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L-INVARIANTS, PARTIALLY DE RHAM FAMILIES,
AND LOCAL-GLOBAL COMPATIBILITY

by Yiwen DING (*)

Abstract. — Let F℘ be a finite extension of Qp. By considering partially de
Rham families, we establish a Colmez–Greenberg–Stevens formula (on Fontaine–
Mazur L-invariants) for (general) 2-dimensional semi-stable non-crystalline rep-
resentations of the group Gal(Qp/F℘). As an application, we prove local-global
compatibility results for completed cohomology of quaternion Shimura curves, and
in particular the equality of Fontaine–Mazur L-invariants and Breuil’s L-invariants,
in critical case.
Résumé. — Soit F℘ une extension finie de Qp. En étudiant des familles de

représentations galoisiennes partiellement de de Rham, on donne une formule de
Colmez–Greenberg–Stevens (concernant les invariants L de Fontaine–Mazur) pour
les représentations semi-stables non cristallines de dimension 2 de Gal(Qp/F℘).
Comme application, on montre dans le cas critique des résultats de compatibilité
local-global pour le H1-complété d’une courbe de Shimura quaternionique, et en
particulier l’égalité des invariants L de Fontaine–Mazur et Breuil.

Introduction

Let F be a totally real number field, B a quaternion algebra of center F
such that there exists only one real place of F where B is split. One can
associate to B a system of quaternion Shimura curves {MK}K , proper and
smooth over F , indexed by compact open subgroups K of (B ⊗Q A∞)×.
We fix a prime number p, and suppose that there exists only one place ℘ of
F above p, let Σ℘ be the set of embeddings of F℘ in Qp. Suppose B is split
at ℘, i.e. (B ⊗Q Qp)× ∼= GL2(F℘) (where F℘ denotes the completion of F
at ℘). Let E be a finite extension of Qp sufficiently large containing all the

Keywords: L-invariants, partially de Rham families, locally analytic representations,
local-global compatibility.
Math. classification: 11S37, 11S80, 22D12.
(*) This work is partially supported by EPSRC grant EP/L025485/1.



1458 Yiwen DING

embeddings of F℘ in Qp, with OE its ring of integers and $E a uniformizer
of OE .

Let ρ be a 2-dimensional continuous representation of GalF := Gal(F/F )
over E such that ρ appears in the étale cohomology ofMK forK sufficiently
small (so ρ is associated to certain Hilbert eigenforms). By Emerton’s com-
pleted cohomology theory [27], one can associate to ρ a unitary admissible
Banach representation Π̂(ρ) of GL2(F℘) as follows: put

H̃1(Kp, E) :=
(

lim←−
n

lim−→
K′p

H1
ét(MKpK′p

×F F ,OE/$n
E)
)
⊗OE E

where Kp denotes the component of K outside p, and K ′p runs over open
compact subgroups of GL2(F℘). This is an E-Banach space equipped with
a continuous action of GL2(F℘) × GalF ×Hp, where Hp denotes certain
commutative Hecke algebra outside p over E. Put

Π̂(ρ) := HomGal(F/F )(ρ, H̃
1(Kp, E)) .

This is an admissible unitary Banach representation of GL2(F℘) over E,
which plays an important role in p-adic Langlands program [11]. In [24],
it’s proved that if the local Galois representation ρ℘ := ρ|GalF℘ (where
GalF℘ := Gal(F℘/F℘)) is semi-stable non-crystalline and non-critical, then
one could find the Fontaine–Mazur L-invariants (Lσ)σ∈Σ℘ of ρ℘ (which are
invisible in classical local Langlands correspondence) in Π̂(ρ), generalizing
some of Breuil’s results in [13].
However, when F℘ is different from Qp, a new phenomenon is that

there exist 2-dimensional semi-stable non-crystalline GalF℘-representations
which are critical (or more precisely, critical for some embeddings in Σ℘).
We consider this case in this paper. Denote by Sc(ρ℘) (resp. Sn(ρ℘)) the
set of embeddings where ρ℘ is critical (resp. non-critical), one can associate
to ρ℘ the Fontaine–Mazur L-invariants Lσ but only for embeddings σ in
Sn(ρ℘). In this paper, we prove that these L-invariants can be found in
Π̂(ρ), meanwhile, we prove a partial result on Breuil’s locally analytic socle
conjecture [15] for embeddings in Sc(ρ℘).
One important ingredient in [24] is Zhang’s generalization [44, Thm. 1.1]

of Colmez–Greenberg–Stevens formula [22] (on L-invariants) in F℘-case.
But the results in [44] are only for non-critical case. The following theorem
generalizes such a formula in general case, which is of interest in its own
right.

ANNALES DE L’INSTITUT FOURIER
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Theorem 0.1 (Corollary 2.3). — Let A be an affinoid E-algebra, V
be a locally free A-module of rank 2 equipped with a continuous A-linear
action of GalF℘ , let z be an E-point of A, and suppose

(1) V is trianguline with a triangulation given by

0 −→ RA(δ1) −→ Drig(V ) −→ RA(δ2) −→ 0 ,

where δi are continuous characters of F×℘ in A×,
(2) Vz := z∗V is semi-stable non-crystalline with Lσ ∈ E for σ ∈

Sn(Vz) the associated Fontaine–Mazur L-invariants (cf. Section 1.3,
where Sn(Vz) denotes the set of embeddings where Vz is non-
critical),

(3) V is Sc(Vz)-de Rham (cf. Section 2, where Sc(Vz) = Σ℘ \ Sn(Vz));
then the differential form

d log(δ1δ−1
2 (p)) +

∑
σ∈Sn(Vz)

Lσd(wt(δ1δ−1
2 )σ) ∈ Ω1

A/E

vanishes at the point z.

Such formula was firstly established by Greenberg–Stevens in [29,
Thm. 3.14] in the case of 2-dimensional ordinary GalQp -representations
by Galois cohomology computations. In [22], Colmez generalized this theo-
rem to 2-dimensional trianguline GalQp -representations case by Galois co-
homology computations and computations in Fontaine’s rings. Theorem 0.1
in non-critical case (i.e. Sc(Vz) = ∅) was obtained by Zhang in [44], by gen-
eralizing Colmez’s method. In [37], Pottharst generalized [29, Thm. 3.14]
to rank 2 triangulable (ϕ,Γ)-modules (in Qp case) by studying cohomology
of (ϕ,Γ)-modules.
The hypothesis (3) in Theorem 0.1 is new but crucial. In fact, the state-

ment does not hold (in general) if the condition (3) is replaced by (only)
fixing the Hodge–Tate weights for σ ∈ Sc(Vz) (namely, replacing the Sc(Vz)-
de Rham family by Sc(Vz)-Hodge–Tate family). Partially de Rham families
appear naturally in the study of p-adic automorphic forms, e.g. one encoun-
ters such families when studying locally analytic vectors in completed coho-
mology of Shimura curves (e.g. see Proposition 4.14), or certain families of
overconvergent Hilbert modular forms (e.g. see Appendix A, in particular
Conjecture A.9). Note Theorem 0.1 also applies for families of F℘-analytic
GalF℘-representations (cf. [7], which in fact can be viewed as special cases
of partially de Rham families). Indeed, this theorem also includes the case
of parallel Hodge–Tate weights for some embeddings (and such embeddings
would be contained in Sc(Vz)).

TOME 67 (2017), FASCICULE 4



1460 Yiwen DING

Return to the global setting before Theorem 0.1, and suppose moreover
ρ is absolutely irreducible modulo $E , and ρ℘ is of Hodge–Tate weights
hΣ℘ := (w−kσ+2

2 , w+kσ
2 )σ∈Σ℘ with w ∈ 2Z, kσ ∈ 2Z>1 (where we use

the convention that the Hodge–Tate weight of the cyclotomic character
is −1). Since ρ℘ is semi-stable non-crystalline, there exists α ∈ E×, such
that the eigenvalues of ϕd0 (where d0 is the degree of the maximal un-
ramified extension in F℘ over Qp) on Dst(ρ℘) are given by {α, pd0α}. Put
alg(hΣ℘) := ⊗σ∈Σ℘(Symkσ−2E2 ⊗E det

2−w−kσ
2 )σ, which is an algebraic

representation of ResF℘/Qp GL2 over E, and

St(α, hΣ℘) := unr(α) ◦ det⊗E St⊗E alg(hΣ℘) ,

which is in fact the locally algebraic representation of GL2(F℘) associated
to ρ℘ via classical local Langlands correspondence, where unr(α) denotes
the unramified character of F×℘ sending uniformizers to α, and St denotes
the usual smooth Steinberg representation of GL2(F℘). Moreover it’s known
St(α, hΣ℘) ↪→ Π̂(ρ). By Schraen’s results ([41]) on Breuil’s L-invariants, one
can associate to ρ℘ a locally Qp-analytic representation Σ(α, hΣ℘ ,LSn(ρ℘))
of GL2(F℘) over E (cf. Section 3, as suggested by the notation, this rep-
resentation is determined by α, hΣ℘ and LSn(ρ℘)), whose socle is exactly
St(α, hΣ℘).

Theorem 0.2 (Theorem 4.22(2), Corollary 4.23). — Keep the
above notation, Σ(α, hΣ℘ ,LSn(ρ℘)) is a subrepresentation of the locally
Qp-analytic representation Π̂(ρ)Qp−an. Moreover,

Σ(α, hΣ℘ ,L
′
Sn(ρ℘)) ↪−→ Π̂(ρ)Qp−an

if and only if L′Sn(ρ℘) = LSn(ρ℘).

This theorem shows the equality of Fontaine–Mazur L-invariants and
Breuil’s L-invariants. As in [24], we use p-adic family arguments on both
Galois side and GL2(F℘) side. The main objects are eigenvarieties, where
live the locally analytic T (F℘)-representations and GalF -representations.
On one hand, we use the global triangulation theory to relate the
GalF℘-representations and T (F℘)-representations; on the other hand, the
locally analytic T (F℘)-representations and locally analytic GL2(F℘)-repre-
sentations are linked by the theory of Jacquet–Emerton functor ([26, 28]).
Roughly speaking, we get a picture as follows:

ANNALES DE L’INSTITUT FOURIER
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{
Trianguline

GalF℘ -representations

}

{
Locally analytic

T (F℘)-representations
(Eigenvarieties)

}

{
Locally analytic

GL2(F℘)-representations

}
............
............
............
............
............
...........Triangulation

........................................................................ .........
...

............
............

............
............

.................................... Adjunction formula
........................................................................ .........

...

............
............

............
............

....................................

Jacquet-Emerton functor

All these relations are in family. The global triangulation theory and The-
orem 0.1 allow one to find the L-invariants in the related T (F℘)-represen-
tations. Via the second arrow, one can thus find the L-invariants on GL2-
side. A key fact is that the family of Galois representations associated to
locally τ -analytic vectors of Ĥ1(Kp, E) is Σ℘ \ {τ}-de Rham (cf. Theo-
rem 4.13), which ensures Theorem 0.1 to apply (this observation, together
with Schraen’s results [41] on Breuil’s L-invariants, in fact leads to the
discovery of the hypothesis (3) in Theorem 0.1).
For the critical embeddings, by using global triangulation theory and

Bergdall’s result, we prove some results on Breuil’s locally analytic socle
conjecture ([15]). Namely, for each σ ∈ Sc(ρ℘), one can associate a locally
Qp-analytic representation Icσ(α, hΣ℘) of GL2(F℘) (see Section 3), which
can be viewed as a σ-companion representation of St(α, hΣ℘).

Theorem 0.3 (Theorem 4.22(1)). — Keep the notation as in Theo-
rem 0.2, Icσ(α, hΣ℘) is a subrepresentation of Π̂(ρ) if and only if σ ∈ Sc(ρ℘).

Thus from Π̂(ρ), we can read out Sc(ρ℘) by Theorem 0.3, and then LSn(ρ℘)
by Theorem 0.2. Since ρ℘ is determined by {α, hΣ℘ , Sn(ρ℘),LSn(ρ℘)}, we
see:

Corollary 0.4. — The local Galois representation ρ℘ is determined
by Π̂(ρ)an.

We refer the body of the text for more detailed and more precise state-
ments.

In Section 1, we recall (and define) the Fontaine–Mazur L-invariants in
terms of B-pairs, and develop some partially de Rham Galois cohomology
theory for B-pairs. We prove Theorem 0.1 in Section 2. In Section 3, we
recall Schraen’s theory on Breuil’s L-invariants of locally Qp-analytic rep-
resentations of GL2(F℘). The content of these three sections is purely local.
In the last section, we prove Theorem 0.2 and Theorem 0.3. In Appendix A,
we study some partially de Rham trianguline representations.

TOME 67 (2017), FASCICULE 4
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1. Fontaine–Mazur L-invariants

In this section, we recall (and define) Fontaine–Mazur L-invariants for 2-
dimensional B-pairs (see Definition 1.20 below). Let F℘ be a finite extension
of Qp of degree d with O℘ the ring of integers and $ a uniformizer, Σ℘ :=
{σ : F℘ ↪→ Qp}, GalF℘ := Gal(Qp/F℘). We fix an embedding ι : F℘ ↪→ B+

dR
(and hence embeddings ι : F℘ ↪→ Cp, BdR), and view B+

dR, BdR, Cp as F℘-
algebras via ι. Let E be a finite extension of Qp sufficiently large containing
all the embeddings of F℘ in Qp. For an F℘-algebra R and σ ∈ Σ℘, put
Rσ := R ⊗F℘,σ E (e.g. we get E-algebras B+

dR,σ, BdR,σ, Cp,σ); for an R-
module M , put Mσ := M ⊗R Rσ.

1.1. Preliminaries on B-pairs

Let Be := Bϕ=1
cris , recall

Definition 1.1 ([6, §2]).
(1) A B-pair of GalF℘ is a couple W = (We,W

+
dR) where We is a

finite free Be-module equipped with a semi-linear continuous ac-
tion of GalF℘ , and W+

dR is a GalF℘-stable B+
dR-lattice of WdR :=

We ⊗Be B+
dR. Let r ∈ Z>0, we say that W is (a B-pair) of rank r if

rkBeWe = r.
(2) Let W , W ′ be two B-pairs, a morphism f : W → W ′ is defined

to be a Be-linear GalF℘-invariant map fe : We → W ′e such that
the induced BdR-linear map fdR := fe ⊗ id : WdR → W ′dR sends
W+

dR to (W ′)+
dR. Moreover, we say that f is strict if the B+

dR-module
(W ′)+

dR/f
+
dR(W+

dR) is torsion free, where f+
dR := fdR|W+

dR
.

ANNALES DE L’INSTITUT FOURIER
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By [6, Thm. 2.2.7], there exists an equivalence of categories between the
category of B-pairs and that of (ϕ,Γ)-modules over the Robba ring B†rig,F℘
(e.g. see [6, §1.1]).
Let A be a local artinian E-algebra with residue field E.

Definition 1.2 ([34, Def. 2.11, Lem. 2.12]).
(1) AnA-B-pair is aB-pairW = (We,W

+
dR) such thatWe is a finite free

Be⊗QpA-module, andW+
dR is a GalF℘-stable finite free B+

dR⊗QpA-
submodule of WdR := We ⊗Be BdR, which generates WdR. We say
W is (an A-B-pair) of rank r if rkBe⊗QpA

We = r.
(2) Let W , W ′ be two A-B-pairs, a morphism f : W → W ′ is de-

fined to be a morphism of B-pairs such that fe : We → W ′e (cf.
Definition 1.1(2)) is moreover Be ⊗Qp A-linear.

As in [33, Thm. 1.36], one can deduce from [6, Thm. 2.2.7] an equivalence
of categories between the category of A-B-pairs and that of (ϕ,Γ)-modules
free over RA := B†rig,F℘⊗̂QpA.

Let W be an A-B-pair of rank r. By using the isomorphism

(1.1) F℘ ⊗Qp A
∼−→

∏
σ∈Σ℘

A, a⊗ b 7→ (σ(a)b)σ∈Σ℘ ,

one gets B∗dR ⊗Qp A
∼−→ ⊕σ∈Σ℘B

∗
dR,σ and W ∗dR

∼−→ ⊕σ∈Σ℘W
∗
dR,σ where

∗ ∈ {∅,+}. Put De(W ) := W
GalF℘
e and DdR(W ) := W

GalF℘
dR . The last one

is thus a finite F℘ ⊗Qp A-module, and admits a decomposition (accord-
ing to (1.1)) DdR(W ) ∼−→

∏
σ∈Σ℘ DdR(W )σ. For σ ∈ Σ℘, one has in fact

DdR(W )σ ∼= W
GalF℘
dR,σ .

Definition 1.3. — Keep the above notation, let σ ∈ Σ℘, W is called
σ-de Rham if DdR(W )σ is a free A-module of rank r; for S ⊆ Σ℘, W is
called S-de Rham if W is σ-de Rham for all σ ∈ S (thus W is de Rham if
W is Σ℘-de Rham).

Remark 1.4. — Let W be an A-B-pair, for σ ∈ Σ℘, W is σ-de Rham if
and only if W is σ-de Rham as an E-B-pair. The “only if” part is trivial.
Suppose W is σ-de Rham as an E-B-pair, denote by mA the maximal ideal
of A, and dA := dimE A, thus dimE DdR(W )σ = rdA. Consider the exact
sequence 0→ mADdR(W )σ → DdR(W )σ → DdR(W/mA)σ, we deduce the
last map is surjective and dimE DdR(W/mA)σ = r by dimension calculation
(since dimE mADdR(W )σ = dimE DdR(mAW )σ 6 (dA − 1)r), from which
we deduce DdR(W )σ is a free A-module.

TOME 67 (2017), FASCICULE 4



1464 Yiwen DING

Definition 1.5. — An A-B-pairW of rank r is called triangulable if it’s
an successive extension of A-B-pairs of rank 1 , i.e.W admits an increasing
filtration of sub-A-B-pairs Wi for 0 6 i 6 r such that W0 = 0, Wr = W ,
and Wi/Wi−1 is an A-B-pair of rank 1.

Denote by BA := (Be ⊗Qp A,B
+
dR ⊗Qp A) the trivial A-B-pair. Let χ

be a continuous character of F×℘ in A×, following [34, §2.1.2], one can
associate to χ an A-B-pair of rank 1, denoted by BA(χ) (and we refer to
loc. cit. for details). By [34, Prop. 2.16], all the rank 1 A-B-pairs can be
obtained in this way: let W be an A-B-pair of rank 1, then there exists
a unique continuous character χ : F×℘ → A× such that W ∼−→ BA(χ).
For a continuous representation V of GalF℘ over A, denote by W (V ) :=
(Be⊗Qp V,B

+
dR⊗Qp V ) the associated A-B-pair. The GalF℘-representation

V is called trianguline if W (V ) is triangulable.

1.2. Cohomology of B-pairs

Recall the cohomology of E-B-pairs (note that A-B-pairs can also be
viewed as E-B-pairs). Let W = (We,W

+
dR) be an E-B-pair, following [33,

§2.1], consider the following complex (of GalF℘-modules)

C•(W ) := We ⊕W+
dR

(x,y)7→x−y−−−−−−−→WdR .

Put Hi(GalF℘ ,W ) := Hi(GalF℘ , C•(W )) (cf. [33, Def. 2.1]). By definition,
one has a long exact sequence

(1.2) 0→ H0(GalF℘ ,W )→ H0(GalF℘ ,We)⊕H0(GalF℘ ,W+
dR)

→H0(GalF℘ ,WdR) δ−→ H1(GalF℘ ,W )

→ H1(GalF℘ ,We)⊕H1(GalF℘ ,W+
dR)→ H1(GalF℘ ,WdR) .

For an E-B-pair W , denote by W∨ the dual of W :

W∨ :=
(
W∨e := HomBe⊗QpE

(We, Be ⊗Qp E),

(W∨)+
dR := HomB+

dR⊗QpE
(W+

dR, B
+
dR ⊗Qp E)

)
where W∨e , (W∨)+

dR are equipped with a natural GalF℘-action. One can
check W∨ is also an E-B-pair.

Remark 1.6. — As in [33, Def. 1(3)], one can also consider the dual W ′
of W as B-pair with W ′e := HomBe(We, Be) and (W ′)+

dR := HomB+
dR

(W+
dR,

B+
dR) (equipped with a natural GalF℘-action). Moreover, W ′e, (W ′)+

dR can

ANNALES DE L’INSTITUT FOURIER
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be equipped with a natural E-action: (a·f)(v) := f(av). One can check this
action realizes W ′ as an E-B-pair. Moreover, the trace map trE/Qp : E →
Qp, induces bijectionsW∨e

∼−→W ′e and (W∨)+
dR

∼−→ (W ′)+
dR: f 7→ trE/Qp ◦f ,

and these bijections give an isomorphism W∨
∼−→W ′ as E-B-pairs.

Denote byW (1) the twist ofW byW (χcyc) where χcyc is the cyclotomic
character of GalF℘ (base change to E):

W (1) :=
(
W (1)e := We ⊗Be⊗QpE

W (χcyc)e,

W (1)+
dR := W+

dR ⊗B+
dR⊗QpE

W (χcyc)+
dR

)
.

By [33, §2] and [34, §5], one has

Proposition 1.7.
(1) Hi(GalF℘ ,W ) = 0 if i /∈ {0, 1, 2}, and

2∑
i=0

(−1)i dimE H
i(GalF℘ ,W ) = −d(rkW ) .

(2) There exists a natural isomorphismH1(GalF℘ ,W ) ∼−→Ext1(BE ,W ),
where Ext1(BE ,W ) denotes the group of extensions of E-B-pairs
of BE by W .

(3) Let V be a finite dimensional continuous GalF℘-representation
over E, then we have natural isomorphisms Hi(GalF℘ ,W (V )) ∼=
Hi(GalF℘ , V ) for all i ∈ Z>0.

(4) The cup-product (see [34, §5] for details)

(1.3) ∪ : Hi(GalF℘ ,W )×H2−i(GalF℘ ,W∨(1))

−→ H2(GalF℘ , BE(1)) ∼= H2(GalF℘ , χcyc) ∼= E

is a perfect pairing for i = 0, 1, 2.

Remark 1.8.
(1) In fact, in [34, §5], it’s shown that the cup-product Hi(GalF℘ ,W )×

H2−i(GalF℘ ,W ′(1)) → H2(GalF℘ ,Qp(1)) ∼= Qp is a perfect pairing
(see Remark 1.6 for W ′). By discussions in Remark 1.6, identifying
W∨ and W ′, this pairing then is equal to the composition of (1.3)
with the trace map trE/Qp , from which one deduces (1.3) is also
perfect.

(2) Let W be an E-B-pair, for an exact sequence of E-B-pairs

0 −→W1 −→W2 −→W3 −→ 0 ,

TOME 67 (2017), FASCICULE 4
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one has the following commutative diagram

Hi(GalF℘ ,W3) ×Hj(GalF℘ ,W ) ∪−−−−→ Hi+j(GalF℘ ,W3 ⊗W )

δ

y ∥∥∥ δ

y
Hi+1(GalF℘ ,W1)×Hj(GalF℘ ,W ) ∪−−−−→ Hi+j+1(GalF℘ ,W1 ⊗W ) ,

where the δ’s denote the connecting maps, ∪ the cup-products, and
Wi ⊗W is the E-B-pair given by (Wi ⊗W )e := (Wi)e ⊗Be⊗QpE

We,
(Wi ⊗W )+

dR := (Wi)+
dR ⊗B+

dR⊗QpE
W+

dR.
(3) IfW is moreover an A-B-pair, by the same argument as in [33, §2.1],

one can show there exists a natural isomorphism H1(GalF℘ ,W ) ∼−→
Ext1(BA,W ) as A-modules, where Ext1(BA,W ) denotes the group
of extensions of A-B-pairs of BA by W .

Put (cf. [33, Def. 2.4])

H1
g (GalF℘ ,W ) := Ker[H1(GalF℘ ,W )→ H1(GalF℘ ,WdR)] ,

H1
e (GalF℘ ,W ) := Ker[H1(GalF℘ ,W )→ H1(GalF℘ ,We)] ,

where the above maps are induced from the natural maps

C•(W ) −→ [We → 0] −→ [WdR → 0] .

Note that by (1.2), the map H1(GalF℘ ,W ) → H1(GalF℘ ,WdR) factors
through (up to ±1) the natural map H1(GalF℘ ,W )→ H1(GalF℘ ,W+

dR). If
W is a de Rham A-B-pair, let [X] ∈ H1(GalF℘ ,W ) ∼= Ext1(BA,W ), then
X is de Rham if and only if [X] ∈ H1

g (GalF℘ ,W ). Moreover, in this case,
by [33, Lem. 2.6], the natural map H1(GalF℘ ,W+

dR)→ H1(GalF℘ ,WdR) is
injective, thus H1

g (GalF℘ ,W ) = Ker[H1(GalF℘ ,W ) → H1(GalF℘ ,W+
dR)].

One has as in [33, Prop. 2.10]

Proposition 1.9. — Suppose W is de Rham, the perfect pairing (1.3)
induces an isomorphism

H1
g (GalF℘ ,W ) ∼−−→ H1

e (GalF℘ ,W∨(1))⊥.

For J ⊆ Σ℘, J 6= ∅, put

H1
g,J(GalF℘ ,W ) := Ker[H1(GalF℘ ,W )→ ⊕σ∈JH1(GalF℘ ,WdR,σ)],

where the map is induced by

C•(W ) −→ [WdR → 0] −→ [⊕σ∈JWdR,σ → 0] .

Thus we have H1
g,Σ℘(GalF℘ ,W ) = H1

g (GalF℘ ,W ),

H1
g,J(GalF℘ ,W ) ∼= ∩σ∈JH1

g,σ(GalF℘ ,W ) ,
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and H1(GalF℘ ,W ) → ⊕σ∈JH1(GalF℘ ,WdR,σ) factors through (up to ±1)
the natural map H1(GalF℘ ,W )→ ⊕σ∈JH1(GalF℘ ,W+

dR,σ) (see the discus-
sion above Proposition 1.9). Moreover, suppose W is a J-de Rham A-B-
pair, for [X] ∈ H1(GalF℘ ,W ) ∼= Ext1(BA,W ), X is J-de Rham if and only
if [X] ∈ H1

g,J(GalF℘ ,W ). By the same argument as in [33, Lem. 2.6], one
has

Lemma 1.10. — Let J ⊆ Σ℘, J 6= ∅, suppose W is J-de Rham, then
the map

⊕σ∈JH1(GalF℘ ,W+
dR,σ) −→ ⊕σ∈JH1(GalF℘ ,WdR,σ)

is injective.

Thus if W is J-de Rham, then one has

(1.4) H1
g,J(GalF℘ ,W ) ∼= Ker[H1(GalF℘ ,W )→ ⊕σ∈JH1(GalF℘ ,W+

dR,σ)] .

Lemma 1.11. — Let J ⊆ Σ℘, J 6= ∅, suppose W is J-de Rham, if
H0(GalF℘ ,W+

dR,σ) = 0 for all σ ∈ J , thenH1
g,J(GalF℘ ,W ) ∼−→H1(GalF℘ ,W ).

Proof. — It’s sufficient to prove H1
g,σ(GalF℘ ,W ) ∼−→ H1(GalF℘ ,W ) for

all σ ∈ J . Since W is σ-de Rham and H0(GalF℘ ,W+
dR,σ) = 0, we see

W+
dR,σ

∼= ⊕i∈Z>1(tiB+
dR,σ)ni where ni = 0 for all but finite many i. However,

for i ∈ Z>1, H1(GalF℘ , tiB+
dR,σ) = 0, thus H1(GalF℘ ,W+

dR,σ) = 0, from
which (and (1.4)) the lemma follows. �

For an E-B-pair W , δ : F×℘ → E×, put W (δ) := W ⊗ BE(δ) (see
Remark 1.8(2) for tensor products of E-B-pairs, and Section 1.1 for BE(δ)).
If there exist kσ ∈ Z for all σ ∈ Σ℘ such that δ =

∏
σ∈Σ℘ σ

kσ , then by [33,
Lem. 2.12], one has natural isomorphisms

(1.5) W (δ)e ∼= We, W (δ)+
dR
∼= ⊕σ∈Σ℘W (δ)+

dR,σ
∼= ⊕σ∈Σ℘t

kσW+
dR,σ .

Thus if kσ ∈ Z>0 for all σ ∈ Σ℘, one gets a natural morphism

(1.6) j : W (δ) −→W

with je = id and j+dR the natural injection ⊕σ∈Σ℘t
kσW+

dR,σ ↪→ ⊕σ∈Σ℘W
+
dR,σ.

Let J ⊆ Σ℘, J 6= ∅, W be a J-de Rham E-B-pair, let kσ ∈ Z>0, such
that (tkσW+

dR,σ)GalF℘ = 0 for σ ∈ J (thus tkσW+
dR,σ

∼= ⊕i∈Z>1(tiB+
dR,σ)⊕ni

with ni = 0 for all but finite many i for σ ∈ J), let δ :=
∏
σ∈J σ

kσ . The
morphism (1.6) induces an exact sequence of GalF℘-complexes

0→ [W (δ)e ⊕W (δ)+
dR →W (δ)dR]→ [We ⊕W+

dR →WdR]

→ [⊕σ∈J(W+
dR,σ/t

kσW+
dR,σ)→ 0] .
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Taking GalF℘-cohomology, one gets

0→ H0(GalF℘ ,W (δ))→ H0(GalF℘ ,W )→ ⊕σ∈JH0(GalF℘ ,W+
dR,σ/t

kσ )

→ H1(GalF℘ ,W (δ))→ H1(GalF℘ ,W )→ ⊕σ∈JH1(GalF℘ ,W+
dR,σ/t

kσ ).

By our assumption on kσ, H0(GalF℘ ,W (δ)) = 0 and Hi(GalF℘ ,W+
dR,σ) ∼−→

Hi(GalF℘ ,W+
dR,σ/t

kσ ) for i = 0, 1, from which and Lemma 1.10 (and the
discussion above it), one gets

(1.7) 0→ H0(GalF℘ ,W )→ ⊕σ∈JH0(GalF℘ ,W+
dR,σ)

→ H1(GalF℘ ,W (δ))→ H1
g,J(GalF℘ ,W )→ 0 ,

which would be useful to calculate H1
g,J(GalF℘ ,W ). At last, note that

a morphism of E-B-pairs W1 → W2 induces a map H1(GalF℘ ,W1) →
H1(GalF℘ ,W2) which restricts to maps H1

∗ (GalF℘ ,W1) → H1
∗ (GalF℘ ,W2)

with ∗ ∈ {e, g, {g, J}}.

1.3. Fontaine–Mazur L-invariants

Let χ be a continuous character of F×℘ in E×, χ is called special if there
exist kσ ∈ Z for all σ ∈ Σ℘ such that

χ = unr(q−1)
∏
σ∈Σ℘

σkσ = χcyc
∏
σ∈Σ℘

σkσ−1

where unr(z) denotes the unramified character of F×℘ sending uniformizers
to z. In this section, we associate to [X] ∈ H1

g (GalF℘ , BE(χ)) the so-called
Fontaine–Mazur L-invariants for special characters χ.
Let χ = χcyc

∏
σ∈Σ℘ σ

kσ−1, by [33, Lem. 2.12], BE(χ)e ∼= (Be ⊗Qp E)t,
BE(χ)+

dR
∼= ⊕σ∈Σ℘t

kσB+
dR,σ. Put η :=

∏
σ∈Σ℘ σ

1−kσ , thus BE(η) ∼=
BE(χ)∨(1), BE(η)e ∼= Be ⊗Qp E and BE(η)+

dR
∼= ⊕σ∈Σ℘t

1−kσB+
dR,σ. Put

(1.8)
{
Sc(χ) := {σ ∈ Σ℘ | kσ ∈ Z60},
Sn(χ) := {σ ∈ Σ℘ | kσ ∈ Z>1},

thus BE(χ) is non-Sn(χ)-critical (cf. Definition A.2). By [33, Prop. 2.15,
Lem. 4.2 and Lem. 4.3], one has

Lemma 1.12. — Keep the above notation.
(1) If Sc(χ) = ∅, then

dimE H
0(GalF℘ , BE(η)) = dimE H

2(GalF℘ , BE(χ)) = 1 ,
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and

dimE H
1(GalF℘ , BE(χ)) = dimE H

1(GalF℘ , BE(η)) = d+ 1;

if Sc(χ) 6= ∅, then

dimE H
i(GalF℘ , BE(χ)) = dimE H

i(GalF℘ , BE(η)) = 0

for i = 0, 2, and

dimE H
1(GalF℘ , BE(χ)) = dimE H

1(GalF℘ , BE(η))
= d (= [F℘ : Qp]) .

(2) We have

dimE H
1
e (GalF℘ , BE(χ)) = d− |Sc(χ)|

and

dimE H
1
g (GalF℘ , BE(χ)) = d+ 1− |Sc(χ)| .

If Sc(χ) = ∅,

dimE H
1
e (GalF℘ , BE(η)) = 0 ;

if Sc(χ) 6= ∅,

dimE H
1
e (GalF℘ , BE(η)) = |Sc(χ)| − 1 .

Suppose first Sc(χ) = ∅ (thus H1
g (GalF℘ , BE(χ)) ∼−→ H1(GalF℘ , BE(χ))),

we would use the cup-product

(1.9) 〈 · , · 〉 : H1(GalF℘ , BE(χ))×H1(GalF℘ , BE)

−→ H2(GalF℘ , BE(χ)) ∼= E

to define L-invariants for elements in H1(GalF℘ , BE(χ)).

Lemma 1.13. — The cup-product (1.9) is a perfect pairing.

Proof. — The natural morphism j : BE(χ) → BE(1) (cf. (1.6)) induces
an exact sequence of GalF℘-complexes

(1.10) 0 −→ [BE(χ)e ⊕BE(χ)+
dR → BE(χ)dR]

−→ [BE(1)e ⊕BE(1)+
dR → BE(1)dR]

−→ [⊕σ∈Σ℘tB
+
dR,σ/t

kσB+
dR,σ → 0] −→ 0 .
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Since Hi(GalF℘ , tB+
dR,σ/t

kσB+
dR,σ) = 0 for any i ∈ Z>0, we see j induces

isomorphisms Hi(GalF℘ , BE(χ)) ∼−→ Hi(GalF℘ , BE(1)) for i ∈ Z>0. More-
over, the following diagram commutes

H1(GalF℘ , BE(χ))×H1(GalF℘ , BE) ∪−−−−→ H2(GalF℘ , BE(χ))

∼
y ∥∥∥ ∼

y
H1(GalF℘ , BE(1))×H1(GalF℘ , BE) ∪−−−−→ H2(GalF℘ , BE(1)) .

Since the cup-product below is perfect by Proposition 1.7(4), so is the above
one. �

Recall that H1(GalF℘ , BE) ∼= H1(GalF℘ , E) ∼= Hom(GalF℘ , E), where
the last denotes the E-vector space of continuous additive characters of
GalF℘ in E. Before going any further, we recall some facts on additive
characters of GalF℘ .

1.3.1. A digression: additive characters of GalF℘

Let WF℘ denote the Weil group of F℘. We fix a local Artin map ArtF℘ :
F×℘

∼−→W ab
F℘

sending uniformizers to geometric Frobenius. One has thus

(1.11)
H1(GalF℘ , BE)∼=H1(GalF℘ , E)∼=Hom(GalF℘ , E)∼=Hom(Galab

F℘ , E)

∼=Hom(W ab
F℘ , E)

ArtF℘−−−−→
∼

Hom(F×℘ , E)

where the fourth isomorphism follows from the fact that any character of
Z in E gives rise to a continuous character of Ẑ := lim←−n Z/nZ in E. We
would identify these E-vector spaces via (1.11) with no mention.
For a uniformiser $ ∈ F×℘ one gets a character ε$ : F×℘ −→ O×℘ which

is identity on O×℘ and sends $ to 1 . Let ψσ,$ := σ ◦ log ◦ε$ : F×℘ → E

for σ ∈ Σ℘, and ψur : F×℘ → Z be the unramified character sending p to 1
(thus sending $ to e−1).

Lemma 1.14. — {ψσ,$}σ∈Σ℘ and ψur form a basis of Hom(F×℘ , E).

Proof. — One has isomorphisms

(1.12) Hom(O×℘ , E) ∼= HomQp(F℘, E)

∼= HomE(F℘ ⊗Qp E,E) ∼= HomE

( ∏
σ∈Σ℘

E,E

)
,

where the first isomorphism is induced by the log map. For τ ∈ Σ℘, one sees
τ ◦ log : O×℘ → E corresponds to the map

∏
σ∈Σ℘ E,→ E, (aσ)σ∈Σ℘ 7→ aτ .
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So {σ ◦ log}σ∈Σ℘ form a basis of the E-vector space Hom(O×℘ , E), and
hence {ψσ,$}σ∈Σ℘ form a basis of the E-vector subspace of Hom(F×℘ , E)
generated by characters sending $ to 0. The lemma follows. �

The cyclotomic character χcyc of GalF℘ corresponds (via ArtF℘) to the

character F×℘
NF℘/Qp−−−−−→ Q×p → Z×p with the last map being identity on

Z×p and sending p to 1. Consider the restriction of NF℘/Qp to O×℘ , which
corresponds (via (1.12)) to the map tr ∈ HomE(

∏
σ∈Σ℘ E,E) : (aσ)σ 7→∑

σ∈ΣF℘
σ(aσ). This map is in fact a generator of HomE(

∏
σ∈Σ℘ E,E) over

F℘⊗QpE. For any f ∈ F℘⊗QpE, denote by ψf,p the character F×℘ → E such
that ψf,p|O×℘ coincides with the preimage of f · tr ∈ HomE(

∏
σ∈Σ℘ E,E)

in Hom(O×℘ , E) via (1.12) and that ψf,p(p)=1. For τ ∈ Σ℘, denote by
1τ ∈ F℘ ⊗Qp E

∼=
∏
σ∈Σ℘ E with (1τ )τ = 1 and (1τ )σ = 0 for σ 6= τ .

Let ψτ,p := ψ1τ ,p to simplify, we see ψτ,$ = ψτ,p + τ(log(p/$e))ψur (by
comparing their values of p and O×℘ ). In particular, {ψσ,p}σ∈Σ℘ and ψur
also form a basis of HomQp(F×℘ , E).
For τ ∈ Σ℘, the embedding ι : F℘ ↪→ B+

dR induces ιτ : E ↪→ B+
dR,τ �

Cp,τ . One gets

ιτ : H1(GalF℘ , E) −→ H1(GalF℘ , B+
dR,τ ) ∼−−→ H1(GalF℘ ,Cp,τ ) .

For ψ ∈ H1(GalF℘ , E), ψ is mapped to zero if and only if there exists x ∈
Cp,τ such that χ(g) = g(x)− x. It’s known that for any ι′ 6= ι : F℘ ↪→ Cp,
there exists uι′ ∈ C×p , such that g(uι′) = (ι′ ◦ ε$(g)) · uι′ (where ε$ is
viewed as a character of GalF℘ via ArtF℘), put xι′ := log(uι′), we have
g(xι′) − xι′ = log ◦ε$(g). From which we deduce that for any τ ′ 6= τ ,
ιτ (ψτ ′,$) = 0. Similarly, we have ιτ (ψur) = 0. So ψur ∈ H1

g (GalF℘ , BE) =
H1
g (GalF℘ , E) = ker[H1(GalF℘ , E) → H1(GalF℘ ,⊕σ∈Σ℘BdR,σ)], and is a

generator of H1
g (GalF℘ , BE) (which is 1-dimensional over E). For S ⊆ Σ℘,

recall H1
g,S(GalF℘ , E) = Ker[H1(GalF℘ , E) → ⊕σ∈SH1(GalF℘ , BdR,σ)], by

the above discussion, one has

Lemma 1.15. — The E-vector space H1
g,S(GalF℘ , E) is of dimension

|Σ℘ \ S|+ 1, and is generated by {ψσ,$}σ∈Σ℘\S and ψur (thus can also be
generated by {ψσ,p}σ∈Σ℘\S and ψur).

1.3.2. L-invariants

Return to the situation before Section 1.3.1 (thus χ is a special character
with Sc(χ) = ∅). Let [X] ∈ H1(GalF℘ , BE(χ)) = H1

g (GalF℘ , BE(χ)), by
Proposition 1.9 and Lemma 1.15, [X] ∈ H1

e (GalF℘ , BE(χ)) if and only if
〈[X], ψur〉 = 0 (cf. (1.9)).
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Definition 1.16 (non-critical case). — Keep the above notation, if
[X] /∈ H1

e (GalF℘ , BE(χ)), for σ ∈ Σ℘, put L(X)σ := 〈[X], ψσ,p〉/〈[X], ψur〉 ∈
E (cf. (1.9)), and the {L(X)σ}σ∈Σ℘ are called the Fontaine–Mazur L-
invariants of X; if [X] ∈ H1

e (GalF℘ , BE(χ)), we define the Fontaine–Mazur
L-invariants of X to be (L(X)σ)σ∈Σ℘ := (〈[X], ψσ,p〉)σ∈Σ℘ ∈ Pd−1(E).

Remark 1.17. — Let χ′ = unr(q−1)
∏
σ∈Σ℘ σ

k′σ with 1 6 k′σ 6 kσ for all
σ ∈ Σ℘. The natural morphism j : BE(χ)→ BE(χ′) induces isomorphisms
j : Hi(GalF℘ , BE(χ)) ∼−→ Hi(GalF℘ , BE(χ′)) for i ∈ Z>0 (by the same
argument as in the proof of Lemma 1.13), moreover, the following diagram
commutes

H1(GalF℘ , BE(χ))×H1(GalF℘ , BE) ∪−−−−→ H2(GalF℘ , BE(χ))

∼
y ∥∥∥ ∼

y
H1(GalF℘ , BE(χ′))×H1(GalF℘ , BE) ∪−−−−→ H2(GalF℘ , BE(χ′)) .

We see by definition (L(X ′)σ)σ∈Σ℘ = (L(X)σ)σ∈Σ℘ if [X ′] = j([X]) (up to
scalars).

Consider now the case Sc(χ) 6= ∅ (i.e. the critical case). Let

χ] := χ
∏

σ∈Sc(χ)

σ1−kσ = unr(q−1)
∏

σ∈Sn(χ)

σkσ
∏

σ∈Sc(χ)

σ ,

thus χ] is also special and Sc(χ]) = ∅. The natural morphism of j :
BE(χ]) → BE(χ) (cf. (1.6)) induces a map j : H1(GalF℘ , BE(χ])) →
H1(GalF℘ , BE(χ)).

Lemma 1.18. — Im(j) = H1
g,Sc(χ)(GalF℘ , BE(χ)) = H1

g (GalF℘ , BE(χ)).

Proof. — By (1.7), Im(j) = H1
g,Sc(χ)(GalF℘ , BE(χ)). By Lemma 1.11,

H1
g,σ(GalF℘ , BE(χ)) = H1(GalF℘ , BE(χ)) for σ ∈ Sn(χ), and hence

H1
g,Sc(χ)(GalF℘ , BE(χ)) = H1

g (GalF℘ , BE(χ)) .

The lemma follows. �

Let η′ :=
∏
σ∈Sc(χ) σ

1−kσ , so χ] = χη′. We claim the cup-product

(1.13) H1(GalF℘ , BE(χ))×H1(GalF℘ , BE(η′)) −→ H2(GalF℘ , BE(χ]))
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is a perfect pairing. Indeed, similarly as in the proof of Lemma 1.13, this
follows from the commutative diagram (recall η = χ−1χcyc):

H1(GalF℘ , BE(χ))×H1(GalF℘ , BE(η′)) ∪−−−−→ H2(GalF℘ , BE(χ]))∥∥∥ ∼
y ∼

y
H1(GalF℘ , BE(χ))×H1(GalF℘ , BE(η)) ∪−−−−→ H2(GalF℘ , BE(1)) .

One deduces from Proposition 1.9 that this pairing induces isomorphisms

(1.14)
H1
g (GalF℘ , BE(χ)) ∼= H1

e (GalF℘ , BE(η′))⊥,

H1
e (GalF℘ , BE(χ)) ∼= H1

g (GalF℘ , BE(η′))⊥.

Let j′ denote the natural morphism BE(η′) → BE , the following diagram
commutes

(1.15)

H1(GalF℘ , BE(η′))×H1(GalF℘ , BE(χ)) −−−→ H2(GalF℘ , BE(χ]))

j′

y j

x ∥∥∥
H1(GalF℘ , BE) ×H1(GalF℘ , BE(χ]))−−−→H2(GalF℘ , BE(χ])) .

By (1.7), Im(j′) = H1
g,Sc(χ)(GalF℘ , BE).

Lemma 1.19. — Denote by 〈·,·〉n the bottom (perfect) pairing in (1.15),
then the following pairing

(1.16) 〈 · , · 〉 : H1
g,Sc(χ)(GalF℘ , BE)×H1

g (GalF℘ , BE(χ))

−→ H2(GalF℘ , BE(χ])) ∼= E ,

with 〈x, y〉 := 〈x, y]〉n, where y] is a preimage of y in H1(GalF℘ , BE(χ])),
is independent of the choice of y] and is a perfect pairing. Moreover, this
pairing induces an isomorphism H1

g (GalF℘ , BE)⊥ ∼−→ H1
e (GalF℘ , BE(χ)).

Proof. — The independence of the choice of y] follows from the commu-
tativity of (1.15) and the fact Im(j′) = H1

g,Sc(χ)(GalF℘ , BE). Indeed, for
y′ ∈ H1(GalF℘ , BE(χ])), if j(y′) = 0, by (1.15), Im(j′) ⊆ (E · y′)⊥.

By (1.14), the top pairing in (1.15) induces a perfect pairing

H1(GalF℘ , BE(η′))/H1
e (GalF℘ , BE(η′))×H1

g (GalF℘ , BE(χ)) −→ E .

We claim j′ induces an isomorphism

H1(GalF℘ , BE(η′))/H1
e (GalF℘ , BE(η′)) ∼−→ H1

g,Sc(χ)(GalF℘ , BE) ,

from which one can easily deduce (1.16) is perfect. Since H1
e (GalF℘ , BE) =

{0}, H1
e (GalF℘ , BE(η′)) ⊆ Ker(j′) (note j′ sends H1

e (GalF℘ , BE(η′)) to
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H1
e (GalF℘ , BE) = 0). By Lemma 1.15,

dimE Im(j′) = dimE H
1
g,Sc(χ)(GalF℘ , BE) = |Sn(χ)|+ 1 ;

by Lemma 1.12,
dimE H

1(GalF℘ , BE(η′)) = d

and
dimE H

1
e (GalF℘ , BE(η′)) = |Sc(χ)| − 1 .

By dimension calculation, the claim follows.
The second part follows from (1.14) and the fact that the map j′ sends

H1
g (GalF℘ , BE(η′)) to H1

g (GalF℘ , BE). �

Using this pairing and Lemma 1.15, one can now define Fontaine–Mazur
L-invariants in general case:

Definition 1.20 (general case). — Let χ be a special character of F×℘ ,
[X] ∈ H1

g (GalF℘ , BE(χ)), if [X] /∈ H1
e (GalF℘ , BE(χ)), for σ ∈ Sn(χ), put

L(X)σ := 〈[X], ψσ,p〉/〈[X], ψur〉 ∈ E (cf. (1.16)), and {L(X)σ}σ∈Sn(χ) are
called the Fontaine–Mazur L-invariants of X; if [X] ∈ H1

e (GalF℘ , BE(χ)),
we define the Fontaine–Mazur L-invariants of X to be (L(X)σ)σ∈Sn(χ) :=
(〈[X], ψσ,p〉)σ∈Sn(χ) ∈ P|Sn(χ)|−1(E) (cf. (1.16)).

Remark 1.21. — Keep the above notation, and let

[X] ∈ H1
g (GalF℘ , BE(χ)), [X]] ∈ H1(GalF℘ , BE(χ]))

such that j([X]]) = [X], then we have

(L(X))σ∈Sn(χ) = (L(X]))σ∈Sn(χ) .

Let X be a 2-dimensional triangulable E-B-pair with a triangulation
given by

0→ BE(χ1)→ X → BE(χ2)→ 0 .
We denote by (X,χ1, χ2) a such triangulation. The E-B-pair X is called
special if χ1χ

−1
2 is special. Suppose X is special, let

[X0] ∈ H1(GalF℘ , BE(χ1χ
−1
2 ))

be the image of [X] via the isomorphism

Ext1(BE(χ1), BE(χ2)) ∼−−→ H1(GalF℘ , BE(χ1χ
−1
2 )) .

If [X0] ∈ H1
g (GalF℘ , BE(χ1χ

−1
2 )), we define the L-invariants of (X,χ1, χ2)

to be the L-invariants of [X0]; if moreover [X0] /∈ H1
e (GalF℘ , BE(χ1χ

−1
2 )),

these are called L-invariants of X (since in this case, X admits a unique
triangulation, cf. [33, Thm. 3.7]).
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Let V be a 2-dimensional semi-stable representation of GalF℘ over E,
and

0→ BE(χ1)→W (V )→ BE(χ2)→ 0
a triangulation of W (V ). Suppose χ1χ

−1
2 is special, which is equivalent to

that the eigenvalues α1, α2 of the E-linear operator ϕd0 on Dst(V ) satisfy
α1α

−1
2 = q or q−1. One defines the L-invariants of (V, χ1, χ2) to be the

L-invariants of (W (V ), χ1, χ2), which are called the Fontaine–Mazur L-
invariants of V if V is moreover non-crystalline.

2. L-invariants and partially de Rham families

Let χ be a special character of F×℘ in E×, χ̃ be a character of F×℘ in
(E[ε]/ε2)× such that χ̃ ≡ χ (mod ε). So there exists an additive character
ψ of F×℘ in E such that χ̃ = χ(1+εψ). By results in Section 1.3.1, there exist
aσ ∈ E for all σ ∈ Σ℘ and aur ∈ E such that ψ = aurψur +

∑
σ∈Σ℘ aσψσ,p.

Let X be an E[ε]/ε2-B-pair of rank 2 such that

[X] ∈ H1(GalF℘ , BE[ε]/ε2(χ̃)) ∼= Ext1(BE[ε]/ε2 , BE[ε]/ε2(χ̃)) .

Denote by X0 := X (mod ε), which is a triangulable E-B-pair and lies in
H1(GalF℘ , BE(χ)). SupposeX0 is de Rham (i.e. [X0] ∈ H1

g (GalF℘ , BE(χ))),
and denote by LSn(χ) = (Lσ)σ∈Sn(χ) the associated L-invariants (cf. Defi-
nition 1.20). This section is devoted to prove the following theorem.

Theorem 2.1. — Keep the above notation, and suppose X is Sc(χ)-de
Rham (cf. Definition 1.3), then

(2.1)
{
aur +

∑
σ∈Sn(χ) aσLσ = 0 if X0 is non-crystalline,∑

σ∈Sn(χ) aσLσ = 0 if X0 is crystalline.

Remark 2.2.
(1) Such formula was firstly established by Greenberg–Stevens [29,

Thm. 3.14] in the case of 2-dimensional ordinary GalQp -representa-
tions by Galois cohomology computations. In [22], Colmez general-
ized [29, Thm. 3.14] to 2-dimensional trianguline GalQp -representa-
tions case by Galois cohomology computations and computations in
Fontaine’s rings. Theorem 2.1 in non-critical case (i.e. Sc(χ) = ∅) was
obtained by Zhang in [44], by generalizing Colmez’s method. In [37],
Pottharst generalized [29, Thm. 3.14] to rank 2 triangulable (ϕ,Γ)-
modules (in Qp case) by studying cohomology of (ϕ,Γ)-modules.
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(2) The hypothesis X being Sc(χ)-de Rham would imply that aσ = 0
for all σ∈Sc(χ). In fact, X being Sc(χ)-de Rham implies BE[ε]/ε2(χ̃)
being Sc(χ)-de Rham. We claim that BE[ε]/ε2(χ̃) is Sc(χ)-de Rham if
an only if aσ = 0 for all σ ∈ Sc(χ). Indeed, it’s easy to see BE[ε]/ε2(χ̃)
is Sc(χ)-de Rham if and only if BE[ε]/ε2(1 + ψε) is Sc(χ)-de Rham.
Viewing BE[ε]/ε2(1+ψε) as an extension of BE by BE defined by ψ ∈
H1(GalF℘ , BE) (cf. Section 1.3.1), we see BE[ε]/ε2(1+ψε) is Sc(χ)-de
Rham if and only ψ ∈ H1

g,Sc(χ)(GalF℘ , BE), which is equivalent to
that aσ = 0 for all σ ∈ Sc(χ) by Lemma 1.15. However, the converse
is not true. This is a new subtlety: the formulas in (2.1) do not hold
(in general) if one only assumes aσ = 0 for all σ ∈ Sc(χ) (e.g. see the
discussion before Lemma 2.7 below).

We translate this theorem in terms of families of Galois representations.
Let A be an affinoid E-algebra, V be a locally free A-module of rank 2
equipped with a continuous GalF℘-action. ThusDdR(V ) :=(BdR⊗̂QpV )GalF℘

is an A ⊗Qp F℘-module. Using A ⊗Qp F℘
∼−→
∏
σ∈Σ℘ A, a ⊗ b 7→ (aσ(b))σ,

one can decompose DdR(V ) ∼−→ ⊕σ∈Σ℘DdR(V )σ. For σ ∈ Σ℘, we say V is
σ-de Rham if DdR(V )σ is locally free of rank 2 over A. Let RA := RE⊗̂EA,
one can associate to V a (ϕ,Γ)-module Drig(V ) (cf. [31, Thm. 2.2.17]) over
RA. Suppose Drig(V ) sits in an exact sequence of (ϕ,Γ)-modules over RA
as follows:

0 −→ RA(δ1) −→ Drig(V ) −→ RA(δ2) −→ 0 ,

where δi : F℘ → A× are continuous characters, and we refer to [31,
Const.6.2.4] for rank 1 (ϕ,Γ)-modules associated to characters. For a con-
tinuous character χ of F×℘ in A×, χ induces a Qp-linear map

dχ : F℘ −→ A, a 7→ d

dx
χ(exp(ax))|x=0 ,

and thus an E-linear map dχ : F℘ ⊗Qp E
∼=
∏
σ∈Σ℘ E → A. So there exists

(wt(χ)σ)σ∈Σ℘ ∈ A|Σ℘|, called the weight of χ, such that dχ((aσ)σ∈Σ℘) =∑
σ∈Σ℘ aσ wt(χ)σ. Let z be an E-point of A, and δi,z := z∗δi, suppose

• Vz := z∗V is semi-stable;
• δ1,zδ−1

2,z is special.

Put Sn(Vz) := Sn(δ1,zδ−1
2,z), Sc(Vz) := Sc(δ1,zδ−1

2,z) (cf. (1.8)), and LSn(Vz)
the Fontaine–Mazur L-invariants of Vz. By Theorem 2.1, one has
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Corollary 2.3. — Keep the above notation, suppose moreover V is
Sc(Vz)-de Rham, then the differential form in Ω1

A/E{
d log(δ1δ−1

2 (p)) +
∑
σ∈Sn(Vz) Lσd(wt(δ1δ−1

2 )σ) if Vz is non-crystalline∑
σ∈Sn(Vz) Lσd(wt(δ1δ−1

2 )σ) if Vz is crystalline

vanishes at z.

Remark 2.4. — Partially de Rham families would appear naturally in
the study of p-adic automorphic forms, e.g. one encounters such families
when studying locally analytic vectors in completed cohomology of Shimura
curves (see Proposition 4.14 below), or certain families of overconvergent
Hilbert modular forms (see App. A below). Note that this formula also
applies for families of F℘-analytic GalF℘-representations (cf. [7], which can
be viewed as special cases of partially de Rham families).

The rest of this section is devoted to the proof of Theorem 2.1. We use
Pottharst’s method [37] (but in terms of B-pairs). It’s clear that X being
Sc(χ)-de Rham is equivalent to saying that BE[ε]/ε2(χ̃) is Sc(χ)-de Rham
and [X] ∈ H1

g,Sc(χ)(GalF℘ , BE[ε]/ε2(χ̃)). As discussed in Remark 2.2(2),
BE[ε]/ε2(χ̃) being Sc(χ)-de Rham is equivalent to that aσ = 0 for all σ ∈
Sc(χ). Thus it’s sufficient to prove

Proposition 2.5. — Suppose aσ = 0 for all σ ∈ Sc(χ) and [X] ∈
H1
g,Sc(χ)(GalF℘ , BE[ε]/ε2(χ̃)), then the formulas in (2.1) hold.

Let kσ ∈ Z for all σ ∈ Σ℘ such that χ = unr(q−1)
∏
σ∈Σ℘ σ

kσ . One has a
natural exact sequence of E-B-pairs

(2.2) 0→ BE(χ)→ BE[ε]/ε2(χ̃)→ BE(χ)→ 0 ,

by taking cohomology, one gets an exact sequence

(2.3) 0→ H1(GalF℘ , BE(χ))→ H1(GalF℘ , BE[ε]/ε2(χ̃))
κ−→ H1(GalF℘ , BE(χ)) δ−→ H2(GalF℘ , BE(χ)).

Note κ([X]) = [X0]. We suppose ψ 6= 0 (since the case ψ = 0 is trivial).
First consider non-critical case (i.e. Sc(χ) = ∅), thus kσ ∈ Z>1 for all

σ ∈ Σ℘. In this case, one has H1(GalF℘ , BE(χ)) = H1
g (GalF℘ , BE(χ)),

which is of dimension d+ 1 over E. One also has

Lemma 2.6.
dimE H

1(GalF℘ , BE[ε]/ε2(χ̃)) = 2d+ 1 .
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Proof. — Let W := BE[ε]/ε2(χ̃) for simplicity, one has

2∑
i=0

(−1)iH1(GalF℘ ,W ) = −2d .

It’s easy to see H0(GalF℘ ,W ) = 0 (cf. [33, Prop. 2.14]); moreover one
has dimE H

0(GalF℘ ,W∨(1)) = 1: let η :=
∏
σ∈Σ℘ σ

1−kσ , then W∨(1)
is an extension of BE(η) by BE(η) (defined by ψ), by [33, Prop. 2.14],
dimE H

0(GalF℘ , BE(η)) = 1, which together with the fact ψ 6= 0 deduces
dimE H

0(GalF℘ ,W∨(1)) = 1. By the duality between H0(GalF℘ ,W∨(1))
and H2(GalF℘ ,W ), one sees dimE H

2(GalF℘ ,W ) = 1, so H1(GalF℘ ,W ) =
2d+ 1. �

In particular, the map κ is not surjective. On the other hand, by Re-
mark 1.8(1) (applied to W1 = W3 = BE , W2 = BE[ε]/ε2(1 + εψ), W =
BE(χ)), we see the map δ is given (up to scalars) by x 7→ 〈x, ψ〉, where
〈 · , · 〉 denotes the cup-product

H1(GalF℘ , BE(χ))×H1(GalF℘ , BE)→ H2(GalF℘ , BE(χ))

(cf. (1.9)). So one has (since [X0] = κ([X]))

(2.4) δ([X0]) =
∑
σ∈Σ℘

aσ〈[X0], ψσ,p〉+ aur〈[X0], ψur〉 = 0 ,

from which we deduces Proposition 2.5 in non-critical case by the definition
of L-invariants of X0 (cf. Definition 1.16).
Suppose now Sc(χ) 6= ∅, in this case dimE H

1(GalF℘ , BE(χ)) = d. One
can show as in the proof of Lemma 2.6 that dimE H

1(GalF℘ , BE[ε]/ε2(χ̃)) =
2d, so κ is surjective (cf. (2.3)). Consequently, one can not expect any
formula without further condition on X.
As in Section 1.3.2, put χ] := χ

∏
σ∈Sc(χ) σ

1−kσ , and χ̃] := χ](1 +
εψ) = χ̃

∏
σ∈Sc(χ) σ

1−kσ . Note BE[ε]/ε2(χ̃) and BE[ε]/ε2(χ̃]) are both Sc(χ)-
de Rham (see Remark 2.2(2)). By (1.7), one has an exact sequence

(2.5) 0→ H0(GalF℘ , BE[ε]/ε2(χ̃)) (= 0)

→ ⊕σ∈Sc(χ)H
0(GalF℘ , BE[ε]/ε2(χ̃)+

dR,σ/t
1−kσ )

→ H1(GalF℘ , BE[ε]/ε2(χ̃]))→ H1
g,Sc(χ)(GalF℘ , BE[ε]/ε2(χ̃))→ 0 ,

from which (and Lemma 2.6) one calculates:

Lemma 2.7.
dimE H

1
g,Sc(χ)(GalF℘ , BE[ε]/ε2(χ̃)) = 2d+ 1− 2|Sc(χ)| .
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The commutative diagram of E-B-pairs

0 −−−−→ BE(χ]) −−−−→ BE(χ̃]) −−−−→ BE(χ]) −−−−→ 0

j

y j

y j

y
0 −−−−→ BE(χ) −−−−→ BE(χ̃) −−−−→ BE(χ) −−−−→ 0

induces a commutative diagram (by (1.7))
H1(GalF℘ , BE(χ])) −−→ H1(GalF℘ , BE[ε]/ε2 (χ̃])) κ−−→ H1(GalF℘ , BE(χ]))

j

y j

y j

y
H1
g,Sc(χ)(GalF℘,BE(χ))−−→H1

g,Sc(χ)(GalF℘,BE[ε]/ε2 (χ̃))
κg−−→H1

g,Sc(χ)(GalF℘,BE(χ)) ,

where all the vertical arrows are surjective, the two horizontal maps on the
left are injective, and the top sequence is exact. Note that by Lemma 1.18
and Lemma 1.12,H1

g,Sc(χ)(GalF℘ , BE(χ)) = H1
g (GalF℘ , BE(χ)) is of dimen-

sion d+ 1−|Sc(χ)|. Since dimE Im(κ) = d = dimE H
1(GalF℘ , BE(χ]))− 1,

one has dimE Im(κg) > dimE H
1
g,Sc(χ)(GalF℘ , BE(χ)) − 1 = d − |Sc(χ)|,

which together with Lemma 2.7 shows that the bottom sequence is also
exact and that dimE Im(κg) = dimE H

1
g,Sc(χ)(GalF℘ , BE(χ)) − 1 (in par-

ticular, κg is not surjective).
Denote by

[X]] ∈ H1(GalF℘ , BE[ε]/ε2(χ̃]))

a preimage of [X] ∈ H1
g,Sc(χ)(GalF℘ , BE[ε]/ε2(χ̃)) via j, [X]

0] := κ([X]]),
thus j([X]

0]) = [X0]. By (2.4) applied to [X]
0], one has (note that aσ = 0 for

σ ∈ Sc(χ)) ∑
σ∈Σ℘

aσ〈[X]
0], ψσ,p〉+ aur〈[X]

0], ψur〉 = 0 ,

from which, together with the definition of L-invariants for [X0] (Defini-
tion 1.20, see in particular Remark 1.21), Proposition 2.5 follows.

3. Breuil’s L-invariants

In [9], to a 2-dimensional semi-stable non-crystalline representation V of
GalQp , Breuil associated a locally analytic representation Π(V ) of GL2(Qp)
(Breuil also considered Banach representations, but we only focus on lo-
cally analytic representations in this paper), which can determine V and
in particular contains the information on the Fontaine–Mazur L-invariant
of V . Roughly speaking, Breuil found that certain extensions of locally
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analytic representations (of GL2(Qp)) can be parametrized by some in-
variants (which are referred to as Breuil’s L-invariants), and by matching
these invariants with Fontaine–Mazur L-invariants, one could get a one-
to-one correspondence (in p-adic Langlands for GL2(Qp)) in semi-stable
non-crystalline case. In [41], generalizing Breuil’s theory, Schraen associ-
ated a locally Qp-analytic representation of GL2(F℘) to a 2-dimensional
semi-stable non-crystalline representation of GalF℘ (although only the non-
critical case was considered in loc. cit., Schraen’s construction can easily
generalize to critical case). We recall some results of loc. cit. in this section.
Let V be a 2-dimensional semi-stable non-crystalline representation of

GalF℘ over E of distinct Hodge–Tate weights hΣp := (k1,σ, k2,σ)σ∈Σ℘ (where
k1,σ < k2,σ, and we use the convention that the Hodge–Tate weight of the
cyclotomic character is −1), denote by α, qα the eigenvalues of ϕd0 on
Dst(V ) := (Bst ⊗Qp V )GalF℘ . By [33, §4.3], the E-B-pair W (V ) admits a
unique triangulation:

0→ BE(δ1)→W (V )→ BE(δ2)→ 0

where

δ1 = unr(α)
∏
σ∈Sn

σ−k1,σ
∏
σ∈Sc

σ−k2,σ ,

δ2 = unr(qα)
∏
σ∈Sn

σ−k2,σ
∏
σ∈Sc

σ−k1,σ ,

Sn is a subset of Σ℘, and Sc = Σ℘ \ Sn. In fact, Sc = Sc(δ1δ−1
2 ) is the

set of embeddings where V is critical (cf. Definition A.2 below). Since V
is semi-stable non-crystalline, so is W (V ), one can thus associate to V the
Fontaine–Mazur L-invariants LSn ∈ E

|Sn| (see the end of Section 1.3).
For S ⊆ Σ℘, let hS := (k1,σ, k2,σ)σ∈S and put

(3.1) alg(hS) := ⊗σ∈S(Symk2,σ−k1,σ−1E2 ⊗E det−k2,σ+1)σ

∼=
(
⊗σ∈S (Symk2,σ−k1,σ−1E2 ⊗E detk1,σ )σ

)∨
,

which is an irreducible algebraic representation of ResF℘/Qp GL2 with the
action of GL2(F℘) on (·)σ induced by the natural action of GL2(E) via σ.
Put

(3.2) χ(α, hS) := unr(α)
∏
σ∈S

σ−k1,σ ⊗ unr(α)
∏
σ∈S

σ−k2,σ+1,

which is a locally S-analytic character of T (F℘) over E. Consider the locally
S-analytic parabolic induction (cf. [41, §2.3], where B(F℘) denotes the

ANNALES DE L’INSTITUT FOURIER



L-INVARIANTS AND LOCAL-GLOBAL COMPATIBILITY 1481

lower triangular subgroup)

I(α, hS) := (IndGL2(F℘)
B(F℘)

χ(α, hS))S−an,

by [12, Thm. 4.1] (see also [41, §2.3]), we have
(1) socGL2(F℘) I(α, hS) ∼= (unr(α) ◦ det)⊗E alg(hS) =: F (α, hS);
(2) put Σ(α, hS) := I(α, hS)/F (α, hS), then

socGL2(F℘) Σ(α, hS) ∼= (unr(α) ◦ det)⊗E St⊗E alg(α, hS) =: St(α, hS) ,

which is also the maximal locally algebraic subrepresentation of
Σ(α, hS), where St denotes the standard smooth Steinberg repre-
sentation;

(3) let σ ∈ Σ℘,

χ(α, hσ)c := unr(α)σ−k2,σ ⊗ unr(α)σ−k1,σ+1,

and Icσ(α, hσ) := (IndGL2(F℘)
B(F℘)

χ(α, hσ)c)σ−an (which is irreducible
by [12, Thm. 4.1]), then one has a non-split exact sequence

0→ St(α, hσ)→ Σ(α, hσ)→ Icσ(α, hσ)→ 0 .

For L ∈ E and σ ∈ Σ℘, let logσ,L := ψσ,p+Lψur (cf. Section 1.3.1) which
is thus the additive character of F×℘ in E satisfying that logσ,L |O×℘ = σ◦log
and that logσ,L(p) = L.

Let dn := |Sn|, and ψ(LSn) be the following (dn + 1)-dimensional repre-
sentation of T (F℘) over E

(3.3) ψ(LSn)
(
a 0
0 d

)

=


1 logσ1,−Lσ1

(ad−1) logσ2,−Lσ2
(ad−1) · · · logσ|dn|,−Lσdn (ad−1)

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

,

with σi ∈ Sn. One gets thus an exact sequence of locally Sn-analytic rep-
resentations of GL2(F℘):

(3.4) 0 −→ I(α, hSn) −→
(

IndGL2(F℘)
B(F℘)

χ(α, hSn)⊗E ψ(LSn)
)Sn−an

s−−→ I(α, hSn)⊕dn −→ 0.

Put Σ(α, hSn ,LSn) := s−1(F (α, hSn)⊕dn)/F (α, hSn), which is thus an ex-
tension of dn-copies of F (α, hSn) by Σ(α, hSn):
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Σ
(
α, hSn

)

F (α, hSn
)

F (α, hSn
)

...

F (α, hSn
)

.........................
.........................

.........................
.........................

.........................
.........................

.........................
..............−Lσ1

.....................................................................................................................................................................................
−Lσ2

........................................................................................................................................................................................................................

−Lσdn

.

Remark 3.1.
(1) Let L′Sn ∈ E

dn , as in [41, Prop. 4.13], one can show Σ(α, hSn ,L
′
Sn) ∼=

Σ(α, hSn ,LSn) if and only if L′Sn = LSn . In particular, one can re-
cover the data {α, hSn ,LSn} from Σ(α, hSn ,LSn).

(2) Let h′Sn = (k′1,σ, k′2,σ)σ∈Sn ∈ Z2|Sn| with k′1,σ − k1,σ = k′2,σ − k2,σ =
nσ, thus alg(h′Sn) ∼= alg(hSn)⊗E⊗σ∈Snσ◦detnσ . It’s straightforward
to see Σ(α, h′Sn ,LSn) ∼= Σ(α, hSn ,LSn)⊗E (⊗σ∈Snσ ◦ detnσ ).

(3) By replacing the terms logσi,−Lσi (ad
−1) in ψ(LSn) by

logσi,−Lσi (ad
−1) +χi ◦ det with an arbitrary locally σi-analytic (ad-

ditive) character χi of F×℘ in E, one can get a locally Qp-analytic
representation Σ(α, hSn ,LSn)′ in the same way as Σ(α, hSn ,LSn).
By some cohomology arguments in [41, §4.3] (see [24, Lem. 5]), one
can actually prove

(3.5) Σ(α, hSn ,LSn)′ ∼= Σ(α, hSn ,LSn) .

(4) For σ ∈ Sn, denote by ψ(Lσ) the following 2-dimensional represen-
tation of T (F℘):

ψ(Lσ)
(
a 0
0 d

)
=
(

1 logσ,−Lσ (ad−1)
0 1

)
.

One has thus an exact sequence

0 −→ I(α, hSn) −→
(

IndGL2(F℘)
B(F℘)

χ(α, hSn)⊗E ψ(Lσ)
)Sn−an

sσ−−→ I(α, hSn) −→ 0 .

Put Σ(α, hSn ,Lσ) := s−1
σ (F (α, hSn))/F (α, hSn), the following iso-

morphism is straightforward:

Σ(α, hSn ,Lσ1)⊕Σ(α,hSn ) Σ(α, hSn ,Lσ2)⊕Σ(α,hSn )

· · · ⊕Σ(α,hSn ) Σ(α, hSn ,Lσdn ) ∼−−→ Σ(α, hSn ,LSn) .
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Put F (α, hΣ℘) := F (α, hSn) ⊗E alg(hSc), Σ(α, hΣ℘) := Σ(α, hSn) ⊗E
alg(hSc), and Σ(α, hΣ℘ ,LSn) := Σ(α, hSn ,LSn) ⊗E alg(hSc) which is thus
an extension of dn-copies of F (α, hΣ℘) by Σ(α, hSn), and carries the in-
formation of {α, hΣ℘ ,LSn}. For σ ∈ Σ℘, put Icσ(α, hΣ℘) := Icσ(α, hσ) ⊗E
alg(hΣ℘\{σ}).

4. Local-global compatibility

We prove some local-global compatibility results for completed cohomol-
ogy of quaternion Shimura curves in semi-stable non-crystalline case.

4.1. Setup and notations

Let F be a totally real field of degree d over Q, denote by Σ∞ the set
of real embeddings of F . For a finite place l of F , we denote by Fl the
completion of F at l, Ol the ring of integers of Fl with $l a uniformiser of
Ol. Denote by A the ring of adeles of Q and AF the ring of adeles of F .
For a set S of places of Q (resp. of F ), we denote by AS (resp. by ASF ) the
ring of adeles of Q (resp. of F ) outside S, SF the set of places of F above
that in S, and ASF := ASFF .

Let p be a prime number, suppose there exists only one prime ℘ of F
lying above p. Denote by Σ℘ the set of Qp-embeddings of F℘ in Qp; let $
be a uniformizer of O℘, F℘,0 the maximal unramified extension of Qp in
F℘, d0 := [F℘,0 : Qp], e := [F℘ : F℘,0], q := pd0 and υ℘ a p-adic valuation
on Qp normalized by υ℘($) = 1. Let E be a finite extension of Qp big
enough such that E contains all the Qp-embeddings of F in Qp, OE the
ring of integers of E and $E a uniformizer of OE .
Let B be a quaternion algebra of center F with S(B) the set (of even

cardinality) of places of F where B is ramified, suppose |S(B)∩Σ∞| = d−1
and S(B)∩Σ℘ = ∅, i.e. there exists τ∞ ∈ Σ∞ such that B⊗F,τ∞R ∼= M2(R),
B⊗F,σR ∼= H for all σ ∈ Σ∞\{τ∞}, where H denotes the Hamilton algebra,
and B ⊗Q Qp ∼= M2(F℘). We associate to B a reductive algebraic group G
over Q with G(R) := (B⊗QR)× for any Q-algebra R. Set S := ResC/R Gm,
and denote by h the morphism

h : S(R) ∼= C× −→ G(R) ∼= GL2(R)× (H∗)d−1 ,

a+ bi 7→
((

a b

−b a

)
, 1, · · · , 1

)
.
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The space of G(R)-conjugacy classes of h has a structure of complex mani-
fold, and is isomorphic to h± := C \R (i.e. 2 copies of the Poincaré’s upper
half plane). We get a projective system of Riemann surfaces indexed by
open compact subgroups of G(A∞):

MK(C) := G(Q) \ (h± × (G(A∞)/K))

where G(Q) acts on h± via G(Q) ↪→ G(R) and the transition map is given
by

(4.1)
G(Q) \ (h± × (G(A∞)/K1)) −→ G(Q) \ (h± × (G(A∞)/K2)) ,

(x, g) 7→ (x, g) ,

for K1 ⊆ K2. It’s known thatMK(C) has a canonical proper smooth model
over F (via the embedding τ∞), denoted by MK , and these {MK}K form
a projective system of proper smooth algebraic curves over F . Note that
one has a natural isomorphism G(Qp)

∼−−→ GL2(F℘). For an open compact
subgroup K of G(A∞), let Kp := K ∩G(Qp), and Kp := K ∩G(A∞,p), so
one has K = KpKp.
Let K℘,0 := GL2(O℘), and in the following, we fix an open compact

subgroup Kp of G(A∞,p) of the form
∏
v-pKv small enough such that

KpK℘,0 is neat (e.g. see [35, Def. 4.11]). Denote by S(Kp) the set of finite
places l of F such that p - l, that B is split at l, i.e. B ⊗F Fl

∼−−→ M2(Fl),
and that Kp ∩ GL2(Fl) ∼= GL2(Ol). Denote by Hp the commutative OE-
algebra generated by the double coset operators [GL2(Ol)gl GL2(Ol)] for
all gl ∈ GL2(Fl) with det(gl) ∈ Ol and for all l ∈ S(Kp). Set

Tl :=
[

GL2(Ol)
(
$l 0
0 1

)
GL2(Ol)

]
,

Sl :=
[

GL2(Ol)
(
$l 0
0 $l

)
GL2(Ol)

]
,

then Hp is the polynomial algebra over OE generated by {Tl, Sl}l∈S(Kp).
Denote by Z0 the kernel of the norm map N : ResF/Q Gm → Gm which

is a subgroup of Z = ResF/Q Gm. We set Gc := G/Z0.
For a Banach representation V of GL2(F℘) over E (cf. [39, §2]), denote

by VQp−an the E-vector subspace of locally Qp-analytic vectors of V , which
is stable by GL2(F℘) and hence is a locally Qp-analytic representation of
GL2(F℘). If V is moreover admissible, by [40, Thm. 7.1], VQp−an is an
admissible locally Qp-analytic representation of GL2(F℘) and dense in V .
For J ⊆ Σ℘, denote by VJ−an the subrepresentation generated by the locally
J-analytic vectors of VQp−an (cf. [41, §2]), put V∞ := V∅−an.
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Let A be a local artinian E-algebra, for a locally Qp-analytic character
χ = χ1 ⊗ χ2 of T (L) over A, let wt(χ) := (wt(χ)1,σ,wt(χ)2,σ)σ∈Σ℘ :=
(wt(χ1)σ,wt(χ2)σ)σ∈Σ℘ ∈ A2|d| be the weight of χ. For an integer weight
λ ∈ Z2|d|, denote by δλ the algebraic character of T (L) over E with
weight λ.
Let V be an E-vector space equipped with an E-linear action of A (with

A a set of operators), χ a system of eigenvalues of A, denote by V A=χ the
χ-eigenspace, V [A = χ] the generalized χ-eigenspace, V A the vector space
of A-fixed vectors.
Let g, b, b, t denote the Lie algebra (over F℘) of GL2(F℘), B(F℘), B(F℘),

T (F℘) respectively. For a Lie algebra g′ over F℘, put g′Σ℘ := g′ ⊗Qp E
∼=

⊕σ∈Σ℘g
′ ⊗F℘,σ E =: ⊕σ∈Σ℘g

′
σ; let J ⊆ Σ℘, put g′J := ⊕σ∈Jg′σ.

4.2. Completed cohomology and eigenvarieties

We recall the construction of eigenvarieties from the completed cohomol-
ogy of quaternion Shimura curves and survey some properties.

4.2.1. Completed cohomology of quaternion Shimura curves

Let W be a finite dimensional algebraic representation of Gc over E.
As in [18, §2.1], one can associate to W a local system VW of E-vector
spaces overMK . LetW0 be an OE-lattice ofW , and denote by SW0 the set
(ordered by inclusions) of open compact subgroups of G(Qp) ∼= GL2(F℘)
which stabilize W0. For any Kp ∈ SW0 , one can associate to W0 (resp. to
W0/$

s
E for s ∈ Z>1) a local system VW0 (resp. VW0/$sE

) of OE-modules
(resp. of OE/$s

E-modules) over MKpKp . Following Emerton ([27, §2.1]),
we put

Hi
ét(Kp,W0) := lim−→

Kp∈SW0

Hi
ét(MKpKp,Q,VW0)

∼= lim−→
Kp∈SW0

lim←−
s

Hi
ét(MKpKp,Q,VW0/$sE

) ;

H̃i
ét(Kp,W0) := lim←−

s

lim−→
Kp∈SW0

Hi
ét(MKpKp,Q,VW0/$sE

) ;

Hi
ét(Kp,W0)E := Hi

ét(Kp,W0)⊗OE E ;

H̃i
ét(Kp,W0)E := H̃i

ét(Kp,W0)⊗OE E .
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All these groups (OE-modules or E-vector spaces) are equipped with a
natural topology induced from the discrete topology on the finite group
Hi

ét(MKpKp,Q,VW0/$sE
), and equipped with a natural continuous action of

Hp × GalF and of Kp ∈ SW0 . Moreover, for any l ∈ S(Kp), the action of
GalFl

(induced by that of GalF ) is unramified and satisfies the Eichler–
Shimura relation:

Frob−2
l −Tl Frob−1

l +`flSl = 0
where Frobl denotes the arithmetic Frobenius, ` the prime number lying
below l, fl the degree of the maximal unramified extension in Fl over Q`
(thus `fl = |Ol/$l|). Note that H̃i

ét(Kp,W0)E is an E-Banach space with
the norm defined by the OE-lattice H̃i

ét(Kp,W0).
Consider the ordered set (by inclusion) {W0} of OE-lattices of W . Fol-

lowing [27, Def. 2.2.9], we put

Hi
ét(Kp,W ) := lim−→

W0

Hi
ét(Kp,W0)E ,

H̃i
ét(Kp,W ) := lim−→

W0

H̃i
ét(Kp,W0)E ,

where all the transition maps are topological isomorphisms (cf. [27,
Lem. 2.2.8]). These E-vector spaces are moreover equipped with a natural
continuous action of GL2(F℘) (cf. [27, Lem. 2.2.10]).

Theorem 4.1 ([27, Thm. 2.2.11(i), Thm. 2.2.17]).
(1) The E-Banach space H̃i

ét(Kp,W ) is an admissible Banach repre-
sentation of GL2(F℘). If W is the trivial representation, the repre-
sentation H̃i

ét(Kp,W ) is unitary.
(2) One has a natural isomorphism of Banach representations of

GL2(F℘) invariant under the action of Hp ×Gal(F/F ):

H̃i
ét(Kp,W ) ∼−−→ H̃i

ét(Kp, E)⊗E W.

(3) One has a natural GL2(F℘)×Hp ×GalF -invariant map

Hi
ét(Kp,W ) −→ H̃i

ét(Kp,W ) .

Let ρ be a 2-dimensional continuous representation of GalF over E such
that ρ is unramified at all l ∈ S(Kp) and that the reduction ρ over kE (up
to semi-simplification a priori) is absolutely irreducible. To ρ, one can as-
sociate a maximal ideal m(ρ) of Hp as the kernel of the following morphism

Hp −→ kE := OE/$E ,

Tl 7→ tr(Frob−1
l ), Sl 7→ `−fl det(Frob−1

l ), ∀ l ∈ S(Kp) .
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For an Hp-module M , denote by Mρ the localisation of M at m(ρ).
Put Z1 := 1 + 2$O℘ ⊆ Z(GL2(F℘)) (where the latter one denotes the

center of GL2(F℘)). Put

U1 := {g℘ ∈ 1 + 2$M2(O℘) | det(g℘) = 1},

and H℘ := Z1U1 which is a pro-p open compact subgroup of GL2(O℘).

Proposition 4.2. — Let W be an irreducible algebraic representation
of Gc, and suppose that H̃1

ét(Kp,W )ρ 6= 0.
(1) The natural morphism

H1
ét(Kp,W )ρ −→ H̃1

ét(Kp,W )ρ,∞
is an isomorphism, where ∞ denotes the smooth vectors for the
action of GL2(F℘).

(2) Let ψ be a continuous character of Z1 such that ψ|(Z(Q)∩KpH℘)p = 1,
then one has an isomorphism of H℘-representations

H̃1
ét(Kp,W )Z1=ψ

ρ

∼−−→ C(U1, E)⊕r

where Z1 acts on C(U1, E)⊕r by the character ψ, and U1 by the
right regular action.

Proof. — Part (1) follows from [35, Prop. 5.2]. Part (2) follows by the
same arguments as in [35, §5] (see also [24, Cor. 1]). �

Remark 4.3. — One can check (Z(Q) ∩KpH℘)p ⊆ Z0(Qp) (cf. Sec-
tion 4.1), in particular, any continuous character of Z1 factoring through
Z1/(Z1 ∩ Z0(Qp)) satisfies the assumption in Proposition 4.2(2).

4.2.2. Eigenvarieties

Let J ⊆ Σ℘, kσ ∈ 2Z>1 for all σ ∈ J and w ∈ 2Z, we set

W (kJ , w) := ⊗σ∈J
(

Symkσ−2E2⊗E det
w−kσ+2

2

)σ
⊗E

(
⊗σ∈Σ℘\J (det

w
2 )σ
)
,

which is an irreducible algebraic representation of G over E with the action
of GL2(F℘) on (∗)σ induced from the standard action of GL2(E) via σ :
GL2(F℘) ↪→ GL2(E). Note the central character of W (kJ , w) is given by
N w (where N denotes the norm map), thus W (kJ , w) can be viewed
as an algebraic representation of Gc. One has W (kJ , w′) = W (kJ , w) ⊗E
W (2J , w′−w) (where w′ ∈ 2Z), andW (kJ , w) = W (kJ′ , w)⊗EW (kJ\J′ , 0)
for J ′ ⊆ J .

Let ρ be a 2-dimensional continuous representation of GalF over E, ab-
solutely irreducible modulo $E , such that ρ is unramified at all l ∈ S(Kp)
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and that H̃1
ét(Kp, E)ρ 6= 0. By Theorem 4.1 (2), H̃1

ét(Kp,W (kJ , w)) ∼=
H̃1

ét(Kp, E) ⊗E W (kJ , w), thus H̃1
ét(Kp,W (kJ , w))ρ 6= 0 for J ⊆ Σ℘. Put

Π := H̃1
ét(Kp, E)ρ,Qp−an, and for J ⊆ Σ℘, put

Π(kJ , w) := H̃1
ét(Kp,W (kJ , w))ρ,Σ℘\J−an ⊗E W (kJ , w)∨,

which is in fact a closed subrepresentation of Π (cf. Corollary B.2 below).
Indeed, we have

H̃1
ét(Kp,W (kJ , w))ρ,Σ℘\J−an ⊗E W (kJ , w)∨

∼−−→ (Π⊗E W (kJ , w))Σ℘\J−an ⊗E W (kJ , w)∨

∼−−→
(

Π⊗E ⊗σ∈J(Symkσ−2E2 ⊗E det
w−kσ+2

2 )σ
)

Σ℘\J−an

⊗E (⊗σ∈Σ℘\J(det
w
2 )σ)⊗E W (kJ , w)∨

∼−−→
(

Π⊗E ⊗σ∈J(Symkσ−2E2 ⊗E det
w−kσ+2

2 )σ
)

Σ℘\J−an

⊗E (⊗σ∈J Symkσ−2E2 ⊗E det
w−kσ+2

2 )∨ ↪−→ Π ,

where the first isomorphism is from Theorem 4.1 (2), and the last injection
follows from Proposition B.1 below. Similarly, for J ′ ⊇ J , we have a natural
closed embedding invariant under the action of GL2(F℘)×Hp:

(4.2) Π(kJ′ , w) ↪−→ Π(kJ , w) .

Note Π(k∅, w) ∼= Π, and by Proposition 4.2 (1),

Π(kΣ℘ , w) ∼= H1
ét(Kp,W (kΣp , w))ρ ⊗E W (kΣp , w)∨.

We have the following easy lemma.

Lemma 4.4. — Keep the above notation, and let V be a locally Σ℘ \J-
analytic representation of GL2(F℘), then

(4.3) HomGL2(F℘)

(
V, H̃1

ét(Kp,W (kJ , w))ρ,Σ℘\J−an

)
∼−−→ HomGL2(F℘)(V ⊗E W (kJ , w)∨,Π(kJ , w))

∼−−→ HomGL2(F℘)(V ⊗E W (kJ , w)∨,Π) ,

where the first map is given by f 7→ f ⊗ id, and the second is induced by
the injection Π(kJ , w) ↪→ Π.

Proof. — Given a morphism g : V ⊗E W (kJ , w)∨ → Π, consider the
composition

V → V ⊗E W (kJ , w)∨ ⊗E W (kJ , w) g⊗id−−−→ H̃1
ét(Kp,W (kJ , w))ρ,Qp−an
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whose image is contained in H̃1
ét(Kp,W (kJ , w))ρ,Σ℘\J−an since V is locally

Σ℘ \ J-anlaytic, and it’s straightforward to check this gives an inverse (up
to non-zero scalars) of the composition (4.3). The lemma follows. �

Let J ( Σ℘, kJ ∈ 2Z|J|>1 and w ∈ 2Z, consider

(4.4) Π(kJ , w)Z1=N−w ∼= H̃1(Kp,W (kJ , w))Z1
ρ,Σ℘\J−an ⊗E W (kJ , w)∨,

which is an admissible locally Qp-analytic representation of GL2(F℘) over
E, equipped with a continuous action of Hp commuting with GL2(F℘). Ap-
plying Jacquet–Emerton functor (for the upper triangular subgroup B(F℘),
cf. [26]), we get an essentially admissible locally Qp-analytic representation
JB(Π(kJ , w)Z1=N−w) of T (F℘) over E, whose strong dual corresponds to
a coherent sheafM0(kJ , w) over T̂ (which denotes the rigid space over E
parametrizing continuous characters of T (F℘)) such that

Γ(T̂ ,M0(kJ , w)) ∼−−→ JB(Π(kJ , w)Z1=N−w)∨

as coadmissible modules over the Fréchet-Stein algebra O(T̂ ). By funto-
riality, M0(kJ , w) is equipped with an O(T̂ )-linear action of Hp. Follow-
ing Emerton [27, §2.3], we can construct an eigenvariety from the triplet{
M0(kJ , w), T̂ ,Hp

}
:

Theorem 4.5. — There exists a rigid analytic space E(kJ , w)ρ over E
together with a finite morphism of rigid spaces i : E(kJ , w)ρ → T̂ and a
morphism of E-algebras with dense image

(4.5) Hp ⊗OE O(T̂ ) −→ O(E(kJ , w)ρ)

such that
(1) a point z of E(kJ , w)ρ is uniquely determined by its image χ in

T̂ (E) and the induced morphism λ : Hp −→ E, called a system of
eigenvalues of Hp; hence z would be denoted by (χ, λ));

(2) for a finite extension L of E, (χ, λ) ∈ E(kJ , w)ρ(L) if and only if
the corresponding eigenspace

JB(Π(kJ , w)Z1=N−w ⊗E L)T (F℘)=χ,Hp=λ

is non-zero;
(3) there exists a coherent sheaf, denoted byM(kJ , w), over E(kJ , w)ρ,

such that i∗M(kJ , w) ∼= M0(kJ , w) and that for an L-point z =
(χ, λ), the fiberM(kJ , w)

∣∣
z
is naturally dual to the (finite dimen-

sional) L-vector space

JB(Π(kJ , w)Z1=N−w ⊗E L)T (F℘)=χ,Hp=λ .
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By (4.4), one has an isomorphism

(4.6) JB(Π(kJ , w)Z1=N−w)
∼= JB(H̃1

ét(Kp,W (kJ , w))Z1
Σ℘\J−an)⊗E χ(kJ , w) ,

where χ(kJ , w) := (
∏
σ∈J(σ

kσ−2
2 ⊗ σ

2−kσ
2 ))(

∏
σ∈Σ℘(σ−w/2 ⊗ σ−w/2)) is a

character of T (F℘) over E. Thus, by Theorem 4.5(2), if (χ, λ) ∈ E(kJ , w)ρ,
then wt(χ)1,σ + wt(χ)2,σ = −w for all σ ∈ Σ℘, and wt(χ)1,σ − wt(χ)2,σ =
kσ − 2 for all σ ∈ J .
Denote by T̂Σ℘\J the rigid space over E parametrizing the locally Σ℘ \J-

analytic characters of T (F℘), and denote by T̂ (kJ , w) the image of the
following closed embedding

T̂Σ℘\J ↪−→ T̂ , χ 7→ χ(kJ , w)χ ,

which parametrizes locally Qp-analytic characters of T (F℘) with fixed
weights (kσ−w−2

2 , 2−kσ−w
2 ) for σ ∈ J . By the isomorphism (4.6), it’s easy to

see the action of O(T̂ ) onM0(kJ , w) factors through O(T̂ (kJ , w)), conse-
quently, the morphism E(kJ , w)ρ → T̂ factors through T̂ (kJ , w). Denote by
T̂ (kJ , w)0 the closed subspace of T̂ (kJ , w) consisting of the points χ with
χ|Z1 = N−w, thus the morphism E(kJ , w)ρ → T̂ (kJ , w) factors through

T̂ (kJ , w)0. Denote by Z ′1 :=
{(

a 0
0 a−1

) ∣∣∣∣ a ∈ 1 + 2$O℘
}
, and W1

the rigid space over E parametrizing continuous characters of 1 + 2$O℘
(thus of Z ′1), and W1(kJ) the closed subspace of W1 of characters χ with
wt(χ)σ = kσ − 2 for all σ ∈ J . One has thus a natural projection

j : T̂ (kJ , w)0 −�W1(kJ)×Gm, χ 7→ (χ|Z′1 , χ(z℘)) ,

where z℘ :=
(
$ 0
0 1

)
. By Proposition 4.2(2) and (the proof of [26,

Prop. 4.2.36]), JB(Π(kJ , w)Z1=N−w)∨ is a coadmissible module over
O(W1(kJ) × Gm), in other words, j∗M0(kJ , w) is a coherent sheaf over
W1(kJ)×Gm.

Proposition 4.6.
(1) The support Z(kJ , w) of j∗M0(kJ , w) on W1(kJ)×Gm is a Fred-

holm hypersurface in W1(kJ)×Gm, and there exists an admissible
covering {Ui} of Z(kJ , w) by affinoids Ui such that the natural
morphism Ui → W1 induces a finite surjective map from Ui to an
affinoid open Wi of W1(kJ), and that Ui is a connected component
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of the preimage ofWi. Moreover, Γ(Ui, j∗M0(kJ , w)) is a finite pro-
jective O(Wi)-module.

(2) Denote by g the natural morphism E(kJ , w)ρ → Z(kJ , w), and let
{Ui} as in (1), then g−1(Ui) is an affinoid open in E(kJ , w)ρ, and
we have Γ(g−1(Ui),M(kJ , w)) ∼= Γ(j−1(Ui),M0(kJ , w)) ∼= Mi. Let
Bi be the affinoid algebra with SpmBi ∼= g−1(Ui), then Bi is the
O(Wi)-subalgebra of EndO(Wi)(Mi) generated by the O(Wi)-linear
operators in T (F℘)×Hp.

Proof. — As discussed in the proof of [26, Prop. 4.2.36] (which can
apply by Proposition 4.2(2)) (see also [16, Lem. 3.10], [23, §5.4] and the
discussion before [24, Prop. 5]), one can reconstruct E(kJ , w)ρ by the
method of Coleman–Mazur–Buzzard, and then the proposition follows
from [17, §4, §5]. �

Denote by κ the composition

κ : E(kJ , w)ρ −→ Z(kJ , w) −→W1(kJ) ,

which also equals the composition E(kJ , w)ρ → T̂ (kJ , w)0 →W1(kJ).

4.2.3. Classicality

Let z = (χ, λ) be a point of E(kJ , w)ρ, z is called classical if there exist
kσ ∈ 2Z>1 for all σ ∈ Σ℘ \ J such that

(JB(Π(kΣ℘ , w))⊗E E)H
p=λ,T (F℘)=χ 6= 0 .

Note Π(kΣ℘ , w) is a locally algebraic subrepresentation of Π(kJ , w) by (4.2).
In fact, by the description of locally algebraic vectors of Π ([35, Thm. 5.3]),
one sees z is classical (for z ∈ E(kJ , w)ρ) if and only if

(JB(Πlalg)⊗E E)H
p=λ,T (F℘)=χ 6= 0 ,

where “lalg” denotes the locally algebraic vectors.
For a locally analytic character χ of T (F℘) over E, put

C(χ) := {σ ∈ Σ℘ | wt(χ)1,σ − wt(χ)2,σ ∈ Z>0} ;

for S ⊆ C(χ), put

χcS := χ
∏
σ∈S

(
σwt(χ)2,σ−wt(χ)1,σ−1 ⊗ σwt(χ)1,σ−wt(χ)2,σ+1

)
.

Let
I(χ) := soc

(
IndGL2(F℘)

B(F℘)
χ
)Qp−an

.

Note I(χ) is locally algebraic if and only if χ is locally algebraic and dom-
inant, and we refer to [41, §2.3] for more description of I(χ).
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Definition 4.7. — Let z = (χ, λ) be a point of E(kJ , w)ρ, for S ⊆
C(χ) ∩ J , we say z admits an S-companion point if zcS := (χcS , λ) is also a
point of E(kJ , w)ρ.

Denote by δB = unr(q−1)⊗ unr(q) the modulus character of B(F℘).

Lemma 4.8.
(1) Let z = (χ, λ) be a point of E(kJ , w)ρ with χ locally algebraic

and dominant, suppose for any ∅ 6= S ⊆ Σ℘ \ J , I(χcSδ
−1
B ) is not

a subrepresentation of Π(kJ , w)Hp=λ, then the point z is classical.
We call the points satisfying this assumption Σ℘ \ J-very classical.

(2) Let z = (χ, λ) be a point of E(kJ , w)ρ with χ locally algebraic and
dominant, then z is Σ℘ \ J-very classical if and only if z does not
have S-companion point for all ∅ 6= S ⊆ Σ℘ \ J .

(3) Let z be a Σ℘ \J-very classical point of E(kJ , w)ρ, then the natural
injection

(4.7) JB(Π(kJ , w)lalg)T (O℘)=χ[Hp = λ, T (F℘) = χ]

↪−→ JB(Π(kJ , w))T (O℘)=χ[Hp = λ, T (F℘) = χ]

is an isomorphism (where T (O℘) = O×℘ ×O×℘ ↪→ T (F℘)).

Proof. — The lemma follows from the same arguments in [23, §6.2.2],
while we give an alternative proof using Breuil’s adjunction formula [14,
Thm. 4.3].

Let us first prove (1). By [14, Thm. 4.3], a non-zero vector v ∈
JB(Π(kJ , w))T (F℘)=χ,Hp=λ would induce a non-zero morphism of locally
Qp-analytic representations of GL2(F℘)

(4.8) FGL2
B

((U(gΣ℘)⊗U(bΣ℘ ) (−wt(χ)))∨, ψzδ−1
B ) −→ Π(kJ , w)H

p=λ

where “∨” denotes the dual in the BGG category ObΣ℘ , and ψz := χδ−1
wt(χ)

is a smooth character of T (F℘). By the structure of the Verma module,
[36, Thm. (iv)] and [41, §2.3], one sees that any non locally algebraic irre-
ducible constituent of the left object in (4.8) has the form I(χcSδ

−1
B ) with

∅ 6= S ⊆ Σ℘. Note for any v ∈ Π(kJ , w)Hp=λ, the U(gJ)-submodule gen-
erated by v is finite dimensional (and we call such vectors U(gJ)-finite).
However, if S is not contained in Σ℘ \ J , I(χcSδ

−1
B ) does not have non-zero

U(gJ)-finite vectors, and thus I(χcSδ
−1
B ) can not be a subrepresentation of

Π(kJ , w)Hp=λ. This, together with the assumption, implies that I(χcSδ
−1
B )

can not be a subrepresentation of Π(kJ , w)Hp=λ for all ∅ 6= S ⊆ Σ℘.
Thus the morphism (4.8) factors through the locally algebraic vectors, so
v ∈ JB(Π(kJ , w)lalg)T (F℘)=χ,Hp=λ, and z is classical.
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Let us then prove (2). If z is not Σ℘ \ J-very classical, then there ex-
ists ∅ 6= S ⊆ Σ℘ \ J , such that I(χcSδ

−1
B ) ↪→ Π(kJ , w)Hp=λ. By apply-

ing the Jacquet–Emerton functor, one gets χcS ↪→ JB(Π(kJ , w))Hp=λ (e.g.
by [14, Thm. 4.3]), and thus zcS ∈ E(kJ , w)ρ. Now suppose there exists ∅ 6=
S ⊆ Σ℘ \ J such that zcS ∈ E(kJ , w)ρ, by Breuil’s adjunction formula [14,
Thm. 4.3] applied to a non-zero vector in JB(Π(kJ , w))T (F℘)=χcS ,H

p=λ, one
gets a non-zero morphism

(4.9) FGL2
B

((U(gΣ℘)⊗U(bΣ℘ ) (−wt(χcS)))∨, ψzδ−1
B ) −→ Π(kJ , w)H

p=λ .

Any irreducible constituent of the left object has the form I(χcS′δ
−1
B ) with

S ⊆ S′ ⊆ Σ℘. On the other hand, by the same argument as in the proof
of (1), one sees if S′ is not contained in Σ℘ \ J , I(χcS′δ

−1
B ) can not be a

subrepresentation of Π(kJ , w). So there exists S′ ⊆ Σ℘ \ J such that (4.9)
induces an injection I(χcS′δ

−1
B ) ↪→ Π(kJ , w)Hp=λ, thus z is not Σ℘ \ J-very

classical.
(3) follows by applying Breuil’s adjunction formula [14, Thm. 4.3] to the

T (F℘)-representation on the right side of (4.7), and by the same arguments
as in the proof of (1). �

Since Π(kJ , w) is contained in the unitary Banach GL2(F℘)-representa-
tion H̃1(Kp, E), the following proposition follows easily from [12, Prop. 5.1]:

Proposition 4.9. — Let z = (χ, λ) be point in E(kJ , w)ρ with χ locally
algebraic and dominant, and suppose

(4.10) υ℘(qχ1($)) < inf
σ∈Σ℘\J

{wt(χ)1,σ − wt(χ)2,σ + 1}

then the point z is Σ℘ \ J-very classical.

A point z = (χ, λ) of E(kJ , w)ρ is called spherical if χ is the product of
an unramified character with an algebraic character (i.e. wt(χ) ∈ Z2|d| and
χδ−1

wt(χ) is unramified). By the standard arguments as in [19, §6.4.5] (see
also [19, Prop. 6.2.7]), one can deduce from Proposition 4.9 (and Proposi-
tion 4.6):

Theorem 4.10.
(1) The set of spherical points satisfying the assumption in Proposi-

tion 4.9 are Zariski dense in E(kJ , w)ρ and accumulates over spher-
ical points.

(2) The set of points satisfying the assumption in Proposition 4.9 ac-
cumulates over points with integer weights.
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By Chenevier’s method [21, §4.4], one can prove

Proposition 4.11. — Let z ∈ E(kJ , w)ρ(E) be a Σ℘ \ J-very classical
point, then the weight map κ is étale at z; moreover, there exists an affinoid
neighborhood U of z with κ(U) affinoid open in W(kJ) such that O(U) ∼=
O(κ(U)).

Proof. — Indeed, by Proposition 4.6, Theorem 4.10, one can reduce to
a similar situation as in the beginning of the proof of [21, Thm. 4.8]. Since
z is Σ℘ \ J-very classical, one has the bijection (4.7) (which is an analogue
of [21, (4.20)], see also [24, Lem. 4]). The proposition then follows from
the multiplicity one result for automorphic representations of G(A), by
the same argument as in the proof of [21, Thm. 4.8] (see also [24, §4.4.3]
especially the arguments after [24, Lem. 4]). �

4.2.4. Families of Galois representations

By Carayol’s results [18], the theory of pseudo-characters and the density
of classical points, we have

Theorem 4.12. — For a point z = (χ, λ) of E(kJ , w)ρ, there exists
a unique continuous irreducible representation ρz : GalF → GL2(k(z))
which is unramified at places l /∈ S(Kp) satisfying ρz(Frob−2

l ) −
λ(Tl)ρz(Frob−1

l ) + λ(Sl) = 0, where k(z) denotes the residue field at z.

By the fact that ρz|GalF℘ is de Rham for classical points z ∈ E(kJ , w)ρ
(and of Hodge–Tate weights (w−kσ+2

2 , w+kσ
2 ) for σ ∈ J), Shah’s results [42]

and the density of classical points, one has

Theorem 4.13. — Let z ∈ E(kJ , w)ρ(E), the restriction ρz|GalF℘ is
J-de Rham of Hodge–Tate weights (w−kσ+2

2 , w+kσ
2 ) for σ ∈ J .

Proof. — The theorem follows from the same arguments of the proof
of [24, Thm. 6] (see also [23, Prop. 6.2.40]) by replacing the global triangu-
lation results by Shah’s interpolation result [42, Thm. 2.19] in the last step
(note by [2, Lem. 7.2.11], E(kJ , w)ρ is nested since it’s finite over T̂ ). �

Proposition 4.14. — For z ∈ E(kJ , w)ρ(E), there exists an open affi-
noid U of E(kJ , w)ρ,red and a continuous representation ρU : GalF →
GL2(O(U)) such that the specialization of ρU at any point z′ ∈ U(E)
equals ρz′ . Moreover, for σ ∈ J , DdR(ρU )σ := (BdR,σ⊗̂EρU )GalF℘ is a
locally free O(U)-module of rank 2.
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Proof. — The first part follows from [3, Lem. 5.5]; the second is hence
from Theorem 4.13 and [42, Thm. 2.19] applied to ρU . �

By [38], ρz,℘ := ρz|GalF℘ is semi-stable (thus trianguline) for any spheri-
cal classical point z of E(k∅, w)ρ. As in [24, Thm. 6], by global triangulation
theory [31] [32] applied to E(k∅, w)ρ (note E(kJ , w)ρ is a closed rigid sub-
space of E(k∅, w)ρ), we get

Theorem 4.15. — For any point z = (χ = χ1 ⊗ χ2, λ) of E(kJ , w)ρ,
ρz,℘ is trianguline with a triangulation given by

0→ Rk(z)(δ1)→ Drig(ρz,℘)→ Rk(z)(δ2)→ 0

with {
δ1 = unr(q)χ1

∏
σ∈Σz σ

wt(χ)2,σ−wt(χ)1,σ−1,

δ2,z = χ2
∏
σ∈Σ℘ σ

−1∏
σ∈Σz σ

wt(χ)1,σ−wt(χ)2,σ+1,

where Σz ⊆ C(χ), Rk(z) denotes the Robba ring B†rig,F℘ ⊗Qp k(z), and
Drig(ρz,℘) := (B†rig⊗Qpρz,℘)GalF℘ is the (ϕ,Γ)-module (of rank 2) overRk(z)

associated to ρz,℘ (we refer to [5] for B†rig,F℘ , B
†
rig and (ϕ,Γ)-modules).

Corollary 4.16. — Let z = (χ, λ) ∈ E(kJ , w)ρ(E) and suppose

(4.11) unr(q)χ1χ
−1
2 6=

∏
σ∈Σ℘

σnσ for all (nσ)σ∈Σ℘ ∈ Zd,

for S ⊆ Σ℘ \ J , if z admits an S-companion point then S ⊆ Σz.

Proof. — Applying Proposition 4.15 to the point zcS , the corollary then
follows from [33, Thm. 3.7]. �

One can moreover deduce from the proof of [31, Thm. 6.3.9] (see also [23,
Prop. 6.2.49]):

Proposition 4.17. — Let z be a classical point of E(kJ , w)ρ, U be an
affinoid neighborhood of z, suppose any point of U satisfies (4.11), then
for any σ ∈ Σ℘, ZU,σ := {z′ ∈ U(E) | σ ∈ Σz′ is a Zariski-closed subset of
U(E).

Definition 4.18. — Let z = (χ, λ) be a point of E(kJ , w)ρ, for S ⊆ Σ℘,
we say z is non-S-critical if (4.11) is satisfied and Σz ∩ S = ∅.

Corollary 4.19. — Let z = (χ, λ) ∈ E(kJ , w)ρ(E) with χ locally al-
gebraic and C(χ) = Σ℘, if z is non-Σ℘ \ J-critical, then z is Σ℘ \ J-very
classical.
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Proof. — By Lemma 4.8(2), it’s sufficient to show z does not have
S-companion point for ∅ 6= S ⊆ Σ℘ \ J . But this follows from Corol-
lary 4.16. �

Theorem 4.20. — Let z = (χ, λ) ∈ E(kJ , w)ρ(E) be a non-Σ℘ \ J-
critical classical point, then the weight map κ is étale at z. Moreover, there
exists an affinoid neighborhood U of z such that W = κ(U) is an affinoid
open in W(kJ) and O(U) ∼= O(W ).

Proof. — The theorem follows from Proposition 4.11 combined with
Corollary 4.19. �

The following proposition, which follows from the same argument as
in [24, Cor. 5], would be useful to apply the adjunction formula in families.

Proposition 4.21. — Let z = (χ, λ) ∈ E(kJ , w)ρ be a non-Σ℘ \ J-
critical classical point, and suppose unr(qe)ψχ,1(p)ψ−1

χ,2(p) 6= 1 where ψχ :=
χδ−1

wt(χ), then there exists an admissible open U of z in E(kJ , w)ρ such that
any point of U is non-Σ℘ \ J-critical.

4.3. Local-global compatibility

Let ρ : GalF → GL2(E) be a continuous representation such that
(1) ρ℘ := ρ|GalF℘ is semi-stable non-crystalline of Hodge–Tate weights

hΣ℘ = (w−kσ+2
2 , w+kσ

2 )σ∈Σ℘ for kσ ∈ 2Z>1 and w ∈ 2Z with {α, qα}
the eigenvalues of ϕd0 on Dst(ρ℘), Sc := Sc(ρ℘) (cf. the discussion
before Corollary 2.3) the set of embeddings where ρ℘ is critical,
Sn := Sn(ρ℘) = Σ℘ \ Sc and LSn ∈ E

|Sn| the associated Fontaine–
Mazur L-invariants;

(2) HomGalF (ρ,H1
ét(Kp,W (kΣp , w))) 6= 0 (in particular, ρ is associated

to certain Hilbert eigenforms);
(3) ρ is absolutely irreducible modulo $E .

Note that, by the condition (2), ρ is unramified for places in S(Kp). And
by the Eichler–Shimura relations, one can associate to ρ a system of eigen-
values λρ : Hp → E. Put π̂(ρ) := HomGalF (ρ, H̃1

ét(Kp, E)), which is an
admissible unitary Banach representation of GL2(F℘). One has

π̂(ρ) = HomGalF (ρ,Π) = HomGalF (ρ,ΠH
p=λρ) .

The injection H1
ét(Kp,W (kΣ℘ , w))ρ ↪→ H̃1

ét(Kp,W (kΣp , w))ρ,Qp−an induces
an injection

H1
ét(Kp,W (kΣ℘ , w))ρ ⊗E W (kΣ℘ , w)∨ ↪−→ H̃1(Kp, E)Qp−an ,
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thus the condition (2) implies in particular π̂(ρ) 6= 0.
By local-global compatibility in classical local Langlands correspondence

(for ` = p, cf. [38]) and the isomorphism in Proposition 4.2(1), there exists
an isomorphism of locally algebraic representations of GL2(F℘):

(4.12) St(α, hΣ℘)⊕r ∼−−→ π̂(ρ)lalg ,

with some r ∈ Z>1 (note that alg(hΣ℘) ∼= W (kΣ℘ , w)∨ and thus we have
St(α, hΣ℘) ∼= St⊗E unr(α) ◦ det⊗EW (kΣ℘ , w)∨). The main result of this
section is (see Section 3 for notations)

Theorem 4.22.
(1) Let τ ∈ Σ℘, then τ ∈ Sc if and only Icτ (α, hΣ℘) is a subrepresenta-

tion of π̂(ρ).
(2) The natural restriction map

(4.13) HomGL2(F℘)(Σ(α, hΣ℘ ,LSn), π̂(ρ)Qp−an)
−→ HomGL2(F℘)(St(α, hΣ℘), π̂(ρ)Qp−an)

is bijective. In particular, Σ(α, hΣ℘ ,LSn) is a subrepresentation of
π̂(ρ)Qp−an.

By the same argument as in the proof of [24, Cor. 6], we have

Corollary 4.23. — Let L′Sn ∈ E
d, then Σ(α, hΣ℘ ,L

′
Sn

) is a subrepre-
sentation of π̂(ρ) if and only if L′Sn = LSn .

Combining Corollary 4.23 and Theorem 4.22(1), we see

Corollary 4.24. — The local Galois representation ρ℘ can be deter-
mined by π̂(ρ).

Proof of Theorem 4.22. — First note that we only need (and do) prove
the same result with π̂(ρ) replaced by ΠHp=λρ . For S ⊆ Σ℘, σ ∈ Σ℘, put
Sσ := S\{σ}. Note the injection St(α, hΣ℘) ↪→ Π(k∅, w)Hp=λ gives a spher-
ical classical point zρ = (χρ, λρ) ∈ E(k∅, w)ρ(E) where χρ := χ(α, hΣ℘)δB ;
moreover, for any S ⊆ Σ℘, zρ ∈ E(kJ , w)ρ(E).

Let us first prove (1). Let τ ∈ Σ℘, and consider Π(kΣτ℘ , w) and E(kΣτ℘ , w)ρ.
If Icτ (α, hΣ℘) ↪→ Π(kΣτ℘ , w)Hp=λρ (which is equivalent to Icτ (α, hΣ℘) ↪→
ΠHp=λρ , since any latter morphism factors through Π(kΣτ℘ , w) by Lem-
ma 4.4) then (zρ)cτ = ((χρ)cτ , λρ) ∈ E(kΣτ℘ , w)ρ (see the proof of Lem-
ma 4.8(2)). However, if (zρ)cτ ∈ E(kΣτ℘ , w)ρ, by Corollary 4.16, τ ∈ Σzρ =
Sc, the “if” part follows.
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Now suppose τ ∈ Sc = Σzρ , we first use Bergdall’s method [4] to show
the weight map κ : E(kΣτ℘ , w)→W1(kΣτ℘)ρ is not étale at zρ:
We only need to consider the case where E(kΣτ℘ , w)ρ is reduced at zρ since

otherwise, κ is not étale at zρ (in fact, by the same argument as in [20, §3.8],
one can probably prove that E(kΣτ℘ , w)ρ is reduced at zρ). Take U to be
an irreducible affinoid neighborhood of zρ in E(k∅, w)ρ small enough such
that Proposition 4.14 holds. The composition O(Ured) → E(kΣτ℘ , w)ρ → T̂

gives a continuous character δ̃ : T (L) → O(Ured)× (with δ̃|Z1 = N−w).
By [32, Prop. 4.3.5], there exists (shrinking U if necessary) an injection of
(ϕ,Γ)-modules over RO(Ured) := RF℘⊗̂QpO(Ured):

(4.14) RO(Ured)(δ̃1 unr(q)) ↪−→ Drig(ρUred) ;

moreover, the specialisation of the above morphism to any point in U is still
injective. Let t : SpecE[ε]/ε2 → Ured be an element in the tangent space
of Ured at zρ, one deduces from (4.14) an injection of (ϕ,Γ)-modules over
RE[ε]/ε2 (where the injectivity follows from the fact that (4.14) specializing
to zρ is still injective)

(4.15) RE[ε]/ε2(t∗δ̃1 unr(q)) ↪−→ Drig(t∗ρUred) .

Note t∗δ̃ ≡ χρ (mod ε) and Drig(t∗ρUred) is an extension of Drig(ρ) by
Drig(ρ). Since δ̃|Z1 = N−w, wt(t∗δ̃) = (kσ−w−2

2 − aσε, 2−kσ−w
2 + aσε)σ∈Σ℘

for (aσ)σ∈Σ℘ ∈ Ed and thus the Sen weights of Drig(t∗ρUred) are given by
(−kσ−w2 + aσε,

kσ−w−2
2 − aσε)σ∈Σ℘ . The map (4.15) induces an injection

RE[ε]/ε2 ↪−→ Drig(t∗ρUred)⊗E[ε]/ε2 RE[ε]/ε2((t∗δ̃1 unr(q))−1) =: D,

where D is an extension of Drig(ρ) ⊗RE RE(χ−1
ρ,1 unr(q−1)) by itself and

has Sen weights ((1 − kσ) + 2aσε, 0)σ∈Σ℘ . By the same argument of [14,
Lem. 9.6] (replacing the functor Dcris( · ) by Dst( · )), one can show 1− kτ
is a constant Sen weight of D, and hence aτ = 0. Consequently, we see the
composition TUred,zρ → TW1,κ(zρ) → TW1(kΣτ℘

),κ(zρ) is zero, where TX,x

denotes the tangent space of X at x for a point x in a rigid analytic
space X, and the first map denotes the tangent map induced by κ. Thus
the map TE(k∅,w)ρ,red,zρ

→ TW1(kΣτ℘
),κ(zρ) is zero; however, since we as-

sume E(kΣ℘p , w)ρ to be reduced at zρ, we see the induced tangent map
TE(kΣτ℘

,w)ρ,zρ → TW1(kΣτ℘
),κ(zρ) factors though the above zero map and thus

also equals zero, from which we see κ : E(kΣτ℘ , w)ρ →W1(kΣτ℘) is not étale
at zρ.
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By Prop. 4.11, zρ is not Στ℘-very classical, and hence by definition,
Icτ (α, hΣ℘) ∼= I((χρ)cτδ−1

B ) is a subrepresentation of Π(kΣτ℘ , w)Hp=λρ , which
concludes the proof of Theorem 4.22(1).
To prove (2), we use the same arguments as in [24, §5.3]. The injectivity

of (4.13) (with π̂(ρ) replaced by ΠHp=λρ) follows from the fact that zρ
(as a classical point of E(kSc , w)ρ) does not have S-companion point for
∅ 6= S ⊆ Sn. Indeed, if (4.13) is not injective, by results on the Jordan–
Holder factors of Σ(α, hΣ℘) (e.g. see [12, Thm. 4.1]), we see either F (α, hΣ℘)
is a subrepresentation of ΠHp=λ, or there exists ∅ 6= S ⊆ Sn such that
I((χρ)cSδ

−1
B ) is a subrepresentation of ΠHp=λ which are both impossible

since the locally algebraic representation F (α, hΣ℘) can not be injected
into ΠHp=λ by (4.12), and zρ is non-Sn-critical hence Sn-very classical by
Corollary 4.19.
Let h′Sn := ( 2−kσ

2 , kσ2 )σ∈Sn = hSn − (w2 ,
w
2 )σ∈Sn , thus by definition we

have St(α, hΣ℘) ∼= St(α, h′Sn)⊗E W (kSc , w)∨,

Σ(α, hΣ℘) ∼= Σ(α, h′Sn)⊗E W (kSc , w)∨,

χ(α, hΣ℘) = χ(α, h′Sn)χ(kSc , w), and Σ(α, hΣ℘ ,LSn) ∼= Σ(α, h′Sn ,LSn) ⊗E
W (kSc , w)∨ (see Remark 3.1(2)). By Lemma 4.4, to prove

HomGL2(F℘)(Σ(α, hΣ℘ ,LSn),ΠH
p=λρ)

−→ HomGL2(F℘)(St(α, hΣ℘),ΠH
p=λρ)

is surjective, it’s sufficient to prove the restriction map

(4.16) HomGL2(F℘)

(
Σ(α, h′Sn ,LSn), H̃1

ét(Kp,W (kSc , w))H
p=λρ

Sn−an

)
−→ HomGL2(F℘)

(
St(α, h′Sn), H̃1

ét(Kp,W (kSc , w))H
p=λρ

Sn−an

)
is surjective.
It’s convenient to work with a “twist” of the eigenvariety E(kSc , w)ρ: as in

Section 4.2.2, one can construct an eigenvariety E together with a coherent
sheafM from the essentially admissible representation of T (F℘)

(4.17) JB

(
H̃1

ét
(
Kp,W (kSc , w)

)Z1

ρ,Sn−an

)
,

such that

Γ(E ,M) ∼= JB

(
H̃1

ét
(
Kp,W (kSc , w)

)Z1

ρ,Sn−an

)∨
;

TOME 67 (2017), FASCICULE 4



1500 Yiwen DING

the natural morphism E → T̂ would factor through T̂Sn (since (4.17) is
locally Sn-analytic); moreover, by the isomorphism (4.6), one has a com-
mutative diagram

(4.18)

E
(χ,λ)7→(χ·χ(k

Sc
,w),λ)

−−−−−−−−−−−−−−→ E(kSc , w)ρy y
T̂Sn

χ 7→χ·χ(k
Sc
,w)

−−−−−−−−−→ T̂ (kSc , w)y y
W1,Sn

χ 7→χ
∏

σ∈Sc
σkσ−2

−−−−−−−−−−−−−→ W1(kJ)
where the upper and outer square are Cartesian. Moreover M equals the
pull-back ofM(kSc , w) via the top horizontal map. Denote by z′ρ = (χ′ρ, λρ)
the preimage of zρ in E , where χ′ρ = χ(α, h′Sn)δB . There exists an admissible
strictly quasi-Stein (cf. [25, Def. 2.1.17(iv)]) open U of zρ in E(kSc , w)ρ
satisfying

• any point of U is non-Sn-critical (Proposition 4.21),
• Γ(U,M(kSc , w)) is a torsion free O(W1(kSc))-module (Proposi-
tion 4.6).

Take U to be the preimage of U in E , which satisfies hence
(1) for z = (χ, λ) ∈ U , S ⊆ C(χ) ∩ Sn, zcS := (χcS , λ) does not lie in E ,
(2) U is strictly quasi-Stein,
(3) Γ(U ,M) is a torsion free O(W1,Sn)-module.

The natural restriction map (which has dense image) Γ(E ,M)→ Γ(U ,M)
induces (by taking the dual with the strong topology)

(4.19) Γ(U ,M)∨ ↪−→ Γ(E ,M)∨ ∼= JB

(
H̃1

ét
(
Kp,W (kSc , w)

)Z1

ρ,Sn−an

)
,

and we have:

Proposition 4.25. — The map (4.19) induces a GL2(F℘)×Hp-invariant
morphism

(4.20)
(

IndGL2(F℘)
B(F℘)

Γ(U ,M)∨ ⊗E δ−1
B

)Sn−an

−→ H̃1
ét
(
Kp,W (kSc , w)

)Z1

ρ,Sn−an .

Proof. — The proposition follows from the same argument for [24, Cor. 7]
(by replacing “Qp − an” by “Sn − an”). Indeed, by assumption and [24,
Lem. 14], Γ(U ,M)∨ is an allowable locally Sn-analytic representation of
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T (F℘) equipped with a continuous action of Hp which commutes with
T (F℘). By the property (1) of U , Lemma B.4 and Remark B.5 below,
one can prove as in [24, Lem. 16] that (4.19) is balanced. Since Γ(U ,M)∨
is O(W1,Sn)-torsion free, the proposition follows by Lemma B.6 below. �

Return to the proof of Theorem 4.22(2). Let τ ∈ Sn, andW1,Sn(kSτn) de-
note the closed rigid subspace of W1,Sn parametrizing characters moreover
with fixed weights kσ−2 for σ ∈ Sτn. Put Eτ := E ×W1,Sn

W1,Sn(kSτn). Note
z′ρ ∈ Eτ for all τ ∈ Sn. Moreover, since E is étale overW1,Sn at z′ρ, Eτ is étale
over W1,Sn(kSτn) at z′ρ. Let tτ : SpecE[ε]/ε2 → Eτ be a non-zero element in
the tangent space of Eτ at z′ρ, the composition tτ : SpecE[ε]/ε2 → Eτ → T̂

thus gives a locally Sn-analytic character χ̃′ρ,σ : T (F℘) → (E[ε]/ε2)× sat-
isfying that χ̃′ρ,τ ≡ χ′ρ (mod ε), χ̃′ρ,τ |Z1 = 1, and χ̃′ρ,τ (χ′ρ)−1 is locally
τ -analytic.

Consider (t∗τM)∨, which is a subrepresentation of Γ(U ,M)∨ (since the
restrcition map Γ(U ,M) → t∗τM is surjective) of T (F℘) equipped with a
continuous action of Hp. By the second part of Theorem 4.20 (note that
we have a similar result for (E ,W1,Sn) thus for (Eτ ,W1,Sn(kSτn))), we have

(1) there exists r such that (t∗τM)∨∼= (χ̃′ρ,τ )⊕r as T (F℘)-representations,
(2) (t∗τM)∨ is a generalized λρ-eigenspace.

The map (4.20) thus induces(
IndGL2(F℘)

B(F℘)
(t∗τM)∨ ⊗E δ−1

B

)Sn−an

↪−→
(

IndGL2(F℘)
B(F℘)

Γ(U ,M)∨ ⊗E δ−1
B

)Sn−an

−→ H̃1
ét
(
Kp,W (kSc , w)

)Z1

ρ,Sn−an .

In particular, each vector not killed by ε in (t∗τM)∨ induces a morphism(
IndGL2(F℘)

B(F℘)
χ̃′ρ,τδ

−1
B

)Sn−an
−→ H̃1

ét(Kp,W
(
kSc , w)

)Z1

ρ,Sn−an[Hp = λρ] .

Since χ̃′ρ,τ is an extension of χ′ρ = χ(ρ, h′Sn)δB by itself, one has an exact
sequence

0 −→
(

IndGL2(F℘)
B(F℘)

χ(ρ, h′Sn)
)Sn−an

−→
(

IndGL2(F℘)
B(F℘)

χ̃ρ,τδ
−1
B

)Sn−an

s−−→
(

IndGL2(F℘)
B(F℘)

χ(ρ, h′Sn)
)Sn−an

−→ 0 .

Let Στ := s−1(F (α, h′Sn))/F (α, h′Sn). By the same argument as in [24,
§5.3] (see in particular the arguments after [24, Lem. 12]), we can prove
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the restriction map

HomGL2(F℘)

(
Στ , H̃1

ét(Kp,W (kSc , w))H
p=λρ

Sn−an

)
−→ HomGL2(F℘)

(
St(α, h′Sn), H̃1

ét(Kp,W (kSc , w))H
p=λρ

Sn−an

)
is surjective. However, by Proposition 4.26 below, one has Στ ∼=
Σ(α, h′Sn ,Lτ ). Thus for any τ ∈ Sn, the restriction map

HomGL2(F℘)

(
Σ(α, h′Sn ,Lτ ), H̃1

ét
(
Kp,W (kSc , w)

)Hp=λρ
Sn−an

)
−→ HomGL2(F℘)

(
St(α, h′Sn), H̃1

ét
(
Kp,W (kSc , w)

)Hp=λρ
Sn−an

)
is surjective. From which, together with Remark 3.1(4), we see (4.16) is
surjective. This concludes the proof of Theorem 4.22(2) (assuming Propo-
sition 4.26). �

Proposition 4.26. — Keep the notation as in the proof of Theo-
rem 4.22, there exists a locally τ -analytic character ψτ such that

χ̃′ρ,τ (χ′ρ)−1 ∼=
(

1 logτ,−Lτ (ad−1) + ψτ (ad)
0 1

)
as (2-dimensional) representations of T (F℘). Consequently (by Rem-
ark 3.1(3)), Στ ∼= Σ(α, h′Sn ,Lτ ).

The rest of the paper is devoted to the proof of Proposition 4.26. Note
that the image E ′τ of Eτ in E(kSc , w)ρ is an one-dimensional rigid space con-
taining E(kΣτ℘ , w)ρ as closed subspace. Since both E ′τ and E(kΣτ℘ , w)ρ are
étale over W1(kΣτ℘) at zρ, and have the same residue field E, we see they

are locally isomorphic at zρ. In particular, the composition SpecE[ε]/ε2 tτ−→
Eτ →E(kSc , w)ρ gives a non-zero element in the tangent space of E(kΣτ℘ , w)ρ
at zρ, still denoted by tτ : SpecE[ε]/ε2→E(kΣτ℘ , w)ρ, moreover it’s straight-
forward to see (e.g. by (4.18)) the character of T (F℘) induced by this map is
given by χ̃ρ,τ := χ̃′ρ,τχ(kSc , w). Note χ̃ρ,τχ−1

ρ = χ̃′ρ,τ (χ′ρ)−1. Since χ̃ρ,τχ−1
ρ

is locally τ -analytic, there exist γ, η ∈ E, µ ∈ E× such that (cf. Sec-
tion 1.3.1)

χ̃χ−1
ρ = (1 + γεψur + µεψτ,p)⊗ (1 + ηεψur − µεψτ,p) .

It’s sufficient to prove

(4.21) γ − η = −2Lτµ .
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Indeed, if (4.21) holds, we get

χ̃ρ,τχ
−1
ρ
∼=
(

1 + µε(−Lτψur + ψτ,p) + (γ + η)ε
2 ψur

)
⊗
(

1− µε(−Lτψur + ψτ,p) + (γ + η)ε
2 ψur

)
∼= (1 + logτ,−Lτ ε+ ψτ ε)⊗ (1− logτ,−Lτ ε+ ψτ ε) ,

with ψτ = γ+η
2µ ψur, from which Proposition 4.26 follows.

We show (4.21). Let U be an affinoid neighborhood of zρ in E(k∅, w)ρ
small enough such that Proposition 4.14 applies, we have thus a continuous
representation ρU : GalF → GL2(O(Ured)).

Non-critical Case. — Suppose Sn = Σ℘, i.e. z is non-Σ℘-critical. By
Proposition 4.21, shrinking U , we can assume any point in U is non-Σ℘-
critical. Let Uτ be the preimage of U in E(kΣτ℘ , w)ρ (via the natural closed
embedding E(kΣτ℘ , w)ρ ↪→ E(k∅, w)ρ), since Uτ is étale over W1(kΣτ℘) at
zρ, shrinking Uτ , we can assume Uτ is a smooth curve. Let ρUτ : GalF →
GL2(O(Uτ )) be the representation induced by ρU , χUτ : T (L) → O(Uτ )×
be the character induced by the natural morphism Uτ → T̂ (kΣτ℘ , w). Ap-
plying [31, Thm. 6.3.9] to Drig(ρUτ ,℘) with ρUτ ,℘ := ρUτ |GalF℘ (see Theo-
rem 4.15, note Σz′ = ∅ for all z′ ∈ Uτ by the assumption on U), we get an
exact sequence

0→ RO(Uτ )(unr(q)χUτ ,1)→ Drig(ρUτ ,℘)→ RO(Uτ )(χUτ ,2
∏
σ∈Σ℘

σ−1)→ 0 ,

which induces (where ρ̃τ,℘ := t∗τρUτ |℘ : GalF℘ → GL2(E[ε]/ε2))

0→ RE[ε]/ε2(unr(q)χ̃ρ,τ,1)→ Drig(ρ̃τ,℘)→ RE[ε]/ε2(χ̃ρ,τ,2
∏
σ∈Σ℘

σ−1)→ 0 .

Thus, (4.21) follows from Theorem 2.1.

Critical case. — Assume henceforth Sc 6= ∅. We shrink U such that the
Proposition 4.17 applies, so ZU,σ (if non-empty) is a Zariski-closed subset in
U for any σ ∈ Σ℘. We know z ∈ ZU,σ if and only if σ ∈ Sc. By shrinking U
(as a neighborhood of z), one can assume ZU,σ = ∅ for σ ∈ Sn. Let τ ∈ Sn,
Uτ be the preimage of U in E(kΣτ℘ , w)ρ, and shrink U such that Uτ is a
smooth curve. Let ZUτ ,σ the preimage of ZU,σ in Uτ , which is a non-empty
Zariski-closed subset for σ ∈ Sc, whose dimension is either 0 or 1 locally
at z. Denote by S0 (resp. S1) the subset of Sc of embeddings σ such that
ZUτ ,σ is of dimension 0 (resp. of dimension 1) locally at zτ . By shrinking U
(and thus Uτ , note Uτ is smooth), one can assume ZUτ ,σ = {zτ} for σ ∈ S0
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and ZUτ ,σ = Uτ (E) for σ ∈ S1. We define ρUτ ,℘, χUτ , ρ̃τ,℘ the same way
as in the non-critical case.

Critical case (1). — Suppose S0 = ∅. In this case, for any z ∈ Uτ ,
Σz = Sc. By applying [31, Thm. 6.3.9] to Drig(ρUτ ,℘), we get

0→ RO(Uτ )

(
unr(q)χUτ ,1

∏
σ∈Sc

σ1−kσ
)

→ Drig(ρUτ ,℘)→ RO(Uτ )

(
χUτ ,2

∏
σ∈Σ℘

σ−1
∏
σ∈Sc

σkσ−1
)
→ 0 ,

which induces

0→ RE[ε]/ε2

(
unr(q)χ̃ρ,τ,1

∏
σ∈Sc

σ1−kσ
)

→ Drig(ρ̃τ,℘)→ RE[ε]/ε2

(
χ̃ρ,τ,2

∏
σ∈Σ℘

σ−1
∏
σ∈Sc

σkσ−1
)
→ 0 .

On the other hand, by Proposition 4.14, ρ̃τ,℘ is Στ℘-de Rham. We can hence
apply Theorem 2.1, and (4.21) follows.

Critical case (2). — Suppose S0 6= ∅. By assumption, for z ∈ Uτ (E),
z 6= zρ, Σz = S1 ( Sc = S0 ∪S1. By [31, Thm. 6.3.9] (see in particular [31,
(6.3.14.1)]) applied to Drig(ρUτ ,℘), one gets an exact sequence

(4.22) 0→ RO(Uτ )

(
unr(q)χUτ ,1

∏
σ∈S1

σ1−kσ
)

→ Drig(ρU,℘)→ RO(Uτ )

(
χUτ ,2

∏
σ∈Σ℘

σ−1
∏
σ∈S1

σkσ−1
)
→ Q→ 0

where Q is a finitely generated RO(Uτ )-module killed by certain powers of
t (∈ RE) and is supported at zρ. Tensoring (4.22) with E[ε]/ε2 via tτ , one
gets exact sequences (see [31, Ex. 6.3.14])

(4.23) Drig(ρ̃τ,℘) f−−→ RE[ε]/ε2

(
χ̃ρ,τ,2

∏
σ∈Σ℘

σ−1
∏
σ∈S1

σkσ−1
)

−→ Q⊗O(Uτ ),tτ E[ε]/ε2 −→ 0 ,

0 −→ RE[ε]/ε2

(
unr(q)χ̃ρ,τ,1

∏
σ∈S1

σ1−kσ
)
−→ Ker(f) .
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For simplicity, put

δ̃ = δ̃1 ⊗ δ̃2 :=
(

unr(q)χ̃ρ,τ,1
∏
σ∈S1

σ1−kσ
)
⊗
(
χ̃ρ,τ,2

∏
σ∈Σ℘

σ−1
∏
σ∈S1

σkσ−1
)
,

δ = δ1 ⊗ δ2 :=
(

unr(q)χρ,1
∏
σ∈S1

σ1−kσ
)
⊗
(
χρ,2

∏
σ∈Σ℘

σ−1
∏
σ∈S1

σkσ−1
)
,

δ̃′ = δ̃′1 ⊗ δ̃′2 :=
(

unr(q)χ̃ρ,τ,1
∏
σ∈Sc

σ1−kσ
)
⊗
(
χ̃ρ,τ,2

∏
σ∈Σ℘

σ−1
∏
σ∈Sc

σkσ−1
)
,

δ′ = δ′1 ⊗ δ′2 :=
(

unr(q)χρ,1
∏
σ∈Sc

σ1−kσ
)
⊗
(
χρ,2

∏
σ∈Σ℘

σ−1
∏
σ∈Sc

σkσ−1
)
,

and note that δ′ is the trianguline parameter of ρ℘.
We see Ker(f) and Im(f) (cf. (4.23)) are (ϕ,Γ)-modules overRE[ε]/ε2 (i.e.

(ϕ,Γ)-modules over RE equipped moreover an E[ε]/ε2-action commuting
with RE , note that such modules may not be free over RE[ε]/ε2). Denote
by f0 the map Drig(ρ℘)→ RE(δ2) induced by (4.22) via the pull-back z∗ρ ,
one has a commutative diagram (of (ϕ,Γ)-modules over RE)

0 −−−−→ Drig(ρ℘) ε−−−−→ Drig(ρ̃℘) −−−−→ Drig(ρ℘) −−−−→ 0

f0

y f

y f0

y
0 −−−−→ RE(δ2) ε−−−−→ RE[ε]/ε2(δ̃2) −−−−→ RE(δ2) −−−−→ 0

which induces thus a long exact sequence

0→ Ker(f0) ε−→ Ker(f) s−→ Ker(f0)→ Q⊗O(Uτ ),zρ E

ε−→ Q⊗O(Uτ ),tτ E[ε]/ε2 → Q⊗O(Uτ ),zρ E → 0 .

By discussions in [31, Ex. 6.3.14], one has (where we refer to [31, Not. 6.2.7]
for the tσ’s)

Ker(f0) ∼= RE(δ′1) ,
Im(f0) ∼= RE(δ′2) ,

Q⊗O(Uτ ),zρ E
∼= RE(δ1)/

( ∏
σ∈S0

tkσ−1
σ

)
,

thus there exist rσ ∈ Z, 0 6 rσ 6 kσ − 1 for all σ ∈ S0 such that Im(s) =
RE(δ′′1 ) where δ′′1 := δ′1

∏
σ∈S0

σrσ . However, since Ker(f) is a saturated
sub-(ϕ,Γ)-module of Drig(ρ̃τ,℘), and the latter has Sen weight of the form
(−kσ+w

2 + aσε,
kσ−w−2

2 + bσε)σ∈Σ℘ , we see rσ = 0 or kσ − 1 for σ ∈ S0.
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One has a natural isomorphism (translating these in terms of E-B-pairs,
one can check this isomorphism by the same argument as in the proof of
Lemma 1.13)

Ext1(RE(δ′1),RE(δ′1)) ∼−−→ Ext1(RE(δ′′1 ),RE(δ′1)) .

We claim [Ker(f)] equals (up to scalars) the image of [RE[ε]/ε2(δ̃′1)]: Indeed
one has isomorphisms

(4.24) Ext1(RE(δ′1),RE(δ′1)) ∼−−→ Ext1(RE(δ′′1 ),RE(δ′1))
∼−−→ Ext1(RE(δ1),RE(δ′1)) ∼= Ext1(RE(δ1),RE(δ1)) .

The composition i in (4.24) actually sends [RE[ε]/ε2(δ̃′1)] to [RE[ε]/ε2(δ̃1)]
(up to scalars), since both i([RE[ε]/ε2(δ̃′1)]) and [RE[ε]/ε2(δ̃1)] fit “∗” in the
following commutative diagram (with the maps on the left and right sides
being the natural injections)

0 −−−−→ RE(δ1) −−−−→ ∗ −−−−→ RE(δ1) −−−−→ 0y y y
0 −−−−→ RE(δ′1) −−−−→ RE[ε]/ε2(δ̃′1) −−−−→ RE(δ′1) −−−−→ 0 ;

on the other hand, since RE[ε]/ε2(δ̃1) ↪→ Ker(f), one sees the composition
of the last two morphisms in (4.24) sends [Ker(f)] to [RE[ε]/ε2(δ̃1)] (up to
scalars), the claim follows.
Similarly, Im(f) lies in an exact sequence of (ϕ,Γ)-modules over RE :

0→ RE(δ′′2 ) ε−→ Im(f)→ RE(δ′2)→ 0

with δ′′2 = δ′2
∏
σ∈S0

σ−rσ , and the natural isomorphism

Ext1(RE(δ′2),RE(δ′2)) ∼−−→ Ext1(RE(δ′2),RE(δ′′2 ))

sends [RE[ε]/ε2(δ̃′2)] to Im(f).
Claim. — There exists a (ϕ,Γ)-module D free of rank 2 over RE[ε]/ε2

such that
(1) D lies in an exact sequence of (ϕ,Γ)-modules over RE[ε]/ε2 :

0→ RE[ε]/ε2(δ̃′1)→ D → RE[ε]/ε2(δ̃′2)→ 0 ;

(2) D ≡ Drig(ρ℘) (mod ε);
(3) D is Sc-de Rham.
Assuming the claim, since δ̃′1(δ̃′2)−1 = δ′1(δ′2)−1(1+(γ−η)εψur +2µεψτ,p),

one can deduce again from Theorem 2.1 that γ− η = −2Lτµ (4.21). In the
rest of this section, we “modify” Drig(ρ̃τ,℘) to prove the claim.
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The natural morphism of (ϕ,Γ)-modules over RE[ε]/ε2 : RE[ε]/ε2(δ̃′2) ↪→
Im(f) induces a morphism

Ext1(Im(f),Ker(f)) −→ Ext1(RE[ε]/ε2(δ̃′2),Ker(f))

(here Ext1 denotes the group of extensions of (ϕ,Γ)-modules overRE[ε]/ε2).
Denote by D′ the image of Drig(ρ̃τ,℘) via this morphism. In fact, D′ is just
the preimage ofRE[ε]/ε2(δ̃′2)⊂ Im(f) via the natural projectionDrig(ρ̃τ,℘)�
Im(f). The natural morphism of (ϕ,Γ)-modules over RE[ε]/ε2 : Ker(f) ↪→
RE[ε]/ε2(δ̃′1) induces a morphism

Ext1(RE[ε]/ε2(δ̃′2),Ker(f)) −→ Ext1(RE[ε]/ε2(δ̃′2),RE[ε]/ε2(δ̃′1)) ,

let D be the image of D′ via this morphism. We check that D satisfies the
properties (2) and (3) in the claim.
We have a commutative diagram

0 −−−−→ Ker(f) −−−−→ Drig(ρ̃τ,℘) −−−−→ Im(f) −−−−→ 0

ε

y ε

y ε

y
0 −−−−→ Ker(f) −−−−→ Drig(ρ̃τ,℘) −−−−→ Im(f) −−−−→ 0

which induces a long exact sequence

(4.25) 0→ RE(δ′1)→ Drig(ρ) r−→ R(δ′′2 )→ RE(δ′′1 )⊕
(
RE(δ′′2 )/

∏
σ∈S0

trσσ

)
→ Drig(ρ)→ RE(δ′2)⊕

(
RE(δ′′2 )/

∏
σ∈S0

trσσ

)
→ 0 .

For a (ϕ,Γ)-module D′′ over RE[ε]/ε2 , denote by D′′[ε] the kernel of ε which
is a saturated (ϕ,Γ)-submodule (overRE) ofD′′. One sees the natural mor-
phism D′ ↪→ Drig(ρ̃τ,℘) induces an isomorphism D′[ε] ∼= Drig(ρ̃τ,℘)[ε] ∼=
Drig(ρ℘). Indeed, one gets an injection D′[ε] ↪→ Drig(ρ̃τ,℘)[ε], on the other
hand, by (4.25), the image of Drig(ρ̃τ,℘)[ε] ↪→ Drig(ρ̃τ,℘) � Im(f), which
equals Im(r), is contained in RE[ε]/ε2(δ̃′2), thus Drig(ρ̃τ,℘)[ε] ⊆ D′ so
Drig(ρ̃τ,℘)[ε] ⊆ D′[ε], from which one gets the isomorphism. The (ϕ,Γ)-
module D′/D′[ε] sits in an exact sequence

0→ RE(δ′′1 )→ D′/D′[ε]→ RE(δ′2)→ 0

and is a submodule of Drig(ρ̃τ,℘)/Drig(ρ̃τ,℘)[ε] ∼= Drig(ρ℘). By the con-
struction of D, one gets a natural morphism D′ → D which induces an
isomorphism Drig(ρ℘) ∼= D′[ε] ∼−→ D[ε] ∼= Drig(ρ℘), and thus an injection
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D′/D′[ε] ↪→ D/D[ε]. One gets commutative diagrams

(4.26)

0 −−−−→ RE(δ′′1 ) −−−−→ D′/D′[ε] −−−−→ RE(δ′2) −−−−→ 0y y ∥∥∥
0 −−−−→ RE(δ′1) −−−−→ D∗ −−−−→ RE(δ′2) −−−−→ 0

for D∗ ∈ {D/D[ε], Drig(ρ℘)} (for D/D[ε], this follows from the construc-
tion of D; for Drig(ρ℘), this follows from the construction of D′ discussed
as above). So D/D[ε] ∼= Drig(ρ℘) (which are both equal to the image of
D′/D′[ε] via the natural morphism

Ext1(RE(δ′2),RE(δ′′1 )) −→ Ext1(RE(δ′2),RE(δ′1))) ,

the property (2) follows.
To show D is Sc-de Rham, one needs only to prove D′ is Sc-de Rham

since D′ is a (ϕ,Γ)-submodule of D with the same rank. Since D′ is
a (ϕ,Γ)-submodule of Drig(ρ̃τ,℘), by the equivalence of categories of B-
pairs and (ϕ,Γ)-modules ([6, Thm. 2.2.7]), one gets an injection W (D′) ↪→
W (Drig(ρ̃τ,℘)) of E-B-pairs where W (D′′) denotes the associated B-pairs
for a (ϕ,Γ)-modules D′′. Since D′ and Drig(ρ̃τ,℘) are both of rank 4 (over
RE), one sees W (D′)dR

∼−→ W (Drig(ρ̃τ,℘))dR. Since Drig(ρ̃τ,℘) is Sc-de
Rham, so is D′. This finishes the proof of the claim and thus (4.21) in
S0 6= ∅-case.

Appendix A. Partially de Rham trianguline
representations

In this appendix, we study some partially de Rham triangulable E-B-
pairs, and show that partial non-criticalness implies partial de Rhamness
for triangulable E-B-pairs. As an application, we get a partial de Rhamness
result for finite slope overconvergent Hilbert modular forms.
Let F℘ be a finite extension of Qp, Σ℘ the set of embeddings of F℘ in

Qp, GalF℘ := Gal(Qp/F℘), E a finite extension of Qp sufficiently large
containing all the embeddings of F℘ in Qp. Let χ be a continuous character
of F×℘ over E, recall that we have defined the weights (wt(χ)σ)σ∈Σ℘ ∈ E|d|
of χ (cf. Section 2); in fact, (−wt(χ)σ)σ∈Σ℘ are equal to the generalized
Hodge–Tate weights of the associated E-B-pair BE(χ) (cf. [33, Def. 1.47]).

Lemma A.1. — Let χ be a continuous character of F×℘ over E, for
σ ∈ Σ℘, BE(χ) is σ-de Rham if and only if wt(χ)σ ∈ Z.
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Proof. — The “only if” part is clear. Suppose now wt(χ)σ ∈ Z, by mul-
tiplying χ by σ−wt(χ)σ and then an unramified character of F×℘ , one can
assume that χ corresponds to a Galois character χ : GalF℘ → E× and
wt(χ)σ = 0. In this case, by Sen’s theory, one has Cp,σ ⊗E χ ∼= Cp,σ as
GalF℘-modules (since χ is of Hodge–Tate weight 0 at σ). Consider the exact
sequence

0→ (tB+
dR,σ ⊗E χ)GalF℘ → (B+

dR,σ ⊗E χ)GalF℘

→ (Cp,σ ⊗E χ)GalF℘ → H1(GalF℘ , tB+
dR,σ ⊗E χ) ,

it’s sufficient to prove H1(GalF℘ , tB+
dR,σ ⊗E χ) = 0. For i ∈ Z>0, we claim

H1(GalF℘ , ti+1B+
dR,σ⊗E χ)→ H1(GalF℘ , tiB+

dR,σ⊗E χ) is an isomorphism:
one has an exact sequence

(Cp,σ(i)⊗E χ)GalF℘ → H1(GalF℘ , ti+1B+
dR,σ ⊗E χ)

→ H1(GalF℘ , tiB+
dR,σ ⊗E χ)→ H1(GalF℘ ,Cp,σ(i)⊗E χ) ,

since Cp,σ⊗Eχ ∼= Cp,σ, the first and fourth terms vanish when i > 1. We get
thus an isomorphism H1(GalF℘ , tB+

dR,σ⊗Eχ) ∼−→ H1(GalF℘ , tnB+
dR,σ⊗Eχ)

for n� 0, from which we deduce H1(GalF℘ , tB+
dR,σ ⊗E χ) = 0. �

Definition A.2 ([32, Def. 4.3.1]). — LetW be a triangulable E-B-pair
of rank r with a triangulation given by

(A.1) 0 = W0 (W1 ( · · · (Wr−1 (Wr = W

with Wi+1/Wi
∼= BE(χi) for 0 6 i 6 r − 1 where the χi’s are continuous

characters of F×℘ in E×. For σ ∈ Σ℘, suppose wt(χi)σ ∈ Z for all 0 6 i 6
r−1, W is called non σ-critical if (note the generalized Hodge–Tate weight
of BE(χi) at σ is −wt(χi)σ)

wt(χ1)σ > wt(χ2)σ > · · · > wt(χr)σ ;

for ∅ 6= J ⊆ Σ℘, suppose wt(χi)σ ∈ Z for 0 6 i 6 r − 1, σ ∈ J , then W is
called non J-critical if W is non σ-critical for all σ ∈ J .

Proposition A.3. — Keep the notation in Definition A.2, let ∅ 6= J ⊆
Σ℘, suppose W is non J-critical, then W is J-de Rham.

Proof. — It’s sufficient to prove if W is non-σ-critical, then W is σ-de
Rham for σ ∈ J . Let σ ∈ J , we would use induction on 1 6 i 6 r − 1:
by Lemma A.1, W1 is σ-de Rham; assume now Wi is σ-de Rham, we show
Wi+1 is also σ-de Rham. Note [Wi+1] ∈ Ext1(Wi, BE(χi+1)), let W ′i :=
Wi ⊗ BE(χ−1

i+1), W ′i+1 := Wi+1 ⊗ BE(χ−1
i+1), by Lemma A.1, Wi+1 is σ-de

Rham if and only if W ′i+1 is σ-de Rham. One has [W ′i+1] ∈ H1(GalF℘ ,W ′i ).
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On the other hand, since wt(χj)σ > wt(χi+1)σ for 1 6 j 6 i, we see
H0(GalF℘ , (W ′i )+

dR,σ) = 0, thus by Lemma 1.11, H1
g,σ(GalF℘ ,W ′i )

∼−→
H1(GalF℘ ,W ′i ). So W ′i+1 is σ-de Rham, and the proposition follows. �

Example A.4. — Let χLT : GalF℘ → F×℘ be a Lubin–Tate character, σ :
F℘ ↪→ E, and considerH1(GalF℘ , σ◦χLT). By Proposition A.3, any element
in H1(GalF℘ , σ ◦χLT) is σ-de Rham, which generalizes the well-known fact
that any extension of the trivial character by cyclotomic character is de
Rham. In fact, suppose F℘ 6= Qp, using (1.7), one can actually calculate:
dimE H

1
g,J(GalF℘ , σ ◦ χLT) = d− |J \ {σ}|.

Partially de Rham overconvergent Hilbert modular forms

Let F be a totally real number field of degree dF , ΣF the set of embed-
dings of F in Q, w ∈ Z, and kσ ∈ Z>2, kσ ≡ w (mod 2) for all σ ∈ ΣF .
Let c be a fractional ideal of F . Let h be an overconvergent Hilbert eigen-
form of weights (k,w) (where we adopt Carayol’s convention of weights as
in [18])), of tame level N (N > 4, p - N), of polarization c, with Hecke
eigenvalues in E (e.g. see [1, Def. 1.1], where E is big enough to contain
all the embeddings of F in Qp). For a place ℘ of F above p, let a℘ de-
note the U℘-eigenvalue of h, and suppose a℘ 6= 0 for all ℘|p. Denote by
ρh : GalF → GL2(E) the associated (semi-simple) Galois representation
(enlarge E if necessary) (e.g. see [1, Thm. 5.1]). For ℘|p, denote by ρh,℘
the restriction of ρh to the decomposition group at ℘, which is thus a con-
tinuous representation of GalF℘ over E, where F℘ denotes the completion
of F at ℘. Let υ℘ : Qp → Q ∪ {+∞} be an additive valuation normalized
by υ℘(F℘) = Z∪ {+∞}. Denote by Σ℘ the set of embeddings of F℘ in Qp.
This section is devoted to prove

Theorem A.5. — With the above notation, and let ∅ 6= J ⊆ Σ℘.
(1) If υ℘(a℘) < infσ∈J{kσ − 1} +

∑
σ∈Σ℘

w−kσ+2
2 , then ρh,℘ is J-de

Rham.
(2) If υ℘(a℘) <

∑
σ∈J(kσ−1)+

∑
σ∈Σ℘

w−kσ+2
2 , then there exists σ ∈ J

such that ρh,℘ is σ-de Rham.

Remark A.6. — This theorem gives evidence for Breuil’s conjectures
in [10] (but in terms of Galois representations) (see in particular [10,
Prop. 4.3]). When J = Σ℘ (and F℘ unramified), the part (1) follows directly
from the known classicality result in [43].

One has as in Proposition 4.15
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Proposition A.7. — For ℘|p, ρh,℘ is trianguline with a triangulation
given by

0→ BE(δ1)→W (ρh,℘)→ BE(δ2)→ 0 ,
with {

δ1 = unr℘(a℘)
∏
σ∈Σ℘ σ

−w−kσ+2
2

∏
σ∈Σh σ

1−kσ ,

δ2 = unr℘(q℘b℘/a℘)
∏
σ∈Σ℘ σ

−w+kσ
2
∏
σ∈Σh σ

kσ−1 ,

where unr℘(z) denotes the unramified character of F×℘ sending uniformizers
to z, q℘ := pf℘ with f℘ the degree of the maximal unramified extension
inside F℘ (thus υ℘(q℘) = d℘, the degree of F℘ over Qp), and Σh is a certain
subset of Σ℘.

Proof. — Consider the eigenvariety E constructed in [1, Thm. 5.1], one
can associate to h a point zh in E . For classical Hilbert eigenforms, the result
is known by Saito’s results in [38] and Nakamura’s results on triangulations
of 2-dimensional semi-stable Galois representations (cf. [33, §4]). Since the
classical points are Zariski-dense in E and accumulate over the point zh
(here one uses the classicality results, e.g. in [8]), the proposition follows
from the global triangulation theory [31, Thm. 6.3.13] [32, Thm. 4.4.2]. �
Since W (ρ℘) is étale (purely of slope zero), by Kedlaya’s slope filtration

theroy ([30, Thm. 1.7.1]), one has (see also [33, Lem. 3.1])

Lemma A.8. — Let $℘ be a uniformizer of F℘, then υ℘(δ1($℘)) > 0 .

Proof of Theorem A.5. — By the above lemma, υ℘(a℘) >
∑
σ∈Σh(kσ −

1) +
∑
σ∈Σ℘

w−kσ+2
2 . Thus for ∅ 6= J ⊆ Σ℘, if υ℘(a℘) < infσ∈J{kσ − 1} +∑

σ∈Σ℘
w−kσ+2

2

(
resp. υ℘(a℘) <

∑
σ∈S(kσ − 1) +

∑
σ∈Σ℘

w−kσ+2
2

)
, then

J ∩Σh = ∅ (resp. J * Σh) and thus ρh,℘ is non-J-critical (resp. there exists
σ ∈ J such that ρh,℘ is non-σ-critical) (note ΣF℘ \ Σh is exactly the set
of embeddings where ρh,℘ is non-critical). The theorem then follows from
Proposition A.3. �

We end this section by (conjecturally) constructing some partial de Rham
families of Hilbert modular forms as closed subspaces of E ([1, Thm. 5.1]).
For ℘|p, denote by W℘ the rigid space over E parametrizing locally Qp-
analytic characters of O×℘ . One has a natural morphism of rigid spaces
W℘ → A|Σ℘|, χ 7→ (wt(χ)σ)σ∈Σ℘ . For J ⊆ Σ℘, kσ ∈ Z for σ ∈ J , de-
note by W℘(kJ) the preimage of the rigid subspace of A|Σ℘| defined by
fixing the σ-parameter to be kσ for σ ∈ J . Let W0 denote the rigid space
(over E) parametrizing locally Qp-analytic characters of Z×p . Recall (cf. [1,
Thm. 5.1]), one has a natural morphism κ : E →

∏
℘|pW℘ × W0 (where
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the right hand is denoted by WG in loc. cit.), mapping each point of E
(corresponding to overconvergent Hilbert eigenforms) to its weights.
Now fix ℘|p, ∅ ( J ( Σ℘, w ∈ Z, and kσ ∈ Z>2, kσ ≡ w (mod 2) for all

σ ∈ J . Consider the closed subspace

W℘(kJ)×
∏
℘′|p
℘′ 6=℘

W℘′ ↪−→W℘ ×
∏
℘′|p
℘′ 6=℘

W℘′ ↪−→
∏
℘′|p

W℘′ ×W0

where the last map is induced by the E-point (x 7→ xw) of W0. Denote by
E(kJ , w)′ the pull-back of W℘(kJ) ×

∏
℘′|p
℘′ 6=℘

W℘′ via κ, which is a closed

rigid subspace of E consisting of points with fixed weights kσ for σ ∈ J and
w. Let E(kJ , w) be the Zariski-closure of the classical points in E(kJ , w)′.

Conjecture A.9. — Keep the above notation, let z ∈ E(kJ , w)′(E),
and suppose the associated GalF -representation ρz is absolutely irreducible.
Then z ∈ E(kJ , w)(E) if and only if ρz,℘ := ρz|GalF℘ is J-de Rham.

Appendix B. Some locally analytic representation theory
of GL2(F℘)

Recall some locally analytic representation theory of GL2(F℘) used in
the paper.

Proposition B.1. — Let V be a locally Qp-analytic representation of
GL2(F℘) over E, J ⊆ Σ℘, and W be an irreducible algebraic locally J-
analytic representation of GL2(F℘) over E. The composition

(B.1) (V ⊗E W∨)Σ℘\J−an ⊗E W ↪−→ V ⊗E W∨ ⊗E W −→ V

is injective, where W∨ denotes the dual representation of W .

Proof. — The proof is similar as that of [25, Prop. 4.2.4]. The case J = ∅
is trivial, and we suppose J 6= ∅. We equip V ⊗E W∨ with a gΣ℘ × gΣ℘-
action by (X1, X2)(v ⊗ w′) = (X1v) ⊗ w′ + v ⊗ (X2w

′). Denote by ∆ the
morphism gΣ℘ ↪→ gΣ℘ × gΣ℘ , x 7→ (x, x). We have thus

(V ⊗E W∨)Σ℘\J
∼−−→ (V ⊗E W∨)∆(gJ ).

Since EndgΣ℘
(W ) ∼= EndgJ (W ) ∼= E, by the double commutant theorem,

the morphism of E-algebras

(B.2) U(gJ) −→ EndE(W )(∼= W ⊗E W∨)

is surjective. We equip U(gJ) (resp. W ⊗E W∨) with a gJ × gJ -action by
(X1, X2)(X) = X1X − XX2 (resp. by (X1, X2)(w ⊗ w′) = (X1w) ⊗ w′ +
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w⊗ (X2w
′)). One can check the map (B.2) is gJ × gJ -invariant. By taking

the dual, we get a gJ × gJ -invariant injection (recall for a Lie algebra h

over E, and a representation U of h over E, HomE(U,E) is equipped with
an h-action given by (Xf)(u) = −f(Xu) for X ∈ h, f ∈ HomE(U,E) and
u ∈ U)

(B.3) W∨ ⊗E W ↪−→ HomE(U(gJ), E) .

Moreover, one can check that the composition of (B.3) with the evaluation
map HomE(U(gJ), E) → E, f 7→ f(1) is equal to the natural morphism
W∨ ⊗E W → E, w′ ⊗ w 7→ w′(w).
Consider the following composition induced by (B.3)

(B.4) V ⊗EW∨⊗EW ↪−→ V ⊗E HomE(U(gJ), E) ↪−→ HomE(U(gJ), V ) ,

which is in fact gΣ℘ × gJ × gJ -invariant, where the gΣ℘ × gJ × gJ -action on
V ⊗E W∨ ⊗E W (resp. on HomE(U(gJ), V )) is given by (X1, X2, X3)(v ⊗
w′ ⊗ w) = (X1v) ⊗ w′ ⊗ w + v ⊗ (X2w

′) ⊗ w + v ⊗ w′ ⊗ (X3w) (resp.
by ((X1, X2, X3)f)(X) = X1(f(X)) − f(X2X) + f(XX3)). Moreover, the
composition of (B.4) with the evaluation map

(B.5) HomE(U(gJ), V )→ V, f 7→ f(1)

is equal to (B.1).
Denote by ∆12 : gJ ↪→ gΣ℘ × gJ × gJ , X 7→ (X,X, 0). Thus the

left object of (B.1) is equal to (V ⊗E W∨ ⊗E W )∆12(gJ ). We claim the
map (B.5) induces an isomorphism HomE(U(gJ), V )∆12(gJ ) ∼−→ V , from
which the proposition follows. Indeed, the map V → HomE(U(gJ), V ),
v 7→ [X 7→ Xv] is obviously a section of (B.5), and one can check the
image is contained in HomE(U(gJ), V )∆12(gJ ), and the induced map V →
HomE(U(gJ), V )∆12(gJ ) is bijective (since any f ∈ HomE(U(gJ), V )∆12(gJ )

satisfies f(XY ) = Xf(Y ) for X ∈ gJ , and Y ∈ U(gJ)). �

Corollary B.2. — Keep the notation of Proposition B.1, suppose
moreover V is admissible, then the representation (V ⊗EW∨)Σ℘\J−an⊗EW
is a closed subrepresentation of V .

Proof. — Since V is admissible, so is V ⊗E W∨ ⊗E W . Since (V ⊗E
W∨)Σ℘\J−an⊗EW is obviously a closed subrepresentation of V ⊗EW∨⊗E
W , by [40, Prop. 6.4], (V ⊗E W∨)Σ℘\J−an ⊗E W is also admissible. By
loc. cit., in this case, the map (B.1) is strict and has closed image, which
concludes the proof. �

Let V be an admissible locally Qp-analytic representation of GL2(F℘)
over E, the associated Jacquet–Emerton module JB(V ) is thus an
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essentially admissible locally Qp-analytic representation of T (F℘) (cf. [26,
Thm. 0.5]). Let U ∈ Repzla,c(T (F℘) (cf. [26, §3.1]), and suppose U is allow-
able (cf. [28, Def. 0.11]), recall first the following theorem of Emerton.

Theorem B.3 ([28, Thm. 0.13]). — Keep the above notation and hy-
pothesis, suppose moreover V is very strongly admissible (cf. [28, Def. 0.12]),
then one has a natural bijection

HomT (F℘)(U ⊗E δB , JB(V ))bal ∼−−→ HomGL2(F℘)

(
I

GL2(L)
B(L)

(U), V
)
,

where “bal” denotes the balanced maps (cf. [28, Def. 0.8]) and we refer
to [28, §2.8] for the definition of IGL2(L)

B(L)
(U) (see also the paragraphs which

follow).

Recall the definition of balanced maps (in GL2(F℘)-case). Let N(F℘) be
the nilpotent radical of B(F℘), and let CQp−pol(N(F℘), E) denote the affine
E-algebra of the algebraic group ResF℘Qp N ×Qp E

∼= ResF℘Qp Ga ×Qp E, thus
CQp−pol(N(F℘), E) ∼= ⊗σ∈Σ℘E[σ(z)] =: E[zΣ℘ ]. Let CQp−pol(N(F℘), U) :=
CQp−pol(N(F℘), E) ⊗E U ∼= E[zΣ℘ ] ⊗E U =: U [zΣ℘ ], which can be nat-
urally equipped with a gΣ℘-action (cf. [28, §2.5]) such that for mΣ℘ :=
(mσ)σ∈Σ℘ ∈ Z|Σ℘|>0 , zmΣ℘ :=

∏
σ∈Σ℘ σ(z)mσ ∈ CQp−pol(N(F℘), E), and

u ∈ U ,
• Zσ · (uzmΣ℘ ) = mσ(dσ − aσ)uzmΣ℘ + (Zσ · u)zmΣ℘ , for Zσ =(

aσ 0
0 dσ

)
∈ tσ ⊂ gσ,

• X+,σ ·(uz
mΣ℘ ) =

{
0 if mσ = 0
mσuz

mΣ℘
−1σ otherwise

where 1σ ∈ Z|Σ℘|>0 with

(1σ)σ′ =
{

1 σ′ = σ

0 σ′ 6= σ
, and X+,σ :=

(
0 1
0 0

)
∈ gσ,

• X−,σ · (uzmΣ℘ ) = (hσ · u)zmΣ℘+1σ − mσuz
mΣ℘+1σ with X−,σ =(

0 0
1 0

)
∈ gσ, hσ =

(
1 0
0 −1

)
∈ gσ.

The embedding U ↪→ U [zΣF℘ ] (which can be easily checked to be bΣ℘-
invariant, where bΣ℘ acts on U via bΣ℘ � tΣ℘ , and the tΣ℘-action on U is
induced by the T (F℘)-action) thus induces

(B.6) U(gΣ℘)⊗U(bΣ℘ ) U −→ CQp−pol(N(F℘), U) ∼= U [zΣ℘ ] .

Let n denote the Lie algebra of the nilpotent radical of B(F℘), since
U(gΣ℘) ∼= U(nΣ℘) ⊗E U(bΣ℘), U(gΣ℘) ⊗U(bΣ℘ ) U ∼= U(nΣ℘) ⊗E U . One
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gets thus a map

U(nΣ℘)⊗E U −→ CQp−pol(N(F℘), U) ∼= U [zΣ℘ ]

which is in fact given by

(B.7)
( ∏
σ∈Σ℘

Xmσ
−,σ

)
⊗ u 7→

( ∏
σ∈Σ℘

mσ−1∏
j=0

(hσ − j)
)
· u

 z
mΣ℘

for all u ∈ U ,mΣ℘ ∈ Z|Σ℘|>0 , where we let
∏mσ−1
j=0 (hσ−j) be 1 whenmσ = 0.

Let f : U ⊗E δB → JB(V ) be a morphism of locally Qp-analytic T (F℘)-
representations. Fix a compact open subgroup N0 of N(F℘), and consider
the composition ι(f) : U ⊗E δB → JB(V )→ V (where the last map is the
canonical lifting with respect to N0, cf. [26, (3.4.8)]), which is bΣ℘-invariant
(where bΣ℘ acts on U ⊗E δB via bΣ℘ � tΣ℘), and induces thus a U(gΣ℘)-
invariant map (where the first isomorphism follows from the fact that δB
is smooth):

(B.8) U(gΣ℘)⊗U(bΣ℘ ) U ∼= U(gΣ℘)⊗U(bΣ℘ ) (U ⊗E δB) −→ V .

Recall the map f is called balanced if the kernel of (B.6) is contained in
the kernel of (B.8).
Let J ⊆ Σ℘, and suppose moreover U and V are locally J-analytic.

Let CJ−pol(N(F℘), E) := ⊗σ∈JE[σ(z)] =: E[zJ ], and CJ−pol(N(F℘), U) :=
CJ−pol(N(F℘), E) ⊗E U ∼= U [zJ ]. Since U is locally J-analytic, one can
check that CJ−pol(N(F℘), U) is a U(gΣ℘)-submodule of CQp−pol(N(F℘), U),
and the action of U(gΣ℘) on CJ−pol(N(F℘), U) factors through U(gJ).
Moreover, one can check (e.g. by (B.7)) that the map (B.6) factors through

(B.9) U(gJ)⊗U(bJ ) U −→ CJ−pol(N(F℘), U) .

Identifying U(gJ)⊗U(bJ )U with U(nJ)⊗EU , CJ−pol(N(F℘), U) with E[zJ ],
this map is in fact equal to

(B.10) U(nJ)⊗E U −→ E[zJ ],(∏
σ∈J

Xmσ
−,σ

)
⊗ u 7→

(∏
σ∈J

mσ−1∏
j=0

(hσ − j)
)
· u

 zmJ ,

for all u ∈ U , mJ ∈ Z|J|>0, where we let
∏mσ−1
j=0 (hσ − j) be 1 when mσ = 0.

Let f be the morphism as above, and consider the bΣ℘-invariant map ι(f) :
U⊗E δB → V . Since both U and V are locally J-analytic, the action of bΣ℘
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on U ⊗E δB and V factors through bJ . Thus ι(f) induces a U(gJ)-invariant
map

(B.11) U(gJ)⊗U(bJ ) U ∼= U(gJ)⊗U(bJ ) (U ⊗E δB) −→ V .

Since V is locally J-analytic, the morphism (B.8) in fact factors through
(B.11). Thus we have

Lemma B.4. — Keep the above notation and hypothesis (in particu-
lar U and V are locally J-analytic), a morphism f : U ⊗E δB → JB(V )
is balanced if and only if the kernel of (B.9) is contained in the kernel
of (B.11).

Remark B.5. — Keep the above notation and hypothesis, by (B.10), we
see f is balanced if and only if for any (mσ)σ∈J ∈ Z|J|>0, if u ∈ U killed by∏
σ∈J

∏mσ−1
j=0 (hσ − j), then (

∏
σ∈J X

mσ
−,σ) · (ι(f)(u)) = 0 ∈ V .

Let t′J be the Lie subalgebra of tJ generated by {hσ}σ∈J .

Lemma B.6. — Keep the above notation and hypothesis, and suppose
the strong dual U ′b is a torsion free U(t′J)-module, then I

GL2(F℘)
B(F℘)

(U) ∼=

(IndGL2(F℘)
B(F℘)

U)J−an. In particular, in this case we have (by Theorem B.3)

HomT (F℘)(U ⊗E δB , JB(V ))bal ∼−−→ HomGL2(F℘)

((
IndGL2(F℘)

B(F℘)
U
)J−an

, V

)
.

Proof. — Since U ′b is a torsion free U(t′J)-module, for any 0 6= X ∈
U(t′J), the morphism U → U , u 7→ Xu is surjective. Consequently, we see
that (B.10) (and hence (B.9)) is surjective. The image of (B.6) is thus equal
to CJ−pol(N(F℘), U). As in [28, §2.4], for a local closed subrepresentation
(see loc. cit. for the definition) X of (IndGL2(F℘)

B(F℘)
U)Qp−an, denote by Xe the

stalk of X at neutral element e ∈ GL2(F℘)/B(F℘). One has the following
commutative diagram

CJ−pol(N(F℘), U) −−−−→
(

IndGL2(F℘)
B(F℘)

U
)J−an

ey y
CQp−pol(N(F℘), U) −−−−→

(
IndGL2(F℘)

B(F℘)
U
)Qp−an

e

where the horizontal maps are injections with dense image as in [28,
(2.5.20)], and the vertical maps are natural embeddings. By [28,
Prop. 2.8.10], I

GL2(F℘)
B(F℘)

(U)e is the closure of the image of (B.6) in
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(IndGL2(F℘)
B(F℘)

U)Qp−an
e , which thus coincides with (IndGL2(F℘)

B(F℘)
U)J−an

e , from

which we deduce that IGL2(F℘)
B(F℘)

(U) ∼= (IndGL2(F℘)
B(F℘)

U)J−an. �
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