : U{2} → R∗ and f{1,2} :
U{1,2} → R∗ following the construction before Definition 4.20.

E•{1} ∩ h
−1(0) = P1

R \ {pt} = R

E•{2} ∩ h
−1(0) = ∅

E•{1,2} ∩ h
−1(0) = {pt}

Thus
• U{1} ∩ (h ◦ pI)−1(0) = (P1 \ [1 : 1]) × R∗ and f{1}([r : s], a) =
a3(r3 − s3).

• U{2} ∩ (h ◦ pI)−1(0) = ∅.
• U{1,2} ∩ (h ◦ pI)−1(0) = (R∗)2 and f{1,2}(a, b) = a3b.

Finally

Zf (T ) =
[
f{1} : (P1 \ [1 : 1])× R∗ → R∗

] L−2T 3

1− L−2T 3

+
[
f{1,2} : (R∗)2 → R∗

] L−2T 3

1− L−2T 3
L−1T

1− L−1T

= L
L−2T 3

1− L−2T 3 + (L− 1) L−2T 3

1− L−2T 3
L−1T

1− L−1T
·�

We recover the rationality of Koike–Parusiński or Fichou zeta functions.
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Proposition 4.28 ([16, Proposition 3.2 & Proposition 3.5]). —
For ε ∈ {+,−}, we have

Zβf (T ) =
∑

∅6=I⊂A
(u− 1)|I|β

(
E•I ∩ h−1(0)

)∏
i∈I

u−νiTNi

1− u−νiTNi

∈ Z[u, u−1]JT K

Zβ,εf (T ) =
∑

∅6=I⊂A
β
(
UI ∩ (h ◦ pI)−1(0) ∩ f−1

I (ε1)
)∏
i∈I

u−νiTNi

1− u−νiTNi

∈ Z[u, u−1]JT K

Proof. — We apply the forgetful morphism (resp. F±) to the coefficients
of

Zf (T ) =
∑

∅ 6=I⊂A

[
UI ∩ (h ◦ pI)−1(0)

] ∑
k∈(N\{0})|I|

L−
∑

kiνiT
∑

kiNi �

Example 4.29. — Let f(x, y) = x3 − y3. We deduce from Example 4.27
that

Zβf (T ) = u(u− 1) u−2T 3

1− u−2T 3 + (u− 1)2 u−2T 3

1− u−2T 3
u−1T

1− u−1T

Zβ,+f (T ) = Zβ,−f (T ) = u
u−2T 3

1− u−2T 3 + (u− 1) u−2T 3

1− u−2T 3
u−1T

1− u−1T
·�

Proposition 4.30 ([24, (1.1)&(1.2)]). — For ε ∈ {<,>}, we have

Zχcf (T ) =
∑

∅6=I⊂A
(−2)|I|χc

(
E•I ∩ h−1(0)

)∏
i∈I

(−1)νiTNi
1− (−1)νiTNi ∈ ZJT K

Zχc,εf (T ) =
∑

∅6=I⊂A
χc
(
UI ∩ (h ◦ pI)−1(0) ∩ f−1

I (Rε0)
)∏
i∈I

(−1)νiTNi
1− (−1)νiTNi

∈ ZJT K

Example 4.31. — Let f(x, y) = x3 − y3. We deduce from Example 4.27
that

Zχcf (T ) = 2 T 3

1− T 3 + 4 T 3

1− T 3
T

1 + T

Zχc,>f (T ) = Zχc,<f (T ) = T 3

1− T 3 + 2 T 3

1− T 3
T

1 + T
·�
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5. Example: non-degenerate polynomials

In this section we follow G. Guibert [21, §2.1] to compute the motivic
local zeta function of a non-degenerate polynomial. We may find similar
construction for the topological case [10, §5] and for the p-adic case [9].
Some ideas of these constructions go back to [25] and [38].
We may find the first adaptation in the real non-equivariant case using

the virtual Poincaré polynomial in [20].

5.1. The Newton polyhedron of a polynomial

We first recall some definitions related to the Newton polyhedron of a
polynomial. We refer the reader to [2, §8] for more details.

Definition 5.1. — The Newton polyhedron Γf of

f(x) =
∑
ν∈Nd

cνx
ν ∈ R[x1, . . . , xd]

is the convex hull of ⋃
ν∈Nd, cν 6=0

ν + (R+)d

in (R+)d.

Definition 5.2. — Given a face τ ∈ Γf , we set fτ (x) =
∑
ν∈τ cνx

ν .

Definition 5.3. — A polynomial f is said to be non-degenerate if for
every compact face(6) τ of Γf , the polynomials

fτ ,
∂fτ
∂xi

, 1 6 i 6 d,

have no common zero in (R∗)d.

Definition 5.4. — For k ∈ (R+)d, we define the supporting function

m(k) = inf
x∈Γf
{k · x}

Remark 5.5. — Actually m(k) = minx∈Γf {k · x} since we can take the
infimum in the compact set C = Conv({ν, cν 6= 0}) using that

Γf = C + (R+)d

(6)We mean the proper faces (not only the facets) and Γf itself.
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Definition 5.6. — For k ∈ (R+)d, we define the trace of k by

τ(k) = {x ∈ Γf , k · x = m(k)}

Proposition 5.7.
• τ(0) = Γf
• For k 6= 0, τ(k) is a proper face of Γf
• τ(k) is a compact face if and only if k ∈ (R+ \ {0})d

Notation 5.8. — For τ a face of Γf , we define the cone of τ by

σ(τ) =
{
k ∈ (R+)d, τ(k) = τ

}
and we set σ̃(τ) = σ(τ) ∩ Nd.

Notation 5.9. — Let τ be a facet (i.e. a face of codimension 1), then τ is
supported by a hyperplane which contains at least one point with integer
coefficients. So this hyperplane has a unique equation

d∑
i=1

aixi = N

with ai, N ∈ N and gcd{ai} = 1. Thus eτ = (a1, . . . , ad) is the unique
primitive vector in Nd \ {0} which is perpendicular to τ .

Lemma 5.10. — Let τ be a proper face of Γf , denote by τ1, . . . , τl the
facets containing τ . Then

σ(τ) =
{

l∑
i=1

αie
τi , αi ∈ R∗+

}

5.2. The motivic zeta function and Milnor fiber of a
non-degenerate polynomial

We may easily adapt the proof of [36, Proposition 3.13] in order to get
the following lemma.

Lemma 5.11. — For τ a compact face of Γf and k ∈ σ̃(τ) we define the
class [

(R∗)d \ f−1
τ (0), σk

]
∈ Km(k)

0

where the morphism is fτ and the action is given by λ ·σk x = (λkixi)i.
Then for k, k′ ∈ σ(τ),[

(R∗)d \ f−1
τ (0), σk

]
=
[
(R∗)d \ f−1

τ (0), σk′
]
∈ K0

We simply denote it by
[
(R∗)d \ f−1

τ (0)
]
.

TOME 67 (2017), FASCICULE 1



164 Jean-Baptiste CAMPESATO

Lemma 5.12. — Let f : Rd → R be a weighted homogeneous polyno-
mial of weight (k1, . . . , kd;m) with ki ∈ N>0 such that f, ∂f∂x1

, . . . , ∂f∂xd have
no common zero in (R∗)d. For l > 1, we consider

Al =
{
γ ∈ Lm+l(Rd), ordt γ = (k1, . . . , kd), ordt fγ = m+ l

}
with the morphism ϕ : Al → R∗ which associates to γ the angular com-
ponent of fγ and with the action λ · γ(t) = γ(λt). Thus [Al] ∈ Km+l

0 is
well-defined. Then

[Al] =
[
f−1(0) ∩ (R∗)d

]
Ll(d−1)+md−

∑d

r=1
kr ∈ Km+l

0

where
[
f−1(0) ∩ (R∗)d

]
∈ K0(AS).

Proof. — We set γ(t) = (γ1(t), . . . , γd(t)) where γr(t) = tkr
(∑m−kr

i=0 arit
i
)

with ar0 6= 0. The coefficient of tm in fγ(t) is f(a10, . . . , ad0) and, for
i = 1, . . . , l, the one of tm+i is of the form

gi(a1i, . . . , adi)− Pi

where gi is a linear form in (a1i, . . . , adi) which is non-zero since ∂f
∂x1

, . . . , ∂f∂xd
have no common zero in (R∗)d and where Pi is a polynomial in a1j , . . . , adj
for j < i.
Thus

Al =

(ari) r=1,...,d
i=0,...,m−kr

f(a10, . . . , ad0) = 0
gi(a1i, . . . , adi)− Pi = 0 for i=1,. . . ,l-1
gl(a1l, . . . , adl)− Pl 6= 0


Up to reordering the coordinates we may assume that the coefficient of adl
in gl is non-zero. Then we set

Bl =

(ãri) r=1,...,d
i=0,...,m−kr

f(ã10, . . . , ãd0) = 0
gi(ã1i, . . . , ãdi)− Pi = 0 for i=1,. . . ,l-1
ãdl 6= 0


and we define the following AS-bijection over R∗

Al //

xm+l◦(gl−Pl)   

Bl

xm+l◦prãdl~~
R∗

by ãri = ari if (r, i) 6= (d, l) and ãdl = gl(a1l, . . . , adl)− Pl
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Therefore
[Al] = [Bl]

=
[
f−1(0) ∩ (R∗)d

] (
Ld−1)l−1 Ld−11L

∑d

r=1
(m−kr)

=
[
f−1(0) ∩ (R∗)d

]
Ll(d−1)−md−

∑d

r=1
kr �

Definition 5.13. — For m ∈ Z we define FmM as the subgroup of
M spanned by elements [S]L−i with i− dimS > m. We denote by M̂ the
completion ofM with respect to the filtration F ·M.

Remark 5.14. — The ring M̂ allows us to handle terms of the form∑
i L−ki that may appear in the following formula.

Theorem 5.15. — Let f be non-degenerate, then the following equality
holds in M̂JT K

Zf (T ) =
∑

τ compact face

([
(R∗)d \ f−1

τ (0)
]

+
[
f−1
τ (0) ∩ (R∗)d

] L−1T

1−L−1T

)
·
∑

k∈σ̃(τ)

L−
∑

kiTm(k)

where
[
(R∗)d \ f−1

τ (0)
]
is defined in Lemma 5.11 and

[
f−1
τ (0) ∩ (R∗)d

]
∈

K0(AS).

Proof. — We first notice that

(N \ {0})d =
⊔

τ compact face of Γf

σ̃(τ)

Thus(7)

Zf (T )

=
∑
n>1

[Xn(f)]L−ndTn

=
∑

τ compact face

∑
k∈σ̃(τ)

∑
n>m(k)

[
γ ∈Ln(Rd), ordt γ= k, ordt fγ=n

]
L−ndTn

(7)The condition γ(0) = 0 is satisfied since k ∈ (N \ {0})d.
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=
∑
τ

( ∑
k∈σ̃(τ)

[
γ ∈Lm(k)(Rd), ordt γ= k, ordt fγ=m(k)

]
L−m(k)dTm(k)

+
∑
k∈σ̃(τ)

∑
l>1

[
γ ∈ Lm(k)+l(Rd), ordt γ= k, ordt fγ=m(k) + l

]
· L−(m(k)+l)dTm(k)+l

)
=
∑
τ

(
Z=
τ (T ) + Z>τ (T )

)
Fix τ a compact face of Γf and k ∈ (N \ {0})d such that τ(k) = τ . Let
γ ∈ Lm(k)(Rd) satisfying ordt γ = k and ordt fγ = m(k). Then γ(t) =
(tkiai(t))i with ai(0) 6= 0 and

fγ(t) =
∑
ν

cνa(t)νtk·ν = fτ (a(0))tm(k) + tm(k)+1R(t)

Thus ordt fγ = ordt fτγ and ac fγ = ac fτγ and

Z=
τ (T ) =

∑
k∈σ̃(τ)

[
(R∗)d \ f−1

τ (0), σk
]
L−
∑

kiTm(k)

where the morphism is fτ and the action σk is the one induced by the
action on Lm(k)(Rd), i.e. λ ·σk (x1, . . . , xd) = (λk1x1, . . . , λ

kdxd). Thus[
(R∗)d \ f−1

τ (0), σk
]
is well-defined in Km(k)

0 . By Lemma 5.11, we get

Z=
τ (T ) =

[
(R∗)d \ f−1

τ (0)
] ∑
k∈σ̃(τ)

L−
∑

kiTm(k)

Now let l > 1 and γ ∈ Lm(k)+l(Rd) satisfying ordt γ = k and ordt fγ =
m(k) + l. We set γ(t) = (tk1a1(t), . . . , tkdad(t)) with ai(0) 6= 0. By Lem-
ma 5.12 we get

Z>τ (T ) =
∑

k∈σ̃(τ)

∑
l>1

[
f−1
τ (0) ∩ (R∗)d

]
L−
∑

ki−lTm(k)+l

=
[
f−1
τ (0) ∩ (R∗)d

] L−1T

1− L−1T

∑
k∈σ̃(τ)

L−
∑

kiTm(k)

=
[
f−1
τ (0) ∩ (R∗)d

] L−1T

1− L−1T

∑
k∈σ̃(τ)

L−
∑

kiTm(k) �
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Corollary 5.16. — If f is non-degenerate then

Sf = −
∑

τ compact face
(−1)d−dim τ

([
(R∗)d \ f−1

τ (0)
]
−
[
f−1
τ (0)∩ (R∗)d

]
·1
)

∈ M̂

Proof. — It’s a direct application of [8, p. 1006–1007] [21, Lemme 2.1.5],
noticing that dim τ + dim σ(τ) = d. �

Example 5.17. — Let f(x, y) = x3 − y3. The Newton polyhedron of f
has 3 compact faces:

(1) τ1 = {λ(0, 3) + (1− λ)(3, 0), λ ∈ [0, 1]} with σ̃(τ1) = N>0(1, 1).
(2) τ2 = {(0, 3)} with σ̃(τ2) = (2, 1) + N(1, 1) + N(0, 1).
(3) τ3 = {(3, 0)} with σ̃(τ3) = (1, 2) + N(1, 1) + N(0, 1).

Thus

Zf (T ) =
(

[(x, y) ∈ (R∗)2, x3 − y3 6= 0]

+ [(x, y) ∈ (R∗)2, x3 − y3 = 0] L−1T

1− L−1T

)
L−2T 3

1− L−2T 3

+
[
(x, y) ∈ (R∗)2 7→ x3] 1

L− 1
L−2T 3

1− L−2T 3

+
[
(x, y) ∈ (R∗)2 7→ −y3] 1

L− 1
L−2T 3

1− L−2T 3

=
([

(x, y) ∈ (R∗)2, x3− y3 6= 0
]
+
[
x ∈ R∗ 7→ x3]+[y ∈ R∗ 7→ −y3]

+ (L− 1) L−1T

1− L−1T

)
L−2T 3

1− L−2T 3

=
(

(L− 1− 1) + 1+ 1+ (L− 1) L−1T

1− L−1T

)
L−2T 3

1− L−2T 3

=
(
L + (L− 1) L−1T

1− L−1T

)
L−2T 3

1− L−2T 3

The third equality comes from the fact that the following diagram com-
mutes {

(x, y) ∈ (R∗)2, x3 − y3 6= 0
} ψ //

f
))

R∗ × R \ {0, 1}

f̃xx
R∗
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where f(x, y) = x3−y3, f̃(a, b) = a, ψ(x, y) =
(
x3 − y3, yx

)
and ψ−1(a, b) =((

a
1−b3

) 1
3
,
(

a
1−b3

) 1
3
b

)
. ·�

6. A convolution formula for the motivic local zeta
function

The goal of this section is to express Zf1⊕f2(T ) in terms of Zf1(T ) and
Zf2(T ) where the fi : (Rdi , 0)→ (R, 0) are two Nash germs and

f1 ⊕ f2(x1, x2) = f1(x1) + f2(x2)

The idea of the proof is the following, given two arcs γi ∈ L(Rd, 0),
we have two cases to distinguish: either ordt f1γ1 6= ordt f2γ2, let say
ordt f1γ1 < ordt f2γ2, and then ordt(f1 ⊕ f2)(γ1, γ2) = ordt f1γ1 and
ac(f1 ⊕ f2)(γ1, γ2) = ac f1γ1 or ordt f1γ1 = ordt f2γ2 and then two phe-
nomena may appear. In this case, either ac f1γ1 + ac f2γ2 6= 0 and then
ordt(f1 ⊕ f2)(γ1, γ2) = ordt f1γ1 = ordt f2γ2 and ac(f1 ⊕ f2)(γ1, γ2) =
ac f1γ1 + ac f2γ2 or ac f1γ1 + ac f2γ2 = 0 and then ordt(f1 ⊕ f2)(γ1, γ2) >
ordt f1γ1 = ordt f2γ2.
In [13] or [29], the authors work with an equivariant Grothendieck ring

over C with actions of the roots of unity (with the additional hypothesis
that ac fγ = 1 in Xn(f)). Then they consider the motives of

{xn + yn = ε} × (Xn(f1)× Xn(f2))
/(λ · (x, y), (γ1, γ2)) ∼ ((x, y), λ · (γ1, γ2))

where λ ∈ µn and ε ∈ {0, 1}, to handle the case ordt f1γ1 = ordt f2γ2.
The lack of real roots of unity and the quotient don’t allow us to adapt

these constructions. However our ring K0, adapted from the one of [22],
remembers the angular component morphisms acf : γ 7→ ac fγ. Thus, fol-
lowing [22, §5.1], we may define a convolution product in order to get a
convolution formula(8) . The definition of this convolution product is moti-
vated by the previous discussion.

Notation 6.1. — We denote by ∗ : Km
0 × Kn

0 → Knm
0 the unique

K0(AS)-bilinear map satisfying

[X,σ, ϕ] ∗ [Y, τ, ψ] = −[Z1, µ1, f1] + [Z2, µ2, f2]

(8)We may also notice that the convolution [22, §5.1] is compatible with the one of [29]
by [22, (5.1.8)].
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where 
Z1 = X × Y \ (ϕ+ ψ)−1(0)
f1 = ϕ+ ψ

λ ·µ1 (x, y) = (λn ·σ x, λm ·τ y)
and 

Z2 = (ϕ+ ψ)−1(0)× R∗

f2 = prR∗
λ ·µ2 (x, y, r) = (λn ·σ x, λm ·τ y, λmnr)

Remark 6.2. — The map ∗ : Km
0 × Kn

0 → Knm
0 induces a K0(AS)-

bilinear map ∗ : K0×K0 → K0 and aMAS -bilinear map ∗ :M×M→M.

Proposition 6.3. — The convolution product ∗ in K0 (resp. M) is
commutative and associative. The class 1 is the unit of this product.

Proof. — We easily adapt the proof of [22, Proposition 5.2]. �

Lemma 6.4. — Let g : (Rd, 0) → (R, 0) be a Nash germ. Then, in
K0(AS), we have the relation

[{
γ ∈ Ln(Rd, 0), ordt gγ > n

}]
= LndAS

(
1−

n∑
i=1

[Xi(g)]L−idAS

)
Proof. — Ln(Rd, 0) =

⊔n
i=1(πni )−1(Xi(g))t

{
γ ∈ Ln(Rd, 0), ordt gγ >n

}
.

So LndAS =
(∑n

i=1[Xi(g)]L(n−i)d
AS

)
+
[{
γ ∈ Ln(Rd, 0), ordt gγ > n

}]
. Finally,[{

γ ∈ Ln(Rd, 0), ordt gγ > n
}]

= LndAS −
∑n
i=1[Xi(g)]L(n−i)d

AS �

Definition 6.5. — We define the motivic naive local zeta function by

Znaive
f (T ) =

∑
n>1

[Xn(f)]L−ndTn ∈MJT K

Definition 6.6. — Let f : (Rd, 0)→ (R, 0) be a Nash germ. We define
the modified zeta function by

Z̃f (T ) =
∑
n>1

[Yn(f)]L−ndTn ∈MJT K

where
[Yn(f)] = [Xn(f)]− [γ ∈ Ln(Rd, 0), ordt fγ > n] · 1

Proposition 6.7.
Z̃f (T ) = Zf (T )−

1− Znaive
f (T )

1− T
+ 1

TOME 67 (2017), FASCICULE 1



170 Jean-Baptiste CAMPESATO

Proof. — Lemma 6.4 allows to rewrite [Yn(f)] as follows

[Yn(f)] = [Xn(f)]− Lnd
(
1−

n∑
i=1

[Xi(f)]L−id
)

Then

Z̃f (T ) =
∑
n>1

[Yn(f)]L−ndTn

=
∑
n>1

[Xn(f)]L−ndTn −
∑
n>1

Tn +
∑
n>1

n∑
i=1

[Xi(f)]L−idTn

= Zf (T )− T

1− T
+
∑
i>1

∑
n>i

[Xi(f)]L−idTn

= Zf (T )− T − 1+ 1

1− T
+ 1

1− T
∑
i>1

[Xi(f)]L−idT i

= Zf (T )−
1− Znaive

f (T )
1− T

+ 1 �

Corollary 6.8.
− lim
T∞

Z̃f (T ) = Sf − 1

Remark 6.9. — Applying the forgetful morphism or the morphisms
F>, F< and the Euler characteristic with compact support to the coef-
ficients of Z̃f (T ) we recover the modified zeta functions of S. Koike and
A. Parusiński [24].

Z̃χc,>f (T ) =
∑
n>1

χc
(
γ ∈Ln(Rd, 0), fγ(t) = ctn mod tn+1, c> 0

)
(−1)ndTn

=
1− Zχcf (T )

1− T − 1 + Zχc,>f (T ) ∈ ZJT K

Z̃χc,<f (T ) =
∑
n>1

χc
(
γ ∈Ln(Rd, 0), fγ(t) = ctn mod tn+1, c6 0

)
(−1)ndTn

=
1− Zχcf (T )

1− T − 1 + Zχc,<f (T ) ∈ ZJT K

Z̃χcf (T ) =
∑
n>1

(
χc
(
γ ∈ Ln(Rd, 0), ordt fγ(t) = n

)
+ 2χc

(
γ ∈ Ln(Rd, 0), ordt fγ > n

) )
(−1)ndTn

=
∑
n>1

(
χc
(
γ ∈ Ln(Rd, 0), ordt fγ(t) > n

)
+ χc

(
γ ∈ Ln(Rd, 0), ordt fγ > n

) )
(−1)ndTn
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=
∑
n>1

(
χc
(
γ ∈ Ln(Rd, 0), fγ(t) = ctn mod tn+1, c > 0

)
+ χc

(
γ ∈ Ln(Rd, 0), fγ(t) = ctn mod tn+1, c 6 0

) )
· (−1)ndTn

= Z̃χc,>f (T ) + Z̃χc,<f (T )

= 2
1− Zχcf (T )

1− T − 2 + Zχcf (T ) ∈ ZJT K

Example 6.10. — Let fεk(x) = εxk where ε ∈ {±1}, then

Z̃fε
k
(T ) = −

k−1∑
r=1

T r +
∑
q>1

(
([fεk : R∗ → R∗]− 1)L−qT kq −

k−1∑
r=1

L−qT kq+r
)

= −
∑
q>0

k−1∑
r=1

L−qT kq+r −
∑
q>1

(1− [fεk : R∗ → R∗])L−qT kq

= −T − · · · − T k−1

− (1− [fεk ])L−1T k − L−1T k+1 − · · · − L−1T 2k−1

− (1− [fεk ])L−2T 2k − L−2T 2k+1 − · · ·

Indeed

[Xkq+r(fεk)]L−(kq+r) =
{

[fεk : R∗ → R∗]L−q if r = 0
0 otherwise

and

[Xkq+r(fεk)]L−(kq+r) =
{

(L− 1)L−q if r = 0
0 otherwise

Thus

[Ykq+r(fεk)]L−(kq+r)

=


[fεk : R∗ → R∗]L−q +

q∑
i=1

(L− 1)L−i − 1 if r = 0
q∑
i=1

(L− 1)L−i − 1 otherwise

=
{

([fεk : R∗ → R∗]− 1)L−q if r = 0
−L−q otherwise ·�
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Definition 6.11. — We define the motivic naive modified zeta function
by

Z̃naive
f (T ) =

∑
n>1

[Yn(f)]L−ndTn ∈MJT K

Proposition 6.12.
L− Z̃naive

f (T )
L− T

=
1− Znaive

f (T )
1− T

Proof. — From

Z̃f (T ) = Zf (T )−
1− Znaive

f (T )
1− T

+ 1

we deduce

Z̃naive
f (T ) = Znaive

f (T )− (L− 1)
1− Znaive

f (T )
1− T

+ L− 1

Z̃naive
f (T )− L = (Znaive

f (T )− 1) + (Znaive
f (T )− 1)L− 1

1− T

Z̃naive
f (T )− L = (Znaive

f (T )− 1)L− T
1− T

�

Remark 6.13. — We recover the following formula of [24, p. 2070]
1− Zχcf (T )

1− T =
1 + Z̃χcf (T )

1 + T

Corollary 6.14. — We may compute Z̃f (T ) from Zf (T ) and Zf (T )
from Z̃f (T ). Thus they encode the same information. More precisely, we
have

Z̃f (T ) = Zf (T )−
1− Znaive

f (T )
1− T

+ 1

and

Zf (T ) = Z̃f (T ) +
L− Z̃naive

f (T )
L− T

− 1

Theorem 6.15. — Let f1 : (Rd1 , 0)→ (R, 0) and f2 : (Rd2 , 0)→ (R, 0)
be two Nash germs. Then

Z̃f1⊕f2(T ) = −Z̃f1(T )~ Z̃f2(T )

where the product ~ is the Hadamard product which consists in applying
the convolution product coefficientwise.

Remark 6.16. — Similar formulas are known when the angular com-
ponent is fixed to be 1 with an action of the roots of unity [13, Main
Theorem 4.2.4] or for the Euler characteristic with compact support [24,
Theorem 2.3].
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Remark 6.17. — In the definition of the modified zeta function, it could
have been multiplied by a factor (−1)d in order to avoid the sign in Theo-
rem 6.15.

Example 6.18. — Let f(x, y) = x3 − y3. We deduce from Example 6.10
and Theorem 6.15 that

Z̃f (T ) = −
∑
q>0

2∑
r=1

L−2qT 3q+r = − T + T 2

1− L−2T 3

We recover that

Zf (T ) = Z̃f (T ) +
L− Z̃naive

f (T )
L− T

− 1

= − T + T 2

1− L−2T 3 +
L + (L− 1) T+T 2

1−L−2T 3

L− T
− 1

= T 3 − L−2T 4

(L− T )(1− L−2T 3)

= L−1T 3 − L−3T 4

(1− L−1T )(1− L−2T 3)

= L
L−2T 3

1− L−2T 3 + (L− 1) L−1T

1− L−1T

L−2T 3

1− L−2T 3 ·�

Lemma 6.19 ([29, Lemma 7.6][13, Proposition 5.1.2]). — Let Z1(T ),
Z2(T ) ∈MJT Ksr then

lim
T∞

Z1(T )~ Z2(T ) = −
(

lim
T∞

Z1(T )
)
∗
(

lim
T∞

Z2(T )
)

Corollary 6.20 (Motivic Thom–Sebastiani formula).

Sf1⊕f2 = −Sf1 ∗Sf2 + Sf1 + Sf2

Proof.

Sf1⊕f2 − 1 = − lim
T∞

Z̃f1⊕f2(T ) by Corollary 6.8

= lim
T∞

(
Z̃f1(T )~ Z̃f2(T )

)
by Theorem 6.15

= −
(

lim
T∞

Z̃f1(T )
)
∗
(

lim
T∞

Z̃f2(T )
)

by Lemma 6.19

= − (−Sf1 + 1) ∗ (−Sf2 + 1) by Corollary 6.8
= −Sf1 ∗Sf2 + Sf1 + Sf2 − 1 �
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Proof of Theorem 6.15. — In order to shorten the formulas, we set
L(M,A) = {γ ∈ L(M), γ(0) ∈ A}.
Our goal is to compute, for n ∈ N \ {0}, Xn(f1 ⊕ f2), so let (γ1, γ2) ∈

Xn(f1 ⊕ f2), i.e. γi ∈ Ln(Rdi , 0) such that ordt(f1γ1 + f2γ2) = n.
We first restrict to the case ordt f1γ1 6= ordt f2γ2. Then either

n = ordt f1γ1 < ordt f2γ2 with ac ((f1 ⊕ f2)(γ1, γ2)) = ac(f1γ1)

or

ordt f1γ1 > ordt f2γ2 = n with ac ((f1 ⊕ f2)(γ1, γ2)) = ac(f2γ2)

Therefore, if we set

X6=n (f1 ⊕ f2) =
{

(γ1, γ2) ∈ Ln(Rd1+d2 , 0), ordt f1γ1 6= ordt f2γ2,

ordt(f1γ1 + f2γ2) = n
}

with the natural action on jets and the natural morphism induced by the
angular component, we get[

X 6=n (f1 ⊕ f2)
]

= [γ2 ∈ Ln(Rd2 , 0), ordt f2γ2 > n] [Xn(f1)]

+ [γ1 ∈ Ln(Rd1 , 0), ordt f1γ1 > n] [Xn(f2)]

=
(

1−
n∑
ω=1

[Xω(f2)]L−ωd2

)
[Xn(f1)]Lnd2

+
(

1−
n∑
ω=1

[Xω(f1)]L−ωd1

)
[Xn(f2)]Lnd1

where the overline means that the class is in K0(AS) and that we use the
scalar multiplication. The second equality comes from Lemma 6.4.
It remains to manage the case ordt f1γ1 = ordt f2γ2. Set

X=
n (f1 ⊕ f2) =

{
(γ1, γ2) ∈ Ln(Rd1+d2 , 0), ordt f1γ1 = ordt f2γ2,

ordt(f1γ1 + f2γ2) = n

}
with the natural action on jets and the natural morphism induced by the
angular component.
Let (γ1, γ2) ∈ X=

n (f1 ⊕ f2). Either ordt(f1γ1) = ordt(f2γ2) = n with
ac(f1γ1) + ac(f2γ2) 6= 0 or ordt(f1γ1) = ordt(f2γ2) < n with ac(f1γ1) +
ac(f2γ2) = 0. We now focus on this second case.
Let hi : Mi → Rdi be as in Section 4.3.2. We lift the jets in X=

n (f1 ⊕ f2)
to jets in Lm(Rd1+d2) (second equality below) with m > n big enough to
apply the change of variables key lemma 4.19 (fourth equality) in order to
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work locally with jets in M1 ×M2 with origin in E•I × E•J (fifth equality)
where fihi is a monomial times a unit.

(∗) =
[
(γ1, γ2)∈Ln(Rd1+d2 , 0), ordt f1γ1 =ordt f2γ2<n,

ordt(f1γ1+f2γ2)=n

]
=
[
(γ1, γ2)∈Lm(Rd1+d2 , 0), ordt f1γ1 =ordt f2γ2<n,

ordt(f1γ1+f2γ2)=n

]
L(d1+d2)(n−m)

=
∑
e>1
e′>1

(γ1, γ2)∈Lm(Rd1+d2 , 0),

ordt f1γ1 =ordt f2γ2<n,

ordt(f1γ1+f2γ2)=n,

γ1∈h1∗mπm∆e,

γ2∈h2∗mπm∆e′


× L(d1+d2)(n−m)

=
∑
e>1
e′>1

(γ1, γ2)∈Lm(M1×M2),

γ1(0)∈h−1
1 (0), γ2(0)∈h−1

2 (0)
ordt f1h1γ1 =ordt f2h2γ2<n,

ordt(f1h1γ1+f2h2γ2)=n,

γ1∈πm∆e, γ2∈πm∆e′


× L(d1+d2)(n−m)−e−e′

=
∑
e>1
e′>1
I 6=∅
J 6=∅

(γ1, γ2)∈Lm(M1×M2),

γ1(0)∈h−1
1 (0)∩E•I ,

γ2(0)∈h−1
2 (0)∩F •J ,

ordt f1h1γ1 =ordt f2h2γ2<n,

ordt(f1h1γ1+f2h2γ2)=n,

γ1∈πm∆e, γ2∈πm∆e′



× L(d1+d2)(n−m)

L−e−e′

In a neighborhood of E•I we have

f1h1(x) = u(x)
∏
i∈I

x
Ni(f1)
i

and in a neighborhood of E•J we have

f2h2(y) = v(y)
∏
j∈J

y
Nj(f2)
j

where u, v are units and Ei : xi = 0, Fj : yj = 0. Let (γ1, γ2) ∈ L(M1×M2)
satisfying the conditions of the last equality. Set γ1i(t) = tkiai(t) with
ai(0) 6= 0 and γ2j(t) = tlj bj(t) with bj(0) 6= 0.
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Denote by ω = ordt(f1γ1) = ordt(f2γ2). Then the coefficient of tω in
f1h1(γ1(t)) + f2h2(γ2(t)) is

u(γ1(0))
∏
i∈I

a
Ni(f1)
i0 + v(γ2(0))

∏
j∈J

a
Nj(f2)
j0

which is just ac(f1h1γ1) + ac(f2h2γ2).
The coefficient of tω+l for l = 1, . . . , n− ω is of the form

gl(ail, bjl) + Pl

where gl is a non-zero linear form in ail, bjl, i ∈ I, j ∈ J and where Pl is a
polynomial in aik, bjk, i ∈ I, j ∈ J, k < l.
Since the coefficient of tω is zero, it brings the equation ac(f1h1γ1) +

ac(f2h2γ2) = 0. The coefficients of tω+l must be zero for l = 1, . . . , n−ω−1,
that brings the factor

(
L|I|+|J|−1
AS

)n−ω−1
= L(|I|+|J|−1)(n−ω−1)

AS . The coeffi-
cient of tn must be non-zero and is the one which contributes to the angular
component, hence it brings the factor L|I|+|J|−1

AS · 1. We have no condition
for the other coefficients of γ1i, i ∈ I and γ2j , j ∈ J , that brings the factor∏
i∈I L

m−ki−n+ω
AS = L

(m−n+ω)|I|−
∑

I
ki

AS and similarly L
(m−n+ω)|J|−

∑
J
lj

AS .
We have no condition on the components of γ1 (resp. γ2) not indexed by I
(resp. J). This brings the factor L(d1−|I|)m

AS and L(d2−|J|)m
AS .

Next(γ1, γ2) ∈ Lm(M1 ×M2),

γ1(0) ∈ h−1
1 (0) ∩ E•I ,

γ2(0) ∈ h−1
2 (0) ∩ F •J ,

ordt f1h1γ1 = ordt f2h2γ2 < n,

ordt(f1h1γ1 + f2h2γ2) = n,

γ1 ∈ πm∆e, γ2 ∈ πm∆e′


= [h−1

1 (0) ∩ E•I ][h−1
2 (0) ∩ F •J ][f1h1 + f2h2 6= 0]Lω−n+(d1+d2)m

×
n−1∑
ω=1

∑
ki∈N,lj∈N∑
ki(νi(f1)−1)=e∑
lj(νj(f2)−1)=e′∑

kiNi(f1)=
∑

ljNj(f2)=ω

L−
∑

ki−
∑

lj

and we may similarly check that the RHS is also equal to

n−1∑
ω=1

(γ1, γ2) ∈ Lm(M1 ×M2),

γ1(0) ∈ h−1
1 (0) ∩ E•I ,

γ2(0) ∈ h−1
2 (0) ∩ F •J ,

ordt f1h1γ1 = ordt f2h2γ2 = ω,

ac(f1h1γ1) + ac(f2h2γ2) = 0,
γ1 ∈ πm∆e, γ2 ∈ πm∆e′

Lω−n
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We now come back to arcs on Rd1+d2 .

(∗) =
∑
e>1
e′>1
I 6=∅
J 6=∅

ω=1,...,n−1

(γ1, γ2)∈Lm(M1×M2),

γ1(0)∈h−1
1 (0)∩E•I ,

γ2(0)∈h−1
2 (0)∩F •J ,

ordt f1h1γ1 =ordt f2h2γ2 =ω,

ac(f1h1γ1)+ac(f2h2γ2)=0,
γ1∈πm∆e, γ2∈πm∆e′



× Lω−n+(d1+d2)(n−m)−e−e′

=
n−1∑
ω=1

[
(γ1, γ2) ∈ Lm(Rd1+d2 , 0), ordt f1γ1 = ordt f2γ2 = ω

ac(f1γ1) + ac(f2γ2) = 0

]
× Lω−n+(d1+d2)(n−m)

=
n−1∑
ω=1

[
(γ1, γ2) ∈ Lω(Rd1+d2 , 0), ordt f1γ1 = ordt f2γ2 = ω

ac(f1γ1) + ac(f2γ2) = 0

]
× Lω−n+(d1+d2)(n−m)−(d1+d2)(ω−m)

=
n−1∑
ω=1

[(γ1, γ2) ∈ Xω(f1)× Xω(f2), ac f1γ1 + ac f2γ2 = 0]

× L(d1+d2−1)(n−ω)

Finally we get

[X=
n (f1 ⊕ f2)]

= [(γ1, γ2) ∈ Xn(f1)× Xn(f2), ac f1γ1 + ac f2γ2 6= 0]

+
n−1∑
ω=1

[(γ1, γ2) ∈ Xω(f1)× Xω(f2), ac f1γ1 + ac f2γ2 = 0]

× L(d1+d2−1)(n−ω)

= [(γ1, γ2) ∈ Xn(f1)× Xn(f2), ac f1γ1 + ac f2γ2 6= 0]
− [(γ1, γ2) ∈ Xn(f1)× Xn(f2), ac f1γ1 + ac f2γ2 = 0]

+
n∑
ω=1

[(γ1, γ2) ∈ Xω(f1)× Xω(f2), ac f1γ1 + ac f2γ2 = 0]

× L(d1+d2−1)(n−ω)

= − [Xn(f1)] ∗ [Xn(f2)]

+
n∑
ω=1

[(γ1, γ2) ∈ Xω(f1)× Xω(f2), ac f1γ1 + ac f2γ2 = 0]

× L(d1+d2−1)(n−ω)

This ends the second case.
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Therefore the computations of the beginning of the proof give

[Xn(f1 ⊕ f2)]L−n(d1+d2)

=
([
X6=n (f1 ⊕ f2)

]
+ [X=

n (f1 ⊕ f2)]
)
L−n(d1+d2)

=
(

1−
n∑
ω=1

[Xω(f2)]L−ωd2

)
[Xn(f1)]L−nd1

+
(

1−
n∑
ω=1

[Xω(f1)]L−ωd1

)
[Xn(f2)]L−nd2

− [Xn(f1)]L−nd1 ∗ [Xn(f2)]L−nd2

+
n∑
ω=1

[(γ1, γ2) ∈ Xω(f1)× Xω(f2), ac(f1γ1) + ac(f2γ2) = 0]

× L−ω(d1+d2)Lω−n

Using again a monomialization, we get that

[(γ1, γ2) ∈ Ln(Rd1+d2), ordt(f1γ1 + f2γ2) > n] · 1

= [ordt f1 > n, ordt f2 > n] · 1

+
n∑
ω=1

[ordt f1 = ordt f2 = ω, ordt(f1 + f2) > n] · 1

= [ordt f1 > n, ordt f2 > n] · 1

+
n∑
ω=1

[(γ1, γ2) ∈ Xω(f1)× Xω(f2), ac(f1γ1) + ac(f2γ2) = 0]

× L(n−ω)(d1+d2−1)

This allows us to conclude as follows.

[Yn(f1 ⊕ f2)]L−n(d1+d2)

= [Xn(f1 ⊕ f2)]L−n(d1+d2)

− [(γ1, γ2) ∈ Ln(Rd1+d2), ordt(f1γ1 + f2γ2) > n]L−n(d1+d2)

=
(

1−
n∑
ω=1

[Xω(f2)]L−ωd2

)
[Xn(f1)]L−nd1

+
(

1−
n∑
ω=1

[Xω(f1)]L−ωd1

)
[Xn(f2)]L−nd2

− [Xn(f1)]L−nd1 ∗ [Xn(f2)]L−nd2

− [ordt f1 > n]L−nd1 [ordt f2 > n]L−nd2
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= −
(
[Yn(f1)]L−nd1

)
∗
(
[Yn(f2)]L−nd2

)
�

We recover the convolution [24, Theorem 2.3] thanks to the following
lemma.

Lemma 6.21. — Let ε ∈ {>,<} then

χc(F ε(x ∗ y)) = −χc(F εx)χc(F εy)

We need the following lemma in order to prove the previous one.

Lemma 6.22. — Let X be an AS-set endowed with an AS action of R∗
and ϕ : X → R∗ be an AS-map such that ϕ(λ · x) = λnϕ(x). Then ϕ is
a trivial semialgebraic fibration over R>0 and over R<0 (or over R∗ if n is
odd).

Proof. — Indeed, the following diagram commutes (for the case > 0)

ϕ−1(R>0) Ψ //

ϕ
$$

ϕ−1(1)× R>0

prR>0xx
R>0

where Ψ(x) = (ϕ(x)− 1
n · x, ϕ(x)) and Ψ−1(x, λ) = λ

1
n · x �

Proof of Lemma 6.21. — Assume that ε =>. Then

χc
(
F>([ϕ1 : X1 → R∗] ∗ [ϕ2 : X2 → R∗])

)
= −χc ((ϕ1 + ϕ2) > 0) + χc ((ϕ1 + ϕ2 = 0)× R>0)
= −χc ((ϕ1 + ϕ2) > 0)− χc ((ϕ1 + ϕ2 = 0))

Where the last equality comes from the fact that χc(R>0) = −1. Thus

χc
(
F>([ϕ1 : X1 → R∗] ∗ [ϕ2 : X2 → R∗])

)
= −χc ((ϕ1 + ϕ2) > 0)
= −χc (ϕ1 > 0, ϕ2 > 0) + χc ((ϕ1 + ϕ2) > 0, ϕ1 < 0)

+ χc ((ϕ1 + ϕ2) > 0, ϕ2 < 0)

Since ϕi is trivial over R>0 (resp. R<0) and χc(a + b > 0, a < 0) = 0, we
get

χc
(
F>([ϕ1 : X1 → R∗] ∗ [ϕ2 : X2 → R∗])

)
= −χc (ϕ1 > 0, ϕ2 > 0)
= −χc (ϕ1 > 0, ϕ2 > 0)− χc (ϕ1 > 0, ϕ2 = 0)− χc (ϕ1 = 0, ϕ2 > 0)
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Since ϕi is trivial over R>0 (resp. R<0) and χc(a > 0, b = 0) = 0, we finally
have

χc
(
F>([ϕ1 : X1 → R∗] ∗ [ϕ2 : X2 → R∗])

)
= −χc (ϕ1 > 0, ϕ2 > 0)
= −χc

(
F>[ϕ1 : X1 → R∗]

)
χc
(
F>[ϕ2 : X2 → R∗]

)
�

Corollary 6.23 ([24, Theorem 2.3]). — Let ε ∈ {>,<} then

Z̃χc,εf⊕g (T ) = Z̃χc,εf (T )� Z̃χc,εg (T )

where the product � is the Hadamard product which consists in applying
the classical product of Z coefficientwise.

We showed in the proof of 6.22 that χc(F>(a)) = −χc(F+(a)). In the
same way we may prove that χc(F<(a)) = −χc(F−(a)). From these facts
we derive the following lemma.

Lemma 6.24. — Let ε ∈ {+,−} then

χc(F ε(x ∗ y)) = χc(F εx)χc(F εy)

Corollary 6.25. — Let ε ∈ {+,−} then

Z̃χc,εf⊕g (T ) = −Z̃χc,εf (T )� Z̃χc,εg (T )

where the product � is the Hadamard product which consists in applying
the classical product of Z coefficientwise.

7. Arc-analytic equivalence

T.-C Kuo [27] defined the notion of blow-analytic equivalence for real
analytic function germs: two germs are blow-analytically equivalent if we
can get one from the other by composing with a homeomorphism which
is blow-analytic and such that the inverse is also blow-analytic. In order
to prove that this is an equivalence relation, he gave a characterization in
terms of real modifications [27, Proposition 2]. Similarly, G. Fichou [16,
Definition 4.1] defined the notion of blow-Nash equivalence for Nash func-
tion germs, which is an algebraic version of the blow-analytic equivalence
of T.-C. Kuo. G. Fichou proved that his zeta functions are invariants of this
relation. However it is not clear that this notion is an equivalence relation.

The definition of blow-Nash equivalence evolved, and we now use the fol-
lowing one [18, 19, 20]: two Nash function germs are blow-Nash equivalent
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if they are equivalent via a blow-Nash isomorphism in the sense of [17, Def-
inition 1.1]. The assumption “via a blow-Nash isomorphism” is needed to
ensure that the zeta functions of G. Fichou are invariants of this relation,
but with this assumption, it is still not clear whether it is an equivalence
relation.
In this section, we introduce a new relation on Nash function germs,

the arc-analytic equivalence which is an equivalence relation. Moreover it
coincides with the current version of the blow-Nash equivalence. To intro-
duce it, we do not need Nash modifications. Finally, our zeta function is
an invariant of this relation.

Definition 7.1. — A semialgebraic function f : V → R defined on an
algebraic set V is said to be blow-Nash if there exists σ : Ṽ → V a finite
sequence of (algebraic) blowings-up with non-singular centers such that Ṽ
is non-singular and f ◦ σ : Ṽ → R is Nash.

Definition 7.2. — A real analytic arc on Rd is a real analytic map
γ : (−ε, ε)→ Rd.

We recall the following useful result of Bierstone–Milman.

Theorem 7.3 ([4, Theorem 1.1]). — A semialgebraic function f : U →
R defined on a non-singular real algebraic set is blow-Nash if and only if it
sends real analytic arcs to real analytic arcs by composition.

Definition 7.4 ([28]). — A map that sends real analytic arcs to real
analytic arcs by composition is called arc-analytic.

Definition 7.5. — Two germs f, g : (Rd, 0) → (Rd, 0) are said to be
arc-analytic equivalent if there exists a semialgebraic homeomorphism h :
(Rd, 0) → (Rd, 0) satisfying f = g ◦ h such that h is arc-analytic and such
that there exists c > 0 with |det dh| > c where dh is defined.

Remark 7.6. — Let f, g : (Rd, 0) → (Rd, 0) and h : (Rd, 0) → (Rd, 0)
be as in Definition 7.5. Then there exists ϕ : M → Rd a finite sequence of
blowings-up with non-singular centers such that ϕ̃ = h ◦ ϕ is Nash:

M
ϕ

~~

ϕ̃

  
Rd h //

f   

Rd

g
~~

R
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Notice that then ϕ̃ is proper generically one-to-one Nash. Moreover, by [7,
Corollary 4.17], ϕ̃ induces a bijection between arcs on M and arcs on Rd
not entirely included in some nowhere dense subset of Rd.

Proposition 7.7. — Arc-analytic equivalence is an equivalence rela-
tion.

Proof. — The reflexivity is obvious, the symmetry comes from [7, The-
orem 3.5]. Thus it suffices to prove the transitivity. We have the following
diagram

Rd
h1 //

f1 //

Rd
h2 //

f2

��

Rd

f3ooR
where the fi are Nash germs and the hi are as in Definition 7.5. Obviously
there exists c > 0 such that |det d(h2 ◦ h1)| > c. The composition h2 ◦ h1
is obviously semialgebraic and arc-analytic (as the composition of such
maps). �

Proposition 7.8. — Two Nash germs which are blow-Nash equivalent
in the sense of [16, Definition 4.1] are arc-analytic equivalent.

Proof. — Assume that f1 and f2 are blow-Nash equivalent in the sense
of [16]. Then we have

M1
Φ //

ν1
��

M2

ν2
��

Rd
φ //

f1   

Rd

f2~~
R

with φ a semialgebraic homeomorphism, νi two proper birational algebraic
maps and Φ a Nash isomorphism which preserves the multiplicities of the
jacobian determinants of ν1 and ν2.

Since we may lift analytic arcs by ν1, φ is arc-analytic. By the chain rule,
since Φ preserves the multiplicities of the jacobian determinants of ν1 and
ν2, we deduce that |det dφ| > c for some c > 0. �

Proposition 7.9. — Two Nash germs are arc-analytic equivalent if and
only if they are blow-Nash equivalent via a blow-Nash isomorphism in the
sense of [17, Definition 1.1].
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Proof. — Assume that f1 and f2 are blow-Nash equivalent via a blow-
Nash isomorphism in the sense of [17]. Then we have

M1
Φ //

ν1
��

M2

ν2
��

Rd
φ //

f1   

Rd

f2~~
R

with φ a semialgebraic homeomorphism, νi two Nash modifications(9) and
Φ a Nash isomorphism which preserves the multiplicities of the jacobian
determinants of ν1 and ν2.
Since we may lift analytic arcs by ν1, φ is arc-analytic. By the chain rule,

since Φ preserves the multiplicities of the jacobian determinants of ν1 and
ν2, we deduce that |det dφ| > c for some c > 0.
Assume that f1 and f2 are arc-analytic equivalent via h: f1 = f2 ◦h with

h semialgebraic and arc-analytic satisfying |det dh| > c > 0. Since h and
h−1 are blow-Nash there exist ν1 : M1 → Rd and ν2 : M2 → Rd two finite
sequences of blowings-up with non-singular centers such that α1 = h ◦ ν1
and α2 = h−1 ◦ ν2 are Nash. Let N1 (resp. N2) be the fiber product of α1
and ν2 (resp. α2 and ν1). Then N1 = N2 = N in M1 ×M2. Notice that πi
and Ni are Nash. Let σ : Ñ → N be a resolution of singularities (for Nash
spaces, see [5, p. 234]). Then for i = 1, 2, νiπiσ is a Nash modification.

Ñ

σ

��
N1

π1

��

ρ1

((

N N2

π2

��

ρ2

vv
M1

α1

((

ν1
��

M2
α2

vv

ν2
��

Rd
h //

f1 !!

Rd

f2~~

h−1
oo

R �

(9)A Nash modification is a proper surjective Nash map whose complexification is proper
and bimeromorphic.
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Corollary 7.10. — Blow-Nash equivalence via a blow-Nash isomor-
phism in the sense of [17, Definition 1.1] is an equivalence relation.

Theorem 7.11. — If two Nash germs f, g : (Rd, 0) → (R, 0) are arc-
analytic equivalent then Zf (T ) = Zg(T ).

Proof. — We have the following diagram

M
ϕ

~~

ϕ̃

  
Rd h //

f   

Rd

g
~~

R
where h is a semialgebraic homeomorphism, ϕ a finite sequence of blowings-
up with non-singular centers and ϕ̃ a Nash map.
Notice that in the statement of Theorem 4.22 we only need that h is

proper generically 1-to-1 Nash and not merely birational. Therefore we
may also apply this theorem to ϕ̃ in order to compute Zg(T ).
Up to adding more blowings-up we may assume that f ◦ ϕ, g ◦ ϕ̃ =

g ◦ h ◦ ϕ, Jacϕ and Jac ϕ̃ are simultaneously normal crossings. Denote by
(Ei)i∈A the irreducible components of the zero set of f ◦ ϕ = g ◦ ϕ̃. Set
f ◦ ϕ =

∑
i∈ANiEi, g ◦ ϕ̃ =

∑
i∈A ÑiEi, Jacϕ =

∑
i∈A(νi − 1)Ei and

Jac ϕ̃ =
∑
i∈A(ν̃i − 1)Ei.

By [7, Lemma 4.15], ∀i ∈ A, νi = ν̃i. And since f ◦ ϕ = g ◦ ϕ̃, we have
∀i ∈ A, Ni = Ñi and that UI is well-defined and doesn’t depend on ϕ or
ϕ̃.
Thus by Theorem 4.22

Zf (T ) = Zg(T ) =
∑

∅ 6=I⊂A

[
UI ∩ (h ◦ pI)−1(0)

]∏
i∈I

L−νiTNi
1− L−νiTNi

�

Remark 7.12. — Particularly, by Proposition 7.9, we recover [17, Propo-
sition 2.6].

By Proposition 7.8, [16, Theorem 4.3] works as it is in our settings (see
also [17, Theorem 1.5] and [27, Theorem 1]).

Theorem 7.13. — Let F : (Rd, 0)×(0, 1)k → (R, 0) be a Nash function
such that ∀t ∈ (0, 1)k, F (·, t) : (Rd, 0) → (R, 0) has an isolated singularity
at 0 and there exists an algebraic proper birational map σ :M→ Rd×(0,1)k
such that F ◦σ has only normal crossings. Then the elements of the family
Ft(·) = F (·, t) represent a finite number of arc-analytic equivalence classes.
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In the same way, we recover a version of [16, Proposition 4.17].

Proposition 7.14. — Let F : (Rd, 0)×(0, 1)k → (R, 0) be a Nash func-
tion such that ∀t ∈ (0, 1)k, F (·, t) : (Rd, 0) → (R, 0) has an isolated singu-
larity at 0 and there exists an algebraic proper birational map σ : M → Rd
such that F ◦ (σ, id(0,1)k) has only normal crossings. Then the elements of
the family Ft(·) = F (·, t) represent a unique arc-analytic equivalence class.

Again, the following corollary is just a version of [16, Corollary 4.5].

Corollary 7.15. — Let F : (Rd, 0) × (0, 1) → (R, 0) be a Nash func-
tion such that F (·, t) : (Rd, 0)→ (R, 0) are weighted homogeneous polyno-
mials with the same weights and have an isolated singularity at 0. Then
the elements of the family Ft(·) = F (·, t) represent a unique arc-analytic
equivalence class.

Example 7.16. — The Whitney family [39, Example 13.1]

ft(x, y) = xy(y − x)(y − tx), t ∈ (0, 1)

has only one arc-analytic equivalence class. ·�

8. Classification of Brieskorn polynomials

In [24], S. Koike and A. Parusiński gave a complete classification of the
Brieskorn polynomials in two variables up to blow-analytic equivalence us-
ing their zeta functions and the Fukui invariants. In [16], G. Fichou classi-
fied the Brieskorn polynomials in three variables up to blow-Nash equiva-
lence (and thus up to arc-analytic equivalence) thanks to his zeta functions.
In this section we use the convolution formula to prove that two arc-analytic
equivalent Brieskorn polynomials share the same exponents.

Definition 8.1. — A Brieskorn polynomial is a polynomial of the fol-
lowing form

f(x) =
d∑
i=1

εix
ki

where εi ∈ {±1} and ki > 1.

Remark 8.2. — We will assume that ki > 2 since otherwise the polyno-
mial is non-singular. Up to reordering the variables, we will always assume
that 2 6 k1 6 k2 6 · · · 6 kd.
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Proposition 8.3. — Let

f(x) =
d∑
i=1

εix
ki

be a Brieskorn polynomial. We may recover (k1, . . . , kd) from d and Zf (T ).

Corollary 8.4. — Let

f(x) =
d∑
i=1

εix
ki and g(x) =

d∑
i=1

ηix
li

be two Brieskorn polynomials. If f and g are blow-Nash equivalent then
∀i = 1, . . . , d we have ki = li.

Remember from Example 6.10 that

Z̃
εix

ki
i

(T ) = − T − · · · − T ki−1

−
(
1− [εixkii ]

)
L−1T ki − L−1T ki+1 − · · · − L−1T 2ki−1

−
(
1− [εixkii ]

)
L−2T 2ki − L−2T 2ki+1 − · · ·

Notice that the coefficients of terms whose degrees are not multiples of
ki are of the form −L−α where α is the integral part of the degree divided
by ki.
Denote by an ∈ M the coefficients of the modified zeta function of f so

that
Z̃f (T ) =

∑
n>1

anT
n ∈MJT K

Using the convolution formula and that L−α ∗ L−β = L−(α+β) (MAS -
bilinearity of the convolution product) we deduce from the previous remark
that if ki doesn’t divide n for all i then

an = −L−
∑d

i=1

⌊
n
ki

⌋
Moreover, we may recover the degree

∑d
i=1

⌊
n
ki

⌋
using the forgetful mor-

phism · : M → MAS and the natural extension of the virtual Poincaré
polynomial toMAS , β :MAS → Z[u, u−1]. Indeed,

β (an) = β

(
−L−

∑d

i=1

⌊
n
ki

⌋)
= β

(
−L
−
∑d

i=1

⌊
n
ki

⌋
AS (LAS − 1)

)
= −u−

∑d

i=1

⌊
n
ki

⌋
(u− 1)
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and thus
d∑
i=1

⌊
n

ki

⌋
= −deg β(an) + 1

The idea of the proof of Proposition 8.3 is to use the previous fact to
reduce to a combinatorial problem.

Lemma 8.5. — Fix m ∈ N>0. Let x =
∑m
i=1

1
li

with li ∈ N>0. Then
there exists a finite number of m-tuples (l′i)i=1,...,m such that x =

∑m
i=1

1
l′
i
.

Proof. — Assume that the statement is true for some m ∈ N>0 and let
x =

∑m+1
i=1

1
li
. We may assume that l1 6 · · · 6 lm+1. Then l1 6 m+1

x . Then
there is a finite number of choices for l1 and for every choice x − 1

l1
=∑m+1

i=2
1
li

admits a finite number of expressions of this form. �

Proof of Proposition 8.3. — Let

Z̃f (T ) =
∑
n>1

anT
n ∈MJT K

Denote by P the set of primes. For p ∈ P big enough, p is not a multiple
of a ki. Thus

lim
p∈P

− deg (β(ap)) + 1
p

= lim
p∈P

∑d
i=1

⌊
p
ki

⌋
p

=
d∑
i=1

1
ki

We deduce from the previous computation and Lemma 8.5 that we may
derive from Z̃f (T ) (or equivalently from Zf (T )) an integer K such that
k1 6 · · · 6 kd 6 K.
Denote by P ′ the set of primes lower or equal to K. For p ∈ P ′, we

denote by γp the greatest exponent such that pγp 6 K.
Set

Q =

∏
p∈P′

pαp , 0 6 αp 6 γp


so that {k1, . . . , kd} ⊂ Q. Up to adding elements in Q, we may assume that
2, 3, 5, 7 ∈ P ′ and that γ2 > 3, γ3 > 2, γ5 > 1, γ7 > 1.

For q ∈ Q, set mult(q) = #{ki, ki = q}. Thus our goal is to compute
mult q, q ∈ Q, from Zf (T ).

The main idea of the proof consists, for a number q ∈ Q, to use the
Chinese remainder theorem to find n such that n − 1 and n + 1 are not
multiple of a term in Q \ {1} and such that the only factors of n that
are in Q are the factors of q. The first condition ensures that no exponent
divides n−1 and n+1 so that we can recover the degrees of an−1 and an+1
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as previously. The second condition ensures that the difference of these
degrees is exactly ∑

k|q

mult k

This allows us to compute mult q recursively by increasing the number of
factors in q. This is exactly the first item below.
Unfortunately this method won’t work when 2 - q or 3 - q since then 3

or 2 may divide n− 1 or n+ 1 (whereas 2 and 3 may appear as exponents
in the polynomial). Thus we have to manage these cases separately in a
similar, but more sophisticated, way.
We first notice that mult(1) = 0.

Equations involving mult q for q ∈ Q satisfying 6|q. — Let α2, α3 be
such that 1 6 α2 6 γ2 and 1 6 α3 6 γ3 and for each p ∈ P ′ \ {2, 3}, let αp
be such that 0 6 αp 6 γp.
The Chinese remainder theorem ensures the existence of n such that{

n ≡ pαp mod pαp+1 if αp > 0
n ≡ 2 mod p otherwise

Thus, for p ∈ P ′, p doesn’t divide n− 1 and n+ 1. This ensures that, for
q ∈ Q, n−1 and n+1 are not multiple of q and particularly of an exponent
ki. So an−1 = −L−

∑d

i=1

⌊
n−1
ki

⌋
and an+1 = −L−

∑d

i=1

⌊
n+1
ki

⌋
.

Moreover the elements of Q which divide n are exactly those of the form∏
p∈P′ p

βp with 0 6 βp 6 αp.
Therefore

−deg β(an+1) + deg β(an−1) =
∑

06βp6αp

mult

∏
p∈P′

pβp


Computation of mult 2. — Assume that α2 = 2, α3 = α5 = 1 and

αp = 0 for p ∈ P ′ \ {2, 3, 5}. Let n be such that{
n ≡ pαp mod pαp+1 if αp > 0
n ≡ 3 mod p if αp = 0

Then n = 60n′ where no term in P ′ divides n′. No term in Q divide n−1
and n+ 1. And 2 but no other term in Q divides n− 2 and n+ 2. Thus

an−2 = −αL−
∑d

i=1

⌊
n−2
ki

⌋
and an+2 = −αL−

∑d

i=1

⌊
n+2
ki

⌋
where α is of the form ∗mult 2

i=1
(
1− [εix2 : R∗ → R∗]

)
. Thus

β(F+(an−2)) = β

(
−L
−
∑d

i=1

⌊
n−2
ki

⌋
AS F+(α)

)
= −u−

∑d

i=1

⌊
n−2
ki

⌋
β
(
F+(α)

)
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and similarly

β(F+(an+2)) = β

(
−L
−
∑d

i=1

⌊
n+2
ki

⌋
AS F+(α)

)
= −u−

∑d

i=1

⌊
n+2
ki

⌋
β
(
F+(α)

)
We deduce from Lemma 6.24 and χc

(
F+ (1− [±x2]

))
= ∓1 that

β
(
F+(α)

)
(u = −1) = χc(F+(α)) =

mult 2∏
i=1

χc(F+(1− [εix2])) = ±1

Thus β (F+(α)) 6= 0 and

− deg β(F+(an+2)) + deg β(F+(an−2)) = mult 2 +
∑

q∈Q,q|60

mult(q)

Notice that in the first case we got an equation of the form

cst =
∑

q∈Q,q|60

mult(q)

Therefore mult 2 may be derived from Zf (T ).

Computation of mult q with 2 - q and 3 - q. — Assume that α2 = α3 = 0
and that 0 6 αp 6 γp for each p ∈ P ′ \ {2, 3}. Let n be such that

n ≡ pαp mod pαp+1 if αp > 0
n ≡ 1 mod 8
n ≡ 1 mod p if p 6= 2, αp = 0

Then the only elements of Q which divide n are those of the form
∏
p∈P′ p

βp

with 0 6 βp 6 αp, the only element in Q which divides n+ 1 and n− 3 is
2, no element in Q divides n− 2 and 6 divides n− 1. Thus

− deg β(an+1) + deg β(an−3)

=
∑

q∈Q,q|n−1

mult(q) +
∑

06βp6αp

mult

∏
p∈P′

pβp

+ mult(2)

Notice that since in the first case we got an equation of the form

cst =
∑

q∈Q,q|n−1

mult(q)

and that we already know mult 2, thus we get an equation of the form

cst =
∑

06βp6αp

mult

∏
p∈P′

pβp


Remark: either 5|n (if 5|q) or 5|n− 1.
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Therefore we may recursively compute mult q for each q ∈ Q such that
2 - q and 3 - q by varying αp for each p ∈ P ′ \ {2, 3}.

Computation of mult 3 and mult 4. — Let n be such that

n ≡ 4 mod 8
n ≡ 4 mod 9
n ≡ 4 mod 25
n ≡ 5 mod 7
n ≡ 4 mod p if p ∈ P ′ \ {2, 3, 5, 7}

Then 2, 4 are the only element of Q dividing n, 3 is the only element of
Q dividing n − 1, 5 is the only element of Q dividing n + 1, 2 is the only
element of Q dividing n − 2, 6 divides n + 2 and no element of Q divides
n− 3, n+ 3. Thus

− deg β(an+3) + deg β(an−3)

=
∑

q∈Q,q|n+2

mult(q) + 2 mult 2 + mult 3 + mult 4 + mult 5

Notice that we already know mult 2, mult 5 and that in the previous case
we got an equation of the form

c =
∑

q∈Q,q|n+2

mult(q)

So we have an equation of the form

(8.1) mult 3 + mult 4 = cst

Now let α2 = 3, α3 = 2, α5 = 1, α7 = 1. Let n be such that{
n ≡ pαp mod pαp+1 if αp > 0
n ≡ 5 mod p if αp = 0

Then 23 ·32 ·5 ·7 divides n, no term of Q divides n−1, n+1, only 2 divides
n− 2, n+ 2, only 3 divides n− 3, n+ 3 and only 2, 4 divide n− 4, n+ 4.

Since χc
(
F+ (1− [±x2]

))
= ±1 and χc

(
F+ (1− [±x4]

))
= ±1, we have

− deg β(F+(an+4)) + deg β(F+(an−4))

= 3 mult 2 + 2 mult 3 + mult 4 +
∑

q∈Q,q|n

mult(q)

but in the first case we got an equation of the form
∑
q∈Q,q|n mult(q) = cst

and we already know mult 2, thus we get an equation of the form

(8.2) 2 mult 3 + mult 4 = cst
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We compute mult 3 and mult 4 from the system given by (8.1) and (8.2).

Computation of mult q with 2|q, 4 - q, 3 - q and 5 - q. — Let α2 = 1,
α3 = α5 = 0 and 0 6 αp 6 γp otherwise. Let n be such that



n ≡ pαp mod pαp+1 if αp > 0, p 6= 2
n ≡ 2 mod 8
n ≡ 2 mod 9
n ≡ 6 mod 25
n ≡ 2 mod 7 if α7 = 0
n ≡ 4 mod p if αp = 0 and p 6= 3, 5, 7

Then the only terms of Q dividing n are the divisors of
∏
pαp , the only

term of Q dividing n − 1 is 5, the only term of Q dividing n + 1 is 3, the
only terms of Q dividing n + 2 are 2, 4, no term of Q divides n − 3, n + 3
and 6 divides n− 2. Thus

− deg β(an+3) + deg β(an−3)
= mult 2 + mult 3 + mult 4 + mult 5

+
∑

q∈Q,q|n−2

mult(q) +
∑

06βp6αp

mult

∏
p∈P′

pβp


from which we derive an equation of the form

∑
β2=1

06βp6αp

mult

∏
p∈P′

pβp

 = cst

since we already know mult q for q ∈ Q with 2 - q and 3 - q and since we
got in the first case an equation of the form

∑
q∈Q,q|n−2

mult(q) = cst

Therefore we may recursively compute mult q for each q ∈ Q such that 2|q,
4 - q, 3 - q and 5 - q by varying the αp.
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Computation of mult q with 4|q, 3 - q and 5 - q. — Let 2 6 α2 6 γ2,
α3 = α5 = 0 and 0 6 αp 6 γp otherwise. Let n be such that

n ≡ pαp mod pαp+1 if αp > 0
n ≡ 2 mod 9
n ≡ 6 mod 25
n ≡ 2 mod 7 if α7 = 0
n ≡ 4 mod p if αp = 0, p 6= 3, 5, 7

Then the only terms of Q dividing n are the divisors of
∏
pαp , the only

term of Q dividing n − 1 is 5, the only term of Q dividing n + 1 is 3, the
only term of Q dividing n+ 2 is 2, 6 divides n−2 and no term of Q divides
n− 3, n+ 3. Thus

− deg β(an+3) + deg β(an−3)
= mult 2 + mult 3 + mult 5

+
∑

q∈Q,q|n−2

mult(q) +
∑

06βp6αp

mult

∏
p∈P′

pβp


from which we derive an equation of the form

∑
26β26α2
06βp6αp

mult

∏
p∈P′

pβp

 = cst

Therefore we may recursively compute mult q for each q ∈ Q such that 4|q,
3 - q and 5 - q by varying the αp.

Computation of mult q with 2|q, 4 - q, 3 - q, 5|q. — Let α2 = 1, α3 = 0,
1 6 α5 6 γ5 and 0 6 αp 6 γp otherwise. Let n be such that

n ≡ pαp mod pαp+1 if αp > 0 and p 6= 2
n ≡ 2 mod 8
n ≡ 2 mod 9
n ≡ 3 mod p if αp = 0 and p 6= 3

Then the only terms of Q dividing n are the divisors of
∏
pαp , the only

term in Q dividing n+1 is 3 and the only terms in Q dividing n+2 are 2, 4.
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No term of Q divides n− 1, n+ 3. Thus

− deg β(an+3) + deg β(an−1)

= mult 3 + mult 2 + mult 4 +
∑

06βp6αp

mult

∏
p∈P′

pβp


We conclude as in the previous cases.

Computation of mult q with 4|q, 3 - q, 5|q. — Let 2 6 α2 6 γ2, α3 = 0,
1 6 α5 6 γ5 and 0 6 αp 6 γp otherwise. Let n be such that

n ≡ pαp mod pαp+1 if αp > 0
n ≡ 2 mod 9
n ≡ 3 mod p if αp = 0 and p 6= 3

Then the only terms of Q dividing n are the divisors of
∏
pαp , the only

term in Q dividing n+ 1 is 3 and the only terms in Q dividing n+ 2 are 2.
No term of Q divides n− 1, n+ 3. Thus

− deg β(an+3) + deg β(an−1) = mult 3 + mult 2 +
∑

06βp6αp

mult

∏
p∈P′

pβp


We conclude as in the previous cases.

Computation of mult q with 3|q, 2 - q and 5 - q. — Let 1 6 α3 6 γ3,
α2, α5 = 0 and 0 6 αp 6 γp otherwise. Let n be such that

n ≡ pαp mod pαp+1 if αp > 0
n ≡ 3 mod 8
n ≡ 4 mod 25
n ≡ 3 mod p if αp = 0, p 6= 2, p 6= 5

Then the only terms of Q dividing n are the divisors of
∏
pαp , 2 is the only

term of Q dividing n − 1, 2, 4, 5, 10, 20 are the only terms of Q dividing
n+ 1 and no term in Q divides n− 2, n+ 2. Thus

− deg β(an+2) + deg β(an−2)

= mult 2 +
∑

q∈Q,q|20

mult(q) +
∑

06βp6αp

mult

∏
p∈P′

pβp
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Notice that in the previous case we got an equation of the form

c =
∑

q∈Q,q|20

mult(q)

We conclude as in the previous cases.

Computation of mult q with 3|q, 2 - q and 5|q. — Let 1 6 α3 6 γ3,
α2 = 0, 1 6 α5 6 γ5 and 0 6 αp 6 γp otherwise. Let n be such that

n ≡ pαp mod pαp+1 if αp > 0
n ≡ 3 mod 8
n ≡ 3 mod p if αp = 0, p 6= 2

Then the only terms of Q dividing n are the divisors of
∏
pαp , 2 is the only

term of Q dividing n − 1, 2, 4 are the only terms of Q dividing n + 1 and
no term in Q divides n− 2, n+ 2. Thus

−deg β(an+2)+deg β(an−2) = 2 mult 2+mult 4+
∑

06βp6αp

mult

∏
p∈P′

pβp


We conclude as in the previous cases.

Computation of mult q for q ∈ Q satisfying 6|q. — Let α2, α3 be such
that 1 6 α2 6 γ2 and 1 6 α3 6 γ3 and for each p ∈ P ′ \ {2, 3}, let αp be
such that 0 6 αp 6 γp.
Now that we know mult q for q ∈ Q satisfying 2 - q or 3 - q we may

deduce from the equation of the first case an equation of the form

∑
16β26α2
16β36α3
06βp6αp

mult

∏
p∈P′

pβp

 = cst

And we conclude as in the previous cases by varying the αp. �
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