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REAL-VALUED ALGEBRO-GEOMETRIC SOLUTIONS
OF THE TWO-COMPONENT

CAMASSA–HOLM HIERARCHY

by Jonathan ECKHARDT, Fritz GESZTESY, Helge HOLDEN,
Aleksey KOSTENKO & Gerald TESCHL (*)

Abstract. — We provide a construction of the two-component Camassa–
Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify
and describe in detail the isospectral set associated to all real-valued, smooth, and
bounded algebro-geometric solutions of the nth equation of the stationary CH-2 hi-
erarchy as the real n-dimensional torus Tn. We employ Dubrovin-type equations for
auxiliary divisors and certain aspects of direct and inverse spectral theory for self-
adjoint singular Hamiltonian systems. In particular, we employ Weyl–Titchmarsh
theory for singular (canonical) Hamiltonian systems.

While we focus primarily on the case of stationary algebro-geometric CH-2 so-
lutions, we note that the time-dependent case subordinates to the stationary one
with respect to isospectral torus questions.
Résumé. — Nous présentons une construction de la hiérarchie de l’équation de

Camassa–Holm à deux composantes (CH-2) en utilisant un nouveau formalisme de
courbure nulle. Nous décrivons en détail et identifions l’ensemble isospectral asso-
cié à toutes les solutions algébro-géométriques à valeur réelle, réguliéres et bornées
de la n-ème équation de l’équation stationnaire de la hiérarchie CH-2 au tore Tn

de dimension n. Nous utilisons des équations de type Dubrovin pour les diviseurs
auxiliaires et certains aspects de la théorie spectrale et d’inversion spectrale pour
les systèmes Hamiltoniens singuliers auto-adjoints. En particulier, nous utilisons la
théorie de Weyl–Titchmarsh pour les systèmes (canoniques) Hamiltoniens singu-
liers.

Bien que nous nous concentrons principalement sur le cas des solutions algébro-
géométriques stationnaires pour CH-2, nous remarquons que le cas de la solu-
tion évolutive qui dépend du temps est subordonné au cas stationnaire en ce qui
concernent les questions isospectrales liées au tore.

Keywords: Two-component Camassa–Holm hierarchy, real-valued algebro-geometric so-
lutions, isospectral tori, self-adjoint Hamiltonian systems, Weyl–Titchmarsh theory.
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1. Introduction

The principal purpose of this paper is two-fold: first, we provide a con-
struction of the two-component Camassa–Holm (CH-2) hierarchy based on
a new zero-curvature pair, and second, identify and describe in detail the
isospectral set associated to all real-valued, smooth, and bounded algebro-
geometric solutions of the nth equation of the stationary CH-2 hierarchy
as the real n-dimensional torus Tn.
The first nonlinear partial differential equation of the two-component

Camassa–Holm hierarchy, the two-component Camassa–Holm system [50],
can be written in the form

4ut − uxxt − 2uuxxx − 4uxuxx + 24uux + wx = 0,

wt + 4wux + 2wxu = 0, (x, t) ∈ R2.
(1.1)

When studying weak solutions of the Cauchy problem one writes the second
equation in conservative form, that is, ρt + 2(ρu)x = 0 where w = ρ2. For
smooth solutions like those studied in the present paper, the two formu-
lations are equivalent. This two-component system extends the Camassa–
Holm equation, also known as the dispersive shallow water equation [5]
(the special case w ≡ 0 of (1.1)) given by

(1.2) 4ut − uxxt − 2uuxxx − 4uxuxx + 24uux = 0, (x, t) ∈ R2

(choosing a convenient scaling of x and t). The two-component CH-2
system (1.1) has generated much interest over the past decades. For in-
stance, its relevance to shallow water theory is discussed in [10], [37], well-
posedness and blow-up are studied in [10], [17], [19], [28], [41], various types
of solutions (global, dissipative, conservative, etc.) are treated in [17], [24]–
[27], [29], the inverse scattering transform is applied to the CH-2 system
in [12], [34], N solitary waves are discussed in [10], [33], [34], [45], traveling
waves are studied in [47], [49], the geometry of CH-2 is investigated in [16],
[33], [34], [42], the periodic CH-2 system is discussed in [25], [36], [51]. For
connections to other integrable systems see [3], [8], [18]. Various multicom-
ponent extensions of the Camassa–Holm equation and its generalizations
are discussed in, e.g., [6], [7], [19], [38], [40], [46], [48], [52]–[54]. Closest to
the investigations in this paper is the derivation of the CH-2 hierarchy and
its algebro-geometric solutions in [35].
In Section 2 we recall the basic polynomial recursion formalism that

defines the CH-2 hierarchy using a new zero-curvature approach based on
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the 2× 2 matrix pair (U, Vn), n ∈ N0 (with N0 = N ∪ {0}), given by

(1.3) U(z, x, t) = −z−1
(

α(x, t) −1
α(x, t)2 + w(x, t) −α(x, t)

)
+
(
−1 0
0 1

)
,

z ∈ C\{0}, (x, t) ∈ R2,

where

(1.4) α(x, t) = ux(x, t) + 2u(x, t), (x, t) ∈ R2,

and

(1.5) Vn(z, x, t) = z−1
(
−Gn+1(z, x, t) Fn(z, x, t)
Hn(z, x, t) Gn+1(z, x, t)

)
,

z ∈ C\{0}, (x, t) ∈ R2,

assuming Fn, Hn, and Gn+1 to be polynomials of degree n and n + 1,
respectively, with respect to (the spectral parameter) z and C∞ in x, t (for
simplicity). In addition, Fn and Gn+1 are chosen to be monic with respect
to z ∈ C. The zero-curvature condition

(1.6) Ut(z, x, t)− Vn,x,t(z, x, t) + [U(z, x, t), Vn(z, x, t)] = 0,

is then shown to generate the CH-2 hierarchy associated to the system (1.1).
In fact, (1.1) corresponds to the first nonlinear system n = 1 (the case n = 0
represents a linear system). Actually, we derive the corresponding station-
ary (i.e., t-independent) hierarchy first as the latter will be most instru-
mental in determining the isospectral torus of all real-valued, smooth, and
bounded algebro-geometric solutions of the CH-2 hierarchy. The stationary
hierarchy is derived from the corresponding zero-curvature equation

(1.7) − Vn,x(z, x) + [U(z, x), Vn(z, x)] = 0,

and it in turn naturally leads to the identity,

(1.8) Gn+1(z, x)2 + Fn(z, x)Hn(z, x) = R2n+2(z),

where R2n+2 is an x-independent monic polynomial with respect to z of
degree 2n+ 2. The polynomial R2n+2 is fundamental as it defines the hy-
perelliptic curve Kn (cf. (3.4)) underlying the stationary CH-2 hierarchy.

Section 3 is devoted to the stationary CH-2 hierarchy and the associ-
ated algebro-geometric formalism. In particular, the underlying hyperellip-
tic curve Kn (defined in terms of the polynomial R2n+2), an associated fun-
damental meromorphic function φ on Kn, its divisor of zeros and poles, the
Baker–Akhiezer vector Ψ, basic properties of φ and Ψ, Dubrovin-type equa-
tions for auxiliary Dirichlet divisors (in fact, zeros µ̂j ∈ Kn, j = 1, . . . , n,

TOME 67 (2017), FASCICULE 3
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of φ), trace formulas for u and w in terms of the projections µj ∈ C,
j = 1, . . . , n, and asymptotic properties of φ and Ψ are derived in de-
tail. We conclude this section with a proof of the fact that solutions of
the Dubrovin equations generate stationary (algebro-geometric) solutions
of the stationary CH-2 hierarchy via the trace formulas (3.42), (3.43) for
the pair (u,w).

Section 4 provides a brief summary of self-adjoint singular canonical
systems as needed in the subsequent Section 5, and introduces (scalar-
valued) half-line Weyl–Titchmarsh functions as well as their 2× 2 matrix-
valued generalizations for the entire real line.
Finally, Section 5 contains the principal result of this paper, the identifi-

cation and description of the isospectral set of all real-valued, smooth, and
bounded algebro-geometric solutions of the nth equation of the stationary
CH-2 hierarchy as the real n-dimensional torus Tn. We start this section
by noticing that the basic stationary equation (3.29),

(1.9) Ψx(−z, x) = U(−z, x)Ψ(−z, x), Ψ = (ψ1, ψ2)>, (z, x) ∈ C× R,

is equivalent to the following singular Hamiltonian (canonical) system

(1.10) JΨ̃x(z̃, x) = [z̃A(x)+B(x)]Ψ̃(z̃, x), Ψ̃ =
(
ψ̃1, ψ̃2

)>
,
(
z̃, x
)
∈ C×R,

where

(1.11)
J =

(
0 −1
1 0

)
, Ψ̃(z̃, x) = Ψ(−z, x), z̃ = −z−1,

A(x) =
(
α(x)2+w(x) −α(x)
−α(x) 1

)
> 0, B(x) =

(
0 −1
−1 0

)
=B(x)∗.

We emphasize, in particular, that the new zero-curvature matrix U(−z, · )
(cf. [12, App. A]) renders the Hamiltonian system (1.10) linear with re-
spect to the spectral parameter z̃ and hence amenable to standard spectral
theory (more precisely, Weyl–Titchmarsh theory and all its ramifications;
see Section 4). In particular, with (u,w) subject to conditions (5.3) the
Hamiltonian system (1.10) is in the limit point case at x = ±∞. Other
known examples of zero-curvature matrices U(−z, · ) (e.g., the one em-
ployed in [35]) lead to Hamiltonian systems quadratic in z̃ and hence their
spectral theory cannot be handled by the methods indicated in Section 4.
Upon characterizing certain classes of Nevanlinna–Herglotz functions de-
fined in terms of polynomials and their square roots (cf. Lemma 5.2), we
derive in detail the half-line Weyl–Titchmarsh functions corresponding to
the Hamiltonian system (1.10) in connection with the stationary algebro-
geometric solutions (u,w) discussed in Section 3. This then enables us to
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derive the corresponding 2× 2 matrix Weyl–Titchmarsh functions and the
associated 2× 2 matrix spectral function in the Nevanlinna–Herglotz rep-
resentation of the former on the entire real line (cf. Theorem 5.3), again in
the context of stationary algebro-geometric solutions (u,w) of the s-CH-2
hierarchy. Here we just remark that these 2× 2 matrix functions are both
expressed in terms of the polynomials Fn(z, · ), Gn+1(z, · ), Hn(z, · ), and
R2n+2(z) (cf. (5.40)–(5.43)). The limit point (i.e., self-adjointness) property
of the Hamiltonian system corresponding to real-valued, bounded station-
ary, algebro-geometric CH-2 solutions then restricts the motion of the zeros
and poles of the fundamental function φ to real intervals (the closure of
spectral gaps, cf. Theorem 5.4). Together with the Dubrovin initial value
problem treated in Theorem 5.8, this finally leads to the determination of
the isospectral set of all real-valued, smooth and bounded algebro-geometric
solutions of the stationary CH-2 equation, s-CH-2n(u,w) = 0, as the real
n-dimensional torus Tn in Corollary 5.9.

We focus primarily on the case of stationary CH-2 hierarchy solutions as
the time-dependent case subordinates to the stationary one with respect
to isospectral torus questions, a fact that is briefly commented on at the
end of Section 5.
As noted, the special case w ≡ 0 reduces the two-component Camassa–

Holm hierarchy, CH-2, to the standard (i.e., one-component) Camassa–
Holm hierarchy (CH-1). This special case was treated in detail in [1], [2],
[20], [21, Ch. 5]. The corresponding isospectral torus of all real-valued,
smooth, and bounded algebro-geometric solutions of the one-component
CH-1 hierarchy has been derived in [22].

2. The CH-2 Hierarchy, Recursion Relations, and
Hyperelliptic Curves

In this section we review the basic construction of the two-component
Camassa–Holm hierarchy (CH-2) using an appropriate zero-curvature ap-
proach. An alternative approach to the CH-2 hierarchy was first derived
in [35]. Both approaches follow standard arguments first developed in [20]
(cf. also [21, Ch. 5]).
Throughout this section we will suppose the following hypothesis.

Hypothesis 2.1. — Suppose that u,w : R→ C.
In the stationary case we assume that

(2.1) u,w ∈ C∞(R), u(m), w(m) ∈ L∞(R), m ∈ N0.

TOME 67 (2017), FASCICULE 3
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In the time-dependent case (cf. (2.30)–(2.37)) we suppose

(2.2)
u( · , t), w( · , t) ∈ C∞(R), ∂

mu

∂xm
( · , t), ∂

mw

∂xm
( · , t) ∈ L∞(R),

m ∈ N0, t ∈ R,

u(x, · ), ux(x, · ), w(x, · ) ∈ C1(R), x ∈ R.

We start by formulating the basic polynomial setup. One defines {f`}`∈N0

recursively by

(2.3)

f0 = 1, f1 = −2u+ c1,

f`,x =−2G
(
2(4u−uxx)f`−1,x+(4ux−uxxx)f`−1−2wf`−2,x−wxf`−2

)
,

` ∈ N\{1},
where c1 is an integration constant and G is given by

(2.4) G : L∞(R)→ L∞(R), (Gv)(x) = 1
4

∫
R
dy e−2|x−y|v(y), x ∈ R,

for every v ∈ L∞(R). One observes that G is the resolvent of minus the
one-dimensional Laplacian when the spectral parameter is equal to −4,
that is,

(2.5) G =
(
− d2

dx2 + 4
)−1

.

The coefficients f`, ` ∈ N, ` > 2, are non-local with respect to u. At each
level a new integration constant, denoted by c`, is introduced. Moreover,
abbreviating

(2.6) α = ux + 2u,

we introduce coefficients {g`}`∈N0 and {h`}`∈N0 by

(2.7) g` = f` + αf`−1 + 1
2f`,x, h` = −

(
α2 + w

)
f` − g`+2,x, ` ∈ N0,

with the convention f−1 = 0. Explicitly, one computes

(2.8)

f0 = 1, f1 = −2u+ c1,

f2 = 2u2 + 2G
(
u2
x + 8u2 + w

)
+ c1(−2u) + c2,

g0 = 1, g1 = c1,

g2 = −2u2 + 2G
(
u2
x + uxuxx + 8uux + 8u2 + w + 2−1wx

)
+ c2,

h0 = −2G
(
16uux + 2u2

x + 2uxuxx +16u2 + 2−1wxx +wx
)

+4u2−w,
etc.

For later use we also note

(2.9) h`,x − 2h` − 2αh`−1 − 2
(
α2 + w)g` = 0, ` ∈ N0,

ANNALES DE L’INSTITUT FOURIER
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again using the convention h−1 = 0. This can be easily seen by first us-
ing (2.7) to eliminate g`, h` which eventually reduces (2.9) to (2.3).
Given Hypothesis 2.1, one introduces the 2× 2 matrix U by

(2.10) U(z, x) = −z−1
(

α(x) −1
α(x)2 + w(x) −α(x)

)
+
(
−1 0
0 1

)
,

z ∈ C\{0}, x ∈ R,

and for each n ∈ N0 the following 2× 2 matrix Vn by

(2.11) Vn(z, x) = z−1
(
−Gn+1(z, x) Fn(z, x)
Hn(z, x) Gn+1(z, x)

)
, n ∈ N0,

z ∈ C\{0}, x ∈ R,

assuming Fn, Hn, and Gn+1 to be polynomials of degree n and n + 1,
respectively, with respect to z and C∞ in x. In addition, we will choose Fn
and Gn+1 to be monic in z. Postulating the zero-curvature condition

(2.12) − Vn,x(z, x) + [U(z, x), Vn(z, x)] = 0,

one finds

−zFn,x(z, x)− 2[α(x) + z]Fn(z, x) + 2Gn+1(z, x) = 0,(2.13)

−zGn+1,x(z, x)−
[
α(x)2 + w(x)

]
Fn(z, x)−Hn(z, x) = 0,(2.14)

−zHn,x(z, x) + 2[α(x) + z]Hn(z, x)(2.15)

+2
[
α(x)2 + w(x)

]
Gn+1(z, x) = 0.

In addition, employing (2.13) and (2.14), one infers that (2.15) is equivalent
to

(2.16) Hn,x(z, x)+2[α(x)+z]Gn+1,x(z, x)−
[
α(x)2 +w(x)

]
Fn,x(z, x) = 0.

From (2.13)–(2.15) one infers that

(2.17) d

dx
det(Vn(z, x)) = −z−2 d

dx

[
Gn+1(z, x)2 + Fn(z, x)Hn(z, x)

]
= 0,

and hence

(2.18) Gn+1(z, x)2 + Fn(z, x)Hn(z, x) = R2n+2(z),

where R2n+2 is an x-independent monic polynomial with respect to z of
degree 2n+ 2 and hence of the form

(2.19) R2n+2(z) =
2n+1∏
m=0

(z − Em), {Em}2n+1
m=0 ⊂ C.

TOME 67 (2017), FASCICULE 3
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Using equations (2.13)–(2.15) one can also derive individual differential
equations for Fn and Hn. Focusing on Fn only, one obtains

(2.20) Fn,xxx(z, x)−4Fn,x−4
[
z−1(4u(x)−uxx(x))−z−2w

]
Fn,x(z, x)

−2z−1[(4ux(x)−uxxx(x))−z−1wx
]
Fn(z, x) = 0,

and

(2.21) − (z2/2)Fn,xx(z, x)Fn(z, x) + (z2/4)Fn,x(z, x)2

+
[
z2 + z(4u(x)− uxx(x))− w

]
Fn(z, x)2 = R2n+2(z).

Next, we connect the recursion relations (2.3), (2.7) with the polynomials
Fn, Hn, and Gn+1 by making the ansatz

Fn(z, x) =
n∑
`=0

fn−`(x)z`,

Gn+1(z, x) =
n+1∑
`=0

gn+1−`(x)z` − fn+1 −
1
2fn+1,x,

Hn(z, x) =
n∑
`=0

hn−`(x)z` + gn+2,x.

(2.22)

Inserting the ansatz (2.22) into (2.13) and comparing coefficients shows
that this equation holds due to (2.7). Similarly, inserting (2.22) into (2.14)
shows that the latter equation holds due to (2.7) and g′0 = g′1 = 0 if and
only if the term linear in z vanishes,

(2.23) fn+1,x + 1
2fn+1,xx = 0.

Finally, inserting (2.22) into (2.15) all coefficients of z` for ` > 2 cancel due
to (2.9). For the constant (i.e., z0) term one gets, using (2.7),

(2.24) 2α (gn+2,x + hn) + 2
(
α2 + w

)(
gn+1 − fn+1 −

1
2fn+1,x

)
= 0.

Similarly, for the z1-term one gets using (2.9), (2.7), and (2.3) (in this
order),

(2.25) hn,x + gn+2,xx − 2αhn−1 − 2 (gn+2,x + hn)− 2
(
α2 + w

)
gn

= −2gn+2,x + gn+2,xx

= −wxfn − 2wfn,x + 2α
(
fn+1 + 1

2fn+1,x

)
x

.

Hence (2.15) holds if and only if the final right-hand side of (2.25) vanishes.
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SOLUTIONS OF THE CH-2 HIERARCHY 1193

In summary, the zero-curvature condition (2.12) will hold if and only if

(2.26)
(
fn+1,x + 1

2fn+1,xx

)
= 0 and wxfn + 2wfn,x = 0.

For reasons to become clear in connection with the time-dependent formu-
lation, we will replace the first equation in (2.26) by the equivalent one

(2.27)
(
d

dx
+ 2
)−1(

fn+1 + 1
2fn+1,x

)
x

= 1
2fn+1,x = 0.

Thus, the zero-curvature condition (2.12) is equivalent to

(2.28) s-CH-2n(u,w) =
(

1
2fn+1,x

−wxfn − 2wfn,x

)
= 0, n ∈ N0.

Varying n ∈ N0 in (2.28) then defines the stationary CH-2 hierarchy.
We record the first two equations explicitly,

(2.29)

s-CH-20(u,w) =
(
−ux
−wx

)
= 0,

s-CH-21(u,w) =
(
G(2uxuxx + 16uux + wx) + 2uux − c1ux

2wxu+ 4wux + c1(−wx)

)
= 0,

etc.

By definition, the set of solutions of (2.28), with n ranging in N0, repre-
sents the class of algebro-geometric CH-2 solutions. If (u,w) satisfies one
of the stationary CH-2 equations in (2.28) for a particular value of n, then
it satisfies infinitely many such equations of order higher than n for certain
choices of integration constants c` (see [21, Remark 1.5] for the correspond-
ing argument for the KdV equation).
Next, we turn to the time-dependent CH-2 hierarchy. Introducing a de-

formation parameter tn ∈ R into u and w (i.e., replacing (u(x), w(x))
by (u(x, tn), w(x, tn))), the definitions (2.10), (2.11), and (2.22) of U , Vn,
and Fn, Gn+1, and Hn, respectively, still apply. The corresponding zero-
curvature relation reads

(2.30) Utn(z, x, tn)−Vn,x(z, x, tn)+[U(z, x, tn), Vn(z, x, tn)] = 0, n ∈ N0,

TOME 67 (2017), FASCICULE 3
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which results in the following set of time-dependent equations

zFn,x(z, x, tn) = −2[α(x, tn) + z]Fn(z, x, tn) + 2Gn+1(z, x, tn),(2.31)
zαtn(x, tn) = zGn+1,x(z, x, tn)(2.32)

+
[
α(x, tn)2 + w(x, tn)

]
Fn(z, x, tn) +Hn(z, x, tn),

z[2α(x, tn)αtn(x, tn) + wtn(x, tn)] = −zHn,x(z, x, tn)(2.33)
+ 2
[
α(x, tn) + z

]
Hn(z, x, tn)

+ 2
[
α(x, tn)2 + w(x, tn)

]
Gn+1(z, x, tn) = 0.

Now one proceeds as in the stationary case to conclude that these equations
hold if and only if

(2.34) αtn + fn+1,x + 1
2fn+1,xx = 0

and

(2.35) 2ααtn + wtn − wxfn − 2wfn,x + 2α
(
fn+1 + 1

2fn+1,x

)
x

= 0.

Hence one arrives at the corresponding time-dependent hierarchy

CH-2n(u,w) =
(

utn + 1
2fn+1,x

wtn − wxfn − 2wfn,x

)
= 0, n ∈ N0.(2.36)

Varying n ∈ N0 in (2.36) then defines the time-dependent CH-2 hierarchy.
We record the first few equations explicitly,

(2.37)

CH-20(u,w) =
(
ut0 − ux
wt0 − wx

)
= 0,

CH-21(u,w) =
(
ut1 +G(2uxuxx+16uux+wx)+2uux−c1ux

wt1 +2wxu+4wux+c1(−wx)

)
= 0,

etc.

Up to an inessential scaling of the (x, t1) variables, CH-21(u) = 0 with
c1 = 0 represents the two-component Camassa–Holm equation as discussed,
for instance in [33], [35]. In this respect we remark that the first component
is more frequently written in the literature as

(2.38) G−1
(
utn + 1

2fn+1,x

)
= 4utn − uxxtn + (uxxx − 4ux)fn + 2(uxx − 4u)fn,x

+ wxfn−1 + 2wfn−1,x, n ∈ N.
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3. The Stationary Algebro-Geometric CH-2 Formalism

This section is devoted to a quick review of the stationary CH-2 hierar-
chies and the corresponding algebro-geometric formalism. This topic has
first been discussed in [35] using a different zero-curvature pair (U, Vn).
These approaches are standard and follow the lines developed in [20] (see
also [21, Ch. 5]).
We start with the stationary hierarchy and hence impose the following

assumptions:

Hypothesis 3.1. — Suppose that u,w : R→ C satisfy

(3.1) u,w ∈ C∞(R), u(m), w(m) ∈ L∞(R), m ∈ N0,

and let all associated quantities (2.3), (2.7), (2.22) be defined as in the
previous section. Moreover, suppose (cf. (2.18), (2.19))

(3.2) {Em}2n+1
m=0 ⊂ C\{0}.

Recalling (2.19),

(3.3) R2n+2(z) =
2n+1∏
m=0

(z − Em),

we introduce the (possibly singular) hyperelliptic curve Kn of arithmetic
genus n defined by

(3.4) Kn : Fn(z, y) = y2 −R2n+2(z) = 0.

We compactify Kn by adding two points at infinity, P∞+ , P∞− , with P∞+ 6=
P∞− , still denoting its projective closure by Kn. Hence Kn becomes a two-
sheeted Riemann surface of arithmetic genus n. Points P on Kn\{P∞±}
are denoted by P = (z, y), where y( · ) denotes the meromorphic function
on Kn satisfying Fn(z, y) = 0.
For notational simplicity we will usually tacitly assume that n ∈ N (the

case n = 0 being trivial).
In the following the roots of the polynomials Fn and Hn will play a

special role and hence we introduce on C× R

(3.5) Fn(z, x) =
n∏
j=1

[z − µj(x)], Hn(z, x) = h0(x)
n∏
j=1

[z − νj(x)],

temporarily assuming

(3.6) h0(x) 6= 0, x ∈ R.
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Moreover, we introduce

µ̂j(x) = (µj(x),−Gn+1(µj(x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R,(3.7)
ν̂j(x) = (νj(x), Gn+1(νj(x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R.(3.8)

The branch of y( · ) near P∞± is fixed according to

(3.9) y(P )
z(P )n+1 =

|z(P )|→∞
P→P∞±

∓
[
1 + c1(E)z(P )−1 +O

(
z(P )−2)].

Due to assumption (3.1), u is smooth and bounded, and hence Fn(z, · )
and Hn(z, · ) share the same property. Thus, one concludes

(3.10) µj , νk ∈ C(R), j, k = 1, . . . , n,

taking multiplicities (and appropriate reordering) of the zeros of Fn and
Hn into account.
Equation (2.21) leads to an explicit determination of the integration

constants c1, . . . , cn in the stationary CH-2 equations (2.28) in terms of the
zeros Em, m = 0, . . . , 2n+ 1, of the associated polynomial R2n+2 in (2.19),
as follows: Choosing P = (z, y) ∈ Πn,+ (cf. (5.16), (5.17)) and inserting

(3.11) Fn(z, x)
y(P ) = −

∞∑
`=0

f̂`(x)z−`−1

into (2.21), one obtains the nonlinear recursion
(3.12)

f̂0 = 1, f̂1 = −2u,

f̂` = −G
(

`−1∑
m=1

[
1
2 f̂m,xf̂`−m,x+f̂m

(
2f̂`−m−f̂`−m,xx

)]

+2
`−1∑
m=0

f̂m

[
(4u−uxx)f̂`−m−1−wf̂`−m−2

])
, ` ∈ N\{1}.

Furthermore, inserting (3.11) into (2.20) one sees that f̂` also satisfies (2.3),
and by homogeneity considerations one infers

(3.13) f` =
∑̀
m=0

c`−mf̂m.

Using again (3.11) and (2.22) one finally obtains

(3.14) c` = c`(E), ` = 0, . . . , n,
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where ck(E), k ∈ N0, denote the asymptotic expansion coefficients of
y(P )−1 = −

∑∞
`=0 c`(E)z−n−`−1. Explicitly (cf. [20, App. D]),

(3.15)

c0(E) = 1, c1(E) = −1
2

2n+1∑
m=0

Em,

ck(E) = −
k∑

j1,...,j2n+1=0
j1+···+j2n+1=k

(2j1)! · · · (2j2n+1)!
22k(j1!)2 · · · (j2n+1!)2(2j1−1) · · · (2j2n+1−1)

×Ej1
1 · · ·E

j2n+1
2n+1 , k ∈ N.

Next, we introduce the fundamental meromorphic function φ( · , x) on
Kn by

(3.16) φ(P, x) = y −Gn+1(z, x)
Fn(z, x) = Hn(z, x)

y +Gn+1(z, x) ,

P = (z, y) ∈ Kn, x ∈ R.

Assuming (3.6), the divisor (φ( · , x)) of φ( · , x) is given by

(3.17) (φ( · , x)) = DP∞− ν̂(x) −DP∞+ µ̂(x),

taking into account (3.9). Here we abbreviated

(3.18) µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ σnKn,

where σmKn,m ∈ N, denotes themth symmetric product of Kn. Moreover,
we used the following convenient notation for a positive divisorDQ of degree
n on Kn,

DQ : Kn → N0, P 7→ DQ(P ) =
{
m if P occurs m times in {Q1, ..., Qn},
0 if P /∈ {Q1, . . . , Qn},

(3.19)

Q = {Q1, . . . , Qn} ∈ σnKn,

and used the following notation for divisors of degree n+ 1 on Kn,

(3.20) DQ0Q = DQ0 +DQ, Q0 ∈ Kn,

where for any Q ∈ Kn,

(3.21) DQ : Kn → N0, P 7→ DQ(P ) =
{

1 for P = Q,

0 for P ∈ Kn\{Q}.

If h0 is permitted to vanish at a point x1 ∈ R, then for x = x1, the
polynomial Hn( · , x1) is at most of degree n− 1 (cf. (2.22)). Since this can
be viewed as a limiting case of (3.17), we will henceforth not particularly
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distinguish the case h0 6= 0 from the more general situation where h0 is
permitted to vanish.
Given the meromorphics function φ( · , x), one defines the associated

Baker–Akhiezer vector Ψ( · , x, x0) on Kn\{P∞+ , P∞−} by

(3.22) Ψ(P, x, x0) =
(
ψ1(P, x, x0)
ψ2(P, x, x0)

)
, P ∈ Kn\{P∞+ , P∞−}, (x, x0) ∈ R2,

where

ψ1(P, x, x0) = exp
(
− z−1

∫ x

x0

dx′ φ(P, x′)− (x− x0)(3.23)

− z−1
∫ x

x0

dx′ α(x′)
)
,

ψ2(P, x, x0) = −ψ1(P, x, x0)φ(P, x).(3.24)

The basic properties of φ and Ψ then read as follows.

Lemma 3.2. — Assume Hypothesis 3.1 and that the nth stationary
CH-2 equation (2.28) holds on some open interval Ω ⊆ R. Moreover, sup-
pose that P = (z, y) ∈ Kn\{P∞+ , P∞−}, (x, x0) ∈ Ω2. Then φ satisfies the
Riccati-type equation

(3.25) φx(P, x)− z−1φ(P, x)2 − 2z−1(α(x) + z)φ(P, x)

− 2z−1[α(x)2 + w(x)] = 0,

as well as

φ(P, x)φ(P ∗, x) = −Hn(z, x)
Fn(z, x) ,(3.26)

φ(P, x) + φ(P ∗, x) = −2Gn+1(z, x)
Fn(z, x) ,(3.27)

φ(P, x)− φ(P ∗, x) = 2y
Fn(z, x) ,(3.28)

while Ψ fulfills

Ψx(P, x, x0) = U(z, x)Ψ(P, x, x0),(3.29)
− yΨ(P, x, x0) = zVn(z, x)Ψ(P, x, x0),(3.30)

ψ1(P, x, x0) =
(
Fn(z, x)
Fn(z, x0)

)1/2
exp

(
− (y/z)

∫ x

x0

dx′Fn(z, x′)−1
)
,(3.31)

ψ1(P, x, x0)ψ1(P ∗, x, x0) = Fn(z, x)
Fn(z, x0) ,(3.32)

ψ2(P, x, x0)ψ2(P ∗, x, x0) = − Hn(z, x)
Fn(z, x0) ,(3.33)
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ψ1(P, x, x0)ψ2(P ∗, x, x0)+ψ1(P ∗, x, x0)ψ2(P, x, x0) = 2Gn+1(z, x)
Fn(z, x0) ,(3.34)

ψ1(P, x, x0)ψ2(P ∗, x, x0)−ψ1(P ∗, x, x0)ψ2(P, x, x0) = 2y
Fn(z, x0) .(3.35)

In addition, as long as the zeros of Fn( · , x) are all simple for x ∈ Ω,
Ψ( · , x, x0), x, x0 ∈ Ω, is meromorphic on Kn.

Proof. — The proof of Lemma 3.2 is standard and follows that of [20,
Lem. 3.1] line by line (cf. also [21, Lem. 5.2]). In particular, (3.26)–(3.28) are
clear from the definition (3.16) of φ and from the fact that y(P ∗) = −y(P ),
similarly, (3.29)–(3.35) are immediate from (3.23), (3.24), and (3.26)–(3.28).
The Riccati-type equation (3.25) follows from combining the first equality
in (3.16) with (2.13), (2.14) and (2.18). Meromorphy of Ψ( · , x, x0), on Kn
as long as the zeros of Fn( · , x) are all simple follows from

(3.36) − 1
z
φ(P, x′) =

P→µ̂j(x′)

∂

∂x′
ln(Fn(z, x′)) +O(1) as z → µj(x′),

(cf. (2.13), (3.7), and (3.16)) and (3.23). �

Next, we recall the Dubrovin-type equations for µj . In the remainder
of this section we will frequently assume that Kn has a nonsingular affine
part, that is, we suppose that

(3.37) Em ∈ C\{0}, Em 6= Em′ for m 6= m′, m,m′ = 0, . . . , 2n+ 1.

Lemma 3.3. — Assume Hypothesis 3.1 and that the nth stationary
CH-2 equation (2.28) holds subject to the constraint (3.37) on an open in-
terval Ω̃µ ⊆ R. Moreover, suppose that the zeros µj , j = 1, . . . , n, of Fn( · )
remain distinct and nonzero on Ω̃µ. Then {µ̂j}j=1,...,n, defined by (3.7),
satisfies the following first-order system of differential equations

(3.38) µj,x(x) = 2y(µ̂j(x))
µj(x)

n∏
`=1
` 6=j

[µj(x)− µ`(x)]−1, j = 1, . . . , n, x ∈ Ω̃µ.

Next, assume the affine part of Kn to be nonsingular and introduce the
initial condition

(3.39) {µ̂j(x0)}j=1,...,n ⊂ Kn
for some x0 ∈ R, where µj(x0) 6= 0, j = 1, . . . , n, are assumed to be distinct.
Then there exists an open interval Ωµ ⊆ R, with x0 ∈ Ωµ, such that the
initial value problem (3.38), (3.39) has a unique solution {µ̂j}j=1,...,n ⊂ Kn
satisfying

(3.40) µ̂j ∈ C∞(Ωµ,Kn), j = 1, . . . , n,
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and µj , j = 1, . . . , n, remain distinct and nonzero on Ωµ.

Proof. — Since y(µ̂j) = −Gn+1(µj) = −(µj/2)Fn,x(µj) by (2.13) and
(3.7), one computes

(3.41) Fn,x(µj) = −µj,x
n∏
`=1
` 6=j

(µj − µ`) = −(2/µj)y(µ̂j), j = 1, . . . , n,

from which the rest follows by standard arguments (cf. [20, Lem. 3.2], [21,
Lem. 5.3]). �

Combining the polynomial approach in Section 2 with (3.5) yields trace
formulas for the CH-2 invariants. For simplicity we just record two simple
cases.

Lemma 3.4. — Assume Hypothesis 3.1 and that the nth stationary
CH-2 equation (2.28) holds on some set Ωµ as in Lemma 3.3, and let x ∈ Ωµ.
Then

u(x) = 1
2

n∑
j=1

µj(x)− 1
4

2n+1∑
m=0

Em,(3.42)

w(x) = −
( 2n+1∏
m=0

Em

)(
n∏
j=1

µj(x)−2

)
.(3.43)

Proof. — For the proof of Lemma 3.4 one can follow [20, Lem. 3.3]
(equivalently, [21, Lem. 5.4]) line by line. Indeed,

(3.44) f1 = −2u+ c1, f1 = −
n∑
j=1

µj

(cf. (2.8) and (3.5)), and

(3.45) c1 = −2−1
2n+1∑
m=0

Em

(cf. (3.15)), prove (3.42). Combining

(3.46)
fn = (−1)n

n∏
j=1

µj , gn+1 − fn+1 −
1
2fn,x = αfn,

hn + gn+2,x = −
(
α2 + w

)
fn
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(cf. (2.7) and (3.5)), with

(3.47)
[
gn+1 − fn+1 − 2−1fn+1,x

]2 + fn[hn + gn+2,x]

= α2f2
n −

(
α2 + w

)
f2
n =

2n+1∏
m=0

Em

(cf. (2.18) and (2.22)), prove (3.43). By Lemma 3.3 one concludes that
µj(x) 6= 0 for all j = 1, . . . , n, x ∈ Ωµ. �

One notes that both, u and w, are uniquely determined by µj , j =
1, . . . , n. Moreover, w → 0 if some Em → 0, hence we excluded the latter
situation.

Remark 3.5. — The trace (actually, product) formula for w in (3.43) is
somewhat familiar from the CH-1 context where w ≡ 0. Indeed, combining
relations (2.28), (2.29), and (3.7) in [20] yields

(3.48) 4u− uxx = −
( 2n+1∏
m=0

Em

)(
n∏
j=1

µj(x)−2

)
,

an identity derived earlier in the periodic context in [11].

Next we turn to asymptotic properties of φ and ψj , j = 1, 2.

Lemma 3.6. — Assume Hypothesis 3.1 and assume that the nth station-
ary CH-2 equation (2.28) holds on some open interval Ω ⊆ R. In addition,
let P = (z, y) ∈ Kn\{P∞+}, x ∈ Ω. Then

(3.49) φ(P, x) =
ζ→0

{
−2ζ−1 + [−4u(x) + c1] +O(ζ), P→P∞+ ,

O(ζ), P→P∞− ,
ζ = z−1,

and

ψ1(P, x, x0) =
ζ→0

exp(±(x−x0))(1+O(ζ)), P → P∞± , ζ=z−1,(3.50)

ψ2(P, x, x0) =
ζ→0

exp(±(x−x0))
{
−2ζ−1+O(1), P→P∞+ ,

O(ζ), P→P∞− ,
ζ=z−1.(3.51)

Proof. — This is an immediate consequence of (3.9), (3.16),(3.17), (3.23),
and (3.24). �

Since the representations of φ and u in terms of the Riemann theta func-
tion associated with Kn (assuming the affine part of Kn to be nonsingular)
are not explicitly needed in this paper (yet can be derived as in [20] and [21,
Ch. 5]), we omit the corresponding details. We note that reference [35] de-
rives these representations adapted to their framework.
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Finally, we note that solvability of the Dubrovin equations (3.38) on
Ωµ ⊆ R in fact yields the nth stationary CH-2 equation (2.28) on Ωµ.

Theorem 3.7. — Fix n ∈ N and assume (3.37). Suppose also that
{µ̂j}j=1,...,n satisfies the stationary Dubrovin equations (3.38) on an open
interval Ωµ ⊆ R such that µj , j = 1, . . . , n, remain distinct and nonzero on
Ωµ. Then u,w ∈ C∞(Ωµ) defined by

(3.52)

u(x) = 1
2

n∑
j=1

µj(x)− 1
4

2n+1∑
m=0

Em,

w(x) = −
( 2n+1∏
m=0

Em

)(
n∏
j=1

µj(x)−2

)
,

satisfy the nth stationary CH-2 equation (2.28), that is,

(3.53) s-CH-2n(u,w) = 0 on Ωµ.

Proof. — Given the solutions µ̂j = (µj , y(µ̂j)) ∈ C∞(Ωµ,Kn), j =
1, . . . , n of (3.38) we introduce

Fn(z) =
n∏
j=1

(z − µj),(3.54)

Gn+1(z) = (α+ z)Fn(z) + (z/2)Fn,x(z)(3.55)

on C× Ωµ. The Dubrovin equations imply

(3.56) y(µ̂j) = 1
2µjµj,x

n∏
`=1
6̀=j

(µj − µ`) = −1
2µjFn,x(µj) = −Gn+1(µj).

Thus,

(3.57) R2n+2(µj)−Gn+1(µj)2 = 0, j = 1, . . . , n,

and one can write

(3.58) R2n+2(z)−Gn+1(z)2 = Fn(z)H(z),

for some polynomial H with respect to z. Investigating the leading asymp-
totics of H as |z| → ∞ reveals that the degree of H equals at most n and
we thus write H = Hn from now on. Indeed, one computes (for n ∈ N,
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n > 2, and analogously for n = 0, 1),

(3.59) Gn+1(z) = zn+1 +
[
− 1

2

n∑
j=1

µj,x −
n∑
j=1

µj + α

]
zn

+
[

1
2

n∑
j1,j2=1
j1<j2

[µj1µj2,x+µj1,xµj2 +2µj1µj2 ]−α
n∑
j=1

µj

]
zn−1 +O

(
zn−2)

= zn+1 − 1
2

( 2n+1∑
m=0

Em

)
zn

+
[

1
2

n∑
j1,j2=1
j1<j2

[µj1µj2,x+µj1,xµj2 +2µj1µj2 ]−α
n∑
j=1

µj

]
zn−1 +O

(
zn−2),

where we used α = ux + 2u and the trace formula for u (and hence for
ux) in (3.52). Insertion of (3.59) into (3.58) confirms that H has degree at
most n as a polynomial in z. Next, we introduce the polynomial P in z via

(3.60) P (z) = −zGn+1,x(z)−
(
α2 + w

)
Fn(z)−Hn(z)

on C×Ωµ. Applying once more (3.59) shows that P also has at most degree
n in z and hence we write P = Pn in the following. One then computes,

(3.61) Gn+1(z)Pn(z)

= −(z/2)∂x
[
Gn+1(z)2]− (α2 + w

)
Fn(z)Gn+1(z)

−Gn+1(z)Hn(z)

= (z/2)[Fn,x(z)Hn(z) + Fn(z)Hn,x(z)]−
(
α2 + w

)
Fn(z)Gn+1(z)

−Gn+1(z)Hn(z)

= (z/2)Hn,x(z)Fn(z)−
(
α2 + w

)
Gn+1(z)Fn(z)

+Hn(z)[(z/2)Fn,x(z)−Gn+1(z)]

=
[
(z/2)Hn,x(z)−

(
α2 + w

)
Gn+1(z)− (α+ z)Hn

]
Fn(z).

Temporarily restricting x ∈ Ω̃µ, where

Ω̃µ = {x∈Ωµ | µj(x)Fn,x(µj(x), x)/2 =−y(µ̂j(x)) =Gn+1(µj(x), x) 6= 0,
(3.62)

j = 1, . . . , n}
= {x∈Ωµ | µj(x) /∈{E0, . . . , E2n+1}, j= 1, . . . , n},
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one infers that

(3.63) Pn(z, x) = γ(x)Fn(z, x)

for some continuous function γ on Ω̃µ. Taking z = 0 in (3.58) then yields

(3.64)
( 2n+1∏
m=0

Em

)
−
[
α

n∏
j=1

µj

]2
= (−1)n

( n∏
j=1

µj

)
Hn(0)

and employing the trace (resp., product) formula for w in (3.52), (3.64) is
equivalent to

(3.65) α(x)2 + w(x) = −Hn(0, x)/Fn(0, x), x ∈ Ω̃µ.

Next, choosing z = 0 in (3.61) implies (with Gn(0) = αFn(0) by (3.55))

(3.66) 2Gn+1(0, x)Pn(0, x)

= 2α(x)γ(x)Fn(0, x)2

=
[
−2
(
α(x)2 +w(x)

)
Gn+1(0, x)−2α(x)Hn(0, x)

]
Fn(0, x)

= {2[Hn(0, x)/Fn(0, x)]α(x)Fn(0, x)−2α(x)Hn(0, x)}Fn(0, x)

= 0, x ∈ Ω̃µ.

Thus,

(3.67) γ(x) = 0 for x ∈ Ω̃µ such that α(x) 6= 0.

Since α = (ux + 2u) ∈ C∞(Ωµ) by hypothesis, and u(x) 6= e−2x, one
concludes that γ(x) = 0, x ∈ Ω̃µ. At this point one can follow the final part
of [20, Thm. 3.11] (or [21, Ch. 5]) to conclude that

(3.68) γ(x) = 0 and hence Pn(z, x) = 0 for x ∈ Ωµ.

Thus,

(3.69) Hn(z) = −zGn+1(z)−
(
α2 + w

)
Fn(z)

on C× Ωµ. Finally, differentiating

(3.70) R2n+2(z)−Gn+1(z, x)2 = Fn(z, x)Hn(z, x)

with respect to x ∈ Ωµ and employing (3.55) and (3.69) yields

(3.71)
FnHn,x = −2Gn+1Gn+1,x − Fn,xHn

= Fn
[
− 2(α+ z)Gn+1,x +

(
α2 + w

)
Fn,x

]
and hence also

(3.72) Hn,x = −2(α+ z)Gn+1,x +
(
α2 + w

)
Fn,x
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on C × Ωµ. Thus, the zero-curvature equations (2.13)–(2.15) have been
established on Ωµ and one can now follow the discussion in Section 2 to
arrive at (3.53). �

4. Basic Facts on Self-Adjoint Hamiltonian Systems

We now turn to the Weyl–Titchmarsh theory for singular Hamiltonian
(canonical) systems and briefly recall the basic material needed in the fol-
lowing section. This material is standard and can be found, for instance,
in [9], [30], [31], [32], [39], [43], and the references therein.

Hypothesis 4.1.
(i) Define the 2 × 2 matrix J =

( 0 −1
1 0

)
, and suppose aj,k, bj,k ∈

L1
loc(R), j, k = 1, 2 and A(x) =

(
aj,k(x)

)
j,k=1,2 > 0, B(x) =(

bj,k(x)
)
j,k=1,2 = B(x)∗ for a.e. x ∈ R. We consider the Hamil-

tonian system

(4.1) JΨ ′(z, x) = [zA(x) +B(x)]Ψ(z, x), z ∈ C

for a.e. x ∈ R, where z plays the role of the spectral parameter,
and where

(4.2) Ψ(z, x) = (ψ1(z, x) ψ2(z, x))>, ψj(z, · ) ∈ ACloc(R), j = 1, 2.

Here ACloc(R) denotes the set of locally absolutely continuous
functions on R and the M∗ and M> denote the adjoint and trans-
pose of a matrix M , respectively.

(ii) For all nontrivial solutions Ψ of (4.1) we assume the positive defi-
niteness hypothesis (cf. [4, Sect. 9.1])

(4.3)
∫ d

c

dxΨ(z, x)∗A(x)Ψ(z, x) > 0 ,

on every interval (c, d) ⊂ R, c < d.

Next, we introduce the vector space (−∞ 6 a < b 6∞)

(4.4) L2
A((a,b)) =

{
Φ:(a,b)→C2 measurable

∣∣∣∣ ∫ b

a

dxΦ(x)∗A(x)Φ(x)<∞
}
.

Fix a point x0 ∈ R. Then the Hamiltonian system (4.1) is said to be in the
limit point case at ∞ (resp., −∞) if for some (and hence for all) z ∈ C\R,
precisely one solution of (4.1) lies in L2

A((x0,∞)) (resp., L2
A((−∞, x0))).

(By the analog of Weyl’s alternative, if (4.1) is not in the limit point case
at ±∞, all solutions of (4.1) lie in L2

A((x0,±∞)) for all z ∈ C. In the latter
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case the Hamiltonian system (4.1) is said to be in the limit circle case at
±∞.)
To simplify matters for the remainder of this section, we will always

suppose the limit point case at ±∞ from now on.

Hypothesis 4.2. — Assume Hypothesis 4.1 and suppose that the Ha-
miltonian system (4.1) is in the limit point case at ±∞.

An elementary example of a Hamiltonian system satisfying Hypothe-
sis 4.2 is given by the case where all entries of A and B are essentially
bounded on R (cf. Section 5).

When considering the Hamiltonian system (4.1) on the half-line [x0,∞)
(resp., (−∞, x0]), a self-adjoint (separated) boundary condition at the point
x0 is of the type

(4.5) βΨ(x0) = 0,

where β = (β1 β2) ∈ C1×2 satisfies

(4.6) ββ∗ = 1, βJβ∗ = 0 (equivalently, |β1|2 + |β2|2 = 1, Im(β2β1) = 0).

In particular, the boundary condition (4.5) (with β satisfying (4.6)) is
equivalent to β1ψ1(x0) + β2ψ2(x0) = 0 with β1/β2 ∈ R if β2 6= 0 and
β2/β1 ∈ R if β1 6= 0. The special case β0 = (1 0) will be of particu-
lar relevance in Section 5. Due to our limit point assumption at ±∞ in
Hypothesis 4.2, no additional boundary condition at ±∞ needs to be in-
troduced when considering (4.1) on the half-lines [x0,∞) and (−∞, x0].
The resulting full-line and half-line Hamiltonian systems are said to be
self-adjoint on R, [x0,∞), and (−∞, x0], respectively (assuming of course
a boundary condition of the type (4.5) in the two half-line cases).
Next we digress a bit and briefly turn to Nevanlinna–Herglotz functions

and their representations in terms of measures, the focal point of Weyl–
Titchmarsh theory (and hence spectral theory) of self-adjoint Hamiltonian
systems.

Definition 4.3. — Any analytic map m : C+ → C is called a Nevan-
linna–Herglotz function if Im(m(z)) > 0 for all z ∈ C+ (here C+ = {z ∈
C | Im(z) > 0}). Similarly, any analytic map M : C+ → Ck×k, k ∈ N, is
called a k×k matrix-valued Nevanlinna–Herglotz function if Im(M(z)) > 0
for all z ∈ C+.
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Nevanlinna–Herglotz functions are characterized by a representation of
the form

m(z) = a+ bz +
∫ ∞
−∞

dω(λ)
(
(λ− z)−1 − λ(1 + λ2)−1), z ∈ C\R,(4.7)

a ∈ R, b > 0,
∫ ∞
−∞

dω(λ) (1 + λ2)−1 <∞,(4.8)

ω((λ1, λ2]) = lim
δ↓0

lim
ε↓0

1
π

∫ λ2+δ

λ1+δ
dν Im (m(ν + iε)) ,(4.9)

in the following sense: Every Nevanlinna–Herglotz function admits a rep-
resentation of the type (4.7), (4.8) and conversely, any function of the
type (4.7), (4.8) is a Nevanlinna–Herglotz function. Moreover, local singu-
larities and zeros of m are necessarily located on the real axis and at most
of first order in the sense that

ω({λ}) = lim
ε↓0

(ω(λ+ε)−ω(λ−ε)) = − lim
ε↓0

iεm(λ+ iε) > 0, λ∈R,(4.10)

lim
ε↓0

iεm(λ+ iε)−1 > 0, λ∈R.(4.11)

In particular, isolated poles ofm are simple and located on the real axis, the
corresponding residues being negative. Analogous results hold for matrix-
valued Nevanlinna–Herglotz functions (see, e.g., [23] and the literature cited
therein).
For subsequent purpose in Section 5 we also note that −z−1 is a Ne-

vanlinna–Herglotz function and that compositions of Nevanlinna–Herglotz
functions remain Nevanlinna–Herglotz functions (as long as this compo-
sition is well-defined). In addition, diagonal elements of a matrix-valued
Nevanlinna–Herglotz function are Nevanlinna–Herglotz functions.
Returning to Hamiltonian systems on half-lines [x0,±∞) satisfying Hy-

potheses 4.1 and 4.2, we now denote by Ψ±(z, x, x0) the unique solution
of (4.1) satisfying Ψ±(z, · , x0) ∈ L2

A([x0,±∞)), z ∈ C\R, normalized by
ψ1,±(z, x0, x0) = 1. Then the half-line Weyl–Titchmarsh functionm±(z, x),
associated with the Hamiltonian system (4.1) on [x,±∞) and the fixed
boundary condition β0 = (1 0) at the point x ∈ R, is defined by

(4.12) m±(z, x) = ψ2,±(z, x, x0)/ψ1,±(z, x, x0), z ∈ C\R, ±x > ±x0.

The actual normalization of Ψ±(z, x, x0) was chosen for convenience only
and is clearly immaterial in the definition of m±(z, x) in (4.12). For later
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use in Section 5 we also recall that

Ψ±(z, x, x0) =
(
ψ1,±(z, x, x0)
ψ2,±(z, x, x0)

)
=
(
ϑ1(z, x, x0) ϕ1(z, x, x0)
ϑ2(z, x, x0) ϕ2(z, x, x0)

)(
1

m±(z, x0)

)
,

(4.13)

with ϑj(z, x, x0), and ϕj(z, x, x0), j = 1, 2, defined such that

(4.14) Υ(z, x, x0) =
(
ϑ1(z, x, x0) ϕ1(z, x, x0)
ϑ2(z, x, x0) ϕ2(z, x, x0)

)
represents a normalized fundamental system of solutions of (4.1) at some
x0 ∈ R, satisfying

(4.15) Υ(z, x0, x0) = I2.

One recalls that for fixed x, x0 ∈ R,

(4.16) ϑj(z, x, x0) and ϕj(z, x, x0), j = 1, 2, are entire in z ∈ C.

In addition, one verifies that m±(z, x) satisfies the following Riccati-type
differential equation,

(4.17) m′(z, x) + [b2,2(x) + a2,2(x)z]m(z, x)2

+ [b1,2(x) + b2,1(x) + (a1,2(x) + a2,1(x))z]m(z, x)
+ b1,1(x) + a1,1(x)z = 0.

Finally, the 2× 2 Weyl–Titchmarsh matrix M(z, x) associated with the
Hamiltonian system (4.1) on R is then defined in terms of the half-line
Weyl–Titchmarsh functions m±(z, x) by

M(z, x) =
(
Mj,j′(z, x)

)
j,j′=1,2, z ∈ C\R,(4.18)

M1,1(z, x) = [m−(z, x)−m+(z, x)]−1,

M1,2(z, x) = M2,1(z, x)

= 2−1[m−(z, x)−m+(z, x)]−1[m−(z, x) +m+(z, x)],(4.19)

M2,2(z, x) = [m−(z, x)−m+(z, x)]−1m−(z, x)m+(z, x).

One verifies that M(z, x) is a 2 × 2 matrix-valued Nevanlinna–Herglotz
function. We emphasize that for any fixed x0 ∈ R, M(z, x0) contains all
the spectral information of the self-adjoint Hamiltonian system (4.1) on R
(assuming Hypotheses 4.1 and 4.2).

ANNALES DE L’INSTITUT FOURIER



SOLUTIONS OF THE CH-2 HIERARCHY 1209

5. Real-Valued Algebro-Geometric CH-2 Solutions and the
Associated Isospectral Torus

In our final and principal section we study real-valued algebro-geometric
solutions of the CH-2 hierarchy associated with curves Kn whose affine part
is nonsingular and prove that the isospectral manifold of smooth bounded
solutions of the nth stationary CH-2 equation can be characterized as a
real n-dimensional torus Tn. We focus on the stationary case as this is the
primary concern in this context and briefly comment on the time-dependent
case at the end of this section.
To study the direct spectral problem we first introduce the following

assumptions.

Hypothesis 5.1. — Suppose

(5.1) E0 < E1 < · · · < E2n < E2n+1, 0 ∈ (E2m0 , E2m0+1)

for some m0 ∈ {0, . . . , n}, and let u,w be a real-valued solution of the nth
stationary CH-2 equation (2.28),

(5.2) s-CH-2n(u,w) = 0

satisfying

(5.3) u,w ∈ C∞(R), w > 0, u(m), w(m) ∈ L∞(R), m ∈ N0.

We start by noticing that the basic stationary equation (3.29),

(5.4) Ψx(−z, x) = U(−z, x)Ψ(−z, x), Ψ = (ψ1, ψ2)>, (z, x) ∈ C× R,

is equivalent to the following Hamiltonian (canonical) system

(5.5) JΨ̃x(z̃, x) = [z̃A(x)+B(x)]Ψ̃(z̃, x), Ψ̃ =
(
ψ̃1, ψ̃2

)>
,
(
z̃, x
)
∈ C×R,

where

J =
(

0 −1
1 0

)
, Ψ̃(z̃, x) = Ψ(−z, x), z̃ = −z−1,(5.6)

A(x) =
(
α(x)2 +w(x) −α(x)
−α(x) 1

)
> 0, B(x) =

(
0 −1
−1 0

)
= B(x)∗.(5.7)

In particular, due to assumptions (5.1)–(5.3), the Hamiltonian system (5.5)
satisfies Hypotheses 4.1 and 4.2. Explicitly, the Hamiltonian system (5.5)
boils down to

ψ̃1,x(z̃, x) = −ψ̃1(z̃, x)− z̃α(x)ψ̃1(z̃, x) + z̃ψ̃2(z̃, x),(5.8)

ψ̃2,x(z̃, x) = ψ̃2(z̃, x) + z̃α(x)ψ̃2(z̃, x)− z̃
(
α(x)2 + w(x)

)
ψ̃1(z̃, x),(5.9) (

z = −z̃−1, x
)
∈ C× R,
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and upon eliminating ψ̃2 results in a particular case of a quadratic weighted
Sturm–Liouville pencil (cf. [8], [10], [12]–[15], [34]) of the type

−ψ̃1,xx(z̃,x)+ ψ̃1(z̃,x) = z̃2w(x)ψ̃1(z̃,x)− z̃(4u(x)−uxx(x))ψ̃1(z̃,x),(
z = −z̃−1, x

)
∈ C× R.

(5.10)

Introducing

(5.11) Σn =
n⋃
`=0

[E2`, E2`+1],

we define

(5.12) R2n+2(λ)1/2 = |R2n+2(λ)1/2|

×


−1 for λ∈(E2n+1,∞),
(−1)n+j for λ∈(E2j−1, E2j), j= 1, . . . , n,
(−1)n for λ∈(−∞, E0),
i(−1)n+j+1 for λ∈(E2j , E2j+1), j= 0, . . . , n,

λ ∈ R,

and

(5.13) R2n+2(λ)1/2 = lim
ε↓0

R2n+2(λ+ iε)1/2, λ ∈ Σn,

and analytically continue R2n+2( · )1/2 to C\Σn. We also note the property

(5.14) R2n+2(z)1/2 = R2n+2(z)1/2.

For notational convenience we will occasionally call (E2j−1, E2j) for j =
1, . . . , n, spectral gaps and E2j−1, E2j the corresponding spectral gap end-
points.
Next, we introduce the cut plane

(5.15) Πn = C\Σn,

and the upper, respectively, lower sheets Πn,± of Kn by

(5.16) Πn,± = {(z,±R2n+2(z)1/2) ∈ Kn | z ∈ Πn},

with the associated charts

(5.17) ζ± : Πn,± → Πn, P = (z,±R2n+2(z)1/2) 7→ z.

The two branches Ψ±(z, x, x0) of the Baker–Akhiezer vector Ψ(P, x, x0)
in (3.22) are then given by

(5.18) Ψ±(z, x, x0) = Ψ(P, x, x0), P = (z, y)∈Πn,±, Ψ±= (ψ1,±, ψ2,±)>,
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and one infers from (3.50) (note that the error term is uniform in x in the
case where µj(x) remains within its respective gaps) that

(5.19) ψ1,±(z, · , x0) ∈ L2((x0,∓∞)) for |z| sufficiently large.

Thus, introducing

(5.20) Ψ̃±(z̃, x, x0) = Ψ∓(−z, x, x0), Ψ̃± =
(
ψ̃1,±, ψ̃2,±

)>
, z̃ = −z−1,

and the two branches φ±(z, x) of φ(P, x) on Πn,± by

(5.21) φ±(z, x) = φ(P, x), P = (z, y) ∈ Πn,±,

one infers from (4.12) and (5.19) that the Weyl–Titchmarsh functions
m̃±(z̃, x) associated with the self-adjoint Hamiltonian system (5.5) on the
half-lines [x,±∞) and the Dirichlet boundary condition indexed by β0 =
(1 0) at the point x ∈ R, are given by

(5.22)
m̃±(z̃, x) = ψ̃2,±(z̃, x, x0)/ψ̃1,±(z̃, x, x0)

= ψ2,∓(−z, x, x0)/ψ1,∓(−z, x, x0)
= −φ∓(−z, x), z ∈ C\Σn.

More precisely, (5.19) yields (5.22) only for |z| sufficiently large. However,
since by general principles m̃±( · , x) are analytic in C\R, and by (3.16),
φ±( · , x) are analytic in C\Σn, one infers (5.22). An application of (4.13)
and (4.16) then shows that (5.19) extends to all z ∈ C\Σn, that is,

(5.23) ψ1,±(z, · , x0) ∈ L2((x0,∓∞)), z ∈ C\Σn.

Next, we mention a useful fact concerning a special class of Nevanlinna–
Herglotz functions closely related to the problem at hand. The result must
be well-known to experts, but since we could not quickly locate a proof in
the literature, we provide the simple contour integration argument below.

Lemma 5.2. — Assume that PN is a monic polynomial of degree N .
Then PN/R1/2

2n+2, respectively, −PN/R
1/2
2n+2 is a Nevanlinna–Herglotz func-

tion if and only if one of the following three cases applies:
(i) N = n and

(5.24) Pn(z) =
n∏
j=1

(z − aj), aj ∈ [E2j−1, E2j ], j = 1, . . . , n.

If (5.24) is satisfied, then Pn/R
1/2
2n+2 admits the Nevanlinna–

Herglotz representation

(5.25) Pn(z)
R2n+2(z)1/2 = 1

π

∫
Σn

|Pn(λ)| dλ
|R2n+2(λ)1/2|

1
λ− z

, z ∈ C\Σn.
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(ii) N = n+ 1 and

(5.26) Pn+1(z) =
n∏
`=0

(z − b`),

b0 ∈ (−∞, E0], bj ∈ [E2j−1, E2j ], j = 1, . . . , n.

If (5.26) is satisfied, then Pn+1/R
1/2
2n+2 admits the Nevanlinna–

Herglotz representation

(5.27) Pn+1(z)
R2n+2(z)1/2 = Re

(
Pn+1(i)

R2n+2(i)1/2

)
+ 1
π

∫
Σn

|Pn+1(λ)| dλ
|R2n+2(λ)1/2|

(
1

λ−z
− λ

1+λ2

)
, z∈C\Σn.

(iii) N = n+ 1 and

(5.28) Pn+1(z) =
n∏
`=0

(z − d`),

d0 ∈ [E2n+1,∞), dj ∈ [E2j−1, E2j ], j = 1, . . . , n.

If (5.28) is satisfied, then −Pn+1/R
1/2
2n+2 admits the Nevanlinna–

Herglotz representation

−Pn+1(z)
R2n+2(z)1/2 = − Re

(
Pn+1(i)

R2n+2(i)1/2

)
(5.29)

+ 1
π

∫
Σn

∣∣Pn+1(λ)
∣∣ dλ

|R2n+2(λ)1/2|

(
1

λ−z
− λ

1+λ2

)
, z∈C\Σn.

Proof. — Except for Case (iii), this has been proven in [22, Lem. 5.1].
For convenience of the reader we repeat the argument here. Since Nevan-
linna–Herglotz functions are O(z) as |z| → ∞ and cannot vanish faster
than O

(
z−1) as |z| → ∞, we can confine ourselves to the range N ∈

{n, n + 1, n + 2}. We start with the case N = n and employ the fol-
lowing contour integration approach. Consider a closed oriented contour
ΓR,ε which consists of the clockwise oriented semicircle Cε = {z ∈ C | z =
E0 − ε exp(−iθ), −π/2 6 θ 6 π/2} centered at E0, the straight line L+ =
{z ∈ C+ | z = E0 +x+ iε, 0 6 x 6 R} (oriented from left to right), the fol-
lowing part of the counterclockwise oriented circle of radius (R2+ε2)1/2 cen-
tered at E0, CR = {z ∈ C | z = E0+(R2+ε2)1/2 exp(iθ), arctan(ε/R) 6 θ 6
2π−arctan(ε/R)}, and the straight line L− = {z ∈ C− | z = E0+x−iε, 0 6
x 6 R} (oriented from right to left). Then, for ε > 0 small enough and
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R > 0 sufficiently large, one infers

(5.30)

Pn(z)
R2n+2(z)1/2 = 1

2πi

∮
ΓR,ε

1
ζ − z

Pn(ζ)
R2n+2(ζ)1/2 dζ

=
ε↓0,R↑∞

1
π

∫
Σn

1
λ− z

Pn(λ)dλ
iR2n+2(λ)1/2 .

Here we used (5.12) to compute the contributions of the contour integral
along [E0, R] in the limit ε ↓ 0 and note that the integral over CR tends to
zero as R ↑ ∞ since

(5.31) Pn(ζ)
R2n+2(ζ)1/2 =

ζ→∞
O
(
|ζ|−1).

Next, utilizing the fact that Pn is monic and using (5.12) again, one in-
fers that Pn(λ)dλ/[iR2n+2(λ)1/2] represents a positive measure supported
on Σn if and only if Pn has precisely one zero in each of the intervals
[E2j−1, E2j ], j = 1, . . . , n. In other words,

(5.32) Pn(λ)
iR2n+2(λ)1/2 = |Pn(λ)|

|R2n+2(λ)1/2|
> 0 on Σn

if and only if Pn has precisely one zero in each of the intervals [E2j−1, E2j ],
j = 1, . . . , n. The Nevanlinna–Herglotz representation (4.7), (4.8) then fin-
ishes the proof of (5.25).
In the case where N = n+ 1, the proofs of (5.26) and (5.28) follow along

similar lines taking into account the additional residues at ±i inside ΓR,ε
which are responsible for the real parts on the right-hand sides of (5.27)
and (5.29).
Finally, in the case N = n+2, assume that Pn+2/R

1/2
2n+2 is a Nevanlinna–

Herglotz function. Then for some a ∈ R, b > 0, and some finite (positive)
measure ω supported on [E0, E2n+2],

(5.33) Pn+2(z)
R2n+2(z)1/2 = a+ bz +

∫ E2n+2

E0

dω(λ) (λ− z)−1, z ∈ C\Σn,

since

(5.34) lim
ε↓0

Im(Pn+2(λ)R2n+2(λ+ iε)−1/2) = 0 for λ>E2n+2 and λ<E0.

In particular, (5.33) implies

(5.35) Pn+2(z)R2n+2(z)−1/2 =
|z|→∞

bz +O(1), b > 0.

However, by (5.12), one immediately infers

(5.36) Pn+2(λ)R2n+2(λ)−1/2 =
λ↑∞
−λ+O(1).
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This contradiction dispenses with the case N = n+ 2. �

Now we are in position to state the following result concerning the
half-line and full-line Weyl–Titchmarsh functions associated with the self-
adjoint Hamiltonian system (5.5). We denote by m̃±(z̃, x) the Weyl–Titch-
marsh m-functions corresponding to (5.5) associated with the half-lines
(x,±∞) and the Dirichlet boundary condition indexed by β0 = (1 0) at
the point x ∈ R, and by M̃(z̃, x) the 2× 2 Weyl–Titchmarsh matrix corre-
sponding to (5.5) on R (cf. (4.12), (4.18), and (4.19)). Moreover, Σon denotes
the open interior of Σn and the real part of a matrix M is defined as usual
by Re(M) = (M +M∗)/2.

Theorem 5.3. — Assume Hypothesis 5.1 and let (z, x) ∈ (C\Σn)× R,
z̃ = −z−1. Then

m̃±(z̃, x) = ±R2n+2(−z)1/2 +Gn+1(−z, x)
Fn(−z, x)(5.37)

= ±z − z + c1 +
n∑
j=1

µj(x)± Re
(
R2n+2(−i)1/2

iFn(−i, x)

)
(5.38)

−
n∑
j=1

Gn+1(−µj(x), x)
[
1∓ ε̃j(x)

]
Fn,z(−µj(x), x)

1
z + µj(x)

± 1
π

∫
Σn

|R2n+2(−λ)1/2| dλ
|Fn(−λ, x)|

(
1

λ− z
− λ

1 + λ2

)
,

where ε̃j(x) ∈ {1,−1}, j = 1, . . . , n, is chosen such that

(5.39) Gn+1(−µj(x), x)ε̃j(x)
Fn,z(−µj(x), x) > 0, j = 1, . . . , n.

Moreover,

M̃(z̃, x) = −1
2R2n+2(−z)1/2

(
Fn(−z, x) Gn+1(−z, x)
Gn+1(−z, x) −Hn(−z, x)

)
(5.40)

= Re
(
M̃(−i, x)

)
+
∫

Σn

dΩ(λ, x)
(

1
λ− z

− λ

1 + λ2

)
,(5.41)

where

(5.42) Ω(λ, x) = −1
2πiR2n+2(−λ)1/2

(
Fn(−λ, x) Gn+1(−λ, x)
Gn+1(−λ, x) −Hn(−λ, x)

)
, λ∈Σon.

The essential spectrum of the Hamiltonian systems (5.5) on [x,±∞) (with
any self-adjoint boundary condition at x) as well as the essential spectrum
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of the Hamiltonian system (5.5) on R is purely absolutely continuous and
given by

(5.43)
(
−∞,−E−1

2m0+1
]
∪

n−1⋃
`=0
` 6=m0

[
− E−1

2l ,−E
−1
2`+1

]
∪
[
− E−1

2m0
,∞
)
.

The spectral multiplicities are simple in the half-line cases and of uniform
multiplicity two in the full-line case.

Proof. — Equation (5.37) follows from (3.16), (5.12), and (5.22). Equa-
tion (5.40) is then a consequence of (3.26)–(3.28), (4.18), (4.19), (5.22),
and (5.37). Different self-adjoint boundary conditions at the point x lead
to different half-line Hamiltonian systems whose Weyl–Titchmarsh func-
tions are related by a linear fractional transformation (cf., e.g., [9]), which
leads to the invariance of the essential spectrum with respect to the bound-
ary condition at x. In order to prove the Nevanlinna–Herglotz representa-
tion (5.38) one can follow the corresponding computation for Schrödinger
operators with algebro-geometric potentials in [44, Sect. 8.1]. For this pur-
pose one first notes that by (5.27) also −R2n+2(z)1/2/Fn(z, x) is a
Nevanlinna–Herglotz function. A contour integration as in the proof of
Lemma 5.2 then proves

R2n+2(z)1/2

Fn(z, x)(5.44)

= z+Re
(
R2n+2(i)1/2

Fn(i, x)

)
−

n∑
j=1

|R2n+2(µj(x))1/2|
|Fn,z(µj(x), x)|

1
z−µj(x)

+ 1
π

∫
Σn

|R2n+2(λ)1/2| dλ
|Fn(λ, x)|

(
1

λ−z
− λ

1+λ2

)
= z+Re

(
R2n+2(i)1/2

Fn(i, x)

)
−

n∑
j=1

Gn+1(µj(x), x)εj(x)
Fn,z(µj(x), x)

1
z−µj(x)(5.45)

+ 1
π

∫
Σn

|R2n+2(λ)1/2| dλ
|Fn(λ, x)|

(
1

λ−z
− λ

1+λ2

)
.

The only difference compared to the corresponding argument in the proof
of Lemma 5.2 concerns additional (approximate) semicircles of radius ε
centered at each µj(x), j = 1, . . . , n, in the upper and lower complex half-
planes. Whenever, µj(x) ∈ (E2j−1, E2j), the limit ε ↓ 0 picks up a residue
contribution displayed in the sum over j in (5.44). This contribution van-
ishes, however, if µj(x) ∈ {E2j−1, E2j}. In this case Fn,z(µj(x), x) 6= 0
by (4.10) and R2n+2(µj(x)) = 0 by (2.19). Equation (5.45) then follows
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from (3.7) and the sign of εj(x) must be chosen according to

(5.46) Gn+1(µj(x), x)εj(x)
Fn,z(µj(x), x) > 0, j = 1, . . . , n,

in order to guarantee nonpositive residues in (5.45) (cf. (4.10)).
In order to analyze the term Gn+1/Fn in m̃± we turn to Lagrange-type

interpolation formulas. If Qn−1 is a polynomial of degree n− 1, then

(5.47) Qn−1(z) = Fn(z)
n∑
j=1

Qn−1(µj)
Fn,z(µj)

1
z − µj

, z ∈ C.

Since Fn and Gn+1 are monic polynomials of degree n and n + 1, respec-
tively, and g1 = c1 (cf. (2.8)), we can apply (5.47) to Qn−1 = Gn+1 −
zn+1 − c1Fn and hence obtain via (5.47),
(5.48)
Gn+1(z, x)
Fn(z, x) = zn+1

Fn(z, x) + c1 +
n∑
j=1

Gn+1(µj(x), x)− µj(x)n+1

Fn,z(µj(x), x)
1

z − µj(x) .

Next we recall some more Lagrange-type interpolation formulas: if {µj}n1 ⊂
C, µj 6= µk for j 6= k, j, k = 1, . . . , n, and Fn(z) =

∏n
j=1(z − µj), then

Fn,z(z) =
n∑
j=1

n∏
`=1
` 6=j

(z − µ`), Fn,z(µj) =
n∏
`=1
6̀=j

(µj − µ`),(5.49)

n∑
j=1

µk−1
j

Fn,z(µj)
= δk,n, k = 1, . . . , n,

n∑
j=1

µnj
Fn,z(µj)

=
n∑
j=1

µj(5.50)

(see, e.g., [20], [21, App. E]). Then

zn+1

Fn(z) −
n∑
j=1

µn+1
j

Fn,z(µj)
1

z − µj

=
n∑
j=1

[
zn+1 − µn+1

j

]
Fn,z(µj)

1
z − µj

=
n∑
j=1

[
zn + zn−1µj + zn−2µ2

j + · · ·+ z2µn−2
j + zµn−1

j + µnj
]

Fn,z(µj)

= z +
n∑
j=1

µj ,(5.51)
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applying an+1 − bn+1 = (a− b)
[
an + an−1b+ · · ·+ abn−1 + bn

]
and (5.50).

Thus,

(5.52) Gn+1(z, x)
Fn(z, x) = z +

n∑
j=1

µj(x) + c1 +
n∑
j=1

Gn+1(µj(x), x)
Fn,z(µj(x), x)

1
z − µj(x) .

Equivalently, employing (3.7), (3.15) for c1, the trace formula (3.42) for u,
and (5.49),

(5.53) Gn+1(z)− (z + 2u)Fn(z) = −
n∑
j=1

y(µ̂j)∏
`=1
` 6=j

(µj − µ`)

n∏
k=1
k 6=j

(z − µk).

Alternatively, (5.53) can be proved directly as follows: By the asymptotic
behavior (cf. (3.59) for a refinement),

(5.54) Gn+1(z)− (z + 2u)Fn(z) =
|z|→∞

O
(
|z|n−1),

both sides of (5.53) are polynomials in z of degree n−1 which coincide (with
the value −y(µ̂j) applying (3.7) again) at the n points µj , j = 1, . . . , n.
Employing (5.52) then yields

(5.55) ∓R2n+2(z)1/2 +Gn+1(z, x)
Fn(z, x)

= ∓R2n+2(z)1/2

Fn(z, x) + z +
n∑
j=1

µj(x) + c1

+
n∑
j=1

Gn+1(µj(x), x){εj(x) + [1− εj(x)]}
Fn,z(µj(x), x)

1
z − µj(x) ,

and hence (5.38) follows by inserting (5.45) into (5.55) and changing z into
−z. Equations (5.41) and (5.42) are clear from the matrix analog of (4.9).
The statement (5.43) for the essential half-line spectra then follows from

the fact that the measure in the Nevanlinna–Herglotz representation (5.38)
of m̃± (as a function of z) is supported on the set Σn in (5.11), with a strictly
positive density on the open interior Σon of Σn. The transformation z →
−z−1 then yields (5.43) and since half-line spectra with a regular endpoint x
have always simple spectra this completes the proof of our half-line spectral
assertions. The full-line case follows in exactly the same manner since the
corresponding 2× 2 matrix-valued measure Ω in the Nevanlinna–Herglotz
representation (5.41) of M̃ (as a function of z) also has support Σn and
rank equal to two on Σon. �
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Returning to direct spectral theory, we note that the two spectral prob-
lems (5.5) on R associated with the vanishing of the first and second compo-
nent of Ψ̃ at x, respectively, are clearly self-adjoint since they correspond to
the choices β = (1 0) and β = (0 1) in (4.5). Hence a comparison with (3.5),
(3.32), and (3.33) necessarily yields {µj(x)}j=1,...,n, {νj(x)}j=1,...,n ⊂ R.
Thus we will assume the convenient eigenvalue orderings

(5.56) µj(x) < µj+1(x), νj(x) < νj+1(x) for j = 1, . . . , n− 1, x ∈ R.

Combining Lemma 5.2 with the Nevanlinna–Herglotz property of the
2×2 Weyl–Titchmarsh matrix M̃( · , x) then yields the following refinement
of Lemma 3.3.

Theorem 5.4. — Assume Hypothesis 5.1. Then {µ̂j}j=1,...,n, with the
projections µj(x), j = 1, . . . , n, the zeros of Fn( · , x) in (3.5), satisfies the
first-order system of differential equations (3.38) on Ωµ = R and

(5.57) µ̂j ∈ C∞(R,Kn), j = 1, . . . , n.

Moreover,

(5.58) µj(x) ∈ [E2j−1, E2j ], j = 1, . . . , n, x ∈ R.

In particular, µ̂j(x) changes sheets whenever it hits E2j−1 or E2j and its
projection µj(x) remains trapped in [E2j−1, E2j ] for all j = 1, . . . , n and
x ∈ R. The analogous statements apply to ν̂j(x) and one infers

(5.59) νj(x) ∈ [E2j−1, E2j ], j = 1, . . . , n, x ∈ R.

Proof. — Since M̃( · , x) is a 2× 2 Nevanlinna–Herglotz matrix, its diag-
onal elements are Nevanlinna–Herglotz functions. Thus,

(5.60)
M̃1,1(z̃, x) = −Fn(−z, x)

2R2n+2(−z)1/2 ,

M̃2,2(z̃, x) = Hn(−z, x)
2R2n+2(−z)1/2 , z̃ = −z−1,

are Nevanlinna–Herglotz functions (the left-hand sides with respect to z̃,
the right-hand sides with respect to z) and the interlacing properties (5.58),
(5.59) then follow from (5.24) and (5.28). �
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Remark 5.5. — The Nevanlinna–Herglotz property of M̃2,2( · , x) neces-
sitates the inequality h0(x) < 0, x ∈ R, which appears to be difficult to ver-
ify directly. In particular, the explicit expression (cf. (3.58) with H = Hn,
and (3.59))

(5.61) h0 =
2n+1∑
j=0

2n+1∑
k=j+1

EjEk −

1
2

2n+1∑
j=0

Ej

2

−

[
n∑

j1,j2=1
j1<j2

[µj1µj2,x + µj1,xµj2 + 2µj1µj2 ]− 2α
n∑
j=1

µj

]

does not necessarily shed any light on this issue.

Remark 5.6. — The zeros µj(x) ∈ (E2j−1, E2j), j = 1, . . . , n of Fn( · , x)
which are related to eigenvalues of the Hamiltonian system (5.5) on R as-
sociated with the boundary condition ψ̃1(x) = 0, in fact, are related to left
and right half-line eigenvalues of the corresponding Hamiltonian system re-
stricted to the half-lines (−∞, x] and [x,∞), respectively. Indeed, by (5.20)
and (5.23), depending on whether µ̂j(x) ∈ Πn,+ or µ̂j(x) ∈ Πn,−, µj(x) is
related to a left or right half-line eigenvalue associated with the Dirichlet
boundary condition ψ̃1(x) = 0. A careful investigation of the sign of the
right-hand sides of the Dubrovin equations (3.37) (combining (5.1), (5.12),
and (5.16)), then proves that the µj(x) related to right (resp., left ) half-line
eigenvalues of the Hamiltonian system (5.5) associated with the boundary
condition ψ̃1(x) = 0, are strictly monotone increasing (resp., decreasing)
with respect to x, as long as the µj stay away from the right (resp., left )
endpoints of the corresponding spectral gaps (E2j−1, E2j). Here we pur-
posely avoided the limiting case where some of the µk(x) hit the boundary
of the spectral gaps, µk(x) ∈ {E2k−1, E2k}, since the half-line eigenvalue
interpretation is lost as there is no L2((x,±∞))2 eigenfunction Ψ̃(x) satis-
fying ψ̃1(x) = 0 in this case. In fact, whenever an eigenvalue µk(x) hits a
spectral gap endpoint, the associated point µ̂j(x) on Kn crosses over from
one sheet to the other (equivalently, the corresponding left half-line eigen-
value becomes a right half-line eigenvalue and vice versa ) and accordingly,
strictly increasing half-line eigenvalues become strictly decreasing half-line
eigenvalues and vice versa. In particular, using the appropriate local co-
ordinate (z − E2k)1/2 (resp., (z − E2k−1)1/2) near E2k (resp., E2k−1), one
verifies that µk(x) does not pause at the endpoints E2k and E2k−1.
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Next, we turn to the inverse spectral problem and determine the isospec-
tral manifold of real-valued, smooth, and bounded CH-2 solutions.

Our basic assumptions then will be the following:

Hypothesis 5.7. — Suppose

(5.62) E0 < E1 < · · · < E2n < E2n+1, 0 ∈ (E2m0 , E2m0+1)

for some m0 ∈ {0, . . . , n}. In addition, fix x0 ∈ R, and assume that the
initial data

(5.63) {µ̂j(x0) = (µj(x0),−Gn+1(µj(x0), x0))}j=1,...,n ⊂ Kn
for the Dubrovin equations (3.38) are constrained by

(5.64) µj(x0) ∈ [E2j−1, E2j ], j = 1, . . . , n.

Theorem 5.8. — Assume Hypothesis 5.7. Then the Dubrovin initial
value problem (3.38), (5.63), (5.64) has a unique solution {µ̂j}j=1,...,n ⊂ Kn
satisfying

(5.65) µ̂j ∈ C∞(R,Kn), j = 1, . . . , n,

and the projections µj remain trapped in the intervals [E2j−1, E2j ], j =
1, . . . , n, for all x ∈ R,

(5.66) µj(x) ∈ [E2j−1, E2j ], j = 1, . . . , n, x ∈ R.

Moreover, u,w defined by the formulas (3.42), (3.43),

(5.67)

u(x) = 1
2

n∑
j=1

µj(x)− 1
4

2n+1∑
m=0

Em,

w(x) = −
( 2n+1∏
m=0

Em

)(
n∏
j=1

µj(x)−2

)
, x ∈ R,

satisfy Hypothesis 5.1, that is, (u,w) is a real-valued solution of the nth
stationary CH-2 equation (2.28),

(5.68) s-CH-2n(u,w) = 0,

with integration constants c` in (5.68) given by c` = c`(E), ` = 1, . . . , n,
according to (3.14), (3.15), satisfying

(5.69) u,w ∈ C∞(R), w > 0, u(m), w(m) ∈ L∞(R), m ∈ N0.

Proof. — Given initial data constrained by µj(x0) ∈ (E2j−1, E2j), j =
1, . . . , n, one concludes from the Dubrovin equations (3.38) and the sign
properties of R1/2

2n+2 on the intervals [E2k−1, E2k], k = 1, . . . , n, described
in (5.12), that the solution µj(x) remains in the interval [E2j−1, E2j ] as long

ANNALES DE L’INSTITUT FOURIER



SOLUTIONS OF THE CH-2 HIERARCHY 1221

as µ̂j(x) stays away from the branch points (E2j−1, 0), (E2j , 0). In case µ̂j
hits such a branch point, one can use the local chart around (Em, 0), with
local coordinate ζ = σ(z − Em)1/2, σ ∈ {1,−1}, m ∈ {2j − 1, 2j}, to ver-
ify (5.65) and (5.66). Relations (5.67), (5.69) are then evident from (5.65),
(5.66), and

(5.70) |∂kxµj(x)| 6 Ck, k ∈ N0, j = 1, . . . , n, x ∈ R.

In the course of the proof of Theorem 3.7 one constructs the polynomial
formalism (Fn, Gn+1, Hn, R2n+2, etc.) and then obtains identity (3.43) as
an elementary consequence. Finally, (5.68) also follows from Theorem 3.7
(with Ωµ = R). �

Corollary 5.9. — Fix {Em}m=0,...,2n+1 ⊂ R and assume the ordering

(5.71) E0 < E1 < · · · < E2n < E2n+1, 0 ∈ (E2m0 , E2m0+1)

for some m0 ∈ {0, . . . , 2n + 1}. Then the isospectral manifold of smooth,
real-valued solutions u,w ∈ C∞(R), w > 0, of s-CH-2n(u,w) = 0 is given
by the real n-dimensional torus Tn. (These smooth solutions necessarily
satisfy u(m), w(m) ∈ L∞(R), m ∈ N0.)

Proof. — The discussion in Remark 5.6 and Theorem 5.8, shows that
the motion of each µ̂j(x) on Kn proceeds topologically on a circle and is
uniquely determined by the initial data µ̂k(x0), k = 1, . . . , n. More pre-
cisely, the initial data

(5.72) µ̂j(x0) = (µj(x0), y(µ̂j(x0))) = (µj(x0),−Gn+1(µj(x0), x0)),
µj(x0) ∈ [E2j−1, E2j ], j = 1, . . . , n,

are topologically equivalent to data of the type

(µj(x0), σj(x0)) ∈ [E2j−1, E2j ]× {+,−}, j = 1, . . . , n,(5.73)

the sign of σj(x0) depending on µ̂j(x0) ∈ Πn,±. If, on the other hand, some
of the µk(x0) ∈ {E2k−1, E2k}, then the determination of the sheet Πn,±
and hence the sign σk(x0) in (5.73) becomes superfluous and is eliminated
from (5.73). Indeed, since by (2.18),

(5.74) Gn+1(µj(x0), x0)2 = R2n+2(µj(x0)),

Gn+1(µj(x0), x0) is determined up to a sign unless µj(x0) hits a spectral
gap endpoint E2j−1, E2j in which case

(5.75) Gn+1(µj(x0), x0) = R2n+2(µj(x0)) = 0

and the sign ambiguity disappears. The n data in (5.73) (properly inter-
preted if µj(x0) ∈ {E2j−1, E2j}) can be identified with circles. Since the
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latter are independent of each other, the isospectral manifold of real-valued,
smooth, and bounded solutions of s-CH-2n(u) = 0 is given by the real n-
dimensional torus Tn. �

In summary, one observes that the reality problem for smooth bounded
solutions of the CH-2 hierarchy, assuming the ordering (5.62), parallels
that of the KdV hierarchy with the basic self-adjoint Lax operator (the one-
dimensional Schrödinger operator) replaced by the self-adjoint Hamiltonian
system (5.5).

Remark 5.10. — Since the focus of this paper centered around the two-
component Camassa–Holm hierarchy CH-2, we assumed w > 0 throughout
Section 5. The limit w → 0, although straightforward in connection with
the material in Section 2, requires some care in Sections 3 and 5. Indeed,
formula (5.67) for w indicates the singular nature of such a limit: one infers
from the z1-term in (2.18),

(5.76) fn
[
2αgn + hn−1 − (α2 + w)fn−1

]
= −

2n+1∑
m=0

2n+1∏
m′=0
m′ 6=m

Em′ ,

and recalling fn = (−1)n
∏n
j=1 µj , one concludes

(5.77)
[
2αgn+hn−1−(α2+w)fn−1

]
= (−1)n+1

( 2n+1∑
m=0

2n+1∏
m′=0
m′ 6=m

Em′

)
n∏
j=1

µ−1
j .

The case w = 0 has been analyzed in detail in [20], [21, Ch. 5] and under
the assumption [4u− uxx] > 0, it is known that necessarily

(5.78) E0 < E1 < · · · < E2n0 < E2n0+1 = 0, µj0(x) ∈ [E2j0−1, E2j0 ],
j0 = 1, . . . , n0,

with n0 the (topological) genus of the underlying curve Kn0 . (If [4u−uxx] <
0 all Em are reflected with respect to E = 0.) A comparison with the case
when w > 0 and [4u− uxx] > 0,

(5.79) E0 < E1 < · · · < E2n < E2n+1, 0 ∈ (E2m0 , E2m0+1),
µj(x) ∈ [E2j−1, E2j ], j = 1, . . . , n

for some m0 ∈ {0, . . . , n}, shows that in order to guarantee a smooth limit
w → 0 in (5.77), the following situation must occur,

(5.80) E2m0+2k−1, µm0+k, E2m0+2k, E2n+1 ↓ 0 as w → 0 ,
k = 1, . . . , n−m0.
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The limit w → 0 thus yields a singular curve Kn associated with

(5.81) y2 = R2n+2(z) =
( 2m0+1∏

m=0
(z − Em)

)
z2(n−m0).

Desingularizing this curve yields y2 =
∏2m0+1
m=0 (z − Em) and hence corre-

sponds to m0 = n0 in connection with (5.78).

Finally, we briefly turn to the time-dependent case.

Hypothesis 5.11. — Suppose that u,w : R2 → C satisfy

(5.82)
u( · , t), w( · , t) ∈ C∞(R), ∂mu

∂xm
( · , t), ∂

mw

∂xm
( · , t) ∈ L∞(R),

m ∈ N0, t ∈ R, u(x, · ), ux(x, · ), w(x, · ) ∈ C1(R), x ∈ R.

The basic problem in the analysis of algebro-geometric solutions of the
CH-2 hierarchy consists in solving the time-dependent rth CH-2 flow with
initial data a stationary solution of the nth equation in the hierarchy. More
precisely, given n ∈ N0, consider a solution

(
u(0), w(0)) of the nth stationary

CH-2 equation, that is, s-CH-2n
(
u(0), w(0)) = 0 associated with Kn and a

given set of integration constants {c`}`=1,...,n ⊂ C. Next, let r ∈ N0; we
intend to construct a solution u, w of the rth CH-2 flow CH-2r(u,w) = 0
with u(t0,r) = u(0), w(t0,r) = w(0) for some t0,r ∈ R. To emphasize that
the integration constants in the definitions of the stationary and the time-
dependent CH-2 equations are independent of each other, we indicate this
by adding a tilde on all the time-dependent quantities. Hence we shall
employ the notation Ṽr, F̃r, G̃r, H̃r, f̃s, g̃s, h̃s, c̃s, etc., in order to distin-
guish them from Vn, Fn, Gn+1, Hn, f`, g`, h`, c`, etc., in the following. In
addition, we will follow a more elaborate notation inspired by Hirota’s τ -
function approach and indicate the individual rth CH-2 flow by a separate
time variable tr ∈ R.
Summing up, we are seeking a solution u of

C̃H-2r(u,w) =
(

utr + 1
2 f̃r+1,x

wtr − wxf̃r − 2wf̃r,x

)
= 0,(5.83)

u(x, t0,r) = u(0)(x), w(x, t0,r) = w(0)(x), x ∈ R,

s-CH-2n
(
u(0), w(0)) =

(
1
2f

(0)
n+1,x

−w(0)
x f

(0)
n − 2w(0)f

(0)
n,x

)
= 0,(5.84)

for some t0,r ∈ R, n, r ∈ N0, where (u,w) satisfy (5.82).
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We pause for a moment to reflect on the pair of equations (5.83), (5.84):
As it turns out (cf. [20], [21, Sect. 5.4] in the special case w = 0), it repre-
sents a dynamical system on the set of algebro-geometric solutions isospec-
tral to the initial value

(
u(0), w(0)). By isospectrality we here allude to the

fact that for any fixed tr ∈ R, the solution (u( · , tr), w( · , tr)) of (5.83),
(5.84) is a stationary solution of (5.84),

(5.85) s-CH-2n(u( · , tr), w( · , tr))

=
(

1
2f

(0)
n+1,x( · , tr)

−w(0)
x ( · , tr)f (0)

n ( · , tr)− 2w(0)( · , tr)f (0)
n,x( · , tr)

)
= 0,

associated with the fixed underlying algebraic curve Kn. Put differently, the
solution (u( · , tr), w( · , tr)) is an isospectral deformation of

(
u(0), w(0)) with

tr the corresponding deformation parameter. In addition, (u( · , tr), w( · , tr))
traces out a curve in the set of algebro-geometric solutions isospectral to(
u(0), w(0)).
Thus, relying on this isospectral property of the CH-2 flows, we will go

a step further and assume (5.84) not only at tr = t0,r but for all tr ∈ R.
Hence, we start with

Utr (z, x, tr)− Ṽr,x(z, x, tr) + [U(z, x, tr), Ṽr(z, x, tr)] = 0,(5.86)
−Vn,x(z, x, tr) + [U(z, x, tr), Vn(z, x, tr)] = 0,(5.87)

(z, x, tr) ∈ C× R2,

where (cf. (2.22))

(5.88)

U(z, x, tr) = −z−1
(

α(x, tr) −1
α(x, tr)2 + w(x, tr) −α(x, tr)

)
+
(
−1 0
0 1

)
,

Ṽr(z, x, tr) = z−1

(
−G̃r+1(z, x, tr) F̃r(z, x, tr)
H̃r(z, x, tr) G̃r+1(z, x, tr)

)
,

Vn(z, x, tr) = z−1
(
−Gn+1(z, x, tr) Fn(z, x, tr)
Hn(z, x, tr) Gn+1(z, x, tr)

)
,

and

Fn(z, x, tr) =
n∑
`=0

fn−`(x, tr)z` =
n∏
j=1

(z − µj(x, tr)),(5.89)

Gn+1(z, x, tr) =
n+1∑
`=0

gn+1−`(x, tr)z` − fn+1(x, tr)−
1
2fn+1,x(x, tr),(5.90)
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Hn(z, x, tr) =
n∑
`=0

hn−`(x, tr)z` + gn+2,x(x, tr)

= h0(x, tr)
n∏
j=1

(z − νj(x, tr)),(5.91)

F̃r(z, x, tr) =
r∑
s=0

f̃r−s(x, tr)zs,(5.92)

G̃r+1(z, x, tr) =
r+1∑
s=0

g̃r+1−s(x, tr)zs − f̃r+1(x, tr)−
1
2 f̃r+1,x(x, tr),(5.93)

H̃r(z, x, tr) =
r∑
s=0

h̃r−s(x, tr)zs + g̃r+2,x(x, tr),(5.94)

for fixed n, r ∈ N0. Here f`(x, tr), f̃s(x, tr), g`(x, tr), g̃s(x, tr), h`(x, tr),
and h̃s(x, tr) for ` = 0, . . . , n + 1, s = 0, . . . , r + 1, are defined as in (2.3)
and (2.7) with u(x) replaced by u(x, tr), etc., and with appropriate inte-
gration constants. Explicitly, (5.86), (5.87) are equivalent to

zF̃r,x(z, x, tr) = −2[α(x, tr) + z]F̃r(z, x, tr) + 2G̃r+1(z, x, tr),(5.95)

zG̃r+1,x(z, x, tr) = zαtr (x, tr)(5.96)

−
[
α(x, tr)2+w(x, tr)

]
F̃r(z, x, tr)−H̃r(z, x, tr),

zH̃r,x(z, x, tr) = −z[2α(x, tr)αtr (x, tr) + wtr (x, tr)](5.97)

+ 2[α(x, tr) + z]H̃r(z, x, tr)

+ 2
[
α(x, tr)2 + w(x, tr)

]
G̃r+1(z, x, tr) = 0,

and

zFn,x(z, x, tr) = −2[α(x, tr) + z]Fn(z, x, tr) + 2Gn+1(z, x, tr),(5.98)

zGn+1,x(z, x, tr) = −
[
α(x, tr)2+w(x, tr)

]
Fn(z, x, tr)−Hn(z, x, tr),(5.99)

zHn,x(z, x, tr) = 2[α(x, tr) + z]Hn(z, x, tr)(5.100)

+ 2
[
α(x, tr)2 + w(x, tr)

]
Gn+1(z, x, tr).

One observes that equations (2.3)–(2.21) apply to Fn, Gn+1, Hn, f`, g`,
and h` and (2.3)–(2.8), (2.22), with n replaced by r and c` replaced by
c̃`, apply to F̃r, G̃r+1, H̃r, f̃`, g̃`, and h̃`. In particular, the fundamental
identity (2.18),

(5.101) Gn+1(z, x, tr)2 + Fn(z, x, tr)Hn(z, x, tr) = R2n+2(z), tr ∈ R,
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holds as in the stationary context and the hyperelliptic curve Kn is still
given by

(5.102) Kn : Fn(z, y) = y2−R2n+2(z) = 0, R2n+2(z) =
2n+1∏
m=0

(z−Em),

{Em}2n+1
m=0 ⊂ C.

Moreover, (5.86) and (5.87) also yield

(5.103) − Vn,tr (z, x, tr) +
[
Ṽr(z, x, tr), Vn(z, x, tr)

]
= 0,

(z, x, tr) ∈ C× R2.

The independence of (5.101) of tr ∈ R can be interpreted as follows:
The rth CH-2 flow represents an isospectral deformation of the curve Kn
in (5.102), in particular, the branch points of Kn remain invariant under
these flows,

(5.104) ∂trEm = 0, m = 0, . . . , 2n+ 1.

Without going into further details we note that the time-dependent analog
of the Dubrovin-type equations (3.38) now reads,

µj,x(x, tr) = 2µj(x, tr)−1y(µ̂j(x, tr))
n∏
`=1
` 6=j

[µj(x, tr)− µ`(x, tr)]−1,(5.105)

µj,tr (x, tr) = 2F̃r(µj(x, tr), x, tr)(5.106)

× µj(x, tr)−1y(µ̂j(x, tr))
n∏
`=1
` 6=j

[µj(x, tr)− µ`(x, tr)]−1,

j = 1, . . . , n, (x, tr) ∈ Ω̃µ,

with an appropriate open and connected set Ω̃µ ⊆ R2. In particular, higher-
order CH-2r flows drive each µ̂j(x, tr) around the same circles as in the
stationary case.
Together with the comments following (5.84), this shows that isospec-

tral torus questions are conveniently reduced to the study of the sta-
tionary hierarchy of CH-2 flows since time-dependent solutions just trace
out a curve in the isospectral torus defined by the stationary hierarchy.
This is of course in complete agreement with other completely integrable
1 + 1-dimensional hierarchies such as the KdV, Toda, and AKNS hierar-
chies.
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