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BERGMAN KERNELS FOR A SEQUENCE OF ALMOST
KAHLER-RICCI SOLITONS

by Wenshuai JIANG, Feng WANG & Xiaohua ZHU (*)

ABSTRACT. In this paper, we prove the partial C9-estimate conjecture of
Tian for an almost Kahler—Einstein metrics sequence of Fano manifolds, or more
general, an almost K&hler—Ricci solitons sequence. This generalizes Donaldson—
Sun—Tian’s result for a Kidhler—Einstein metrics sequence of Fano manifolds. As an
application, we prove that the Gromov—Hausdorff limit of sequence is homeomor-
phic to a log terminal Q-Fano variety which admits a Kahler—Ricci soliton on its
smooth part.

RESUME. — Dans ce papier, nous montrons une conjecture due & Tian concer-
nant une estimation C© partielle pour une suite de métriques de Kahler—Einstein
tordues sur les variétés de Fano, ou plus généralement, pour une suite des soli-
tons de Kéhler—Ricci tordus. Ceci généralise les résultats de Donaldson—Sun—Tian
pour une suite de métriques de Kéahler—Einstein sur les variétés de Fano. Comme
application, nous démontrons que la limite de Gromov—Hausdorff de la suite est
homéomorphe & une variété de @Q-Fano a singularités log terminales qui admet un
soliton de Kéahler—Ricci sur sa partie réguliére.

1. Introduction

Let M™ be an n-dimensional Fano manifold and g a Kéhler metric of M
with its Kéhler form wy in 27¢i (M). Then g induces a hermitian metric h
of the anti-canonical line bundle K,' such that ©(K;,h) = w,. Also h
induces a hermitian metric (for simplicity, we still use the notation h) of
l-multiple line bundle K. As usual, the L?-inner product on HO(M, K;;')
is given by

(1.1) (51,52):/ (s1,82)ndvy, Vs1,80 € H'(M, K;}).
M

Keywords: Kahler—Einstein metrics, almost Kéhler—Ricci solitons, Ricci flow, d-equation.
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Choosing a unit orthogonal basis {s;} of H(M, K,/) with respect to the
inner product (-, -) in (1.1), we define the Bergman kernel of (M, K]\_/[l, h)
by

pi() = Tilsils (x).
Clearly, p;(z) is independent of the choice of basis {s;}. In [22], Tian pro-
posed a conjecture for the existence of uniformly positive lower bound of
pu():

CONJECTURE 1.1. — Let {(M;,¢%)} be a Kihler—Einstein metrics se-
quence of Fano manifolds of n-dimension with constant scalar curvature n.
Then there exists an integer number ly such that for any integer ! > 0 there
exists a uniform constant ¢; > 0 with property:

(1.2) pue(Mi, g') = 1.
Here ¢; depends only on I, n.

The above conjecture was recently solved by Donaldson-Sun [9] and
Tian [23], independently. The estimate (1.2) is usually called the partial C°-
estimate. Very recently, (1.2) is generalized to a sequence of conical Kahler—
Einstein metrics by Tian [25]. This estimate plays a crucial role in his
solution of the famous YTD conjecture for the existence problem of Kéhler—
Einstein metrics with positive scalar curvature. The YTD conjecture is also
solved by Chen-Donaldson—Sun independently [6].

THEOREM 1.2 (Tian, Chen-Donaldson-Sun). — A Fano manifold ad-
mits a Kahler—Einstein metric if and only if it is K-stable.

The notion of K-stability was first introduced by Tian [21] and it was
reformulated by Donaldson in terms of test-configurations [8].

There are several generalization of (1.2) after the work by Donaldson—
Sun and Tian. For examples, Phong—Song—Strum extended (1.2) to a se-
quence of Kéhler—Ricci solitons [19] and Jiang extended (1.2) to a sequence
of Kéahler metrics on Fano manifolds of 3-dimension with uniformly lower
bound of Ricci curvature and other uniformly geometric qauntities [13].
In present paper, we want to generalize the estimate (1.2) to an almost
Kahler—Einstein metrics sequence on Fano manifolds, or more general, an
almost Kéhler—Ricci solitons sequence (see Definitions 3.5, 7.3). We prove

THEOREM 1.3. — Let {(M;,g")} be an almost Kihler—Einstein metrics
(or an almost Kéhler-Ricci solitons) sequence of Fano manifolds of dimen-
sion n > 2. Then there exists an integer number ly such that for any integer
I > 0 there exists a uniformly constant ¢; > 0 with property:

(1.3) pie(Mi, g') = .

ANNALES DE L’INSTITUT FOURIER



BERGMAN KERNELS 1281

Here the constant ¢; depends only on l,n, and some uniform geometric
constants (cf. Section 9).

As an application of Theorem 1.3 together with the main results in [30]
and [31], we prove

COROLLARY 1.4. — Let {(M;,g%)} be an almost Kéiihler-Einstein met-
rics (or an almost Kéhler—Ricci solitons) sequence of Fano manifolds of di-
mension n > 2. Then {(M;, g")} converges subsequently to a metric space
(M, goo) in Gromov—Hausdorff topology with properties:

(i) The real codimension of singularities of (Myo, goo) is at least 4;
(ii) goo Is a Kéhler—Einstein metric ( or a Kadhler-Ricci soliton) on the
regular part of M;
(iii) My is homeomorphic to a log terminal QQ-Fano variety.

In case of Kéhler—Einstein metrics sequence with positive scalar curva-
ture, (i) and (ii) in Corollary 1.4 follow from the Cheeger—Colding-Tian
compactness theorem [5]. Donaldson-Sun proved the part (iii) [9] (also
see [14]). Note that any Q-Fano variety, which admits a Kahler-Einstein
metric, is automatically log terminal according to Proposition 3.8 in [1].(1)

There are important examples of almost Ké&hler—Einstein metrics se-
quence and almost Kéhler—Ricci solitons sequence:

(1) Tian and Wang constructed a sequence of almost Kéhler—Einstein
metrics arising from solutions of certain complex Monge—-Ampere
equations on a Fano manifold with the Mabuchi’s K-energy
bounded below [26].

(2) Tian constructed a sequence of almost Kédhler-Einstein metrics
modified from conical Kéhler—Einstein metrics on a Fano manifold
with cone angles going to 27 [25].

(3) Wang and Zhu constructed a sequence of almost Kéhler—Ricci

solitons arising from solutions of certain complex Monge-Ampeére
equations on a Fano manifold with the modified K-energy bounded
below [30], [31].
Thus Theorem 1.3 and Corollary 1.4 hold for these ex-
amples. In particular, we give an alternative proof for Tian’s
result of (1.3) for conical Kéhler-Einstein metrics sequence with
cone angles going to 27 [25].

(1) The result also holds for a Q-Fano variety, which admits a Kéhler-Ricci soliton,
according to the proof of Proposition 3.8.

TOME 67 (2017), FASCICULE 3
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Remarks 1.5.

(1) Li proved recently that the lower boundedness of K-energy is equiv-
alent to the K-semistablity [14], althought his proof depended on the con-
struction of test-configurations from the work of Tian, Chen-Donaldson—
Sun to the proof of Theorem 1.2. It is reasonable to believe that there
is an analogy of Li’s result to describe the modified K-energy in sense of
modified K-semistability (cf. [33], [2], [29]).

(2) If there is a new proof for Li’s result, Theorem 1.3 for example 1)
will give an alternative proof to Theorem 1.2 (cf. [25], [24], [17]).

At last we describe the proof of Theorem 1.3 briefly. As in [9] (or [25],
[23]), the main idea is to construct locally nontrivial almost holomorphic
sections over the sequence {(M;, g*)} by using the rescaling method, then to
get global holomorphic sections by solving d-equation. Our difficulty is lack
of locally strong convergence of {(M;, g%)}. To overcome it, we use Ricci
flow to smooth {(M;,g")} locally to approximate them as done in [26],
[31]. Although the approximation of {(M;,g")} is local and depends on
the time ¢ in Ricci flows, the approximated metrics are locally convergent
as long as t is fixed. With difference to [9], we construct locally nontriv-
ial almost holomorphic sections and solve J-equation with respect to the
approximated metrics, not to the original metrics {(M;, g*)}, see Proposi-
tion 5.1, Section 5. Since the proof of Proposition 5.1 will depend on the
gradient estimate of holomorphic sections (cf. Lemma 3.1, Proposition 3.6,
Proposition 7.5), we shall control scalar curvatures and gradients of Ricci
potentials along Ricci flows by using the Moser iteration method (cf. Propo-
sition 2.3, Lemma 7.4). Once Proposition 5.1 is available, we are able to
estimate holomorphic sections with respect to {(M;, g*)} (cf. Sections 6, 7).
The technique used is to compare the hermitian metrics and L?-norm of
holomorphic sections between the approximated metrics and the original
metrics (cf. Lemma 6.2, Lemma 7.7).

The organization of paper is as follows. In Section 2, we give some esti-
mates for scalar curvatures and Ricci potentials along the Ricci flow, then,
in Section 3, we use them to give the C%-estimate and the gradient estimate
for holomorphic sections on K I;[l . Section 4 is devoted to construct nontriv-
ial almost holomorphic sections by using the trivial bundle on the tangent
cone. The nontrivial holomorphic sections, which depend on time ¢, will
be constructed in Section 5. Theorem 1.3 will be proved in Sections 6, 7,
according to almost Kéhler-Einstein metrics and almost Kéhler—Ricci soli-
tons, respectively, while its proof is completed in Section 9. In Section 8,
we prove Corollary 1.4.

ANNALES DE L’INSTITUT FOURIER
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2. Estimates from Kaiahler Ricci flow

In this section, we give some necessary estimates for the scalar curva-
tures and Ricci potentials along the Kéhler—Ricci flow. Let M be an n-
dimensional Fano manifold and g a Kéhler metric of M with its Kéhler
form wy in 2mei (M). Let g, = g(-,t) be a solution of normalized Kéhler
Ricci flow,

2.1) {(S)tg = —Ric(g) + ¢,

go=g(-,0)=g.

Recall Zhang’s estimate for Sobolev constants of g; [35].

LEMMA 2.1. — Let g; be the solution of (2.1). Suppose that there exists
a Sobolev constant Cs of g such that the following inequality holds,

(2.2) (/ fnldvq> (/ fZdv, + /|Vf|2dvq> vfe (M)

Then there exist two uniform constants A = A(Cs, —infy; R(g),V) and
Co = Co(Cs, —infps R(g), V) such that for any f € C*(M) it holds

n—1
(2.3) (/ fr dvgt> <A/ (IVf1? + (Re + Co) f?) dvy,,
M M
where R; are scalar curvatures of g;.

By using the Moser iteration, we have

LEMMA 2.2. — Let A = A; be Lapalace operators associated to g;.
Suppose that f > 0 satisfies
0
(2.4) (&S_A)f<af’ Vite (0,1),

where a > 0 is a constant. Then for any t € (0, 1), it holds
(2.5) sup f(z,t) < - (/ / |f(z,7)P dngdtau> ,
xeM tp

TOME 67 (2017), FASCICULE 3
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1284 Wenshuai JIANG, Feng WANG & Xiaohua ZHU

where C = C(a,p,Cs, —inf R(g),V) , p > 1 and C; is the Sobolev constant
of g in (2.2).

Proof. — Multiplying both sides of (2.4) by fP, we have

/ fPfldv,, — / fPAfdv, <a / o dv,,
M M M

Taking integration by parts, we get

1
J“”1 dvy, / dVT\a/ Jid 1dvT.
( ) Vg 1 IVf g " g

p+1
Using the relation

C o = [+ [ - Ry,
d’T M M
It follows
1 d 1
_ P+1 g p+1 4
p+1 dT/Mf Vg*+p+1/MRf Yo

pr%l |? dvg,

p—|—1 / f’”‘ldv

Thus

d -
@0) o [ i+ [ Recpiia, 2 [ 95 P,
T JMm M M
S((p—l—l)a—kn—i-Co)/ prdngdng.
M

For any 0 < ¢/ < o < 1, we define

Then by (2.6), we have
d p+1 p+1 Lo
G ) e | |(R e Cofr 2V v,

< W((p+ Da+n + Co) + ] /M P dv,,

ANNALES DE L’INSTITUT FOURIER
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It follows

t b1
[ 7w [ [<R+Co>fp+1+2|w%|2] .
M ot J M

ot<T<t

((p+1)a+n+C’o+ / /pr“dv

Thus by Lemma 2.1, we get

t
/ / FEEDED) gy
ot J M

g/t/ (fPdv,.) i(/ ft T dv, >

ot JM

® pi1 |2

Lanfrw) ] oo,

ot<Tr<tJ M
<A<(p+1)a+n+co+< > (/ /fP“dvg)

1t

By choosing ¢/ = 1 + ok, 0 = 3 + $0k41, where o), = Ez o3 =1,
and replacing p by pri1 = (px +1)" — 1 with py = p > 0 in the above
inequalty, then iterating k we will get the desired estimate (2.5). O

By Lemma 2.2, we prove

ProprosITION 2.3. — Let u = us and R = R; be Ricci potentials and
scalar curvatures of solutions g; in (2.1), respectively. Suppose that (M, g)
satisfies

(2.7) Ric(g) > —A%g and diam(M,g) < D.

Then there exists a constant C (n A, D) such that

(2.8) |Vu|?(z,t) < t(n+1 e / / |R —n|dvg,
and
C t
(2.9) |R—n|(z,t) < IMWL/ /M IR —n|dv,, VO0<t<1

Proof. — By a direct computation, we have the the following evolution
formulas for |Vu| and R, respectively,

(2.10) <§t - A) |Vu|?> = —|VVul? — |[VVu? + |Vul? < |Vul?

TOME 67 (2017), FASCICULE 3
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and
B , )
(2.11) a—A R =R —n+ |Ric(g) — g/|*.
It follows
0
( - A) (R+nA +|Vul?) = R—n — |[VVu|? + |Vu|?
(2.12) ot

< R+nA+|Vul*.

Note that by (2.11) and the maximum principle, R(g¢)+nA > 0. Moreover,
it was showed in [13] that there exists a uniform constant C' = C(A, D)
such that

1
//(R+nA+|Vu|2)dvgdt<C.
o Jum

Thus applying Lemma 2.2 to (2.12), we get

(2.13) (R+nA + |Vul?)(z,t) < T

In particular,

C C
] and R < el

(2.14) |Vul?(z,t) <

Next we estimate the C%-norm of u;. By Lemma 2.1 together with (2.14),
we have the Sobolev inequality,

n—1

(/fﬁumﬁn <A/<Wﬂ%mew+%ﬁ%mm
M M

C
<af (1P o) v
M

The inequality implies (cf. [12], [34]),

vol(B(z,1)) > Ct"("+1) vz e M.

Since vol(M) =V, it is easy to derive

|4

dlam(M, gt) < W

Thus by (2.14), we obtain

(2.15) osen ul®,t) S ey

ANNALES DE L’INSTITUT FOURIER
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y (2.15), we can improve (2.14) to (2.8). In fact, by applying Lemma 2.2
to (2.10), we have

C t
IVulg(x,thnT/ / Vuf? dv,_ dr
th/ / —uAudvy dr
t”+1 08C(a,r)eMx[4,1] |ul(z, 7 / / |R —n|dvgy, d7

. <-— _ :
(2.16) t(n+1)(n+%) /; /M|R n|dvg, dr

where the constant C’ depends only on n, A, D. This proves (2.8).
To get (2.9), we use the evolution equation as same as (2.12),

0
(315 — A>(|Vu|2 +R—n)=R—n—|VVu|* + |Vul?

< |Vul> + R —n.

Then applying Lemma 2.2, we see

2
<tn+1// IVul® + R — n|dv,, dr

C
<— - :
S 1) (n+5) /; /M | = n|dv,, dr

Here we have used (2.16) in the last inequality. Thus by (2.16) again, we
have

(|Vul> + R —n)4

C ¢
. - < —F 5 - .
(2.17) (R—n),(t) D) /; /M |R —n|dvy, dr
In fact, from the proof of Lemma 2.2, this holds for all 7 € [2¢/3,¢], i.e
Co t
- < T N/ B - :: .
(B =n)+(7) S oo / /M IR — n|dv,, dr := A(t)

On the other hand, by the evolution equation (2.11) of R, we have

(;T - AT> (A() +n—R) <A(t)+n—R, 7€ [2/3,1]

TOME 67 (2017), FASCICULE 3
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Note that A(t)+n—R(7) > 0 for all T € [2¢/3, t]. Hence applying Lemma 2.2
again, we get

(A(t) +n— R)(z,t) < t"“// )+n—R)dv,, dr

A@)ve
<t"+1/ / [n — R|dvy, dT+t7

Therefore, combining the above inequality with (2.17), we obtain (2.9). O

3. Estimates for holomorphic sections

In this section, we use the estimates in Section 2 to give the C°-estimate
and the gradient estimate for holomorphic sections with respect to g;. Let
(M, g) be a Kéhler metric as in Section 2 and L = K, its anti-canonical
line bundle with induced Hermitian metric h by g. In the rest of paper, we
always use notations || - ||; and || - ||, to denote the L>°-norm. We begin
with the following lemma.

LEMMA 3.1. — Suppose that the Ricci potential u of g satisfies
(3.1) IVall, <1
Then for s € H°(M, L!) we have

32 s+ Vsl < Ot ([ s av, )
where C; is the Sobolev constant of (M, g).
Proof. — Note that
Alsli, = [Vs[i, = nl|sl3.
It follows
(3.3) — Als|2 < nlls|z.
Thus applying the standard Moser iteration method, we get

(3.4 sl < Cemt? (| |s|2dvg>

On the other hand, we have the following Bochner formula,
A|Vs|? = |VVs|> 4+ |[VVs|? — (n +2)I|Vs|*> 4 (Ric(Vs, - ), Vs).

Then we can also apply the Moser iteration to obtain a L°-estimate for
|Vs|? as done for |s|7. In fact, it suffices to deal with the extra integral

ANNALES DE L’INSTITUT FOURIER
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terms like (Ric(Vs,.), Vs)|Vs|?P. But those terms can be controlled by the
integral of (|VVs|? 4 |VVs|?)|Vs|?? by taking integral by parts with the
help of the condition (3.1). As a consequence, we obtain

1
n 5
IVs|ln < C(Cs,n)l> </ |Vs|? dvg)
(3.5) " 1
ntl 2 2
< C(Cyy )™ (/ 5 dvq> .
" ‘

Therefore, combining (3.4) and (3.5), we derive (3.6). O
Remark 3.2. — Using the same argument in Lemma 3.1, we can prove:

If (M, g) satisfies
Ric(w,) = —A%w, + v/ —100u,

for some u with |Vu|, < A, then

(3.6) ||slln+1" 2| Vs|ln < C(Cy, A, A)IF (/ |s[2 dvg) .V se HOM, LY.
M

LEMMA 3.3. — Let (M,g) be a Kéhler metric as in Lemma 3.1. Let
I > 4n. Then for any o € C>=(I'(M, L"), there exists a solution v €
C>(T(M, L") such that dv = do with property:

(3.7) / |v|i<4z—1/ Bo2.
M M

Proof. — The existence part comes from the Homander L2-theory. It
suffice to verify (3.7), which is equivalent to prove that the first eigenvalue
A (9, LY of Ajg is greater than é, where Aj; denotes the Lapalce operator
defined on L*(T*M @ L).

Note that the following two identities hold for any 6 € Q%1(L!),

~Az0 = V*V0 + Ric(d, -) +10
and
—Az0 = V*VO — (n—1)i6.
It follows

1\ e, o 1\ .. 1_, !
(3.8) —A89_<1—2n)v v+(1—2n>Rm(9,-)+2nvv9+29.

TOME 67 (2017), FASCICULE 3
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Then taking integration by parts, we have

s~ (&) o [t

+<1_21n)/M(|e|2+<vvu(a, ),6))
_ (1_21n>/M|W|2+21n/M|W|2+;/M|92
(= 2Y [ (1= L) [ (Y ((v.6)+6.90)).
2n ) Ju 2n)

Using the condition (3.1), we get

—/M<A59,9>
> (1-50) [ wor g [ ok [
+(1—21)/ 102 - (1—;L)/M[%(|ve|2+|v92)+n|e|2
(3.9) >(—n) | e

Now we can choose [ > 4n to see that )\1(5, L) > i as required. O

Remark 3.4. — 1If the upper bound of |Vul is replaced by a constant
C, the coefficient at the last inequality in (3.9) will be £ —nC? . Then by
choosing [ > 4nC?, one can also get (3.7). This was proved in [27].

Let us recall the definition of an almost Kéhler—Einstein metrics sequence
of Fano manifolds [26].

DEFINITION 3.5. — We say that Kéhler metrics ¢g* (i — oo) on Fano
manifolds M; is a sequence of an almost Kéhler—FEinstein metrics if they
satisfy:

(i) Ric(g’) = —A%¢" and diam(M;, g*) < D;

(ii)/ |Ric(g") — g'| dvyi — 0;

(iii) // —n|dvgdt =0, as i — oo.

Here A > 0, D > 0 are two uniform constants, g' are normalized so that
wgi € 2mcq(M;) and g; are the solutions of (2.1) with the initial metrics g*.

(3.10)

ANNALES DE L’INSTITUT FOURIER
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We note that vol(M;, g*) = (2m)"c1(M;)™ > V for some uniform constant
V' by the normalization.

Applying Lemma 3.1 and Lemma 3.3 to almost Kéhler-Einstein metrics
with the help of gradient estimate (2.8) in Proposition 2.3, we have the
following proposition.

PROPOSITION 3.6. — Let {(M;, g)} be an almost Kéihler-Einstein met-
rics sequence of Fano manifolds which satisfy (3.10). Then for any t € (0,1)
there exists an integer N = N(t) such that for any i > N and | > 4n it
holds,

(3.11) ||s

pi+172| Vs

%
pi < Cl% (/M |s|2dvgé) . s€HYM;, K} ),
and
(3.12) / v|2, <4r1/ |00 |2.
41' t Mi

Here v solves 0v = 0o as in Lemma 3.3, the norms of | -

ni are induced by
g, and C is a uniform constant independent of t.

Proof. — A well-known result shows that the Sobolev constants C, of
(M;, g*) depend only on the constants A, D and V (cf. [15]). Then by (2.8)
in Proposition 2.3, for any ¢ € (0,1), there exists N = N(¢) such that

V' g <1, VizN,

where u’ are Ricci potentials of g! . Thus we can apply Lemma 3.1 to
get (3.11). Similarly, we can get (3.12) from Lemma 3.3. O

4. Construction of locally almost holomorphic sections

Let {(M;,g%)} be an almost Kéhler-Einstein metrics sequence of Fano
manifolds as in Section 3 and (My, goo) its Gromov—Hausdorff limit. It
was proved by Tian and Wang that the regular part R of M, is an open
Kahler manifold and the real codimension of singularities of M, is at least
4 [26]. Moreover, according to Proposition 5.1 in that paper, we have

LEMMA 4.1. — Let & € M. Then there exist constants e = e(n) and
ro = ro(n, C) such that if vol(B,(r)) = (1 — €)wa,?" for some r < rg, then
B$(%) CR, Ric(goo) = goo In Bw(%)), and

C

l
IV'Rm [loo (s, (5)) < 53

TOME 67 (2017), FASCICULE 3
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where the constant C depends only on I, and the constants A and D
in (3.10).

Recall that a tangent cone C, at x € My, is a Gromov—Hausdorff limit
defined by

N
J—ro0 j

(4.1) (Ca,g2,2) = lim (Moovgo;ﬂ)’
r

where {r;} is some sequence which goes to 0. Without the loss of generality,
we may assume that [; = %2 are integers. Since (Cy, g, ) is a metric cone,
J

I

ge = hess 5,

in C,.
Denote the regular part of (Cy, g, x) by CR, which consists of points in
C, with flat cones. By Lemma 4.1, we get

where p, = dist(z,-) is a distance function staring from z

LEMMA 4.2. — CR is an open Kéahler—Ricci flat manifold. Moreover, for
any compact set K C CR, there exist a sequence of (K; C R, T%gm) which
J

converges to K in C*-topology.

Proof. — Let € be a small number chosen as in Lemma 4.1. Then for any
y € CR, there exists some small r such that B, (r) C C, and
vol(B,(r)) > (1 - %) Won ™.
Thus there exists a sequence of y, € M, such that

vol(By, (r7a)) = (1 — €) wan (rra )",

where the sequence {r,} is chosen as in (4.1). By Lemma 4.1, it follows

_ Ci
| Rm(goo)”cl(éya(i)) < 2’

2
where jo, = 2 and By, (%) C M is a 5-geodesic ball with respect to joo.
Hence, by the Cheeger-Gromov convergence theorem [11], (By, (5),Jo)

converge to (By(g), gz) in C*-topology. In particular, B, (*5") C R and
By(g) C CR. This implies that CR is an open manifolds. Moreover, CR is
a Kéhler-Ricci flat manifold since each (By, (*5"), goo) is an open Kéahler—
Einstein manifold. If K is a compact set of CR, then by taking finite small

geodesic covering balls, one can find a sequence {(K; C R, % goc)} which
converges to (K, g,) in C*-topology. O
Define an open set V(z;9) of CR by

(4.2) V(w;0) = {y €,

disly.52) > 8. d(00) < 5 }.
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where S, = C, \ CR. The following lemma shows that there exists a “nice”
cut-off function on C, which supported in V' (z;0).

LEMMA 4.3. — For any n,d > 0, there exist some §; < 0 and a cut-off
function 8 on C, which supported in V(x;8;) with property: 8 = 1 in
V(z;9) and

2
/ |Vﬂ|2e*%z dvg, <1.

x

Lemma 4.3 is in fact a corollary of following fundamental lemma.
LEMMA 4.4. — Let (X™,d, ;1) be a measured metric space such that
(4.3) w(By(r)) < Cor™, Vr<1,yelX.

Let Z be a closed subset of X with H™~2(Z) = 0. Suppose that there
exists a nonnegative function f <1 on X such that

/ fdp < 1.
X

Then for any x € X, n > 0 and 6 > 0, there exist a positive §; < ¢ and
a cut-off function 8 > 0, which supported in Bx(%) \ Zs, with property:
B=1inB,(3)\ Zs and

(4.4) /X f|Lip(8)Pdu < 1.

[w)—fE) |

Here Zs, = {«/ € X| dist(2/, Z) < 61} and Lip(B)(z) = sup,,_,, Aw2)

Proof. — Let R > \/% + 2. Since H™~%(Z) = 0, then for any & > 0,
we can take finite geodesic balls By, (r;) (r; < §) with z; € Z to cover
B, (R)() Z such that

Eir;”*Z < k.
Let ¢ : R — R be a cut-off function which satisfies:
1
C(t)=1, fort < 5 C(t)y=0, fort >1; [¢'(t) <2

Set

and

TOME 67 (2017), FASCICULE 3



1294 Wenshuai JIANG, Feng WANG & Xiaohua ZHU

where € < 2. Then it is easy to see that 3 is supported in B, (R)\UB,, (%)
with 8 =1 in By(3) \ Zs. Moreover,

4
/ fILip B2 du < 4CoXr; %ri™ + 4Coe™ 2 + i2)
X
< 4Chk + 40062n72 + g
Thus, if we choose € and k such that 4Cyk + 4Cpe*” 2 < 7, then we
get (4.4). By choosing 6; < min{§, 5%} such that
Zs, N Bu(R) € UB,,(3),
we can also get supp(f) C BI(%) \ Zs,. Hence f satisfies all conditions
required in the lemma. O
Proof of Lemma 4.3. — Applying Lemma 4.4 to X = Cp, Z = 5,
o3
f=e" 2, we get the lemma. |

By Lemma 4.2, we see that for any § > 0 there exists a sequence of
K, C (Moo,r;2goo) which converges to V(x;0). Let Ly = (Cy,C) be the
2

Pz

trivial holomorphic bundle over C, with a hermitian metric hg = e~ 2 .
Then hg induces the Chern connection V with its curvature

O(Lo, Vo) =0V° = g,.

In the following we show that a sufficiently large multiple line bundles of
Kfal\ k,; will approximate to Lo over V/(x;d). This is in fact an application
of the following fundamental lemma.

LEMMA 4.5. — Let (V,g) be a C? open Riemannian manifold and
U, U CcC V be two pre-compact open subsets of V. with U cC U’. Then
for any positive number ¢, there exist a small number 6 = 6(U’, g, €) and a
positive integer N = N(U, g, €), which depends on the fundamental group
of U, the metric g on U, and the small € such that the following is true: if
a hermitian complex line bundle (L, h) over V with associated connection
V satisfies

(4.5) |V |, <9, inlU,

where ©V is the curvature with respect to connection V, then there exist
a positive integer | < N and a section 1) of L®" over U with |¢|;, = 1 which
satisfies

(4.6) |DV®hply 4 <€, in U.
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Proof. — The proof seems standard.

First we show that (L, U) is a flat bundle with respect to some connec-
tion. Let By, (r;) (r; < 1) be finite convex geodesic balls in V' such that
U C UBy,(r;) C U'. Then for y € B,,(r;) there exists a minimal geodesic
curve 7y, in By, (r;), which connects z; and y. Picking any vector s; € Ly,
with |s;| = 1 and using the parallel transportation, we define a parallel
vector field by

ei(y) = Para, (s;), Vy € By, (14).
In particular, De;(x;) = 0. Let T be a vector field, which is tangent to v,,
and X another vector field with [T, X] = 0. Then

(4.7) Dr[Dxe;] = Dx[Dres) + OV(T, X)e; = OV (T, X)e;.
By the condition (4.5), it follows
(4.8) |Deiln,g < C(U,9)|0Y (.9 < C(U', )0, in By, (r;).

This implies that the transformation function g;; of L is nearly constant in
By, N Bg;. Since the first Chern class lies in the secondary integral coho-
mology group, L is topologically trivial as long as ¢ is small, i.e., ¢; (L) = 0.
Hence, there exist some complex functions f; over By, (r;) such that

(4.9) |IDf;| <C(U',g)é <1,
and the transition functions for é; = f;e; are constant. As a consequence,
we can define an associated connection V' on L to h such that
l€iln =1 and Dv/éi =0.
In fact, if we set V' = V + a ® ¢;, then locally,
DY'é = DY (fiei) + a(é) = fiDVe; + df; @ e; + fia @ e;.
Thus

1
o=——
i

7 (df; + (fiDY ei, ei)n)

which is uniquely determined by requiring DV’ (€;) = 0. Therefore, (L, V’)
is a flat bundle over U with respect to V’. Moreover, by (4.8) and (4.9), we
have

(4.10) IV =V = llalw,y < CU,9)0Y |9 < CU’, g)é.

Next we note that the holonomy group of a flat bundle over U is an
element of Hom(m1(U),S') & G x T* for some finite group G' with order
mq, where k is the Betti number of 71 (U). By the pigeon-hole principle,
we see that for any y-neighborhood W C T* of the identity there exists a
positive integer my = ma () such that for any element p € T, p® € W
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for some number a (1 < a < mg). As a consequence, for any element
t € G x TF, there exists | (1 <1< N = mymsy) such that t' € W. Hence,
there exist [ and a smooth section ) of L®! over U by perturbing a parallel
vector field in L® such that

®1 .
1ln = 11 [0¥" g < C(U', 9)7(8), i U.
Moreover, By (4.10), we can normalize ¢ by |¢|, = 1 so that (4.6) is true.

The lemma is proved. O

PROPOSITION 4.6. — Let x € My, and §; > 0. Then for any € > 0,
there exist a positive integer N = N(V(x;01),€) and a large integer jg
such that for j > jo there exist | = 1(j) < N, and a sequence of K; C My
and a sequence of pairs of isomorphisms (¢;,1,) with property:

Lo ¥j K—zzj ‘K

(4.11) l l

V(o) —2 K,

which satisfy
?5(lljgoo) — gu, as j — 00,
and
‘D’(ﬁjbx < €, in V(x,él)
Proof. — Define an open set U of CR by
U:U(x;617627 ) {yec |d15t(y"9 ) €1, €2 <d(y,]}) gR}7

where g is the projection to the section Y of C, = C(Y). Then there exist
some €1, €5 and R such that

V(x;61) CU(x;¢€1,€2, R).
Moreover, we can choose a sequence of integers [; = T% such that
i
(Mooa ljgomz) — (Cxagrax)7 as j — oo.

Hence by Lemma 4.2, there exist a sequence of f{ C M, and a sequence of
diffeomorphisms ¢J from U(z; ey, \F’ R) to K such that gb*( i900) = Ga,
where N = N(U, g., €) is a large integer as determined in Lemma 4.5.

Let ho be the induced hermitian metric on K{al by g on the regular
part R of M. Let

(Lj, h) = 65(Kz" , h&%) ® (Lo, ho)*
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be a product complex line bundle on U, where h is an induced hermitian
metric by ho, and hg with associated connection V; on L; for each j.
Clearly,

10V |0 g,) <6 <1,

as long as j is large enough, where U’ CC CR is an open set such that
U cc U'. Applying Lemma 4.5 to L; over U’, we see that there exist some
positive integer [ = I(j) < N and a section ¢’ on L;@l such that

®1
IDY5 || 0,4.) < €.

Let Y., = U(z;e1,€e2, R)(Y and ¢ an extension section over U(z;ey,

\%, R) of the restriction of ¢’ on Y., by the parallel transportation along

rays from z. Clearly,
[Pl gin = 1.

Moreover, by the formula (4.7), it is easy to see

®!

. Vi
(4.12) |DY Ul @e, 2.r)0) S - (€+ CoR?5),

€
where the constant Cy depends only on (Y, g,). Thus we have pairs of
isomorphisms (¢;, ;) with property:

¥j —ljl

Lg Leviare

(4.13) l l

€ b;
(U(ZIJ, €1, \%7R)7gw) —_— (K]a 13900)7

which satisfy

(4.14) | DY, < Zﬂe,
€2

as long as j is large enough.
Rescaling U(z; €1, €2, R) into U(x; ey, \%, R) by

Y
sy — —, yeU(wer, e, R).
G veu )
We have isometrics

* ~ * gz
piLh = Lo, g, = =
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By (4.13), it follows

1
Lo ’ KM; ‘Kj

(4.15) l l

Uier e R). %) 5 (K Lgso):
Let
¢j = ;0 i, and ;= ;0 (i) 7"
Note that V(x;01) € U(z;€er,€2,R). Then K; = ¢;(V(z;61)) is well-

defined. Hence, rescaling the metric 2= back to g,, we get from (4.14),

(4.16) 1Dt ,, < 25, in V(z;01).
2

Replacing 25 by €, we prove the proposition. O

Proposition 4.6 will be used to construct locally nontrivial holomorphic
sections of holomorphic line bundles over a sequence of Kéhler manifolds
in next section.

5. O-equation and construction of holomorphic sections

In this section, we apply Proposition 4.6 to construct global holomorphic
sections by solving the d-equation on Fano manifolds with almost Kahler—
FEinstein metrics. We will use the rescaling method as done on Kéhler—
Einstein manifolds in [9], [23].

PROPOSITION 5.1. — Let {(M;,g")} be an almost Kéhler-Einstein se-
quence of Fano manifolds and (M, goo) be its Gromov-Hausdorff limit.
Then for any sequence of p; € M; which converges to x € M, there exist
two large number [, and iy, and a small time t, such that for any i > ig
there exists a holomorphic section s; € I‘(K]\_/[lf, h%z) which satisfies

(5.1) /s !

7 g‘

Zim dvg:w <1 and |s ni. (pi) =

Here g} is solution of (2.1) with the initial g* and hj is the hermitian
metric of KI\_/IZm induced by g .

Proof. — As in Section 4, we let

(Cp,wyg,z) = lim (Moo,g;;,x)

J]—00
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Choose a 6 so that § < (27)"% %, where C; is a constant chosen as

in (3.11). We consider the d-equation for sections on the trivial line bundle
Ly = (V(x;6),C),

do=f, Y fer>(Tv)OY g L).

Then the standard C%-estimate for the elliptic equation shows

1

2
(5.2)  ollcov @2y < Co| [Ifllcow (@sy) +0" [/V |U|2dvgm] ;

(30)

where the constant Cy depends on the metric g, .

Let 0 < n < w%zTncg and 8 a cut-off function supported in V(z;d;) con-
structed in Lemma 4.3. Let K be the sequence of open sets with rescaled
metrics T—lz_gOo in M., which converge to V(z; ;) and v; be the sequence of

J

isomorphisms from Lg to K%”j |k, constructed in Proposition 4.6, where

[ =1(;) < N = N(V(z;01),¢) and I; = 5. Set 7; = 1;(fe), where e is

a unit basis of Lo. Then {7;} is a sequence of smooth sections of K;j :
supported in t;(V(z;d1)). Moreover, 7; satisfies the following property as
long as j is large enough:

3 2 1
N d 302 1
(l) ”T]”CO(@(V(Q;;é)ﬂBw(&S))) = 46 Z o
3ran
@) [ InP dv,. <55

(5.3) Mo
(iii) 07007 | < g in V(z;0);

: 9 3 n— Ui
) [ lornfav,. <Gk

On the other hand, from the proof of Lemma 4.2, we see that there exists
to, which depends on V(x;d1) such that for any sufficiently large j it holds

v01<By<\/Fof}l>) > (1- e)vol(Bo (m%)) . VyeKkK;,

where € is a small constant chosen as in Lemma 4.1. Note that there is
a sequence of sets B, C M, for fixed K; such that (B, g;) converge to
(K}, goo) in Gromov-Hausdorff topology. By Colding’s volume convergence
theorem [7], it follows

v01<By, (V%\%)) > (1-2¢) vol(Bo (%\%)) Vo €B;, i<l
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Applying Theorem A.3 with X = 0 in Appendix to each ball (B, (v/to %) C
M;, g%), there exists ¢, < to independent of i such that the sectional cur-

g2 v . ,
vature of g (ty ") on By/(\/%%) is uniformly bounded, where ¢*(t) = g;.
Thus by Cheeger-Gromov’s convergence theorem [11], there exists a se-
quence of diffeomorphisms ¢; : K; — B; such that

.
@?gl(tBTJ) — Joo»
(p:Jz — JOO,

1 1
@i Ky, = Keg,s

in C*°-topology. Hence, if we let v; = (;)+Tj, € F(Mi,KA_/Ilile) for some
large integer [;, = T% and [ = I(l;,) < N, then there exists a large integer
J

0
i such that for any 7 > ig it holds:

>

[
hi,

| w

(i) o ,in (i 0 ) (V(2526) (1) Ba(36));

.. O gp_2 1

() [ Il dvy <3tk
(5.4) M ,

(i) 050l < 31 i (910 )(V(2:0));

(i) / 85,012
M’.

; dv,i
by, "9
i

S on2 1
e S 4 Jo [n-1°

; s . —lly . ;
Here t, = tor3 /I and hy are hermitian metrics of K, induced by gf .

By solving d-equations for K;/[liljo -valued (0,1)-form o,
5@ = 5’()1*, in Mi,

we get the L2-estimates from (3.7) and (iv') in (5.4),

4 = 577
(5'5) HUi||22 gt < 7/ |8Jivi|2 dv, < -
L2(Mi.g} ) Ujo Ju, 9, S r
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Hence, by (5.2) and 4ii’) in (5.4), we derive

|oiln: (q) <203 sup |0vi s
* (piothjo) (V(20)) *

+o "

Nl
N——

) [ il v, ]
(piotjo ) (V(239)) &= “
|

<20, <n+5” {(zzjo)"/ |os]? dvi ] )

4 M; te
n n 577 2n—2 %
202< n+6” {( o) M»Orjo ] )

(5.6) 502< n+0- f) VY q € (pi o ¥j,)(V(;26)).

Let s; = v;—o;. Then s; is a holomorphic section of K]\Z_ljo. By i) in (5.4)
and (5.6), we have

. Vi € (0 ) (V(w;20) (1) Ba(39))

is easy to see that

ol —

3
[siln: (q1) = 3
Moreover, by (ii’) in (5.4), i

2 2 2
/M. [sill;, Vg, <2 ( /M [viliy, dvag, + /Ml o, dVgﬁ)

i i

ﬁﬂk\H

r2n
(5.7) <402m)" l]'r? .
Thus by the estimate (3.11), we get

< /4(27) C’l\/r

(5-8) Vs3],

Since d(p;, q1) < 4%5, we deduce

|si

.y
i —4£(5 Vsi
hi (¢1) Vi | hi

1
|sl\hl q1) — 8/ (2m)"C1é §

This proves the theorem when [, is chosen by Il;,. O

ni (pi) = |si

6. Proof of Theorem 1.3-1

In this section, we use Proposition 5.1 to give a weak version proof of
Theorem 1.3 for an almost Kéhler—Einstein metrics sequence. Namely, we
prove
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THEOREM 6.1. — Let (M;,g") be an almost Kéhler-Einstein metrics
sequence of Fano manifolds and (M, goo) its Gromov-Hausdorfl limit.
Then there exists an integer lo > 0, which depends only on (M, goo) such
that for any integer | > 0 there exists a uniform constant ¢; > 0 with

property:
(6.1) pio(Mi, g') = 1.
The proof of Theorem 6.1 depends on the following lemma.

LEMMA 6.2. — Let (M, g) be a Fano manifold with w, € 2mc, (M) which
satisfies

(6.2) Ric(g) > —A?g and diam(M,g) < D.

Let g; be a solution of (2.1) with the initial metric g. Then there exists a
small ty = to(l, A, D) such that the following is true: if s € T(M, K;}') is a
holomorphic section with [, |s|3 dvy, =1 for some t < to which satisfies

|sl#,(p) = ¢ >0,
then
(6.3) Is|2(p) > ¢ >0 and / |57 dv, < ¢”.
M

Here h; and h are hermitian metrics of K];[li induced by g; and g, respec-
tively, and ¢/, ¢” > 0 are uniform constants depending only on ¢,l, A and D.

Proof. — Let wy, = wg + V—100¢. Namely, ¢ is a Kahler potential of
gt Then ¢ = ¢(x,t) satisfies

(wg + \i}?@@(ﬁ)n _|_ d) _ fg7

g
where f, is the Ricci potential of g normalized by

/ Jgdvy =0.
M

Af,=R(g) —n>=—(n—1)A* —n,

by using the Green formula, we see

fy(@) < - /M G(z,)Af, < C(A, D).

Here we used the fact that the Green function G is uniformly bounded below
since the metric g satisfies the condition (6.2) (cf. [13]). Thus applying the
maximum principle to (6.4), it follows

o
(6.4) 570 =log

Since
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On the other hand, integrating both sides of (6.4), we have
d V—=100¢)"
7/ ¢dvg:/ log ot ¢) dvg+/ (bdvg—/ fodv,
dt Jar M Wy M M

g9

< / pdvy +C.
M

Here we use an element inequality log ff > —C to the log term. It follows

pdvy < Cet < eC.

M

Hence by using the Green formula to ¢, we can also get

¢ < C'(\, D).
As a consequence, we derive
(6.5) e n < lne = e [n < e e
Therefore to prove Lemma 6.2, it suffice to prove

Cram 6.3. — Let s € T'(M, K;j) be a holomorphic section. Suppose

that
/ |s|7 dv, = 1.
M
Then
(6.6) / |s|7, dvg, = c(l,A, D) > 0.
M
Since
0 (wg +V=109¢)" _ L
ot wy ot
=—R(g:) + n < A= A(A),
(6.7) voly, (Q) < eMvol,(Q), VQcC M.
It follows
68) voly, (Q) =V —voly, (M \ Q) =V — e*vol, (M \ Q)
' > voly (Q) — 2V AL

By the estimate (3.4), we see
s(z)[; < H=H(A, D).
Then
H
/ vol,{z € M ||s(x)|} = s}ds = / |s]7 dv,.
0 M
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Hence, by using (6.5) and (6.8), we get
H
[ 1ol v > [ voly o € 0 [[s(a), > s} ds
M 0
H ’
> / volg, {z € M||s(z)|? > e“'s}ds
0

Ol
> e_C/l/ [volg{z € M ||s(z)|; > s} — 2V At] ds
0
> e (1- 22V H ).

Therefore, by choosing to < (4A\VHeC)~!, we derive (6.6). The claim is
proved. O

Proof of the Theorem 6.1. — By Proposition 5.1, we see that for any
x € My, and a sequence {p; C M,;} which converges to x, there exist two
large number [, and ig, a small time ¢, such that there exists a holomorphic
section s; € I‘(Kﬂi“,him) for any i > ip with fM £ : dVgi < 1 which

satisfies

|Si\hi (pi) = 3

where h! , is the hermitian metric of K, M”” induced by gt By Lemma 6.2,
it follows that there exists a constant ¢(l,, A, D) and a holomorphic section
3 € F(K;jf,hz) for any i > ip with fM/v |37 dvgi = 1 which satisfies

|51,|h (pz) Cy = C(l:mA D)
where h; is the hermitian metric of K, induced by g°.
Let C = C(Cg,n) be the constant as in (3 6), which depending only on A

Y
and D. For each x, we choose r, = %1, > C. Then by the estimate (3.6),
we get

o Cy
|Si hi(Q) > ?’ Vqe Bpi(rfr)'

Take N balls By, (%%>) to cover Mu. Then it is easy to see that there
exists 41 > i such that U, By (re,) = M; for any i > iy, where {p}} is a
set of N points in M;. This shows that for any g € M; ( i1) there exist
a ball By (r,,) and a holomorphic section s}, € T'(K, ea ,h;) such that
g€ B ( M) and [y, [sh|7, dvgi = 1 and

(6.9) A

h;(q) = ¢ = min{c,_ } > 0.

Set lp =[], lz..- Then by using a standard method (cf. [9], [25]), for any ¢ €
M, (i > i1), one can construct another holomorphic section s € I'(K ;/[lio, hi)
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based on holomorphic sections s/, such that [}, [s[7 dvg =1 and
[sln.(q) = ¢ >0,

where ¢/ = ¢/(lp, ¢). This proves the theorem for [ = 1. One can also prove
the theorem for general multiple [ > 1 as above. O

7. Proof of Theorem 1.3-11

In this section, we prove Theorem 1.3 for the case of almost Kéahler—Ricci
solitons sequence. The proof can be finished step by step as for Theorem 6.1
while some necessary variant estimates should be done. We now assume
that a Fano manifold M admits a non-trivial holomorphic vector field X,
where X lies in an reductive Lie subalgebra 7, of space of holomorphic
vector fields [28]. Consider a Kx-invariant ¢ with wy € 2meq (M) which
satisfies the following geometric conditions:

(i) Ric(g) + Lxg > —A%g, |X|, < A and diam(M, g) < D;

(if) R(g) = —Co.
Here Lxg denotes the Lie derivative along X, and by the Hodge the-
orem, there exists a potential # of X such that Lxg = /—1896. In
particular, under the condition (i), g has a uniform L2-Sobolev constant
Cs = Cs(A, A, D) [31]. We note that the volume of (M, g) is uniformly
bounded below by the normalized condition wy € 2meq (M) and it is uni-
formly bounded above by the volume comparison theorem [32].

Let g(-,t) = g+ (t € (0,00)) be a solution of following modified Kéhler—
Ricci flow with the above initial Kahler metric g,

%9 = —Ric(g) + g+ Lxg,
g0 =9(-,0)=g.
Clearly, all Kéhler metrics g; are K x-invariant. Since the solution g(-,t) is

just different to one of (2.1) by a family of holomorphic transformations
generated by X, by Lemma 2.1, we have

(7.1)

(7.2)

LEMMA 7.1. — All g¢ of (7.2) have Sobolev constants Cs = Cs(A, A, D)
uniformly bounded below. Namely, the following inequalities hold,

n—1

(/ fnzfl dvgt> ' < O (/ ARy + C'O) dvy, +/ |Vf|2dvg,,),
M M M

where f € C1(M) and Cy is a uniform constant depending only on the
lower bound Cy of scalar curvature R of g.
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LEMMA 7.2. — Let A = A; be the Lapalace operator associated to g;.
Suppose that f > 0 satisfies

(73) (5-@+x)s<ar

where a is a constant. Then for any t € (0,1), we have

(74) s f(x,t)<w< / / |f<m,r>|pdvgfdf>
e tJm

xeM

o=

Proof. — As in the proof of Lemma 2.2 , multiplying both sides of (7.3)
by fP, we have

/ fpf;dng-i-p/ |0f)2 P~ dv,, —/ (80,0f) f7 dv,.
M M M

< a/ Pt dvy. .
M
On the other hand, by (7.2), it is easy to see

| i,
M
1
p+1 o p+1
p—|—1 e </ I dng> + — P (R n—Af) fF T dv,, .
Thus we get
PHlq /R— Py, + / offPfrtd
p+1 dr (/ f VgT) M( i Vor TP M| 1y Vor
Sa/ fPdvy,.
M
It follows

d A p+1
(7.5) E/M Py, +/M(R+Co)fp+1 dv,, +2/M V£ 2 dv,,

< ((p+1)a+n+C’o)/ fPrtdvy,, .
M

Note that (7.5) is similar to (2.6). Therefore, we can follow the argument
in the proof of Lemma 2.2 to obtain (7.4). O
Recall that according to [30] an almost (weak) Kéhler-Ricci solitons

sequence of Fano manifolds (M;, g, X;) (i — oo) satisfy the condition (i)
n (7.1) and

(7.6) (iii) /M |Ric(g") — ¢' — Lx,g'| dvy; — 0, asi— oo.

i
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As in [26], [31], we shall further assume that the solutions g of (7.1) with
the initial metrics ¢* satisfy

gz\ﬁa

1
(v) / dt/ |R(g}) — Abgi —nldvy; =0, asi— oo,
0 M; i

(iv) |x*

(7.7)

where B is a uniform constant. It was proved that under the condition (i)
of (7.1), and (7.6) and (7.7) there exists a subsequence of {(M;,g*, X;)}
which converges to a Kéhler—Ricci soliton away from singularities of
Gromov—Hausdorff limit with real codimension 4.

DEFINITION 7.3. — {(M;,¢%, X;)} are called an almost Kéhler—Ricci
solitons sequence of Fano manifolds if (7.1), (7.6) and (7.7) are satisfied.

The following is a key lemma in this section.

LEMMA T7.4. — Let {(M;, g%, X;)} be an almost Kéhler-Ricci soliton
sequence of Fano manifolds. Then there exists a uniform constant C =
C(A, D, B, Cy) such that for any t € (0, 1) there exists N = N(t) such that
for any i > N it holds

|Vhi| < C and |Ri| < C.
Proof. — By

(7.8) <§t - (A+ X)) IV (h—0)
==|VV(h =) = |VV(h =) +[V(h-0)
< |V(h=0)P,

we apply Lemma 7.2 to get

C t
IV(h—0)]* < W/ / |V(h—6)]*dv,. dr
tJuM

/

C t
= ot [ /M(e — h)A(h—0)dv,, dr

C t
<t"+1/i /MOSCM(h—0)|R—n—A9|dV9T dr.

By (2.15), it follows

C t
(1.9)  |V(h—0)] < W/ /M|R—n—A9|dng dr.
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On the other hand, by the evolution equation of (A + X)(h — 0) [3],

(7.10) <§t —(A+ X)) (A+X)(h—0)] = (A4+X)(h—0)+|VV(h—0)|?,

we have

(5~ @+ X))@+ X)(0 = 0) + V(0 - 0)F)
<A+ X)(h—0)+|V(h—0)>

Then applying Lemma 7.2, we get

(7.11) (A +X)(h—0)+|V(h —0)]

C t
gtnﬂ/i/M|(A+X)(h79)+|V(h—9)\2|dvgfd7.

Note that by (iii) in (7.6) we have

t t
// |X(h—9)\dvg,dT<Bvol(M)[// IV(h —0)]>dv,, dr]?.
t M 3 /M

It follows from (7.9),

/t/ (A + X)(h—0)+|V(h—0)dv,, dr
LM

t
g// |[R —n— Af|dv,, dr
t Ju

CBvol(M ¢
+1L(1) |[R —n— Af|dv,, dr
tz(nt+1)(n+3) t S T

2

C’ t
+t<n+1><n+>/ /MlanfAﬁldngdT-

Thus inserting the above inequality into (7.11), we derive

1
2

(7.12) (A4 X)(h—0) +|V(h—0)?

<t(n+1 (// |[R —n— Af|dvy, dr
¢ 3
+ // R—n—AHdngdT] .
L JM
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Combining (7.9) and (7.12), we see that for any ¢ € (0,1) there exists
N = N(t) such that

(7.13) —9)‘<1andR—n—A9<l, Vi> N(t).

o
It follows
AO=—|VO? - X(h—0)—-0<C.
As a consequence, we get R < C, and so |R| < C.
By (7.13), we have

AOZ2R—-n—-1>-C.

Thus
(7.14) VA2 = —X(h—0)—0— A0 <C.
Again by (7.13), we prove that |Vh| < C. O

By Lemma 7.1 and the scalar curvature estimate in Lemma 7.4, we see
that for any ¢t € (0,1) there exists an integer N = N(t) such that the
Sobolev constant Cy of g¢ is uniformly bounded for any i > N. Then
by the gradient estimate of Ricci potentials in Lemma 7.4, we can follow
the arguments in Lemma 3.1 and Lemma 3.3 (also see Remark 3.2 and
Remark 3.4) to get an analogy of Proposition 3.6.

PROPOSITION 7.5. — Let (M;,g%) be an almost Kéahler-Ricci solitons
sequence of Fano manifolds which satisty (7.1), (7.6) and (7.7). Then for
any t € (0,1) there exist integers N = N(t) such that for any i > N and
l > lp it holds,

1
2
(7.15) ||s||hi+r%||vs||hi <ClE (/ |s|2dvg§> , VseH' (M, Ky},
M; '

and

(7.16) / \u|,31<4z*1/ Do,
M. .

i i

Here v is a solution of (3.7), the norms of | - [,; are induced by gi, and the
integer ly and the uniform constant C are both independent of t.

By Proposition 7.5, we can follow the arguments in Proposition 5.1 and
Theorem 6.1 to prove

THEOREM 7.6. — Let (M;,g') be an almost Kéhler—Ricci solitons se-
quence of Fano manifolds and (M, goo) 1its Gromov—Hausdorff limit. Then
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there exists an integer lo > 0 which depending only on (M, g~ ) such that
for any integer | > 0 there exists a uniform constant ¢; > 0 with property:

(7.17) pue (M, g') > .
Proof. — We give a sketch of proof of Theorem 7.6.

Step 1. — By the rescaling method as in proof of Proposition 5.1 with
help of Proposition 7.5 and Theorem A.3, we have an analogy of Proposi-
tion 5.1: For any sequence of p; € M; which converge to x € M, there
exist two large number [, and ip, and a small time ¢, such that for any

1 2 1o there exists a holomorphic section s; € F(K;[l”,him) which satisfies

1
(7.18) / sy dv <1 and Isilyg (00) > 5,

i

where gf is a solution of (7.2) with the initial metric g* and hj_is the
hermitian metric of K/* induced by gi. of (7.2) at t =t,.

Step 2. — We can compare the C%-norm of holomorphic sections with
respect to the varying metrics g; evolved in the flow (7.2). In fact, we have

LEMMA 7.7. — Let (M, g) be a Fano manifold with wy € 2me, (M) which
satisfies (7.1), and g; a solution of (7.2) with the initial g. Then there exists
a small tog = to(l, A, D) such that the following is true: if s € T'(M, K]\_j) is
a holomorphic section with

(7.19) / s[5, dvg, =1
M

for some t < to which satisfies

(7.20) 8l (9) > € > 0,

then there is a holomorphic section s’ of K ;/[l which satisfies
|s'|n(p) = ¢ >0 and / |5’\,2ldvg </ .
M

Here hy and h are the hermitian metrics of KA}Z induced by ¢; and g,
respectively, and the constants ¢’ and ¢” depend only on ¢, I, A, A, Cy
and D.

Proof of Lemma 7.7. — Let ®; be a one-parameter subgroup gener-
ated by —X. Then ®;g; is a solution of (2.1). It is clear that (7.19)
also holds for ®fs, ®Fg:, ®7h; and the condition (7.20) is equivalent to
|} s|@xh, (P_¢(p)) = c. Since the Green functions associated to the metric
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¢ is bounded below under the condition (i) of (7.1) (cf. [3], [16]), we can
follow the argument in Lemma 6.2 for the metrics ®;g; to obtain
B sln(@-u(p)) > and [ |0fsf dvy < ¢,
M

where the constant ¢ depends only on ¢,l, A, A and D. Let s’ = ®}s. Then
by the gradient estimate of |Vs'| < C(I, A, D, Cy, A), we have

[s'[n(p) = ['[n(®—i(p)) — C(A, D, Co, A)At > .

This proves Lemma 7.7. O

Step 3. — By using the covering argument as in Theorem 6.1
together with the results in Step 1 and Step 2, we can finish the proof
of Theorem 7.6. g

8. Proof of Corollary 1.4

In this section, for simplicity, we just give a proof of Corollary 1.4 in case
of almost Kéhler-Einstein metrics sequences (M;, g*). We have known that
the partial C%-estimate holds for (M;, ¢*),

(8.1) p(M;,g') = e > 0,
for some integer [. Then, as an application of (8.1), we have
(82)  H(M, Ky € HO (M, K"~ @ HO(ML K ),

where m > [(n+2+ [A?]) is any integer and the constant —A? is a uniform
lower bound of Ricci curvature of (M;, ¢g°) (cf. [14, Proposition 7])()
We need a strong version of (8.1) as follows.

LEMMA 8.1. — Let x,y € My, be two different points and p; — x,q; —
y two sequenecs, where p;,q; € M;. Then there exist { = {(n,A, D, x,y),
which is a multiple of |, and two sections s, s, € H°(M;, KA}f) such that

(83) sz (pi)

Proof. — As in the proof of Proposition 5.1, we can choose two compact
sets V(z;07), V(y; 6) in C, and Cy, respectively, such that ¢;01;(V (z; 07))
and ¢; o 1;(V(y;6Y)) are disjoint as long as j and i are large enough.
Let v¥, 0%, st € I‘(MZ,K]\}ZT) and vf,o%sz € F(Mi,K]\_/[li“) be sections
associated x and y, constructed there respectively. We may assume that

hi = |Sy(qi)|ln, =1 and  s;(q;) = sy(p;) =0, Vi<l

() There is a generalization of (8.2) under the Bakry—Eméry Ricci curvature condition
in Appendix.
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l, = l, = ¢ for a multiple of I. Moreover, by the C’-estimate of of in
V(x;6%) in (5.6), we see that [s}(g;)| is small. Similarly, |s} (p;)| is also
small. Now we define holomorphic sections

g (@) S Sylpi)
8.4 =S — — v and § = s — = ..
( ) Sz Sz S;j (qz) Sy an Sy Sy Salv (pz) S

satisfy (8.3). O

By Lemma 8.1, we prove

PROPOSITION 8.2. — Let {(M;,g")} be a sequence of Fano manifolds
with Ricci bounded from below and diameter bounded from above, and
(M, goo) its limit in Gromov—Hausdorfl topology. Suppose that (8.1)
and (8.3) in Lemma 8.1 hold. Then M is homeomorphic to an algebraic
variety.

Proof. — By (8.1), for any k, we can define holomorphisms
Ty,i : M; — CPN,
where N + 1 = dim HO(M;, K3 *') is constant if i is large enough. Since
T,; is uniformly Lipschitz by (3.6), we get a limit map
Tht o0 : Moo — CPN.

On the other hand, the images Wikl of T} ; have a chow limit Wk which
coincides with the image of the map T} .. Thus T} maps M., onto
Wkt = Tkt 00(Ms). We claim that T(n+2+[A2])1,00 18 injective, so the propo-
sition is proved.

By Lemma 8.3, for any z,y € M, there are p; — = and ¢; — y, and

Suy 8y € HY (Moo, K]T/[l:ll) for some k; such that

(8.5) [s2n;(Pi) = [8yln: (¢:)] = 1 and s4(qi) = sy(pi) = 0.
This means Tk, 1,00(%) # Tky1,00(y). We further show that

(8.6) Tin+241A2)1,00 () 7# T(n24102])1,00 (V)

In fact, if (8.6) is not true, it is easy to see Tj o0 (z) = Tj,00(y) for any
i <n+ 2+ [A?]. Then by (8.2), it follows

Thi,oo () = Thi,oo(y), VK,

which is contradiction with (8.5). Thus (8.6) is true. Hence T\, 24(a2])1,00
must be injective. 0
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Proof of Corollary 1.4. — By the Gromov compactness theorem, there
exists a subsequence {(M;,,g")} of {(M;,g")}, which converges to (M,
Joo)- Then (i) and (ii) in Corollary 1.4 follow from a generalized Cheeger—
Colding-Tian compactness theorem for almost Kéhler—Einstein metrics se-
quence [26] ( or almost Kéhler—Ricci solitons sequence [31]). Thus it suffices
to prove the part (iii). By Proposition 8.2, we know that M, is homomor-
phic to an algebraic variety W*o! where ky = n+2+[A2]. We further show
that W0l is a log terminal Q-Fano variety.

Let HO(MomKA}’iSl) be a space of bounded holomorphic sections of
Kﬁkol with an induced hermitian metric by g.,. Then for any compact
set K C R C M, we know that there are txr > 0 and K; C M; such
that (K, g:(tk)) converge to (K, goo) smoothly. Thus by the argument in
Proposition 5.1 and Lemma 6.2, we can identify H°(M,, Kﬂi’l) with the
limit of H°(M;, K;/[kol) But, from the proof in Proposition 8.2, the later is
the same as HO(W*! Ocpn(1)). This implies that M., is homeomorphic
to the normalization of W*o! since the codimension of singularities of 1¥/*o!
is at least 2 (cf. [25] and [9]). Hence W* is normal. By [1], it remains to
prove that Wko! is a Q-Fano variety.

Let S = Sing(Mu.), S = Thy1.00(S), and let W, C S be the singular set
of Wkl Then both W, and & lie in a subvariety of Wl with codimension
at least 2. Thus it suffices to prove that W, = S since (W0 O¢pn (1)) =
K I/_V]z(z)l’\ & In the following, we give a proof for the general limit Kéhler—Ricci
soliton (M, goo) in Section 7 by using PDE method as in [9]. Namely, g0
satisfies an equation,

(8'7) Ric(goc) —Joo — Lx. Goo =0, in M \Sa

where X, is the limit holomorphic vector field of (M;, X;) on M \S [31].

On contrary, we suppose that W # S. Then there exists some z € S such
that p = Thy1.00(z) € WHI\ W, a smooth point in W*o!. Thus there exists a
small ball B around p in W¥o! with the standard holomorphic coordinates
such that the induced Kahler form wy = I%Olngs by the Fubini-Study
metric ggg of the projective space is smooth on B. We may assume that
wo = v/—100v for some Kahler potential v on B.

Let poo be the limit of py,;(M;, g°) (perhaps replaced by a subsequence of
Prot (M, g")) on (Moo \' S, goo). Then poe and |Vpsoly,, are both uniformly
bounded since py,i(M;, g*) and |V pryi(M;, g)|,: are all uniformly bounded
by (3.6). Clearly, po satisfies

Wy, = wWo + V—199pss, in W\ S,
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Let u = v 4 poo- Then by (8.7), we see that u satisfies
V/—109(log det(u;;) + Xoo(u) +u) =0, in B\ S.

It follows
(8.8) log det(u;5) + Xeo(u) +u = const., in B\ S.

We claim that there exists a uniform C such that
(8.9) C™ 05 <uz <Cész in B\S.
Since the basis in H°(M, K]T/I’zgl), which gives the embedding Ty, 00, is
uniformly C'-bounded, we have

wo € Cwy, in M.
On the other hand, by (7.14),
| Xoo (oo )| < [ Xoolgoo [VPolge <O, in M.

Then Xo(u) is uniformly bounded. Thus by (8.8), we see that det(u;;) is
uniformly positive and bounded. This implies (8.9).

By the above claim, we can apply the following lemma to show that u is
a smooth function in a small neighborhood of p. But this is impossible by
x € S. Hence W*o! must be a Q-Fano variety. a

LEMMA 8.3. — Let u be a smooth solution of (8.8) in B\ S, where B
is a ball in the euclidean space in C" and S is a closed subset in C" with
real Hausdroff dimension less than 2n — 1. Suppose that u satisfies (8.9).
Then u can be extended to a smooth function on iB.

Proof. — By the Schaulder estimate for the equation (8.8), it suffices to
get a C%“-regularity of u in iB. We first do the C''-!-estimate.
For any 0 < e < % and any unit vector v, we let the difference quotient

u(x + ev) + u(x — ev) — 2u(x) .

W= We = 5

€
Then by the convexity of log det, we get from (8.8),

( + ev) + g(z — ev) — 2g(x)

(8.10) uﬁwi; > 97 3 )

€

where g = —u — X (u). Denote (aqg) to be the 2n x 2n matrix of Rie-

mannian metric of go, and (a®?) = det(as,)(aap) . It is clear that (8.10)

is equivalent to

h(z + ev) — h(x)
€

(8.11) (aapwp)a = 1(z) + , in %B\&
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where | = f(z 4 ev) LEED=@ 1y — o f and f = LBZ9@=w) Note that
Xoo can be extended to a holomorphic vector field on B. Then by (8.9), w
can be regarded as a weak sub-solution in (8.11) in whole 2 B. Thus by the
L*>-estimate arising from the Moser iteration, we have,

B12) supwd) < Cllwd g + My ) + M)

where C' depends only on (ang), p > 1 and ¢ > 2n. In fact, by Theorem 8.17
in [10], the estimate (8.12) holds for sub-solution w as follows,

(aaﬂwg)a > 1+ <v,Dh>.

But Theorem 8.17 is also true when the term < v, Dh > is replaced by the
difference quotient M

Since g is uniformly Lipschitz in B\ 3, l,h are L*°-functions in B. On
the other hand, by (8.9), u € W*P($B) for any p > 1, and 50 |we| s (3 p) is
uniformly bounded. Thus the (8.12) implies that w, is uniformly bounded
above. As a consequence, C'!-derivative 1, is uniformly bounded above.
By (8.9), we can also get a uniform lower bound of u,,. Hence C**-norm
of w is uniformly bounded in %B.

Next to get C?®-estimate of u in (8.8), we can apply Evans-Krylov
theorem, Theorem 17.14 in [10] to C*!-solution of (8.8) in 3B directly.
This is because (8.8) is strictly elliptic in B and —u — X (u) is Lipschitz.
Thus the lemma is proved. g

9. Conclusion

In the proofs of Theorem 6.1 and Theorem 7.6, the constants ¢; in the
estimates (6.1) and (7.6) may depend on the limit (M, goo ). In this section,
we show that ¢; just depends on n,ly and [, and the geometric uniform
constants A and D in (i) of (3.10), or the constants A, D, Cy and B in (7.1)
and (iii) of (7.6). Thus we complete the proof of Theorem 1.3. For simplicity,
we just consider the case of almost Kéhler—Einstein Fano manifolds below.

Set a class of Kahler metrics on Fano manifolds by

Kap={(M",g) | wy € 2me1 (M), Ric(g) = —(n — 1)A?, diam(M, g) < D}.
It is known that KCs p is precompact in Gromov-Hausdorff topology. More-
over, by Cheeger—Colding theory in [4], any Gromov—Hausdorff limit M,
in Kx,p contains singularities with codimension at least 2 and each tangent

cone at x € M, is a metric cone C, which also contains singularities with
codimension at least 2.
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Let K} j, be asubset of K, p such that #2"~*(Sing(C,)) = 0 for any = €
M, where M, is any Gromov—Hausdorff limit in K} ,,. Then according
to the proofs in Proposition 5.1 and Theorem 6.1, we have

THEOREM 9.1. — Let (M,g) € K} ;, and g; a solution of (2.1) with
the initial metric g. Then there exist a small number § = 6(A, D,n) and a
large integer ly = lo(n, A, D) such that the following is true: if g satisfies

(9.1) //|Rt—n|dvgtdt

then for any integer | there exists a uniform constant ¢ = c¢(n,l, A, D) > 0
such that

(9.2) pu,(M,g) = ¢

Proof. — By Theorem 6.1, we see that for any Y € K%’D, there exist a
small number dy > 0, a large integer Iy and a uniform constant cy > 0
such that if M € Ky p satisfies

1
dan((M,9), (Vo)) <oy, [ [ 1Re=nldv, de <o,
0 M

then

piy (M, g) > cy
Since K4 p is compact, we can cover it by finite balls By, (dy;)(1 < i < N)
in Gromov—Hausdorfl topology. Putting Iy = Illy,, § = min{dy,} and ¢ =
min{cy, }. Then we get (9.2) for I =1, if (M, g) satisfies (9.1). (9.2) is also
true for general [ as in the proof of Theorem 6.1. ]

Theorem 1.3 follows from Theorem 9.1.

Appendix A.

In this appendix, we first use Siu’s lemma to generalize the finite gener-
ation formula (8.2) under the Bakry-Emery Ricci curvature condition (i)
n (7.1), then we recall a version of Perelman’s pseudolocality theorem with
the condition (ii) in (7.1).

The following lemma can be found in [20].

LEMMA A.1. — Let (M™,g) be a compact complex manifold, G a holo-
morphic line bundle, E a holomorphic line bundle with a hermitian metric
e~% whose Ricci curvature is positive. Let {s; }1<i<p be a basis of HO(M, G)
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and |s|* = XY_,|s;|%. Then for any f € H*(M,(n +k+ 1)G + E + Kp)

which satisfies
|f|Pe™
/M [ [2(r R D) dvg < +oo,

there are some h; € H*(M,(n + k)G + E + Kyy) (k > 1) such that f =
¥P  hj ® s; and each h; satisfies

hj|?e¥ k Zem¥
/ | J|e dvg<n+ / |f|€ dVg
o |s20FR) k Jar |s20HRED
PROPOSITION A.2. — Let (M, g) be a Kdhler manifold with
Ric(g) + Hessu > —Clg,

where X = Vzu is a ho]omorphjc vector field and |u| < A. Assume that
(A1) > p(M,g) > ¢ >0

for some | € N. Then for any s € H*(M, K;;™) withm > (n+2)l+C + 1,
there are u; € H°(M, K;jm_l)) such that s = SN ju; ® s;, where {s;} is
an orthonormal basis of HO(M, K};}). Moreover, each u; satisfies

42 [ ubeiavy < G4 DA [ e du,.
M
Proof. — Putting L = K;;' and m—[C] -1 = (n+k+1)l+7r (0 < r < 1),
we decompose mL as
mL=mn+k+1)(L)+(m—(Mn+k+ 1)L - Ky)+ K.
Let h and wy be two hermitian metrics on L such that
O(L,h) = g, O(L, ) = Ric(g).

Denote the line bundle (m — (n + k + 1)I)L — Kj; by E. Then hy =
@M= (kD @ o—u @ wy is a hermitian metric on E. It is easy to see

O(E,h1) = (m — (n+k + 1))w,y + Ric(g) + vV—100u > w,

Now applying the above lemma to G = [L, s;, £ and f = s, we see that
there are u; € HY(M, (n + k)G + E + K;) such that

/ |ui|i®(n+k)z®h1 v < n+k |S|i®(n+k+l)1®hl q
M (Bolsi i@z)n+k Tk M (Bolsi i@l)"+k+1

The above is equivalent to

|ui|}2l®m,—l _u n+k / |5|i®m _
—t e “dv, < e “dvy,.
/M (Zﬁ\;obi i@l)n+k Ik M (sz'vzo‘si|;21®l)n+k+l I
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By (A.1), it follows
1 2 n+ k 2
DAtk /M [wilhom-1 dvy < T /M [8[hom dvg,
which implies (A.2) immediately. O
The following Perelman version of pseudolocality theorem for modified
Kéhler—Ricci flow (7.2) is proved in [31]. The result is an analogy of The-
orem 11.2 in [18], Proposition 3.1 in [26] for Ricci flow.

THEOREM A.3. — For any a,r € [0,1], there exist T = 7(n,a), n =
n(n,a), € = e(n,a), § = §(n, a), such that if g(-,t) = g; (0 <t < (er)?) is
a solution of (7.2) whose initial metric g(-,0) = go satisfies

(i) Ric(go) + Lxgo = —(2n — 1)r—272g,
(i) [X1go (z) <771,
(iii) vol(Bg(r, g0)) = (1 — 8)canr?™,
where cy,, is the volume of unit ball in R?", then for any x € By(er, go) and
t € (0, (er)?], we have

(A.3) |Rm(z, )| < at™ + (er) 2,

Moreover,

(A.4) vol(B, (V1)) = w(n)t=.
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