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RECONSTRUCTION FORMULAS FOR X-RAY
TRANSFORMS IN NEGATIVE CURVATURE

by Colin GUILLARMOU & François MONARD (*)

Abstract. — We give reconstruction formulas inverting the geodesic X-ray
transform over functions (call it I0) and divergence-free 1-forms on surfaces with
negative curvature and strictly convex boundary. These formulas generalize for-
mulas by L. Pestov and G. Uhlmann previously established for simple surfaces,
to cases allowing geodesics with infinite length. Such formulas take the form of
Fredholm equations, where the analysis of error operators requires deriving new
estimates for the normal operator Π0 = I∗

0 I0. Numerical examples are provided at
the end.
Résumé. — Nous dérivons des formules d’inversion pour la transformée Rayons

X géodésique de fonctions (appellée I0) et 1-formes à divergence nulle, définie sur
des surfaces à courbure negative et bord convexe. Ces formules généralisent celles de
L. Pestov et G. Uhlmann dans [28] (valides pour le cas de surfaces dites « simples »)
à des cas autorisant des géodésiques captées (i.e., de longueur infinie). Les formules
prennent la forme d’équations de Fredholm, dans lesquelles l’analyse des opérateurs
d’erreur requiert la dérivation de nouvelles estimées de continuité pour l’operateur
normal Π = I∗

0 I0. Des exemples numériques de reconstructions sont fournis en
dernière section.

1. Introduction

For a Riemannian metric g on a manifoldM with strictly convex bound-
ary ∂M , the X-ray transform I0f of a function f ∈ C0(M) is the collection
of integrals over all finite length geodesics with endpoints on ∂M . For a
domain in R2 equipped with the Euclidean metric, this is nothing more
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than the Radon transform. A natural inverse problem is to recover f from
I0f , ie. to find an inversion procedure for I0. In the Euclidean case, Radon
found an inversion formula [30], and this has been extended to hyperbolic
spaces by Helgason [14] and Berenstein–Tarabusi [3].
This problem has been studied more generally for simple metrics, which

are metrics with no conjugate points and such that each geodesic has finite
length. Let SM = {(x, v) ∈ TM ; |v|gx = 1} be the unit tangent bundle of
M and π0 : SM → M the canonical projection (x, v) 7→ x; if ν denotes
the inward unit pointing vector field to ∂M , we define ∂∓SM = {(x, v) ∈
SM ;±〈v, ν〉g > 0} the inward (-) and outward (+) boundaries. Then if ϕt
denotes the geodesic flow on SM at time t and if g is simple, we can view
I0 as the map

(1.1) I0 : C0(M)→ C0(∂−SM), I0f(x, v) =
∫ `(x,v)

0
f(π0(ϕt(x, v)))dt

where `(x, v) is the length of the geodesic π0(ϕ[0,`(x,v)](x, v)) relating bound-
ary points of M . The injectivity of I0 for simple metrics has been proved
by Mukhometov [24] and Anikonov [2] (see also the book by Sharafutdi-
nov [31]). More recently, Pestov–Uhlmann [28] gave an approximate inver-
sion formula in dimension 2 for simple metrics, which is exact when the
curvature of g is constant. Krishnan [17] then showed that the Pestov–
Uhlmann formula can be made exact in a small enough C3-neighborhood
of a given simple metric g0 with constant curvature, but the bound is not
explicit and depends for instance on the diameter of (M, g0). The Pestov–
Uhlmann approach, exploiting the interplay between transport equations
on SM and the fiberwise Hilbert transform, was used by the second author
to derive further inversion formulas for certain types of weighted X-ray
transforms on simple surfaces [22, 23].
Manifolds with geodesics having infinite length are called manifolds with

trapping. For instance any negatively curved Riemannian manifold with
strictly convex boundary which have non contractible loops have closed
geodesics and thus geodesics with infinite lengths. In general we call Γ± ⊂
SM the set of points (x, v) such that ϕ∓t(x, v) belongs to the interior SM◦
of SM for all t > 0, which means that the geodesic ∪t>0π0(ϕ∓t(x, v)) has
infinite length. The trapped set K ⊂ SM◦ is defined by Γ− ∩ Γ+ and
consists of geodesics never touching the boundary. When g has negative
curvature, K is a hyperbolic set for the flow in the sense of (2.2) and g has
no conjugate points. In the recent work [9], the first author proved that
for a class of manifolds including those with negative curvature (see (2.1)
for the precise assumptions), the X-ray transform I0f can be defined by

ANNALES DE L’INSTITUT FOURIER
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the expression (1.1) outside Γ− ∩ ∂−SM and I0 extends as a bounded and
injective operator

I0 : Lp(M)→ L2(∂−SM, dµν), ∀p > 2,

where dµν is some smooth Lebesgue type measure on ∂−SM multiplied by
a weight vanishing on S∂M ⊂ ∂SM (see (2.3)). In fact, the same result
holds as a map L2(M)→ L2(∂SM) ⊂ L2(∂−SM, dµν) by the boundedness
proved in Lemma 2.17 below. For f ∈ L2(SM), the odd extension of I0f
is defined as the L2(SM) element

Iod
0 f(x, v) :=

{
I0f(x, v), (x, v) ∈ ∂−SM
−I0f(x,−v), (x, v) ∈ ∂+SM.

Similarly, we can integrate 1-forms along geodesics and we can define the
X-ray transform on 1-forms by

I1f(x, v) :=
∫ `(x,v)

0
(π∗1f)(ϕt(x, v))dt, (x, v) ∈ ∂−SM \ Γ−

where π∗1 : C∞(M,T ∗M) → C∞(SM) is defined by π∗1f(x, v) = f(x)(v),
this also extends as a bounded operator I1 : L2(M,T ∗M)→ L2(∂−SM) ⊂
L2(∂−SM, dµν) which is injective on the space of divergence free forms. We
let I∗1 be the adjoint operator when I1 is viewed as a map L2(M,T ∗M)→
L2(∂−SM, dµν).

To state our result we need to define two more operators. Let H be the
Hilbert transform in the fibers of ∂SM (i.e. multiplication by −i sign(k)
on the k-th Fourier component in the fiber, with sign(0) := 0), and let
Sg : L2(∂−SM, dµν) → L2(∂+SM, dµν) be the scattering operator of the
flow, defined by

Sgf(x, v) := f(ϕ−`(x,v)(x, v)), (x, v) /∈ Γ+.

Then we have the following approximate inversion formula extending the
Pestov–Uhlmann formula to the setting of manifolds with trapping.

Theorem 1.1. — Let (M, g) be a Riemannian surface with strictly con-
vex boundary and assume that the trapped set K for the flow is hyperbolic,
that g has no conjugate points (these conditions are satisfied in negative
curvature). Then there exists an operator W : L2(M) → L2(M) with
smooth integral kernel such that for each f ∈ L2(M)

f +W 2f = − 1
4π ∗ dI

∗
1S−1

g (HIod
0 f)|∂+SM ,

where ∗ is the Hodge star operator, d is the exterior derivative and the
operators I1, H and Sg are defined just above.

TOME 67 (2017), FASCICULE 4
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We also have an inversion formula for divergence free 1-forms, see The-
orem 3.2. We next prove a upper bound on the L2 → L2 norm of W
in a neighborhood of constant negatively curved metrics, showing that
(Id +W 2) can be inverted by the Neumann series

∑∞
k=0(−1)kW 2k, and

thus providing an exact inversion formula for I0. In constant curvature, the
trapped setK is a fractal set with Hausdorff dimension dimHaus(K) ∈ [1, 3)
when K 6= ∅ (see [26, 32]).

Theorem 1.2. — Let (M, g0) be a manifold with strictly convex bound-
ary and constant negative curvature −κ0 and trapped set K, and let
δ = 1

2 (dimHaus(K) − 1) ∈ [0, 1). Then for each λ1, λ2 ∈ (0, 1) so that
1 > λ1λ2 > max(δ, 1

2 ), there is an explicit constant A(δ, λ1, λ2) > 0 de-
pending only on δ, λ1, λ2 such that for all metric g on M with strictly
convex boundary and Gauss curvature κ(x) satisfying

λ2
1g0 6 g 6 λ

−2
1 g0, κ(x) 6 −λ2

2κ0, |dκ|L∞ 6 A(δ, λ1, λ2)κ3/2
0

the remainder operator W obtained in Theorem 1.1 satisfies

||W ||L2(M,g)→L2(M,g) < 1,

and thus the inversion formula of Theorem 1.1 allows to recover f ∈ L2(M)
from I0f by a convergent series. When δ < 1/2, the constant A(δ, λ1, λ2)
does not depend on δ.

The constant A(δ, λ1, λ2) is given by A(δ, λ1, λ2) = 3λ4
1/(λ2C(δ, λ))

where 1−λ = λ1λ2 and C(δ, λ) is the constant given in A.3. This shows that
there is an explicit neighborhood of the space of constant curvature met-
rics where the inversion formula can be made exact. Even when K = ∅ the
result is new since our bounds on the size of the neighborhood of constant
curvature metrics is independent of the volume and the diameter of (M, g),
which was not the case in the previous works for simple metrics [17, 22].
To prove such a bound, we compute on convex co-compact hyperbolic sur-
faces an operator closely related to (Iλ0 )∗Iλ0 in terms of the Laplacian on
the surface, where Iλ0 is the X-ray transform with a constant attenuation
λ ∈ [0,min( 1

2 , 1 − δ)). This is done in the Appendix. Finally, we remark
that it is quite possible that Helgason type inversion for I0 on H2 could
be applied to deal with the case of constant curvature metrics (passing to
the universal cover), but that would involve checking that the inversion
formula applies to functions which are periodic by a discrete group, thus
not tending to 0 at infinity of H2, and in any case this would not work in
variable curvature, unlike our formula.

ANNALES DE L’INSTITUT FOURIER
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2. Preliminaries

2.1. Geometry of SM and geodesic flow

Let (M, g) be an oriented surface with strictly convex boundary and let
SM be its unit tangent bundle with canonical projection π0 : SM → M .
We will assume that

(1) g has no conjugate points
(2) K is a hyperbolic set for the flow

(2.1)

Notice that these assumptions are satisfied if g has negative curvature,
see [9]. We denote by X the geodesic vector field on SM and ϕt its flow at
time t. Recall that hyperbolicity of the flow means that there is a continu-
ous, flow-invariant, decomposition on K

∀y ∈ K, Ty(SM) = RX(y)⊕ Es(y)⊕ Eu(y)

where Es(y) and Eu(y) are the stable and unstable subspaces satisfying for
each y ∈ K

(2.2)
||dϕt(y)w|| 6 Ce−γ|t|||w||, ∀t > 0,∀w ∈ Es(y),

||dϕt(y)w|| 6 Ce−γ|t|||w||, ∀t < 0,∀w ∈ Eu(y),

for some uniform C, γ > 0. Let V be the vertical vector field on SM defined
by V f(x, v) = ∂θ(f(Rθ(x, v)))|θ=0 where Rθ(x, v) is the +θ rotation in the
fibers of SM . Locally, in isothermal coordinates (x1, x2) on M , the metric
can be written as g = e2φ(dx2

1 + dx2
2) for some smooth function φ, we

have associated coordinates (x1, x2, θ) on SM if θ ∈ S1 parametrizes the
fibers elements by v = e−φ(cos(θ)∂x1 + sin(θ)∂x2); in these coordinates
V is simply given by ∂θ. The tangent space TSM of SM is spanned by
the vector fields X,V,X⊥ where X⊥ := [X,V ]; the vectors X,X⊥ span the
horizontal space H, while V spans the vertical space V in TSM . The Sasaki
metric G on SM is the metric such that (X,X⊥, V ) is orthonormal. The
Liouville measure µ on SM is the Riemannian measure of the metric G
and we denote by µ∂SM the measure induced by G on the boundary ∂SM
of SM . We define Lp(SM) and Lp(∂SM) the Lp spaces with respect to µ
and µ∂SM . There is another natural measure µν on ∂SM which is given
by

(2.3) dµν(x, v) := |〈v, ν〉g| dµ∂SM (x, v).

TOME 67 (2017), FASCICULE 4
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where ν is the inward pointing normal vector field to ∂M . Let us also define
the incoming (-), outgoing (+) and glancing (0) boundaries of SM

∂∓SM := {(x, v) ∈ ∂SM ;±〈ν, v〉g > 0},
∂0SM := {(x, v) ∈ ∂SM ; 〈ν, v〉g = 0}.

Define (Me, g) to be a small extension of M with no conjugate points
and with strictly convex boundary, and so that each geodesic with initial
point (x, v) ∈ ∂+SM ∪ ∂0SM goes in finite time to ∂SMe; the existence of
Me is proved in Section 2.1 and Lemma 2.3 of [9]. We keep the notation X
for the vector field of the geodesic flow on SMe. The Liouville measure µ
extends to SMe. For each point (x, v) ∈ SM , define the time of escape of
SM in positive (+) and negative (-) time:

(2.4)
`+(x, v) = sup {t > 0;ϕt(x, v) ∈ SM} ⊂ [0,+∞],
`−(x, v) = inf {t 6 0;ϕt(x, v) ∈ SM} ⊂ [−∞, 0]

and the incoming (-) and outgoing (+) tails are defined by

Γ− = {(x, v) ∈ SM ; `+(x, v) =∞},
Γ+ = {(x, v) ∈ SM ; `−(x, v) = −∞}.

We extend the definition of Γ± to (x, v) ∈ SMe. This produces two closed
sets in SMe which contain the initial Γ±, so we keep the same notation
for both sets in SM or SMe. The trapped set is K = Γ− ∩ Γ+ ⊂ SM◦

and is invariant by the flow. We can define the extended stable bundle
E− ⊂ TΓ−SMe over Γ− satisfying E−|K = Es and

∀y ∈ Γ−, ∀t > 0, ∀w ∈ E−(y), ||dϕt(y)w|| 6 Ce−γ|t|||w||

for some uniform C, γ > 0; the extended unstable bundle E+ over Γ+ is
defined similarly by taking negative times instead of t > 0. The bundles
E∗− ⊂ T ∗Γ−SMe and E∗+ ⊂ T ∗Γ+

SMe are defined by

(2.5) E∗−(E− ⊕ RX) = 0, E∗+(E+ ⊕ RX) = 0.

It follows from [5] that under the assumptions (2.1) we have (see [9, Propo-
sition 2.4] for details)

Volµ(Γ− ∪ Γ+) = 0, Volµν (∂SM ∩ (Γ− ∪ Γ+)) = 0.

ANNALES DE L’INSTITUT FOURIER
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2.2. Hilbert transform and Pestov–Uhlmann relation

Following [11], there is an orthogonal decomposition corresponding to
Fourier series in the fibers

(2.6) L2(SMe) =
⊕
k∈Z

Ωk(Me), with V wk = ikwk if wk ∈ Ωk(Me)

where Ωk is the space of L2 sections of a complex line bundle over M◦e .
Similarly, one has a decomposition on ∂SM

(2.7) L2(∂SM) =
⊕
k∈Z

Ωk(∂SM), with V ωk = ikωk if ωk ∈ Ωk(∂SM)

using Fourier analysis in the fibers of the circle bundle. There is a canonical
map

π∗m : C∞(Me,⊗mS T ∗Me)→ C∞(SMe), (π∗mu)(x, v) := u(x)(⊗mv)

and in particular π∗0 is just the pull-back by the projection π0 : SMe →Me.
We define the dual map πm∗ on distributions C−∞(SM◦e ) by 〈πm∗u, f〉 =
〈u, π∗mf〉 where the distribution pairing is 〈u, ψ〉 =

∫
SMe

uψdµ when u ∈
L2(SM◦e ). We notice that Ωm ⊕ Ω−m = π∗mπm∗(L2(SMe)) and it is easily
checked that

w 7→ 1
2ππ

∗
0π0∗w, w 7→ 1

π
π∗1π1∗w

are the orthogonal projection from L2(SMe) to respectively Ω0 and Ω1 ⊕
Ω−1.
The Hilbert transform in the fibers is defined by using the decomposi-

tion (2.6):

H : C∞c (SM◦e )→ C∞c (SM◦e ), H

(∑
k∈Z

wk

)
:= −i

∑
k∈Z

sign(k)wk.

with sign(0) := 0 by convention. We can extend H to C−∞(SM◦e ) →
C−∞(SM◦e ) continuously by the expression

〈Hu,ψ〉 := −〈u,Hψ〉, ψ ∈ C∞c (SM◦e ).

Similarly, we define the Hilbert transform in the fibers on ∂SM

H∂ : C∞(∂SM)→ C∞(∂SM), H∂(
∑
k∈Z

ωk) = −i
∑
k∈Z

sign(k)ωk

and its extension to distributions as for SMe. We note that H extends
as a bounded operator on L2(SMe) and H∂ as a bounded operator on
L2(∂SM). For smooth w ∈ C∞c (SM◦e ) we have that

(2.8) (Hw)|∂SM = H∂ ω, with ω := w|∂SM

TOME 67 (2017), FASCICULE 4
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and the identity extends by continuity to the space of distributions in
SM◦e with wave-front set disjoint from N∗(∂SM) since, by [15, Theo-
rem 8.2.4], the restriction map C∞(SM◦e )→ C∞(∂SM) obtained by pull-
back through the inclusion map ι : ∂SM → SM◦e extends continuously
to the space of distributions on SM◦e with wavefront set not intersecting
N∗(∂SM). The following relation between Hilbert transform and flow was
proved by Pestov–Uhlmann [29, Theorem 1.5] (it holds on any surface):

(2.9) if w ∈ C∞(SM◦e ), [H,X]w = X⊥w0 + (X⊥w)0

where w0 := 1
2ππ

∗
0π0∗w for w ∈ C−∞(SM◦e ). We can use the odd/even

decomposition of distributions with respect to the involution A(x, v) =
(x,−v) on SMe, SM and ∂SM : for instance X maps odd distributions to
even distributions and conversely, H maps odd (resp. even) distributions
to odd (resp. even) distributions. We set Hevw := H(wev) and Hodw :=
H(wod). We write similarly H∂,ev and H∂,od for the Hilbert transform on
(open sets of) ∂SM and the relation (2.8) also holds with H∂,ev replacing
H∂ if w is even. Splitting (2.9) into odd and even parts, we obtain, for any
w ∈ C−∞(SM◦e ),

(2.10) HevXw −XHodw = (X⊥w)0, HodXw −XHevw = X⊥w0.

2.3. Boundary value problem and X-ray transform

For convenience, we extend Me to a larger manifold M̂ with boundary
and extend smoothly X to SM̂ in a way that the flow of X in SM̂ is
complete and for each y ∈ SM◦e , if ϕt0(y) ∈ ∂SMe for some t0 > 0, then
ϕt(y) ∈ SM̂ for all t > t0; we refer to [9, Section 2.1]. Let µ be the
Liouville measure onMe, which we extend smoothly to SM̂ in any fashion.
The invariance of Liouville measure by the flow in SMe is satisfied, ie.
LXµ = 0, so that X is formally skew-adjoint operator when acting on
C∞c (SM◦e ).

By [9, Section 4.2], under the assumptions (2.1), for each f ∈ C0(SM),
the boundary value problem

Xu = −f, u|∂+SM = 0

has a unique solution in L1(SM) ∩ C0(SM \ Γ−) given by u = R+f with

(2.11) R+f(x, v) :=
∫ ∞

0
f(ϕt(x, v))dt.

In this formula, we have extended f by 0 outside SM and we recall that
the flow ϕt is complete on SM̂ . The operator R+ : C0(SM) → L2(SM)

ANNALES DE L’INSTITUT FOURIER



X-RAY TRANSFORMS IN NEGATIVE CURVATURE 1361

defined by (2.11) is bounded and the expression (2.11) actually extends as
a bounded map C0(SMe) → L2(SMe) as well, see [9, Proposition 4.2]. It
has the following mapping properties

(2.12)

R+ : C∞(SM)→ C∞(SM \ (Γ− ∪ ∂0SM)),
R+ : C∞c (SM◦e )→ C∞(SMe \ Γ−)

and WF(R+f) ⊂ E∗− if f ∈ C∞c (SM◦e ),
R+ : Hs

0(SMe)→ H−s(SMe), ∀s ∈ (0, 1/2)

where E∗− is defined by (2.5).
Define the scattering map Sg by

Sg : ∂−SM \ Γ− → ∂+SM \ Γ+, Sg(x, v) := ϕ`+(x,v)(x, v)

By [9, Lemma 3.4] the following operator is unitary

(2.13) Sg : L2(∂−SM, dµν)→ L2(∂+SM, dµν), Sgω := ω ◦ S−1
g .

The X-ray transform I : C0(SM)→ C0(∂−SM \ Γ−) is defined by

(2.14) If := (R+f)|∂−SM\Γ− .

From [9, Lemma 5.1] and [9, Proposition 2.4], we have that, under the
assumptions (2.1), it extends as a bounded operator

I : Lp(SM)→ L2(∂−SM, dµν) ∀p > 2.

We denote by Iod : Lp(SM)→ L2(∂SM, dµν) its odd continuation defined
by

(2.15) Iodf(x, v) :=
{
If(x, v), (x, v) ∈ ∂−SM
−If(x,−v), (x, v) ∈ ∂+SM

and similarly we define the even continuation by Ievf(x, v) = If(x,−v)
for (x, v) ∈ ∂+SM . The operator I∗ : L2(∂−SM, dµν) → Lp

′(SM) for all
p′ < 2 is the adjoint of I, it is obtained as follows: for ω ∈ L2(∂−SM, dµν),
I∗ω is the unique L1 solution of

Xw = 0 (SM), w|∂−SM = ω.

By this we mean that w has an extension in a small neighborhood U of
SM \∂0SM as an invariant distribution and the restriction w|∂−SM makes
sense as a distribution since, by elliptic regularity, w has wave-front set
WF(w) ⊂ {ξ ∈ T ∗U ; ξ(X) = 0} which does not intersect the conormal
N∗(∂−SM), as RX⊕T∂−SM = TSM over ∂−SM . A consequence of this is
that the unique L1 solution of Xu = −F , u|∂+SM = ω with F ∈ C∞(SM)
and ω ∈ L2(∂+SM, dµν) is given by u = R+F + I∗S−1

g ω

TOME 67 (2017), FASCICULE 4
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Since it will be convenient to apply the Hilbert transform on L2(∂SM),
we first show

Lemma 2.1. — Under the assumptions (2.1), the X-ray transform is
bounded as a map

Iod : Lp(SM)→ L2(∂SM), ∀p > 2.

There exists ε > 0 small such that the following operator is bounded

1{|〈v,ν〉|<ε}I
od : L2(SM)→ L2(∂SM).

Proof. — It suffices to consider (Iodf)|∂−SM = If , as the part on ∂+SM

is clearly the same. By [9, Proposition 2.4], if we define

V (t) := Vol{(x, v) ∈ SM ; `+(x, v) > t},

there exists Q < 0 such that V (t) = O(eQt). This directly implies that for
all 1 6 p <∞ , we have `+ ∈ Lp(∂SM). By strict convexity of ∂M , there
is ε > 0 small such that if |〈ν, v〉| 6 ε, one has `+(x, v) 6 C|〈ν, v〉| for some
uniform C > 0, see [31, Lemma 4.1.2] for example. We then get

(2.16) (x, v) 7→ `+(x, v)
|〈ν, v〉|

∈ Lp(∂SM) for all p <∞.

Using Hölder inequality and Santaló’s formula, we get for f ∈ C∞(SM)
and p > 2, if 1/p′ + 1/p = 1 and r := p′(p− 1)/(p− 2)

‖If‖2L2(∂−SM)

6
∫
∂−SM

(∫ `+(y)

0
|f(ϕt(y))|pdt

)2
p

`+(y)
2
p′ dµ∂SM (y)

6
∫
∂−SM

(∫ `+(x,v)

0
|f(ϕt(x, v))|pdt|〈ν, v〉|

)2
p
`+(x, v)

2
p′

|〈ν, v〉|
2
p

dµ∂SM (x, v)

6

(∫
∂−SM

∫ `+(y)

0
|f(ϕt(y))|pdtdµν(y)

)2
p
(∫

∂−SM

∣∣∣∣`+(x, v)
〈ν, v〉

∣∣∣∣ 2r
p′

dµ∂SM

)1
r

6 C0‖f‖
2
p

Lp(SM)

where C0 <∞. This concludes the proof of the first statement. The bound-
edness of 1{|〈v,ν〉|<ε}Iod on L2 is direct from the proof above by taking
p = 2 and using `+(x, v) 6 C|〈v, ν〉| on ∂−SM if |〈v, ν〉| 6 ε for ε > 0 small
enough. �
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Finally the X-ray transform on functions I0 and on 1-forms I1 are defined
as the bounded operators, for any p > 2,

I0 := Iπ∗0 : Lp(M)→ L2(∂−SM, dµν),

I1 := Iπ∗1 : Lp(M ;T ∗M)→ L2(∂−SM, dµν).
(2.17)

and Iod
j = Iodπ∗j for j = 0, 1. In fact, we can show

Lemma 2.2. — Under the assumptions (2.1), the X-ray transform on
functions and on 1-forms are bounded as maps

Iod
0 : L2(M)→ L2(∂SM), Iev1 : L2(M ;T ∗M)→ L2(∂SM)

Proof. — The operators I∗0 I0 and I∗1 I1 extend to M◦e as smooth pseudo-
differential operators of order −1 by [9, Propositions 5.7 and 5.9], thus one
has by using the standard TT ∗ argument that I0 :L2(M)→L2(∂−SM, dµν)
and I1 : L2(M ;T ∗M) → L2(∂−SM, dµν) are bounded. This implies that
(1−1{|〈v,ν〉|<ε})I0 is bounded as a map L2(M)→ L2(∂−SM) for all ε > 0
fixed, and the same for (1− 1{|〈v,ν〉|<ε})I1. But we also have 1{|〈v,ν〉|<ε}I0
bounded as a map L2(M) → L2(∂−SM) if ε > 0 is small enough by
Lemma 2.1, and the same for 1{|〈v,ν〉|<ε}I1. The proof is complete. �

Notice however that when we will use the adjoints of I0 or I1, this will
be always adjoint with respect to the space L2(∂−SM, dµν).

3. The inversion formula for I0.

3.1. The inversion formula

Let us define the operator

(3.1) W := 1
2ππ0∗X⊥R+π

∗
0 : C∞c (M◦e )→ C−∞(M◦e ).

We start by proving the following

Proposition 3.1. — The operator W defined in (3.1) has a smooth
Schwartz kernel on M◦e ×M◦e . If the Gauss curvature κ(x) is a negative
constant, then W = 0.

Proof. — We decompose the operator R+ as R+ = R1
+ +R2

+ with

R1
+ :=

∫ ε

0
etXdt, R2

+ := eεXR+
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where ε > 0 is smaller than the radius of injectivity of the metric. By [6],
the Schwartz kernel of R+ is a distribution on SM◦e ×SM◦e with wavefront
set

(3.2) WF(R+) ⊂ N∗∆(SM◦e × SM◦e ) ∪ Ω− ∪ (E∗− × E∗+)

where E∗± are defined in (2.5), N∗∆(SM◦e × SM◦e ) is the conormal bundle
to the diagonal ∆(SM◦e × SM◦e ) of SM◦e × SM◦e and

Ω− := {(ϕ−t(y), (dϕ−t(y)−1)T ξ, y,−ξ) ∈ T ∗(SM◦e × SM◦e );
t > 0, ξ(X(y)) = 0}.

The wave-front set of the Schwartz kernel of eεX is

WF(eεX) ⊂ {(ϕ−ε(y), η, y,−dϕ−ε(y)T η);
y ∈ SM◦e , η ∈ T ∗ϕ−ε(y)(SM◦e ) \ {0}}

thus by the composition rule of wave-front sets given in [15,Theorem 8.2.14],

WF(eεXR+) ⊂{(ϕ−t(y), (dϕ−t(y)−1)T η, y,−η); t > ε, η(X(y)) = 0}
∪ (E∗− × E∗+)

∪ {(ϕ−ε(y), η, y,−dϕ−ε(y)T η); (y, η) ∈ T ∗(SM◦e ) \ {0}}.

Since a differential operator does not increase wave-front sets, we deduce
that

WF(X⊥eεXR+)⊂{(ϕ−t(y), (dϕ−t(y)−1)T η, y,−η); t > ε, η(X(y)) = 0}
∪ (E∗− × E∗+)

∪ {(ϕ−ε(y), η, y,−dϕ−ε(y)T η); (y, η) ∈ T ∗(SM◦e )\{0}}.

(3.3)

The Schwartz kernel of π0∗X⊥e
εXR+π

∗
0 is given by (π0⊗π0)∗K if K is the

kernel of X⊥eεXR+. Using (3.3), the same exact arguments as in Proposi-
tion 5.7 of [9] show that the push-forward (π0 ⊗ π0)∗K is smooth outside
the submanifold {(x, x′) ∈ M◦e ×M◦e ; dg(x, x′) = ε} if g has no conjugate
points. We are reduced to analyzing W1 := π0∗X⊥R

1
+π
∗
0 and this is very

similar to the case of a simple metric studied in [28, Proposition 5.1]. We
denote by Y (x, v, t) the Jacobi field along the geodesic ∪t>0ϕt(x, v) sat-
isfying Y (x, v, 0) = 0 and ∇tY (x, v, 0) = Jv where J is the rotation of
+π/2 in the fibers of SM , and let Z(x, v, t) be the Jacobi field satisfying
Z(x, v, 0) = Jv and ∇tZ(x, v, 0) = 0. They satisfy

dπ0.dϕt(x, v).(X⊥, 0) = Z(x, v, t), dπ0.dϕt(x, v).(0, V ) = Y (x, v, t)
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where we used the splitting TSM = H⊕ V. The vector fields Z, Y satisfy

Z(x, v, t) = a(x, v, t)Jv(t), Y (x, v, t) = b(x, v, t)Jv(t), with

(3.4)
∂2
t a(x, v, t)+κ(x(t))a(x, v, t) = 0, ∂2

t b(x, v, t)+κ(x(t))b(x, v, t) = 0,
a(x, v, 0) = 1, ∂ta(x, v, 0) = 0, b(x, v, t) = 0, ∂tb(x, v, 0) = 1

if ϕt(x, v) = (x(t), v(t)) and κ is the Gaussian curvature. We can then write

W1f(x) =
∫
SxM

∫ ε

0
X⊥(f(π0(ϕt(x, v)))) dt dSx(v)

=
∫
SxM

∫ ε

0
df(x(t)).Z(x, v, t) dt dSx(v)

=
∫
SxM

∫ ε

0

a(x, v, t)
b(x, v, t) df(x(t)).Y (x, v, t) dt dSx(v)

W1f(x) = −
∫
SxM

∫ ε

0
V
(a(x, v, t)
b(x, v, t)

)
f(x(t)) dt dSx(v)

and using the change of variable expx : (t, v) 7→ y := π0(ϕt(x, v)) = x(t)
satisfying (expx)∗(b(x, v, t) dt dSx(v)) = dvolg(y), we deduce that the
Schwartz kernel of W1 is given by

(3.5) W1(x, y) = −1[0,ε](dg(x, y))
[ 1
b(x, v, t)V

(a(x, v, t)
b(x, v, t)

)]∣∣∣
tv=exp−1

x (y)
.

Clearly this kernel is smooth outside {(x, y); dg(x, y) = ε or x = y}. We
now study the singularity at x = y, which is equivalent to t = 0 in the
(x, t, v) coordinates. Using

∂3
t a(x, v, t) + dκx(t).v(t)a(x, v, t) + κ(x(t))∂ta(x, v, t) = 0

and the same for b, we make an expansion of a, b at t = 0

a(x, v, t) = 1− κ(x) t
2

2 − dκx(v) t
3

6 +O(t4),

b(x, v, t) = t− t3

6 κ(x) +O(t4).

Thus we get near t = 0

(3.6) F (x, v, t) := 1
b(x, v, t)V

(a(x, v, t)
b(x, v, t)

)
= O(t).

which shows that the kernel extends continuously to the diagonal. Let us
show that W1 extends smoothly to the diagonal x = y. For this, note that
for each x0 ∈ M◦e the function F (x, v, t) is smooth in the variable (x, v, t)
in Ux0× [0, ε] where Ux0 is a neighborhood of Sx0M in SM . Then it suffices
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to show that for each x the Taylor expansion at t = 0 of F (x, v, t) to any
order N ∈ N satisfies

(3.7) F (x, v, t) =
N∑
k=0

Fk(x)(⊗kv)tk +O(tN+1)

where Fk are smooth symmetric tensors of order k. For this purpose, we
have κ(x(t)) ∼

∑∞
k=0D

kκ(x)(⊗kv) t
k

k! as t→ 0 where D = S◦∇ is the sym-
metrized covariant derivative. Then, writing a(x, v, t) ∼

∑∞
k=0 ak(x; v)tk as

t→ 0, we get for each k > 0

ak+2(x; v) = −
∑
i+j=k

Diκ(x)(⊗iv)aj(x; v)
i!(k + 2)(k + 1) .

From this we deduce by a direct induction that ak(x; v) = ak(x)(⊗kv) is
the restriction of an element ak ∈ C∞(M ;⊗kST ∗M) to SM . The same
argument applies to b(x, v, t)/t. Therefore using that V (ck(x)(⊗kv)) =
kck(x)(Jv, v, . . . , v) if ck ∈ C∞(M ;⊗kST ∗M), we see that (3.7) has the de-
sired expansion, showing that W1 extends smoothly to the diagonal. Since
ε > 0 was arbitrary, we have that W1 has smooth kernel.
Let us show that W = 0 if κ < 0 is constant. For Re(λ) > C with C > 0

large, we define the operator W (λ) by

W (λ) := 1
2ππ0∗X⊥R+(λ)π∗0 , R+(λ)f =

∫ ∞
0

e−λtf ◦ ϕt dt.

Due to the exponential damping in t, it is easy to see that the operator
W (λ) : C∞c (M◦e ) → C0(M◦e ) is bounded if C > 0 is large enough. In [9] it
is shown that there exists δ > 0 such that R+(λ) : C∞c (M◦e )→ H−s(SM◦e )
admits an analytic extension to {Re(λ) > −δ} if s > 0 is large enough
depending on δ. Thus W (λ) also admits an analytic extension to the same
half-plane as a map C∞c (M◦e )→ H−s−1(SM◦e ), and we will show it vanishes
if κ is constant. Since the flow is assumed to have no conjugate points and
the trapped set is hyperbolic, there is a uniform lower bound |b(x, v, t)| >
ε > 0 for some ε > 0, and by using the explicit expression of a, b in terms
of e±

√
|κ|t, there exists C > 0 such that

|a(x, v, t)|+ |b(x, v, t)|+ |V (a(x, v, t))|+ |V (b(x, v, t))| 6 Ce
√
|κ||t|,

for all x, v, t. Using these estimates and reasoning like above, we have the
converging expression for each f ∈ C∞c (M◦e )

(3.8) W (λ)f(x) = − 1
2π

∫
SxM

∫ ∞
0

e−λtV
(a(x, v, t)
b(x, v, t)

)
f(x(t)) dt dSx(v)
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as a continuous map of x if Re(λ) > 2C. Now, by (3.4), the functions
a(x, v, t) and b(x, v, t) are constant in (x, v) if the curvature κ is constant,
thus W (λ)f = 0 for all f ∈ C∞c (SM◦e ). By analyticity in λ, it implies that
W = W (0) vanishes when κ is constant. �

Using that X∗⊥ = −X⊥ on C∞c (SM◦) and (R∗+u)(x, v) = −(R+u)(x,−v)
if u ∈ C∞c (SM◦) is odd with respect to A(x, v) = (x,−v), we obtain that
the L2-adjoint of W is given by

W ∗ = 1
2ππ0∗R+X⊥π

∗
0 .

Now, we can show that Pestov–Uhlmann inversion formula [28] works also
under our assumptions.

Theorem 3.2. — If (M, g) has strictly convex boundary and assump-
tions (2.1) hold, then the following identity holds for each f ∈ L2(M) and
h ∈ H1

0 (M)

f +W 2f = − 1
4π ∗ dI

∗
1S−1

g (HIod
0 f)|∂+SM ,(3.9)

h+ (W ∗)2h = − 1
4π I

∗
0S−1

g (HIev1 (∗dh))|∂+SM ,(3.10)

where W is the smoothing operator defined in Proposition 3.1, W ∗ is its
L2-adjoint, ∗ denotes the Hodge star operator on 1−forms and Sg is defined
by (2.13).

Proof. — We follow the proof of [28, Theorem 5.1]. First using (2.10) we
have as distribution on SM◦

(3.11) 0 = Hπ∗0f = HevXR+π
∗
0f = XHodR+π

∗
0f + π∗0Wf

for any f ∈ C∞c (M◦). Applying H to this identity, we get by (2.9)

0 = XH2(R+π
∗
0f)od + (X⊥HodR+π

∗
0f)0

= −X(R+π
∗
0f)od + (X⊥HodR+π

∗
0f)0

but since X(R+π
∗
0f)od = XR+π

∗
0f = −π∗0f as X maps odd functions to

even functions (and conversely), we obtain

(3.12) f = −(X⊥HodR+π
∗
0f)0.

The unique L1-solution of Xu = −F , u|∂+SM = ω with F ∈ C∞(SM)
and ω ∈ L2 (∂+ SM, dµν) is given by u = R+ F + I∗ S−1

g ω. But
S−1
g (HIod

0 f)|∂+SM ∈ L2(∂−SM, dµν) by Lemma 2.2 and (2.13), andWf ∈
C∞(M) by Proposition 3.1, we apply this to (3.11) and get

HodR+π
∗
0f = R+π

∗
0Wf + 1

2I
∗S−1

g (HIod
0 f)|∂+SM .
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Notice that we have used that (x, v) 7→ R+f(x,−v) vanishes on ∂+SM

since R+f = 0 on ∂−SM . Applying 1
2ππ0∗X⊥ we get

(X⊥HodR+π
∗
0f)0 = W 2f + 1

4ππ0∗X⊥I
∗S−1

g (HIod
0 f)|∂+SM

which gives (3.9) by using (3.12), the identity π1∗I
∗ = I∗1 and π0∗X⊥ =

∗dπ1∗. The extension to f ∈ Lp(M) for p > 2 is obtained by density and
boundedness of each of the operators in the formula on the correct spaces.
Notice that a priori ∗dI∗1S−1

g HIod
0 f ∈ H−1(M◦) if f ∈ L2(M) but (3.9)

actually shows it is in L2(M).
Next we prove the inversion formula for co-exact 1-forms. Let h ∈

C∞c (M◦), then since X⊥π∗0h is odd, we get

X(R+X⊥π
∗
0h)ev = −X⊥π∗0h

and applying H with (2.10), this gives

XH(R+X⊥π
∗
0h)ev = −HX⊥π∗0h−X⊥π∗0W ∗h = Xπ∗0h−X⊥π∗0W ∗h

by using that −H = V on Ω1 ⊕ Ω−1 and V X⊥ = X on Ω0. Here
H(R+X⊥π

∗
0h)ev belongs to L1(SM) ∩ C0(SM \ Γ−) and its restriction

to ∂SM is 1
2HI

ev
1 (∗dh) ∈ L2(∂SM) by using Lemma 2.17, thus

H(R+X⊥π
∗
0h)ev

= −R+Xπ
∗
0h+R+X⊥π

∗
0W
∗h+ 1

2I
∗S−1

g (HIev
1 (∗dh))|∂+SM

= π∗0h+R+X⊥π
∗
0W
∗h+ 1

2I
∗S−1

g (HIev
1 (∗dh))|∂+SM

We apply 1
2ππ0∗ and obtain

h+ (W ∗)2h = − 1
4π I

∗
0S−1

g (HIev
1 (∗dh))|∂+SM .

By density the same identity holds for h ∈ H1
0 (M). �

We notice that a divergence-free one-form u with Sobolev regularity
H2(M ;T ∗M) can be decomposed under the form u = ∗dh + w where
h ∈ H1

0 (M)∩H3(M) and w ∈ H2(M ;T ∗M) satisfies dw = 0 and d∗w = 0.
The formula (3.10) allows to recover a divergence-free 1-form ∗dh from its
X-ray transform, and the X-ray transform I1(w)(x, v) of w at (x, v) ∈
∂−SM \ Γ− is given purely in terms of the integral of w on a curve in ∂M
with endpoints x and π0(Sg(x, v)) and the homology class of the geodesic
π0(ϕ[0,`(x,v)](x, v)) in M , which is a known data.
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3.2. Estimates of the norm of the error term in negative
curvature

We now show that in pinched negative curvature the operator W has
small norm on Lp(M), allowing to invert Id +W 2 by Neumann series.
First, we have by [9, Section 5] that 1

2I
∗
0 I0 = π0∗R+π

∗
0 and since

(3.13) R+f(x, v) =
∫ `g(x,v)

0
π∗0f(ϕt(x, v))dt ∈ L1(SM)

by [9, Proposition 4.2] if f ∈ Lp(M) with p > 1, we see that the integral

I∗0 I0f(x) = 2
∫
SxM

∫ `g(x,v)

0
π∗0f(ϕt(x, v))dtdSx(v)

is defined for almost every x ∈ M if f ∈ Lp(M) with p > 1, by Fubini
theorem. In [9, Proposition 5.7], it is shown that I∗0 I0 is the restriction to
M of an elliptic pseudo-differential operator of order −1 on the extended
manifold M◦e , thus it maps Lp(M) to Lp(M) for each p ∈ [1,∞].

Proposition 3.3. — Let (M, g) be a surface with strictly convex
boundary and assume that the Gauss curvature κ ∈ C∞(M) of g is nega-
tive, with κ0 = minx∈M |κ(x)|. For each p ∈ [1,∞], the Lp → Lp norm of
W is bounded by

||W ||Lp→Lp 6
|dκ|L∞

3κ0
||I∗0 I0||Lp→Lp .

Proof. — Let a(x, v, t) and b(x, v, t) the functions defined by (3.4). If we
can prove that∣∣∣V (a(x, v, t)

b(x, v, t)

)∣∣∣ 6 C0, uniformly in (x, v, t),(3.14)

then the integral in (3.8) is convergent for almost every x when λ = 0, for
each f ∈ L2. We get in this case that for each f ∈ Lp(M) with p ∈ [2,∞]

||Wf ||Lp(M) 6 C0

(∫
M

∣∣∣ ∫ `(x,v)

0
|π∗0f(ϕt(x, v))|dtdSx(v)

∣∣∣pdx)1/p

= C0

2 ||I
∗
0 I0(|f |)||Lp(M).

We now prove (3.14). Clearly if κ 6 0, we have a(x, v, t) > 1 and b(x, v, t) >
0, and both are increasing in t. First, by Wronskian constancy, we get for
all t > 0 and (x, v) ∈ SM

∂t

(a(x, v, t)
b(x, v, t)

)
= −1
b2(x, v, t)
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To simplify notations, we will often drop the (x, v) dependence below. The
function r(s) := ḃ(s)/b(s) satisfies the Riccati equation ṙ(s) + r2(s) +
κ(x(s)) = 0 with r(s) > 0 and r(s) → +∞ as s → 0+. We claim that
r(s) > √κ0 for all s > 0: indeed if it were not the case, there is ε > 0 small
and s > 0 so that r2(s) = κ0 − ε. Let s0 > 0 be the first time so that this
happens, then ṙ(s0) = −κ(x(s0)) − r2(s0) > ε and thus r(s) < κ0 − ε for
all s < s0 close enough to s0, leading to a contradiction. We then get for
s > t > 0

(3.15) b(x, v, s) > b(x, v, t)e
√
κ0(s−t)

Notice that by Sturm comparison theorem, we also have for t > 0

(3.16) b(x, v, t) > 1
√
κ0

sinh(
√
κ0t).

Then, when (x, v) ∈ Γ−, c(x, v) := limt→+∞
a(x,v,t)
b(x,v,t) exists and is continuous

in (x, v), moreover for t > 0 we deduce from (3.15)

0 6 a(x, v, t)
b(x, v, t) − c(x, v) =

∫ ∞
t

1
b2(x, v, s)ds 6

1
2√κ0b2(x, v, t) .

In fact we have more generally the same estimate for all (x, v) ∈ SM◦: for
t ∈ (0, `(x, v)]

(3.17) 0 6 a(x, v, t)
b(x, v, t) − c(x, v) 6

∫ `(x,v)

t

1
b2(x, v, s)ds

where we have denoted c(x, v) := a(x,v,`(x,v))
b(x,v,`(x,v)) . Let us set B(x, v, t) =

V b(x, v, t) and A(x, v, t) = V a(x, v, t). We have

Ä(t) + κ(x(t))A(t) = −b(t)a(t)κ⊥(t), B̈(t) + κ(x(t))B(t) = −b2(t)κ⊥(t)

where κ⊥(t) = dκ(x(t)).Jv(t) and ϕt(x, v) = (x(t), v(t)). We notice that
κ⊥(t) = (X⊥π∗0κ)(ϕt(x, v)). By Duhamel formula, we obtain

A(t) = −
∫ t

0
(a(s)b(t)− a(t)b(s))a(s)b(s)κ⊥(s)ds,

B(t) = −
∫ t

0
(a(s)b(t)− a(t)b(s))b2(s)κ⊥(s)ds

which gives

(3.18) V
(a
b

)
(t) = − 1

b2(t)

∫ t

0
(a(s)b(t)− a(t)b(s))2b(s)κ⊥(s)ds.
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We want to give a bound on this quantity. We see that for `(x, v) > t >

s > 0,

(a(s)b(t)− a(t)b(s))2 6 b(t)2b(s)2
(∫ `(x,v)

s

1
b(u)2 du

)2
.

Combining with (3.18), we deduce the uniform pointwise estimates

(3.19)
∣∣∣V (a(t)

b(t)

)∣∣∣ 6 |dκ|L∞ ∫ t

0
b(s)3

(∫ `(x,v)

s

1
b(u)2 du

)2
ds.

Using (3.16) and (3.15), we obtain∣∣∣V (a(t)
b(t)

)∣∣∣ 6 |dκ|L∞
κ0

∫ ∞
0

e3s
(∫ ∞

s

e−
3
2u

√
sinh u

du
)2
ds

and the double integral is a finite constant which, after some calculation
turns out to be equal to 2/3. �

3.3. The norm of I∗0 I0

We will give an estimate in negative curvature of the norm of the operator

(3.20) Π0 := I∗0 I0 : Lp(M)→ Lp(M)

by considering the geometry in the universal cover. We let M̃ be the uni-
versal cover of M , equipped with the pull-back metric g̃ of g. Since g has
negative curvature, the manifold M̃ is a non-compact simply connected
manifold with boundary and the fundamental group Γ := π1(M) ofM acts
properly discontinuously on M̃ by isometries with respect to g̃. Denote by
πΓ : M̃ → M the covering map, and by abuse of notation we also call
πΓ : SM̃ → SM the covering map where SM̃ is the unit tangent bundle
of (M̃, g̃). Fix a fundamental domain F ⊂ M̃ for the action of Γ, then F
is compact since M is compact. If f ∈ Lp(M) with p ∈ (1,∞), let f̃ be its
lift to M̃ (which is Γ-automorphic), then we have for almost every x̃ ∈ F
and x := πΓ(x̃)

(3.21) Π0f(x) = 2
∫
SxM̃

∫ ˜̀+(x̃,̃v)

0
(π∗0 f̃)(ϕ̃t(x̃, ṽ)) dt dSx̃(ṽ)

where ϕ̃t is the geodesic flow lifted to SM̃ and ˜̀+ = π∗Γ`+. Define the
operator Π̃0 on M̃ as follows: for u ∈ Lp(M̃) with compact support, let

Π̃0u(x̃) := 2
∫
SxM̃

∫ ˜̀+(x̃,̃v)

0
(π∗0u)(ϕ̃t(x̃, ṽ)) dt dSx̃(ṽ)
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which is in L1
loc(M̃) by (3.13). With the same analysis as in Proposition 3.1,

we find the integral kernel of Π̃0 :

Π̃0u(x̃) =
∫
M̃

K(x̃, x̃′)u(x̃′) dvolg̃(x̃′),

with K(x̃, x̃′) :=
[ 2
b̃(x̃, ṽ, t)

]∣∣∣
tṽ=ẽxp

−1
x̃ (x̃′)

∈ C∞(M̃ × M̃ \ diag)

if ẽxp is the exponential map for M̃ and b̃ solves the same Jacobi equation
as (3.4) but for (M̃, g̃). We clearly have b̃(x̃, ṽ, t) = b(x, v, t) if πΓ(x̃, ṽ) =
(x, v) and the integral kernel K of Π̃0 is positive, symmetric and satisfies
K(γx̃, γx̃′) = K(x̃, x̃′) for all γ ∈ Γ. From (3.21), we can write for almost
every x = πΓ(x̃)

Π0f(x) =
∫
M̃

K(x̃, x̃′)f̃(x̃′) dvolg̃(x̃′).

Let f0 ∈ Lp(M̃) be supported in F and such that f0(x̃) = f(x) if x̃ ∈ F ,
then f̃(x̃) =

∑
γ∈Γ f0(γx̃) and we get for almost every x̃ ∈ F and πΓ(x̃) = x

Π0f(x) =
∑
γ∈Γ

∫
M̃

K(x̃, x̃′)f0(γx̃′) dvolg̃(x̃′)

=
∑
γ∈Γ

∫
F

K(γx̃, x̃′)f0(x̃′) dvolg̃(x̃′)

by using that γ is an isometry of g̃ and the invariance of K by Γ mentioned
above. We can then view Π0 as an operator acting on Lp(F ) (for p ∈ (1,∞))
with integral kernel

KM (x̃, x̃′) :=
∑
γ∈Γ
K(γx̃, x̃′) =

∑
γ∈Γ
K(x̃, γx̃′).

The sum makes sense as an L1(F × F ) function since K > 0 and Π0f ∈
L1(M) for all f ∈ L∞(M). In fact, we also know that Π0 maps L∞(M) to
L∞(M) (since it is the restriction of a pseudo-differential operator of order
−1 on M◦e ) thus, since KM > 0,

sup
x̃∈F

∫
F

KM (x̃, x̃′) dvolg̃(x̃′) <∞.

To estimate its Lp → Lp norm for p ∈ (1,∞), we can use Schur’s lemma
and since KM is symmetric, this gives directly the following
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Lemma 3.4. — With the notation above, the operator Π0 : Lp(M) →
Lp(M) has norm bounded by

‖Π0‖Lp→Lp 6 sup
x̃∈F

∫
F

KM (x̃, x̃′) dvolg̃(x̃′) = sup
x̃∈F

∫
M̃

K(x̃, x̃′) dvolg̃(x̃′).

From now on, we shall work in a neighborhood of a constant curvature
metric g0 and estimate the norm Π0 in that neighborhood. Let us denote by
H2 the hyperbolic space with curvature −1, realized as the unit disk D2 ⊂ C
with metric gH2 = 4|dz|2

(1−|z|2)2 . Let (M, g0) have constant curvature κ(x) =
−κ0 for some κ0 < 0, we can extendM to a non-compact complete manifold
(Mc, gc) with constant curvature. Indeed, this can be done as follows. The
connected components (Si)i=1,...,N of the boundary ∂M are circles. Let
τi > 0 be the distance from Si to the unique geodesic γi homotopic to
Si in M , these geodesics form the boundary of the convex core C(M) of
M . If ci denotes the length of γi, then in normal geodesic coordinates
(τ, α) ∈ [0, τi] × (R/ciZ)α from γi in the collar between Si and γi, the
metric is given by

(3.22) g0 = dτ2 + cosh(
√
κ0τ)dα2.

Then it suffices to replace the region between Si and γi by the full hyper-
bolic half-cylinder [0,∞)τ×(R/ciZ)α with the metric (3.22) and we denote
by (Mc, gc) the obtained complete surface. It is realized as a quotient Γ\H2

κ0

by a convex co-compact group of isometries Γ ⊂ PSL2(R) of the hyperbolic
space H2

κ0
with curvature −κ0; this space H2

κ0
is just the unit disk D2 ⊂ C

with metric κ−1
0 gH2 . Notice that Γ is also a convex co-compact group of

isometries of (H2, gH2). The exponent of convergence of Γ is defined to be

(3.23) δΓ := inf{s ∈ (0, 1);
∑
γ∈Γ

e−sdH2 (x,γx) <∞}

where dH2(·, ·) denotes the Riemannian distance of (H2, gH2) and x is any
point fixed in H2. Let ΛΓ ⊂ S1 be the limit set of the group Γ (ie. the
set of accumulation points in D2 of the orbits Γ.x in D2). By a result of
Patterson [26] and Sullivan [32],

δΓ = dimHaus(ΛΓ) = 1
2 (dimHaus(K)− 1)

where K ⊂ SM ⊂ SMc is the trapped set of the geodesic flow. The uni-
versal cover M̃ of M is a subset of the open disk D2 with infinitely many
boundary components which are pieces of circles intersecting S1 = ∂D2 at
their endpoints. The solution of (3.4) is b(x, v, t) = 1√

κ0
sinh(√κ0t) and the
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integral kernel of Π̃0 and Π0 are thus

(3.24) K(x̃, x̃′) =
2√κ0

sinh(dH2(x̃, x̃′)) , KM (x, x′) =
∑
γ∈Γ

2√κ0

sinh(dH2(γx̃, x̃′))

if πΓ(x̃) = x, πΓ(x̃′) = x′ and x̃, x̃′ ∈ F with F ⊂ H2 a fundamental
domain. Notice that the expression (3.24) for KM extends to Mc×Mc and
this defines an operator ΠMc

0 so that Π0f = (ΠMc
0 f)|M if f ∈ L2(M).

We prove the following

Theorem 3.5. — Let (M, g0) be a surface with strictly convex bound-
ary and constant negative curvature −κ0, let Γ ⊂ PSL2(R) be its funda-
mental group and δΓ ∈ [0, 1) the exponent of convergence of Γ as defined
in (3.23). Let λ1, λ2 ∈ (0, 1] which satisfy the bound 1 > λ1λ2 > max(δΓ, 1

2 )
and set λ := 1 − λ1λ2 ∈ [0, 1

2 ), then for all metric g on M with strictly
convex boundary and Gauss curvature κ(x) satisfying

λ2
1g0 6 g 6 λ

−2
1 g0, κ(x) 6 −λ2

2κ0

the operator Π0 = I∗0 I0 of g has norm ‖Π0‖ := ‖Π0‖L2(M,g)→L2(M,g)
bounded by

‖Π0‖ 6
4λ2√
κ0λ4

1



(
Γ( 1−2λ

4 )Γ( 1+2λ
4 )

Γ( 1
4 )Γ( 3

4 )

)2

if δΓ 6 1/2,

Γ( δΓ−λ2 )Γ( δΓ+λ
2 )Γ( 1−λ−δΓ

2 )Γ( 1+λ−δΓ
2 )

Γ( 1−δΓ
2 )Γ( δΓ2 )Γ(1− δΓ

2 )Γ( 1
2 + δΓ

2 )
if δΓ > 1/2.

Proof. — First, by the comparison result (3.16), we have the pointwise
bound on the kernel K of Π̃0 in the universal cover M̃ ⊂ D2

K(x, x′) 6
√
κ0λ2

sinh(λ2
√
κ0dg(x, x′))

6
λ2
√
κ0

sinh(λ1λ2
√
κ0dg0(x, x′)) 6

λ2
√
κ0

sinh((1− λ)dH2(x, x′))

where we used dg(x, x′) > λ1dg0(x, x′) and dH2(x, x′) = √κ0dg0(x, x′) on
M̃ . Using the lower bound sinh((1 − λ)t) cosh(λt) > 1

2 sinh(t) for t > 0,
we get

K(x, x′) 6
2λ2
√
κ0 cosh(λdH2(x, x′))
sinh(dH2(x, x′))

This implies that the kernel KM of Π0 satisfies

(3.25) KM (x, x′) 6 λ2
√
κ0
∑
γ∈Γ

2 cosh(λdH2(x, γx′))
sinh(dH2(x, γx′))
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provided that the sum converges, which is the case if λ < (1 − δΓ). Let
g1 := κ0g0 be the metric with Gauss curvature −1 on M and let Πλ

0 be the
operator onM whose integral kernel with respect to the volume form dvolg1

is
∑
γ∈Γ

2 cosh(λdH2 (x,γx′))
sinh(dH2 (x,γx′)) . Let Mc = Γ\H2 equipped with the hyperbolic

metric gc (with curvature −1) and consider the operator ΠMc,λ
0 on Mc

defined by (A.1). As explained above, the manifold Mc can be viewed as
a complete extension of the manifold with boundary (M, g1), and we have
for each f ∈ L2(M, g1) extended by 0 on Mc

(ΠMc,λ
0 f)|M = Πλ

0f.

The operator norm of ΠMc,λ
0 on L2(Mc, gc) is computed in Lemma A.1 and

we denote this constant by C(λ, δΓ) := ||ΠMc,λ
0 ||L2(Mc,gc)→L2(Mc,gc). We

then get

(3.26) ||Πλ
0f ||L2(M,g1) 6 C(λ, δΓ)||f ||L2(M,g1).

Let f ∈ L2(M, g), we use (3.25) together with the fact that the integral
kernels of Π0 and Πλ

0 operator are positive and that
λ2

1
κ0

dvolg1 6 dvolg 6
λ−2

1
κ0

dvolg1 ,

this gives the bound∫
M

|Π0f(x)|2 dvolg(x) 6 λ2
2λ
−6
1 κ−2

0

∫
M

(Πλ
0 (|f |)(x))2 dvolg1(x)

6 ||Πλ
0 ||2L2(M,g1)→L2(M,g1)λ

2
2λ
−6
1 κ−2

0 ||f ||2L2(M,g1)

6 ||Πλ
0 ||2L2(M,g1)→L2(M,g1)λ

2
2λ
−8
1 κ−1

0 ||f ||2L2(M,g).

The result then follows from (3.26) and the value for C(λ, δΓ) given by
Lemma A.1. �

Combining Proposition 3.3 with Theorem 3.5, we obtain Theorem 1.2.

4. Numerical experiments

We now illustrate with numerical examples the reconstruction for-
mula (3.9) given in Theorem 3.2, i.e., we will reconstruct functions from
knowledge of their ray transform, where the underlying surface with bound-
ary is of one of the following two models:

(i) A quotient of the Poincaré disk D2 by a Schottky group Γ.
(ii) The cylinder R/2Z × (−1, 1) with a metric of circular symmetry

such that the trapped set is hyperbolic
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In example (i), the constancy of the curvature makes the operator W
vanish identically, so that the inversion is expected to be one-shot. In
example (ii), we will implement a partial Neumann series to invert the
operator Id +W 2. Much of the ideas and implementation draw from the
second author’s previous implementation [21] in the case of non-trapping
surfaces. The numerical domain can be viewed as a domain in R2 with an
isotropic metric g = e2φ(dx2 +dy2) (except for Experiment 5, where we use
a metric of the form g = h2(y)dx2 + dy2), and with certain identifications
producing nontrivial topology and trapped geodesics.
The underlying grid is cartesian (subset of aN×N uniform discretization

of [−1, 1]2 with N = 300 here), which simplifies the computation of the
operator ∗d. More specifically, in isothermal coordinates (x, y, θ) with an
isotropic metric of the form g = e2φ(dx2 + dy2), the operator ∗dI?1S−1

g

appearing in (3.9) takes the expression (set x = (x, y))

∗dI?1S−1
g w(x) = e−2φ(x)

(
∂x
∂y

)
·
(
eφ
∫
S1

(
− sin θ
cos θ

)
w(ϕ`+(x,θ)(x, θ)) dθ

)
,

where, despite the fact that this formula might not make sense for those
(x, y, θ) in the trapped set, the hyperbolicity of the flow is such that, when
discretizing the integral over S1, numerical imperfections will make every
geodesic exit the domain. The operators ∂x, ∂y can then conveniently com-
puted by finite differences. On the other hand, this discretization implies
that every pixel will carry a different volume, and that accuracy of re-
constructions and resolution may be visually position-dependent. To the
authors’ knowledge, litterature on numerical analysis of ray transforms on
manifolds (covering, e.g., error estimates, appropriate sampling, regular-
ization), is very scarce outside the well-understood Euclidean case [25], an
exception being on geodesic and horocyclic transforms on the hyperbolic
plane in [7], whose homogeneity allows for harmonic analysis.
The computation of geodesics is done in two ways depending on the

purpose:
• When computing the ray transform of a given function, we solve an
ODE and integrate the function along the way. The method used
in that case is Heun’s scheme.

• In the case of quotients of D2, where geodesics can be given by
explicit formulas, we use these formulas to compute geodesic end-
points in a fast way during the backprojection step.

Computations are performed with Matlab, using GPU in order to speed
up calculations. As in [21], the main bottleneck is the backprojection step,
which requires computing O(N2 × Nθ) geodesic endpoints, with N the
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gridsize and Nθ the number of directions used to compute integral over
S1. This process requires computing whole geodesics, more of whom take
longer to exit the domain when trapping increases (this increase here is
quantified by the fractal dimension of the limit set of the corresponding
Schottky group). Accordingly, computations run within minutes on a per-
sonal computer with GPU card for the case of cylinders, hours for the case
of Schottky groups with two generators.

4.1. Quotients of D2 by Schottky groups with one generator

Here and below, we denote γx,v the unique geodesic passing through
x = (x, y) with direction v.

Fix x ∈ (−1, 0), let a = 2x
x2+1 and define Ta : D2 → D2 by Ta(z) = z−a

1−az
the unique hyperbolic translation mapping x to −x and preserving the real
axis, it has (hyperbolic) translation length `a given by cosh(`a/2) = (1 −
a2)−1/2 = (1 +x2)/(1−x2). We define the surface M(x) = D2/〈Ta〉, which
is a hyperbolic cylinder with a closed geodesic of length `a. A fundamental
domain for this surface is delimited by the geodesics γ(x,0),ey and γ(−x,0),ey .
This surface has no boundary, so we cut one up using an arc circle which
intersects the geodesic γ(x,0),ey at a right angle, which ensures that the
boundary is smooth. This boundary has two connected components. The
forward trapped set consists of, at every point, precisely two directions: the
ones whose flow-out lands into either “point at infinity” z = −1 or z = 1.
The trapped set is simply the projection of the two oriented geodesics in
SH2 relating z = −1 to z = 1, and these are two oriented closed geodesics
in the quotient.

Experiment 1. — We pick the function in Fig. 4.1 (right), compute its
ray transform on Fig. 4.2 (left) using 500 boundary points on each top and
bottom boundary, and 1000 directions for each boundary point uniformly
within

(−π
2 , π2

)
. We then apply the inversion formula, discretizing the S1

integrals using 500 directions. The error is visualized on Fig. 4.2 (right).

Observations. — Based on the results displayed on Fig. 4.2, one can
notice artifacts of 10% relative size in certain areas. These artifacts lie in
the region between the support of the function and the points at infinity
(this is especially noticeable once we periodize the reconstruction), and we
propose two possible reasons for this:
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Figure 4.1. Left: the surface M(−0.3) with a boundary cut out, with
some geodesics cast from a boundary point superimposed. Right: ex-
ample of a function whose ray transform is computed Fig. 4.2

Figure 4.2. Experiment 1. Left: ray transform of the function displayed
in Fig. 4.1 (right). The x-axis represents a point on the boundary pa-
rameterized with a parameter in [0, 1], and the y-axis is the shooting
direction with respect to the inner normal, an angle in

(−π
2 , π2

)
(dis-

played only over (−0.5, 0.5) as the data vanishes outside this range).
Right: pointwise error on reconstruction after applying the formula
from Theorem 3.2 to the data.

• As the computation of forward data does not use an exact computa-
tion of the geodesics, the accuracy degrades on the longer geodesics,
i.e. the ones that wander near the closed one.

• The data may have logarithmic singularities at trapped directions,
which upon applying the Hilbert transform, may create undesirable
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oscillations in the vicinity of these angles. These oscillations then
create artifacts upon applying the backprojection I∗1 , especially at
the points which are such that the data is nonzero near their trapped
directions (see Fig. 4.5 below). This is precisely the case when these
points lie between the support of the function and the points at
infinity.

4.2. Quotients of D2 by Schottky groups with two generators

We now consider examples of quotients of D2 by Schottky groups
with two generators. Keeping x ∈ (−1, 0), a(x) and Ta defined as
above, we define the surfaces M1(x) = D2/〈Ta(x), Tia(x)〉 and M2(x) =
D2/〈iTa(x),−iTia(x)〉. Both M1(x) and M2(x) can have the same funda-
mental domain, delimited by the geodesics γ(±x,0),ey and γ(0,±x),ex , though
with different identifications, as represented Fig. 4.3. In both examples,
the trapping is now more complicated: at every point x, the trapped direc-
tions form a fractal set at the tangent circle Sx. In light of Experiment 1,
this is expected to have quite a detrimental impact on the inversion. We
study this influence by comparing noise on experiments 2 and 4, where the
same model M1(x) is chosen for two different values of x, yielding differ-
ent trapping intensities. We quantify this by the dimension of the limit set
δΓ ∈ [0, 1] of the group Γ = 〈Ta(x), Tia(x)〉. We compute a numerical approx-
imation of δΓ by running geodesic dynamics on a large number of points
inside the domain and measuring their escape rate, i.e. the proportion that
remains inside as a function of time. According to [6, Appendix B], this
escape rate is of the form V (t) = e−(1−δΓ)t, and we use this to approxi-
mate δΓ by linearly interpolating − log V (t), possibly after throwing away
transient regimes. In Experiments 2-3-4, the influx boundary is discretized
uniformly into 1200 boundary points and 400 influx directions in the range(
−π6 ,

π
6
)
per boundary point.

Experiment 2. — On M1(−0.6), we pick the function in Fig. 4.4 (left),
compute its ray transform on Fig. 4.4 (right) and apply the inversion for-
mula. The reconstruction is visualized on Fig. 4.8 (left). For later compar-
ison, we have computed δΓ ≈ .49 following the method described above.

Experiment 3. — On M2(−0.6), we pick the function in Fig. 4.6 (left),
compute its ray transform on Fig. 4.6 (right) and apply the inversion for-
mula. The reconstruction is visualized on Fig. 4.8 (middle).

TOME 67 (2017), FASCICULE 4



1380 Colin GUILLARMOU & François MONARD

Experiment 4. — We now repeat Experiment 2, this time onM1(−0.5),
whose topology is the same, though the trapping is now more prominent (we
have computed δΓ ≈ .65). We pick the function in Fig. 4.7 (left), compute
its ray transform on Fig. 4.7 (right) and apply the inversion formula. The
reconstruction is visualized on Fig. 4.8 (right).

Observations. — As in Experiment 1, the same comments hold regard-
ing the influence of trapping: the more trapping, the more singularities in
the data, which create oscillations upon applying the Hilbert transform (see
Fig. 4.5), in turn yielding artifacts when applying the backprojection I∗1 .
Comparing Experiments 2 and 4, the difference in trapping can be both
seen on the singularities of the forward transforms (compare Figs. 4.4, right
and 4.7, right), and on higher noise in reconstruction (compare Figs. 4.8,
left and right).

Figure 4.3. Quotients of D by Schottky groups with two generators.
Left: “torus with boundary” M1(−0.5) (∂M1 has one connected com-
ponent). Right: “pair of pants” M2(−0.5) (∂M2 has three connected
components). Identifications are marked with similar arrow patterns
and the same letter identifies boundary points together. In both cases,
a fan of geodesics is cast from the point on the top-right and plotted
inside the fundamental domain until they exit.

4.3. Cylinders with variable curvature

Let the topological cylinder R/2Z × (−1, 1) endowed with the metric
g(x, y) = hε(y)2dx2 + dy2, where we have defined hε(y) = cosh(y) cosh(εy)
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Figure 4.4. Experiment 2. Left: the function f on M1(−0.6). Right:
its ray transform I0f .

Figure 4.5. Experiment 2. Left: the Hilbert transform HIod0 f of the
data I0f displayed on Fig. 4.4, right, restricted to ∂+SM . Right: zoom
into the boxed region on the left, emphasizing the oscillations which
appear after applying the Hilbert transform to data with singularities.

Figure 4.6. Experiment 3. Left: the function f on M2(−0.6). Right:
its ray transform I0f , supported on three connected components, see
Fig. 4.3 (right) for the letter positions.
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Figure 4.7. Experiment 4. Left: the function f on M1(−0.5). Right:
its ray transform I0f .

Figure 4.8. Reconstructions for Experiments 2 (left), 3 (middle) and 4
(right). The reconstructions have been periodized to make appear the
structure in error patterns, supported between the gaussians and all
points at infinity (note: color scheme is darker for visibility).

with ε > 0 a constant. The Gauss curvature is independent of x and given
by

κε(y) = −
∂2
yhε(y)
hε(y) = −1− ε2 − 2ε tanh(y) tanh(εy),

so we have −(1 + ε)2 6 κε(y) 6 −(1 + ε2) for every y, and we also get

|dκε(y)| 6 2ε((1− tanh2(y))| tanh(εy)|+ ε| tanh(y)|(1− tanh2(εy))
6 2ε(1 + ε).

The structure of the trapped set is similar to that of Experiment 1, with
the set {y = 0} the projection on the base of the only closed geodesic and
δΓ = 0. We can bound g in terms of the constant curvature metric g0 with
κ0 = 1 via the constants λ1 = 1

cosh ε and λ2 = 1 as in Theorem 3.5. The
requirement λ1λ2 > max(δΓ, 1

2 ) there gives the constraint ε 6 cosh−1 2.
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Since δΓ 6 1
2 , we deduce the estimate, with λ = 1− 1

cosh ε ,

‖Π0‖L2(M,g)→L2(M,g) 6 4 cosh4 ε

(
Γ
( 1

2
( 1

cosh ε −
1
2
))

Γ
( 3

4 −
1

2 cosh ε
)

Γ
( 1

4
)

Γ
( 3

4
) )2

.

Combining this estimate with the estimate in Proposition 3.3, we deduce

‖W‖L2→L2 6
8
3ε(1 + ε) cosh4 ε

(
Γ
( 1

2
( 1

cosh ε −
1
2
))

Γ
( 3

4 −
1

2 cosh ε
)

Γ
( 1

4
)

Γ
( 3

4
) )2

.

In particular, limε→0 ‖W‖L2→L2 = 0 and thus for ε small enough, inver-
sion via a Neumann series is justified. As in [21], when implementing the
Neumann series, the error operator −W 2 is not implemented directly as
it would be hopeless to satisfy (3.9) at the discrete level. Instead, once
I0 and its approximate inverse (call it A0, say) are discretized, we set
−W 2 = Id−A0I0 and iterate the Neumann series using this operator.

Figure 4.9. Experiment 5. Left: model for cylinder with variable cur-
vature with constant ε = 0.4. Right: Example of function to be imaged.

Experiment 5. — We pick the function in Fig. 4.9 (right), compute its
ray transform on Fig. 4.10 (top-left) and implement the approximate in-
version formula (visualized Fig. 4.10, top-right), followed by two Neumann
series iterations. Pointwise errors after both one-shot and corrected recon-
structions are visualized Fig. 4.10 (bottom).
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Figure 4.10. Experiment 5. Top-left: data I0f . Top-right: recon-
structed f after one-shot inversion. Bottom: pointwise error after one-
shot inversion (left), then after two Neumann series iterations (right).

4.4. Discussion

In light of these experiments, we make the following comments:

• Despite the theoretical exactness and stability of the proposed re-
construction formulas, geometries with trapping pose some numer-
ical challenges, related to (i) the singularities created in data space,
which in turn create oscillations after applying the Hilbert trans-
form, yieling reconstruction artifacts after backprojection; and (ii),
the loss of accuracy on the computation of long geodesics which
wander near the trapped set before exitting the domain.

• As mentioned before in [21], another important challenge in sur-
faces with nonconstant curvature is to understand how to design
an appropriate discretization of the influx boundary whose flow-
out samples the manifold in as uniform a way as possible.
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• In the case of non-constant curvature, iterative corrections, which
require a differentiation step at every iteration, may increase noise
at high frequencies (which, as mentioned earlier, becomes more
prominent in the presence of trapping, unlike the case of simple
surfaces covered in [21]). Regularization methods should then be
considered.

Appendix A. Computation of Πλ
0 in constant curvature.

LetM := Γ\H2 be a quotient of hyperbolic space by a convex co-compact
group Γ ⊂ PSL2(R) and denote by δΓ the exponent of the group Γ as
defined by (3.23). Such a manifold is non-compact but can be compactified
into M = Γ\(H2 ∪ ΩΓ) where ΩΓ = S1 \ ΛΓ is the set of discontinuity
of Γ; H2 ∪ ΩΓ is the largest open set in the closed unit disk D2 where
Γ acts properly discontinuously (we view H2 as the unit disk D2 in C).
The Laplacian ∆M has continuous spectrum [ 1

4 ,∞) on L2(M) and possibly
finitely many eigenvalues in (0, 1

4 ), which appear if and only if the exponent
δΓ of Γ satisfies δΓ > 1/2, in which case δΓ(1 − δΓ) = min(SpecL2(∆M )).
For further details on these topics, we refer to the book [4].
In this Appendix, we compute for small (1−λ) > max(δΓ, 1

2 ) the operator
Πλ

0 : C∞c (M)→ C∞(M) defined by

(A.1) Πλ
0f(x) :=

∫
SxM

∫
R

cosh(λt)π∗0f(ϕt(x, v))dtdSx(v),

where ϕt denotes the geodesic flow at time t on the unit tangent bundle SM .
Just like in Section 3.3, the operator Πλ

0 makes sense and has integral kernel
KλM , which can written as a converging sum on a fundamental domain
F ⊂ H2 of Γ when (1− λ) > δΓ

(A.2) KλM (x, x′) =
∑
γ∈Γ
Kλ(γx̃, x̃′)), x = πΓ(x̃), x′ = πΓ(x̃′)

for x̃, x̃′ ∈ F and πΓ : H2 → M the covering map, where Kλ(x̃, x̃′) is the
integral kernel of the operator Π̃λ

0 defined by the expression (A.1) when
M = H2. As in Section 3.3, this kernel is given by

K(x̃, x̃′) = 2 cosh(λdH2(x̃, x̃′))
sinh(dH2(x̃, x̃′))

which justifies that the sum (A.2) above converges if (1 − λ) > δΓ. The
expression (A.1) can also be rewritten as

Πλ
0f(x) :=

∫
SxM

∫
R
eλtπ∗0f(ϕt(x, v))dtdSx(v)
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using the symmetry v → −v in each fiber SxM .

Lemma A.1. — On a convex co-compact quotient M := Γ\H2 with
exponent of convergence given by δΓ, the operator Πλ

0 can be written when
(1− λ) > max(δ, 1

2 ) as

Πλ
0 = 4

Γ( 1−2λ
4 − S)Γ( 1+2λ

4 − S)Γ( 1+2λ
4 + S)Γ( 1−2λ

4 + S)
Γ( 1

4 − S)Γ( 1
4 + S)Γ( 3

4 − S)Γ( 3
4 + S)

,

where S := i
√

∆M− 1
4

2 , Γ(·) is the Euler Gamma function, and with the
convention that

√
s(1− s)− 1

4 = i(s − 1
2 ) when s(1 − s) ∈ (0, 1

4 ) is an
L2-eigenvalue of ∆M with s ∈ (1/2, 1). The operator norm is given by

‖Πλ
0‖L2→L2 = 4



(
Γ( 1−2λ

4 )Γ( 1+2λ
4 )

Γ( 1
4 )Γ( 3

4 )

)2

if δΓ 6 1/2,

Γ( δΓ−λ2 )Γ( δΓ+λ
2 )Γ( 1−λ−δΓ

2 )Γ( 1+λ−δΓ
2 )

Γ( 1−δΓ
2 )Γ( δΓ2 )Γ(1− δΓ

2 )Γ( 1
2 + δΓ

2 )
if δΓ > 1/2.

(A.3)

Proof. — Since its Schwartz kernel is a function of dH2(·, ·) decaying like
e−d, the operator Π̃λ

0 is a function Hλ(∆H2− 1
4 ) of the hyperbolic Laplacian

∆H2 (see for example [16, Section 1.8]). Notice that the series defining KλM
is absolutely convergent on compact sets of H2 × H2 since δΓ < 1 if Γ is
convex co-compact. The operator Π̃λ

0 is bounded on L2(H2) if λ < 1/2: in-
deed, this is an operator in the class Ψ−1,(1−λ),(1−λ)

0 (H2) of the 0-calculus
of pseudo-differential operators introduced by Mazzeo–Melrose [20] and
the L2-boundedness on H2 follows for instance from Mazzeo [19, Theo-
rem 3.25]. To compute the function Hλ, we use the representation theory
of G := SL2(R), following [18, 1]. The (time reversal) principal series rep-
resentations are unitary representations into L2(R, dx) defined as follows

Pir :
[
a b

c d

]
∈ G 7→

(
f(x) 7→ | − bx+ d|−1−2irf

( ax− c
−bx+ d

))
.

Let u ∈ C∞c (H2), then u0 := π∗0u ∈ C∞c (G) (if we identify SH2 ' G in the
canonical way) and to compute Π̃0u we will use the Plancherel formula of
Harish-Chandra [13]

u0(1) =
∫
R
r tanh(πr2 )Tr

(∫
G

u0(g)Pir(g)dg
)
dr.
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There is a unique K-invariant vector of norm 1 in L2(R) where K is the
action of SO(2) ⊂ SL2(R) via the representation Pir, it is given by

φir(x) = 1√
π

(1 + x2)−
1
2−ir.

Since u0 is invariant by SO(2), to consider the action of the right multi-
plication by an element etA on u0 with A ∈ sl2(R), it suffices to consider
the action of Pir(etA) on φir. The pull-back by the geodesic flow at time
t corresponds, in each unitary representation Pir, to the unitary operator
on L2(R)

Pir(etX) : f(x) 7→ et(
1
2 +ir)f(etx), if X =

[ 1
2 0
0 − 1

2

]
∈ sl2(R).

The operator Π̃λ
0 can be written as

Π̃λ
0u(x) = 1

2π

∫ 2π

0

(∫ ∞
−∞

eλtu0(hxetXesV ) dt
)
ds if V :=

[
0 −1
1 0

]
,

where hx∈SL2(R) is any element which projects to x ∈ H2 = SL2(R)/SO(2).
Since the average in the compact group SO(2) amounts to projecting onto
φir, the operator Π̃λ

0 is unitarily equivalent to multiplication on the repre-
sentation space L2(R) by∫ ∞

−∞
φ−ir(x)

∫ ∞
−∞

et(
1
2 +λ+ir)φir(etx)dtdx

through the representation Pir. By changing variable and by parity in x,
this term is of the form 2

πFλ(r)F−λ(−r) with

Fλ(r) :=
∫ ∞

0
x−

1
2−ir−λ(1 + x2)−

1
2 +irdx

=
Γ( 1

4 −
ir
2 −

λ
2 )Γ( 1

4 −
ir
2 + λ

2 )
Γ( 1

2 − ir)

=
√

2π 2ir
Γ( 1

4 −
ir
2 −

λ
2 )Γ( 1

4 −
ir
2 + λ

2 )
Γ( 1

4 −
ir
2 )Γ( 3

4 −
ir
2 )

.

Notice that Fλ(r) = F−λ(r) and that 2
πFλ(r)F−λ(−r) extends holomorphi-

cally in each strip | Im(r)| < 1/2− λ and it can be written under the form
Hλ(r2) = 2

πFλ(r)Fλ(−r) for some Hλ holomorphic in the region contain-
ing R+ and bounded by the parabola Re(z) = (Im(z))2 − (1/2− λ)2. The
operator Π̃λ

0 can then be written Π̃λ
0 = Hλ(∆H2 − 1

4 ) with

Hλ(z) := 4
Γ( 1

4 −
λ
2 −

i
√
z

2 )Γ( 1
4 + λ

2 + i
√
z

2 )Γ( 1
4 −

λ
2 + i

√
z

2 )Γ( 1
4 + λ

2 −
i
√
z

2 )
Γ( 3

4 −
i
√
z

2 )2Γ( 3
4 + i

√
z

2 )2
.

TOME 67 (2017), FASCICULE 4



1388 Colin GUILLARMOU & François MONARD

The expression of Π̃λ
0 for λ = 0 matches with the formula found in [3,

p. 623]. In the image of the strip | Im(r)| < 1/2− λ− ε by r 7→ z = r2 for
ε > 0 small enough

|Hλ(z)| 6 Cε(1 + |z|)−1/2

for some Cε > 0 depending only on ε. We can then write, using Cauchy
formula

(A.4) Π̃λ
0 = 1

2πi

∫
Cε
Hλ(z)RH2(z)dz, RH2(z) := (∆H2 − 1

4 − z)
−1

where Cε is the contour given by the image of Im(r) = 1
2 − λ − ε by the

map r 7→ z = r2, where ε > 0 is chosen small. The contour is parametrized
by z = ±i(1 − λ − 2ε)

√
t + t − ( 1

2 − λ − ε)2 with t ∈ [0,∞) and the
H1(H2)→ L2(H2) norm of RH2(z) is

||RH2(z)||H1→L2 = O((1 + t)−1)

showing that the integral (A.4) converges in H1 → L2 norm. Now the
resolvent RM (r2) = (∆M − 1/4 − r2)−1 has for integral kernel, viewed on
the fundamental domain F ,

RM (r2; x̃, x̃′) =
∑
γ∈Γ

RH2(r2; x̃, γx̃′)

when Im(r) > δΓ − 1/2, and the sum is uniformly convergent on compact
sets of F × F for r in that half-space: the proof is done in [27] or [10,
Proposition 2.2], and follows from the uniform convergence of Poincaré
series

∑
γ∈Γ e

−sdH2 (x̃,γx̃′) for x̃, x̃′ on compact sets and from the pointwise
estimate for ε 6 Im(r) 6 1

2 − ε (which follows from the explicit formula for
RH2(r2) given for instance in [12])

|RH2(r2; x̃, x̃′)| 6 Cη,εe−(1/2+Im(r))dH2 (x̃,x̃′) when dH2(x̃, x̃′) > η

if η > 0 is fixed and Cη,ε depends only on η and ε. This implies that, for K1
and K2 two relatively compact open sets of H2 so that dH2(K1,K2) > 1,
there is C > 0 depending only on the volume of K1 and K2 such that for
all f ∈ L2(K1)

||RH2(r2)f ||L2(K2) 6 Ce
−(1/2+Im(r))dH2 (K1,K2)||f ||L2(K1).

Now, using that for f ∈ L2 supported in a compact set K1 we have

(∆H2 + 3
4 )χRH2(r2)f − [∆H2 , χ]RH2(r2)f = (1 + r2)χRH2(r2)f
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for each χ ∈ C∞c (H2) supported in a relatively compact set K2 with K2 ∩
K1 = ∅, we get

||χRH2(r2)f ||H−2(K2) 6
C ′

|r|2 − 1 ||RH2(r2)f ||L2(K2)

6
CC ′

|r|2 − 1e
−( 1

2 +Im(r))dH2 (K1,K2)||f ||L2(K1)

for |r| > 1 where C ′ depends only on ||χ||C1 . This estimate together with
the Poincaré series convergence implies that for each relatively compact
open set K ⊂ F , x̃, x̃′ ∈ K and πΓ(x̃) = x, πΓ(x̃′) = x′,

Πλ
0 (x, γx′) = 1

2πi

∫
Cε
Hλ(z)

∑
γ∈Γ

RH2(z, x̃, γx̃′)dz

= 1
2πi

∫
Cε
Hλ(z)RM (z, x, x′)dz

converges in the sense of Schwartz kernels of bounded operator L2(K) →
H−2(K). This shows that for (1− λ) > max( 1

2 , δ)

Πλ
0 = Hλ(∆M − 1/4)

where Hλ is the holomorphic function defined before. Now the bottom of
the spectrum of ∆M corresponds to r = imax(δΓ− 1

2 , 0). Let us show that
the function θ : t ∈ [0,∞) 7→ Hλ(4t2) ∈ (0,∞) is decreasing: we have
θ′(t)
θ(t) = −2 Im

(
Ψ( 1−2λ

4 + it) + Ψ( 1+2λ
4 + it)−Ψ( 3

4 + it)−Ψ( 1
4 + it)

)
,

where Ψ(z) = Γ′(z)/Γ(z) is the digamma function, and using its series
expansion Ψ(z) = −γ +

∑∞
n=0( 1

n+1 −
1

n+z ) with γ the Euler–Mascheroni
constant, we get for t > 0

θ′(t)
θ(t) = −2t

( ∞∑
n=0

1
(n+ 1−2λ

4 )2 + t2
+ 1

(n+ 1+2λ
4 )2 + t2

. . .

− 1
(n+ 3

4 )2 + t2
− 1

(n+ 1
4 )2 + t2

)
< 0.

Similarly, the function ρ : t 7→ Γ( 1−2λ
4 −t)Γ( 1−2λ

4 +t)Γ( 1+2λ
4 +t)Γ( 1+2λ

4 −t)
Γ( 3

4−t)Γ( 1
4−t)Γ( 3

4 +t)Γ( 1
4 +t) is in-

creasing in t ∈ [0, 1−2λ
4 ): indeed, one has

ρ′(t)
ρ(t) = Ψ( 1−2λ

4 + t)−Ψ( 1−2λ
4 − t) + Ψ( 1+2λ

4 + t)−Ψ( 1+2λ
4 − t)

+ Ψ( 3
4 − t)−Ψ( 3

4 + t) + Ψ( 1
4 − t)−Ψ( 1

4 + t)
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thus using the series expansion of Ψ(z) and factorizing we obtain for t ∈
[0, 1/4)

ρ′(t)
ρ(t) = 2t

∞∑
n=0

(n+ 3
4 )2 − (n+ 1+2λ

4 )2

((n+ 3
4 )2 − t2)((n+ 1+2λ

4 )2 − t2)
. . .

+
(n+ 1

4 )2 − (n+ 1−2λ
4 )2

((n+ 1
4 )2 − t2)((n+ 1−2λ

4 )2 − t2)
> 0.

From the spectral theorem, this implies that the L2(M)→ L2(M) norm of
Πλ

0 is obtained by evaluating Hλ at either 0 if δΓ 6 1/2 or at i(δΓ − 1
2 ) if

δΓ > 1/2. This ends the proof. �

Remark A.2. — Using a similar analysis, when Γ is co-compact, the
decomposition of L2(Γ\SL2(R)) into irreducible representations (see for
instance [18, 1]) proves that the operator Π0 defined in [8] is given on
a compact hyperbolic manifold M = Γ\H2 by the same formula as in
Lemma A.1, but setting λ = 0 and replacing ∆M by ∆M (1 − P0) if P0 is
the orthogonal projection onto ker ∆M in L2(M).
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