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THE EQUIVARIANT MINKOWSKI PROBLEM IN
MINKOWSKI SPACE

by Francesco BONSANTE & François FILLASTRE (*)

Abstract. — The classical Minkowski problem in Minkowski space asks,given
a positive function φ on Hd, for a convex set K in Minkowski space with C2 space-
like boundary S, such that φ(η)−1 is the Gauss–Kronecker curvature at the point
with normal η. Analogously to the Euclidean case, it is possible to formulate a
weak version of this problem: given a Radon measure µ on Hd the generalized
Minkowski problem in Minkowski space asks for a convex subset K such that the
area measure of K is µ.

In the present paper we look at an equivariant version of the problem: given
a uniform lattice Γ of isometries of Hd, a Γ invariant Radon measure µ and an
isometry group Γτ of Minkowski space with Γ as linear part, there exists a unique
convex set with area measure µ, invariant under the action of Γτ . The proof uses
a functional which is the covolume associated to every invariant convex set.

This result translates as a solution of the Minkowski problem in flat space times
with compact hyperbolic Cauchy surface. The uniqueness part, as well as the regu-
larity results, follow from properties of the Monge–Ampère equation. The existence
part can be translated as an existence result for Monge–Ampère equation.

The regular version was proved by T. Barbot, F. Béguin and A. Zeghib for
d = 2 and by V. Oliker and U. Simon for Γτ = Γ. Our method is totally different.
Moreover, we show that those cases are very specific: in general, there is no smooth
Γτ -invariant hypersurface of constant Gauss–Kronecker curvature equal to 1.
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equation.
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Résumé. — La forme classique du problème de Minkowski dans l’espace de
Minkowski est la recherche, pour une fonction positive φ sur Hd, d’un ensemble
convexe K dans l’espace de Minkowski, avec un bord S C2 de type espace, tel que
φ(η)−1 soit la courbure de Gauss–Kronecker au point dont la normale est η. De
façon analogue au cas euclidien, il est possible de formuler une version faible de ce
problème : étant donné un mesure de Radon µ sur Hd, le problème de Minkowski
généralisé dans l’espace de Minkowski est la recherche d’un ensemble convexe K
tel que la mesure d’aire de K est µ.

Dans ce travail nous regardons une version équivariante de ce problème : étant
donné un réseau uniforme Γ d’isométries de Hd, étant donné une mesure de Radon
µ invariante pour l’action de Γ, étant donné un groupe d’isométries Γτ de l’espace
de Minkowski, dont Γ est la partie linéaire, il existe un unique ensemble convexe
de mesure d’aire µ, et qui est invariant sous l’action de Γτ . La preuve utilise une
fonctionnelle, le covolume associé à tout ensemble convexe invariant.

Ce résultat donne une solution du problème de Minkowski dans des espace-
temps plats avec des surfaces de Cauchy compactes. L’unicité de la solution, ainsi
que les résultats à propos de la régularité de la solution, sont des conséquences de
propriétés de l’équation de Monge–Ampère. L’existence de la solution se traduit
en un résultat d’existence pour l’équation de Monge–Ampère.

La version régulière de notre résultat a été montrée par T. Barbot, F. Béguin
et A. Zeghib dans le cas d = 2 et par V. Oliker et U. Simon quand Γτ = Γ. Notre
méthode est totalement différente. De plus, nous montrons que ces deux cas sont
vraiment spéciaux : en général, il n’existe pas d’hypersurface lisse invariante sous
l’action de Γτ ayant une courbure de Gauss–Kronecker constante égale à 1.

1. Introduction

In this paper we study an adapted version of classical Minkowski prob-
lem in Minkowski space and more generally in globally hyperbolic flat
Lorentzian manifolds.

Let us recall that Minkowski space Rd,1 is the manifold Rd+1 equipped
with the flat Lorentzian structure given by Minkowski product:

〈X,Y 〉− =
d∑
i=1

XiYi −Xd+1Yd+1 .

The pseudo-sphere is the subset of Rd,1 of unit future oriented time-like
vectors

Hd = {X ∈ Rd+1 | 〈X,X〉− = −1, Xd+1 > 0} .
It is well-known that it is a space-like (i.e., the restriction of 〈 · , · 〉− to THd
is positive) convex hypersurface in Rd+1 isometric to the hyperbolic space.
Let S be the boundary of a strictly convex set K of Rd,1. Suppose that

S is C2, and space-like. This assumption forces K to be unbounded: in fact
either K coincides with the future of S or with its past. We will always
assume that K is the future of S.
The normal vectors of S are time-like, so a natural Gauss map is defined
G : S → Hd sending p to the unique future-oriented unit time-like vector
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orthogonal to TpS. The map G is injective but in general is not surjective.
We say that K is an F-convex set if G is surjective.
Let φ be a continuous positive function on Hd. The classical Minkowski

problem in Minkowski space asks for an F-convex set K in Minkowski space
with C2 space-like boundary S, such that 1

φ(η) is the Gaussian curvature
at G−1(η). It turns out that φ(x) corresponds to the density of the direct
image of the intrinsic volume measure of S through the map G with respect
to the volume measure of Hd.
Analogously to the Euclidean case, it is possible to formulate a weak

version of this problem. Indeed if K is any convex set whose support planes
are space-like, it is always possible to define a set-valued function G from
∂K = S to Hd. Namely G sends a point p to the set of unit time-like vectors
orthogonal to support planes at p. As in the previous case, the condition
that support planes are not time-like implies that K coincides either with
the future or the past of S. We will always assume that K is the future of
S. We say that K is an F-convex set if moreover G is surjective in the sense
that

⋃
x∈S G(x) = Hd.

In [17] a Radon measure is defined on Hd as the first-order variation of
the volume of an ε-neighborhood of S. If S is C1 and space-like, it coincides
with the direct image of the intrinsic volume measure on S through the map
G. We denote by A(K) this measure, called the area measure.

So given a Radon measure µ on Hd the generalized Minkowski problem
in Minkowski space asks for a convex subset K such that A(K) = µ.

As Hd is not compact, a boundary condition must be added for the
well-possessedness of this problem. Geometrically this boundary condition
corresponds to the choice of the domain of dependence of the hypersurface
S, or equivalently the light-like support planes of K.
Results on this direction are for instance pointed out in [23], where an

assumption on the regularity of the boundary condition has been consid-
ered.

In a different direction one could look at an equivariant version of the
problem. Isometries of Minkowski space are affine transformations of Rd+1

whose linear part preserves the Minkowski product. We will restrict to
isometries in the connected component of the identity of the isometry
group, that is σ ∈ Isom(Rd,1) whose linear part γ ∈ SO+(d, 1) preserves
the orientation and leaves the future cone from 0 invariant. There is a nat-
ural isometric action of SO+(d, 1) on Hd which identifies SO+(d, 1) with
the group of orientation preserving isometries of Hd.

TOME 67 (2017), FASCICULE 3



1038 Francesco BONSANTE & François FILLASTRE

Let us fix a group Γτ of isometries of Minkowski space. If K is an F-
convex set invariant under the action of Γτ , the area measure A(K) is a
measure on Hd invariant by the group Γ < SO+(d, 1) obtained by taking
the linear parts of elements of Γτ .
So if a Γ-invariant measure µ in Hd is fixed, the equivariant version

of Minkowski problem asks for a Γτ -invariant F-convex set K such that
A(K) = µ. The geometric interest of this equivariant version relies on the
fact that Minkowski problem can be intrinsically formulated in any flat
globally hyperbolic space-time (see Section 1.1.2 of the Introduction). By
using the theory developed by Mess in [24] and generalized in [3, 11], this
intrinsic Minkowski problem on a flat Lorentzian manifold turns out to
be equivalent to an equivariant Minkowski problem in Minkowski space in
many geometrically interesting cases.
From [11] it is known that if Γ is a uniform lattice in SO+(d, 1) (that

means that Γ is discrete and Hd/Γ is compact), there is a maximal Γτ -
invariant F-convex set, say Ωτ , which contains all the Γτ -invariant F-convex
sets. Moreover, if K is any Γτ -invariant F-convex set, then the domain of
dependence of its boundary coincides with Ωτ . So requiring the invariance
under Γτ of K automatically fixes the boundary conditions.
On the other hand, the boundary conditions arising in this setting do

not satisfy the regularity conditions required in [23], so the existence result
of that paper is not helpful in this context.

In the present paper we solve the equivariant generalized Minkowski
problem in any dimension, with the only assumption that the group Γ is a
uniform lattice of SO+(d, 1).

The study of the Minkowski problem in Minkowski space, and its rela-
tions with Monge–Ampère equation is not new. But, as far as the authors
know, all the results concern the regular Minkowski problem (excepted a
polyhedral Minkowski problem in the Fuchsian case Γτ = Γ in [16]). Two
previously known results are particular cases of Theorem 1.1.
The first one is a theorem of V. Oliker and U. Simon [26], solving the

Minkowski problem in the C∞ setting and in the Fuchsian case, in all di-
mensions. Actually they consider the underlying PDE problem intrinsically
on the compact hyperbolic manifold Hd/Γ.
The second one is a theorem of T. Barbot, F. Béguin and A. Zeghib [5],

solving the equivariant Minkowski problem in the C∞ setting in the d = 2
case. It is interesting to note that their proof is totally different from the
one presented here, and use a geometric feature of the dimension 2. They
show that a sequence of Cauchy surfaces with constant curvature < −∞
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and bounded diameter cannot have small systole as a simple consequence
of Margulis Lemma. By contrast, in higher dimensions hypersurfaces with
constant Gauss–Kronecker curvature does not have any bound on the sec-
tional curvature.
We also discuss the equivariant regular Minkowski problem. Opposite

to the d = 2 case, we will show that in general there is no smooth Γτ -
invariant hypersurface of constant Gauss–Kronecker curvature equal to 1.
On the other hand, we prove that there is a constant c depending on the
group Γτ such that if φ is a smooth Γ-invariant function with φ > c, then
the Γτ -invariant F-convex set K such that A(K) = φdHd is smooth and
strictly convex.
We prove that the constant c can be taken equal to 0 if the dual strati-

fication in the sense of [11] does not contain strata of dimension k < d/2,
that roughly means that the dimension of the initial singularity of Ωτ is
6 d/2. If d = 2, then this condition is always true so this gives a new
proof of the result in [5]. At least for d = 3 this condition seems optimal in
the sense that the construction of the example in Section 3.7 works every
time the singularity of Γτ is simplicial (in the sense of [11]) with at least a
stratum of dimension bigger than 1. In fact that construction works in any
dimension under the weaker assumption that the initial singularity of Ωτ
contains a (d− 1)-dimensional polyhedron.
Finally, let us mention related results in [18], and also a “dual” problem

to the Minkowski problem, known as the Alexandrov problem. Here one
prescribes a “curvature measure” rather than an area measure. Curvature
measures are defined using a radial function, and the Alexandrov problem
was solved in the Fuchsian case in [8]. It is not clear if this problem have
an analog in the general non-Fuchsian case.

The trivial d = 1 case was considered in [17], so in all the paper, d > 2.

1.1. Main results

Let us formulate in a more precise way the results of the paper. Let Γ be
a uniform lattice in SO+(d, 1). An affine deformation of Γ is a subgroup of
Isom(Rd,1) obtained by adding translations to elements of Γ:

Γτ = {γ + τγ | γ ∈ Γ} .

Notice that Γτ is determined by the function τ : Γ → Rd+1 which assigns
to each γ ∈ Γ the translation part of the corresponding element of Γτ . The

TOME 67 (2017), FASCICULE 3
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condition that Γτ is a subgroup forces τ to verify a cocycle relation:

ταβ = τα + ατβ .

A τ -convex set is a proper convex set (globally) invariant under the action
of Γτ . Here we also require the τ -convex sets to be future: they are disjoint
from the past of their support planes. When τ = 0, the term Fuchsian is
sometimes used.

Theorem 1.1. — Let µ be a Γ-invariant Radon measure on Hd. Then
for any cocycle τ there exists a unique τ -convex set with area measure µ.

Moreover the correspondence between the τ -convex sets and the mea-
sures is continuous for a natural Hausdorff topology on the space of τ -
convex sets, see Section 3.3.
The proof of the existence part Theorem 1.1 is variational. It is simi-

lar to the proofs of the Minkowski problem for convex bodies, where the
functional involves the volume of the convex bodies [1, 13]. Here the group
action allows to define a covolume for any τ -convex set. The set of τ -
convex sets is convex (for linear combinations given by homotheties and
Minkowski addition of convex sets), and the main ingredient in the varia-
tional approach is the following.

Theorem 1.2. — The covolume is convex on the set of τ -convex sets.

1.1.1. Monge–Ampère equation and regular Minkowski problem

An important point widely used in the paper is that the Minkowski
problem can be formulated in terms of a Monge–Ampère equation on the
unit ball B in Rd. Indeed the boundary of any F-convex set K is the graph
of a 1-Lipschitz function ũ on Rd. The Legendre–Fenchel transform of ũ is
a function h defined on B (since ũ is 1-Lipschitz). This correspondence is
in fact bijective, as any convex function h on B defines dually a 1-Lipschitz
convex function over the “horizontal” plane Rd.
Recall that for a convex function h there is a well-defined Monge–Ampère

measure MA(h) on B such that MA(h)(ω) is the Lebesgue measure of the
set of sub-differentials at points in ω. If h is C2, then MA(h) = det(Hessh)L
where L is the Lebesgue measure on B.
There is a very direct relation between the area measure A(K) and the

Monge–Ampère measure MA(h) of the corresponding function h on B.
Regarding Rd as an affine chart in RPd, B is identified to the set of time-
like directions. This gives an identification v : B→ Hd and we simply have
v−1
∗ (A(K)) = (1− ‖x‖2)1/2MA(h).

ANNALES DE L’INSTITUT FOURIER
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The correspondence between F-convex sets and convex functions on B
allows to define an action of Isom(Rd,1) on the space of convex functions on
B. Namely, if σ ∈ Isom(Rd,1) and h is a convex function on B corresponding
to the F-convex set K, then σ ·h is the convex function on B corresponding
to the F-convex set σ(K).
This action is made explicit in Lemma 3.4. It turns out that if σ is a

pure translation then σ ·h differs by h by an affine function, whereas if σ is
linear, then σ · h is explicitly related (although not equal) to the pull-back
of h by the projective transformation induced by σ on B.
Using those correspondences, Theorem 1.1 can be also stated in terms of

Monge–Ampère equation:

Theorem 1.3. — Let B be the open unit ball of Rd, and ‖ · ‖ be the
usual norm. Let Γ be a uniform lattice in SO+(d, 1).
Let µ be a Radon measure on B such that

√
1− ‖x‖2µ is invariant for

the projective action of Γ on B.
Then, for any convex function h0 on B such that, for any γ ∈ Γ, on ∂B,

the restriction of γ ·h0−h0 coincides with the restriction of an affine map,
there exists a unique convex function h on B such that

• MA(h) = µ, where MA is the Monge–Ampère measure,
• h = h0 on ∂B.

The uniqueness part of Theorem 1.1 follows from classical uniqueness
result for the Monge–Ampère equation. Conversely, the existence part of
Theorem 1.1 can be regarded as a new result about Monge–Ampère equa-
tion.

The main result about Monge–Ampère equation, close to the ones con-
sidered here, is the existence of a convex function h on a strictly convex
open bounded set Ω, with prescribed continuous values on the boundary,
satisfying MA(h) = µ, but for µ with finite total mass, [30], [19, 1.4.6].
Also result in [23] is formulated in terms of existence of a solution of a
Monge–Ampère equation.
Under this correspondence, in the Fuchsian case the covolume can be

written as the functional introduced by I. Bakelman for the Monge–Ampère
equation, see Remark 3.43.

Using again classical result of Monge–Ampère theory, we can get a “reg-
ular” version of Theorem 1.1. There are two main points that will allow
to use those regularity results. The first one is a result contained in [23]
which will imply that convex functions h on B corresponding to τ -convex
sets have a continuous extension g on the boundary of the ball. It turns
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1042 Francesco BONSANTE & François FILLASTRE

out that the convex envelope of g corresponds to the maximal τ -convex set
Ωτ . So g only depends on τ .

The second ingredient is a positive interior upper bound of the difference
between the convex envelope of g in B and the support function h of a
τ -convex set with positive area measure. The example in Section 3.7 shows
that some assumption must be added to get this bound. In particular we
find a bound if the prescribed measure has sufficiently large total mass.
This assumption can be weakened if the dual stratification of the initial
singularity of Ωτ contains only strata of dimension > d/2. In this case Ωτ
is called simple. This condition comes out as we notice here that the strata
of the dual stratification pointed out in [11] correspond to the maximal
regions of B where the convex envelope of g is affine. Assuming that those
regions have dimension > d/2 a multi-dimensional version of the Alexander
Heinz Theorem ensures that h is strictly convex, providing the bound we
need. This is stated in details in Theorem 2.34 and Corollary 2.37. See also
Theorem 3.44.

1.1.2. Minkowski problem in flat space times with compact hyperbolic
Cauchy surfaces

A Cauchy surface in a Lorentzian manifold S is an embedded hyper-
surface such that any inextensible time-like path meets S exactly at one
point. A space-time is said globally hyperbolic (GH) if it contains a Cauchy
surface. Topologically a GH space-time M is simply S × R, where S any
Cauchy surface in M .
If S is any space-like hypersurface in a flat space-time N , then it is a

Cauchy surface of some neighborhood in N . An extension of S is a GH flat
space-time M where a neighborhood of S in N can be isometrically em-
bedded so that the image of S is a Cauchy surface in M . By a very general
result in general relativity [15], there exists a unique maximal extension
M , where here maximal means that all the other extensions isometrically
embeds into M .
A maximal globally hyperbolic compact flat space-time (we will use

the acronym MGHCF) is a maximal flat space-time containing a com-
pact Cauchy surface. In [24] Mess studied MGHCF space-times in dimen-
sion 2 + 1, and a generalization of Mess theory was done in any dimension
in [3, 11].
By [3] it is known that if S is the Cauchy surface of some MGHCF space-

time then up to a finite covering S can be equipped with a metric locally
isometric to Hk × Rd−k for some 0 6 k 6 d. We will be mainly interested
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in the case where S is of hyperbolic case (that is k = d), as the Minkowski
problem is not meaningful in the other cases (see Remark 1.5).
In this hyperbolic case it turns out that any MGHCF space-time (up to

reversing the time orientation) is obtained as the quotient under an affine
deformation Γτ of a uniform lattice Γ in SO+(d, 1) of the interior of the
maximal Γτ -invariant F-convex set Ωτ .
A subset K in M is convex if whenever the end-points of a geodesic

segment in M lies in K, then the whole segment is in K. Any τ -convex set
is contained in Ωτ and projects to a convex subset of M . The boundary of
K projects to a Cauchy surface in M , provided that K does not meet the
boundary of Ωτ . Conversely if K is a convex subset of M , its pre-image in
Ωτ is a τ -convex set.

By the flatness of the manifold M , the tangent bundle TM is a Rd+1

flat bundle with holonomy Γ. This implies that if S is any C1-space-like
hypersurface, its normal field define a Gauss map

GS : S → Hd/Γ

which lifts to the usual Gauss map G : S̃ → Hd. If S is a C1-strictly convex
Cauchy surface whose future is convex, then GS is a homeomorphism.

We say that a Cauchy surface in M is convex, if its future is convex.
For any convex Cauchy surface it is possible to define a Gauss map as the
set-valued function that sends a point p ∈ S to the set of unit time-like
direction orthogonal to local support planes of S at p. It turns out that GS
is always surjective.
The area measure can be defined for every convex Cauchy surface in the

same way as in the local model. If S is C1, the corresponding area measure
is a measure on Hd/Γ that coincides with the intrinsic volume form via
the Gauss map. So the Minkowski problem in M asks for a convex Cauchy
surface in M whose area measure is µ, where µ is a fixed measure of Hd/Γ.

If S is smooth with positive Gauss–Kronecker curvature, then µ= f−1 dV ,
where dV is the volume measure on Hd/Γ and f(x) is the Gauss–Kronecker
curvature of S at G−1(x).
Lifting the problem to the universal covering, it can be rephrased as

a τ -equivariant Minkowski problem, with the additional requirement that
the solution of the equivariant problem must be contained in the interior
of Ωτ . Even assuming that µ is a strictly positive measure (in the sense
that it is bigger than cdV , where dV is the intrinsic measure on Hd/Γτ ),
Theorem 1.1 does not ensure that the equivariant solution does not meet
the boundary of Ωτ . To this aim we need to require that µ has sufficiently
big mass.

TOME 67 (2017), FASCICULE 3
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Theorem 1.4. — For any MGHCF space-time M , there is a constant
c0 such that if µ is a measure on Hd/Γ such that µ > c0 dV , then there
is a unique Cauchy surface S in M with area measure equal to µ. If Ωτ is
simple we may assume c0 = 0.

Remark 1.5. — By [3] if M is a MGHCF space-time whose Cauchy
surfaces are not of hyperbolic-type, then for any convex Cauchy surface
S in M the Gauss map on the universal covering G : S̃ → Hd is never a
proper map, as its image has dimension k < d and the fibers are n − k
affine subspaces. Notice that in this case the Gauss–Kronecker curvature
of S is zero, so the Minkowski problem is not meaningful in this case.

The results about the regular equivariant Minkowski problem allows to
state the following theorem.

Theorem 1.6. — LetM be a flat MGHCF spacetime, let f be a positive
function on Hd/Γ of class Ck+1, k > 2.

There exists c(M) > 0, such that if f < c(M), then there exists a unique
smooth strictly convex Cauchy surface S of class Ck+2 inM such that f(x)
is the Gauss–Kronecker curvature of S at G−1

S (x).
If Ωτ is simple, then c(M) = +∞.

1.2. Outline of the paper

In Section 2 we state some basic facts we need on F-convex sets in
Minkowski space. In particular, we describe the connection between
Minkowski problem in Minkowski space and the Monge–Ampère equation
on the disc. As already mentioned this is achieved by considering the Le-
gendre transform h of the function ũ : Rd → R whose graph is identified to
the boundary of the F-convex set K. More intrinsically we study the sup-
port function of K, as defined in [17]. This is a 1-homogenous function on
I+(0). The area measure of K can be directly computed by the restriction
of the support function on Hd, whereas its restriction on the ball coincides
with h.
Although the material of this section is already known, we give a detailed

exposition of the theory as we widely use this correspondence. Most of
the results are only stated and some references are given for the proof.
One of the results we prove in details is the multidimensional version of
the Alexandrov–Heinz Theorem, Theorem 2.34. Although the proof follows
closely the proof of the standard Alexandrov–Heinz Theorem given in [35],
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we did not find a reference so details are given for the convenience of the
reader.
In Section 3 we fix an affine deformation Γτ of a uniform lattice Γ and

study τ -convex sets, i.e. F-convex sets invariant by Γτ .
After stating some simple properties on the action of the isometry group

of Minkowski space on F-convex sets and dually on the space of support
functions, we point out a structure of affine cone on the space of τ -convex
sets. By using a result of [23] we show that the support function of a τ -
convex set extends to the boundary of I+(0) and the value of the support
function on the boundary gτ only depends on the cocycle. Observing that
the convex envelope of gτ is the support function of the maximal τ -convex
set Ωτ , we will recover the strata of Hd studied in [11] as maximal regions
of Hd where gτ is an affine function.

We put a distance on the space of τ -convex sets that basically cor-
responds to the L∞-distance on the corresponding support functions. A
compactness property of this distance is proved, Lemma 3.17, that can be
regarded as the analog of Blaschke Selection Theorem for convex bodies.
We then study area measures of τ -convex sets. They are Γ-invariant so can
be regarded as measures on Hd/Γ, in particular for any τ -convex set K,
its total area is the total mass of the induced measure on Hd/Γ. We prove
a monotonicity result for the total area Lemma 3.24, which implies that a
τ -convex set with sufficiently big area does not meet the boundary of the
maximal τ -convex set.
After this preliminary part we introduce the covolume and study its main

properties. Covolume of K is defined as the volume of the complement of
K/Γτ in Ωτ/Γτ . In particular we prove that it is a convex functional on
the set of τ -convex set. The proof of this result relies in a concavity result
for the volume of particular convex bodies Lemma 3.30 and its Lorentzian
version Corollary 3.31. A technical point in the proof is that we need to
use a convex fundamental domain for the action of Γτ on a τ -convex set K.
Actually we are able to construct this fundamental domain only if K lies
in the interior of Ωτ , but this is in fact sufficient for our aims. Using this
convex fundamental domain we prove that the covolume is strictly convex
on the convex subspace of τ -convex sets lying in the interior of Ωτ . Then
by approximation the convexity is proved in general.
Let us explain how convexity of the covolume is related to the Minkowski

problem. In the Fuchsian case (τ = 0), similarly to the Euclidean case
for convex bodies [13], the derivative of the covolume along a family of
support functions th1 + (1− t)h0 at h0 is just −

∫
(h1− h0) dA(h0). Here h
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denotes the hyperbolic support function obtained by restricting on Hd the
1-homogenous extension of the support function h on B over I+(0).

So if µ is a Γ-invariant measure and h0 is a Fuchsian solution of the
Minkowski problem A(h0) = µ, h0 turns to be a critical point of the func-
tional Lµ(h) = covol(h) −

∫
hdµ, and by convexity of Lµ it must be the

minimum of h0. So to find out the solution one looks at minima of the
functional Lµ.
In the non Fuchsian case some difficulties arise. First in the Fuchsian

case one has a simple representation formula for the covolume

covol(h) = − 1
d+ 1

∫
hdA(h)

where h is the support function [16]. In the affine case there is no similar
explicit and simple formula.
Actually this is not a major problem, as the main point is a formula for

the first order variation of the covolume, and not for the covolume itself. In
fact by using the convexity of the covolume its derivative can be computed
along a family of support functions th1 + (1 − t)h0 with h1 6 h0 and this
turns out to be sufficient to show that the minimum point of Lµ is a solution
of the Minkowski problem.
Another difference with respect to the Fuchsian case is that the strategy

to find the solution is slightly different. In fact first it was proved that the
minimum h of the covolume on some level set {h |

∫
hdµ = 1} satisfies the

equation A(h) = cµ where c is a some positive. Then by scaling h by c−1/d

one finds the solution. A similar strategy could be also followed in the case
we consider in the present paper, but, due to the fact that the set of τ -
convex sets is not stable under homotheties, the argument would become
more intricate and the strategy we propose seems in this case more direct
and simple.
Indeed, using the convexity of the covolume one sees that the difference

between the covolume of two τ -convex sets K0 ⊂ K1 can be estimated
in terms of the integrals of the difference of the corresponding support
functions with respect to respective area measures, see formula (3.16). Then
refining the expected arguments in the Fuchsian case one sees that Γτ -
equivariant solutions of the equations A(h0) = µ corresponds to minima
of the functional Lµ(h) = covol(h) −

∫
(h − hτ ) dµ. The existence of the

minimum is then simply achieved using the compactness property of the
support functions.
Once the general Minkowski problem is proved, using the correspondence

with Monge–Ampère equation we see that if the measure µ is regular with
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respect to the volume form of Hd with smooth and strictly positive density,
the corresponding solution is smooth provided that the τ -convex set lies in
the interior of Ωτ . A counterexample is then given to show that in general
even if µ coincides with the Lebesgue measure up to a constant factor the
corresponding domain can meet the boundary of Ωτ .

Finally in the appendix we prove that the space of C2
+ τ -convex sets is

dense in the space of τ -convex sets (where C2 can be replaced by smooth).
Here a C2

+ τ -convex set is a C2 τ -convex set such that the Gauss map is a
C1-diffeomorphism, or analogously with positive Gauss–Kronecker curva-
ture is strictly positive at any point. This basically implies that any convex
hypersurface in a maximal globally hyperbolic flat space-time can be ap-
proximated by smooth strictly convex hypersurfaces. Although the fact is
not surprising, there was no proof at our knowledge, so we give some details.

1.3. Notations

Rd,1 Minkowski space
Rd Euclidean space identified with the horizontal hyper-

plane in Rd,1

B unit ball in Rd centred at 0
B̂ intersection of I+(0) with the affine plane

(0, . . . , 0, 1) + Rd

I+(0) future cone of 0 in Rd,1

Hd hyperboloid model of hyperbolic space
J+(H) convex region bounded by the hyperboloid in Rd,1
〈 · , · 〉− Minkowski product
PH(X) hyperplane defined by the equation 〈z,X〉 = H(X)
π :Rd,1 → Rd orthogonal projection
x̂ (x, 1) ∈ B̂ for x ∈ B
λ(x)

√
1− ‖x‖2 for x ∈ B

v :B→ Hd radial identification
grad− Lorentzian gradient in Rd,1

gradH hyperbolic gradient in Hd

grad Euclidean gradient in Rd

∇ Levi-Civita connection on Hd

∇2 covariant Hessian in Hd

Hess Euclidean Hessian in Rd
K F-convex set
∂sK space-like boundary of K
∂regK regular part of the space-like boundary
G :∂sK→ Hd Gauss map
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χ :Hd → ∂sK inverse of the Gauss map
C2

+ F-convex set with ∂sK C2 and G a C1 diffeomorphism
H : I+(0)→ R extended support function
h :Hd → R hyperbolic support function
h :B→ R ball support function
∂h subdifferential of h
P(x) Lorentzian Dirichlet polyhedron
L Lebesgue measure of Rd
dHd volume measure of Hd
MA(h) Monge–Ampère measure of h
A(K) = A(h) area measure on Hd

A(h) area measure on B, A(h) = (v−1)∗(A(h))
φ curvature function, density of A(h) for h ∈ C2

Area(K) A(K)(Hd/Γ)
Vε(K) measure on Hd introduced in Definition 2.10
Si(K) area measure of order i
V ε(K) measure on Hd/Γ induced by Vε(K)
Si(K) area measure of order i on Hd/Γ induced by Si(K)
covol covolume
ũ :Rd→R function whose graph is ∂K
h̃ :Rd→R∪{+∞} Legendre–Fenchel transform of ũ
u restriction of ũ on π(∂sB) = ∇u(B)
g continuous function on ∂B
hg convex envelope of g
Ωg F-convex set with support function hg
Fg(x) maximal convex set of B containing x on which hg is

affine
Γ uniform lattice in SO0(2, 1)
τ :Γ→ Rd+1 cocycle
Γτ affine deformation of Γ
γ element of Γ
γτ affine transformation p→ γ(p) + τγ
γ̄ projective transformation on B induced by γ
Ωτ maximal τ -convex set
Hτ , hτ , hτ support functions of Ωτ
gτ boundary value of the support function of any τ -

convex set
T cosmological time of K
Σt level set T−1(t)

2. Area measure of F-convex sets

In this section, we recall some facts about particular convex sets in
Minkowski space and the Monge–Ampère equation.
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2.1. Background on convex sets

Notations. For a set S in Rd,1, I+(S) is the set of the final points of
curves directed by a future time-like vector and starting from S. In partic-
ular I+(0) is the future cone of the origin.

We will consider Rd as a subset of Rd,1 through the isometric inclusion
x 7→ (x, 0). We denote by P the affine hyperplane (0, . . . , 0, 1)+Rd: for x ∈
Rd we denote by x̂ = (x, 1) the corresponding point on P . The intersection
of P with I+(0) is (0, . . . , 0, 1) + B, where B is the unit ball centered in 0
in Rd. We denote the translated ball by B̂ = (0, . . . , 0, 1) + B.

Let us introduce the following notations
• for X ∈ Rd,1 we put ‖X‖− =

√
|〈X,X〉|−

• 〈 · , · 〉 is the usual scalar product on Rd,
• ‖ · ‖ is the associated norm,
• λ(x) =

√
1− ‖x‖2 = ‖x̂‖−, x ∈ B,

• π : Rd,1 → Rd is the orthogonal projection sending (x, xd+1) to x
• L is the Lebesgue measure on Rd.

The radial map v from B to Hd is v(x) = 1
λ x̂, while v−1 maps (x, xd+1) ∈

Hd to x/xd+1 = x/
√

1 + ‖x‖2 ∈ B. It can be useful to consider on B the
pull-back of the hyperbolic metric (we then get the Klein model of the
hyperbolic space). If dHd is the volume element for the hyperbolic metric
on B, an explicit computation gives

(2.1) dHd = λ−d−1L .

F-convex sets. Let K be a closed convex set which is defined as an
intersection of the future side of space-like hyperplanes of Rd,1. Note that
it may have light-like support planes but no time-like support plane. We
will denote by ∂sK the part of the boundary ∂K of K which meets space-
like support planes. The Gauss map of K is a set-valued map from ∂sK
to Hd, which associates to a point of ∂sK all the unit future time-like
support vectors of K at x. We say that K is an F-convex set if its Gauss
map is surjective. In other terms, any unit future time-like vector is a
support vector of K. An F-convex set K is called C2

+ if its boundary is a
C2 hypersurface and its Gauss map is a C1 diffeomorphism. We say that
K is C∞+ if its boundary is smooth and its Gauss map is a diffeomorphism.

Support functions. Let K be an F-convex set. The (extended) support
function H of K is the map from I+(0) onto R given by

H(X) = sup{〈p,X〉− | ∀ p ∈ K} .
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By definition the support function is sublinear: it is homogeneous of
degree 1 and subadditive, or equivalently 1-homogenous and convex. Con-
versely any sublinear function on I+(0) is the support function of a unique
F-convex set [17].
By homogeneity, H is determined by its restriction on any hypersurface

of I+(0) that meets all the radial lines, like for instance Hd or the translated
ball B̂. We will denote by h the restriction of H on Hd. It will be called
the hyperbolic support function of K. Analogously we set h : B → R by
h(x) = H(x̂), and refer to h as the ball support function of K. By the
homogeneity of H we get

h(x) = λ(x)h(v(x)) .

Of course the support function h is convex on B. The following lemma
says that all convex functions on B are obtained in this way.

Lemma 2.1. — A convex function h on B extends (in the sense above)
to a unique sublinear function on I+(0), namely

H ((x, z)) = zh(x/z) ,

x ∈ B, z ∈ R.

Proof. — The function H is 1-homogeneous by definition. So we only
need to prove that it is subadditive. Take X = (x, xd+1), Y = (y, yd+1) ∈
I+(0). By definition,

H(X + Y ) = (xd+1 + yd+1)h
(

x+ y

xd+1 + yd+1

)
.

Notice that the point x+y
xd+1+yd+1

can be expressed as the following convex
combination of x/xd+1 and y/yd+1:

x+ y

xd+1 + yd+1
= xd+1

xd+1 + yd+1

x

xd+1
+ yd+1

xd+1 + yd+1

y

yd+1
.

Since h is convex we get that

H(X + Y )

6 (xd+1 + yd+1)
(

xd+1

xd+1 + yd+1
h

(
x

xd+1

)
+ yd+1

xd+1 + yd+1
h

(
y

yd+1

))
= H(X) +H(Y ) . �

Corollary 2.2. — Any convex function on B is the support function
of a unique F-convex set of Rd,1.
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Example 2.3. — The support function of the convex side of the upper-
sheet of the hyperboloid with radius t is H(X) = −t‖X‖−, and its re-
striction to Hd is the constant function equal to −t. Its restriction to B is
h(x) = H(x̂) = −tλ(x). Note that Hessh = −tHessλ, so the convexity of
h implies that Hessλ is semi-negative definite.
We will denote by J+(H) the convex side of the upper-sheet of the hy-

perboloid with radius 1.

Example 2.4. — The restriction to I+(0) of the linear functionals of
Rd+1 are the support functions on I+(0) of the future cone of points. Their
restriction to B are exactly the restriction to B of the affine maps of Rd.

The support function H determines K: indeed for any X ∈ I+(0) the
affine plane PH(X) = {p ∈ Rd,1 | 〈p,X〉− = H(X)} is the support plane
for K orthogonal to X so

K =
⋂

X∈I+(0)

I+(PH(X)) .

A less obvious remark is that PH(X) meets ∂sK at least in one point,
see [17]. Under some regularity assumption on H it is possible to determine
the intersection between ∂sK and PH(X). Indeed, if H is C1, by convexity
we have H(Y ) > H(X) + 〈grad−X H,Y −X〉−, where

grad−(H) = (∂1H, . . . , ∂dH,−∂d+1H)

is the Minkowski gradient. Moreover, since H is 1-homogeneous we have

H(X) = 〈grad−X H,X〉− ,

so we deduce that 〈grad−X H,Y 〉− 6 H(Y ), that implies that grad−X H lies
on I+(PH(Y )). Indeed, grad−X H is the only point in K with support plane
orthogonal to X, that is grad−X H = G−1(X). In fact the following lemma
holds:

Lemma 2.5 ([17]). — If the support function H of a F-convex set K
is C1, then ∂sK is the range of the map χ : I+(0) → Rd+1 sending X to
grad−X H. Moreover, ∂sK is strictly convex, in the sense that each space-like
support plane meets K at one point.
Conversely if ∂sK is strictly convex, the support function H is C1.

Assume that H is C1, or analogously that ∂sK is strictly convex. De-
note by χ : I+(0) → Rd,1 the map sending X to grad−X H. As H is
1-homogeneous, χ is constant along the radial rays. So we have ∂sK =
χ(Hd) = χ(B̂). The restriction of χ to Hd (respectively B̂) can be easily
expressed in terms of the support functions h (respectively h):
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Lemma 2.6. — Assume that the support function H is C1. Then, for
η ∈ Hd

(2.2) χ(η) = gradH
η h− h(η)η

where gradH is the hyperbolic gradient regarded as a vector in Rd+1 by the
natural inclusion TηHd ⊂ Rd,1.
Analogously, for x ∈ B

(2.3) χ(x̂) = gradx h+ (〈x, gradx h〉 − h(x))ed+1

where grad is the Euclidean gradient of Rd.

Proof. — The tangential component of grad−η H is clearly the intrin-
sic gradient of h. The normal component is obtained by imposing that
DηH(η) = H(η) = h(η).
Analogously the tangential component of the gradient ofH to Rd is equal

to the gradient of h. To compute the normal component,

Dx̂H(ed+1) = Dx̂H(x̂)−Dx̂H(x̂− ed+1) = H(x̂)−Dxh(x)

where x ∈ Rd is identified with (x, 0) ∈ Rd+1. Formula (2.3) follows. �

By Lemma 2.5 it turns out that the injectivity of the Gauss map of K is
related to the regularity of H. In particular the support function of a C2

+
F-convex set must be C1. This condition is not sufficient. Indeed it implies
that χ = G−1 is a well-defined map, but still G could be set valued: e.g.,
take K = I+(0), its support function is H = 0 and G maps 0 to the whole
Hd.
The following characterization of C2

+ F-convex sets in terms of the hy-
perbolic support functions is proved in [17].

Lemma 2.7. — A function h on Hd is the support function of a C2
+

F -convex set iff it is C2 and satisfies

(2.4) ∇2h− hgH > 0

with gH the hyperbolic metric and ∇2 the hyperbolic Hessian.

Condition (2.4) can be also expressed in term of the ball support function
h, as the next lemma suggests.

Lemma 2.8. — Let H be the support function of an F -convex set K. If
H is C2, then

(2.5) Hessx h(v, w) = λ(x)
(
∇2h− hg

)
(Dxv(v), Dxv(w))

where Hess is the Euclidean Hessian on Rd.
In particular K is C2

+ iff h is C2 with positive Hessian everywhere.
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Proof. — By 0-homogeneity of χ and because λv is the identity

h(x) = 〈χ(v(x)), (λv)(x)〉− .

We compute

Dxh(v) = 〈Dx(χ ◦ v)(v), (λv)(x)〉− + 〈χ(v(x)), Dx(λv)(v)〉−
= 〈χ(v(x)), Dx(λv)(v)〉−

because v(x) is orthogonal to the tangent plane at the point χ(v(x)). For
the same reason, and also because Hessx(λv) = 0 (because λv is the iden-
tity) we compute that

Hessx h(v, w) = λ(x)〈Dv(x)χ(Dxv(v)), Dxv(w)〉−

that together with

HessηH(v, w) = ∇2h(v, w)− hgH(v, w) = 〈Dηχ(v), w〉−

gives (2.5). �

We denote by C2
+(Hd) the set of hyperbolic support functions satisfy-

ing (2.4).
Since χ|THd is the inverse of the Gauss map, it turns out that if K is C2

+
then Dχ|THd is the inverse of the shape operator. Now by Equation (2.2)
we have that if v ∈ TηHd then

Dχ(v) = D(gradH(h))(v)−Dh(v)η − hv .

By Gauss–Weingarten formulas we deduce

D(gradH(h)) = ∇v(gradH(h)) + II(gradH(h), v)η

where ∇ is the Levi-Civita connection on Hd and II is the second funda-
mental form of the immersion Hd ⊂ Rd,1. Since the second fundamental
form is the identity, putting together these formulas we have

Dχ|THd = ∇(gradH(h))− h Id .

It follows that the radii of curvature ri of K at some point p are the
eigenvalues of ∇2h−hgH (computed with respect to the hyperbolic metric)
at G(p). The curvature function of K is

(2.6) φ = Πd
i=1ri = det(∇2h− hgH) .

Themean radius of curvature is defined as ϕ= 1
d

∑d
i=1ri = 1

d tr
(
∇2h−hgH

)
.

Both the curvature function and the mean radius of curvature are defined
on Hd. If G is the Gauss map of K, 1

φ ◦G is the Gauss–Kronecker curvature
of ∂sK.

TOME 67 (2017), FASCICULE 3



1054 Francesco BONSANTE & François FILLASTRE

It is useful to express the curvature function and the mean radius of
curvature in terms of the ball support function h.

Lemma 2.9. — Let K be an F -convex set, and h be the corresponding
support function on B. If h is C2 we have

det Hessx h = λ−d−2(x)φ(v(x))(2.7)

ϕ(v(x)) = λ(x)
d

(tr Hessx h−Hessx h(x, x))(2.8)

with φ the curvature function and ϕ the mean radius of curvature.

Proof. — We know det∇2h − hgH = φ so, by (2.5) det Hessh =
λd det(Dv)2φ and we already know det(Dv), see (2.1).
Let � be the wave operator on Rd+1:

�x̂H = tr Hessx h−Hessx̂H(ed+1, ed+1).

Writing
ed+1 = ed+1 − x̂+ x̂,

as by homogeneity HessX H(X, ·) = 0 ∀X, we have Hessx̂H(ed+1, ed+1) =
Hessx h(x, x). (2.8) follows because ϕ(v(x)) = 1

d�x̂/λH and �x̂/λH =
λ�x̂H by (−1)-homogeneity. �

Area measures. Let ω ⊂ Hd be a Borel set.

Definition 2.10. — We will denote by Vε(K)(ω) the volume of the the
set of points of K which are at Lorentzian distance at most ε from ∂sK and
such that the direction of their orthogonal projection onto ∂sK is colinear
to an element of ω.

The (Lorentzian) area measure of K is a Radon measure on Hd defined
by

A(K)(ω) = lim
ε↓0

Vε(K)(ω)− V0(K)(ω)
ε

= lim
ε↓0

Vε(K)(ω)
ε

.

Remark 2.11. — In the convex body case, the area measure was intro-
duced under the name area function by A.D. Alexandrov. A difference with
respect to the Euclidean case is that the Lorentzian projection on ∂sK is
well-defined in the interior of K (see [11] for a discussion on this point).
For this reason is convenient to define Vε(K)(ω) as the volume of points
on K at distance ε from the boundary instead of considering the exterior
of K.
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If K has support function h on Hd, we will denote A(K) by A(h). If
h ∈ C2

+(Hd), then

(2.9) A(h) = det(∇2h− hgH) dHd = φ dHd ,

where dHd is the volume form on Hd given by the hyperbolic metric and
φ the curvature function. Notice that in this case A(h) coincides with the
direct image of the intrinsic volume form on ∂sK through the Gauss map.
We need a result of weak convergence of the area measure. For complete-

ness we will consider all kinds of area measures. It is proved in [17] that
there exist Radon measures S0(K), . . . , Sd(K) on Hd such that, for any
Borel set ω of Hd and any ε > 0,

(2.10) Vε(K)(ω) = 1
d+ 1

d∑
i=0

εd+1−i
(
d+ 1
i

)
Si(K)(ω) .

Si(K) is called the area measure of order i of K. Note that Vε(K) is itself
a Radon measure. We have that S0(K) is given by the volume form of Hd.
The area measure A(K) introduced above coincides with the area measure
of order d, that is Sd(K).

Lemma 2.12. — Let (hn)n be support functions on Hd of F-convex sets
converging uniformly on a compact set ω to a support function h. Then,
for any continuous function f : Hd → R with compact support contained
in the interior of ω, for any ε > 0,∫

ω

f dVε(Kn)→
∫
ω

f dVε(K) as n→∞ ,

and, for 0 6 i 6 s,∫
ω

f dSi(Kn)→
∫
ω

f dSi(K) as n→∞ .

Proof. — The convergence for the measures Si(K) follows from the con-
vergence for Vε(K) and the linearity of the integral, using a polynomial in-
terpolation from (2.10). We have to prove the convergence result for Vε(K).
This follows directly from the following facts, which are explicitly proved
in [17]:

• the result is true if the F-convex sets are invariant under the ac-
tion of a same uniform lattice Γ, provided that ω is contained in a
fundamental domain for the action of Γ;

• there exist a uniform lattice Γ and Γ-invariant convex sets K̃n and
K̃ such that the set of points on Kn (resp. K) with support normals
in ω is, up to a translation, the set of points on K̃n (resp. K̃) with
support normals in ω. As for any subset b, Vε(K)(b) depends only
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on the subset of ∂K of points with support normals in b, and not
on the whole K, it follows that Vε(K̃n) (resp. Vε(K̃)) coincide with
Vε(Kn) (resp. Vε(K)) on ω;

• as (hn) uniformly converges to h on ω, the same is true for the
support functions of K̃n and K̃. �

2.2. F-convex sets as graphs

Let K be an F-convex set. Since K has no time-like support plane, each
time-like line must meet K. Moreover since K is future complete (K =
I+(K)) the intersection must be a future-complete half-line. So each time-
like line meets ∂K exactly at one point. This shows that ∂K is a graph of
a function ũ defined on the horizontal plane Rd ⊂ Rd+1. Convexity of K
implies that ũ is a convex function.
Let h be the support function of K on B. In this section we investigate

the relation between h and ũ. To this aim it is convenient to consider the
extension of h to Rd defined as

h̃ : Rd → R := R ∪ {+∞} , h̃(x) = sup
{
〈k, x̂〉− |k ∈ K

}
.

It is a proper convex lower semi-continuous function (as a sup of continuous
functions). It takes values +∞ out of B and is equal to h on B. Its value on
∂B may be finite or infinite. In other terms, h̃ is the lower semi-continuous
hull of h. If h̃ has a finite value at ` ∈ ∂B, then K has a light-like support
plane “at infinity” directed by `. This means that any parallel displacement
of the hyperplane in the future direction will meet the interior of K. The
hyperplane may or may not meet K.
By properties of lower semi-continuous convex functions, for any ` ∈ ∂B

and any x ∈ B, we have

(2.11) h̃(`) = lim
t↓0

h(`+ t(x− `)) .

Let us write

h̃(x) = sup
(p,pd+1)∈K

〈(
x

1

)
,

(
p

pd+1

)〉
−

= sup
(p,pd+1)∈K

{〈x, p〉 − pd+1}

= sup
p∈Rd

{〈x, p〉 − ũ(p)}

where ũ is the graph of ∂K. From this simple relation we immediately get
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Definition 2.13. — The function h̃ is the dual of ũ. The correspon-
dence ũ 7→ h̃ is the Legendre–Fenchel transform.

Conversely by the involution property of the Legendre–Fenchel transform
we have that ũ is the dual of h̃, that is

ũ(p) = sup
x∈Rd

(
〈p, x〉 − h̃(x)

)
for all p ∈ Rd.
Since the dual of ũ (which is h̃) takes finite values only on B, it turns out

that ũ is 1-Lipschitz. Indeed a general fact is that proper future convex sets
are exactly the graphs of 1-Lipschitz convex functions [11, Lemma 3.11].
As ũ is convex and 1-Lipschitz, by Rademacher theorem, grad ũ exists and
is continuous almost everywhere, and its norm is less than 1.

Remark 2.14. — Given a convex 1-Lipschitz function ũ : Rd → R, its
graph bound a convex set K that coincides with its future. For x ∈ B the
point v(x) lies in the image of the Gauss map of K iff h̃ is finite at x. So
K is an F-convex set iff the function h̃, dual of ũ, takes finite values on B.

For a convex function f defined on some convex domain U of Rd, the
normal mapping, or subdifferential of f at x ∈ U , denoted by ∂f(x), is a
subset of Rd defined as follow: it is the horizontal projection onto Rd of
the set of inward (Lorentzian) normals with last coordinate equal to one of
the support hyperplanes of the graph of f at the point (x, f(x)). In other
terms, p ∈ ∂f(x) if and only if, for all y ∈ U , 〈

(
p
1
)
,
(

y−x
f(y)−f(x)

)
〉− 6 0, i.e.

f(y) > f(x) + 〈p, y−x〉. It turns out that ∂f(x) is a convex set in Rd, [19].
If ω is a Borel set of U , we set ∂f(ω) := ∪x∈ω∂f(x).
Let h be a convex function on B and h̃ be its extension to Rd. Note that

for x ∈ B, ∂h̃(x) = ∂h(x).
If ũ is the conjugate of h̃, we have [32, 11.3]

(2.12) ∂ũ =
(
∂h̃
)−1

that has to be understood as: p ∈ ∂h̃(x) if and only if x ∈ ∂ũ(p)
From (2.12) we simply deduce the following relation between ∂h and the

Gauss map G of the domain supported by h.

Lemma 2.15. — Let G be the Gauss map of the F-convex set supported
by h. Let π be the orthogonal projection from Rd+1 onto the horizontal
plane. Then for any Borel set ω of Hd

(2.13) ∂h(v−1(ω)) = π(G−1(ω)) .

TOME 67 (2017), FASCICULE 3



1058 Francesco BONSANTE & François FILLASTRE

Proof. — By (2.12) p ∈ ∂h(x) if and only if p ∈ ∂h̃(x) if and only if
x ∈ ∂ũ(p) if and only if x̂ is an inward unit normal to K at (p, ũ(p)) if and
only if (p, ũ(p)) ∈ G−1(v(x)), if and only if p ∈ π(G−1(v(x))). �

As a corollary the projection to Rd of ∂sK is ∂h(B) =
⋃
x∈B ∂h(x). We

will denote by u the restriction of ũ on ∂h(B), so that ∂sK is the graph
of u.

If h is C1, then ∂h is single-valued and coincides with the gradient map,
so it is a continuous mapping from B to ∂K. If h is also strictly convex,
then the gardient map is injective so ∂sK is open in ∂K. However there
are examples of smooth strictly convex functions h, so that ∂sK 6= ∂K.
A criterion to have gradh(B) = Rd is that ∂sK is C1 and the induced
Riemannian metric is complete [11, Lemma 3.1]. Space-like hypersurfaces
which are graph over Rd are usually called entire. Entire hypersurfaces
are not necessarily graphs of F-convex sets. A condition for a C2 entire
space-like hypersurface to bound an F-convex set can be found in [23].
If h is C1, strictly convex, and gradh(B) = Rd, then h is of Legendre

type, and the gradient of u is the inverse of the gradient of h at the cor-
responding points [31, 26.5]. In particular, if moreover the Hessian of h is
positive definite, then, looking the Hessian as the Jacobian of the gradient,
the Hessian matrix of h is the inverse of the Hessian matrix of u at the
corresponding points. So from (2.7) we recover the well-known formula for
the Gauss–Kronecker curvature of ∂sK:

φ−1 =
(
1− ‖ gradu‖2

)−1−d/2 det Hessu .

Lemma 2.16. — Let H be a support function of an F-convex K set on
I+(0). Then there exists a sequence of C∞+ support functions converging to
H, uniformly on any compact set.

Proof. — Let u : Rd → R be the convex function whose graph is ∂K. Let
φn be smooth functions on Rd, with compact support in a ball of radius
1/n, and with

∫
Rd φn dx = 1. By the convolution properties,

un(x) = (u ∗ φn)(x) =
∫
Rd
u(x− y)φn(y) dy ,

are smooth functions converging uniformly to u. More precisely since u is
1-Lipschitz, it is straightforward to check that |u(x)− un(x)| < 1/n.
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Fact 1: The graph of un bounds an F-convex set. — Notice that un is
convex. Indeed, by convexity of u

un((1− t)x1 + tx2) =
∫
Rd
u((1− t)(x1 − y) + t(x2 − y))φn(y) dy

6
∫
Rd

(1− t)u(x1−y)φn(y) dy +
∫
Rd
tu(x2−y)φn(y) dy

= (1− t)un(x1) + tun(x2) .

Let y ∈ B. As the graph of u is an F-convex set, there exists α ∈ R
such that for any x ∈ Rd, 〈

(
x

u(x)
)
,
(
y
1
)
〉− = 〈x, y〉 − u(x) 6 α. Since |u(x)−

un(x)| < 1/n we deduce 〈
(

x
un(x)

)
,
(
y
1
)
〉− 6 α + 1/n, i.e. there is a support

plane orthogonal to (y, 1).

The functiont un is smooth but its Hessian is not strictly positive, so in
principle the inverse of the Gauss map of the corresponding graph is not
differentiable. To fix this problem we consider the functions

vn =
(

1− 1
n

)
un + 1

n
f(x)

with f(x) =
√

1 + ‖x‖2 the graph function of the upper hyperboloid.
Clearly the Hessian of vn is strictly positive. On the other hand vn con-
verges to u uniformly only on compact sets, so we cannot use the simple
argument above to show that the graph of vn bounds an F-convex set. This
problem is balanced by the following observation.

Fact 2: (un−f) is uniformly bounded from above. — The F-convex set
bounded by the graph of un contains the future cone of any of its points,
so there exists a constant M with un(x) < M + ‖x‖, and f(x) > ‖x‖, and
the result follows.

Fact 3: vn is the graph of the boundary of an F-convex set. — We want
to prove that, given y ∈ B, there exists α such that for any x ∈ Rd,〈(

x

vn(x)

)
,

(
y

1

)〉
−
6 α .

The left-hand side of the above equation is

〈x, y〉 − un(x) + 1
n

(un − f)(x) .

As un bounds an F-convex set by Fact 1, there exists α′ such that 〈x, y〉 −
un(x) < α′. The result follows by Fact 2.

TOME 67 (2017), FASCICULE 3



1060 Francesco BONSANTE & François FILLASTRE

Fact 4: The support functions hn of the graph of un converge pointwise
to the support function h of the graph of u. — Let y ∈ B, and let

(
x

u(x)
)
be

a point on the intersection of K and its support plane orthogonal to (y, 1).
Let ε > 0. First we show that for n sufficiently large, hn(y) > h(y) − ε.
Notice that

hn(y) >
〈(

x

vn(x)

)
,

(
y

1

)〉
−

=
〈(

x

u(x)

)
,

(
y

1

)〉
−

+ (u(x)− vn(x)) .

As
h(y) =

〈(
x

u(x)

)
,

(
y

1

)〉
−

we need
vn(x)− u(x) < ε .

This is true for n big as vn converges to u.
Let us prove that for ε > 0 and ∀x ∈ Rd,〈(

x

vn(x)

)
,

(
y

1

)〉
−
< h(y) + ε .

We have 〈(
x

u(x)

)
,

(
y

1

)〉
−
< h(y) + ε ,

that gives, adding vn(x) − vn(x) on the left-hand side and reordering the
terms

〈x, y〉− − vn(x) < h(y) + u(x)− vn(x) .
But u(x)− vn(x) = u(x)− un(x) + 1

n (un− f)(x), and the result follows by
Fact 2 and because un uniformly converge to u.

By homogeneity, we obtain the convergence on the support functions on
I+(0). A classical property of convex functions says that the convergence
is actually uniform on each compact set [20, 31]. �

2.3. Area measure and Monge–Ampère measure

Let h be a convex function on B. The Monge–Ampère measure MA(h)
of h is a Borel measure over B defined by

MA(h)(ω) = L(∂h(ω)) ,

where ω is any Borel subset of B. The Monge–Ampère measure of h is finite
on compact sets [19, 1.1.13]. As B is σ-compact (i.e., a countable union of
compact sets), the Monge–Ampère measure is a Radon measure on B.

Let us list some immediate properties.
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• If h1 and h2 are convex functions, and coincide over ω, then
MA(h1)(ω) = MA(h2)(ω).

• For c > 0, ∂(ch)(x) = c∂h(x), so

(2.14) MA(ch) = cdMA(h) .

• If A is an affine function, then ∂(h+A)(ω) is a translate of ∂(h)(ω),
so

(2.15) MA(h+A) = MA(h) .

• Let h = max{h1, h2} with hi a convex function on B. Denote by
D1 the set where h1 > h2 and D2 the set where h2 > h1. Notice
that Di are open and for each x ∈ Di the set of subdifferentials of
h at x coincides with the set of subdifferentials of hi. Now let E be
where h1 coincides with h2. If x ∈ E each subdifferential of hi at x
is also a subdifferential of h at x. It follows that

(2.16) MA(max{h1, h2})(ω) > min{MA(h1)(ω),MA(h2)(ω)} .

• If h is C1, then ∂h(x) = gradx h, and then

MA(h)(ω) = L(gradh(ω)) ,

for which it can be deduced that [19, 1.1.14], if h is C2

(2.17) MA(h)(ω) =
∫
ω

det Hessx hdx .

• If h is a convex function on B, by the Alexandrov Theorem, it
is twice differentiable almost everywhere and then the right-hand
side of (2.17) is still meaningful. It is actually the regular part of
the Lebesgue decomposition of MA(h) [35, Lemma 2.3]. So, for a
general convex function h we get

(2.18) MA(h)(ω) >
∫
ω

det Hessx hdx .

Let h be a convex function on B and K be the corresponding F-convex
set. There is a precise relation between the Monge–Ampère measure of h
and the area measure A(K). To this aim it is convenient to push forward
the area measure A(K) to B by the radial map v−1 : Hd → B. We denote
by A(h) the corresponding area measure on B:

A(h)(ω) = A(K)(v(ω)) .
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Proposition 2.17. — Let h be a convex function on B. Then A(h) and
MA(h) are equivalent. More precisely,

A(h) = λMA(h) , MA(h) = 1
λ

A(h) .

Proof. — The second relation will follow from the first one, because λ
is positive on B. Let h ∈ C2(B) with positive definite Hessian. From (2.9),
(2.7) and (2.1) we obtain

A(h) = λ det(Hessh)L

and the result follows from (2.17).
Now let h be convex on B. From Lemma 2.16, we can find a sequence

(hn) of elements of C2(B) with positive definite Hessian, converging uni-
formly to h on compact sets. From [19, 1.2.3], MA(hn) weakly converges
to MA(h). From Lemma 2.12, A(hn) also weakly converge to A(h). Since
A(hn) = λMA(hn), the result follows by the uniqueness part of the Riesz
Representation Theorem. �

Corollary 2.18. — Let c > 0. Then on B

A(h) > c(v−1)∗( dHd)⇒ MA(h) > cL .

Conversely if MA(h) > cL then on any ball of radius r < 1, A(h) >
c(1− r2)(d+2)/2 dHd.

Let us denote by ∂regK the regular part of the space-like boundary of K,
that is the set of points such that the Gauss map G of K is well defined.
Equivalently ∂regK is the differentiable part of ∂sK, i.e. the set of points
where K admits a unique space-like support plane. Notice that ∂regK is the
intersection of the region of differentiable points of ∂K and ∂sK. In general
it can be strictly smaller than the the region of differentiable points in the
boundary of K. For instance if K = I+(0) then ∂regK is empty.

Proposition 2.19. — Let K be an F-convex set. The Gauss image of
∂sK \ ∂regK has zero area measure.

Proof. — Let Ê be the Gauss image in Hd of the non-regular points of
∂sK, and denote by E its radial projection to B. By Proposition 2.17 and
the definition of the Monge–Ampère measure, it suffices to show that the
Lebesgue measure of ∂h(E) is zero. From (2.13), ∂h(E) is the projection
onto Rd of the non-differentiable points of ∂sK. As ∂K is the graph of a
convex function, the set of non-differentiable points has zero measure. �
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Notice that Proposition 2.19 implies that if ∂regK is empty, the area
measure is 0. In Section 2.4 we will give a precise characterization of F-
convex sets with empty regular boundary.

Another simple remark implied by Proposition 2.19 is the following:

Corollary 2.20. — Let K be an F-convex set, with Gauss map G and
∂K the graph of a function ũ. Then

A(K)(ω) =
∫
π(G−1(ω))

√
1− ‖ grad ũ‖2 dx ,

where π : Rd,1 → Rd is the orthogonal projection.

Proof. — Suppose that ũ is C1 and h is the support function of K on B.
Let b = v−1(ω). Then

MA(h)(b) = L(∂h(b)) = L(∂h̃(b)) (2.12)= L((grad ũ)−1(b)) = (grad ũ)∗L(b) ,

so

A(K)(ω) =
∫
b

λ d(grad ũ)∗L =
∫
∂h(b)

(λ ◦ grad ũ) dx

=
∫
π(G−1(ω))

√
1− ‖ grad ũ‖2 dx .

Now for any convex h, ũ is convex and by Rademacher Theorem, ‖ grad ũ‖
is continuous except on a zero measure set N . Let us define the following
measure on Hd:

µ(ω) =
∫
π(G−1(ω))

√
1− ‖ grad ũ‖2 dx .

By Proposition 2.19 A(K)(N) = 0, so A(K) and µ coincide on N . Out of
N they also coincide by the argument above. �

Corollary 2.21. — Let K be an F-convex set with ∂sK a C1 hyper-
surface. Then for any Borel set ω of Hd, A(K)(ω) is the measure of the
inverse image of ω by the Gauss map, for the measure given by the induced
Riemannian metric on ∂sK.

Proof. — Let ∂sK be the graph of u. For two tangent vectors U, V in
Rd, the first fundamental form of ∂sK is given by

I(U, V ) =
〈(

U

〈gradx u, U〉

)
,

(
V

〈gradx u, V 〉

)〉
−

= 〈U, V 〉 − 〈gradx u, U〉〈gradx u, V 〉

so I = Idd − du⊗ du. So the area element is
√

det IL =
√

1− ‖ gradu‖2L
and the result follows from Corollary 2.20. �
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Remark 2.22 (Euclidean area). — To define the Monge–Ampère mea-
sure, we used the Lorentzian normal vectors. Classically the definition is
given by taking the Euclidean outward unit normal vectors with last co-
ordinate equal to −1. Actually, if x̂ =

(
x
1
)
is a Lorentzian inward normal

vector of some space-like hypersurface S in Rd+1, then
(
x
−1
)
is a Euclidean

outward normal vector. So the definition of the Monge–Ampère measure is
independent of this choice.
Considering a convex function h on B, it can be seen as the restriction to

B×{1} of the Lorentzian extended support function of an F-convex set K,
or the restriction to B× {−1} of the Euclidean extended support function
(defined on the past cone) of an unbounded convex set K′. Actually K =
{p ∈ Rd+1 | 〈p,

(
x
1
)
〉− 6 h(x),∀x ∈ B} and K′ = {p ∈ Rd+1 | 〈p,

(
x
−1
)
〉d+1 6

h(x),∀x ∈ B}, with 〈 · , · 〉d+1 the usual scalar product of Rd+1, so K = K′.
If we denote by Ae(h) the Euclidean area measure of K, we have in the

same manner as above (or see e.g. [14])

Ae(h) = λeMA(h) , where λe(x) =
√

1 + ‖x‖2 .

In particular the Euclidean area measure and the Lorentzian area measure
are equivalent. Heuristically, this is not surprising: if ω is a Borel set of B,
the pre-image by the Lorentzian or the Euclidean Gauss map of ω gives
the same set on ∂K. This because the hyperplane defined by the equa-
tion 〈p, x̂〉− = h(x) coincides with the hyperplane defined by the equation
〈p, x̂〉d+1 = h(x).
The fact that area measure is null on ω means that for any small parallel

displacement of the support planes defined by ω, the first order variation of
the volume is zero. Parallel displacement and volume determined on Rd+1

by the Euclidean metric and by the Minkowski metric coincide (although
the parallel displacement used in the definition of the area measure is not
in the same direction in each case). It also follows that the Lorentzian area
measure and the Hausdorff measure are equivalent [34, Theorem 4.2.5].

2.4. Support functions with continuous extension on the sphere

Let g ∈ C0(∂B). A g-convex set is an F-convex set K with support
function h̃ on Rd such that h̃|∂B = g. Not all F-convex sets are g-convex
sets for some g as h = λ−1 shows. The following result gives a sufficient
condition.

Proposition 2.23 ([23]). — Let K be a C2
+ F-convex set with mean

radius of curvature bounded from above. Then h̃|∂B is continuous.

ANNALES DE L’INSTITUT FOURIER



MINKOWSKI PROBLEM IN MINKOWSKI SPACE 1065

For any g ∈ C0(∂B), there is a distinguished g-convex set, that can
be introduced in many equivalent ways. They are listed in the following
proposition.

Proposition 2.24. — Let K be an F-convex set with support function
h ∈ C0(B), Gauss map G, and set g = h|∂B. The following are equivalent:

(1) h is the convex envelope of g, i.e. h(x) = sup{l(x) | l affine and l 6
g on ∂B};

(2) A(K) = 0;
(3) ∂regK is empty;
(4) ∀p ∈ ∂sK, v−1(G(p)) is the convex hull of points of ∂B;
(5) K =

⋂
`∈∂B I+(Pg(`)), with Pg(`) are the null hyperplane defined

by 〈 · , ˆ̀〉− = g(`);
(6) any g-convex set is contained in K;
(7) the interior of K union ∂sK is the domain of dependence (or Cauchy

development) of the boundary S of any g-convex set: it is the set
of points p of Rd,1 such that all inextensible causal curve through
p meet S.

Proof.
(1⇔2) By Proposition 2.17, A(K) = 0 is equivalent to MA(h) = 0, which

happens exactly when h is the convex envelope of h|∂B (see [19, 1.5.2]).
(1⇒4) Let x ∈ v−1(G(p)) =: C(p). Up to composing h by an affine

function we may suppose that h = 0 on C(p) and g > 0 (it suffices to
translate p to the origin). Suppose that g > c > 0. Then by definition of h,
h > c, that contradicts the assumption. So g−1(0) =: Λ is not empty. As
C(p) is convex, its closure contains the convex hull C(Λ) of Λ. We want to
prove that the closure of C(p) is contained in C(Λ). Let us suppose that
this is false: let x ∈ C(p) and x /∈ C(Λ). As C(Λ) is convex, the Separating
Hyperplane Theorem implies the existence of a hyperplane separating x
form C(Λ), that is there exists a vector v such that 〈v, η〉 < a and 〈v, x〉 > a.
Take the affine function l(y) = 〈v, y〉 − a. Note that l(x) > 0, and that g
is strictly positive on l−1[0,+∞) ∩ ∂B, so there is k > 0 such that g > k

whenever l > 0. It follows that there is ε > 0 such that εl < g, so h > εl on
B, but evaluating the inequality at p we get a contradiction.
(4⇒3) is clear.
(3⇒2) By Proposition 2.19 that if ∂regK is empty then A(K) = 0.

Here have that (1⇔2⇔3⇔4).
(7⇔5) It is proved in [4].
(5⇒6) If H is a g-convex set then H is contained in I+(Pg(`)) for every

` ∈ ∂B so H is contained in K.
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(6⇒1) Let h′ be the convex envelope of g. Then h 6 h′ so K ⊂ K(h′).
On the other hand by hypothesis K(h′) ⊂ K so K = K(h′), that is h = h′.
(1⇒5) Let K0 =

⋂
`∈∂B I

+(Pg(`)). Notice that if p ∈ K0 then the affine
function on B, lp(x) = 〈x̂, p〉− satisfies lp 6 g on ∂B. Conversely if l(x) =
〈x, y〉+ c is an affine function on B with f 6 g then the point pl =

(
y
−c
)
lies

on K0. That is there is a 1-to-1 correspondence between points of K0 and
affine functions l with l 6 g. Now, as the support function of K0 is defined
as h0(x) = supp∈K0〈x, p〉, the correspondence above shows that h0 is the
convex envelope of g. �

The unique g-convex set satisfying the properties above will be denoted
by Ωg. Its support function on B will be denoted by hg.

Remark 2.25. — If g is the restriction to ∂B of an affine map (in par-
ticular if g is constant), then Ωg is the future cone of a point.

Actually, any g ∈ C0(∂B) has a maximal value m. Then Ωg is in the
future side of light-like hyperplanes 〈 · , ˆ̀〉− = m ∀` ∈ ∂B. They meet at the
point (0, . . . , 0,−m): Ωg is always contained in the future cone of a point.

Remark 2.26. — With the terminology of [11], from Property 2.24, Ωg
is a regular domain. Moreover, the space-like boundary ∂sΩg corresponds
to the initial singularity. Given an element p ∈ ∂sΩg then G(p) is a ideal
convex subset of Hd. Since on G(p) the support function coincides with the
scalar product by p, the restriction of the support function to the radial
projection of G(p) to B is an affine function. So the dual stratification
pointed out in [11] gives a decomposition of Hd into ideal convex regions
where the support function is affine.

For x ∈ B, we will denote by Fg(x) the maximal convex set of B contain-
ing x on which hg is affine. In other words, Fg(x) = v−1(G(G−1(v(x))).

Definition 2.27. — We say that Ωg is simple if for any x ∈ ∂sΩg,
Fg(x) has codimension k, with k 6 d/2, k ∈ N.

Sometimes for brevity we will say that the support function hg is simple
to mean that Ωg is simple.

Note that when d = 2, Ωg is always simple. In higher dimensions d > 2,
Ωg is not necessarily simple. However those simple domains are of some
interest in the study of MGHCF space-times (see Section 3.7).

Lemma 2.28. — If K is a g-convex set contained in the interior of Ωg,
then ∂sK = ∂K. In particular, ∂sK is an entire space-like hypersurface.

Proof. — Suppose that the statement is false. Then there would be a
point p ∈ ∂K such that 〈p, x̂〉− < h(x) for every x ∈ B. Since p is in the
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boundary of K and

K = {q ∈ Rd+1 | 〈q, x̂〉− 6 h(x)∀x ∈ B} ,

there is ` ∈ ∂B such that 〈p, ˆ̀〉− = h(`).
On the other hand, on ∂B the function h coincides with hg, so if the

point p satisfies 〈p, ˆ̀〉− = h(`) = hg(`), it cannot lie in the interior of Ωg,
contradicting the assumption on K. �

We will also need the following definition, adapted from a base concept
of general relativity.

Definition 2.29. — A Cauchy g-convex set is a g-convex set with sup-
port function satisfying h < hg.

Clearly, a g-convex set contained in the interior of Ωg is Cauchy. The
converse does not hold, as the convex set with support function h(x) =
1
2‖x‖

2 shows. In this case g = h|∂B is constant equal to 1/2 so hg = 1/2
and h < 1/2 on B. On the other hand gradh(B) = B 6= Rd. Note that
h is the only convex function equal to its conjugate u [31, p. 106]. This
example also shows that for a g-convex set K, ∂sK can be a non-complete
C1 hypersurface.
In this case Ωg is the future of the point (0, . . . , 0,−1/2), whereas the

boundary of the domain K corresponding to h is the graph of ũ, where
ũ(x) = u(x) = h(x) if x ∈ B and ũ(x) = ‖x‖ − 1

2 otherwise.
The g-convex sets that we will consider in the next section will have the

property that Cauchy implies contained in the interior of Ωg.

2.5. Some classical results of Monge–Ampère equation

We quote some results on Monge–Ampère equation with prescribed con-
tinuous data on the boundary of the ball that will be used in the next
section. The first one is about uniqueness.

Theorem 2.30 (Comparison Principle, Rauch–Taylor, [30], [19, 1.4.6]).
Let O be a bounded open convex set of Rd. If u, v ∈ C(O) are convex
functions such that for any Borel set E ⊂ O, MA(u)(E) 6 MA(v)(E),
then

min{u(x)− v(x) |x ∈ O} = min{u(x)− v(x) |x ∈ ∂O} .

Corollary 2.31. — A g-convex set is uniquely determined by its area
measure among g-convex sets.
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Now we will quote some regularity results. We will need the following
assumption: for a bounded open convex set O, h convex on O and for any
Borel set E of O,

(2.19) mL(E) 6 MA(h)(E) 6ML(E), for some fixed M > m > 0 .

Remark 2.32. — The condition mL(E) 6 MA(h)(E) for any Borel set
E is equivalent to require that det Hessh(x) > m L-almost everywhere.
Indeed as the determinant of the Hessian is the density of the regular part
of MA(h) with respect to the Lebesgue measure, if it is bounded from
below by m, then mL(E) 6 MA(h)(E) by definition of density. Conversely
suppose that mL(E) 6 MA(h)(E) for any Borel set and let E0 be the
support of the singular part of MA(h) with respect to L. Consider E1 =
{x | det Hessh(x) < m}. Notice that MA(h)(E1 \ E0) 6 mL(E1 \ E0),
but by the assumption the opposite inequality holds. As a consequence
L(E1 \ E0) = 0. As L(E0) = 0, we conclude that det Hessh(x) > m L-
almost everywhere.
On the other hand the condition MA(h)(E) 6 ML(E) is equivalent to

require that MA(h) is absolutely continuous with respect to L with density
bounded from above by M .

Theorem 2.33 (Caffarelli, [19, Theorem 5.2.1]). — Let O be a bounded
open convex set of Rd. Let h be a convex function in O satisfying (2.19).
Assume that h > 0 on O and let C = {x ∈ O |h(x) = 0}. If C is non-empty
and contains more than one point, then C has no extremal point in O.

An extremal point of a convex set C is a point of ∂C which is not a
convex combination of other points of the closure C of C. A classical result
of convex geometry states that if C is compact then C is the convex hull
of the extremal points of C.

Theorem 2.34 (Multidimensional Alexandrov–Heinz Theorem). — Let
h be a convex function on the d dimensional unit ball Bd in Rd such that
the Monge–Ampère measure of h satisfies MA(h) > c0L for a positive c0.
Let W be an affine subspace of Rd passing through 0, of dimension

d − k, for k 6 d/2. Suppose that h ≡ 0 on the boundary of a (d − k)
ball Bd−k = W ∩ Bd. Then

h(0) < 0 .

The theorem says that, if the Monge–Ampère measure of h is bounded
from below by a positive constant (times the Lebesgue measure), then h

cannot be affine on a (d − k)-plane. In particular, h cannot be affine on a
hyperplane. If d = 2, this says that if the Monge–Ampère measure of h is
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bounded from below by a positive constant, then h is strictly convex. This is
the usual formulation of Alexandrov–Heinz Theorem, see [35, Remark 3.2].
For completeness, we give a proof of Theorem 2.34 at the end of this section.
The proof closely follows the proof in the 2-d case given in [35].

Remark 2.35. — The assumption on the dimension on k in the Theorem
is optimal. In fact a famous example due to Pogorelov [28, pp. 81–86]
shows that for d > 3 there exists a convex function f on Bd with strictly
positive Monge–Ampère measure (in the sense above) which is constant on
a segment.
Actually the example can be easily generalized: let k > d/2 and for any

vector x ∈ Rd let r(x) =
√
x2
d−k+1 + · · ·+ x2

d and t(x) =
√
x2

1 + · · ·+ x2
d−k.

Consider the function

f(x) = βr(x)α(1 + βt(x)2)

with α = 2k/d and β > 1. This function is 0 on the ball Bd−k of dimension
d−k defined by the equation xd−k+1 = · · · = xd = 0. Moreover f is smooth
on Bd \Bd−k and C1 on Bd (here the assumption on k is needed). A direct
computation shows that for a suitable choice of β the function f satisfies
det Hess f > c0 on Bd \ Bd−k and some positive constant c0. From this
estimates and (2.18) one deduces that MA(f) is bigger than c0L.

As we will not use this result in the paper we omit the computation
leaving it to the reader (basically it can be done following the same line as
in [28, pp. 81–86]).

Theorem 2.36 ([35, Theorem 3.1]). — Let h be a strictly convex solu-
tion of

MA(h) = ϕL

on a ball O. Suppose ϕ > 0 and ϕ ∈ C1,1(O). Then h ∈ C3,α(O) for any
α ∈ (0, 1). If furthermore ϕ ∈ Ck,α(O) for some k > 2 and α ∈ (0, 1), then
h ∈ Ck+2,α(O).

Corollary 2.37. — Let K be a g-convex set with support function
h and such that A(K) = f(v−1)∗(dHd) with f ∈ Ck+1(Hd), k > 2 and
c2 > f > c1 > 0.
If moreover
(1) hg is simple, or
(2) h < hg on B,

then ∂sK is a strictly convex Ck+2 hypersurface.
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Proof. — First notice that (1) implies (2)
Indeed suppose that h = hg at some point x. By Proposition 2.24, F :=

Fg(x) is a convex set with vertices on the boundary and hg is affine on F .
Thus since h coincides with hg on ∂B∩F and at some interior point we get
that those functions coincide on the whole F . Up to compose by an affine
transformation we may assume that h = hg is zero on F .

As hg is simple Theorem 2.34 implies that h is strictly negative on F ,
giving a contradiction,
So we suppose that (2) is fulfilled.
Let us first check that h is strictly convex. By contradiction suppose

that it is not strictly convex. There exists an affine function l such that
its graph is a support plane for the graph of h, and the convex region
C = {x ∈ B |h(x) = l(x)} contains more than two points.
Notice that the convex function h′(x) = h(x)− l(x) is non negative and

C = {x ∈ B |h′(x) = 0} .

Moreover MA(h) = MA(h′) by (2.15).
Let Bε be the open ball centered at the origin of radius 0 < ε < 1,

and let Cε = C ∩ Bε. Choose ε so that Cε is not empty. On Bε, λ is
bounded from below by a positive constant depending on ε, hence by the
previous paragraph, MA(h′) satisfies (2.19). So Theorem 2.33 applies, and
the extremal points of Cε are on the boundary of Bε. This is true for any
ε′ > ε, so the extremal points of C are on ∂B. Clearly, C has at least two
extremal points x0, x1 in ∂B, and h = l on the segment joining x0 to x1. As
h = hg on ∂B, by definition of hg, h = hg on the segment, that contradicts
the hypothesis h < hg on B. Hence h is strictly convex.
For any 0 < ε < 1, fλ−d−2 has the same regularity than f on the ball of

radius ε, so from Theorem 2.36, h ∈ Ck+2 on this ball, hence h ∈ Ck+2(B).
The determinant of the Hessian of h is equal to fλ−d−2 > 0, so the principal
radii or curvature of K are positive. K is then a C2

+ F-convex set, and in
this case ∂sK has the same regularity than h [17]. �

Remark 2.38. — Another result of Caffarelli says that if h is the support
function of a g-convex set, (2.19) is satisfied, and h(x) < hg(x) at x ∈ B,
then h is C1,α at x, for 0 < α < 1, see [19, 5.4.6].
For the particularities of the d = 2 case, see also [25], [27] for different

viewpoints.
The g affine case has also particularities, see [19, 35] or [14, Theorem 7].

Finally we give a proof of Theorem 2.34.
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Proof of Theorem 2.34. — Without loss of generality, we set Bd−k =
{x ∈ Bd | xd−k+1 = · · · = xd = 0}. For x ∈ Bd, let us denote x̃ =
(x1, . . . , xd−k, 0, . . . , 0) and x̄ = (0, . . . , 0, xd−k+1, . . . , xd), so that if x ∈
Bd−k, then x = x̃.
Since h ≡ 0 on ∂Bd−k, by convexity, h 6 0 on Bd−k. Using this and again

convexity, we have actually on Bd−k:

(2.20) 0 > h (x̃) > −2|h(0)| .

Let

D = 1
4B

d−k × 1
4B

k =
{
x

∣∣∣∣ ‖x̃‖ < 1
4 , ‖x̄‖ <

1
4

}
.

First we will prove that for almost every x ∈ D the derivatives of h along
the first d− k directions are estimated as follows:

(2.21) |∂ih(x)| < 8 (|h(0)|+ C‖x̄‖) for i 6 d− k ,

where C is the Lipschitz constant of the restriction of h to 3
4B

d. For sake
of simplicity we prove the formula for i = 1.
As h is C-Lipschitz on 3

4B
d, using (2.20), if x ∈ 1

2B
d we have

h(x) > h(x̃)− C‖x̄‖ > −2|h(0)| − C‖x̄‖ ,
h(x) 6 h(x̃) + C‖x̄‖ 6 C‖x̄‖ .

If x ∈ D ⊂ 1
2B, then (1/2, x2, , . . . , xd) ∈ 3

4B. so we have for almost all x

∂1h(x) 6
(

1
2 − x1

)−1 [
h

(
1
2 , x2, . . . , xd

)
− h (x)

]
6 4(2|h(0)|+ 2C‖x̄‖) 6 8(|h(0)|+ C‖x̄‖) ,

where we have applied the general estimate f ′(a)(b − a) 6 f(b) − f(a) to
the convex function f(t) = h(t, x2, . . . , xd).
Analogously

∂1h(x) >
(
x1 + 1

2

)−1 [
h (x)− h

(
−1

2 , x2, . . . , xd

)]
> −8(|h(0)|+C‖x̄‖) ,

and (2.21) follows.
Let us denote D[d−k,d−k](x) (resp. D[k,k](x)) the determinant of the (d−

k) × (d − k) (resp. k × k) submatrix of the Hessian of h at x made by
first d − k lines and columns (resp. the last k lines and columns). Notice
thatD[d−k,d−k] and D[k,k] are function defined almost everywhere on B. As
the Hessian is positive definite, by Fischer inequality [21, 7.8.3],

det Hessh 6 D[d−k,d−k]D[k,k] .
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Now by (2.21) for any x̄ ∈ 1
4B

k we have that the function

x̃ 7→ g̃radh(x̃+ x̄) = (∂1h, . . . , ∂d−kh, 0, . . . , 0)(x̃+ x̄)

sends almost all points in 1
4B

d−k into a (d− k)-dimensional disk of radius
8(d− k)(|h(0)|+ C‖x̄‖). In particular with (2.18):∫

1
4Bd−k

D[d−k,d−k](x) dx̃ 6 C(d, k)(|h(0)|+ C‖x̄‖)d−k .

Moreover as D[d−k,d−k]D[k,k] > c0, for almost any x̄ ∈ 1
4B

k,∫
1
4Bd−k

1
D[k,k](x) dx̃ 6 c−1

0

∫
1
4Bd−k

D[d−k,d−k](x) dx̃

6 C(d, k)c−1
0 (|h(0)|+ C‖x̄‖)d−k .

Cauchy–Schwarz inequality gives∫
1
4Bd−k

D[k,k](x) dx̃ >
Vol( 1

4B
d−k)2∫

1
4Bd−k

1
D[k,k](x) dx̃

> C ′(d, k)c0(|h(0)|+ C‖x̄‖)−d+k .

Now as h is C-Lipschitz on 3
4B

d, for any x̃ ∈ 3
4B

d−k the function

x̄ 7→ gradh(x̃+ x̄) = (0, . . . , 0, ∂d−k+1h, . . . , ∂dh)(x̃+ x̄)

sends almost all points in 1
4B

k
+ —the part of 1

4B
k with vectors of posi-

tive entries— into a k-dimensional disc of radius C, and again by (2.18),∫
1
4Bk+

D[k,k](x) dx̄ is less than the volume of this disc, so

(2.22)
∫

1
4Bd−k

∫
1
4Bk+

D[k,k](x) dx̄ dx̃ 6 C ′′(d, k)Ck .

Putting the inequalities together, by Fubini,∫
1
4Bk+

(|h(0)|+ C‖x̄‖)−d+k dx̄ 6 C ′′′(d, k)Ckc−1
0 .

Now integrating in polar coordinates on Bk+ we get that∫ 1/4

0

tk−1

(|h(0)|+ Ct)d−k dt 6 C ′′′′(d, k)Ckc−1
0 .

The function F (y) =
∫ 1/4

0
tk−1

(y+Ct)d−k dt is decreasing and by Beppo-Levi
Theorem, as k 6 d/2, limy→0+ F (y) = +∞.
This shows that |h(0)| > c where c depends only on C, c0, k, and d. �
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3. Equivariant convex sets

3.1. Definition

We fix a uniform lattice Γ in SO+(d, 1). Recall that an affine deformation
of Γ is a subgroup Γτ of Isom(Rd,1) obtained by adding a translation part
to elements of Γ. Thus an affine deformation is defined by the translation
function τ : Γ → Rd+1. Given γ ∈ Γ we denote by γτ the corresponding
element in Γτ , i.e. the affine transformation γτ (x) = γ(x) + τγ .
The condition that Γτ is a subgroup forces τ to verify the cocycle relation

ταβ = τα + ατβ .

The set of cocycles is a vector space of finite dimension denote here by
Z1(Γ,Rd+1). The subgroup of Isom(Rd,1) obtained by conjugating Γ by
a translation in Rd+1 of a vector t0 is an affine deformation Γτ of Γ.
We say that such deformation is trivial. The corresponding cocycle is
τα = α(t0) − t0. A cocycle obtained in this way is called a coboundary.
The set of coboundary is a subspace of Z1(Γ,Rd+1) of dimension d + 1.
The quotient H1(Γ,Rd+1) = Z1(Γ,Rd+1)/B1(Γ,Rd+1) is a geometrically
meaningful object under different points of view.
If Γ is torsion free, it parameterizes the MGHCF structures on the man-

ifold R× (Hd/Γ), but, if d > 2, it is also the Zarinski tangent space at the
identity of the character variety of representations of Γ into SO(d + 1, 1)
(see [33]).
Recall from the introduction that a τ -convex set is a closed future convex

set invariant under the action of Γτ .
If Γ is not torsion-free, then by Selberg Lemma it contains a torsion

free normal subgroup Γ′ of finite index. By [11, 3], there exists a unique
maximal convex subset invariant under Γ′τ . By uniqueness it is also Γτ -
invariant. That is, τ -convex sets always exist.

Remark 3.1. — The argument to show the existence of τ -convex set for
general uniform lattices is quite general. It turns out that if Theorems 1.1
and 1.3 hold for Γ′, then they also hold for Γ. So there is no loss of generality
to assume that Γ is torsion-free.
In the sequel we will always make such assumption, leaving to the reader

the details in the general case.

First we want to show that the Gauss map of a τ -convex set is surjective.

Lemma 3.2. — A τ -convex set K is an F-convex set.
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Proof. — We need to prove that the support function H̃ : I+(0) → R ∪
{+∞} defined by

H̃(X) = sup
p∈K
〈X, p〉−

is finite over I+(0).
First we notice that H̃ is convex and 1-homogenous. Thus, the region

where H̃ is finite is a convex cone with vertex at 0: its intersection with Hd
is a hyperbolic convex set. If we prove that this region contains an orbit of
Γ in Hd, we conclude that H̃ is finite over I+(0). Indeed as Γ is a uniform
lattice, the convex hull in Hd of the orbit of any point is the whole Hd.
In order to prove that H̃ is finite on some orbit of Γ, we remark that

H̃ is finite on the image of the Gauss map. Indeed, if η = G(p), for some
p ∈ ∂sK, H̃(p) = 〈η, p〉−.
By the invariance of K, if η is a support vector for K at p, then γ(η)

is a support vector for K at γτ (p). Thus the image of the Gauss map is
Γ-invariant, i.e. it is union of some orbits of Γ.
To conclude it is sufficient to observe that ∂sK is not empty, that is K is

not a half-space bounded by any lightlike plane P . Otherwise the lightlike
direction orthogonal to the tangent space of P would be fixed by Γ, but we
know that Γ does not fix any point in ∂Hd. �

As stated in the introduction, there is a natural action of Isom(Rd,1)
on the set of the support functions of F-convex sets. Basically σ ·H is by
definition the support function of σ(K). It turns out that K is a τ -convex
set if and only if its support function H is fixed by the action of Γτ .

Another simple remark is that the action of Isom(Rd,1) on the set of
support functions preserves the natural partial order. Indeed since we have
H 6 H ′ if and only if the corresponding F-convex set satisfy K ⊂ K′, it
turns out that

(3.1) H 6 H ′ ⇒ σ ·H 6 σ ·H ′ .

The function σ ·H can be explicitly described in terms of σ and H.

Lemma 3.3. — If H is a support function of an F-convex set, and σ ∈
Isom(Rd,1) has linear part γ and translational part τ , then

(3.2) (σ ·H)(X) = H(γ−1X) + 〈τ,X〉− .

Proof. — Let K be the F-convex set corresponding to H. We have

(σ ·H)(X) = sup
p∈σK

〈X, p〉− = sup
q∈K
〈X,σq〉− = sup

q∈K
〈X, γq〉− + 〈X, τγ〉−

= H(γ−1(X)) + 〈X, τγ〉− . �
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In other words the linear part of σ acts on H by pull-back, whereas the
translation τ adds a linear factor to H.

Notice that if H is a τ -support function, then γτ ·H = H so we have

H(X) = H(γ−1X) + 〈τγ , X〉−

that is, putting Y = γ−1X

(3.3) H(γY ) = H(Y ) + 〈γ−1τγ , Y 〉− = H(Y )− 〈τγ−1 , Y 〉− .

Notice that equations (3.3) are linear but, if τ 6= 0, not homogeneous. So
the set of functions satisfying (3.3) is an affine space whose tangent space
is the space of Γ-invariant functions.
It follows that a convex combination of τ -support function is still a τ -

support function. If K1 and K2 are τ -convex set then for any 0 6 λ 6 1,
λK1 + (1 − λ)K2 is a τ -convex set. In other words, for those operations,
the set of τ -convex sets is convex.
Moreover if K1 is a τ -convex set and K2 is a Γ-invariant set, then K1+K2

is again a τ -convex set.
As explained in Section 2.1, a support function H is determined by its

restriction on Hd, denoted here by h and by its restriction on the ball
B, say h, where more precisely we embed B into I+(0) by the affine map
x 7→ x̂ =

(
x
1
)
and put h(x) = H(x̂).

Notice that since Hd is left invariant by the action of linear isometries of
Rd,1, the action of Isom(Rd,1) on the space of hyperbolic support functions
can be easily deduced by (3.2). In fact for η ∈ Hd we have (σ · h)(η) =
h(γ−1η) + 〈τ, η〉−, so if h is the hyperbolic support function of a τ -convex
set we deduce h(γζ) = h(ζ)− 〈τγ−1 , ζ〉−, for ζ ∈ Hd.
The action of Isom(Rd,1) on the ball support functions (that are the

convex functions on B) is more complicated, due to the fact that the im-
mersion of B into I+(0) is not invariant by the action of Isom(Rd,1). The
translation part contributes by adding an affine function, whereas the lin-
ear part of σ does not act simply by pull-back. More precisely, notice that
B is naturally identified to the projective set of the lines contained in I+(0),
that is a subset of RPd+1. As SO+(d, 1) preserves I+(0) there is a natural
projective action of SO+(d, 1) on B. Given γ ∈ SO+(d, 1) let us denote by
γ̄ the corresponding projective transformation of B(

γ̄(x)
1

)
= 1

(γ(x̂))d+1
γ(x̂) .

Using (3.2) and the 1-homogeneity of H we deduce how Isom(Rd,1) acts on
the ball support functions.
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Lemma 3.4. — For σ ∈ Isom(Rd,1) and h a convex function on B,

(σ · h)(x) = (γ−1(x̂))d+1h(γ̄−1(x)) + 〈x̂, τγ〉−

= λ(x)
λ(γ̄−1x)h(γ̄−1(x)) + 〈x̂, τγ〉− .

Proof. — We have (σ · h)(x) = (σ ·H)(x̂) = H(γ−1x̂) + 〈x̂, τγ〉−. On the
other hand,

H(γ−1x̂) = (γ−1(x̂))d+1H

((
γ̄−1x

1

))
= (γ−1(x̂))d+1h(γ̄−1x) .

So the first part of the formula is proved.
Remark now that

λ(x) = ‖x̂‖− = ‖γ−1x̂‖− = (γ−1(x̂))d+1‖̂̄γ−1x‖− = (γ−1(x̂))d+1λ(γ̄−1x)

and so also the second part of the formula holds. �

Since isometries of Minkowski space preserve the volume, the area mea-
sure associated to any F-convex set is preserved by the action: A(σK) =
γ∗A(K). In particular if K is a τ -convex set, then A(K) is a Γ-invariant
measure.
Using the correspondence between A(K) and the Monge–Ampère mea-

sure associated to the ball support function stated in Proposition 2.17, we
deduce that the action of Isom(Rd,1) on the set of convex functions of B
effects in a very controlled way the Monge–Ampère measure.

Lemma 3.5. — If h is a convex function of B and σ ∈ Isom(Rd,1) then

MA(σ · h) =
√

1− ‖γ̄−1(x)‖2√
1− ‖x‖2

γ̄∗MA(h) .

Proof. — If v : B→ Hd is the radial map, we have

MA(σ · h) = λ−1(v−1)∗(A(σK)) = λ−1(v−1)∗(γ∗A(K)).

Since v−1γ = γ̄v−1 we conclude that MA(σ · h) = λ−1(γ̄∗)(λMA(h)). �

Corollary 3.6. — For any σ ∈ Isom(Rd,1), c0 ∈ R and C compact
subset of B, there is a constant c = c(σ, c0, C) such that if MA(h) > c0L
on B then MA(σ · h) > cL on C.
Moreover c is uniformly bounded if the linear part of σ lies in a compact

subset of SO+(d, 1).
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3.2. Extension of τ-support functions to the boundary

Proposition 3.7. — Let τ ∈ Z1(Γ,Rd+1). Then there exists gτ ∈
C0(∂B) such that τ -convex sets are gτ -convex sets.

See also [3].
Proof. — As there exists a C2

+ τ -convex set with constant mean radii of
curvature [17], from Proposition 2.23, the corresponding support function
on the ball, say h0, extends to the sphere ∂B. Denote by gτ the extension
of h0 to ∂B.
Let us take any other τ -convex set K. We want to prove that its support

function on the ball, say h, extends gτ . By (3.3) we have that the difference
H −H0 is a Γ-invariant function on I+(0).

So, its restriction to Hd reaches a minimum a and a maximum b. Using
that on the ball h(x) = H(x, 1) = λ(x)H(v(x)), we deduce that

aλ(x) < h(x)− h0(x) < bλ(x)

As λ(x) =
√

1− ‖x‖2 goes uniformly to 0 as ‖x‖ → 1 we get the result.
So the value of the extension on the sphere depends only on τ . �

Remark 3.8. — The argument of the proof of Proposition 3.7 shows
that if f is any bounded function on Hd, then the restriction of its 1-
homogeneous extension to the ball, say f , is continuous on B and in fact
f |∂B is zero.
This remark can be applied for instance if f is a Γ-invariant function and

we will often use it in the sequel.

We will denote Ωgτ by Ωτ . If τ is a coboundary, then Ωτ is the closure
of the future cone of a point, and gτ is the restriction of an affine map.
Despite the fact that in the literature Ωτ is often considered as an open
subset, it is more convenient to consider its closure in the present paper.

Definition 3.9. — For any cocycle τ , hτ will be the support function
of Ωτ (that is the convex envelope of gτ ).

By Proposition 2.24 any τ -convex set is contained in Ωτ .
For x ∈ Ωτ , the cosmological time is the Lorentzian distance from x to

the boundary of Ωτ . By [11] the cosmological time is a Γτ -invariant C1,1-
function of the interior of Ωτ with value on [0,+∞). Moreover, the level
set Σt is the boundary of the set Ωτ + tJ+(H). In particular the support
function of the future of Σt on Hd is hτ − t.
For a given Γτ -invariant hypersurface S, we will denote by Tmin(S) (resp.

Tmax(S)) the minimum (resp. the maximum) of the cosmological time on S.
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Lemma 3.10. — Let K be a τ -convex set with hyperbolic support func-
tion h, and let S be its boundary. Then Tmin(S) (resp. Tmax(S)) is equal
to the minimum (resp. maximum) of hτ − h on Hd.

Proof. — Let Σm be the level set of T corresponding to the level m =
Tmin(S). As K ⊂ I+(Σm), then h 6 hτ −m, i.e. hτ − h > m. On the other
hand, if p is the point of K realizing the minimum of the cosmological time
on ∂K, then the tangent plane of Σm at p is a support plane of K at p. If
x̂, x ∈ B, is the corresponding normal vector, then h(x) = hτ (x)−m. �

Recall from Definition 2.29 that a τ -convex set is Cauchy if h < hτ .

Lemma 3.11. — Cauchy τ -convex sets are exactly the τ -convex sets
contained in the interior of Ωτ . For such a K, ∂K = ∂sK.

Proof. — If K is in the interior of Ωτ , it is clearly Cauchy. Now suppose
that K is Cauchy and τ -convex. By Lemma 3.10, K is in the future of the
level set of the cosmological time Σm, for m > 0 the minimum of hτ − h.
But Σm is contained in the interior of Ωτ ([11]) so the same holds for K.

The last assertion comes from Lemma 2.28. �

Remark 3.12. — The existence of a maximal τ -convex subset was al-
ready proved in [11] and in [3] by different arguments. We remark here
some consequences of the theory developed in [11] that we will use here.
A first important property is that the action of Γτ on the interior of Ωτ is

proper. The quotient (int Ωτ )/Γτ is foliated by space-like convex compact
hypersurfaces. Moreover if K is any Cauchy τ -convex set then ∂K/Γτ is
compact.
Since any point in the interior of Ωτ is contained in some space-like

convex hypersurface we get that the action of Γτ in int Ωτ is space-like in
the sense that the segment joining two points on the same orbit is always
space-like.

Remark 3.13. — Proposition 3.7 implies that for any light-like vector
` ∈ ∂B, the plane Pgτ (`) of equation 〈x, `〉− = gτ (`) does not meet the
interior of Ωτ .
Notice however that this does not mean that any light-like direction is

orthogonal to a light-like support plane of Ωτ . Actually if d = 2 and if τ
is not a coboundary, then the set of directions of light-like support plane
has zero measure in ∂H2, [12, Proposition 4.15]. For most of the light-like
directions Pgτ (`) is a support plane at infinity: it does not meet Ωτ but any
parallel displacement of the hyperplane in the future direction will meet
the interior of Ωτ .
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We say that a continuous function h : Hd → R is τ -equivariant if it
satisfies the equivariance relation (3.3). Notice that τ -equivariant functions
are precisely those functions h that can be written as h = hτ + f , with
f = h− hτ a continuous Γ-invariant function.

For any Γ-invariant function f , we define the following convex set:

Kτ (f) = {p ∈ Rd+1 | 〈p, η〉− 6 hτ (η) + f(η), ∀η ∈ Hd} .

It is immediate to see that if p ∈ Ωτ and a > supHd f , then p+aη ∈ Kτ (f)
for any η ∈ Hd. So this set is not empty. Moreover, a simple computation
shows that it is a τ -convex set.

If f denotes the restriction of the 1-homogeneous extension of f to the
ball B, the support function h of Kτ (f̄) is the convex envelope of f + hτ
(because the convex envelope corresponds to the pointwise supremum of all
affine functions majored by f+hτ [31, 12.1.1], that is exactly the definition
of the support function). Notice that the restriction of f to ∂B is 0 (see
Remark 3.8), so if f is non negative, then h equals hτ , that is Kτ (f) = Ωτ .

Many of the functionals we will introduce below on the set of τ -support
functions can be then extended to the space of τ -equivariant continuous
functions, but we will only need the following.

Lemma 3.14. — Let f be any Γ-invariant function on Hd, and h be the
support function of K = Kτ (f), and G be the Gauss map of K. Then on
∂regK,

(hτ + f) ◦ G = h ◦ G .

In particular, the set of points such that h < hτ +f (i.e. such that hτ +f 6=
h) has zero area measure.

Proof. — Denote by f the restriction of the 1-homogeneous extension of
f to B. Clearly h < hτ + f at x ∈ B if and only if h < hτ + f at v(x).
Now let p ∈ ∂sK and x̂, x ∈ B, be a support vector at p, so that

〈x̂, p〉− = h(x). Suppose that h(x) < (hτ + f)(x).
By Remark 3.8 and Proposition 3.7, the function hτ + f is continuous

on B. Notice that K coincides with the set {p ∈ Rd+1 | 〈p, x̂〉− 6 hτ (x) +
f(x), ∀x ∈ B}. Since p ∈ ∂sK, by compactness of B, there must exist y ∈ B
such that 〈p, ŷ〉− = (hτ + f)(y) (otherwise, p would be an interior point
of K).
Hence x and y are two different support vectors at p, so p is not regular.

The Gauss image of the set of regular points has full area measure by
Proposition 2.19. �
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3.3. Hausdorff distance and convergence

The difference of two τ -equivariant maps is Γ-invariant. This gives a
continuous function on the compact manifold Hd/Γ. The set of τ -convex
sets can be endowed with the following distance.

Definition 3.15 (Hausdorff distance). — The τ -Hausdorff distance
between two τ -convex sets is the uniform norm of the difference of their
support functions.

Remark 3.16. — Recall that the support function of J+(H) on Hd equal
to −1. So if K is any F-convex set with support function h, the support
function of K + λJ+(H) is h− λ.
It follows that the distance between two τ -convex sets K and K′ is the

minimum of the λ > 0 such that K +λJ+(H) ⊂ K′ and K′+λJ+(H) ⊂ K.

The main tool will be the following convergence result.

Lemma 3.17. — Let Σt be a level set of the cosmological time, and let
(Kn) be a sequence of τ -convex sets which meet the past of Σt. Then —
up to passing to a subsequence — (Kn) converges to a τ -convex set with
respect to the τ -Hausdorff distance.

Proof. — Let (Sn) be the sequence of boundaries of the Kn. Notice that
Sn is the graph of some 1-Lipschitz function ũn defined on the horizontal
plane Rd. By a standard use of Ascoli–Arzelà theorem, if there is a compact
subset in Rd+1 which meets all the hypersurfaces Sn, then up to passing
to a subsequence the functions ũn converge to a 1-Lipschitz function u

uniformly on compact subsets of Rd.
To check that Sn meets a compact region of Rd+1, notice that by the

assumption there is a point xn ∈ Σt whose past meets Sn. By the invariance
of Sn, any point in the orbit of xn works as well. Since the quotient Σt/Γτ
is compact [11], then there is a compact fundamental region C of Σt for the
action of Γτ . So we may assume that xn ∈ C. Thus, Sn meets I−(C) ∩ Ωτ
which is a compact region.
Up to passing to a subsequence, we can deduce that ũn converges to a

1-Lipschitz function ũ. The graph of ũ is the boundary of a τ -convex set K.
It remains to prove that Kn converges to K with respect to the τ -Hausdorff
distance.
Suppose by contradiction that (Kn) does not converge to K in the sense

of Definition 3.15. That means that there exists a ε > 0 such that, for
arbitrarily large n, there exists xn ∈ Kn + εJ+(H) with xn /∈ K, or xn ∈
K + εJ+(H) and xn /∈ Kn.
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Let us suppose that we are in the former case.
Let P be any fundamental region of Σt and let P the union of the time-

like rays in Ωτ orthogonal to P . By [11] it turns out that P is a fundamental
region of the action of Γτ on Ωτ , and the intersection of P with the bound-
ary of any τ -convex set is compact. It turns out that there is a point in the
orbit of xn, say yn, that lies in I−(P ∩ ∂K) ∩Ωτ that is a compact region.
Notice that yn lies in Kn + εJ+(H), so yn = zn + εηn for some ηn ∈ Hd

and zn ∈ Kn. Since zn ∈ I−(yn) ∩ Ωτ ⊂ I−(P ∩ ∂K) ∩ Ωτ , we can also
suppose that zn converges to z. By the convergence of ũn to ũ we deduce
that z ∈ K. Moreover notice that 〈y − z, y − z〉− = −ε2 so y lies in the
future of K contradicting the assumption that it is a limit of a sequence of
points in the past of K.

The latter case is analogous. �

We can deduce the analogue of the Blaschke Selection theorem for convex
bodies.

Corollary 3.18. — From each sequence of τ -convex sets uniformly
bounded in the future, one can extract a sequence converging to a τ -convex
set.

Another simple consequence of Lemma 3.17 is that the cosmological time
is uniformly bounded for any τ -invariant hypersurface that meets a fixed
level of the cosmological time, see also [6, Proposition 7.4.14] and [7, Propo-
sition 4.1].

Corollary 3.19. — Let ε > 0. There exists T = T (ε, τ) such that
if K is any τ -convex set whose boundary S meets the level set of the
cosmological time Σε then Tmax(S) 6 T , where Tmax(S) is the maximum
of the cosmological time of S.

Proof. — By contradiction suppose that there is a sequence (Kn) of τ -
convex sets such that the boundary of Kn, say Sn, meets Σε and Tmax(Sn) >
n. By Lemma 3.17, up to passing to a subsequence, (Kn) converges to an
F-convex set K in the τ -Hausforff sense. This implies that the correspond-
ing hyperbolic support functions hτ − h are uniformly bounded, but this
contradicts Lemma 3.10. �

Lemma 3.20. — There is a constant δ = δ(τ) > 0 such that if Tmin(S) >
1 then

Tmax(S)/Tmin(S) < δ .

Proof. — Suppose that there is a sequence of τ -convex sets Kn with
boundaries Sn such that Tmin(Sn) > 1 and Tmax(Sn)/Tmin(Sn) > n. From
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Corollary 3.19, Tmin(Sn)→ +∞. Let us set tn = Tmin(Sn) and consider the
sequence of rescaled hypersurfaces S′n = (1/tn)Sn. Notice that S′n is the
boundary of the (1/tn)τ -convex set (1/tn)Kn and satisfies Tmin(S′n) = 1.
So for any n, S′n has a common point with the level set 1 for the cosmolog-

ical time Tn of 1
tn

Ωτ = Ω 1
tn
τ . By [11, 6], the graph functions of those level

sets of Tn converge in the compact open topology to the graph function
of the cosmological time T0 of Ω0 = I+(0). Moreover for every c there is a
compact region Uc of Rd+1 (independent of n) that contains a fundamental
region of the level set T−1

n (c) for the action of Γ 1
tn
τ for every n.

As for each n, the intersection point of S′n with T−1
n (1) can be chosen in

U1, we deduce that S′n meets U1 for every n. As S′n are graphs of 1-Lipschitz
functions ṽn, we deduce that — up to extracting a subsequence — ṽn
converges to a convex 1-Lipschitz function ṽ uniformly on compact subsets
as a consequence of Arzelà–Ascoli theorem. The graph of ṽ, is the boundary
of a convex subset K which is invariant by the action of Γ by construction.
Since S′n is contained in the closure of the future of T−1

n (1) then ∂K is
contained in I+(Hd) = J+(H) in Rd+1. In particular, it is a Cauchy surface
in I+(0).

As U1 contains a fundamental region of the action of Γ 1
tn
τ over T−1

n (1),
there is a sequence of points xn ∈ U1 such that xn ∈ S′n ∩ T−1

n (1). Taking
the limit (up to a subsequence) of (xn), we deduce that ∂K meets the level
set T−1

0 (1).
By Corollary 3.19 ∂K is contained in the past of the level set T−1

0 (c),
for some fixed constant c. Since the graph functions of S′n converge to the
graph function of ∂K uniformly on compact subsets of Rd and the same
holds for the graph functions of T−1

n (c), we deduce that for any compact
region V of Rd+1 there is n0 (a priori depending on V ) such that S′n ∩ V
is in the past of T−1

n (c) ∩ V for n > n0.
Since the compact region Uc contains a fundamental region of T−1

n (c) for
very n, we deduce that for n big S′n is contained in the past of T−1

n (c).
But by our starting assumption, one also has that Tmax(S′n) =

Tmax(Sn)/tn > n, and this gives a contradiction. �

3.4. Area and total area

In the sequel, except if explicitly mentioned, the integrals will be on the
compact manifold Hd/Γ.
Let us recall notations from Subsection 2.1. If K is a τ -convex set, then

Vε(K) is clearly a Γ-invariant measure, and so are the area measures Si(K).
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Any Γ-invariant Radon measure µ onHd defines a Radon measures inHd/Γ:
it is the only measure µ̄ on Hd/Γ such that if U ⊂ Hd/Γ is a Borel set and
ψ : U → Hd is a measurable section of the projection π : Hd → Hd/Γ, then
ψ∗(µ̄) = µ.
In practice, if E is a Borel subset of Hd which meets every orbit of Γ

exactly once, then the measure of any Borel set ω of Hd/Γ is µ(π−1(ω)∩E).
In our case, we obtain measures V ε(K) and Si(K) on Hd/Γ.
Using (2.10) we deduce that

(3.4) V ε(K) = 1
d+ 1

d∑
i=0

εd+1−i
(
d+ 1
i

)
Si(K) .

Remark 3.21. — Notice that for any Borel subset ω ⊂ Hd/Γ, Sd(K)(ω)
is the derivative of V ε(K)(ω) for ε = 0.
As V ε+h(K) = V ε(K)+V h(K+εJ+(H)) we get that for any Borel subset

ω ⊂ Hd/Γ
dV ε(K)(ω)

dε (ε) = Sd(K + εJ+(H))(ω) ,

or equivalently

(3.5) V ε(K)(ω) =
∫ ε

0
Sd(K + tJ+(H)) dt .

We also get an invariant formulation of the weak-convergence stated in
Lemma 2.12.

Lemma 3.22. — If the support functions of τ -convex sets converge for
the sup norm to the support function of a τ -convex set, then the associated
measures V ε and Si on Hd/Γ weakly converge.

Proof. — As any continuous function on Hd/Γ can be expressed as the
sum of continuous functions with supports in small open sets by means of
a partition of the unity, it is sufficient to prove that∫

f dV (Kn)→
∫
f dV (K)

assuming that the support of f is contained in a small chart U where a
section ψ : U → Hd is defined. But, by definition we have

∫
f dV (Kn) =∫

U
f dV (Kn) =

∫
ψ(U) f ◦ ψ

−1 dV (Kn) and so the convergence stated di-
rectly follows from Lemma 2.12. �

We still denote by A(K) the measure Sd(K) on Hd/Γ, and by Area(K)
the total area of K, i.e.

Area(K) = A(K)(Hd/Γ) .
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Corollary 3.23. — If the support functions of τ -convex sets converge
for the sup norm to the support functions of a τ -convex set, then the
corresponding area measures weakly converge. In particular, the total area
is continuous for this topology.

If ∂sK is C1, then the total area is the total volume of the manifold
∂sK/Γτ for the induced metric by Corollary 2.21.

We prove below that the total area is monotonic.

Lemma 3.24. — Let K0,K1 be two τ -convex sets, with K1 contained
in the interior of K0. Then

Area(K0) 6 Area(K1) .

Proof. — Let us first suppose that K0 and K1 are C2
+, with respective

hyperbolic support functions h0 and h1 on Hd. Note that h1 < h0. For
λ ∈ (0, 1), let Kλ = (1 − λ)K0 + λK1. It has hyperbolic support function
(1 − λ)h0 + λh1, so Kλ is C2

+. We can use the inverse of the Gauss map
of Kλ, say χλ, to get a smooth family of parameterizations of ∂Kλ. Recall
by (2.2) that χλ(η) = gradH

η hλ−hλ(η)η, so the variational field X = ∂λχλ
at a point χλ(η) is given by

X(χλ(η)) = gradH
η (h1 − h0)− (h1 − h0)(η)η .

The variation of the area of ∂Kλ is given by
d

dλ
Area(Kλ) = −

∫
∂Kλ/Γτ

sλ〈X(x),Gλ(x)〉− dµλ

where µ is the intrinsic volume form and sλ is the sum of the principal
eigenvalues computed with respect the normal G (so sλ is positive).
Using the parameterization given by χλ and the fact that χ∗λ(µλ) =

dA(Kλ) we conclude that
d

dλ
Area(Kλ) =

∫
sλ〈X(χλ(η)), η〉− dA(Kλ) =

∫
sλ(h0−h1) dA(Kλ) > 0 .

The general case follows by a density argument, see Appendix A and
Corollary 3.23. �

Proposition 3.25. — There exists a non-negative number c(τ) such
that for every τ -convex set K, if Area(K) > c(τ) then K is a Cauchy
convex set (that is, it is contained in the interior of Ωτ ).

As already noted, if τ is a coboundary, i.e. Ωτ is the future cone of a
point, and K is a τ -convex set with Area(K) 6= 0, then K 6= Ωτ that
implies that K is Cauchy. So in this case c(τ) = 0. On the other hand, the
example constructed in Subsection 3.7 implies that in general c(τ) 6= 0.
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Proof. — For any n > 0, let Kn be such that Area(Kn) > n and suppose
that Kn touches the boundary of Ωτ . By Corollary 3.19, Kn is in the past
of ΣT for some T independent of n, hence by Lemma 3.24, Area(Kn) 6
Area(ΣT ), that is again a contradiction if n is sufficiently large. �

3.5. The covolume

Let K be a τ -convex set. The covolume of K, denoted by covol(K) is
the volume of the complementary of K/Γτ in the manifold Ωτ/Γτ . As
this complementary is open, the covolume is well defined. It is also finite.
This can be seen for example for level sets of the cosmological time, then
using the monotonicity of the covolume. Equivalently, it is the volume (the
Lebesgue measure) of Ωτ \K in a fundamental domain for Γτ (note that
Minkowski isometries preserve the Lebesgue measure).
It can be convenient to consider the covolume as a function on the set

of τ -equivariant hyperbolic support functions. For this reason we often will
write covol(h) to denote the covolume of the corresponding convex set. In
the same way we will denote by A(h) the area measure on Hd induced by
the domain K.

Lemma 3.26. — The function covol is continuous on the set of τ -convex
sets.

Proof. — Let Kn be at distance 1/n from K. From Remark 3.16

K + 1
n

J+(H) ⊂ Kn and Kn + 1
n

J+(H) ⊂ K ,

so

covol
(

K+ 1
n

J+(H)
)
> covol(Kn) and covol

(
Kn+ 1

n
J+(H)

)
> covol(K).

But clearly covol
(
K + 1

nJ+(H)
)

= covol(K) + V 1/n(K)(Hd/Γ), so

covol(Kn)− covol(K) 6 V 1/n(K)(Hd/Γ) .

By (3.4) V 1/n(K)(Hd/Γ) goes to 0 when n goes to infinity. In the same
way

covol(K)− covol(Kn) 6 V 1/n(Kn)(Hd/Γ) ,
so to conclude it remains to prove that V 1/n(Kn)(Hd/Γ) goes to 0 when n
goes to infinity. But by (3.5) we have

(3.6) V 1/n(Kn)(Hd/Γ) =
∫ 1/n

0
Area(Kn + tJ+(H)) dt .
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By Lemma 3.24, Area(Kn+tJ+(H)) 6 Area(Kn+1/nJ+(H)) 6 Area(Kn+
J+(H)). As Kn converges to K, Kn + J+(H) are in the past of a τ -
convex set C, so again by Lemma 3.24, Area(Kn + tJ+(H)) 6 Area(C)
and V 1/n(Kn)(Hd/Γ) 6 1/nArea(C). �

As we noted in Section 3.1 the set of τ -convex sets is convex. So speaking
about convexity of the covolume is meaningful. We will first prove that it
is convex on the convex subset of Cauchy τ -convex sets. The convexity on
the set of τ -convex sets will follow by continuity. The idea is to write the
covolume in terms of a volume of a convex body, obtained by cutting some
convex fundamental domain by a hyperplane. Such convex fundamental is
described in the following.

Proposition 3.27. — Let S be any convex Γτ -invariant C1 space-like
hypersurface in Ωτ . Given x, y ∈ Rd+1, let us set ψ(x, y) = 〈x− y, x− y〉−.
Let us fix a point x ∈ S and consider the region

P(x) = {y ∈ I+(S) |ψ(x, y) 6 ψ(γx+ τγ , y) ∀γ ∈ Γ} .

Then P(x) is a convex fundamental domain of I+(S) for the action of Γτ .
Moreover the interior of P(x) is the set

(3.7) intP = {y ∈ I+(S) |ψ(x, y) < ψ(γx+ τγ , y) ∀γ ∈ Γ \ {1}} .

Definition 3.28. — The domain P(x) is the Lorentzian Dirichlet poly-
hedron centered at x.

Note that in the Fuchsian case it is possible to construct a convex fun-
damental domain for the whole domain Ω (the future cone of the origin),
as it suffices to consider the cone in Rd+1 of a Dirichlet polyhedron for Γ in
Hd. Moreover, if x ∈ Hd, the polyhedron P(x) defined in Proposition 3.27
coincides with the cone on the Dirichlet polyhedron centered at x.
To prove the Proposition we need the following lemma:

Lemma 3.29. — For any divergent sequence γn ∈ Γ and any compact
set C in I+(S)

(3.8) inf
y∈C

ψ(γnx+ τγn , y)→ +∞ .

Proof. — This property is easily checked if C ⊂ S. Indeed for y ∈ S,√
ψ(γn(x) + τγn , y) is bigger than the intrinsic distance dS(γn(x) + τγn , y).
On the other hand, since S/Γτ is compact, the intrinsic distance on S is

complete and since the action of Γτ is proper we conclude that dS(γn(x) +
τγn , C) diverges as n→ +∞.

ANNALES DE L’INSTITUT FOURIER



MINKOWSKI PROBLEM IN MINKOWSKI SPACE 1087

Now if C ⊂ I+(S), we can consider its projection onto S. For y ∈ I+(S),
there is a unique point y′ on S such that y = y′ + e with e time-like
supporting vector of S at y′ ([11]). Then for any z ∈ S we have that

ψ(z, y) = ψ(z, y′) + 〈e, e〉− + 2〈y′ − z, e〉− .

Notice that since the plane through y′ and orthogonal to e is a support
plane for S, we have that 〈y′ − z, e〉− > 0.
Then putting c = supy′∈K′ |〈e, e〉−|, then ψ(z, y) > ψ(z, y′) − c for any

z ∈ S and y ∈ C. Then (3.8) follows. �

Proof of Proposition 3.27. — If x1, x2 ∈ Rd+1 are two space-like related
points, then the set of points y such that ψ(x1, y) 6 ψ(x2, y) is the closed
half-space in Rd+1 bounded by the plane orthogonal to the segment [x1, x2]
and passing through its middle point (x1 + x2)/2. Since the orbit of any
point x ∈ Ωτ is space-like (see Remark 3.12), P(x) is convex.
In order to show that the Γτ -orbit of any point y ∈ I+(S) meets P(x),

notice that by Lemma 3.29, for any y ∈ I+(S), there is a point x1 on the
orbit of x where the function ψ(•, y) attains the minimum. If x1 = γ1x+τγ1 ,
then putting y1 = γ−1

1 y + τγ−1
1

we have that on the orbit of x the minima
of the function ψ(•, y1) is attained at x so y1 ∈ P(x).
Finally proving (3.7) we will have the interior of P(x) contains at most

1 point for each orbit, that concludes the proof that P(x) is a fundamental
region.
So, it remains to prove that

intP = {y ∈ I+(S) |ψ(x, y) < ψ(γx+ τγ , y) ∀γ ∈ Γ \ {1}} .

The inclusion ⊂ is immediate. Suppose by contradiction that there is a
point y on the boundary of P(x) such that ψ(y, x) < ψ(y, γx + τγ) ∀γ ∈
Γ \ {1}.

There exists a sequence yn ∈ I+(S) converging to y and γn such that

ψ(γn(x) + τγn , yn) < ψ(x, yn) .

As yn converges to y we may apply (3.8) and deduce that γn is not diverg-
ing. Since Γ is discrete, up to passing to a subsequence we may assume that
γn = γ is constant different from 1.

But then passing to the limit in the above inequality we get

ψ(γ(x) + τγ , y) 6 ψ(x, y) ,

that contradicts the assumption on y. �
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The following lemma in the Euclidean setting will be the main ingredient
of the convexity of the covolume. Although it is classical, see e.g. [10, 50.],
we reproduce the proof for completeness.

Lemma 3.30. — In the Euclidean space Rd+1 let R be a hyperplane
orthogonal (with respect to the Euclidean structure) to a vector u. Let D
be a convex body with non-empty interior in R, and C0 and C1 be two
convex bodies in Rd+1 contained in the same side of R as u, such that their
orthogonal projection onto R is D. Then, for λ ∈ [0, 1],

V ((1− λ)C0 + λC1) > (1− λ)V (C0) + λV (C1) ,

where V is the volume.
Equality holds if and only if either C0 = C1 + U or C1 = C0 + U , where

U is some segment directed by u.

Convex bodies with the same image for the orthogonal projection onto
a given hyperplane are said to form a canal class [34].

Proof. — For any x ∈ D, let L(x) be the line orthogonal to R and passing
through x. Take any ki ∈ Ci∩L(x), i = 1, 2. The convex combination of k0
and k1 belongs to ((1−λ)C0 +λC1) =: Cλ and also to L(x). So the convex
combination of Ci ∩ L(x), for i = 0, 1, is a subset of Cλ ∩ L(x). Denoting
by lλ(x) the length of the segment Cλ∩L(x), and using the linearity of the
length, we get

(3.9) lλ(x) > (1− λ)l1(x) + λl2(x) .

Of course Cλ projects orthogonally onto D, and by Fubini Theorem,

(3.10) V (Cλ) =
∫
D

lλ(x)dx > (1− λ)
∫
D

l0(x)dx+ λ

∫
D

l1(x)dx

= (1− λ)V (C0) + λV (C1) .

Suppose that C1 = C0 + U where U is a segment parallel to u of length
c. Then Cλ = C0 + λU , so lλ(x) = l0(x) + λc, and equality holds in (3.9)
and hence in (3.10).
Now suppose that equality holds in (3.10). Then equality holds in (3.9)

and so for every x ∈ D and every λ ∈ [0, 1]

(3.11) (1− λ) (C0 ∩ L(x)) + λ (C1 ∩ L(x)) = Cλ ∩ L(x) .

For x ∈ D, let y1/2 be an end-point of the vertical segment L(x) ∩C1/2,
and let v be a (Euclidean) support vector at y1/2.

By (3.11) there are end-points y0, y1 on L(x)∩C0 and L(x)∩C1 respec-
tively such that y1/2 = 1

2y0 + 1
2y1.
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Denoting by He
λ the (Euclidean) support functions of Cλ, we have

He
1/2(v) = 〈y1/2, v〉 = 1

2 〈y0, v〉+ 1
2 〈y1, v〉 ,

where 〈 · , · 〉 is the positive product of Rd+1.
On the other hand,

He
1/2(v) = 1

2H
e
0(v) + 1

2H
e
1(v) ,

that, together with the previous equation and with 〈yi, v〉 6 He
i (v), leads

to He
i (v) = 〈yi, v〉.

In other words, C0 and C1 have parallel support hyperplanes along the
lines directed by u. On any segment in the interior of D, part of the bound-
aries of C0 and C1 are graph of convex or concave functions with parallel
tangents, so they have the same derivative almost everywhere, hence they
differ by a constant c1 for the convex part and c2 for the concave part.

Let C ′0 = C0 + c1u. Notice that the convex part of the boundary of C ′0
coincides with with the convex part of the boundary of C1, whereas the
concave part differ by c2− c1. If c2− c1 > 0 then C1 = C ′0 +U ′, where U is
the segment joining the origin to |c2−c1|u. On the other hand if c2−c1 < 0,
then C ′0 = C1 + U ′. In the former case C1 = C0 + [c1u, c2u], in the latter
case C0 = C1 + [−c1u,−c2u] �

From 3.30 we can simply deduce an analogous statement in the
Lorentzian setting.

Corollary 3.31. — In Minkowski space Rd,1 let R be a space-like
hyperplane orthogonal (for the Minkowski product) to a vector u. Let D
be a convex body with non-empty interior in R, and C0 and C1 be two
convex bodies in Rd+1 contained in the same side of R as u, such that
their orthogonal projection (in Minkowski sense) onto R is D. Then, for
λ ∈ [0, 1],

V ((1− λ)C0 + λC1) > (1− λ)V (C0) + λV (C1) ,

where V is the volume.
Equality holds if and only if either C0 = C1 + U or C1 = C0 + U , where

U is some segment directed by u.

Proof. — If R is the horizontal plane Rd ⊂ Rd+1, then the Lorentzian
orthogonal projection coincides with the Euclidean projection, so the state-
ment is an immediate consequence of Lemma 3.30.
If R is not horizontal, there is a Lorentzian isometry f sending R to

the horizontal plane Rd ⊂ Rd+1. Notice that the orthogonal projections of
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f(Ci) to Rd coincide with f(D). So we deduce

V ((1− λ)f(C0) + λf(C1)) > (1− λ)V (f(C0)) + λV (f(C1)) .

Since f is volume preserving and (1−λ)f(C0)+λf(C1) = f((1−λ)C0+λC1)
we obtain the result. �

Figure 3.1. K1 is a convex cap, and K2 = K1 + U . For λ ∈ [0, 1], the
volume is linear along (1 − λ)K1 + λK2, but for λ 6= 0, this is not a
convex cap.

Let D be a convex body contained in a space-like hyperplane R with
non-empty relative interior. A (Lorentzian) convex cap based on D is a
convex body in Rd+1 with no empty interior such that

• R is a support plane of K and K ∩R = D

• For each x ∈ ∂D the line L(x) through x orthogonal in the
Minkowski sense to R meets K only at x.

Notice that if K is a convex cap based on D then the second condition
implies that D is the orthogonal projection of K to R, but the condition is
not equivalent (see Figure 3.1).
Since two caps based on D cannot differ by a segment, Corollary 3.31

immediately gives the following consequence.

Corollary 3.32. — The volume is strictly concave on the set of convex
caps (of same base).

Notice that the same result holds as well for caps in Euclidean setting.
We can prove now the convexity of the covolume.

Proposition 3.33. — The covolume is strictly convex on the set of
Cauchy τ -convex hypersurfaces.

First we prove the following technical lemma that is needed in the proof
of Proposition 3.33.
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Lemma 3.34. — Let S be a τ -invariant strictly convex C1 hypersurface,
and fix s ∈ S. Let P = P(s) be the Lorentzian Dirichlet polyhedron cen-
tered at s of I+(S). For any support vector u of S at s and for any y ∈ P,
the point y + u lies in the interior of P.

Proof. — By a direct computation we have

(3.12) ψ(y+u, γτ (s))−ψ(y+u, s) = ψ(y, γτ (s))−ψ(y, s)+2〈u, s−γτ (s)〉− .

Notice that the last term is strictly positive since u is a support vector of
S at s, whereas ψ(y, γτ (s))−ψ(y, s) > 0 by the assumption on y. By (3.7)
it follows that y + u is in the interior of P. �

Proof of Proposition 3.33. — Let K1 and K2 be two Cauchy τ -convex
hypersurfaces, and for λ ∈ [0, 1] let

Kλ = (1− λ)K1 + λK2 .

Let us choose a strictly convex space-like C1 τ -invariant convex hypersur-
face S such that the Kλ are in the future of S. Let s ∈ S and P := P(s)
be the Lorentzian Dirichlet polyhedron of I+(S) centered at s. Let us fix a
support vector u of S at s. Let R be an affine hyperplane orthogonal to u
chosen so that Kλ ∩P is in the past side R− of R for every λ ∈ [0, 1]. Note
that D = R ∩ P is compact, as it is part of the boundary of the compact
convex set R− ∩ Ωτ .

S

P

R
Ki

Figure 3.2. The light-gray region represents P whereas the dark-grey
region represents Ci.

Finally let us denote Ci = Ki ∩ P ∩R−, i = 1, 2. By the choice of R, we
have that Ci ∩R = P ∩R = D. Lemma 3.34 shows that if x− εu ∈ P then
x ∈ intP. So for x ∈ R ∩ ∂P, there is no ε > 0 such that the point x− εu
is contained in P. It follows that Ci is a convex cap (see Figure 3.2).
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Define Cλ = (1 − λ)C1 + λC2. For x ∈ Cλ, there are xi ∈ Ci such that
x is a convex combination of x1 and x2. By convexity, x belongs to P and
R−, and by definition x belongs to Kλ. So Cλ ⊂ Kλ ∩ P ∩R−.

If K1 6= K2, then C1 and C2, are different caps so Corollary 3.32 gives

(3.13) (1− λ)V (K1 ∩ P ∩R−) + λV (K2 ∩ P ∩R−)
= (1− λ)V (C1) + λV (C2) < V (Cλ) 6 V (Kλ ∩ P ∩R−) .

By definition, for any λ ∈ [0, 1],

(3.14) covol(Kλ) = −V (Kλ ∩ P ∩R−) + c

where c is a constant depending only on S,P and H (actually c = V (P ∩
R−) + covol(S)). �

Since each τ -convex set is limit of Cauchy τ -convex sets, and the covol-
ume is continuous, Proposition 3.33 implies that the covolume is convex on
the set of τ -convex sets. Then, Theorem 1.2 is proved.

Remark 3.35. — One could also consider the covolume as a function on
the set of all τ -convex sets, for all τ ∈ Z1(Γ,Rd+1). This set is a convex
cone. But the covolume is certainly not convex on this bigger set. Otherwise
one should have

covol((1− λ)Ωτ + λΩτ ′) 6 (1− λ) covol(Ωτ ) + λ covol(Ωτ ′)

that implies that the covolume of (1−λ)Ωτ +λΩτ ′ is zero. But (1−λ)Ωτ +
λΩτ ′ ⊂ Ω(1−λ)τ+λτ ′ , and in general the inclusion is strict. Then contra-
diction follows because for any τ , Ωτ is the only τ -convex set with zero
covolume.

For Γ-invariant hypersurfaces, there is a representation formula for the
covolume, namely

(3.15) covol(h) = − 1
d+ 1

∫
hdA(h)

where h is the hyperbolic support function of K. We cannot hope such a
simple formula holds in general, but we have the following relation.

Lemma 3.36. — If K1 ⊂ K0 are τ -convex sets with hyperbolic support
functions h1 6 h0, then

(3.16)
∫

(h0−h1) dA(h0) 6 covol(h1)− covol(h0) 6
∫

(h0−h1) dA(h1) .

Proof. — First assume that h0 and h1 are C2
+ and h1 < h0. Notice that

the region K0 \K1 is foliated by the convex combinations Kt of K0 and
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K1. Thus covol(h1)− covol(h0) is the volume of the quotient of the region
that is image of the equivariant map from [0, 1] × Hd to Ωτ defined by
χ(t, η) = gradH

η ht−ht(η)η where ht = (1−t)h0 +th1 (compare with (2.2)).
Notice that covol(h1)− covol(h0) =

∫
[0,1]×Hd/Γ χ

∗( dV ) where dV is the
(d + 1)-volume form on Rd+1. Since for each t the map χ(t, •) is inverse
of the Gauss map of the boundary of Kt = (1 − t)K0 + tK1, and since
the area form of a C1-space-like hypersurface is defined by contracting the
volume form by the normal vector, we deduce that

χ∗( dV )(∂t, e1, . . . , ed) = dV (χ∗(∂t), χ∗(e1), . . . , χ∗(ed))
= −〈χ∗(∂t), η〉− dV (η, χ∗(e1), . . . , χ∗(ed))
= −〈χ∗(∂t), η〉− dA(Kt)(e1, . . . ed) .

In other words, χ∗( dV ) = −〈χ∗(∂t), η〉− dt ∧ dA(ht). Now

Dχ(∂t) = gradH(h1 − h0)− (h1 − h0)η

so we deduce that χ∗( dV ) = (h0−h1) dt∧ dA(ht). Finally integrating, we
obtain

covol(h1)− covol(h0) =
∫ 1

0

∫
(h0 − h1) dA(ht) dt .

As for a convex function f : [0, 1]→ R

f ′(0) 6 f(1)− f(0) 6 f ′(1) ,

by Theorem 1.2 we deduce the formula above.
Now for the general case, take sequences of C2

+ τ -equivariant support
functions (h0(n))n and (h1(n))n converging respectively to h0 and h1, see
Appendix A. For large n, up to add a suitable constant, we can suppose
that h1(n) < h0(n). By continuity of covolume we have that

covol(h1(n))− covol(h0(n)) −→
n→+∞

covol(h1)− covol(h0) .

So in order to prove (3.16) it is sufficient to prove that∫
(h0(n)− h1(n)) dA(h0(n))→

∫
(h0 − h1) dA(h0) ,

as well as the convergence for the analog right hand terms. As h0(n)−h1(n)
uniformly converges to h0−h1, by Corollary 3.23, A(h0(n)) weakly converge
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to A(h0). Putting fn = h0(n)− h1(n) and f = h0 − h1 we have∣∣∣∣∫ fn dA(h0(n))−
∫
f dA(h0)

∣∣∣∣
6 ‖fn − f‖∞Area(h0(n)) +

∣∣∣∣∫ f dA(h0(n))−
∫
f dA(h0))

∣∣∣∣ .
As Area(h0(n)) are uniformly bounded we get the result. �

Remark 3.37. — With h1 6 h0, putting ht = h0+t(h1−h0), the previous
lemma and the weak convergence of the area measure implies that

lim
t→0

covolτ (ht)− covolτ (h0)
t

=
∫

(h1 − h0) dA(h0) .

More generally, adapting the Euclidean argument [13], one can prove that
if h < hτ , the area measure is the Gâteaux gradient of the covolume.

Remark 3.38. — In the C2
+ case, the area measure is the determinant of

a symmetric matrix (2.6). The determinant of d× d symmetric matrix can
be polarized as a d-linear form. If moreover we are in the Fuchsian case,
it follows from the representation formula (3.15) that the covolume can be
polarized as a (d+ 1)-linear form. Using a density argument, the covolume
can be polarized on the set of all Γ-invariant convex sets. This leads to a
theory similar to the mixed-volume theory in the convex bodies case [16].
There is no such similar theory in the general τ -convex case. The point is
that the set of Γ invariant convex set is a (convex) cone, and we can take a
convex cone as fundamental domain in I+(0). Actually, a mixed-covolume
theory can be done for suitable convex sets in any convex cone — without
mention of an ambient metric, see [22].
Although some questions remain, for example to find an isoperimetric

inequality in the general τ -convex case, see [16] for the Fuchsian case.

3.6. Proof of the theorems

We fix a Γ-invariant positive Radon measure µ on Hd and a cocycle τ .
The aim of this section is to construct a τ -convex set with area measure µ.

Consider the functional on the space of hyperbolic τ -equivariant support
functions

Lµ(h) = covol(h)−
∫

(hτ − h) dµ .

Note that Lµ is continuous (and even convex) by Lemma 3.26.
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Lemma 3.39. — Lµ is coercive: if ‖hn − hτ‖∞ → +∞, then Lµ(hn)→
+∞.

Proof. — By Lemma 3.10, the maximum of the cosmological time on the
corresponding convex sets goes to infinity. By Lemma 3.20, the minimum
of the cosmological time also goes to infinity. Let an be the minimum of
the cosmological time on the convex set with support function hn. Again
by Lemma 3.20, there is a constant δ such that (hτ − hn) 6 δan. So the
linear part of Lµ grows (in absolute value) linearly in an. On the other
hand covol(hn) > covol(hτ − an).
But the volume of the past of the level set of the cosmological time

coincides with V an(hτ ) that is a polynomial of degree d + 1 by (3.4). It
follows that covol(hτ − an) > c′ad+1

n . �

Lemma 3.40. — Lµ attains its minimum.

Proof. — Let α ∈ [−∞,+∞) be the infimum of the range of Lµ. Let (hn)
be a minimizing sequence for Lµ of τ -invariant hyperbolic support func-
tions. By Lemma 3.39, the L∞-norm of (hn − hτ ) are uniformly bounded
from above, so from Corollary 3.18 one can extract a subsequence converg-
ing to some support function h. By continuity, Lµ(h) = α. �

Lemma 3.41. — Let h0 be a support function on which Lµ attains its
minimum. Then for any Γ-invariant support function f ,∫

(−f) dA(h0) >
∫

(−f) dµ .

Proof. — If f = 0, the result is obvious. If f 6= 0, we know that f < 0.
Let ha = h0 + af for a ∈ [0, 1]. As Lµ attains its minimum at h0,

0 6 Lµ(ha)− Lµ(h0) = covol(ha)− covol(h0) +
∫
af dµ .

As ha < h0, we can use (3.16), which gives

0 6
∫

(−af) dA(ha) +
∫
af dµ

so we get ∫
(−f) dA(ha) >

∫
(−f) dµ

for any a. The result follows by letting a → 0 and using the weak conver-
gence of the area measures (Corollary 3.23). �

Lemma 3.42. — With the notations of Lemma 3.41,∫
dA(h0) =

∫
dµ .
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Proof. — From Lemma 3.41, with f = −1, we get

Area(h0) >
∫

dµ .

We have to prove the other inequality.
For a positive a consider the τ -equivariant function h0 + a. Notice that

in general it is not a support function. However we consider the domain

Ka = {p ∈ Rd+1 | 〈p, η〉− 6 h0(η) + a,∀η ∈ Hd} ,

and let ha be the support function of Ka. As K ⊂ Ka we have h0 6 ha.
On the other hand by the definition of support function ha 6 h0 + a.
From (3.16) we get∫

(ha − h0) dA(ha) 6 covol(h0)− covol(ha) 6
∫

(ha − h0) dA(h0)

or in a more convenient way

(3.17)
−
∫

(ha − h0) dA(ha) > covol(ha)− covol(h0) > −
∫

(ha − h0) dA(h0) .

As Lµ(ha) > Lµ(h0),

covol(ha)− covol(h0) +
∫

(ha − h0) dµ > 0 ,

and using (3.17)

−
∫

(ha − h0) dA(ha) +
∫

(ha − h0) dµ > 0

that is ∫
(ha − h0) dµ >

∫
(ha − h0) dA(ha) .

Now using that a > ha − h0 we get

a

∫
dµ >

∫
(ha − h0) dA(ha) .

From Lemma 3.14, ha coincides with h0 +a almost everywhere for A(ha),
hence ∫

dµ > Area(ha) .

Letting a → 0 and using the convergence of the total area, we get the
estimate we need. �
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Remark 3.43. — In the Fuchsian case, using the representation for-
mula (3.15) for the covolume, the functional Lµ has a form very similar
to the functional used in the variational approach for the Monge–Ampère
equation, see [35, 4.5] and the references therein.

Proof of Theorem 1.1. — Let f be a C2 Γ-invariant function on Hd.
There is a constant c > 0 such that ∇2f− (f−c)gH > 0. In particular f−c
is a Γ-invariant support function, see (2.4). By Lemma 3.41:∫

(f − c) dµ >
∫

(f − c) dA(h0) .

From Lemma 3.42, we know that the equality holds for constants. Then we
can conclude that ∫

f dµ >
∫
f dA(h0)

for any C2-function. Considering −f , for any C2-function we get∫
f dµ =

∫
f dA(h0) .

By approximation we obtain that this equality is true for any C0 function,
hence µ = A(h0), and the theorem is proved. �

Using the correspondence between the Area measure of K and the
Monge–Ampère measure MA(h) described in Proposition 2.17, we can
prove Theorem 1.3 stated in the introduction.
Proof of Theorem 1.3. — Notice that for each γ there is a vector sγ ∈ Rd

and aγ ∈ R such that

(γ · h0)(x)− h0(x) = 〈sγ , x〉 − aγ =
〈
x̂,

(
sγ
aγ

)〉
−
.

In particular letting H0 be the 1-homogeneous extension of h to I+(0) we
conclude that

H0(γ−1x̂)−H0(x̂) =
〈
x̂,

(
sγ
aγ

)〉
−
.

Putting τγ := −
(
sγ
aγ

)
the formula above easily shows that τ is a cocycle and

the equivariance

H0(γY )−H0(Y ) = −〈τγ−1 , Y 〉−

holds. By (3.2) H0 is a τ -equivariant convex function.
So by Theorem 1.1, there is a τ -equivariant convex function h on B such

that
A(h) =

√
1− ‖x‖2µ .
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By Proposition 2.17 we have MA(h) = µ. As h is τ -equivariant as h0, then
on the boundary h = h0. �

Finally let us consider the regularity problem.
From Proposition 3.25 there is a constant c = c(τ) > 0 such that if

µ > cdHd, then the τ -convex set K with A(K) = µ is contained in the
interior of Ωτ .
By Corollary 2.37 we get:

Theorem 3.44. — Let f be a Γ-invariant Ck+1-function, k > 2, with
f(x) > c(τ) for every x ∈ Hd. Then the boundary of the τ -convex set K
with A(K) = f dHd is a strictly convex space-like hypersurface of class
Ck+2 with Gauss–Kronecker curvature f−1.

Proof. — Corollary 2.37 immediately gives that ∂sK is strictly convex
Ck+2 hypersurface. Notice that its Gauss–Kronecker curvature is f−1 > 0
so the Gauss map is a Ck+1-homeomorphism with inverse map of class
Ck+1. Moreover, ∂K = ∂sK by Lemma 3.11. �

Theorem 1.4 and Theorem 1.6 are just quotient versions of preceding
results.

3.7. Equivariant Pogorelov example

In this section we fix an uniform lattice Γ and a cocycle τ ∈ Z1(Γ,Rd,1)
such that ∂sΩτ contains a (d− 1) Euclidean polyhedron P.

We will prove that there exists a τ -convex set with positive area measure
(in the sense that A(K) > c0 dHd for some c0) which meets the boundary
of Ωτ .

Remark 3.45. — In dimension d = 3 examples of pairs (Γ, τ) such that
∂sΩτ contains a 2-polygon were constructed in [12].

It remains open to understand whether there is a lattice Γ < SO+(3, 1)
and a cocycle τ such that the corresponding domain is not simple but
c(τ) = 0.

In practice we will construct a τ -support function h on B with MA(h) >
c0L, and h = hτ on a segment. The latter condition implies that ∂sΩτ
meets the τ -convex set supported by h. On the other hand, the former
condition and Corollary 2.18 show that on a compact fundamental domain
A(h) > c′ dHd, for some constant c′. As the area measure is Γ invariant we
will conclude that A(h) > c′ dHd everywhere.
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Let f0 be a function given in Remark 2.35 for k = d− 1:

f0(x) = β2(1 + β2x2
1)rα(x) .

where r(x) =
√
x2

2 + · · ·+ x2
d, α = 2 − 2/d and β is a suitable constant

> 1. We have f0 ≡ 0 on [`−, `+], with `± = (±1, 0, . . . , 0).
Up to compose by a global isometry, we can suppose that the polyhedron

P ⊂ ∂sΩτ contains 0 in its interior and is contained in the (d − 1)-linear
space

R = {x ∈ Rd+1 |xd+1 = x1 = 0} .
Recall that Hτ is the support function of Ωτ on I+(0) and hτ is its

restriction to the ball B. We notice that hτ > 0 and hτ = 0 exactly on
[`−, `+].

Lemma 3.46. — There is ε > 0 such that εf0 < hτ on B \ [`−, `+].

Proof. — By the definition of f0 we have that f0(x) 6 cr(x) for any
x ∈ B and some c. So it is sufficient to show that there is M such that
hτ (x) > Mr(x) on B \ [`−, `+].

Let Ω = I+(P). It is an F-convex set contained in Ωτ with support
function h on B. Note that h = 0 on [`−, `+]. So to prove the claim it is
sufficient to check that for x ∈ B\ [`−, `+] we have h(x) > cr(x) for some c.

But in R, 0 is contained in the interior of the convex body P, so P

contains in its interior a small ball centered at 0, whose support function
is c‖ · ‖R some c, where ‖ · ‖R is the norm associated to 〈 · , · 〉R, the scalar
product on R induced by the Minkowski product. For any x′ ∈ R \ {0}

maxy∈P〈x′, y〉R > c‖x′‖R .

But for any y ∈P, 〈y, e1〉− = 〈y, ed+1〉− = 0, so for any x = (x1, x
′) ∈ B

h(x) = maxy∈P 〈x̂, y〉− = maxy∈P〈x′, y〉R
and ‖x′‖ = r(x). �

Now we take f = εf0. Notice that

• MA(f) (2.14)= εd+1MA(f0) > εd+1cL;
• f = 0 on the segment [`−, `+];
• f < hτ on B \ [`−, `+].

We then define
f∞(x) = sup

γ∈Γτ
(γ · f)(x)

where Γτ acts on the set of convex functions of B as explained in Section 3.1.
By definition f∞ is a convex function on B. Actually it is the support

function of the convex hull of the union of all the γ · K(f), so it is a
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fixed point for the action of Γτ . Moreover, since f 6 hτ , we have that
f∞(x) 6 hτ (x) for any x ∈ B, and f∞ = hτ = 0 on the segment [`−, `+]

The rest of this section is devoted to prove the following proposition.

Proposition 3.47. — For any compact subset C of B, there is cC > 0
such that

M(f∞) > cCL
on C.

The first step is to compute the stabilizer of P in Γτ .

Lemma 3.48. — The stabilizer of P in Γτ is a Z-group generated by
an element, say µτ .

Proof. — First we prove that the stabilizer of P is not trivial. Notice
that for each γτ ∈ Γτ either γτ (P) = P or γτ (int P) is disjoint from
int P.
If P1 denotes the subset of the level set Σ1 of the cosmological time that

retracts in int P, by the equivariance of the retraction we have that either
γτ (P1) = P1 or they are disjoint.
By [11] P1 is isometric to the Cartesian product (int P) × R, so its

volume is infinite. If the stabilizer of P were trivial the projection P1 →
Σ1/Γτ would be an injective isometric immersion of a Riemann manifold
of infinite volume into a compact manifold, and this is impossible.

Now if γτ is in the stabilizer of P, then γ stabilizes the image of P

through the Gauss map in Hd. By [11] this is the geodesic in Hd orthogonal
to the hyperplane R containing P. Notice that the stabilizer of a geodesic
in a uniform lattice can be either trivial or a cyclic group. Since we have
proved that it is not trivial, the Lemma follows. �

By the proof of Lemma 3.48, the projective transformation µ̄ stabilizes
the segment [`−, `+]. Moreover µτ acts as an isometry on P, so it fixes a
point of P. Up to a translation we may suppose that µτ fixes 0, that is,
τµ = 0 and µτ = µ.

Consider the function

f1(x) = sup
n∈Z

(µn · f)(x) .

It is <µ>-invariant by construction.

Lemma 3.49. — For any δ > 0, let C =
{
z ∈ B

∣∣ |x1(z)| < 1− δ
}
. Then

there are a finite number of n1 . . . nk ∈ Z such that

f1(z) = max
i

(µni · f)(z)
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for any z ∈ C.

Proof. — The transformation µ leaves R and P invariant (in particular
µ|R is an orthogonal transformation of finite order). On the other hand we
have

µn(1, 0, . . . , 0) = (coshna, 0, . . . , 0, sinhna) ,
µnd+1(0, 0 . . . , 0, 1) = (sinhna, 0, . . . , 0, coshna)

for any n ∈ Z.
Since τµ = 0, by Lemma 3.4,

(µn · f)(x) = (µ−nx̂)d+1f

(
µ−n(x̂)

(µ−nx̂)d+1

)
so a simple computation shows that

(µn · f)(x) = εβ2rα(x)
(cosh an− x1 sinh an)α−1

(
1 + β2

(
x1 − tanh an

1− x1 tanh an

)2
)
.

Since x1 ∈ [−1, 1] we have that x1−tanh an
1−x1 tanh an ∈ [−1, 1].

By the definition of C, we have |x1| 6 1− δ for every x ∈ C. So we easily
see that

1
(cosh an− x1 sinh an)α−1

(
1 + β2

(
x1 − tanh an

1− x1 tanh an

)2
)
→ 0

uniformly on C both for n→ +∞ and for n→ −∞.
It follows that, putting a0 = min f |C , there is a finite list I = {n1 . . . , nk}

such that for n /∈ I

1
(cosh an− x1 sinh an)α−1

(
1 + β2

(
x1 − tanh an

1− x1 tanh an

)2
)
6 a0

for every x ∈ C.
So for x ∈ C

f1(x) = max
i

(µnif)(x) . �

The previous lemma, Corollary 3.6 and formula (2.16) imply the follow-
ing:

Corollary 3.50. — For any compact subset C in B there is a constant
c0 > 0 such that MA(f1) > c0L on C.

Another simple consequence of Lemma 3.49 is the following

Corollary 3.51. — For any ξ ∈ ∂B \ {`±} we have f1(ξ) < hτ (ξ).
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Proof. — By Lemma 3.49 there exists n ∈ Z such that f1(ξ) = (µn ·
f)(ξ). Now, as µ̄−n(ξ) /∈ {`±} (because µ̄ stabilizes [`−, `+]) we have that
(µn · f)(ξ) < (µn · hτ (ξ)), and then

f1(ξ) < (µn · hτ )(ξ) = hτ (ξ) ,

where the last equality holds since hτ is Γτ -invariant. �

Notice now that the function f∞ can be obtained as

f∞(x) = sup
γτ∈Γτ

(γτ · f1) .

Since f1 is µ-invariant then γτ · f1 = (γτµn) · f1 so the function γτ · f1
depends only on the coset of γ in the set of cosets X = Γ/<µ>. So putting
f[γ] = γτ · f we have that

f∞(x) = sup
[γ]∈X

(f[γ]) .

Proposition 3.47 follows then from the following lemma, together with
Corollary 3.50, Corollary 3.6, and (2.16) imply the following:

Lemma 3.52. — For any compact subset C in B there exist a finite
number of cosets [γ1], . . . , [γk] such that on C

f∞(x) = max
i
f[γi] .

Proof. — We will prove that for any infinite sequence [γn] of distinct
elements in X we have that f[γn] converges uniformly to −∞ on C.

Suppose by contradiction that there exists a sequence [γn] such that
min f[γn] is bounded on C. As Γ is cocompact, its elements are hyperbolic.
So, up to pass to a subsequence there is a point ` ∈ ∂B such that γ̄−1

n (x)
converges uniformly to ` on C.

Fact: we may choose γn in their cosets so that ` /∈ {`−, `+}. — Take
the disk ∆ = {x ∈ B |x1 = 0}. Its <µ̄>-orbit is a union of disjoint disks
∆i = µ̄i(∆) which converge to `+ (for n→ +∞) and to `− (for n→ −∞)
and whose hyperbolic distance is a.

In particular, for each n we have that γ̄−1
n (C) is contained between ∆kn

and ∆kn+h where h is any integer number less than the hyperbolic diameter
of C divided by a. It follows that µ̄−kn γ̄−1

n sends C into the region bounded
by ∆1 and ∆h.

In particular changing γn with γnµ
kn we have that the point ` is con-

tained in the region annulus on ∂B bounded ∆1 and ∆h, so it is neither `−
nor `+. The fact is proved.
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Now by Lemma 3.4 we have

(γn · f1)(x) = (γ−1
n (x̂))d+1(f1(γ̄−1

n x)) + 〈x̂, τγn〉− .

Since hτ is invariant by the action of Γτ we deduce that

−〈x̂, τγn〉− = (γ−1
n (x̂))d+1(hτ (γ̄−1

n x̂))− hτ (x)

so
(γn · f1)(x) = (γ−1

n (x̂))d+1(f1(γ̄−1
n x)− hτ (γ̄−1

n x)) + hτ (x) .
On the other hand since γ̄−1

n x → ` uniformly on C, and f1(`) < hτ (`)
(see Corollary 3.51) there is ε such that f1(γ̄−1

n (x))− hτ (γ̄−1
n (x)) 6 −ε for

x ∈ C and for n big.
Notice that (γ−1

n (x̂))d+1 → +∞ on C so

(γn · f1)(x)→ −∞

uniformly on C contradicts the assumption. �

Now let C be a compact set of Hd containing a fundamental domain for
the action of Γ. From Proposition 3.47 and Proposition 2.17, on C the area
measure of K(f∞) is bounded from below by a positive constant times the
hyperbolic volume measure. As the area measure is invariant under the
action of Γ, it follows that on Hd the area measure of K(f∞) is bounded
from below by a positive constant times the hyperbolic volume measure.
But K(f∞) touches the boundary of Ωτ , because f∞ = hτ on [`−, `+].

Corollary 3.53. — Let K∞ be the τ -convex set corresponding to f∞.
There is a constant c0 such that A(K∞) > c0 dHd, but K∞ meets ∂sΩτ
and in particular it is not strictly convex.

As a corollary we get

Corollary 3.54. — If ∂sΩτ contains a (d−1)-dimensional polyhedron
P, then there is no τ -convex set with smooth boundary and with constant
curvature function c0, where c0 is the constant in Corollary 3.53.

Proof. — Suppose by contradiction that such set, say K, exists and let
h its support function on B. By Proposition 2.17 and (2.1) we should have

MA(h) = c0(1− ‖x‖2)(−d−2)/2L .

On the other hand by Corollary 3.53 we have

MA(f∞) > c0(1− ‖x‖2)(−d−2)/2L .

By the comparison principle (Theorem 2.30)

hτ > h > f∞ > 0 .
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This implies that h coincides with hτ on [`−, `+], so ∂K contains the
points of ∂Ωτ which satisfy either 〈p, `−〉− = 0 or 〈p, `+〉− = 0. In particular
for each point p in the interior of P, the two light-like vectors through p
directed as `− and `+ are contained in ∂K.
Thus the intersection of ∂K with the time-like 2-plane U passing through

x and orthogonal to the plane R containing P is the union of two geodesic
rays with different directions. Since this intersection is transverse, ∂K can-
not be smooth. �

Appendix A. Smooth approximation

In this section we will prove that any τ -convex set K can be approxi-
mated by a sequence (Kn) of C2

+ τ -convex sets. We limit ourself to consider
C2-approximation only for simplicity. In fact the same techniques can be
implemented to produce a smooth approximation. In Remark A.5 some
details will be given in this direction.
The main idea is to use an average procedure to construct a sequence

hn of C2- support functions converging to h. Basically, given any r > 0 we
define by the hyperbolic average of any continuous function h of radius r
the following function

ĥr(x) = d

ωd−1(sinh r)d

∫
B(x,r)

h(y) dHd(y) ,

where B(x, r) is the hyperbolic ball centered at x of a radius r and ωd−1
is the volume of the standard sphere Sd−1 of constant curvature 1. For
brevity we denote by ζ(r) = d

ωd−1(sinh r)d . Note that ζ(r)V (r)→ 1 when

r → 0, where V (r) is the volume of the hyperbolic ball of radius r [29, 3.4].
We will show the following facts
• ĥr → h as r → 0 uniformly on compact subsets of Hd.
• if h is τ -equivariant, so is ĥr.
• ĥr is of class C1. More generally, if h is of class Ck, then ĥr is of

class Ck+1.
A further difficulty is that the average procedure in general does not

produce support functions. However if h is τ -equivariant, we will prove
that there exists a constant C > 0 such that ĥr −Cr is a support function
for any r. To prove this result it will suffice the following property about
ĥr.
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• If h is a support function, for any convex compact domain K of
Hd, there is a constant C = C(‖h‖Lip(K)) such that ĥr − Cr is a
support function on K.

(Here being a support function on K ⊂ Hd means that its 1-homogeneous
extension on the cone over K is convex.)
First let us show how the enlisted properties of the hyperbolic average

imply the density statement we want to prove in this section.

Theorem A.1. — For a given τ -support function h and for any δ > 0,
there is a C2

+ τ -support function hδ such that ‖h− hδ‖L∞ 6 δ.

Proof. — Let K be a convex domain such that the Γ-translates of the
interior of K cover Hd, and C be the constant appearing in the last prop-
erty. If r is sufficiently small, ‖ĥr − Cr − h‖K < δ/3. Notice that the
1-homogeneous extension of ĥr − Cr is convex in the cone over K. Since
ĥr − Cr is τ -equivariant, it turns out that h′ = ĥr − Cr is a C1 τ -support
function over Hd. Moreover, since h′ − h = ĥr − Cr − h is Γ-invariant we
get that ‖h′ − h‖Hd 6 δ/3.

Repeating the average procedure on h′ we obtain a C2 τ -support function
h
′′ whose distance from h

′ is less than δ/3. Notice that ∇2(h′′) − h′′gH is
semidefinite positive by Equation (2.5), and ‖h − h

′′‖ < 2δ/3, so hδ :=
h
′′−δ/3 is a C2

+ τ -support function whose distance from h is less than δ. �
Let us now prove the properties of this average process.
The first property is a direct consequence of the next proposition and

the fact that the function ζ(r) behaves as the inverse of the volume V (r)
of the hyperbolic ball of radius r for small r.

Proposition A.2. — Let h be a continuous function of Hd. Given a
compact subset K, denote by

δ(r,K) = sup{|h(x)− h(y) | , x ∈ K, y ∈ B(x, r)} .

Then ‖ĥr − h‖K 6 |ζ(r)V (r)− 1| ‖h‖Kr + δ(r,K).

Proof. — The estimate is obtained by a direct computation. For x ∈ K:∣∣∣ĥr(x)− h(x)
∣∣∣ =

∣∣∣∣∣ζ(r)
∫
B(x,r)

h(y) dHd(y)− 1
V (r)

∫
B(x,r)

h(y) dHd(y)

+ 1
V (r)

∫
B(x,r)

(h(y)− h(x)) dHd(y)

∣∣∣∣∣
6 |ζ(r)V (r)− 1| ‖h‖Kr + δ(r,K) . �
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We now show that if h is τ -equivariant so is ĥr. Notice that if γ ∈ Γ then

ĥr(γ(x))− ĥr(x) = ζ(r)
(∫

B(γ(x),r)
h(y) dHd(y)−

∫
B(x,r)

h(y) dHd(y)
)

= ζ(r)
(∫

B(x,r)
(h(γy)− h(y)) dHd(y)

)
.

By (3.3) we have that f̄(y) = h(γy) − h(y) is the restriction of the linear
function

f̄(x) = 〈x, γ−1τγ〉− ,
and we have that ĥr(γx)− ĥr(x) = f̂r(x).
Now the τ -equivariance of ĥr is ensured by this remark and the following

Lemma.

Lemma A.3. — If f̄ is the restriction of a linear function on Hd, then
f̂r = f̄ for every r.

Proof. — Since the 1-homogeneous extension, F , of f̄ is linear, we have
that its Minkowski gradient is constant. By the computation in Lemma 2.7
the derivative of F at a point Hd coincides with ∇ gradH(f̄) − f̄ Id, so we
conclude that ∇2f̄ − f̄gH = 0 on Hd.
In particular we have ∆f̄ = d · f̄ . So we deduce from the divergence

theorem that

f̂r(x) = d

ωd−1 sinh(r)d

∫
B(x,r)

1
d

∆f̄(y) dHd(y)

= 1
ωd−1 sinh(r)d

∫
S(x,r)

Df̄(y)[ν] dSr(y)

where S(x, r) is the boundary of B(x, r), ν is the unit exterior normal and
dSr is the area form of the sphere S(x, r).

In order to compute the last integral consider the unit tangent sphere
at x,

Sd−1 = {v ∈ Rd,1 | 〈v, v〉− = 1, 〈v, x〉− = 0} ,
and the parameterization given by the exponential map:

σ : Sd−1 → S(x, r) , σ(v) = cosh(r)x+ sinh(r)v .

We have σ∗( dSr) = sinh(r)d−1 dSd−1. From ν(σ(v)) = sinh(r)x+cosh(r)v
we deduce that

Df̄(x)[ν] = DF (x)[ν] = F (ν) = sinh(r)F (x) + cosh(r)F (v)

= sinh(r)f̄(x) + cosh(r)F (v),
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so we get

f̂r(x) = 1
ωd−1 sinh(r)d

∫
Sd−1

(sinh(r)df̄(x) + sinh(r)d−1cosh(r)F (v)) dSd−1.

Since F is linear
∫
Sd−1 F dSd−1 = 0, so the previous formula shows that

f̂r(x) = f(x). �

Let us consider now the regularizing properties of the average process.
Until the end of the section we use the notation 〈 · , · 〉 to denote the metric
on Hd.

Lemma A.4. — If h is a continuous function, then ĥr is C1 and given
a tangent vector v at x, we have

Dĥr(x)[v] = ζ(r)
∫
S(x,r)

h(y)〈ν(y), Ṽ (y)〉dSr(y)

where Ṽ is any Killing vector field such that Ṽ (x) = v.

Proof. — First we assume that h is C1. Let γt the isometric flow gener-
ated by Ṽ . We have to compute

lim
t→0

ĥr(γt(x))− ĥr(x)
t

= lim
t→0

1
t
ζ(r)

∫
B(x,r)

(h(γty)− h(y)) dHd(y) .

This limit clearly exists and we have

Dĥr(x)[v] = ζ(r)
∫
B(x,r)

〈gradH h(y), Ṽ (y)〉dHd(y) .

Since Ṽ is a Killing vector field, it is divergence free, so 〈gradH h, Ṽ 〉 =
div(hV ). Applying the divergence theorem we obtain a proof of the formula.
Notice that Dĥr continuously depends on the point, so ĥr is C1.

Consider now the case where h is only C0. Take a sequence of C1-
functions hn converging to h uniformly on compact subsets of Hd. We have
that ((ĥn)r) converges to ĥr as n → +∞ uniformly on compact subsets.
So in order to conclude it is sufficient to notice that D(ĥn)r(x) converges
to the 1-form

αr(x)[v] =
∫
S(x,r)

u(y)〈ν(y), Ṽ (y)〉dSr(y) .

It follows that ĥr is differentiable and Dĥr = α. �

Remark A.5. — In the proof we have showed in particular that if h is
C1 then

Dĥr(x)[v] = ζ(r)
∫
B(x,r)

〈gradH h(y), Ṽ (y)〉dHd(y) .
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Applying Lemma A.4 to the continuous function h′(x)=〈gradH h(x), Ṽ (x)〉,
we see that for any Killing vector field Ṽ the function x 7→ Dĥr(x)(Ṽ (x))
is C1. Thus ĥr is C2. More generally by an induction argument, one shows
that if h is of class Ck, then ĥr is of class Ck+1.

Finally we have to prove the last property. Let LipK(h) be the best
Lipschitz constant of h on K, and let ‖h‖Lip(K) = ‖h‖K + LipK(h).

Proposition A.6. — Let h be a support function. For any convex com-
pact subsetK ofHd, there is a constant C = C(‖h‖Lip(K)) such that ĥr−Cr
is a support function on K.

The proof of this proposition is first done assuming that h is C2 and then
using an approximation argument. The proof in the regular case follows by
a computation of the Hessian of ĥr.

Lemma A.7. — Assume that h is C2. Let v be a tangent vector at
x ∈ Hd. Then

∇2(ĥr)x(v, v)

= ζ(r)
(∫

B(x,r)
(∇2h)y(Ṽy, Ṽy) dHd(y) +

∫
B(x,r)

〈gradH hy,∇Ṽ Ṽ 〉dH
d(y)

)
where Ṽ is the Killing vector field extending v and generating a hyperbolic
transformation with axis through x (i.e., Ṽ (x) = v and ∇Ṽ Ṽ = 0 at x).

Proof of Lemma A.7. — Let γt be the isometry flow generated by Ṽ .
The path c(t) = γt(x) is a geodesic passing through x such that ċ = v. In
particular, we have

∇2(ĥr)x(v, v)〉 = d2ĥr(c(t))
dt2

|t=0 .

Differentiating the formula

ĥr(c(t)) = ζ(r)
∫
B(x,r)

h(γty) dHd(y)

we get

dĥr ◦ c
dt

(t) = ζ(r)
∫
B(x,r)

〈gradH h(γty), Ṽ (γt(y))〉dHd(y) .

The statement is then proved by differentiating again this formula at
t = 0. �

We will need the following lemma.

ANNALES DE L’INSTITUT FOURIER



MINKOWSKI PROBLEM IN MINKOWSKI SPACE 1109

Lemma A.8. — Let (un)n be a sequence of convex functions on an open
set O of the unit ball B ⊂ Rd converging uniformly on any compact set of
O to u. Let K ⊂ O be a compact set, and K ′ ⊂ O a compact set containing
K in its interior. Then

Limsup ‖un‖Lip(K) 6 ‖u‖Lip(K′) .

Proof. — By uniform convergence, ‖un‖K converge to ‖u‖K , which is
less than ‖u‖K′ . So we have to prove that the limit superior of LipK(un)
is less than LipK′(u).
Let x, y be two points in K, and z be the intersection point of the ray

from x towards y and ∂K ′. So y = (1−λ)x+λz with λ = ‖y−x‖/‖z−x‖,
then by convexity we have

(A.1) un(y)− un(x)
‖y − x‖

<
un(z)− un(x)
‖z − x‖

.

Let ε > 0 and suppose by contradiction that un are not (LipK′(u) + ε)-
Lipschitz on K for n big. This implies that there is two sequences xn and
yn in K such that

un(yn)− un(xn) > (LipK′(u) + ε)‖yn − xn‖ .

Let zn be the intersection point of the ray from xn towards yn and ∂K ′.
By (A.1) we have that

(A.2) un(zn)− un(xn)
‖zn − xn‖

> LipK′(u) + ε .

Now, up to take a subsequence, zn → z in ∂K ′ and xn → x in K. Notice
in particular that ‖z−x‖ > 0. Since un → u uniformly on K ′ we have that

un(zn)− un(xn)→ u(z)− u(x)

and by (A.2)
u(z)− u(x)
‖z − x‖

> LipK′(u) + ε

that contradicts that u is LipK′(u)-Lipschitz on K ′. �

Given a hyperbolic support function h let us denote by h the corre-
sponding support function on the ball. Recall that h(x) = λ(x)h(v(x))
where λ(x) =

√
1− ‖x‖2 and v : B → Hd is the radial map.

Using that for each compact subset K of Hd the map v : v−1(K)→ K is
bi-Lipschitz we simply check that there are two constants α < β depending
on K such that for any support function h

α‖h‖Lip(v−1(K)) 6 ‖h‖Lip(K) 6 β‖h‖Lip(v−1(K))
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where the Lipschitz constant of h is computed with respect to the Euclidean
metric of the ball while the Lipschitz constant of h is computed with respect
to the hyperbolic metric.
So Lemma A.8 implies the following corollary.

Corollary A.9. — Let (hn)n be a sequence of hyperbolic support
functions on an open subset U ⊂ Hd converging uniformly on any com-
pact set of U to h. Let K ⊂ U be a compact set, and K ′ ⊂ U a compact
set containing K in its interior. Then there is a constant C1 = C1(K ′) such
that

Limsup ‖hn‖Lip(K) 6 C1‖h‖Lip(K′) .

Proof of Proposition A.6. — There is a constant C = C(d) such that if
Ṽ is any Killing vector field and x a point in Hd such that ∇Ṽ Ṽ (x) = 0
then for any y ∈ B(x, 1)∣∣‖Ṽy‖2 − ‖Ṽx‖2∣∣ < Cr, ‖∇Ṽ Ṽ (y)‖ 6 C‖Ṽx‖r

where r = dH(x, y). This can be seen because as the hyperbolic space has
negative curvature, the map f(y) = ‖Ṽy‖ is convex, hence locally Lipschitz,
and f gradH f = −∇Ṽ Ṽ [9]. By applying an isometry, one sees that the
constant does not depend on x.
Let us assume that h is C2. By Cauchy–Schwarz and one of the inequal-

ities above, we get that for every y ∈ B(x, r)

〈gradH h,∇Ṽ Ṽ (y)〉 > −‖ gradH h‖B(x,r)‖Ṽx‖Cr .

Moreover, ∇2h− hgH > 0, that implies

∇2(h)(Ṽy, Ṽy)− h(y)‖Ṽx‖2 > −|h(y)|
∣∣‖Ṽy‖2 − ‖Ṽx‖2∣∣ > −‖h‖B(x,r)Cr .

Lemma A.7 implies that

∇2(ĥr)− ĥrgH(v, v) > −ζ(r)V (r)C(‖h‖B(x,r) + ‖ gradH h‖B(x,r)‖v‖)r .

So in particular for any x ∈ K, if ‖v‖ = 1, then

(∇2(ĥr)− ĥrgH)(v, v) > −ζ(r)V (r)C(‖h‖Kr + ‖ gradH h‖Kr )r

and asKr is convex, ‖ gradh‖Kr = LipKr (h), and as V (r)→ 1 when r → 0,
there exists C ′ such that

(∇2(ĥr)− ĥrgH)(v, v) > −C ′‖h‖Lip(Kr)r , ‖v‖ = 1 ,

so ĥr − C ′‖h‖Lip(Kr)r is a support function.
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Now consider the case where h is only continuous. Let (Hn)n be a se-
quence of C2

+ support functions converging to the extension H of h uni-
formly on compact subset of I+(0) (Lemma 2.16). From Corollary A.9 for
any ε > 0 the functions

fn = (ĥn)r − C ′C1(‖h‖Lip(K2r) + ε)r

are support functions for n big and r < 1, where C1 = C1(K1) is the
constant of Corollary A.9.
Taking the 1-homogeneous extension Fn of fn, we have that Fn is convex

over the cone on K for n big. Letting n go to +∞, Fn converges to the
1-homogeneous extension of

f = ĥr − C ′C1(‖h‖Lip(Kr) + ε)r .

So f is a support function on K. Since ε can be chose arbitrarily we
deduce that ĥr − C ′C1‖h‖Lip(Kr)r is a support function over K. �
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