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POSITIVE SOLUTIONS TO SCHRÖDINGER’S
EQUATION AND THE EXPONENTIAL
INTEGRABILITY OF THE BALAYAGE

by Michael W. FRAZIER & Igor E. VERBITSKY (*)

Abstract. — Let Ω ⊂ Rn, for n > 2, be a bounded C2 domain. Let q ∈
L1

loc(Ω) with q > 0. We give necessary conditions and matching sufficient condi-
tions, which differ only in the constants involved, for the existence of very weak
solutions to the boundary value problem (−4 − q)u = 0, u > 0 on Ω, u = 1
on ∂Ω, and the related nonlinear problem with quadratic growth in the gradient,
−4u = |∇u|2 + q on Ω, u = 0 on ∂Ω. We also obtain precise pointwise estimates
of solutions up to the boundary.

A crucial role is played by a new “boundary condition” on q which is expressed
in terms of the exponential integrability on ∂Ω of the balayage of the measure
δq dx, where δ(x) = dist(x, ∂Ω). This condition is sharp, and appears in such a
context for the first time. It holds, for example, if δq dx is a Carleson measure in
Ω, or if its balayage is in BMO(∂Ω), with sufficiently small norm. This solves an
open problem posed in the literature.
Résumé. — Soit Ω ⊂ Rn (n > 2) un domaine C2 borné. Soit q ∈ L1

loc(Ω), avec
q > 0. Nous obtenons des conditions nécessaires et des conditions suffisantes cor-
respondantes — dont seules les constantes impliquées diffèrent — pour l’éxistence
de solutions très faibles au problème aux limites (−∆ − q)u = 0, u > 0 sur Ω et
u = 1 sur ∂Ω, et au problème non linéaire associé, avec une croissance quadratique
par rapport au gradient, −∆u = |∇u|2 + q sur Ω et u = 0 sur ∂Ω. Nous parvenons
aussi à des estimations ponctuelles précises des solutions jusqu’à la frontière.

Un rôle crucial est joué par une nouvelle “condition aux limites” portant sur q,
exprimée en terme d’intégrabilité exponentielle sur ∂Ω du balayage de la mesure
δq dx, où δ(x) = dist(x, ∂Ω). Cette condition est optimale, et elle apparaît dans
un tel contexte pour la première fois. Elle est notamment remplie si δq dx est une
mesure de Carleson dans Ω, ou si son balayage, de norme suffisament petite, est
dans BMO(∂Ω). Cela résout un problème qui était resté en suspens jusqu’à présent.

Keywords: Schrödinger equation, very weak solutions, balayage, Carleson measures,
BMO.
Math. classification: 42B20, 60J65, 81Q15.
(*) The second author is supported in part by NSF grant DMS-1161622.
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1. Introduction

Let n > 2 and let Ω be a bounded C2 domain in Rn. Let q be a non-
negative, locally integrable function on Ω. Our main results give conditions
for the existence of positive solutions of the following two problems funda-
mental to the mathematical theory of the Schrödinger operator − 4 − q
(see e.g. [7] for q in Kato’s class):{

−4u = qu+ 1, u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

{
−4u = qu, u > 0 in Ω,

u = 1 on ∂Ω.
(1.2)

For (1.2), we also obtain results for Ω = Rn, n > 3. Analogous theorems
for more general operators, including the fractional Laplacian (−4)α, and
domains Ω whose modified Green’s function is quasi-metric (see [12]), are
more technical and will be considered elsewhere.
Our results solve an open problem on the existence of solutions to (1.2),

as well as the corresponding nonlinear problem (1.20) with quadratic growth
in the gradient discussed below, which was posed in 1999 in [19].

Equations (1.1) and (1.2) have formal solutions as follows. Let G(x, y)
be the Green’s function on Ω associated with the Laplacian −4. Let G
denote the corresponding Green’s potential operator:

(1.3) Gf(x) =
∫

Ω
G(x, y)f(y) dy, x ∈ Ω.

Let G1 = G and define Gj inductively for j > 2 by

(1.4) Gj(x, y) =
∫

Ω
Gj−1(x, z)G(z, y) q(z) dz.

We define the minimal Green’s function associated with the Schrödinger
operator −4− q to be

(1.5) G(x, y) =
∞∑
j=1

Gj(x, y).

The corresponding Green’s operator is

Gf(x) =
∫

Ω
G(x, y)f(y) dy.

We let
u0(x) = G1(x) =

∫
Ω
G(x, y) dy
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SCHRÖDINGER’S EQUATION AND THE BALAYAGE 1395

and

(1.6) u1(x) = 1 + Gq(x) = 1 +
∫

Ω
G(x, y) q(y) dy.

Then u0 is a formal solution of (1.1) and u1, called the Feynman–Kac
gauge in [7], is a formal solution of (1.2). The main issue is whether these
formal solutions are finite a.e., and consequently solve the corresponding
boundary value problems in a certain generalized sense. Problem (1.2) is
more delicate than (1.1) because we must estimate Gq for (1.2) instead of
G1 for (1.1).
We emphasize that our only a priori assumptions on the potential q are

that q ∈ L1
loc(Ω) and q > 0. For potentials in Kato’s class, both u0 and

u1 are finite a.e. if and only if the spectrum of the Schrödinger operator is
positive on L2(Ω), or equivalently (1.7) below holds for some β ∈ (0, 1). In
that case, u0 and u1 are uniformly bounded by positive constants both from
above and below. This is a consequence of the so-called Gauge Theorem
(see e.g. [7]), which is no longer true for the general classes of potentials
considered in this paper.
Let δ(x) = dist(x, ∂Ω), for x ∈ Ω. Let C∞0 (Ω) be the class of C∞ func-

tions with compact support in Ω, and let L1,2
0 (Ω) be the closure of C∞0 (Ω)

with respect to the Dirichlet norm

‖f‖L1,2
0 (Ω) = ‖∇f‖L2(Ω, dx).

Theorem 1.1. — Suppose Ω is a bounded C2 domain in Rn, for n > 2,
and q ∈ L1

loc(Ω), q > 0.
(1) Suppose there exists β ∈ (0, 1) such that

(1.7)
∫

Ω
h2q dx 6 β2

∫
Ω
|∇h|2 dx for all h ∈ C∞0 (Ω).

Then u0 = G1 ∈ L1(Ω, dx)∩L1(Ω, δq dx)∩L1,2
0 (Ω), u0 is a minimal

positive weak solution of (1.1), and there exist constants C > 0
depending only on Ω and β, and C1 > 0 depending only on Ω, such
that

(1.8) u0(x) 6 C1δ(x)eC
G(δq)(x)
δ(x) , for all x ∈ Ω.

(2) Conversely, if (1.1) has a positive very weak solution u, then (1.7)
holds with β = 1 and there exist positive constants c > 0 and c1 > 0
depending only on Ω such that

(1.9) u(x) > c1δ(x)ec
G(δq)(x)
δ(x) for a.e. x ∈ Ω.

TOME 67 (2017), FASCICULE 4



1396 Michael W. FRAZIER & Igor E. VERBITSKY

The minimal positive weak solution u0 = G1 in Theorem 1.1 is clearly
unique in the class L1(Ω, δq dx)∩L1,2

0 (Ω). It is easy to see, as a consequence
of Theorem 1.1, that an analogue of part (1) of Theorem 1.1 with u0 = Gf
holds for any bounded measurable function f in place of the function 1 on
the right hand side of (1.1), and part (2) for any measurable function f

bounded below by a positive constant.
Condition (1.7) was studied originally by V.G. Maz’ya for general open

sets Ω ⊂ Rn and Borel measures dω in place of q dx, and characterized in
terms of capacities associated with L1,2

0 (Ω) (see [25, §2.5.2]).
For equation (1.1), the existence of a weak solution under assump-

tion (1.7) follows by well-known techniques (see e.g. [8]). Also the lower
estimate (1.9) in Theorem 1.1 is known (see [15] and the literature cited
there). What is new here is the upper estimate (1.8), whose proof relies
on results in [12]. This upper estimate is, in turn, critical for our results
regarding (1.2). The more difficult nature of (1.2) compared to (1.1) is ex-
hibited in our results in two ways: we must consider solutions of (1.2) in
the “very weak” sense (see Definitions 2.4 and 2.8), and, most importantly,
a new condition (1.10) that controls the behavior of q near ∂Ω is needed
for (1.2) but not for (1.1).
Let P (x, y) be the Poisson kernel for Ω, and let P ∗ denote the balayage

operator (formally adjoint to the Poisson integral) defined by

P ∗f(y) =
∫

Ω
P (x, y)f(x) dx, y ∈ ∂Ω.

Let dσ be surface measure on ∂Ω.

Theorem 1.2. — Suppose Ω is a bounded C2 domain in Rn, for n > 2,
and q ∈ L1

loc(Ω), q > 0.
(1) Suppose there exists β ∈ (0, 1) such that (1.7) holds and

(1.10)
∫
∂Ω
eCP

∗(δq) dσ < +∞

where C is the constant in (1.8). Then u1 = 1 + Gq is a positive
very weak solution of (1.2) with

(1.11) ‖u1‖L1(Ω, dx) 6 |Ω|+ C1

∫
∂Ω
eCP

∗(δq) dσ,

for some constant C1 > 0 depending only on Ω. Also, there exist
positive constants C2, C3 depending only on Ω and β such that

(1.12)
u1(x) 6 C2

∫
∂Ω
e
C3
∫

Ω
G(x,y)P (y,z)

P (x,z) q(y) dy
P (x, z) dσ(z), for all x ∈ Ω.
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SCHRÖDINGER’S EQUATION AND THE BALAYAGE 1397

(2) Conversely, if (1.2) has a positive very weak solution u, then (1.7)
holds with β = 1, (1.10) holds with the same constant c as in (1.9),
and

(1.13)
∫
∂Ω
ecP

∗(δq) dσ 6 C4
(
‖u‖L1(Ω, dx) + |∂Ω|

)
,

for some constant C4 > 0 depending only on Ω. Moreover, there
exist positive constants c1, c2 depending only on Ω such that

(1.14) u(x) > c1
∫
∂Ω
e
c2
∫

Ω
G(x,y)P (y,z)

P (x,z) q(y) dy
P (x, z) dσ(z), for all x ∈ Ω.

We observe that under the assumptions of Theorem 1.2(1), it follows that
u1 ∈ L1,2

loc(Ω) (see [21, Theorem 6.2]). If we assume q ∈ L1(Ω), in addition
to (1.7) with β ∈ (0, 1), then u1 − 1 ∈ L1,2

0 (Ω), and u1 is a weak solution
to (1.2), instead of just very weak (see e.g. [16]).
We can distinguish condition (1.10) for Theorem 1.2 from (1.7) in The-

orem 1.1 via the example q(x) = aδ(x)−2, with aC < 1 where C is the
constant in Hardy’s inequality∫

Ω

h2

δ(x)2 dx 6 C
∫

Ω
|∇h|2 dx for all h ∈ C∞0 (Ω).

Then (1.7) holds, and hence the conclusions of Theorem 1.1(1) follow for
equation (1.1). However, if (1.2) had a positive very weak solution u, then
by (1.13), P ∗(δq) would be exponentially integrable on Ω. By Jensen’s
inequality, we would then have

∫
Ω δ(x)q(x) dx <∞, which fails for q(x) =

aδ(x)−2.
We remark that the additional condition

∫
Ω δ(x)q(x) dx < ∞, or equiv-

alently Gq < +∞ a.e., combined with (1.7) for any β ∈ (0, 1), is generally
not enough (unless n = 1) to ensure that u1 is a very weak solution to (1.2).

Theorem 1.2 leads to conditions for the existence of a very weak solution
to (1.2) in terms of Carleson measures and BMO. For a measure µ on Ω,
define the Carleson norm of µ by

‖µ‖C = sup
r>0,x∈∂Ω

r1−nµ({y ∈ Ω : |y − x| < r}).

For f ∈ L1(∂Ω, dσ), define Ur(x) = {y ∈ ∂Ω : |y − x| < r} and

‖f‖BMO(∂Ω) = sup
r>0,x∈∂Ω

|σ(Ur(x))|−1
∫
Ur(x)

|f − fUr(x)|dσ,

where fUr(x) = |σ(Ur(x))|−1 ∫
Ur(x) f dσ is the average of f on Ur(x).

TOME 67 (2017), FASCICULE 4
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Corollary 1.3. — Let Ω ⊂ Rn be a bounded C2 domain, for n > 2,
and let q ∈ L1

loc(Ω), q > 0. Suppose (1.7) holds for some β ∈ (0, 1). Then
there exist ε1, ε2 > 0, depending only on Ω and β such that if

(A) ‖P ∗(δq)‖BMO(∂Ω) < ε1,

or

(B) ‖δq dx‖C < ε2,

then u1 ∈ L1(Ω, dx) and u1 is a positive very weak solution of (1.2).

For the case Ω = Rn, n > 3, we denote by I2f = (−4)−1f the Newtonian
potential of f :

I2f(x) = cn

∫
Rn

f(y) dy
|x− y|n−2 , x ∈ Rn,

where cn is a positive normalization constant. Let G(x, y) = cn|x − y|2−n
be the kernel of I2.

Theorem 1.4. — Let n > 3.
(1) Suppose there exists β ∈ (0, 1) such that

(1.15)
∫
Rn
h2q dx 6 β2

∫
Rn
|∇h|2 dx for all h ∈ C∞0 (Rn),

and

(1.16)
∫
Rn

q(y) dy
(1 + |y|)n−2 < +∞.

Then u1 = 1+Gq is a positive minimal solution (in the distributional
sense) to

(1.17)
{ −4u = qu on Rn,

lim inf
x→∞

u(x) = 1.

Also,

(1.18) u1(x) 6 eC I2q(x), for all x ∈ Rn,

where C depends only on β and n.
(2) Conversely, if there is a positive (distributional) solution u of (1.17),

then (1.15) holds with β = 1, (1.16) holds, and

(1.19) u(x) > ec I2q(x), for all x ∈ Rn,

where c depends only on n.

ANNALES DE L’INSTITUT FOURIER
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Earlier results related to Theorem 1.4 can be found in [19], [26], [27] and
the references given there. Condition (1.15) is the so-called trace inequality
which expresses the continuous imbedding of L1,2

0 (Rn) into L2(Rn, q dx).
The class of functions q (or more generally measures ω) such that (1.15)
holds is well understood, and several characterizations are known (see [3],
[25], and the literature cited there).
Theorems 1.1, 1.2, and 1.4 are the model cases of more general results

for wider classes of operators, including fractional Laplacians, and domains
Ω (Lipschitz and NTA domains), as well as more general right-hand sides
and boundary data, that we plan to address in a forthcoming paper.

The Feynman–Kac gauge u1 is closely related, via a formal substitu-
tion v = log u1, to a generalized solution of the nonlinear boundary value
problem with quadratic growth in the gradient:

(1.20)
{
−4v = |∇v| 2 + q in Ω

v = 0 on ∂Ω.

However, it is well known that the relation between (1.2) and (1.20) is
not as simple as the formal substitution suggests (see [10]). Nevertheless,
we obtain the following result.

Theorem 1.5. — Suppose Ω ⊂ Rn is a bounded C2 domain, where
n > 2, and q ∈ L1

loc(Ω), q > 0.
(1) Suppose there exists β ∈ (0, 1) such that (1.7) holds, and (1.10)

holds. Then v = log u1 is a very weak solution of (1.20) with v ∈
L1,2
loc(Ω).

(2) Conversely, if (1.20) has a very weak solution in L1,2
loc(Ω), then (1.7)

holds with β = 1, and (1.10) holds with some small constant c =
c(Ω) > 0.

A similar problem for the superquadratic equation

−4v = |∇v|s + q,

with s > 2, was solved in [19], where a thorough discussion of such problems
and more details can be found. We remark that no additional condition
like (1.10) is required for s > 2. Theorem 1.5 resolves the case s = 2, which
was stated as an open problem in [19].
Regarding solutions to (1.20), we refer also to Ferone and Murat [9] where

the existence of finite energy solutions v ∈ L1,2
0 (Ω) is proved for q ∈ Ln

2 (Ω)
(n > 3), with sufficiently small norm; in that case u1 − 1 = ev − 1 ∈
L1,2

0 (Ω). In [11], these results are extended to q ∈ Ln
2 ,∞(Ω). (See also [1],

[2], [16] where the existence of such solutions is obtained for q ∈ L1(Ω)

TOME 67 (2017), FASCICULE 4



1400 Michael W. FRAZIER & Igor E. VERBITSKY

satisfying (1.7) with β ∈ (0, 1).) Clearly, for q ∈ Ln
2 ,∞(Ω), the assumptions

of Corollary 1.3, and hence Theorem 1.5, are satisfied; that is, (1.7) holds,
and δq is a Carleson measure, which yields (1.10).
In Section 2, we discuss very weak solutions for Schrödinger equations.

The proofs of Theorems 1.1, 1.2, and 1.4 are given in Section 3. In Section 4,
we discuss the nonlinear equation (1.20) and prove Theorem 1.5, using
techniques from potential theory.

We would like to thank Fedor Nazarov for valuable conversations related
to the content of this paper, which is a continuation and application of [12].

2. Very Weak Solutions

Let Ω ⊂ Rn be a bounded C2 domain with Green’s function G(x, y),
where n > 2. Recall that δ(x) = dist(x, ∂Ω). We will use the following
well-known estimates repeatedly:

G(x, y) ≈ δ(x) δ(y)
|x− y|n−2(|x− y|+ δ(x) + δ(y))2 , n > 3,(2.1)

G(x, y) ≈ ln
(

1 + δ(x) δ(y)
|x− y|2

)
, n = 2,(2.2)

for all x, y ∈ Ω, where “≈” means that the ratio of the two sides is bounded
above and below by positive constants depending only on Ω (see [29], [30]
for n > 3; [7, Theorem 6.23] for n = 2).
Our main results hold with obvious modifications for more general do-

mains Ω for which estimates (2.1), (2.2) hold, in particular for C1,1 domains.
Estimates (2.1), (2.2) yield a cruder upper estimate

(2.3) G(x, y) 6 C δ(x)
|x− y|n−1 , n > 2,

for all x, y ∈ Ω. This is obvious if n > 3; for n = 2, notice that

ln
(

1 + δ(x) δ(y)
|x− y|2

)
6
δ(x) δ(y)
|x− y|2

.

Hence, for δ(y) 6 2|x− y|, we have,

G(x, y) 6 C δ(x)
|x− y|

.

For δ(y) > 2|x− y|, using the inequality δ(y) 6 |x− y|+ δ(x), we see that
|x− y| < δ(x) and δ(y) < 2δ(x). Hence, in this case,

G(x, y) 6 C ln
(

1 + δ(x) δ(y)
|x− y|2

)
6 C ln

(
1 + 2δ(x)2

|x− y|2

)
6 C

δ(x)
|x− y|

,

ANNALES DE L’INSTITUT FOURIER
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which verifies (2.3) for n = 2.
The preceding estimates yield

(2.4) G1(x) =
∫

Ω
G(x, y) dy ≈ δ(x), n > 2,

for all x ∈ Ω. Indeed, the lower bound G1(x) > c δ(x) follows from the
well-known estimate G(x, y) > c δ(x)δ(y), which is an obvious consequence
of (2.1), (2.2). The upper bound in (2.4) follows by integrating both sides
of (2.3) with respect to dy over a ball B(x,R) with R = diam(Ω) so that
Ω ⊂ B(x,R):

G1(x) 6 C δ(x)
∫
B(x,R)

dy
|x− y|n−1 = C1 δ(x).

Our first goal is to define a very weak solution for Schrödinger equa-
tions. We begin by defining very weak solutions for Poisson’s equation with
Dirichlet boundary conditions. We will use the class of test functions

C2
0 (Ω) = {h ∈ C2(Ω) : h = 0 on ∂Ω}.

Definition 2.1. — Suppose f ∈ L1(Ω, δ dx). A function u ∈ L1(Ω, dx)
is a very weak solution of the Dirichlet problem

(2.5)
{
−4u = f in Ω,

u = 0 on ∂Ω

if

(2.6) −
∫

Ω
u4hdx =

∫
Ω
h f dx,

for all h ∈ C2
0 (Ω).

The following lemma concerning the existence and uniqueness of very
weak solutions is well known (see [6, Lemma 1]). For convenience we supply
a simple proof which shows additionally that the very weak solution is given
by the Green’s potential Gf , defined by (1.3).

Lemma 2.2.
(1) Let f ∈ L1(Ω, δ dx). Then there exists a unique very weak solution

u ∈ L1(Ω, dx) of (2.5) given by u = Gf .
(2) If f > 0 a.e. and Gf(x0) < +∞ for some x0 ∈ Ω, then f ∈

L1(Ω, δ dx) and u = Gf ∈ L1(Ω, dx) is a very weak solution
of (2.5).

TOME 67 (2017), FASCICULE 4
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Proof. — Let us first prove (1). The proof of uniqueness follows [6].
Suppose both v and w are very weak solutions of (2.5). Let φ ∈ C∞0 (Ω)
and let h = Gφ. Then h ∈ C2

0 (Ω) and −4h = φ on Ω. Consequently∫
Ω

(v − w)φdx = −
∫

Ω
(v − w)4hdx = 0,

by (2.6). Since this equation holds for every φ ∈ C∞0 (Ω), we obtain v = w.
Next we prove that if f ∈ L1(Ω, δ dx) then u = Gf is a very weak

solution. Without loss of generality we may assume that f > 0. By Fubini’s
theorem and the symmetry of G,

‖u‖L1(Ω, dx) =
∫

Ω

∫
Ω
G(x, y) f(y) dy dx

=
∫

Ω
G1(y) f(y) dy 6 C

∫
Ω
δ(y) f(y) dy < +∞,

by (2.4).
Let fk ∈ C∞0 (Ω) be a sequence of nonnegative functions such that

‖f − fk‖L1(Ω,δ dx) → 0 as k → +∞. Denote by uk = Gfk the solution
to (2.5) with fk in place of f . By Green’s theorem,

(2.7) −
∫

Ω
uk4hdx =

∫
Ω
h fk dx,

for every h ∈ C2
0 (Ω). Note that

‖(u− uk)4h‖L1(Ω, dx) 6 ‖4h‖L∞(Ω)‖u− uk‖L1(Ω, dx),

where by Fubini’s theorem

‖u− uk‖L1(Ω, dx) = ‖G(f − fk)‖L1(Ω, dx) 6 C‖(f − fk)δ‖L1(Ω, dx)

6 C ‖f − fk‖L1(Ω,δ dx) → 0.

Note that since h ∈ C2
0 (Ω), we have |h(x)| 6 Cδ(x). Hence, passing to the

limit as k → +∞ on both sides of (2.7) proves that u = Gf is a very weak
solution. This proves statement (1) of Lemma 2.2.
To prove statement (2), assume that Gf(x0) < +∞ for some x0 ∈ Ω,

where f > 0 a.e. Since u = Gf is superharmonic in Ω (see e.g. [5, Theo-
rem 3.3.1]), it follows by the mean value inequality that

1
|B(x0, r)|

∫
B(x0,r)

Gf(x) dx 6 Gf(x0) < +∞,

for some ball B(x0, r) such that 0 < r < 1
2δ(x). By Fubini’s theorem,∫

B(x0,r)
Gf(x) dx =

∫
Ω
GχB(x0,r)(y)f(y) dy.
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Since GχB(x0,r)(y) > C δ(y) for all y ∈ Ω, it follows that f ∈ L1(Ω, δ dx).
Thus by statement (1), u = Gf ∈ L1(Ω, dx) is a very weak solution
of (2.5). �

Remark 2.3. — We can extend Definition 2.1 and Lemma 2.2 to the
case where f is replaced with a signed Radon measure ω on Ω such that∫

Ω δ d|ω| < ∞. In this case, we say that u ∈ L1(Ω, dx) is a very weak
solution of

(2.8)
{
−4u = ω in Ω,

u = 0 on ∂Ω

if
−
∫

Ω
u4hdx =

∫
Ω
hdω,

for all h ∈ C2
0 (Ω). Then by [24, Theorem 1.2.2], u(x) = Gω(x) =∫

ΩG(x, y) dω(y) is the unique very weak solution of (2.8). For future ref-
erence in §4, we note that the proof of [24, Theorem 1.2.2] shows that if∫

Ω δ d|ω| <∞, then Gω ∈W 1,p
loc (Ω) for 1 6 p < n/(n− 1).

We now use the above definition of very weak solutions of the Poisson
equation to define very weak solutions of the Schrödinger equation. For the
following definition, and subsequent lemma, we do not require q > 0.

Definition 2.4. — Let q ∈ L1
loc(Ω, dx) and let f ∈ L1(Ω, δ(x) dx). A

function u ∈ L1(Ω, dx)∩L1(Ω, δ(x)|q(x)|dx) is a very weak solution to the
Schrödinger equation

(2.9)
{
−4u = q u+ f in Ω,

u = 0 on ∂Ω,

if

(2.10) −
∫

Ω
u4hdx =

∫
Ω
hu q dx+

∫
Ω
h f dx,

for all h ∈ C2
0 (Ω).

Formally, applying the Green’s operator G to both sides of the equation
−4u = qu+ f yields the integral equation

(2.11) u(x) = G(qu+ f)(x) =
∫

Ω
G(x, y)u(y)q(y) dy +

∫
Ω
G(x, y)f(y) dy.

By a solution of (2.11) we mean a function u such that u and G(qu+f) are
finite and equal a.e. The relationship between very weak solutions of (2.9)
and solutions of (2.11) is made clear by the following lemma.
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Lemma 2.5. — Suppose q ∈ L1
loc(Ω, dx), f ∈ L1(Ω, δ(x) dx), and u ∈

L1(Ω, dx) ∩ L1(Ω, δ(x)|q(x)|dx). Then u is a very weak solution to the
Schrödinger equation (2.9) if and only if u is a solution to the integral
equation u = G(qu+ f).

Proof. — Suppose h ∈ C2
0 (Ω). By our assumptions, qu ∈ L1(Ω, δ dx).

Hence by Lemma 2.2,

−
∫

Ω
G(qu)4hdx =

∫
Ω
quhdx, −

∫
Ω
G(f)4hdx =

∫
Ω
fhdx.

If we assume u = G(qu+ f) a.e., then

−
∫

Ω
u4hdx = −

∫
Ω
G(qu+ f)4hdx =

∫
Ω

(qu+ f)hdx,

for all h ∈ C2
0 (Ω), so u is a very weak solution of (2.9). Conversely, suppose

u is a very weak solution of (2.9). For any φ ∈ C∞0 (Ω), then h = Gφ

satisfies h ∈ C2
0 (Ω) and −4h = φ. Hence∫

Ω
uφ dx = −

∫
Ω
u4hdx =

∫
Ω
h(qu+ f) dx

= −
∫

Ω
G(qu+ f)4hdx =

∫
Ω
G(qu+ f)φdx.

Since φ ∈ C∞0 (Ω) is arbitrary, u = G(qu+ f) a.e. �

We now return to our standing assumption that q > 0. The following
Corollary will be useful.

Corollary 2.6. — Suppose f ∈ L1(Ω, δ dx) and f > 0. Suppose u > 0
satisfies u = G(qu+ f). Then u ∈ L1(Ω, dx) ∩ L1(Ω, δq dx).

Proof. — By assumption, u <∞ a.e. In particular, u(x0) <∞ for some
x0 ∈ Ω. Since Gf > 0, we have that G(qu)(x0) <∞. By Lemma 2.2(2), we
have qu ∈ L1(Ω, δ dx), or u ∈ L1(Ω, δq dx).
We integrate the equation u = G(qu + f) over Ω. Since all terms are

nonnegative, Fubini’s theorem gives∫
Ω
u(x) dx =

∫
Ω
u(x)G1(x) q(x) dx+

∫
Ω
G1(x) f(x) dx

≈
∫

Ω
u(x) δ(x) q(x) dx+

∫
Ω
δ(x) f(x) dx <∞

since u ∈ L1(Ω, δq dx). Hence u ∈ L1(Ω, dx). �

Lemma 2.7. — Suppose f > 0 and G(f) <∞ a.e. Then u = Gf satisfies
u ∈ L1(Ω, dx) ∩ L1(Ω, δq dx), u(x) = G(qu + f)(x) for all x ∈ Ω, and u is
a very weak solution of (2.9).
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Proof. — We first observe that Gf 6 Gf < +∞ a.e., and hence f ∈
L1(Ω, δ dx) and Gf ∈ L1(Ω, dx), by Lemma 2.2(2). Hence Gf is finite a.e.
Note that for j > 2,∫

Ω
Gj(x, y)f(y) dy =

∫
Ω

∫
Ω
G(x, z)Gj−1(z, y)q(z) dz f(y) dy

=
∫

Ω
G(x, z)q(z)

∫
Ω
Gj−1(z, y)f(y) dy dz

= G

(
q

∫
Ω
Gj−1(·, y)f(y) dy

)
(x)

by Fubini’s theorem. Hence

Gf(x) = Gf(x) +
∞∑
j=2

∫
Ω
Gj(x, y)f(y) dy

= Gf(x) +G

q ∫
Ω

∞∑
j=2

Gj−1(·, y)f(y) dy

 (x)

= G(f + q Gf)(x),

or u(x) = G(qu + f)(x), for all x ∈ Ω. Since u and Gf are finite a.e.,
so is G(qu). Hence by Corollary 2.6, u ∈ L1(Ω, dx) ∩ L1(Ω, δq dx). By
Lemma 2.5, u is a very weak solution of (2.9). �

Positive very weak solutions of the Schrödinger equation are in general
not unique (see [26]). However, if f > 0 and (2.11) has a nonnegative
solution, then Gf is the minimal solution, in the sense that if u > 0
satisfies (2.11) then Gf(x) 6 u(x) for a.e. x. To see this fact, define
Gjf(x) =

∫
ΩGj(x, y)f(y) dy for Gj(x, y) defined by (1.3) and (1.4), and

define Tg = G(gq). In the proof of the previous lemma, we showed that
Gjf = T (Gj−1f). Hence, substituting G(uq + f) = Tu + Gf for u

repeatedly,

u = Tu+Gf = T (Tu+Gf) +Gf

= T 2u+ T (Gf) +Gf = T 2u+G2f +Gf.

Iterating, we obtain u = T ku+
∑k
j=1Gjf , and letting k →∞ shows that

u > G(f). Hence G(f) is called the minimal very weak solution of (2.9).
Thus, the only issue regarding the existence of a very weak solution of (2.9)
is whether G(f) <∞ a.e.
We adapt Definition 2.4 of a very weak solution to the case of non-zero

boundary conditions. If g ∈ L1(∂Ω, dσ), then P (g), the Poisson integral

TOME 67 (2017), FASCICULE 4



1406 Michael W. FRAZIER & Igor E. VERBITSKY

of g, defined P (g)(x) =
∫
∂Ω P (x, y)g(y) dσ(y), is harmonic on Ω and has

boundary values g(y) σ-a.e. The following definition does not require q > 0.

Definition 2.8. — Let q ∈ L1
loc(Ω, dx), f ∈ L1(Ω, δ(x) dx), g ∈

L1(∂Ω, dσ), and qP (g) ∈ L1(δ dx). A function u ∈ L1(Ω, dx)∩
L1(Ω, δ(x)|q(x)|dx) is a very weak solution of the Schrödinger equation

(2.12)
{
−4u = q u+ f in Ω,

u = g on ∂Ω,

if u = v + P (g), where v is a very weak solution of{
−4v = q v + f + qP (g) in Ω,

v = 0 on ∂Ω.

Our definition is not entirely standard, but it is equivalent to the standard
definition (see e.g. [24, Definition 1.1.2]) since both of them result in the
integral representation u = G(qu) +G(f) + P (g).
In the case of (1.2), we have f = 0 and g = 1 in (2.12). Then P (1) = 1,

so any very weak solution of (1.2) has the form u = v + 1, where v is a
very weak solution of −4v = qv + q on Ω, v = 0 on ∂Ω. If we assume
q ∈ L1(Ω, δ dx) then Lemma 2.5 gives that v ∈ L1(Ω, dx) ∩ L1(Ω, δ|q|dx)
is a very weak solution of −4v = qv + q on Ω, v = 0 on ∂Ω if and
only if v is a solution of the integral equation v = G(qv + q). Hence u ∈
L1(Ω, dx) ∩ L1(Ω, δ|q|dx) is a very weak solution of (1.2) if and only u is
a solution of the integral equation u = 1 +G(qu).
We now return to the assumption that q > 0. As for Lemma 2.7, the

only issue regarding whether the formal solution u1 in (1.6) yields a very
weak solution to (1.2) is whether the expression in (1.6) is finite a.e.

Lemma 2.9. — Suppose u1 = 1 +G(q) <∞ a.e. Then u1 is a very weak
solution of (1.2).

Proof. — By Lemma 2.7, v = G(q) is a very weak solution of −4v =
qv + q on Ω, v = 0 on ∂Ω. �

In fact, u1 is the minimal positive weak solution of (1.2). To see this
fact, suppose u > 0 is a positive weak solution of (1.2). The equation
u = 1 +G(qu) shows that u > 1. Hence v = u− 1 is a positive solution to
the integral equation v = G(qv + q), hence a positive very weak solution
to (2.9) with f = q. By the minimality of the positive solution G(q) of (2.9)
with f = q, we have G(q) 6 v, and hence u1 = 1 + G(q) 6 1 + v = u.
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3. Positive Solutions to Schrödinger Equations

In Lemma 2.5, we reduced the solution (in the very weak sense) of (2.9)
to the associated integral equation u = G(qu) +Gf . We define the integral
operator T by

(3.1) Tf(x) = G(fq)(x) =
∫

Ω
G(x, y) f(y)q(y) dy, x ∈ Ω.

Our first step in proving Theorem 1.1 is to relate condition (1.7) to the
norm of T on L2(Ω, q dx).

Lemma 3.1. — Suppose Ω ⊂ Rn, for n > 1, is a bounded C2 domain.
Then T maps L2(q dx) to itself boundedly if and only if (1.7) holds for
some β, and ‖T‖L2(Ω,q dx)→L2(Ω,q dx) = β2, where β is the least constant
in (1.7).

Proof. — Recall that L1,2
0 (Ω) is the homogeneous Sobolev space of or-

der 1, that is, the closure of C∞0 (Ω) with respect to the Dirichlet norm
‖∇f‖L2(Ω, dx). The dual of L1,2

0 is isometrically isomorphic to the space
L−1,2(Ω) (and vice versa). For f ∈ L1(Ω, dx) (or more generally a finite
signed measure), we have

(3.2) ‖f‖2L−1,2(Ω) =
∫

Ω
|∇G(f)|2 dx =

∫
Ω
fGf dx

(see [22, §I.4, Theorem 1.20]). Also note that by duality, the inequality

(3.3) ‖fq‖L−1,2(Ω) 6 α‖f‖L2(Ω,q dx), for all f ∈ L2(Ω, q dx)

is equivalent to the inequality

(3.4) ‖h‖L2(Ω,q dx) 6 α‖h‖L1,2
0 (Ω) for all h ∈ C∞0 (Ω).

For example, if (3.3) holds and h ∈ C∞0 (Ω), then

‖h‖L2(Ω,q dx) = α sup
{φ:‖φ‖L2(Ω,q dx)61/α}

∣∣∣∣∫
Ω
hφq dx

∣∣∣∣
6 α sup

{φ:‖φq‖L−1,2(Ω)61}

∣∣∣∣∫
Ω
hφq dx

∣∣∣∣
6 α sup

{ψ:‖ψ‖L−1,2(Ω)61}

∣∣∣∣∫
Ω
hψ dx

∣∣∣∣ = α‖h‖L1,2
0 (Ω).

Since G(x, y) is symmetric, T is a self-adjoint operator on L2(Ω, q dx),
and hence

‖T‖L2(Ω,q dx)→L2(Ω,q dx) = sup
{f :‖f‖L2(Ω,q dx)61}

∣∣〈Tf, f〉L2(Ω,q dx)
∣∣ .
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In computing this supremum, we can assume f ∈ B = {f ∈ C∞0 (Ω) :
‖f‖L2(q dx) 6 1}. For f ∈ B, we have that fq ∈ L1(Ω). Hence we obtain

(3.5)
‖T‖L2(Ω,q dx)→L2(Ω,q dx) = sup

f∈B

∣∣〈G(fq), fq〉L2(Ω, dx)
∣∣

= sup
f∈B
‖fq‖2L−1,2(Ω),

by (3.2).
Suppose (1.7) holds for all h ∈ C∞0 (Ω). Since (3.4) implies (3.3), we have

‖T‖L2(Ω,q dx)→L2(Ω,q dx) = sup
f∈B
‖fq‖2L−1,2(Ω) 6 β

2.

Conversely, if T is bounded on L2(q dx), then by (3.5), we have

‖fq‖2L−1,2(Ω) 6 ‖T‖‖f‖
2
L2(Ω,q dx),

first for all f ∈ C∞0 (Ω), but then as a consequence of density, for all
f ∈ L2(Ω, q dx). Since (3.3) implies (3.4), we obtain ‖h‖2L2(Ω,q dx) 6

‖T‖‖h‖2L1,2(Ω) for all h ∈ C∞0 (Ω). Hence β2 6 ‖T‖L2(Ω,q dx)→L2(Ω,q dx). �
The next step utilizes estimates from [12]. In that paper, a general σ-

finite measure space (X, dω) and integral operator T defined by Tf(x) =∫
X
K(x, y)f(y) dω(y) are considered. Here K : X × X → (0,∞] is sym-

metric and quasi-metrically modifiable, which means that there exists a
measurable function m : X → (0,∞) (the “modifier”), such that for
K̃(x, y) = K(x,y)

m(x)m(y) we have that d(x, y) = 1/K̃(x, y) satisfies the quasi-
metric condition

d(x, y) 6 κ(d(x, z) + d(z, y))

for some constant κ > 0 and all x, y, z ∈ X. For j > 2, we define Kj(x, y) =∫
X
Kj−1(x, z)K(z, y) dω(z). Then the jth iterate T j of T has the form

T jf(x) =
∫
X
Kj(x, y)f(y) dω(y). The formal solution to the equation v =

Tv +m is

v0 = m+
∞∑
j=1

T jm,

for a modifier m. Then [12, Corollary 3.5] states that there exists c > 0
depending only on κ such that

(3.6) mec(Tm)/m 6 v0,

and, if in addition ‖T‖L2(ω)→L2(ω) < 1, then there exists a constant C > 0
depending only on κ and ‖T‖ such that

(3.7) v0 6 me
C(Tm)/m.

ANNALES DE L’INSTITUT FOURIER



SCHRÖDINGER’S EQUATION AND THE BALAYAGE 1409

To apply this result to our case, we let X = Ω, dω = q(y) dy and
K(x, y) = G(x, y). Note that (3.1) holds for T defined on X as above.
As noted in [13, p. 118] or [12, p. 905], the equivalence (2.1) in the case
n > 3 combined with (2.4) shows thatK is quasi-metrically modifiable with
modifier m(x) = δ(x) = dist(x, ∂Ω). (We take this opportunity to note a
misprint in [12]: the power of |x− y|+ δ(x) + δ(y) in equation (1.6) should
be α, not α/2; this error has no bearing on the validity of the results in that
paper.) For n = 2, it remains true that m = δ is a modifier for K; this fact
follows from estimates (2.2) and (2.4) (see [17, Propositions 8.6 and 9.6]).
Then by (1.3) and (1.4), we have Kj(x, y) = Gj(x, y) for all j > 1. Hence

T j(G1)(x) =
∫

Ω
Gj(x, y)q(y)

∫
Ω
G(y, z) dz dy

=
∫

Ω

∫
Ω
Gj(x, y)G(y, z)q(y) dy dz = Gj+11(x),

where Gj is the integral operator defined by Gjf(x) =
∫

ΩGj(y)f(y) dy.
Hence

(3.8) u0 = G1 =
∞∑
j=1

Gj1 = G1 +
∞∑
j=1

Gj+11 = G1 +
∞∑
j=1

T j(G1).

However, we noted in (2.4), G1 and δ are pointwise equivalent. Hence u0 ≈
δ +

∑∞
j=1 T

jδ = v0. Therefore by (3.6), there exist constants c1 > 0 and
c > 0 such that

(3.9) u0 > c1δe
cG(qδ)/δ,

and, if we assume ‖T‖L2(Ω,q dx)→L2(Ω,q dx) < 1, then (3.7) gives the estimate

(3.10) u0 6 C1e
CG(qδ)/δ,

for some constants C1 > 0 and C > 0.
Proof of Theorem 1.1. — First suppose (1.7) holds for some β ∈ (0, 1).

We note that we then have the inequality

(3.11)
∫

Ω
h2q dx 6 β2‖h‖2

L1,2
0 (Ω)

for all h ∈ L1,2
0 (Ω), by an approximation argument, as follows. Let hn ∈

C∞0 (Ω) be a sequence of functions converging to h in L1,2
0 (Ω). Then by the

Sobolev imbedding theorem, hn converges to h in Lp∗ for some p∗ > 1, so
by passing to a subsequence we can assume hn converges to h a.e. Because
of (1.7), hn is Cauchy in L2(Ω, q dx) and hence converges in L2(Ω, q dx) to
some function h̃. Since there is a subsequence of hn converging q dx-a.e. to
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h̃, we must have h̃ = h a.e. with respect to q dx. Hence we can let n→∞
in
∫

Ω h
2
nq dx 6 β2 ∫

Ω |∇hn|
2 dx to obtain (3.11).

Observe that G1 ∈ C(Ω), G1 = 0 on ∂Ω, and, by (3.2) and (2.4),∫
Ω
|∇G1|2 dx =

∫
Ω
G1 dx 6 C

∫
Ω
δ(x) dx <∞.

HenceG1 ∈ L1,2
0 (Ω). By the remark in the last paragraph,G1 ∈ L2(Ω, q dx).

Since G1 ≈ δ, this means that δq ∈ L1(Ω, δ dx). By Lemma 2.2(1), G(δq) ∈
L1(Ω, dx). In particular, G(δq) <∞ a.e.

By our assumption (1.7) and Lemma 3.1, the operator T defined by (3.1)
has ‖T‖L2(Ω,q dx)→L2(Ω,q dx) 6 β2 < 1. Hence by (3.10), u0 = G1 satis-
fies (1.8) and u0 < ∞ a.e. By Lemma 2.7, u0 ∈ L1(Ω, dx) ∩ L1(Ω, δq dx),
and u0 is a positive very weak solution of (2.9).

Since ‖T‖L2(Ω,q dx)→L2(Ω,q dx) < 1, the operator (I − T )−1 =
∑∞
j=0 T

j

is bounded on L2(q dx). Hence u0 ∈ L2(q, dx), by (3.8). Since u0 =
G(u0q + 1), we have∫

Ω
|∇u0|2 dx =

∫
Ω
|∇G(u0q + 1)|2 dx

=
∫

Ω
G(u0q + 1)(u0q + 1) dx =

∫
Ω

(u2
0q + u0) dx.

by (3.2). Since u0 = G(u0q + 1) is 0 on ∂Ω, we obtain u0 ∈ L1,2
0 (Ω).

We now show that u0 is a weak solution of (1.1). Since u0 ∈ L1,2
0 (Ω), we

must show that ∫
Ω
∇u0 · ∇hdx =

∫
Ω
hu0q + hdx,

for all h ∈ L1,2
0 (Ω). Let hn be a sequence in C∞0 (Ω) converging to h in the

norm on L1,2
0 (Ω). Then∫
Ω
∇u0 · ∇hn dx = −

∫
Ω
u04hn dx =

∫
Ω
hnu0q + hn dx

because u0 is a very weak solution of (1.1). The left side converges as n→∞
to
∫

Ω∇u0 · ∇hdx, because hn converges to h in L1,2
0 (Ω). By (3.11), which

we now know is valid for all h in L1,2
0 (Ω), we have that hn converges to h in

L2(Ω, q dx). We also know that u0 ∈ L2(Ω, q dx). Hence using the Cauchy–
Schwarz inequality in L2(Ω, q dx) we see that

∫
Ω hnu0q dx converges to∫

Ω hu0q dx. The imbedding of L1,2
0 (Ω, dx) in L1(Ω, dx) shows that

∫
Ω hn dx

converges to
∫

Ω hdx. Therefore u0 is a weak solution of (1.1).
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Now suppose u ∈ L1(Ω, dx)∩L1(Ω, δq dx) and u is a positive very weak
solution of (1.1). By Definition 2.1 and Lemma 2.5, u satisfies the integral
equation u = G(qu) + G1 = Tu + G1 a.e., for T defined by (3.1). Since
G1 > 0, we have T (u) 6 u a.e., with u > G1 > 0 and u < ∞ a.e. Hence
by Schur’s test for integral operators, we have ‖T‖L2(Ω,q dx)→L2(Ω,q dx) 6 1.
By Lemma 3.1, it follows that (1.7) holds with β = 1. Since u0 = G1 is the
minimal positive very weak solution of (1.1), we have u0 6 u, hence (1.9)
holds because of (3.9). �

We turn now to equation (1.2). By Lemma 2.9, the essential issue is
whether u1 = 1+G(q) is finite a.e., or equivalently u1 ∈ L1(Ω). We will use
the relation between u0 and u1 exhibited by the following simple lemma.

Lemma 3.2. — Let Ω, q, u0, and u1 be as in Theorems 1.1 and 1.2. Then
u1 ∈ L1(Ω, dx) if and only if u0 ∈ L1(Ω, q dx).

Proof. — Since u0 = G1, Fubini’s theorem and the symmetry of G(x, y)
yield

�(3.12)
∫

Ω
u1 dx =

∫
Ω

1 dx+
∫

Ω

∫
Ω
G(x, y)q(y) dy dx = |Ω|+

∫
Ω
u0q dy.

The following convergence lemma will be useful.

Lemma 3.3. — Suppose Ω ⊂ Rn is a bounded C2 domain, for n > 2.
Suppose q ∈ L1(Ω, dx) and q has compact support in Ω. Suppose φ ∈
L1(Ω, q dx). Let z ∈ ∂Ω, and let {xj}∞j=1 be a sequence in Ω converging to
z in the normal direction. Then

lim
j→∞

G(φq)(xj)
δ(xj)

=
∫

Ω
P (y, z)φ(y)q(y) dy.

Proof. — Recall that P (y, z) is the normal derivative of G(y, x) as x→ z,
x ∈ Ω. Hence limj→∞G(y, xj)/δ(xj) = P (y, z). Since G is symmetric,

lim
j→∞

G(φq)(xj)
δ(xj)

= lim
j→∞

∫
Ω

G(y, xj)
δ(xj)

φ(y)q(y) dy.

There is some constant c1 > 0 such that |y − xj | > c1 for all y belonging
to the support of q and all sufficiently large j. Hence (2.1) shows that
G(y, xj)/δ(xj) is bounded for all large enough j. The result follows by the
dominated convergence theorem. �

We will need an elementary lemma on quasi-metric spaces due to Hansen
and Netuka [18, Proposition 8.1 and Corollary 8.2]; in the context of normed
spaces it was proved earlier by Pinchover [27, Lemma A.1].
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Lemma 3.4. — Suppose d is a quasi-metric on a set Ω with quasi-metric
constant κ. Suppose z ∈ X. Then

(3.13) d̃(x, y) = d(x, y)
d(x, z) · d(y, z) , x, y ∈ Ω \ {z},

is a quasi-metric on Ω \ {z} with quasi-metric constant 4κ2.

Proof of Theorem 1.2. — First suppose (1.7) holds for some β ∈ (0, 1)
and (1.10) holds for the constant C in (1.8). By Theorem 1.1, u0 ∈
L1(Ω, dx) ∩ L1(Ω, δq dx) and u0 satisfies (1.8). By Corollary 2.6 and
Lemma 2.7, u0 = G(u0q + 1) at every point of Ω.
Let z ∈ ∂Ω. We claim that

(3.14)
∫

Ω
P (y, z)u0(y)q(y) dy 6 C1e

CP∗(δq)(z),

where C1 and C are the constants from (1.8).
We first prove this claim under the additional assumption that q is com-

pactly supported in Ω, so q ∈ L1(Ω, dx). Since δ is bounded above and
below, away from 0, on the support of q, the condition u0 ∈ L1(Ω, δq) is
equivalent to the condition u0 ∈ L1(Ω, q dx). Let {xj}∞j=1 be a sequence
in Ω converging to z in the normal direction. Applying Lemma 3.3 with
φ = u0, we obtain∫

Ω
P (y, z)u0(y)q(y) dy = lim

j→∞

G(u0q)(xj)
δ(xj)

.

Applying the equation u0 = G(u0q + 1) and (1.8),

G(u0q)(xj)
δ(xj)

6
u0(xj)
δ(xj)

6 C1e
CG(δq)(xj)/δ(xj).

Taking the limit and applying Lemma 3.3 with φ = δ ∈ L1(Ω, q dx) gives∫
Ω
P (y, z)u0(y)q(y) dy 6 C1e

C
∫

Ω
P (y,z)δ(y)q(y) dy = C1e

CP∗(δq)(z).

We now remove the assumption that q is compactly supported in Ω. Let
q ∈ L1

loc(Ω). Let {Ωk}∞k=1 be an exhaustion of Ω by smooth subdomains
with compact closure such that Ωk+1 ⊂ Ωk, k = 1, 2, . . . . Define qk =
qχΩk . Then each qk has compact support in Ω. Define the iterated Green’s
kernels G(k)

j (x, y) for j = 1, 2, 3, . . . , and G(k), as in (1.3), (1.4), and (1.5),
except with q replaced by qk. Let uk = G(k)1. By repeated use of the
monotone convergence theorem, G(k)

j (x, y) increases monotonically as k →
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∞ to Gj(x, y) for each j, G(k)(x, y) increases monotonically to G(x, y), and
uk increases monotonically to u0. Applying the compact support case gives∫

Ω
P (y, z)uk(y)qk(y) dy 6 C1e

CP∗(δqk)(z) 6 C1e
CP∗(δq)(z).

Then the monotone convergence theorem yields (3.14).
We integrate (3.14) over ∂Ω:∫

∂Ω

∫
Ω
P (y, z)u0(y)q(y) dy dσ(z) 6 C1

∫
∂Ω
eCP

∗(δq)(z) dσ(z).

By Fubini’s theorem and the fact that P (1) = 1, the left side is just∫
Ω u0q dx. Hence (1.8) implies u0 ∈ L1(Ω, q dx). By Lemma 3.2 and (3.12),
we obtain u1 ∈ L1(Ω, dx) and (1.11) holds. Hence u1 < ∞ a.e. Then
Lemma 2.9 shows that u1 is a very weak solution of (1.2).
Next we prove the pointwise estimate (1.12). Since for all x ∈ Ω we have∫
∂Ω P (x, z) dσ(z) = 1, it follows

u1(x) = 1 + Gq(x) = 1 +
∞∑
j=1

∫
Ω
Gj(x, y)q(y) dy

=
∫
∂Ω

(
P (x, z) +

∞∑
j=1

∫
Ω
Gj(x, y)P (y, z)q(y) dy

)
dσ(z)

=
∫
∂Ω

∞∑
j=0

T j(P (·, z))(x) dσ(z).

The following estimates of the Poisson kernel are well known (see [7]):
there exist constants c = c(Ω), C = C(Ω) so that, for x ∈ Ω and z ∈ ∂Ω:

(3.15) c δ(x)
|x− z|n

6 P (x, z) 6 C δ(x)
|x− z|n

.

Fix z ∈ ∂Ω for the moment. We claim that m(x) = P (x, z) is a modifier
for K(x, y) = G(x, y). To see this fact, define a quasi-metric d on Ω, for
n > 3, by:

d(x, y) = |x− y|n−2 [|x− y|2 + δ(x)2 + δ(y)2], x, y ∈ Ω.

Notice that, for z ∈ ∂Ω, we have d(x, z) ≈ |x− z|n since |x− z| > δ(x) and
δ(z) = 0. Hence by (3.15),

m(x) ≈ δ(x)/d(x, z), x ∈ Ω.

Using (2.1) together with the preceding inequalities, we estimate the mod-
ified kernel K̃:

(3.16) K̃(x, y) = G(x, y)
m(x) ·m(y) ≈

d(x, z) · d(y, z)
d(x, y) .
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By Lemma 3.4, K̃ is a quasi-metric kernel on Ω \ {z}, and hence on
Ω. Notice that all the constants of equivalence depend only on Ω, but
not on z.
Similarly, for n = 2, we invoke (2.2) to define a quasi-metric on Ω using

an extension by continuity of the quasi-metric originally defined on Ω by

d(x, y) = δ(x)δ(y)
[
ln
(

1 + δ(x)δ(y)
|x− y|2

)]−1
, x, y ∈ Ω.

In other words, for x ∈ Ω and z ∈ ∂Ω, we set
d(x, z) = lim

y→z, y∈Ω
d(x, y)

= lim
y→z, δ(y)→0

δ(x)δ(y)
[
ln
(

1 + δ(x)δ(y)
|x− y|2

)]−1
= |x− z|2.

The same formula will be used if both x, z ∈ ∂Ω, so that

d(x, z) = |x− z|2 for all x ∈ Ω, z ∈ ∂Ω.

Clearly, the extended function d satisfies the quasi-triangle inequality on
Ω. Moreover, for z ∈ ∂Ω, we have by (3.15),

m(x) = P (x, z) ≈ δ(x)/ d(x, z) for all x ∈ Ω.

By Lemma 3.4 the modified kernel K̃(x, y) = G(x,y)
m(x)m(y) is a quasi-metric

kernel on Ω, since it satisfies (3.16) as in the case n > 3.
Applying (3.6) and (3.7) to estimate

∑∞
j=0 T

jm, we obtain:

c1 P (x, z) ec2
∫

Ω
G(x,y)P (y,z)

P (x,z) q(y) dy 6
∞∑
j=0

T j(P (·, z))(x)

6 C2 P (x, z) eC3
∫

Ω
G(x,y)P (y,z)

P (x,z) q(y) dy
,

where the constants do not depend on x ∈ Ω and z ∈ ∂Ω. Substituting into
the expression for u1 above, we obtain (1.12) as well as the lower estimate

(3.17) u1(x) > c1
∫
∂Ω
e
c2
∫

Ω
G(x,y)P (y,z)

P (x,z) q(y) dy
P (x, z) dσ(z).

For the converse, suppose u is a positive very weak solution of (1.2).
By the remarks after Definition 2.8, u satisfies the integral equation u =
1 + G(qu) = 1 + Tu, for T defined by (3.1). Hence 0 < u < ∞ a.e., and
Tu 6 u. By Schur’s test, ‖T‖L2(Ω,q dx)→L2(Ω,q dx) 6 1. By Lemma 3.1,
inequality (1.7) holds with β = 1.
Since u1 = 1 + Gq is the minimal positive very weak solution of (1.2),

we have Gq < u1 6 u, hence Gq < ∞ a.e. By Lemma 2.2, q ∈ L1(Ω, δ dx)
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and by Lemma 2.7, Gq ∈ L1(Ω, dx). Hence u1 = 1 + Gq ∈ L1(Ω, dx). By
Lemma 3.2, u0 ∈ L1(Ω, q dx).
Let z ∈ ∂Ω. We claim that there exists c2 > 0 depending only on Ω such

that

(3.18) c1e
cP∗(δq)(z) 6

∫
Ω
P (y, z)u0(y)q(y) dy + c2,

where c1 and c are the constants from (1.9). By the same exhaustion process
that was used in the forward direction, it is sufficient to prove (3.18) under
the assumption that q has compact support in Ω. Under that assumption,
we have that δ is bounded above, and below away from 0, on the support
of q, so δq ∈ L1(Ω, dx). Let {xj}∞j=1 be a sequence of points in Ω which
converge to z in the normal direction. By Lemma 3.3 with φ = δ,

c1e
cP∗(δq)(z) = e

c
∫

Ω
P (y,z)δ(y)q(y) dy = lim

j→∞
c1e

cG(δq)(xj)/δ(xj).

By Theorem 1.1, u0 satisfies the estimate in (1.9). Hence

c1e
cG(δq)(xj)/δ(xj) 6

u0(xj)
δ(xj)

= G(u0q)(xj)
δ(xj)

+ G1(xj)
δ(xj)

6
G(u0q)(xj)
δ(xj)

+ c2,

by (2.4). Because u0∈L1(Ω, q dx), taking the limit and applying Lemma 3.3
with φ = u0 gives (3.18).

Integrating (3.18) over ∂Ω, applying Fubini’s theorem, and using the fact
that P1 = 1, we obtain

c1

∫
∂Ω
ecP

∗(δq)(z) dσ(z) 6
∫
∂Ω

(∫
Ω
P (y, z)u0(y)q(y) dy + c2

)
dσ(z)

=
∫

Ω
u0q dx+ c2|∂Ω| <∞,

since u0 ∈ L1(Ω, q dx). By Lemma 3.2 and the minimality of u1, we have∫
Ω u0q dx 6

∫
Ω u1 dx 6

∫
Ω udx, which establishes (1.13).

Now (1.14) follows from (3.17), since u > u1. �

Proof of Corollary 1.3. — By the John–Nirenberg theorem, eβP∗(δq)
is integrable on ∂Ω, for β less than a multiple of the reciprocal of
the BMO norm of P ∗(δq). Hence if (A) holds for ε1 small enough, then∫
∂Ω e

CP∗(δq) dσ <∞, and the conclusions follow from Theorem 1.2.
By a standard theorem (see e.g. [28], [14], p. 229), P ∗(δq) ∈ BMO(∂Ω)

with BMO norm bounded by a multiple of the Carleson norm of δq dx.
Therefore (B) for ε2 sufficiently small implies (A). �

Condition (B) above actually yields (A) with every χE δq in place of δq,
for any measurable E ⊂ Ω, and the converse is also true (see [28]).
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We now turn to the case of Ω = Rn. For 0 < α < n, let Iα = (−4)−α/2
denote the Riesz potential defined by

Iαf(x) = cn,α

∫
Rn
|x− y|α−nf(y) dy,

for some constant cn,α > 0. If f > 0, then the Riesz potential Iαf(x) is
finite a.e. in Rn if and only if

(3.19)
∫
Rn

f(y) dy
(|y|+ 1)n−α < +∞.

Otherwise Iαf ≡ +∞ on Rn ([22, §I.3]). If (3.19) holds, then

lim inf
x→∞

Iαf(x) = 0.

The kernel of I2 is the Green’s function G(x, y) = cn|x − y|2−n and the
Green’s operator G coincides with I2. Define the iterates Gj and G by (1.4)
and (1.5).
We consider positive solutions u to the Schrödinger equation

(3.20) −4u = qu+ f in Ω,

where q > 0 is a given non-negative potential and f > 0 is a function such
that

(3.21)
∫
Rn

f(y) dy
(1 + |y|)n−2 < +∞.

Equation (3.20) is understood in the distributional sense. Equivalently
(see [22], Sec. I.5), u ∈ L1

loc(Rn), u > 0, is a solution to (3.20) if∫
Rn

u(y) q(y) dy
(1 + |y|)n−2 < +∞,

and

(3.22) u = I2(qu) + I2f + c a.e.,

where c is a non-negative constant and lim infx→∞ u(x) = c.
Since f = 1 does not satisfy (3.21), we do not obtain conditions for

the solvability of (1.1) on Rn. On a bounded domain, the results for (1.1)
in Theorem 1.1 were used to obtain our results in Theorem 1.2 for (1.2).
Nevertheless we obtain results for (1.2) on Rn.

We first note that Lemma 3.1 holds for Ω = Rn. Define the operator T
by (3.1) with Ω = Rn. Define the homogeneous Sobolev space L1,2

0 (Rn)
to be the closure of C∞0 (Rn) with respect to the norm ‖f‖L1,2(Rn) =
‖(−4)1/2f‖L2(Rn). The dual of L1,2

0 (Rn) is isometrically isomorphic to
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L−1,2(Rn) defined via the norm ‖f‖L−1,2(Rn) = ‖(−4)−1/2f‖L2(Rn). Be-
cause of the semi-group property Iα/2 ∗ Iα/2 = Iα of the Riesz kernels, we
have, for f > 0 (or if f is a finite signed measure),

‖f‖2L−1,2(Rn) =
∫
Rn

(I1f)2 dx =
∫
Rn
fI2f dx =

∫
Rn
fGf dx,

which is the analogue of (3.2). With this result, the proof of Lemma 3.1
carries over to Rn and we obtain that ‖T‖L2(Rn,q dx)→L2(Rn,q dx) = β2,
where β is the least constant in (1.15).

Proof of Theorem 1.4. — First suppose (1.15) holds for some β ∈ (0, 1),
and (1.16) holds. Then the equation −4u = qu with lim infx→∞ u(x) = 1
is equivalent to u = I2(qu) + 1 = T (u) + 1, by (3.22) with f = 0 and c = 1.
By the analogue of Lemma 3.1 for Rn just noted, the operator T has norm
less than 1 on L2(Rn, q dx). Since the Riesz kernel G(x, y) is quasi-metric,
[12, Theorem 3.1] (i.e. [12, Corollary 3.5], or (3.7) with m = 1) states that

1 +
∞∑
j=1

T j1 6 eCT1,

where C depends only on n and β. Note that

T j1(x) =
∫
Rn
Kj(x, y)q(y) dy =

∫
Rn
Gj(x, y)q(y) dy = Gjq(x),

since Kj(x, y) = Gj(x, y) by (1.3) and (1.4). Hence

u1 = 1 + G(q) = 1 +
∞∑
j=1

T j1 6 eCT1 = eCI2q,

so (1.18) holds. By (1.16), I2q < ∞ a.e., so u1 defines a positive solution
to −4u = qu with lim infx→∞ u(x) = 1.
Conversely, suppose u is a nonnegative solution of (1.17), or equivalently,

u = I2(qu) + 1 = Tu+ 1. Then 1 6 u <∞ a.e., so by Schur’s test we have
‖T‖L2(Rn,q dx)→L2(Rn,q dx) 6 1, which, we have seen, implies (1.15) with
β = 1. By iteration of the identity u = Tu+ 1, we see that u > u1, so u1 is
minimal among positive solutions. Applying the lower estimate from [12,
Theorem 3.1] (i.e. (3.6) with m = 1), we have

u > u1 > e
cT1 = ecI2q,

where c depends only on n, so (1.19) holds. Since u <∞ a.e., we conclude
that I2q <∞ a.e., so (1.16) holds. �
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4. Nonlinear Equations with Quadratic Growth in the
Gradient

Let Ω ⊂ Rn be a bounded C2 domain and let q ∈ L1
loc(Ω) with q > 0. The

definition of very weak solutions of (1.20) is consistent with Definitions 2.1,
2.4, and Remark 2.3. A good reference to very weak solutions of elliptic
equations is [24].

Definition 4.1. — Let q ∈ L1(Ω, δ dx). A function v ∈ L1(Ω, dx) such
that

∫
Ω |∇v|

2δ dx <∞ is a very weak solution of (1.20) if

−
∫

Ω
v4hdx =

∫
Ω
|∇v|2hdx+

∫
Ω
h q dx, for all h ∈ C2

0 (Ω).

Lemma 2.5 and Corollary 2.6 show that if v is a very weak solution
of (1.20) then v satisfies the integral equation

(4.1) v = G(|∇v|2 + q) a.e.,

and if q > 0, v < ∞ a.e. and v satisfies (4.1), then v ∈ L1(Ω, dx),∫
Ω |∇v|

2δ dx <∞, and v is a very weak solution of (1.20).
Corresponding formally to (1.20) under the substitution v = log u is

equation (1.2). However the precise relation between very weak solutions
to (1.2) and (1.20) is not as simple as it might appear, as shown by the
next example which was first noted by Ferone and Murat in [10].

Remark 4.2. — Even for the case q = 0, there is a very weak solution
v of (1.20) such that u = ev is not a very weak solution of (1.2). Let
v(x) = log (1 +G(x, x0)), where x0 ∈ Ω is a fixed pole. Then standard
arguments show that v is a very weak solution of −4v = |∇v|2 on Ω with
v = 0 on ∂Ω. However, u = 1 +G(x, x0) satisfies −∆u = δx0 in Ω, so that
u is not a very weak solution of (1.2).

We will see that if u1 is the minimal positive very weak solution of (1.2),
then v = log u1 is a very weak solution of (1.20). However, in general, if v is
a very weak solution to (1.20) then u = ev is only a supersolution to (1.2),
which is enough to prove Theorem 1.5.
Proof of Theorem 1.5. — First suppose that (1.7) holds for some β ∈

(0, 1), and (1.10) holds. By Theorem 1.2, the Schrödinger equation (1.2)
has a positive very weak solution u(x) = 1 + Gq. (This solution u was
called u1 in the statement of the theorem; we call it u in the proof to
avoid ambiguity with a sequence {uk}∞k=1 which will be defined later.) Then
u ∈ L1(Ω, dx) and u satisfies the integral equation u = 1+G(qu). Therefore
u : Ω→ [1,+∞] is defined everywhere as a positive superharmonic function
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in Ω and hence is quasi-continuous; moreover, cap({u = +∞}) = 0 (see [5]).
By Remark 2.3, u ∈ W 1,p

loc (Ω) when p < n
n−1 . We remark that actually, as

shown in [21], u ∈ W 1,2
loc (Ω), but the proof of this stronger property is

somewhat involved, and it will not be used below.
Define dµ = −4u = qudx, where qu ∈ L1

loc(Ω). Let v = log u. Then
0 6 v < +∞-a.e., v is superharmonic in Ω by Jensen’s inequality, and
v ∈W 1,2

loc (Ω) (see [20, Theorem 7.48] and [23, §2.2]). We claim that

(4.2) −4v = |∇v|2 + q in D′(Ω).

To prove (4.2), we will apply the integration by parts formula

(4.3)
∫

Ω
g dρ = −〈g,∆r〉 =

∫
Ω
∇g · ∇r dx,

where g ∈W 1,2(Ω) is compactly supported and quasi-continuous in Ω, and
ρ = −∆r where r ∈W 1,2

loc (Ω) is superharmonic (see e.g. [23, Theorem 2.39
and Lemma 2.33]). This proof would simplify if we could apply (4.3) with
g = h/u, ρ = µ, and r = u, for h ∈ C∞0 (Ω). However, we do not have
r ∈W 1,2

loc (Ω), so we require an approximation argument. For k ∈ N, let

uk = min(u, ek), vk = min(v, k), and µk = −4uk.

Clearly uk and vk are superharmonic, hence µk is a positive measure. More-
over, uk and vk belong to W 1,2

loc (Ω)
⋂
L∞(Ω) (see [20, Corollary 7.20]).

Let h ∈ C∞0 (Ω). We apply (4.3) with g = h/uk, ρ = µk, and r = uk.
Note that uk > 1, g is compactly supported since h is, and g ∈ W 1,2(Ω)
since uk ∈W 1,2

loc (Ω). Then by (4.3),∫
Ω

h

uk
dµk =

∫
Ω
∇
(
h

uk

)
· ∇uk dx =

∫
Ω

∇h
uk
· ∇uk dx−

∫
Ω

|∇uk|2

u2
k

hdx

=
∫

Ω
∇h · ∇vk dx−

∫
Ω
|∇vk|2 hdx.

Since u is superharmonic, u is lower semi-continuous, so the set {x ∈
Ω : u(x) > ek} ≡ {u > ek} is open, hence the measure µk = −∆uk is
supported on the set {u 6 ek} where u = uk. Hence u = uk dµk-a.e., and∣∣∣∣∫

Ω

h

u
dµ−

∫
Ω

h

uk
dµk

∣∣∣∣ 6 e−k ∫
{u>ek}

|h|dµ+ e−k
∫
{u=ek}

|h| dµk

6 e−k
∫

Ω
|h|dµ+ e−k

∫
Ω
|h| dµk → 0

as k →∞. Hence∫
Ω
hq dx =

∫
Ω

h

u
qudx = −

∫
Ω

h

u
4udx =

∫
Ω

h

u
dµ = lim

k→∞

∫
Ω

h

uk
dµk.
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Notice that ∇vk = ∇v a.e. on {v < k}, and ∇vk = 0 a.e. on {v > k}
(see [23, Corollary 1.43]). Hence,

lim
k→∞

∫
Ω
∇h · ∇vk dx =

∫
Ω
∇h · ∇v dx,

lim
k→∞

∫
Ω
|∇vk|2 hdx =

∫
Ω
|∇v|2 hdx

by the dominated convergence theorem. Passing to the limit as k → ∞ in
the equation above, we obtain∫

Ω
hq dx =

∫
Ω
∇h · ∇v dx−

∫
Ω
|∇v|2 hdx = −

∫
Ω
v4hdx−

∫
Ω
|∇v|2 hdx,

which justifies equation (4.2).
The Riesz decomposition theorem states that a superharmonic function

w can be written uniquely as G(−4w)+g, where −4w, understood in the
distributional sense, is called the Riesz measure associated with w and g is
the greatest harmonic minorant of w (see [5, §4.4]). Hence

(4.4) v = G(−4v) + g = G(|∇v|2 + q) + g,

where g is the greatest harmonic minorant of v. Since v > 0, a harmonic
minorant of v is 0, so g > 0. It follows from (4.4) and u = G(uq) + 1 that

g 6 v = log u = log (G(uq) + 1) 6 G(uq).

Since G(uq) is a Green potential, the greatest harmonic minorant of G(uq)
is 0, therefore g = 0.
Hence we have v = G(|∇v|2 + q), which we have noted (see (4.1)) is

equivalent to v being a very weak solution of (1.20).
Conversely, suppose v ∈ W 1,2

loc (Ω) is a very weak solution of equa-
tion (1.20), that is, v = G(|∇v|2 + q). Then v > 0. Let vk = min (v, k)
and νk = −∆vk, for k = 1, 2, . . . . Then vk ∈ W 1,2

loc (Ω)
⋂
L∞(Ω) is super-

harmonic, and

(4.5) −∆vk = |∇vk|2 + q χ{v<k} + ν̃k,

where ν̃k is a nonnegative measure in Ω supported on {v = k}.
Let u = ev > 1. Let uk = evk and µk = −∆uk. Since uk ∈ W 1,2

loc (Ω)
⋂

L∞(Ω), it is easy to see that

(4.6) µk = −∆uk = −∆vk evk − |∇vk|2 evk > 0.
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Equation (4.6) is justified by using integration by parts (4.3) with g = hevk

where h ∈ C∞0 (Ω), and vk in place of r:∫
Ω
h evk dνk =

∫
Ω
∇(h evk) · ∇vk dx

=
∫

Ω
evk ∇h · ∇vk dx+

∫
Ω
h |∇vk|2 evk dx

=
∫

Ω
∇h · ∇uk dx+

∫
Ω
h |∇vk|2 evk dx

=
∫

Ω
h dµk +

∫
Ω
h |∇vk|2 evk dx.

Hence,

〈h, µk〉 =
∫

Ω
∇h · ∇(evk) dx =

∫
Ω
evk∇h · ∇vk dx

=
∫

Ω
h evk dνk −

∫
Ω
h |∇vk|2 evk dx

=
∫

Ω
h evk χ{v<k}q dx+

∫
Ω
h evk dν̃k,

where in the last expression we used (4.5). From the preceding estimates
it follows that 〈h, µk〉 > 0 if h > 0, and consequently uk is superharmonic,
and

(4.7) −∆uk > quk χ{uk<ek}.

Clearly, u = ev < +∞-a.e., and u = limk→+∞ uk is superharmonic in
Ω as the limit of the increasing sequence of superharmonic functions uk.
Since µk → µ in the sense of measures, where µ = −4u, (4.7) yields

(4.8) −∆u > qu in Ω

in the sense of measures, where qu ∈ L1
loc(Ω).

It follows from (4.8) that ω = −∆u− qu is a non-negative measure in Ω,
so by the Riesz decomposition theorem

u = G(−∆u) + g = G(qu) +Gω + g > G(qu) + g,

where g is the greatest harmonic minorant of u. Since u > 1, i.e., 1 is a
harmonic minorant of u, it follows that g > 1, and consequently,

(4.9) u > G(qu) + 1 = Tu+ 1,

for T defined by (3.1). Since u > Tu, it follows by Schur’s test that
‖T‖L2(Ω,q dx)→L2(Ω,q dx)61, and hence (1.7) holds with β=1 by Lemma 3.1.
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Iterating (4.9) and taking the limit, we see that

φ ≡ 1 + Gq = 1 +
∞∑
j=1

Gjq = 1 +
∞∑
j=1

T j1 6 u < +∞ a.e.,

and
φ = G(qφ) + 1.

Hence φ is a positive very weak solution of (1.2). Thus (1.10) holds, by
Theorem 1.2(2). �

Remarks 4.3.
1. — We remark in conclusion that the main results of this paper remain

valid for any elliptic operator L whose Green’s function GL is equivalent
to the Green’s function G of the Laplacian (see [4]).

2. — Our main results also hold for general locally finite Borel measures
ω in Ω in place of q ∈ L1

loc(Ω), with minor adjustments in the proofs. Notice
that condition (1.7) for ω in place of q dx implies that ω is absolutely con-
tinuous with respect to capacity (see [25]), and all solutions considered in
this paper are superharmonic, i.e., finite quasi-everywhere in Ω; moreover,
they actually lie in W 1,2

loc (Ω) (see [21, Theorem 6.2]).
3. — Concerning Theorem 1.2 and Theorem 1.5, suppose (1.7) holds

with β < 1. Then a necessary and sufficient condition in order that w =
u1 − 1 ∈ L1,2

0 (Ω) is
∫

ΩGq q dx <∞, i.e., q ∈ L−1,2(Ω).

The sufficiency part of the last statement follows from the Lax–Milgram
Lemma since −4w = qw+q where q ∈ L−1,2(Ω); necessity is a consequence
of the fact that w = G(wq + q), so that∫

Ω
|∇w|2 dx =

∫
Ω
|∇G(wq + q)|2 dx

=
∫

Ω
G(wq + q) (wq + q) dx >

∫
Ω
Gq q dx.

In particular, if (1.7) holds, and q ∈ L1(Ω), then for all h ∈ C∞0 (Ω),∣∣∣∣∫
Ω
h q dx

∣∣∣∣ 6 (∫
Ω
h2 q dx

)1/2
‖q‖1/2L1(Ω)

6 β1/2‖∇h‖L2(Ω)‖q‖
1/2
L1(Ω) <∞.

Hence, by duality q ∈ L−1,2(Ω), and consequently w = u1 − 1 ∈ L1,2
0 (Ω),

for all n > 2 (see also [16], [1], [2]).
This also gives a weak solution v ∈ L1,2

0 (Ω) to (1.20) such that ev − 1 ∈
L1,2

0 (Ω), as in [9], [11], if q > 0. For arbitrary distributions q ∈ L−1,2(Ω),
w = u1−1 ∈ L1,2

0 (Ω) and v = log u1 ∈ L1,2
0 (Ω) is a weak solution to (1.20),
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provided q is form bounded with the upper form bound strictly less than
1 (see [21]).

Remarks 4.4.
1. — Concerning q which may change sign, our sufficiency results ob-

viously hold if q is replaced with |q| both in the spectral conditions (1.7),
(1.15) and the balayage condition (1.10), and (1.16). The same is true as
well for the upper estimates of solutions u0 and u1 given by (1.8), (1.12),
(1.18).
2. — The lower estimates of solutions (1.9), (1.14), (1.18) are still true

for q which may change sign, under some additional assumptions (see [15]).
However, the upper pointwise estimates (1.8), (1.12), (1.18) are no longer
true in general, unless we replace q with |q|.
3. — It is still unclear under which (precise) additional assumptions on

the quadratic form of q the main existence results and upper estimates of
solutions remain valid. Some results of this type are discussed in [21], but
the prescribed boundary conditions considered in the present paper make
the situation more complicated.
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