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ON THE REGULARITY PROBLEM OF COMPLEX
MONGE–AMPERE EQUATIONS WITH CONICAL

SINGULARITIES

by Xiuxiong CHEN & Yuanqi WANG

Abstract. — In the category of metrics with conical singularities along a
smooth divisor with angle in (0, 2π), we show that locally defined weak solu-
tions (C1,1−solutions) to the Kähler–Einstein equations actually possess maximum
regularity, which means the metrics are actually Hölder continuous in the singu-
lar polar coordinates. This shows the weak Kähler–Einstein metrics constructed
by Guenancia–Păun, and independently by Yao, are all actually strong-conical
Kähler–Einstein metrics. The key step is to establish a Liouville-type theorem
for weak-conical Kähler–Ricci flat metrics defined over Cn, which depends on a
Calderon–Zygmund theory in the conical setting. The regularity of globally de-
fined weak-conical Kähler–Einstein metrics is already proved by Guenancia–Paun
using a different method.
Résumé. — Dans la catégorie des métriques à singularités coniques autour d’un

diviseur lisse avec angle strictement compris entre 0 et 2π, on montre que les solu-
tions faibles localement définies (au sens C(1,1)) des équations de Kähler–Einstein
sont de régularité maximale, ce qui implique que les métriques sont Höldériennes
dans les coordonnées polaires singulières. Ceci montre que les métriques de Kähler–
Einstein faibles construites par Guénancia-Păun, et Yao indépendamment, sont en
fait des métriques de Kähler–Einstein coniques au sens fort. Le point clé est d’éta-
blir un théorème de type Liouville pour les métriques Ricci-plates au sens faible sur
Cn, ce qui découle d’une théorie de Calderon–Zygmund dans un contexte conique.
La régularité des métriques de Kähler–Einstein coniques globalement définies avait
déjà été obtenue par Guénancia-Păun par une autre méthode.

1. Introduction

Consider the singular space (C× Cn−1, ωβ)(β ∈ (0, 1)), where ωβ is the
standard flat background metric with conical singularities along {0}×Cn−1,

Keywords: complex Monge–Ampère equations, conical singularity.
Math. classification: 35J75.
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written as

ωβ = β2

|z|2−2β dz ⊗ dz̄ +
n−1∑
j=1

dvj ⊗ dv̄j ,

where z ∈ C and vj are tangential variables to {0} ×Cn−1. Geometrically,
this is a product of a flat two-dimension cone with Euclidean Cn−1. From
now on, we denote the singular divisor {0}×Cn−1 asD. In this introduction,
we take the balls to be centered at the origin, with respect to ωβ . For more
detailed notations, please refer to Section 2 of this article.
We want to understand the PDE theory in this space, using intrinsic

metric. For any domain Ω ∈ C×Cn−1, the complex Monge Ampere equation
take a simpler form

(1.1) det(φij̄) = f

|z|2−2β ,

where

(1.2) ωφ =
√
−1∂∂̄φ

gives a Kähler metric in Ω with conical angle 2πβ along D. The Laplacian
operator of ωβ is

4β = |z|
2−2β

β2
∂2

∂z∂z̄
+
n−1∑
j=1

∂2

∂vj∂v̄j
.

Sometimes we also use the real laplacian of ωβ , denoted as ∆. Notice
that ∆ = 4∆β .

Definition 1.1. — For any constant λ > 0, suppose φ solves (1.1) with

f = eλφ+h, h ∈ C∞(Ω) and
√
−1∂∂̄h = 0,

then ωφ is a conical Kähler–Einstein metric with scalar curvature −nλ.
When λ = 0, ωφ is a conical Kähler–Ricci flat metric.

Remark 1.2. — Notice that the conical Kähler–Einstein metrics (along
smooth divisors) considered in all the references we know (including [1],
[2], [4], [6], [10], [14], [17], [18], [19], [20], [24], . . . ), can be written as in
Definition 1.1 near the D, under holomorphic coordinates.

To state our main results, we define the following.

Definition 1.3 (Weak-conical Kähler metrics). — A function u defined
in Ω is called a C1,1,β(Ω)-function if it satisfies

• u ∈ C2,α(Ω \D) ∩ Cα(Ω), for some 1 > α > 0;
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REGULARITY OF SINGULAR MONGE–AMPERE EQUATIONS 971

• −Kωβ 6
√
−1∂∂̄u 6 Kωβ over Ω \D. The minimum of all such K

is defined as our C1,1,β(Ω)-seminorm and denoted as [ · ]C1,1,β(Ω).
A closed positive (1, 1)-currrent ω defined in Ω is called a weak-conical

Kähler metric if ω admits a plurisubharmonic C1,1,β−potential (in the sense
of (1.2)) near any p ∈ Ω, and

ωβ
K
6 ω 6 Kωβ over Ω \D, for some K > 1.

Sometimes we call such metrics as L∞,β-metrics, with norm defined as the
C1,1,β(Ω)-seminorm in the previous paragraph with respect to the poten-
tials.

Remark 1.4. — Notice that for a function, being C1,1,β is stronger (away
from D) than being C1,1 in the usual sense, even in the smooth case (when
β = 1). Namely, we require the function to be C2,α away from the sin-
gularity. The C1,1,β and L∞,β spaces are really adapted to the conic case
only.
The above definition is the same as in [23] and [8], we just formulate it

here to include the definition of C1,1,β functions.

Definition 1.5 (CKS operators). — Similar to Definition 1.3, we say L
is a Conelike Kähler Second-order operator over a ball B, if L = Aij̄ ∂2

∂zi∂z̄j

such that
(1) Aij̄ ∈ Cα(B \D) is a Hermitian matrix valued function.
(2) −Kωij̄β 6 Aij̄ 6 Kωij̄β as Hermitian matrix functions over B, for

some constant K > 1.
We define the L∞,βO -norm of a CKS operator L as the infimum of the
constant K in the item 2 above. The laplace operator of any weak conical-
Kähler metric is an elliptic CKS operator, but in general a CKS operator
does not have to be elliptic.

According to [6], if a conical Kähler–Einstein metric is in Cα,β for some
α > 0, then it is necessarily in Cα′,β for all α′ ∈ (0,min(1, 1

β − 1)). The
fundamental problem is when α = 0, in other words, when the metric
tensor is barely L∞,β , does the metric actually possess higher regularity?
This is of course a core problem in the study of conical Kähler geometry.
In this paper, we prove

Theorem 1.6. — Let Ω be an open set in Cn. Suppose f ∈ C1,1,β(Ω),
f > 0. For any solution φ ∈ C1,1,β(Ω) to equation (1.1) such that

√
−1∂∂̄φ

is a weak conical metric, φ is actually in C2,α,β(Ω), for all α such that
0 < α < min( 1

β − 1, 1).

TOME 67 (2017), FASCICULE 3



972 Xiuxiong CHEN & Yuanqi WANG

Remark 1.7. — Theorem 1.6 does not give any C2,α,β−norm bound
on φ, it only says φ has C2,α,β−regularity in the open set Ω. Actually,
the norm bounds and the apriori estimate are already proved in [8], from
page 13 to page 19. The point of Theorem 1.6 is the regularity, but not the
norm bounds.

Theorem 1.6 has an immediate corollary. For the sake of accuracy, we
prefer to state it in a more geometric way.

Corollary 1.8. — Any weak-conical Kähler–Einstein metric in a do-
main Ω ⊂ C × Cn−1 must be a Cα,β conical Kähler–Einstein metric, for
any 0 < α < min( 1

β − 1, 1).

Remark 1.9. — Using Yau-type Schwartz lemmas and some tricky
oberservations, Guenancia–Păun constructed weak-conical Kähler–Einstein
metrics in [14]. Yao also independently constructed weak-conical Kähler–
Einstein metrics in [24], using interesting tricks. Corollary 1.8 implies when
the divisor D is smooth, both Guenancia–Păun and Yao’s weak-conical
Kähler–Einstein metrics are (strong) conical metrics i.e. they are all Hölder
continous metrics.

Remark 1.10. — Very recently, we learned that the regularity of glob-
ally defined weak-conical Kähler–Einstein metrics is already proved by
Guenancia–Păun in [14] using a different method. Corollary 1.8 is a lo-
cal regularity result. Jeffres–Mazzeo–Rubinstein also have an edge calculus
approach to the local regularity in [17].

In Theorem 1.6 and Corollary 1.8, we only assume the underlying met-
ric tensor is L∞,β . A crucial step is to prove the following Liouville type
theorem:

Theorem 1.11 (Strong Liouville Theorem). — Suppose ω is a weak-
conical Kähler metric over Cn, and ω satisfies

(1.3) ωn = ωnβ ,
ωβ
K
6 ω 6 Kωβ over Cn \D,

for some K > 1. Then, there is a linear transformation L which preserves
{z = 0} and ω = L?ωβ .

Remark 1.12. — This strong Liouville Theorem is first proved by Chen–
Donaldson–Sun in [6], with the additional assumption that ω is a metric
cone. Later, assuming ω has Cα,β-regularity for some α > 0 instead of
being a metric cone, the Liouville Theorem is proved by the authors in
Theorem 1.14 in [8].

ANNALES DE L’INSTITUT FOURIER
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This strong Liouville theorem is much harder, since we assume the un-
derlying metric tensor is only L∞,β . In particular, we can not take any more
derivatives to the Einstein equation (1.3) globally, so existing methods are
not sufficient anymore. For this purpose, we need to developW 2,p−estimate
in the conical settings. In [10], Donaldson developed the Schauder theory
for conical Laplace operator, and used that to deform the cone angle of con-
ical Kähler–Einstein metrics. In this paper, we establish the corresponding
conicalW 2,p-theory. The definition ofW k,p,β(k = 1, 2) is given in Section 2.
To prove the W 2,p,β−estimate, it sufficies to consider the following set of
second order operators of non-purely normal (1, 1)−derivatives as in [10].

(1.4) T =
{

∂2

∂wi∂r
, 1 6 i 6 2n− 2; ∂2

∂wi∂wj
, 1 6 i, j 6 2n− 2;

1
r

∂2

∂wi∂θ
, 1 6 i 6 2n− 2

}
,

where r = |z|β , and the θ is the angle of z. There will be more detailed
definition in Section 2.
Following Chap. 9 of [12], we define a class of operators T as

(1.5) Tf = DNβ,Bf, D ∈ T,

where Nβ,Bf is the Newtonian potential of f , defined by convolution with
the Green’s function as in Definition 2.5.
Actually, the operator T and its dual T ? are both very similar to the

singular integral operators considered by Calderon–Zygmund in [3], and by
Stein [21] (see Theorem 1 in [21, Section 2.2]). Though our conical case is
different from the classical cases on several aspects, the really surprising
thing is: the proof of Theorem 9.9 in [12] proceeds well in our case, after
overcoming several analytical difficulties. Namely, the following W 2,p,β-
estimate is true.

Theorem 1.13. — Suppose L is an elliptic CKS operator defined over
B(2). Suppose there is a sufficiently small constant δ0 such that

|L−∆β |L∞,β
O
6 δ0, over B(2).

Suppose u ∈ C2(B(2) \D) ∩W 2,p,β [B(2)] is a classical-solution to

Lu = f in B(2) \D, f ∈ Lp[B(2)], ∞ > p > 2.

Then
[u]W 2,p,β ,B(1) 6 C(|f |Lp,B(2) + |u|W 1,p,B(2)),

TOME 67 (2017), FASCICULE 3



974 Xiuxiong CHEN & Yuanqi WANG

where C only depends on n, β, p. In particular, we have

[u]W 2,p,β ,B(1) 6 C(|∆βu|Lp,B(2) + |u|W 1,p,B(2)).

The following Sobolev-imbedding Theorem in the conical category is also
crucially needed in the proof of Theorem 1.6.

Theorem 1.14. — Let u ∈W 1,2(B(2))∩C2(B(2) \D) be a weak solu-
tion to ∆βu = f in B(2), f ∈ Lp, p > 2n. Then for all α < min

{
1 − 2n

p ,
1
β − 1

}
, we have u ∈ C1,α,β(B(1)) and

|u|1,α,β,B(1) 6 C(|u|W 1,2,B(2) + |f |Lp,B(2)).

Convention of the constants

The “C”’s in the estimates mean constants independent of the object
estimated, suppose the object satisfies the conditions and bounds in the
correponding statement. In some cases we say explicitly what does the
“C” depend on. When we don’t say anything to the “C”, we mean it can
depend on the conditions and bounds in the corresponding statement, for
example, like the C1,1,β-bound on the given potential, or the Cα−bound
on the given metric given away from the divisor, or the C1,1,β-bound on
the given volume form f , or the quasi-isometric constant of ω with respect
to ωβ , . . . and so on.

Distances and Balls

In most of the cases, we use distance and balls defined by the model cone
metric ωβ , unless otherwise specified. The balls are usually centered at the
origin or some point on the divisor. In this case, the conic balls are exactly
the balls with respect to the Euclidean distance in polar coordinates.
The model cone metric ωβ is exactly the usual Euclidean metric in the

following coordinate (see Remark 2.3 in [9]).

ξ = zβ = reiv, v = βθ ∈ (−βπ, βπ].
The tangential coordinates are as usual.

This coordinate is only defined on Wβ × Cn−1, where Wβ is the wedge of
angle 2πβ in C. Thus in this coordinate, the conic balls are exactly the
Euclidean balls.

ANNALES DE L’INSTITUT FOURIER
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The only big exception is in Section 3, where we use the Euclidean metric
ωE in the polar coordinates. The reason is that it’s super convenient for
using the cube decomposition which is necessary in Calderon–Zygmund
theory. ωE and ωβ are quasi-isometric to each other i.e.

βωβ 6 ωE 6
ωβ
β
.

Thus the distances defined by them are equivalent.

Acknowledgement

We would like to thank Mihai Păun for pointing out that the global
version of Corollary 1.8 is already proved in the newest version of [14]
using a different method.

2. The L2-estimate

In this section, we fix the necessary notations and prove the L2-estimate
of the conical Laplace equation in Lemma 2.7. This is the first step toward
a full W 2,p,β−theory for all p ∈ (1,∞).
Let r = |z|β and θ be just the angle of z from the positive real axis. In

the polar coordinates r, θ, wi, 1 6 i 6 2n− 2, ωβ can be written as

ωβ = dr2 + β2r2dθ2 +
2n−2∑
i=1

dwi ⊗ dwi,

where r is the distance to the divisor D = {0}×Cn−1, θ is the usual angle
of the variable z, and wi are the tangential variables.
Notice in the polar coordinates we have β2gE 6 ωβ 6 1

β2 gE , where gEuc
is Euclidean metric in the polar coordinates i.e.

(2.1) gE = dr2 + r2dθ2 + +
2n−2∑
i=1

dwi ⊗ dwi.

We denote ωE as the Kähler form of gE . We will be frequently using the po-
lar coordinates in most of the following content, as in this nice coordinates,
the conical metrics are quasi-isometric to the Euclidean metric gE . We first
define the space W 1,p,β(B) as usual W 1,p-space in the polar coordinates,
∞ > p > 2.

TOME 67 (2017), FASCICULE 3



976 Xiuxiong CHEN & Yuanqi WANG

Definition 2.1 (W 2,p,β−space). — Given p > 2, and a ball B, a func-
tion u is said to be in the space W 2,p,β(B) if the following holds. We can
understand the polar coordinates as the intrinsic coordinates of ωβ .

• u ∈ W 2,p
loc [B \D] where W 2,p

loc [B \D] is the usual Sobolev space in
the holomorphic coordinates.

• |z|2−2β ∂2u
∂z∂z̄ ∈ Lp(B), the Lp(B)−space is the usual Lp−space in

the polar coordinates (so are the “Lp(B)”’s in the following);
• |z|1−β ∂2u

∂z∂wj
∈ Lp(B), for all 0 6 j 6 2n− 2;

• ∂2u
∂wi∂wj

∈ Lp(B), for all 0 6 i, j 6 2n− 2;
• u ∈W 1,p,β(B).

The norm and seminorm are written as

(2.2)

[u]W 2,p,β(B) =
∣∣∣∣|z|2−2β ∂2u

∂z∂z̄

∣∣∣∣
Lp(B)

+
2n−2∑
j=1

∣∣∣∣|z|1−β ∂2u

∂z∂wj

∣∣∣∣
Lp(B)

+
2n−2∑
i,j=1

∣∣∣∣ ∂2u

∂wi∂wj

∣∣∣∣
Lp(B)

.

|u|W 2,p,β(B) = [u]W 2,p,β(B) + |u|W 1,p,β(B).

Lemma 2.2. — For any ball B,W 2,p,B(B) is a (complete) Banach space.

Remark 2.3. — This completeness lemma is used in the definition of
Nβf for f ∈ Lp, p > 2, as in Lemma 2.7. We present a full proof for the
convenience of the readers, though it’s straightforward.

Proof of Lemma 2.2. — Without loss of generality, we assume B is the
unit ball (centered at the origin). We only consider the caseW 2,2,β(B), the
proof for all p is exactly the same. It suffices to construct a limit. Suppose
{uk} is a Cauchy-Sequence of W 2,2,β(B), then in the sense of W 1,2,β(B),
uk admits a limit denoted as u. Then it remains to show u is actually in
W 2,2,β(B).
Denote BR and the radius of R, and TR(D) as the turbular neighborhood

of D with radius R (as in Definition 2.1). Over B1− ε2 \ T ε2 (D), we deduce
that {∆βuk} is a Cauchy-Sequence in L2[B1− ε2 \ T ε2 (D)]. Then we apply
the interior elliptic estimate to the pair of domains

B1− ε2 \ T ε2 (D), B1−ε \ Tε(D).

By Theorem 8.8 in [12], we deduce

|uk − ul|2,2,B1−ε\Tε(D))

6 C(ε)
[
|uk − ul|1,2,B1− ε2

\T ε
2

(D) + |∆βuk −∆βul|0,2,B1− ε2
\T ε

2
(D)

]
.
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Thus, {uk} is a Cauchy-Sequence in the usual Sobolev space W 2,2(B1−ε \
Tε(D)). Then, by the completeness of the usual Sobolev spaces, and the
diagonal sequence trick, there exists a limit function in W 2,2

loc (B \D), which
can be nothing else than u, with the following property.

lim
k→∞

|uk − u|2,2,B1−ε\Tε(D) = 0, for any ε > 0.

Since over B1−ε \ Tε(D), the W 2,2,β(B1−ε \ Tε(D))-norm is weaker than
the usual W 2,2(B1−ε \ Tε(D))−norm, and {uk} is a Cauchy-Sequence in
W 2,2,β(B), we deduce the following by the Minkovski inequality

(2.3) |u|W 2,2,β(B1−ε\Tε(D))

6 lim sup
k
{|u− uk|W 2,2,β(B1−ε\Tε(D)) + |uk|W 2,2,β(B1−ε\Tε(D))}

= lim sup
k
|uk|W 2,2,β(B1−ε\Tε(D)) 6 C,

where C does not depend on ε. Since ε is arbitrary, (2.3) implies

(2.4) |u|W 2,2,β(B) 6 C <∞, then u ∈W 2,2,β(B).

The proof of Lemma 2.2 is complete. �

To study the W 2,p,β-estimate, we quote the heat kernel formula in [9].
Denote x = (r, θ, x) and y = (r′, θ′, x′), where x is the tangential projection
of x. Denote R = |x− x′|. The heat kernel is

(2.5) H(x, y, t)

= 1
(4πt)n e

− r
2+ŕ2+R2

4t

{ ∑
k, −π<β[θ−θ′]+2kβπ<π

e
rr′ cos(β[θ−θ′]+2kβπ)

2t

+K
(
rr′

2t , β[θ − θ′]
)

+ 1
2

∑
k, β[θ−θ′]+2kβπ=±π

e−
rr′
2t

}
,

where

(2.6) K(rr
′

2t , β[θ − θ′])

=
sin π

β

πβ

∫ ∞
0
e−

rr′
2t cosh y [cos πβ −cos[θ−θ′] cosh y

β ]

[cosh y
β −cos β[θ−θ′]−π

β ][cosh y
β −cos β[θ−θ′]+π

β ]
dy.

In the above formula, we actually abused the notation a little bit, as
in [9]. To be precise, the “θ − θ′” means the unique angle in (−π, π] which
is mod 2π equivalent to θ − θ′.

TOME 67 (2017), FASCICULE 3
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We define the Green function of ωβ as

Γ(x, y) = −
∫ ∞

0
H(x, y, t)dt.

The following lemma is true.

Lemma 2.4. — For any x /∈ D, we have

lim
ε→0

∫
∂Bx(ε)

∂Γ(x, y)
∂νy

dy = 1.

Proof of Lemma 2.4. — It sufficies to notice that, by the assumption
that x /∈ D, we have rx > 0 (rx = r, we just add the sub x to emphasize
its dependence on x). Then, when k 6= 0, we deduce

(2.7) e−
r2+r′2

4t e
rr′ cos(β[θ−θ′]+2kβπ)

2t 6 e−
(r−r′)2+2(1−cos βπ)rr′

4t 6 e−
a
t ,

where a is a positive constant depending on x, especially rx (the distance
from x to D). Then, by defining

(2.8) ΓE

= −
∫ ∞

0

1
(4πt)n e

− r
2+ŕ2+R2

4t

{ ∑
k 6=0,

−π<β[θ−θ′]+2kβπ<π

e
rr′ cos(β[θ−θ′]+2kβπ)

2t

+K
(
rr′

2t , β[θ − θ′]
)

+ 1
2

∑
k,β[θ−θ′]+2kβπ=±π

e−
rr′
2t

}
dt,

we obtain when y ∈ Bx( rx sin βπ
2 ) and β[θ − θ′] 6= ±π mod 2βπ that

(2.9) |∇yΓE |

6
∫ ∞

0

∣∣∣∣∇y{ 1
(4πt)n e

− r
2+ŕ2+R2

4t

 ∑
k 6=0

−π<β[θ−θ′]+2kβπ<π

e
rr′ cos(β[θ−θ′]+2kβπ)

2t


+K

(rr′
2t , β[θ − θ′]

)}∣∣∣∣dt
6 C

∫ ∞
0

(
1
tn

+ 1
tn+ 1

2
+ 1
tn+1

)
e−

a
t dt 6 Ca.

By continuity, we have for all x /∈ D and y ∈ Bx( rx sin βπ
2 ) ⊂ Wβ × Cn−1

that

(2.10) |∇yΓE(x, y)| 6 Ca.
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Notice that

(2.11)

Γ(x, y) = −
∫ ∞

0

1
(4πt)n e

− r
2+ŕ2+R2

4t e
rr′ cos(β[θ−θ′])

2t dt+ ΓE .

= −
∫ ∞

0

1
(4πt)n e

− |x−y|
2

4t dt+ ΓE .

= − 1
4πnρ2n−2 Γ(n− 1) + ΓE ,

where ρ = |x−y| and Γ(n) is the Gamma-function. Using (2.10), we deduce

lim
ε→0

∫
∂Bx(ε)

∂ΓE(x, y)
∂ρ

dy = 0.

Moreover, we have Γ(n)S(2n−1)
2πn = 1, where S(2n−1) is the area of (2n−1)-

dimensional unit sphere. Then we compute

(2.12) lim
ε→0

∫
∂Bx(ε)

∂Γ(x, y)
∂ρ

dy

= lim
ε→0

∫
∂Bx(ε)

∂ΓE(x, y)
∂ρ

dy + 1
2πnε2n−1 Γ(n)S(2n− 1)ε2n−1

= 1. �

Definition 2.5. — We denote Nβ,Ωf as the Newtonian potential of f
over Ω i.e.

Nβ,Ωf =
∫

Ω
Γ(x, y)f(y)dy.

Lemma 2.6 (Green Representation). — Suppose u ∈ W 2,2,β
c (Cn) ∩

C2(Cn \ D), then the Green’s representation formula holds for u i.e. for
all x /∈ D, we have

(2.13) u(x) = Nβ,Cn(∆βu)(x).

Proof of Lemma 2.6. — First, since x /∈ D and u ∈ C2(Cn \ D), then
when ε0 such that Bx(ε0) ∩D = ∅, the following

Nβ,Cn∆βu =
∫
Bx(ε0)

Γ(x, y)∆βu(y)dy +
∫
Cn\Bx(ε0)

Γ(x, y)∆βu(y)dy

is well-defined pointwisely for all x ∈ Cn \D.
Lemma C.1 implies for u ∈W 2,2,β

c (Cn) ∩ C2(Cn \D) that∫
Cn\D

v∆ωu ω
n = −

∫
Cn\D

(∇ωv · ∇ωu) ωn for any conical metric ω,

then (2.13) follows from the well known derivation of formula (2.17) in
page 18 of [12], and Lemma 2.4. �
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In the conical case, the operator T (as defined in 1.5) might not be
self adjoint because there is one special direction. Nevertheless, this could
compensated by the good properties of T ?. For any f, g ∈ Cα,βc (B), we
have

(2.14)
∫
B

(Tf)gdx =
∫
B

fT ?gdy.

It’s easy to show that

T ?g = −Dyj

∫
B

DxΓ(x, y)g(x)dx,

where yj is a tangential varible in the y-component, and Dx is an order 1
differential operator in the x-component.
Notice Dx can not be integrated by parts in general, since div ∂

∂r 6= 0 and
div{ 1

r
∂
∂θ} 6= 0. Nevertheless, Lemma 3.3 guarantees that T ? is densely de-

fined in L2(B), which leads to our necessary L2−estimate. The proof of the
following crucial L2−estimate is almost the same as proof i of Theorem 9.9
in [12]. Nevertheless, since it concerns the correct choice of the Hessian op-
erator to integrate by parts toward, we still present a detailed proof. The
Hessian operator we choose here leads to the necessary W 2,p,β-estimate
when p is large.

Lemma 2.7. — Given a ball B, suppose f ∈ L2(B), then Nβ,Bf is well-
defined. Moreover,

|Tf |2L2(B) 6 C
∫
B

f2,

and
|T ?f |2L2(B) 6 C

∫
B

f2.

Proof of Lemma 2.7. — For any sequence εk > 0 such that εk → 0, we
consider the smoothing of cutoffs of f with parameter εk, denoted as fεk .
The point is that the smoothing and cutoffs work well in the conical case.
Namely, the approximation functions fεk are in C∞c (B), and

lim
k→∞

|fεk − f |L2(B) = 0.

The space C∞(B) is of compact supported smooth functions in the polar
coordinates, not holomorphic coordinates.

Step 1. — Then we consider wεk = Nβ,Bfεk . Then, by the work in Don-
aldson (also see [9]), Nβ,Bfεk ∈ C2,α,β(B), thus it makes sense to consider
Hessian of ωεk in some sense. It sufficies to prove

(2.15)
∫
B

f2
εk
ωnβ =

∫
Cn
|∆wεk |2ωnβ =

∫
Cn
|∇1,1,βwεk |2ωnβ ,
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where the ∇1,1,β is the Hessian operator whose components are exactly
those in the seminorm (2.2). This choice integrates well with Definition 1.3.
Then, the integration by parts proceeds line to line as in proof (i) of The-

orem 9.9 in [12]. For the sake of a self-contained proof, and of emphasizing
the operator ∇1,1,β we choose, we include the detail here. Denote

∆0,β = |z|
2−2β

β2
∂2

∂z∂z̄
, ω0,β = β2

|z|2−2β

√
−1
2 dz ∧ dz̄.

Then

(2.16) ∆ = 4∆0,β +
2n−2∑
j=1

∂2

∂y2
j

.

Denote AR as the polycylinder of radius R. To be precise, we define

(2.17) AR = DR ×BR,

where D(R) is the disk with radius R in the z-component of Cn (centered
at the origin), and BR is the ball with radius R in D = {0} × Cn−1 (also
centered at the origin). Let R be large enough such that A(R) ⊃ suppf ,
then

(2.18)
∫
B(R)

∫
D(R)

(∆wεk)2ω0,β ∧ dy1 . . . ∧ dy2n−2

= 16
∫
B(R)

∫
D(R)

(∆0,βwεk)2ω0,β ∧ dy1 . . . ∧ dy2n−2

+ 8
2n−2∑
j=1

∫
B(R)

∫
D(R)

(∆0,βwεk)wεk,jjω0,β ∧ dy1 . . . ∧ dy2n−2

+
2n−2∑
i,j=1

∫
B(R)

∫
D(R)

wεk,iiwεk,jjω0,β ∧ dy1 . . . ∧ dy2n−2.

Ignoring the constant coefficient temporarily, it suffices to deal with the
second term above. Since f ∈ C∞c (B), and Donaldson’s Schauder estimate
in [10] is smooth in the tangential directions, we have

(2.19) ∂

∂xj
∆0,βwεk ∈ C0[A(R)].

We will show below that it’s convenient to do integration by parts over
these polycylinders, in our case.
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Using the condition (2.19) and Lemma 2.5 in [22] (see Appendix C), the
tangential derivatives ∂

∂yj
can be integrated by parts. Hence

(2.20)
2n−2∑
j=1

∫
B(R)

∫
D(R)

(∆0,βwεk)wεk,jjω0,β ∧ dy1 . . . ∧ dy2n−2

= −
2n−2∑
j=1

∫
B(R)

∫
D(R)

(∆0,βwεk,j)wεk,jω0,β ∧ dy1 . . . ∧ dy2n−2

+
2n−2∑
j=1

∫
∂(B(R)×D(R))

(∆0,βwεk)wεk,jnjω0,β ∧ dy1 . . . ∧ dy2n−2.

wεk ∈ C2,α,β [A(R)] implies the tangential-normal mixed derivatives
∇0,βwεk,j are in L∞[A(R)]. Moreover, ωβ is a product metric of ω0,β with
the Euclidean metric in the tangential directions along D. Then, again,
Lemma 2.5 in [22] and Fubini’s Theorem imply we can integrate the ∆0,β
on the first C-slice by parts to obtain

(2.21) −
2n−2∑
j=1

∫
B(R)

∫
D(R)

(∆0,βwεk,j)wεk,jω0,β ∧ dy1 . . . ∧ dy2n−2

=
2n−2∑
j=1

∫
B(R)

dy1 . . . ∧ dy2n−2

∫
D(R)

|∇0,βwεk,j |2ω0,β

−
2n−2∑
j=1

∫
B(R)

dy1 . . . ∧ dy2n−2

∫
∂D(R)

<ν,∇0,βwεk,j>βwεk,jω0,β ,

where ν is the outer-normal of ∂D(R) with respect to ω0,β . Theorem 1.11
in [9] and the compactly supported property of f implies

(2.22) |∇0,βwεk,j | ∈ O(|x|−2n), wεk,j ∈ O(|x|−2n+1),

|∆0,βwεk | ∈ O(|x|−2n).

Thus, combing (2.20) and (2.21), using (2.22), let R → ∞, then the
boundary terms all tend to 0, and we obtain the following as in proof (i)
of Theorem 9.9 in [12].

(2.23)
2n−2∑
j=1

∫
Cn

(∆0,βwεk)wεk,jjω0,β ∧ dy1 . . . ∧ dy2n−2

=
2n−2∑
j=1

∫
Cn
|∇0,βwεk,j |2ω0,β ∧ dy1 . . . ∧ dy2n−2.
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Handling the term
∑2n−2
i,j=1

∫
B(R)

∫
D(R) wεk,iiwεk,jjω0,β ∧ dy1 . . . ∧ dy2n−2

in (2.18) in the similar and easier way, let R → ∞, then the boundary
terms all tend to 0, and we deduce from (2.18) and (2.23) that

(2.24)
∫
Cn

(∆wεk)2ω0,β ∧ dy1 . . . ∧ dy2n−2

= 16
∫
Cn

(∆0,βwεk)2ω0,β ∧ dy1 . . . ∧ dy2n−2

+ 8
2n−2∑
j=1

∫
Cn
|∇0,βwεk,j |2ω0,β ∧ dy1 . . . ∧ dy2n−2

+
2n−2∑
i,j=1

∫
Cn
|wεk,ij |2ω0,β ∧ dy1 . . . ∧ dy2n−2.

Thus identity (2.15) is true for Newtonian potentials of compactly sup-
ported smooth functions.

Step 2. — By Young’s inequality, since Γ(x, y),∇Γ(x, y) ∈ L1(B), (by
Donaldson’s work [10], also see [9]), we conclude

(2.25)
|wεk1

− wεk2
|L2(B) 6

∣∣∣∣ ∫
B

Γ(x, y)(fεk1
(y)− fεk2

(y))dy
∣∣∣∣
L2(B)

6 |fεk1
− fεk2

|L2(B),

and

(2.26)
|∇wεk1

−∇wεk2
|L2(B) 6

∣∣∣∣ ∫
B

[∇xΓ(x, y)](fεk1
(y)−fεk2

(y))dy
∣∣∣∣
L2(B)

6 |fεk1
− fεk2

|L2(B).

Then, since fεk → f in the L2(B)-sense, then wεk is a Cauchy-Sequence
in W 2,2,β(B)−space. Thus, by the completeness of the W 2,2,β(B)−space,
there exists a w ∈W 2,2,β(B) such that

lim
k→∞

|wεk − w|W 2,2,β(B) = 0.

Then, we define w = Nβ,Bf . By (2.26), (2.15), and (2.25), the proof of
Lemma 2.7 for |Tf |L2(B) is complete.

The proof for |T ?f |L2(B) is simply by using (4.3) (let p = 2) with T and
T ? interchanged. �

Remark 2.8. — The feature of the ∇1,1,β operator we consider in (2.15)
is: it is just the usual real Hessian in the tangential direction of D, it
contains all the mixed derivatives. But, in the normal direction of D, it only
contains the complex (1, 1) derivative. This is the one of the main points of
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this article: with this slightly weaker Hessian, we obtain W 2,p,β−estimates
for all p ∈ (1,∞). We don’t think any W 2,p−theory for the real Hessian
∇2 (of ωβ) could be true when p is large.

3. The Calderon–Zygmund inequalities

In this section, we use the Euclidean metric ωE in the polar coordinates
to define the distances and balls, for the sake of the cube-decomposition.
We show that with the help of Theorem 1.11 in [9], the Calderon–Zygmund
theory in [3] works suprisingly well in the conical setting, after overcoming
a technical difficulty. Namely, the main technical difficulty is that T is
not selfadjoint. However, as presented below, this difficulty can be easily
overcomed, by observing that T ? (the dual of T ) also possess similar good
properties as the Calderon–Zygmund singular integral operators. We follow
the proof of Theorem 9.9 in [12], and define µTf (t) , m{x ∈ K0|f(x) > t}.

Lemma 3.1. — Let B be a ball with finite radius. The operator T is
weakly-(1, 1) bounded i.e. for any f ∈ L2(B), we have

(3.1) µTf (t) 6 C

t
|f |L1(B),

and

(3.2) µT?f (t) 6 C

t
|f |L1(B),

where C only depend on β and n.

Proof of Lemma 3.1. — In the polar coordinates, with respect to the Eu-
clidean metric, we consider a cube K0 (with respect to the Euclidean met-
ric) big enough so that the following holds. For everyK in the first [ (10n)10n

β ]
(the smallest integer bigger than (10n)10n

β ) dyadic cut of K,
∫
K
|f | 6 t|K|.

Exactly as in Theorem 9.9 in [12], we consider the dyadic cuts ofK0 subject
to f and t. Then we obtain cubes Kl, l = 1, 2 . . . such that

(3.3) t|Kl| 6
∫
Kl

|f | 6 22nt|Kl|, for all l,

and

(3.4) f 6 t almost everywhere over G = K0 \ F,

where F = ∪lKl.
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Then we consider the “good” and “bad” decomposition of f as f = g+ b

such that

g =
{

f, over G;
1
|Kl|

∫
Kl
|f |, over Kl.

and

b =
{

0, over G;
bl,

1
|Kl|

∫
Kl
bl = 0.

Thus, (3.3) and (3.4) imply

(3.5) |g|L∞(K0) 6 22nt.

We have

(3.6) µTf (t) 6 µTg(
t

2) + µTb(
t

2).

As in the proof Theorem 9.9 in [12], by Lemma 2.7, we estimate µTg( t2 ) as

(3.7) µTg 6
4
t2

∫
K0

g2 6
22n+2

t

∫
K0

g 6
22n+2

t

∫
K0

|f |.

(3.8) Tbl =
∫
Kl

DΓ(x, y)bl(y)dy

is well-defined when x /∈ Kl. At this stage, actually for any D ∈ T, there
exists a D′ ∈M (see Definition 3.4) such that

(3.9) DΓ(x, y) = D′Γ(x, y).

This is by the translation invariance of the model metric ωβ in the directions
tangential to D. To see this, for example, take D = ∂2

∂rx∂xj
∈ T, where both

the derivatives act on x. Notice that in (2.5), in the D-tangential directions,
the heat kernel only depends on |x− y|, which means

(3.10) ∂2

∂rx∂xj
Γ(x, y) = − ∂2

∂rx∂yj
Γ(x, y).

Notice that the biggest feature of D′ is that the two derivatives are dis-
tributed to different variables, and Lemma 3.5 holds for them.
Hence, using 1

|Kl|
∫
Kl
bl = 0, we have

(3.11) Tbl(x) =
∫
Kl

[D′Γ(x, y)−D′Γ(x, ȳ)]bl(y)dy,

where ȳ is the center of Kl, and x /∈ Bȳ( 1010Dl
β ), Dl is the diameter of Kl.
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Case 1. — Suppose dist(ȳ, {z = 0}) < β2dist(ȳ,x)
1000 , then using Lemma 3.5,

we have

(3.12) |Tbl|(x) 6
∫
Kl

C|y − ȳ|ρ0

|x− ȳ|2n+ρ0
|bl|dy 6 CDρ0

l

∫
Kl

|x− ȳ|−(2n+ρ0)|bl|dy.

Case 2. — Suppose dist(ȳ, {z = 0}) > β2dist(ȳ,x)
1000 , then using Lemma 7.5

in [9] (with the condition P (y) > β4|x−y|
100100 ), we have

(3.13)
|Tbl|(x) 6

∫
Kl

C|y − ȳ|
|x− ŷx|2n+1 |bl|dy 6 CDl

∫
Kl

|x− ŷx|−(2n+1)|bl|dy

6 CDl

∫
Kl

|x− ȳ|−(2n+1)|bl|dy,

where ŷx is a point in the line segment connecting y and ȳ. Thus,

(3.14)
∫
K0\Bȳ( 1010Dl

β )
|Tbl(x)|dx

=
∫
{K0\Bȳ( 1010Dl

β )}∩{dist(ȳ,{z=0})< β2dist(ȳ,x)
1000 }

|Tbl(x)|dx

+
∫
{K0\Bȳ( 1010Dl

β )}∩{dist(ȳ,{z=0})> β2dist(ȳ,x)
1000 }

|Tbl(x)|dx

6 CDρ0
l

∫
Kl

|bl|dy
∫{
K0\Bȳ

(
1010Dl
β

)}
∩
{
dist(ȳ,{z=0})< β2dist(ȳ,x)

1000

}|x− ȳ|−(2n+ρ0)dx

+ CDl

∫
Kl

|bl|dy
∫{
K0\Bȳ

(
1010Dl
β

)}
∩
{
dist(ȳ,{z=0})> β2dist(ȳ,x)

1000

}|x− ȳ|−(2n+1)dx

6 CDρ0
l

∫
Kl

|bl|dy
∫{
K0\Bȳ

(
1010Dl
β

)} |x− ȳ|−(2n+ρ0)dx

+ CDl

∫
Kl

|bl|dy
∫{
K0\Bȳ

(
1010Dl
β

)} |x− ȳ|−(2n+1)dx

6 C
∫
Kl

|bl|dy

{
Dρ0
l

∫
|a|>Dl

|a|−(2n+ρ0)da

}

+ C

∫
Kl

|bl|dy

{
Dl

∫
|a|>Dl

|a|−(2n+1)da

}

6 C
∫
Kl

|bl|dy.
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Remark 3.2. — The reason we have so many β’s in the proof is that in
this section we use the distance and cubes with respect to the Euclidean
metrics ωE in the polar coordinates, but in [9] we use the cone distances
with respect to ωβ . Their relation is

βωβ 6 ωE 6
ωβ
β
.

We can only consider cubes with respect to the reference metric ωE .
Thus, by the argument in page 234 of [12], we deduce

(3.15) µTb(f) 6 C

t
|f |L1(B).

Combining (3.15) and (3.7), the proof of Lemma 3.1 on the opeartors
T ∈ T is complete. Using exactly the proof above, the estimate on the
adjoint operator T ? follows. Actually we have a slightly shorter proof for
T (which does not require dividing the situation into 2 cases). However,
since we want a single proof to work for both T and T ?, we only present
the longer proof above. �

The following lemma is only needed in proving T ?f is densely defined
in Lp, combined with the other results of this article. Though not fully
needed in the proof of the results in the introduction, we think it has its
own interest.

Lemma 3.3. — T ? is bounded linear map from Cα,β to itself, for all
α < min{ 1

β − 1, 1}.

Proof of Lemma 3.3. — Using Theorem 1.11 in [9] and Lemma 3.5, the
proof is exactly as in Proposition 5.3 in [9]. �

Definition 3.4. — Similar to the definition in (1.4), we define the
mixed derivative operators as

M = {DxDyj , yj is a tangential variable to D ;DyDxj ,

xj is a tangential variable to D.}

The feature of this set of operators is that the two derivatives are dis-
tributed to different variables.

Lemma 3.5. — For any second order spatial derivative operatorD ∈M.
Suppose ρ0 = min( 1

β − 1, 1), |x| = 1 and |v1|, |v2| < 1
8 , we have

|DΓ(x, v1)−DΓ(x, v2)| 6 C|v1 − v2|ρ0 .

Proof of Lemma 3.5. — It’s an easier version of the arguments in Sec-
tion 8 of [9]. �
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4. W 2,p and C1,α,β estimates with Lp-right hand side

In this section, we prove Theorem 1.13 by proving Theorem 4.1, and we
also prove Theorem 1.14. These 3 theorems are the main technical building
blocks of the local regularity results in Theorem 1.6 and Corollary 1.8.

Proof of Theorem 1.13. — Suppose L = aij̄ ∂2

∂ziz̄j
, by multiplying a cutoff

function η2, we compute

∆β(η2u) = (∆β − L)(η2u) + L(η2u)

= (∆β − L)(η2u) + 2Reaij̄(η2)i(u)j̄ + aij̄(η2)ij̄u+ η2f.

Using Theorem 4.1, we deduce

[η2u]W 2,p,β ,B(2) 6 C|∆β(η2u)|Lp,B(2)

6 C|(∆β − L)(η2u)|Lp,B(2) + C|2Reaij̄(η2)i(u)j̄ |Lp,B(2)

+ C|aij̄(η2)ij̄u|Lp,B(2) + C|η2f |Lp,B(2)

6 Cδ0[η2u]W 2,p,β ,B(2) + C|u|W 1,p,β ,B(2) + |η2f |Lp,B(2).

Choosing δ0 6 1
2C , and η be the cutoff function such that

η ≡ 1 over B(1); η = 0 over B(2) \B
(

3
2

)
,

the desired conclusion in Theorem 1.13 follows. �

Theorem 4.1. — Let B be a ball in Cn. Then T is a bounded linear
map from Lp(B) to itself, for p ∈ (1,∞). i.e. for all f ∈ Lp(B), we have

|Tf |Lp(B) 6 |f |Lp(B).

Consequently, let u ∈W 2,p,β
c (B) ∩ C2(B \D), p ∈ [2,∞), then

[u]W 2,p,β(B) 6 C|∆βu|Lp(B),

where C only depend on n, β, p.

Proof of Theorem 4.1. — Lemma 2.6 says when u is compactly sup-
ported, u is equal to the Newtonian potential of its Laplacian. Then for
any D ∈ T, Du = T (∆βu) (for the T of D in (1.5)). Hence the conic version
of Calderon–Zygmund inequality in Lemma 3.1 is directly applicable.
By Marcinkiewicz-intepolation in Theorem 9.8 in [12], Lemma 2.7, and

Lemma 3.1, we deduce both T and T ? are bounded linear map from Lp to
Lp, 1 < p 6 2 i.e.

(4.1) |Tf |p,B 6 C|f |p,B , for all 1 < p 6 2,
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and

(4.2) |T ?f |p,B 6 C|f |p,B , for all 1 < p 6 2.

Then for p > 2, we conclude for all f, g ∈ C∞c (B) that

|Tf |p,B = sup
|g|p′,B=1

∫
B

(Tf)gdx = sup
|g|p′,B=1

∫
B

f(T ?g)dy

6 sup
|g|p′,B=1

|f |p,B |T ?g|p′,B (1 < p′ < 2)

6 C sup
|g|p′,B=1

|f |p,B |g|p′,B

= C|f |p,B .

Notice that u = Nβ,Cn(∆βu), by Lemma 2.6. Then, combining (4.3), (4.1),
the fact that C∞c (B) is dense in Lp(B), and the Laplace equation

|z|2−2β

β2
∂2u

∂z∂z̄
= ∆βu−

n−1∑
i=1

∂2u

∂wi∂w̄i
,

we obtain the estimates in all directions are obtained. The proof of Theo-
rem 4.1 is complete. Moreover, we’ve shown

|T ?g|q,B 6 C|g|q,B , for all 1 < q <∞. �

Corollary 4.2. — Suppose u ∈W 1,2,β [B(2)] is a weak-solution to

∆βu = f, f ∈ Lp[B(1)], ∞ > p > 2.

Then u is actually in W 2,p,β [B( 1
2 )] and is therefore a strong-solution to the

above equation in B( 1
2 ).

Proof of Corollary 4.2. — The proof is quite straight forward. Just notice
Nβ,B(1)f ∈ W 2,p,β [B(1)], and v = u − Nβ,B(1)f ∈ W 1,2,β [B(1)] is a weak
solution to the harmonic equation

∆βv = 0, over B(1).

Thus by Lemma C.3 (Lemma 2.1 in [22]), v ∈ C2,α,β [B( 2
3 )]. Thus u =

v +Nβ,B(1)f ∈W 2,p,β [B( 1
2 )]. �

Proof of Theorem 1.14. — This is an easier version of the work in [9].
By Corollary 4.2 and Donaldson’s Schauder-estimate in [10], it suffices to
estimate the Newtonian potential of f :

Nβf =
∫
B(1)

Γ(x, y)f(y)dy.
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By Lemma 7.2 in [9], we estimate

(4.3)

|∇(Γ ? f)| =

∣∣∣∣∣
∫
B(1)

(∇Γ(x, y))f(y)dy

∣∣∣∣∣
6 C

∫
B(1)

1
|x− y|2n−1 |f(y)|dy

6 C

∣∣∣∣ 1
|x− y|2n−1

∣∣∣∣
Lp′ ,B(1)

|f |Lp,B(1).

Since p > 2n, we have p′ < 2n
2n−1 . Then∣∣∣∣ 1

|x− y|2n−1

∣∣∣∣
Lp′ ,B(1)

6 C,

and
|∇(Γ ? f)|C0[B( 1

2 )] 6 C|f |Lp,B(1).

Next we estimate the Hölder norm of∇(Γ?f). Without loss of generality, we
assume |x1| = δ and x2 = 0, which is the main issue. The Hölder estimate
for all general x1, x2 follows from the proof of Proposition 5.3 in [9]. We
compute

(4.4)
|∇(Γ ? f)(x1)−∇(Γ ? f)(0)| =

∣∣∣∣∣
∫
B(1)

[∇Γ(x1, y)−∇Γ(0, y)]f(y)dy

∣∣∣∣∣
6 I1 + I2,

where

I1 =

∣∣∣∣∣
∫
B(1)∩{|y|>10δ}

[∇Γ(x1, y)−∇Γ(0, y)]f(y)dy

∣∣∣∣∣
and

I2 =

∣∣∣∣∣
∫
B(1)∩{|y|610δ}

[∇Γ(x1, y)−∇Γ(0, y)]f(y)dy

∣∣∣∣∣ .
Then it’s obvious that

(4.5)

I2 6

∣∣∣∣∣
∫
{|y|610δ}

∇Γ(x1, y)f(y)dy

∣∣∣∣∣+

∣∣∣∣∣
∫
{|y|610δ}

∇Γ(0, y)f(y)dy

∣∣∣∣∣
6 C

∫
{|y|610δ}

1
|x1 − y|2n−1 |f(y)|dy + C

∫
{|y|610δ}

1
|y|2n−1 |f(y)|dy

6 Cδα0 |f |p,

where α0 = 1− 2n
p . For the estimate of I1, we should assume

2n < p <
2n

1−min{ 1
β − 1; 1}

(if β 6 1
2 we just assume 2n < p <∞).
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Thus 1 − 2n
p < min{ 1

β − 1, 1}. This does not change the conclusion of
Theorem 1.14, because what we assume is an additional upper bound on
p. Next, we estimate I1. By Lemma 8.2 in [9], we compute

(4.6)

I1 6
∫
{|y|>10δ}

1
|y|2n−1

∣∣∣∣∇Γ
(
x1

|y|
,
y

|y|

)
−∇Γ

(
0, y
|y|

)∣∣∣∣ |f(y)|dy

6 Cδα0+ε
∫
{|y|>10δ}

1
|y|2n−1+α0+ε |f(y)|dy

6 Cδα0 |f |p

where α0 = 1− 2n
p , and ε is chosen such that α0 + ε < min{ 1

β − 1, 1}. �

5. KRF metrics with small ossilations

In C×Cn−1, consider the standard conical Kähler–Ricci flat metric with
cone angle β ∈ (0, 1) along the divisor {0} × Cn−1.

ωβ = β2

|z|2−2β |d z|
2 + |dw|2,

where z ∈ C and w ∈ Cn−1. We say a complex linear transformation L

splits along D, if the first component C× {0} in C× Cn−1 is an invariant
space of L, and the tangential component {0} × Cn−1 is also an invariant
space of L. In this section, we prove the following regularity proposition,
which is crucial to establish Theorem 1.6.

Proposition 5.1. — Suppose L is a linear transformation which splits
along D, and (L?ωβ)n = ωnβ . Then there exists a constant Q0 depending on
β, n, and the supremum of eigenvalues of LL? with the following properties.
Suppose φ is a pluri-subharmonic function which satisfies

• ωnφ = efωnβ , f ∈ C1,1,β [B(100)];
• (1− δ)L?ωβ 6 ωφ 6 (1 + δ)L?ωβ , where δ � 1 is sufficiently small
with respect to the supremum of eigenvalues of LL?.

Then φ ∈ C2,α,β [B( 1
Q0

)], for all α < min{ 1
β − 1, 1}.

In particular, suppose

(5.1) ωnφ = ωnβ , (1− δ)ωβ 6 ωφ 6 (1 + δ)ωβ over B(100)

for δ � 1 small enough, then φ ∈ C2,α,β [B( 1
2 )], for all α < min{ 1

β − 1, 1}.
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Proof of Proposition 5.1. — We only prove the second part on the special
case (5.1), the proof of the general case is the same.
Using (5.1) and Proposition 5.2, over B(10), we can choose a potential,

still denoted as φ, such that

(5.2) |φ|0,B(10) 6 C(n, β),

where C(n, β) is a constant which only depends on the dimension n and
angle β.

For any unit vector v ∈ {0} × Cn−1. tangential to the divisor, and for
any small positive constant ε > 0, define difference quotient as

(Dε,vφ)(z, w) = φ(z, w + ε · v)− φ(z, w)
ε

.

Let ε→ 0, we have
lim
ε→0

Dε,vφ = (∇φ, v).

By (5.1), we end up with a trivial but important fact

(5.3) |∆βφ| 6 C in B(10).

Using Theorem 1.13, (5.2), Corollary 4.2 and intepolations in the appen-
dix of [9], we obtain

|φ|W 2,p,β(B(5)) 6 C, for all 1 < p <∞.

This implies ∣∣∣∣∂φ∂v
∣∣∣∣
W 1,p(B(5))

6 C, for all 1 < p <∞.

Then, by Lemma 7.23 in [12], we conclude the following estimate on the
tangential difference quotients

(5.4) |Dε,vφ|W 1,pB(4) 6 C.

Therefore, take Dε,v to both hand sides of the Ricci-flat equation

(5.5) ωnφ = ωnβ ,

we obtain
4ε,vDε,vφ = 0, over B(9),

where
4ε,v(x) =

∫ 1

0
[sφ(x+ εv) + (1− s)φ(x)]ij̄ds ∂2

∂zi∂z̄j
.

(5.1) implies directly the following.

|4β −4ε,v| 6 δ(ωβ)−1.

By Evans–Krylov Theorem away from D, we have φ ∈ C2(C× Cn−1 \D)
(actually φ is smooth away from D, but C2 of φ is all we need here).
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Then the aprori estimate in Theorem 4.1 and 1.13 are directly applicable.
Applying Theorem 1.13 and (5.4), we have

[Dε,vφ]W 2,p,β ,B(2) 6 C(|Dε,vφ|W 1,p,B(4)) 6 C.

Since the above holds for all p, then applying Theorem (1.14), and again
the lower order estimate (5.4), we obtain the crucial estimate

|Dε,vφ|1,α,β,B(1) 6 C, for all α < min
{

1
β
− 1, 1

}
.

Now, let ε→ 0, since φ is smooth away from D, we have
∂φ

∂v
∈ C1,α,β

[
B

(
1
2

)]
and

(5.6)
∣∣∣∣∂φ∂v

∣∣∣∣
1,α,β,B( 1

2 )
6 C, for all α < min

{
1
β
− 1, 1

}
.

This means the mixed derivatives ∂2φ
∂r∂wi

, 1
r

∂2φ
∂θ∂wi

, and the pure tangen-
tial derivatives ∂2φ

∂wi∂wj
, are all bounded in C1,α,β [B( 1

2 )]-norm by C whose
dependence is as in Proposition 5.1.
Using the equation (1.3) and the quasi-isometric condition (5.1), exactly

as in the proof of Theorem 10.1 in [8], we deduce the crucial normal-(1, 1)
derivative. ∣∣∣∣( ∂2

∂r2 + 1
r

∂

∂r
+ 1
β2r2

∂2

∂θ2

)
φ

∣∣∣∣
α,β,B( 1

2 )
6 C.

The above implies our final conclusion

φ ∈ C2,α,β
[
B

(
1
2

)]
and |φ|2,α,β,B( 1

2 ) 6 C, for all α < min
{

1
β
− 1, 1

}
. �

The following Proposition is important.

Proposition 5.2. — There exists a constant C depending on β and n
with the following properties. Given the equation

(5.7)
√
−1∂∂̄v = η over A1000,

where η is a closed (1,1)-form such that η =
√
−1∂∂̄φη for some φη ∈ C1,1,β .

Then there exists a solution v in W 2,p,β (for any p) such that

|v|W 2,p,β ,A1 + |v|0,A1 6 C|η|Lβ,∞,A1000 .

Proof of Proposition 5.2. — The proof is exactly as in Proposition 4.1
in [8]. Just notice when η is merely in L∞,β , the orbifold trick in Lemma 4.3
of [8] works the same. Then pulling back upstairs we still obtain a solu-
tion by Lemma A.1. Hence, take average of this upstairs solution over the
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discrete orbit of the monodromy group, and push this average down as in
Lemma 4.4 in [8], we obtained the solution v we want. �

6. Proof of the Main Theorems

In this section we prove Theorem 1.11 and 1.6. These proofs summarizes
the work done in this article. Corollary 1.8 is directly implied by Theo-
rem 1.6, by Definition 1.1.

Proof of Theorem 1.11. — It suffices to show that (1.3) already implies ω
is Cα,β , then Theorem 1.14 in [8] implies Theorem 1.11. The Cα,β-regularity
of the weak conical metric ω in Theorem 1.11 is the main work of this
article. This can be divided into 2 steps.

Step 1. — 7 important results in [8] directly work in the our weak conical
case. These 7 results are

• Lemma 6.1 on bounded weakly subharmonic functions in [8] (di-
rectly works when ω is merely a weak conical metric );

• Theorem 6.2 on weak-maximal principles in [8](directly works when
ω is merely a weak conical metric );

• Theorem 7.3 and 7.4 on solvability of Dirichilet boundary value
problems in [8] (directly works when ω is merely a weak conical
metric );

• Theorem 8.1 on strong-maximal principles in [8] (directly works
when ω is merely a weak conical metric );

• Lemma 13.1 on Trudinger’s harnack inequality in [8] (directly works
when ω is merely a weak conical metric );

• Proposition 4.1 in [8] on solvability of Poincare–Lelong equation
with Cα,β right hand side. This is substituted by Propsition 5.2 on
solvability of Poincare–Lelong equation with L∞,β-right hand side,
with almost the same proof.

The above 7 results imply any weak conical metric ω satisfying the condi-
tions in Theorem 1.11 is either linearly-isometric to ωβ or admits a tangent
cone which is linearly-isometric to ωβ .

Step 2. — The last paragraph in Step 1 means the second assump-
tion in Theorem 5.1 in [8] is fulfilled. Then Theorem 5.1 in [8] implies
Theorem 1.11, provided we can show ω is in Cα,β . This is precisely what
Proposition 5.1 says. Actually, Proposition 5.1 is really the main technical
result of this article. �
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Proof of Theorem 1.6. — This theorem is an interior regularity result,
and away from D the regularity automatically follows from Proposition 16
of [7]. Thus, without loss of generality, we assume Ω = B0(1) (the unit
ball centered at the origin). This proof is a simple combination of Proposi-
tion 5.1, Theorem 1.11, and the Chen–Donaldson–Sun’s trick in the proof
of Proposition 26 in [6].
We consider the rescaling of the metrics and potential as

(6.1) φλ = λ2φ, ωλ = λ2ω, ω̂β = λ2ωβ ,

and the rescaling of the coordinates as

(6.2) ẑ = λ
1
β z, ŷj = λyj , 1 6 j 6 2n− 2.

Then the ω̂β is the model cone metric in the coordinates in (6.2). Then
equation (1.1) is rescaled to the following geometric equation

(6.3) ωnλ = f̂

β2 ω̂
n
β

in the coordinates of (6.2), where f̂ is the pulled back function under the
coordinate change. Since f̂ ∈ C1,1,βB0(λ), by the usual Evans–Krylov The-
orem away from D, we deduce

|ωλ|Cα[B(R)\Tε(D)] 6 C(R, ε), for all R 6 λ

2 .

Since f ∈ Cα[B(1)] before rescaling, then limλ→∞ f̂ = Const in the
sense of Cα̂, for all 0 < α̂ < α. Without loss of generality we can assume

lim
λ→∞

f̂

β2 = 1.

Then, ωλ converges to ω∞ uniformly over any fixed B(R) \ Tε(D) such
that

(6.4) ωn∞ = ω̂nβ over Cn \D,

and

(6.5) ω̂β
C
6 ω∞ 6 Cω̂β .

To prove ω∞ is a weak conical metric in the sense of Definition 1.3, it
suffices to show ω∞ admits a Cα-potential near any p ∈ D. By the proof
of the Harnack inequality in item 2 of Lemma 6.1 in [8], and the quasi-
isometric condition (6.5), it sufficies to show ω∞ admits a L∞-potential
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near any p ∈ D. This is done simply by applying Proposition 5.2 to ωλ.
Namely, using the quasi-isometric condition

(6.6) ω̂β
C
6 ωλ 6 Cω̂β ,

Proposition 5.2 and Theorem 1.14 imply for any p ∈ D in the rescaled
coordinates (6.2), when λ is sufficiently large, there exists a potential φp,λ
defined in Bp(1010) such that

(6.7) |φp,λ|Cα[B(1)] 6 C, ωλ =
√
−1∂∂̄φp,λ.

Thus, for any α̂ < α, φp,λ converges in Cα̂[B( 1
2 )]-topology to φp,∞ ∈

Cα̂[B( 1
2 )] such that

(6.8) ω∞ =
√
−1∂∂̄φp,∞ over Bp

(
1
2

)
, in the sense of current.

Then ω∞ is a weak conical metric in the sense of Definition 1.3.
Therefore, by Theorem 1.11, we deduce

ω∞ = L?ω̂β ,

where L is a linear transformation preserving D. By the uniform conver-
gence of ω∞ over any fixed B(R) \ Tε(D), and the the proof of Proposi-
tion 2.5 in [5], we deduce

(6.9) lim
λ→∞

|ωλ − L?ω̂β |L2(B0(1)) = 0.

To modify the convergence in (6.9) to pointwise convergence, we use the
assumption that f ∈ C1,1,β(B).
Since (L?ω̂β)n = ω̂nβ , we translate equation (6.3) to be

(6.10) ωnλ = f̂

β2 (L?ω̂β)n.

By Yau’s Bochner technique and h ∈ C1,1,β [B(1)], we deduce for any
δ > 0 that

(6.11) ∆
L?ω̂β

(
tr
L?ω̂β

ωλ − n+ δ
)
> −

[h]C1,1,β [B(1)]

λ2 → 0 in B(1).

Then, (6.11), (6.9) and the Moser’s iteration (as in the proof of Proposi-
tion 26 in [6]) imply

lim
λ
|ωλ − L?ω̂β |L∞,β ,(B0( 1

2 )) = 0.
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Let δ0 be small enough with respect to the δ in Proposition 5.1 and the
quasi-isometric constant of ωφ with respect to ωβ in the original coordi-
nates, there exists a λ0 such that for all λ > λ0, we have

(6.12) |ωλ − L?ω̂β |L∞,β(B0( 1
2 )) < δ0.

Since (6.12) implies the following crucial small ossilation estimate before
rescaling,

(6.13) |ωφ − L?ωβ |L∞,β(B0( 1
2λ0

)) < δ0,

then Proposition 5.1 implies ωφ ∈ Cα,β( 1
2Qλ0

)), where Q is a constant
which only depends on the quasi-isometric constant of ωφ with respect to
ωβ in the original coordinates. The proof of Theorem 1.6 is complete. �

Appendix A. Poincare–Lelong equation in the smooth
case

The following lemma is necessary for the results in [8] and also in this
article (in the proof of of Proposition 5.2). We believe it’s well known to
experts, but for the sake of being self-contained we still would like to give
a proof here. The proof is actually a simple combination of the proof of the
Lemma in page 387 of [13], and Hormander’s results.

Lemma A.1. — There exists a constant C depending on n and p with
the following properties. Suppose σ ∈ L2(B10) is a closed (1,1)-form such
that

• σ =
√
−1∂∂̄φσ for some φσ ∈ Cα.

• σ ∈ L∞(B) ∩ Cα(B10 \D).
Then there exists a solution ϕ in W 2,p (for any 0 < p <∞) to

(A.1)
√
−1∂∂̄ϕ = σ over B1,

such that
|ϕ|W 2,p,B1 + |ϕ|0,B1 6 C|σ|L∞,B10 .

Proof of Lemma A.1. — The two conditions of σ imply σ ∈ L∞(B) as
a distribution.
By Hormander’s ∂̄-solvability in Theorem 2.2.1 [15], there exists a (1,0)-

form η ∈ L2(B(9)) such that

(A.2) σ = −
√
−1∂̄η.

Then, since √
−1∂̄(∂η) = ∂σ = 0,
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then ∂η is a closed holomorphic (2, 0)-current. Thus, by the regularity
of closed holomorphic (2, 0)−forms, ∂η is actually a smooth holomorphic
(2, 0)-form. By the d-Poincare Lemma for smooth holomorphic (p, 0)-forms,
there exists a holomorphic (1, 0)-form ξ such that

∂η = ∂ξ.

Thus, we deduce

(A.3) ∂(η − ξ) = 0.

By the conjugate of ∂̄-solvability in Theorem 4.2.5 in page 86 of Horman-
der’s book [16], we end up with ∂-solvability and therefore a form γ such
that

(A.4) ∂γ = η − ξ.

Then
√
−1∂∂̄γ = σ. Let

ϕ = 1
2(γ + γ̄),

then ϕ is real and
√
−1∂∂̄ϕ = σ. Since ϕ ∈W 1,2, then ϕ is a weak solution

to
∆ϕ = trσ ∈ L∞(B5).

Then, ϕ is a strong solution to the above equation in the sense of Chap. 9
in [12]. Then, the estimate in Lemma A.1 follows from Theorem 9.11 in [12]
and the Moser’s iteration. �

Appendix B. An alternative approach to Corollary 1.8 by
the conical Kähler–Ricci flow

In this section, we present a short proof of Corollary 1.8 when the weak
conical Kähler–Einstein metric lives on a closed Kähler manifold. This
proof, while lives on a closed manifold, does not require theW 2,p,β-estimate
established in Sections 3 and 4.
Let (M, [ω0]) be a smooth Kähler manifold, D be a smooth divisor, S be

the defining section of D, and | · | be a smooth metric of the line bundle
associated to D, we consider the Monge–Ampère equation as

(B.1) (ω0 +
√
−1∂∂̄φ)n = eh

|S|2−2β ω
n
0 , h ∈ C1,1,β(M).

ANNALES DE L’INSTITUT FOURIER



REGULARITY OF SINGULAR MONGE–AMPERE EQUATIONS 999

Lemma B.1. — Suppose both φ1 and φ2 are C1,1,β(M) solutions to
equation (B.1), such that both ω0 +

√
−1∂∂̄φ1 and ω0 +

√
−1∂∂̄φ2 are

weak conical Kähler-metrics over M . Then

φ1 − φ2 ≡ Constant over M \D.

Proof of Lemma B.1. — Substracting (B.1) with φ = φ2 from (B.1) with
φ = φ1, we end up with

(B.2) ∆s(φ1 − φ2) = 0 over M \D,

where
∆s =

∫ 1

0
gij̄sφ1+(1−s)φ2

ds
∂2

∂zi∂z̄j
.

Thus, Lemma B.1 follows from equation (B.2) and the strong maximal-
principle in Theorem 8.1 in [8]. �

Theorem B.2. — Suppose h ∈ C1,1,β(M). Then any weak solution to
(B.1) is strong i.e. in C2,α,β , for any 0 < α < min{ 1

β − 1, 1}.
In particular, any weak-conical Kähler–Einstein metric of [M, (1− β)D]

(0 < β < 1) must be a Cα,β conical Kähler–Einstein metric, for any 0 <
α < min( 1

β − 1, 1).

Proof. — Define

K(φ) =
∫
M

log
|S|2−2βωnφ
ehωn0

ωnφ
n! .

Then, along the corresponding conical Kähler–Ricci flow,

(B.3) (ω0 +
√
−1∂∂̄φ)n = eh+ ∂φ

∂t

|S|2−2β ω
n
0 ,

we deduce
K(φ(t)) =

∫
M

∂φ

∂t

ωnφ
n! .

Then, along the flow (B.3), we obtain the following monotonicity by direct
computation.

(B.4) dK(φ(t))
dt

= −
∫
M

|∇φ
∂φ

∂t
|2
ωnφ
n! .

Then, applying the proof of Theorem 1.7 in [8], with modifications in
the C2-estimate part (which we will specify later), together with the mono-
tonicity of the K-energy (B.4) in the convergence argument in Section 11
of [8], we deduce that the flow (B.3) converges to a φ∞ ∈ C2,α,β(M) which
solves equation (B.1). The point is, the solution φ∞ produced by the conical
Kähler–Ricci flow in [8] is in C2,α,β(M) (strong conical)!
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Then, both φ and φ∞ solve equation (B.1). By the uniqueness of C1,1,β

solutions in Lemma B.1, we obtain

φ = φ∞ + Const ∈ C2,α,β .

The proof of Theorem B.2 is complete.
The modification on the C2-estimate is that, in the setting of Theo-

rem B.2, it’s super easy to apply the Guenancia–Păun type C2-estimate as
in [14], while we surely believe the Chern–Lu inequality as in [6] and [17],
and the trick in [24] all work equally well. Namely, using the assumption
that ∆βh > −C, formula (22) in [23] (for ε = 0) says

(B.5) (∆φ −
∂

∂t
){log trωDωφ +B|S|2β −Aφ} > trωφωD +A

∂φ

∂t
− C.

By using the barrier function in the proof of Theorem 6.2 in [8], the rest of
the proof of the C2-estimate goes exactly as the proof of Lemma 3.1 in [23],
with ε = 0. �

Appendix C. Integration by parts and regularity of
harmonic function

Lemma C.1 (Lemma 2.5 in [22]). — Let B be a ball in the polar coor-
dinate, and ω be a conic metric defined in 2B. Suppose X is a C1−vector
field away from D and X ∈ L2(B) ∩W 1,1,β(B) (this says ∇X ∈ L1(B)),
then

(C.1)
∫
B\D

divX ωn =
∫
∂B\D

< X, v > ωn.

Proof of Lemma C.1. — There are 2 approaches, we use the one in-
volving a very nice cutoff function due to Berdtsson. Let r be the distance
function to D (near D with respect to ωβ). Let ψε = ψ(ε log(− log r)), ψ is
the standard cutoff function such that ψ(x) ≡ 1 when x 6 1

2 , and ψ(x) ≡ 0
when x > 4

5 . Then

(C.2) ψε ≡ 0 when r 6 e−e
4
5ε ; ψε ≡ 1 when r > e−e

1
2ε .

The following claim is true by elementary calculation.

Claim C.2.

(C.3) lim
ε→0
|∇ψε|L2(B) = 0.
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By applying Theorem 1 in page 271 of Evans [11] to ψεX, and the mono-
tone convergence theorem, we deduce X ∈ L1(∂B). By definition we have
limε→0 ψε = 1 everywhere except on suppD. Since ψεX is supported away
from D, we compute for any ε > 0 that∫

B\D
div(ψεX)ωn =

∫
∂B\D

< ψεX, v > ωn

=
∫
B\D

< ∇ψε, X > ωn +
∫
B\D

ψεdivXω
n

Let ε → 0, the condition X ∈ L2(B), Cauchy–Schwartz inequality, and
Claim C.2 imply |

∫
B\D < ∇ψε, X > ωn| → 0, then the proof is complete

by the above identity. �

Lemma C.3 (Elliptic version of Lemma 2.1 in [22]). — Suppose u ∈
W 1,2,β(B) is a weak solution to ∆βu = 0 in B. Then u ∈ C2,α,β(B2 ) for
any 0 < α < 1

β − 1.

Proof of Lemma C.3. — It sufficies to prove the regularity for poly-
cylinders defined in (2.17), because B

2 can be covered by finitely many
cylinders. Suppose the conditions of the lemma hold in AR.

Step 1. — Notice that A 3R
4

is piecewisely smooth. Differentiating the
harmonic equation with respect to wi, we get

(C.4) ∆β
∂u

∂wi
= 0.

By exacly the same argument in Theorem 8.8 in [12] involving difference
quotients, we have

(C.5) ∂u

∂wi
∈W 1,2,β(A 3R

4
).

Lemma C.1, (C.4), and (C.5) imply that ∂u
∂wi

is a weak solution to (C.4)
in A 3R

4
. Trudinger’s Harnack inequality (Lemma 6.1 in [8]) implies ∂u

∂wi
∈

Cα,β . Let n be the outer normal vector of ∂A 3R
4

over D 3R
4
× ∂B 3R

4
, the

above implies ∂u
∂n ∈ C

α,β therein.

Step 2. — Lemma C.1 implies (c.f. Lemma 2.6)

(C.6) u(x) =
∫
∂A 2R

3

[<∇yΓ(x, y), n>u(y)−<∇u(y), n>Γ(x, y)]dy,

for all x ∈ intA 2R
3
. We note that over {r = 3R

4 }, n = ∂
∂r , then

∂Γ(x,y)
∂r and

∂u
∂r are both smooth in y. Moreover, < ∇yΓ(x, y), n > and Γ(x, y) are both
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in C2,α,β(AR
2

) (with respect to x) when y ∈ ∂A 2R
3
. Thus the above integral

is actually regular when x ∈ AR
2
, and u ∈ C2,α,β(AR

2
). �

�
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