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SOBOLEV SPACES ON GRADED LIE GROUPS

by Veronique FISCHER & Michael RUZHANSKY (*)

Abstract. — In this article, we study the Lp-properties of powers of posi-
tive Rockland operators and define Sobolev spaces on general graded Lie groups.
We establish that the defined Sobolev spaces are independent of the choice of a
positive Rockland operator, and that they are interpolation spaces. Although this
generalises the case of sub-Laplacians on stratified groups studied by G. Folland
in [12], many arguments have to be different since Rockland operators are usually
of higher degree than two. We also prove results regarding duality and Sobolev
embeddings, together with inequalities of Hardy–Littlewood–Sobolev type and of
Gagliardo–Nirenberg type.
Résumé. — Dans cet article, nous étudions les propriétés Lp des puissances des

opérateurs de Rockland positifs et nous définissons les espaces de Sobolev sur tous
les groupes de Lie nilpotents gradués. Nous montrons que les espaces de Sobolev
ainsi définis sont indépendants du choix de l’opérateur de Rockland positif et qu’ils
sont des espaces d’interpolation. Quoique cela généralise le cas des sous-laplaciens
sur les groupes stratifiés étudiés par G. Folland dans [12], plusieurs arguments sont
différents car les opérateurs de Rockland sont souvent de degrée plus haut que
deux. Nous montrons aussi des résultats concernant la dualité et les injections de
Sobolev, ainsi que des inégalités de type Littlewood–Sobolev et de type Gagliardo–
Nirenberg.

1. Introduction

Sobolev spaces on Rn may be defined in various equivalent ways, e.g.,
from the elementary definition in the L2 case which relies on the Euclidean
Fourier transform to the Bessel potential Lp spaces using the properties
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1672 Veronique FISCHER & Michael RUZHANSKY

of the Laplace operator or via Littlewood–Paley decomposition. It is quite
natural to try and generalise these spaces to a non-Euclidean setting, for
instance on Lie groups. The development of analysis on nilpotent Lie groups
was initiated by G. Folland and E. Stein in [13], and G. Folland was the first
to define and study Sobolev spaces on stratified (nilpotent Lie) groups [12],
see also [23]. Using Littlewood–Paley decompositions as well as heat kernel
estimates for sub-Laplacians [1, 25], this was generalised to Besov space
on Lie groups of polynomial growth, see e.g. [15, 16]. Other properties of
Sobolev spaces defined via sub-Laplacians on Lie groups have also been
studied, see e.g. [7].
Our main purpose here is to define Sobolev spaces adapted to graded

(nilpotent Lie) groups. These groups form a class containing the class of
stratified groups, they are also endowed with a homogeneous structure and
have polynomial growth of the volume. Although our analysis is closely re-
lated to Folland’s [12], our results do not follow from consequences or direct
adaptations of techniques in the cases of sub-Laplacians on stratified Lie
groups or on Lie groups of polynomial volume growth [1, 7, 12, 15, 16, 25].
Indeed, on the one hand, our main object is not a sub-Laplacian but a
positive Rockland operators R, which is the natural sub-elliptic operators
appearing on graded Lie groups. As in [12] (see also [7]), the Sobolev spaces
are defined via the powers of I +R using the theory of fractional operators
mainly due to Komatsu and Balakrishnan (here we will use its exposition
given in [21]), and the properties of the heat semigroup generated by R.
On the other hand, the operators R may be of high degree in contrast with
the case of sub-Laplacians which are of degree two. This fact requires for
example to give a different proof of the continuity of homogeneous left-
invariant differential operators on the Sobolev spaces than in the stratified
case, see Remark 4.15. The degree being possibly larger than two has also
deeper implications: the operator may not have a unique homogeneous fun-
damental solution, see Remarks 3.5, 3.12 and 4.19, although it is already
known that a parametrix can be constructed, see [5], and that the operator
is injective on the tempered distributions modulo polynomials, see Corol-
lary 2.11. Furthermore the corresponding heat semigroup may neither be
a contraction on Lp-spaces nor preserve positivity, see Remarks 2.9, 3.5
and 3.10; this shows that the heat semi-group of R is not sub-markovian
and, as suggested above, this rules out many of the techniques used in the
case of sub-Laplacians.
These difficulties are part of the motivation to study Rockland operators

on a deeper level. In fact the analysis of sub-Laplacians on stratified groups
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SOBOLEV SPACES ON GRADED LIE GROUPS 1673

such as in [1, 12, 25] may be considered as born out of studying operators
based on sums of squares of vector fields on manifolds, while the present
analysis might help understanding the case of more general operators of
higher order.
Naturally, when we consider a graded Lie group which is stratified, we re-

cover the Sobolev spaces defined by Folland in [12] which then coincide with
the Sobolev spaces obtained in [15] on any Lie group of polynomial growth.
However, for a general graded (non-stratified) Lie group, our Sobolev spaces
may differ from the ones in [15] built out of sub-Laplacians on Lie group of
polynomial growth, see Section 4.8 in this paper. They are also slightly dif-
ferent from the Goodman–Sobolev spaces defined by Goodman on graded
Lie groups for integer exponents only in [18, Section III.5.4], see again
Section 4.8. Note that the Goodman–Sobolev spaces are not interpolation
spaces while our spaces are.

Sobolev spaces associated with positive Rockland operators on graded
Lie groups are also considered in [3] with the aim of obtaining Gagliardo–
Nirenberg, refined Sobolev and Hardy inequalities in this context; the
proofs are sketched by indicating modifications of the case studied in [4] of
the canonical sub-Laplacian on the Heisenberg group. In our view, the def-
inition and properties of Sobolev spaces used in [3] need the justifications
which constitute one purpose for this article. We think that these justifica-
tions go beyond the addition of some (natural but non-trivial) properties
of the fractional powers of positive Rockland operators and that, together
with the other results of this paper, they shed light on this part of analy-
sis. Beside obtaining the Sobolev embeddings and the Gagliardo–Nirenberg
inequalities with a proof different from [3], we show for instance that the
Sobolev spaces are independent of the positive Rockland operators consid-
ered to build the Sobolev spaces.

Our main tool is the heat semigroup associated with a positive Rockland
operator. In order to make the paper as clear and self-contained as possi-
ble, we choose to rely only on the fundamental result due to Folland and
Stein that their associated heat kernels are Schwartz functions together
with its proof in [14, Chapter 4.B], and not on other properties of positive
Rockland operators. Naturally we also use other general results in anal-
ysis on homogeneous Lie groups and in functional analysis, see e.g. [11].
We make no use of, for instance, the more precise Gaussian estimates for
these heat kernels obtained later in [8, 9] and [2]; note that the proofs for
sub-Laplacians [1, 12, 15, 25] also do not make use of those more precise
estimates. We prefer to recover using classical methods the fact that the
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1674 Veronique FISCHER & Michael RUZHANSKY

heat semigroup of a positive Rockland operator R is continuous on Lp-
spaces, although this fact is a particular consequence of the more general
(but more involved) result proved in [2]. This approach makes the paper as
complete and accessible as possible, and has also the advantage of showing
almost simultaneously other properties of the heat semigroup.
Our study of the heat semigroup enables us to apply the general theory of

fractional powers of a generator of a semigroup and shows that the powers
of R and of I +R make sense as unbounded operators on Lp-spaces. This
allows us to define the spaces Lps(G) and L̇ps(G) on a graded Lie group G as
the closure of the domains Dom(I +Rp)

s
ν and Dom(R

s
ν
p ) for the Sobolev

norms
‖f‖Lps ≡ ‖f‖Lps(G) :=

∥∥(I +Rp)
s
ν f
∥∥
Lp(G)

and
‖f‖L̇ps ≡ ‖f‖L̇ps(G) :=

∥∥∥R s
ν
p f
∥∥∥
Lp(G)

,

respectively. Here ν is the homogeneous degree of R. The most important
properties proved in this paper are summarised in the following theorem.
In view of these properties, we call the Lps(G) spaces the (inhomogeneous)
Sobolev spaces on G and L̇ps(G) the homogeneous Sobolev spaces on G.
The notions used in Theorem 1.1 below, e.g. homogeneity, the notation for
Xα, [α], etc... are explained in Section 2.

Theorem 1.1. — Let G be a graded Lie group.
(1) For any p ∈ (1,∞) and a ∈ R, the spaces Lpa(G) and L̇pa(G) are

Banach spaces independent of the positive Rockland operators used
to define them. Different choices of positive Rockland operators
yield equivalent (inhomogeneous or homogeneous) Sobolev norms.
The Schwartz space S(G) is dense in Lpa(G) for any p ∈ (1,∞)

and a ∈ R, and in L̇pa(G) for any p ∈ (1,∞) and a > 0.
(2) We have the continuous inclusions for any a, b ∈ R, a > b, and

p, q ∈ (1,∞)

S(G) ⊂ Lpa(G) ⊂ Lpb(G) ⊂ S ′(G)
Lpa(G) ⊂ C(G), a > Q/p,(1.1)

Lpb ⊂ Lqa and L̇pb ⊂ L̇qa,
b− a
Q

= 1
p
− 1
q
.(1.2)

In particular, for Q( 1
p − 1) < s < Q

p , the members of L̇ps and Lps are
locally integrable.

(3) Let a, b, c ∈ R with c ∈ (a, b). We define θ ∈ (0, 1) via c = θb +
(1− θ)a. For any p ∈ (1,∞), there exists a constant C = Ca,b,c,p > 0
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SOBOLEV SPACES ON GRADED LIE GROUPS 1675

such that for any f ∈ Lpa(G)∩Lpb(G) or f ∈ L̇pa(G)∩L̇pb(G) we have,
respectively,

‖f‖Lpc 6 C ‖f‖
1−θ
Lpa
‖f‖θLp

b
or ‖f‖L̇pc 6 C ‖f‖

1−θ
L̇pa
‖f‖θL̇p

b
.

(4) If q, r ∈ (1,∞) and 0 < σ < s then there exists C > 0 such that we
have

∀ f ∈ Lq(G) ∩ L̇rs(G) ‖f‖L̇pσ 6 C ‖f‖
θ
Lq ‖f‖

1−θ
L̇rs

,

where θ := 1− σ
s and p ∈ (1,∞) is given via 1

p = θ
q + 1−θ

r .
(5) If p ∈ (1,∞) and a > 0, then Lpa(G) = Lp(G) ∩ L̇pa(G) and, af-

ter a choice of positive Rockland operators to realise the Sobolev
norms, the Sobolev norm ‖ · ‖Lpa(G) is equivalent to the norm given
by ‖ · ‖Lp(G) + ‖ · ‖L̇pa(G).

(6) If s = ν` with ` ∈ N0, ν being the homogeneous degree of a positive
Rockland operator, and if p ∈ (1,∞), then the space Lpν`(G) is the
collection of functions f ∈ Lp(G) such that Xαf ∈ Lp(G) for any
α ∈ Nn0 with [α] = ν`, and the map ‖ · ‖p +

∑
[α]=ν` ‖Xα · ‖p is a

norm on Lpν`(G) which is equivalent to the Sobolev norm.
With the same hypotheses, the space L̇pν`(G) coincides with the

completion of S(G) for the map
∑

[α]=ν` ‖Xα · ‖p, which yields a
norm equivalent to the homogeneous Sobolev norm.

(7) If T is any homogeneous left-invariant differential operator on G of
homogeneous degree d, then T maps continuously Lps(G) to Lps−d(G)
and L̇ps(G) to L̇ps−d(G), for any s ∈ R and p ∈ (1,∞).

(8) If R be a positive Rockland operator of homogeneous degree ν,
then, for any a, s ∈ R and p ∈ (1,∞), the operator (I +R) aν maps
continuously Lps(G) to Lps−a(G) and the operator R a

ν maps contin-
uously L̇ps(G) to L̇ps−a(G).

(9) For any s ∈ R and p ∈ (1,∞), the Banach spaces Lp
′

−s′(G) and
L̇p
′

−s(G) are the duals of Lps(G) and L̇ps(G) respectively.
(10) The inhomogeneous and homogeneous Sobolev spaces satisfy the

properties of interpolation in the sense of Theorem 4.8 and Propo-
sition 4.13 respectively.

In Part (9) as in the rest of the paper, if p ∈ (1,∞) then p′ ∈ (1,∞) is
its conjugate exponent given via

1
p

+ 1
p′

= 1.

The inclusion in (1.1) may be viewed as a Sobolev embedding, C(G)
denoting the Banach space of continuous bounded functions on G. The

TOME 67 (2017), FASCICULE 4



1676 Veronique FISCHER & Michael RUZHANSKY

inclusions in (1.2) yield the Hardy–Littlewood–Sobolev inequality in this
context. The inequality in Part (4) may be called the Gagliardo–Nirenberg
inequality.

Our analysis also yields other results. For instance, the case p = 2 yields
Hilbert spaces, see Section 4.7. Also the limiting case p = 1 may be included
in the homogeneous inclusion in (1.2) with b = 0 and in Part (4) above if
one replaces L1(G) with the weak-L1 space L1,∞(G). However, for the sake
of clarity, we present mainly the case Lp, p ∈ (1,∞) in order to present
unified results.
This paper is organised as follows. After some preliminaries about graded

Lie groups and their homogeneous structure in Section 2, we first define the
fractional powers of a positive Rockland operator in Section 3, as well as its
Riesz and Bessel potentials. This enables us to define our (inhomogeneous
and homogeneous) Sobolev spaces in Section 4, where we also show that
they satisfy the properties expected from Sobolev spaces.

2. Preliminaries

In this section, after defining graded Lie groups, we recall their homo-
geneous structure as well as the definition and some properties of their
Rockland operators.

2.1. Graded and homogeneous Lie groups

Here we recall briefly the definition of graded nilpotent Lie groups and
their natural homogeneous structure. A complete description of the notions
of graded and homogeneous nilpotent Lie groups may be found in [11] or [14,
Chapter 1], see also [12].

We will be concerned with graded Lie groups G which means that G is a
connected and simply connected Lie group whose Lie algebra g admits an
N-gradation g = ⊕∞`=1g` where the g`, ` = 1, 2, . . ., are vector subspaces of
g, almost all equal to {0}, and satisfying [g`, g`′ ] ⊂ g`+`′ for any `, `′ ∈ N.
This implies that the group G is nilpotent. Examples of such groups are
the Heisenberg group and, more generally, all stratified groups (which by
definition correspond to the case g1 generating the full Lie algebra g).

We construct a basis X1, . . . , Xn of g adapted to the gradation, by choos-
ing a basis {X1, . . . Xn1} of g1 (this basis is possibly reduced to ∅), then
{Xn1+1, . . . , Xn1+n2} a basis of g2 (possibly {0} as well as the others) and

ANNALES DE L’INSTITUT FOURIER



SOBOLEV SPACES ON GRADED LIE GROUPS 1677

so on. Via the exponential mapping expG : g → G, we identify the points
(x1, . . . , xn) ∈ Rn with the points x = expG(x1X1 + · · · + xnXn) in G.
Consequently we allow ourselves to denote by C(G), D(G) and S(G) etc,
the spaces of continuous functions, of smooth and compactly supported
functions or of Schwartz functions on G identified with Rn, and similarly
for distributions with the duality notation 〈 · , · 〉.

This basis also leads to a corresponding Lebesgue measure on g and
the Haar measure dx on the group G, hence Lp(G) ∼= Lp(Rn). The group
convolution of two functions f and g, for instance integrable, is defined via

(f ∗ g)(x) :=
∫
G

f(y)g(y−1x) dy.

The convolution is not commutative: in general, f ∗ g 6= g ∗ f . However,
apart from the lack of commutativity, group convolution and the usual
convolution on Rn share many properties. For example, we have

(2.1) 〈f ∗ g, h〉 = 〈f, h ∗ g̃〉, with g̃(x) = g(x−1).

And the Young convolutions inequalities hold: if f1 ∈ Lp(G) and f2 ∈
Lq(G) with 1 6 p, q, r 6∞ and 1

p + 1
q = 1

r + 1, then f1 ∗ f2 ∈ Lr(G) and

(2.2) ‖f1 ∗ f2‖r 6 ‖f1‖p ‖f2‖q .

The coordinate function x = (x1, . . . , xn) ∈ G 7→ xj ∈ R is denoted
by xj . More generally we define for every multi-index α ∈ Nn0 , xα :=
xα1

1 xα2
2 . . . xαnn , as a function on G. Similarly we set Xα = Xα1

1 Xα2
2 · · ·Xαn

n

in the universal enveloping Lie algebra U(g) of g.
For any r > 0, we define the linear mapping Dr : g→ g by DrX = r`X

for every X ∈ g`, ` ∈ N. Then the Lie algebra g is endowed with the
family of dilations {Dr, r > 0} and becomes a homogeneous Lie algebra
in the sense of [14]. We re-write the set of integers ` ∈ N such that g` 6=
{0} into the increasing sequence of positive integers υ1, . . . , υn counted
with multiplicity, the multiplicity of g` being its dimension. In this way,
the integers υ1, . . . , υn become the weights of the dilations and we have
DrXj = rυjXj , j = 1, . . . , n, on the chosen basis of g. The associated
group dilations are defined by

Dr(x) = r · x := (rυ1x1, r
υ2x2, . . . , r

υnxn), x = (x1, . . . , xn) ∈ G, r > 0.

In a canonical way this leads to the notions of homogeneity for functions and
operators. For instance the degree of homogeneity of xα and Xα, viewed
respectively as a function and a differential operator on G, is

[α] =
∑
j

υjαj .

TOME 67 (2017), FASCICULE 4



1678 Veronique FISCHER & Michael RUZHANSKY

Indeed, let us recall that a vector of g defines a left-invariant vector field
on G and, more generally, that the universal enveloping Lie algebra of g is
isomorphic with the left-invariant differential operators; we keep the same
notation for the vectors and the corresponding operators.
Recall that a homogeneous quasi-norm on G is a continuous function

| · | : G → [0,+∞) homogeneous of degree 1 on G which vanishes only at
0. This often replaces the Euclidean norm in the analysis on homogeneous
Lie groups:

Proposition 2.1.
(1) Any homogeneous quasi-norm |·| on G satisfies a triangle inequality

up to a constant:

∃ C > 1 ∀ x, y ∈ G |xy| 6 C(|x|+ |y|).

It partially satisfies the reverse triangle inequality:

(2.3) ∀ b ∈ (0, 1) ∃ C = Cb > 1 ∀ x, y ∈ G

|y| 6 b|x| =⇒
∣∣|xy| − |x|∣∣ 6 C|y|.

(2) Any two homogeneous quasi-norms | · |1 and | · |2 are equivalent in
the sense that

∃ C > 0 ∀ x ∈ G C−1|x|2 6 |x|1 6 C|x|2.

(3) A concrete example of a homogeneous quasi-norm is given via

|x|νo :=
( n∑
j=1

x
2νo/υj
j

)1/2νo
,

with νo a common multiple to the weights υ1, . . . , υn.

Various aspects of analysis on G can be developed in a comparable way
with the Euclidean setting sometimes replacing the topological dimension
n =

∑∞
`=1 dim g` of the group G by its homogeneous dimension

Q :=
∞∑
`=1

`dim g` = υ1 + υ2 + . . .+ υn.

For example, there is an analogue of polar coordinates on homogeneous
groups with Q replacing n:

Proposition 2.2. — Let | · | be a fixed homogeneous quasi-norm on
G. Then there is a (unique) positive Borel measure σ on the unit sphere
S := {x ∈ G : |x| = 1}, such that for all f ∈ L1(G), we have

(2.4)
∫
G

f(x) dx =
∫ ∞

0

∫
S

f(ry)rQ−1 dσ(y) dr.

ANNALES DE L’INSTITUT FOURIER
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Another example is the following property regarding kernels or operators
of type ν (see [12] and [14, Chapter 6A]):

Definition 2.3. — A distribution κ ∈ D′(G) which is smooth away
from the origin and homogeneous of degree ν−Q is called a kernel of type
ν ∈ C on G. The corresponding convolution operator f ∈ D(G) 7→ f ∗ κ is
called an operator of type ν.

The next statement summarise the properties of the operators of type ν
used in the paper:

Proposition 2.4. — Let G be a graded group.

(1) An operator of type ν with ν ∈ [0, Q) is (−ν)-homogeneous and
extends to a bounded operator from Lp(G) to Lq(G) whenever p, q ∈
(1,∞) satisfy 1

p −
1
q = <ν

Q .
(2) Let κ be a smooth function away from the origin homogeneous

of degree ν with <ν = −Q. Then κ is a kernel of type ν, that
is, κ coincides on G\{0} with the restriction of a distribution in
D′(G) by definition, if and only if its mean value is zero, that is,
when

∫
S
κ dσ = 0 where σ is the measure on the unit sphere of a

homogeneous quasi-norm given by the polar change of coordinates,
see Proposition 2.2. (This condition is independent of the choice of
a homogeneous quasi-norm.)

(3) Let κ be a kernel of type s ∈ [0, Q). Let T be a homogeneous left
differential operator of degree νT . If s − νT ∈ [0, Q), then Tκ is a
kernel of type s− νT .

(4) Suppose κ1 is a kernel of type ν1 ∈ C with <ν1 > 0 and κ2 is a
kernel of type ν2 ∈ C with <ν2 > 0. We assume <(ν1 + ν2) < Q.
Then κ1 ∗ κ2 is well defined as a kernel of type ν1 + ν2. Moreover
if f ∈ Lp(G) where 1 < p < Q/(<(ν1 + ν2)) then (f ∗ κ1) ∗ κ2 and
f ∗ (κ1 ∗κ2) belong to Lq(G), 1

q = 1
p −

<(ν1+ν2)
Q , and they are equal.

We will also need the following theorem which is a classical consequence
of the theorem of singular integrals in the context of spaces of homogeneous
type [6, Chapter III]:

Theorem 2.5. — Let T be an operator bounded on L2(G) and invariant
under left translation. Let κ ∈ S ′(G) be its right convolution kernel, that
is, Tφ = φ ∗ κ for any φ ∈ S(G).
We assume that κ coincides with a continuously differentiable function

on G\{0} and that for one (then any) choice of quasi-norm | · | on G, the

TOME 67 (2017), FASCICULE 4



1680 Veronique FISCHER & Michael RUZHANSKY

following quantities∫
|x|>1

|κ(x)|dx, sup
0<|x|<1

|x|Q+υj |Xjκ(x)|, j = 1, . . . , n,

and
sup

0<|x|<1
|x|Q|κ(x)|,

are finite. Then T is bounded on Lp(G) for any p > 2.

The approximations of the identity may be constructed on G as on their
Euclidean counterpart, replacing the topological dimension and the abelian
convolution with the homogeneous dimension and the group convolution:

Lemma 2.6. — Let φ ∈ L1(G). Then the functions φt, t > 0, defined
via φt(x) = t−Qφ(t−1x), are integrable and

∫
φt =

∫
φ is independent of t.

Furthermore, for any f in Lp(G), Co(G), S(G) or S ′(G), the sequence of
functions f ∗ φt and φt ∗ f , t > 0, converges towards (

∫
φ) f as t → 0 in

Lp(G), Co(G), S(G) and S ′(G) respectively.

In Lemma 2.6 and in the whole paper, Co(G) denotes the space of con-
tinuous functions on G which vanish at infinity. This means that f ∈ Co(G)
when for every ε > 0 there exists a compact set K outside which we have
|f | < ε. Endowed with the supremum norm ‖ · ‖∞ = ‖ · ‖L∞(G), it is a
Banach space.
Recall that D(G), the space of smooth and compactly supported func-

tions, is dense in Lp(G) for p ∈ [1,∞) and in Co(G) (in which case we set
p =∞).
In Theorem 2.8, we will see that the heat semi-group associated to a

positive Rockland operator gives an approximation of the identity which is
commutative.

2.2. Rockland operators

Here we recall the definition of Rockland operators and their main prop-
erties.

The definition of a Rockland operator uses the representations of the
group. Here we consider only continuous unitary representations of G. We
will often denote by π such a representation, by Hπ its Hilbert space and by
H∞π the subspace of smooth vectors. The corresponding infinitesimal repre-
sentation on the Lie algebra g and its extension to the universal enveloping
Lie algebra U(g) are also denoted by π. We recall that g and U(g) are
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identified with the spaces of left-invariant vector fields and of left-invariant
differential operators on G respectively.

Definition 2.7. — A Rockland operator on G is a left-invariant differ-
ential operator R which is homogeneous of positive degree and satisfies the
Rockland condition:

(R) for each unitary irreducible representation π on G, except for the
trivial representation, the operator π(R) is injective on H∞π , that is,

∀ v ∈ H∞π π(R)v = 0 =⇒ v = 0.

Although the definition of a Rockland operator would make sense on
a homogeneous Lie group (in the sense of [14]), it turns out (see [22],
see also [10, Lemma 2.2]) that the existence of a (differential) Rockland
operator on a homogeneous group implies that the homogeneous group
may be assumed to be graded.

Some authors may have different conventions than ours regarding Rock-
land operators: for instance some choose to consider right-invariant opera-
tors and some definitions of a Rockland operator involves only the principal
part. The analysis however would be exactly the same.

In 1979, Helffer and Nourrigat proved in [19] that the property in (R)
is equivalent to the hypoellipticity of the operator. Rockland operators
may be viewed as an analogue of elliptic operators (with a high degree of
homogeneity) in a non-abelian subelliptic context. In the stratified case,
one can check easily that any (left-invariant negative) sub-Laplacian, that
is

(2.5) L = Z2
1 + . . .+ Z2

n′

with Z1, . . . , Zn′ forming any basis of the first stratum g1, is a Rockland
operator. More generally it is not difficult to see that the operator

(2.6)
n∑
j=1

(−1)
νo
υj cjX

2 νoυj
j with cj > 0,

is a Rockland operator of homogeneous degree 2νo if νo is any common
multiple of υ1, . . . , υn. Hence Rockland operators do exist on any graded Lie
group (not necessarily stratified). Furthermore, ifR is a Rockland operator,
then one can show easily that its powers Rk, k ∈ N, and its complex
conjugate R̄ are also Rockland operators.
If a Rockland operator R which is formally self-adjoint, that is, R∗ = R

as elements of the universal enveloping algebra U(g), is fixed, then it admits
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a self-adjoint extension on L2(G) [14, p. 131]. In this case we will denote
by R2 the self-adjoint extension and by E its spectral measure:

(2.7) R2 =
∫
R
λdE(λ).

2.3. Positive Rockland operators and their heat kernels

In this section we summarise properties of positive Rockland operators
that are important for our analysis.

A Rockland operator R is positive when R is formally self-adjoint, that
is, R∗ = R in U(g), and satisfies

∀ f ∈ D(G)
∫
G

Rf(x)f(x) dx > 0.

Note that ifG is stratified and L is a (left-invariant negative) sub-Laplacian,
then −L is a positive Rockland operator. The example in (2.6) is a positive
Rockland operator. Hence positive Rockland operators always exist on any
graded Lie group. Moreover if R is a positive Rockland operator, then its
powers Rk, k ∈ N, and its complex conjugate R̄ are also positive Rockland
operators.
Let us fix a positive Rockland operator R on G. By functional calculus

(see (2.7)), we can define the spectral multipliers

e−tR2 :=
∫ ∞

0
e−tλ dE(λ), t > 0,

which form the heat semigroup of R. The operators e−tR2 are invariant
under left-translations and are bounded on L2(G). Therefore the Schwartz
kernel theorem implies that each operator e−tR2 admits a unique distribu-
tion ht ∈ S ′(G) as its convolution kernel:

e−tR2f = f ∗ ht, t > 0, f ∈ S(G).

The distributions ht, t > 0, are called the heat kernels of R. We summarise
their main properties in the following theorem:

Theorem 2.8. — Let R be a positive Rockland operator on G which is
homogeneous of degree ν ∈ N. Then each distribution ht is Schwartz and
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we have:

∀ s, t > 0 ht ∗ hs = ht+s,(2.8)

∀ x ∈ G, t, r > 0 hrνt(rx) = r−Qht(x),(2.9)

∀ x ∈ G ht(x) = ht(x−1),(2.10) ∫
G

ht(x) dx = 1.(2.11)

The function h : G× R→ C defined by

h(x, t) :=
{
ht(x) if t > 0 and x ∈ G,
0 if t 6 0 and x ∈ G,

is smooth on (G × R)\{(0, 0)} and satisfies (R + ∂t)h = δ0,0 where δ0,0
is the delta-distribution at (0, 0) ∈ G × R. Having fixed a homogeneous
quasi-norm | · | on G, we have for any N ∈ N0, α ∈ Nn0 and ` ∈ N0:

(2.12) ∃ C = Cα,N,` > 0 ∀ t ∈ (0, 1] sup
|x|=1

|∂`tXαht(x)| 6 Cα,N tN .

Consequently

(2.13) ∀ x ∈ G, t > 0 ht(x) = t−
Q
ν h1(t− 1

ν x),

and for x ∈ G\{0} fixed,

(2.14) Xα
x h(x, t) =

{
O(t−

Q+[α]
ν ) as t→∞,

O(tN ) for all N ∈ N0 as t→ 0.

Inequalities (2.14) are also valid for any x in a fixed compact subset of
G\{0}.

Theorem 2.8 was proved by Folland and Stein in [14, Chapter 4.B].

Remark 2.9. — If the group is stratified and R = −L where L is a
(negative) sub-Laplacian, then R is of order two and the proof relies on
Hunt’s theorem [20]. The heat kernel is not only real-valued but also non-
negative. Furthermore the heat semigroup is positivity preserving and is
a contraction not only on L2 but on each Lp-space. Cf. [12, Theorem 3.1]
and [14, Chapter 1.G].
More precise estimates of heat kernels of general positive Rockland op-

erators were obtained in [8, 9] and [2] but we will not use them in this
paper.

In the proof by Folland and Stein in [14, Chapter 4.B], the following
technical property, which we will use later on, is also shown:
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Lemma 2.10. — Let R be a positive Rockland operator of a graded Lie
group G ∼ Rn with homogeneous degree ν. If m is a positive integer such
that mν > n

2 , then the functions in the domain of Rm are continuous on Ω
and for any compact subset Ω of G, there exists a constant C = CΩ,R,G,m
such that

∀ φ ∈ Dom(Rm) sup
x∈Ω
|φ(y)| 6 C (‖φ‖L2 + ‖Rmφ‖L2) .

This is a weak form of Sobolev embeddings. We will later on obtain
stronger results of this kind in Theorem 4.24.

We end this section with the following result of Liouville’s type:

Theorem 2.11. — If R is a positive Rockland operator and f ∈ S ′(G)
a distribution satisfying Rf = 0 then f is a polynomial.

Proof. — As R is a positive Rockland operator, R̄ = Rt is also Rockland
and they are both hypoelliptic, see [19]. The conclusion follows by applying
the Liouville theorem for homogeneous Lie groups proved by Geller in [17].

�

3. Fractional powers of positive Rockland operators

This section is devoted to the fractional powers of positive Rockland
operators. We will carry out the construction on the scale of Lp-spaces for
1 6 p 6 ∞, with L∞(G) substituted by the space Co(G) of continuous
functions vanishing at infinity. Then we discuss the essential properties of
such an extension. Eventually we define its complex powers - in particular
purely imaginary - and the associated Riesz and Bessel potentials.

3.1. Positive Rockland operators on Lp

Here we define and study the analogue Rp of the operator R on Lp(G)
or Co(G). This analogue will be defined as the infinitesimal generator of
the heat convolution semigroup. Hence we start by proving the following
properties:

Proposition 3.1. — The operators f 7→ f ∗ ht, t > 0, form a strongly
continuous semi-group on Lp(G) for any p ∈ [1,∞) and on Co(G) if p =∞.
This semi-group is also equibounded:

∀ t > 0, ∀ f ∈ Lp(G) or Co(G) ‖f ∗ ht‖p 6 ‖h1‖1 ‖f‖p .
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Furthermore for any p ∈ [1,∞] (finite or infinite) and any f ∈ D(G),

(3.1) lim
t→0

∥∥∥∥1
t
(f ∗ ht − f)−Rf

∥∥∥∥
p

= 0.

Proof of Proposition 3.1. — If f ∈ D(G), then f ∈ Dom(R) ⊂ Dom(R2)
and for any s, t > 0, by functional calculus,

f ∗ ht+s = e−(t+s)R2f = e−tR2e−sR2f = (f ∗ hs) ∗ ht
and, by the Young convolution inequalities for p ∈ [1,∞] (see (2.2)),

‖f ∗ ht‖p 6 ‖ht‖1 ‖f‖p
with ‖ht‖1 = ‖h1‖1 <∞ by Theorem 2.8. By density of D(G) in Lp(G) for
p ∈ [1,∞) and Co(G) for p =∞, this implies that the operators f 7→ f ∗ht,
t > 0, form a strongly continuous equibounded semi-group on Lp(G) for
any p ∈ [1,∞) and on Co(G).
Let us prove the convergence in (3.1) for p =∞ for a function f ∈ D(G).

First let us prove that for any compact subset Ω ⊂ G, we have

(3.2) sup
Ω

∣∣∣∣1t (f ∗ ht − f)−Rf
∣∣∣∣ −→t→0 0.

Since D(G) ⊂ Dom(R) and e−tR2f = f ∗ ht, we have for any integer
m′ ∈ N0:

1
t
Rm

′
(f ∗ ht − f)−Rm

′+1f = 1
t
Rm

′

2
(
e−tR2f − f

)
−Rm

′+1
2 f

= 1
t

(
e−tR2Rm

′

2 f −Rm
′

2 f
)
−Rm

′+1
2 f

= 1
t

(
(Rm

′
f) ∗ ht −Rm

′
f
)
−Rm

′+1f,

and this tends to 0 in L2(G) as t → 0. Now (3.2) follows from this L2-
convergence and applying Lemma 2.10, to φ = 1

t (f ∗ ht − f)−Rf .
We fix a homogeneous quasi-norm | · | on G, for example the one in

Part (3) of Proposition 2.1. Denoting B̄R := {x ∈ G, |x| 6 R} the closed
ball about 0 of radius R, we choose R > 1 such that B̄R contains the
support of f . Let Co = Cb be the constant in the reverse triangle inequality,
see (2.3), for b = 1

2 . We choose Ω = B̄2CoR the closed ball about 0 and with
radius 2CoR. If x 6∈ Ω, then since f is supported in B̄R ⊂ Ω,(

1
t

(f ∗ ht − f)−Rf
)

(x) = 1
t
f ∗ ht(x) = 1

t

∫
|y|6R

f(y)ht(y−1x) dy,

hence∣∣∣∣1t f ∗ ht(x)
∣∣∣∣ 6 ‖f‖∞t

∫
|y|6R

|ht(y−1x)|dy =
‖f‖∞
t

∫
|xt

1
ν z−1|6R

|h1(z)|dz,
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as ht satisfies (2.13). Simple manipulations, more precisely the reverse tri-
angle inequality in (2.3) and the polar change of variable in Proposition 2.2,
yield∫

|xt
1
ν z−1|6R

|h1(z)|dz 6
∫
|z|>t−

1
ν R/2
|h1(z)|dz

6
∥∥| · |Q+2νh1

∥∥
∞

∫
|z|>t−

1
ν R/2
|z|−Q−2ν dz 6 Ct2,

as h1 ∈ S(G). Consequently taking the supremum in the complementary
on Ω

sup
Ωc

∣∣∣∣1t (f ∗ ht − f)−Rf
∣∣∣∣ 6 C ′t −→t→0 0.

This shows the convergence in (3.1) for p =∞.
We now proceed in a similar way to prove the convergence in (3.1) for p

finite. As above we fix f ∈ D(G) supported in B̄R. We decompose∥∥∥∥1
t

(f ∗ ht − f)−Rf
∥∥∥∥
p

6

∥∥∥∥1
t
(f ∗ ht − f)−Rf

∥∥∥∥
Lp(B̄2CoR)

+
∥∥∥∥1
t
(f ∗ ht − f)−Rf

∥∥∥∥
Lp(Bc2CoR)

.

For the first term,∥∥∥∥1
t
(f ∗ ht − f)−Rf

∥∥∥∥
Lp(B̄2CoR)

6 |B̄2CoR|
1
p

∥∥∥∥1
t
(f ∗ ht − f)−Rf

∥∥∥∥
∞
−→
t→0

0,

as we have already proved the convergence in (3.1) for p = ∞. For the
second term, we adapt the argument given for p = ∞, that is, first we
observe that∥∥∥∥1

t
(f ∗ ht − f)−Rf

∥∥∥∥
Lp(Bc2CoR)

= 1
t
‖f ∗ ht‖Lp(Bc2CoR)

6
‖f‖∞
t

(∫
|x|>2CoR

(∫
|y|<R

|ht(y−1x)|dy
)p

dx
) 1
p

,

and then, using simple manipulations and the properties of the heat kernels
(see Theorem 2.8), we have∫
|x|>2CoR

(∫
|y|<R
|ht(y−1x)|dy

)p
dx 6 CR,p

∫
|z|>R/2

|ht(z)|p dz 6 C ′R,pt2.

This yields the convergence in (3.1) for p finite. �
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Definition 3.2. — Let R be a positive Rockland operator on G.
For p ∈ [1,∞), we denote by Rp the operator such that −Rp is the

infinitesimal generator of the semi-group of operators f 7→ f ∗ht, t > 0, on
the Banach space Lp(G).
We also denote by R∞o the operator such that −R∞o is the infinitesimal

generator of the semi-group of operators f 7→ f ∗ ht, t > 0, on the Banach
space Co(G).

For the moment it seems that R2 denotes the self-adjoint extension of
R on L2(G) and minus the generator of f 7→ f ∗ ht, t > 0, on L2(G). In
the sequel, in fact in Theorem 3.3 below, we show that the two operators
coincide and there is no conflict of notation.

Theorem 3.3. — Let R be a positive Rockland operator on G and
p ∈ [1,∞) ∪ {∞o}.

(1) The operator Rp is closed. The domain of Rp contains D(G), and
for f ∈ D(G) we have Rpf = Rf .

(2) The positive Rockland operator R̄p is the infinitesimal generator of
the strongly continuous semi-group {f 7→ f ∗ h̄t}t>0 on Lp(G) for
p ∈ [1,∞) and on Co(G) for p =∞o.

(3) If p ∈ (1,∞) then the dual of Rp is R̄p′ . The dual of R∞o
restricted

to L1(G) is R̄1. The dual of R1 restricted to Co(G) ⊂ L∞(G) is
R̄∞o

.
(4) If p ∈ [1,∞), the operator Rp is the maximal restriction of R

to Lp(G), that is, the domain of Rp consists of all the functions
f ∈ Lp(G) such that the distributional derivative Rf is in Lp(G)
and Rpf = Rf . In particular, the operator R2 obtained from Def-
inition 3.2 coincides with the self-adjoint extension of R on L2(G).
The operator R∞o is the maximal restriction of R to Co(G), that

is, the domain of R∞o
consists of all the function f ∈ Co(G) such

that the distributional derivative Rf is in Co(G) and Rpf = Rf .
(5) If p ∈ [1,∞), the operator Rp is the smallest closed extension of
R|D(G) on Lp(G). For p = 2, R2 is the self-adjoint extension of R
on L2(G).

Proof. — Part (1) is a consequence of Proposition 3.1. Intertwining with
the complex conjugate, this implies that {f 7→ f ∗ h̄t}t>0 is also a strongly
continuous semi-group on Lp(G) whose infinitesimal operator coincides
with R̄ = Rt on D(G). This shows Part (2).

For Part (3), we observe that using (2.1) and (2.10), we have

(3.3) ∀ f1, f2 ∈ D(G) 〈f1 ∗ ht, f2〉 = 〈f1, f2 ∗ h̄t〉.

TOME 67 (2017), FASCICULE 4



1688 Veronique FISCHER & Michael RUZHANSKY

Thus we have for any f, g ∈ D(G) and p ∈ [1,∞) ∪ {∞o}〈1
t
(e−tRpf−f), g

〉
= 1
t
〈f ∗ht−f, g〉 = 1

t
〈f, g∗ h̄t−g〉 = 1

t
〈f, e−tR̄p′ g−g〉.

Here the brackets refer to the duality in the sense of distribution. Taking
the limit as t→ 0 of the first and last expressions proves Part (3).

We now prove Part (4) for any p ∈ [1,∞)∪{∞o}. Let f ∈ Dom(Rp) and
φ ∈ D(G). Since R is formally self-adjoint, we know that Rt = R̄, and by
Part (1), we have Rqφ = Rφ for any q ∈ [1,∞) ∪ {∞o}. Thus by Part (3)
we have

〈Rpf, φ〉 = 〈f, R̄p′φ〉 = 〈f,Rtφ〉 = 〈Rf, φ〉,

and Rpf = Rf in the sense of distributions. Thus

Dom(Rp) ⊂ {f ∈ Lp(G) : Rf ∈ Lp(G)}.

We now prove the reverse inclusion. Let f ∈ Lp(G) such that Rf ∈
Lp(G). Let also φ ∈ D(G). The following computations are justified by the
properties of R and ht (see Theorem 2.8), Fubini’s Theorem, and (3.3):

〈f ∗ ht − f, φ〉 = 〈f, φ ∗ h̄t − φ〉 = 〈f,
∫ t

0
∂s(φ ∗ h̄s) ds〉

= 〈f,
∫ t

0
−R̄(φ ∗ h̄s) ds〉 = −〈f, R̄

∫ t

0
(φ ∗ h̄s) ds〉

= −〈Rf,
∫ t

0
φ ∗ h̄s ds〉 = −

∫ t

0
〈Rf, φ ∗ h̄s〉ds

= −
∫ t

0
〈(Rf) ∗ hs, φ〉ds = −〈

∫ t

0
(Rf) ∗ hs ds, φ〉.

Therefore,
1
t
(f ∗ ht − f) = −1

t

∫ t

0
(Rf) ∗ hs ds.

This converges towards −Rf in Lp(G) as t→ 0 by the general properties of
averages of strongly continuous semigroups on a Banach space. This shows
f ∈ Dom(Rp) and concludes the proof of (iv).
Part (5) follows from (4). This also shows that the self-adjoint extension

of R coincides with R2 as defined in Definition 3.2 and concludes the proof
of Theorem 3.3. �

Theorem 3.3 has the following consequences which will enable us to define
the fractional powers of Rp.
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Corollary 3.4. — We keep the same setting and notation as in The-
orem 3.3.

(1) The operator Rp is injective on Lp(G) for p ∈ [1,∞) and R∞o
is

injective on Co(G), namely,

for p ∈ [1,∞) ∪ {∞o} : ∀ f ∈ Dom(Rp) Rpf = 0 =⇒ f = 0.

(2) If p ∈ (1,∞) then the operator Rp has dense range in Lp(G). The
operator R∞o has dense range in Co(G). The closure of the range
of R1 is the closed subspace {φ ∈ L1(G) :

∫
G
φ = 0} of L1(G).

(3) For p ∈ [1,∞) ∪ {∞o}, and any µ > 0, the operator µI + Rp is
invertible on Lp(G), p ∈ [1,∞), and on Co(G) for p =∞o, and the
operator norm of (µI +Rp)−1 is

(3.4)
∥∥(µI +Rp)−1∥∥

L (Lp(G)) 6 ‖h1‖µ−1,

or ∥∥(µI +R∞o)−1∥∥
L (Co(G)) 6 ‖h1‖µ−1.

Remark 3.5. — Note that the properties (1) and (2) above were proved
in the stratified case using the existence of a unique homogeneous funda-
mental solution of the sub-Laplacian, cf. [12, Propositions 2.19 and 3.9].
In our proof below, we replace the use of this fundamental solution (which
does not necessarily exist for Rockland operators) with the Liouville type
property given in Theorem 2.11.
In the stratified case, property (3) follows from the Hille–Yosida theorem

and the heat semigroup being a contraction on each Lp space, see the proof
of [12, Theorem 3.15].

Proof of Corollary 3.4. — Let f ∈ Dom(Rp) be such that Rpf = 0 for
p ∈ [1,∞) ∪ {∞o}. By Theorem 3.3(4), f ∈ S ′(G) and Rf = 0. Conse-
quently by Liouville’s theorem, see Theorem 2.11, f is a polynomial. Since
f is also in Lp(G) for p ∈ [1,∞) or in Co(G) for p = ∞o, f must be
identically zero. This proves (1).
For (2), let Ψ be a bounded linear functional on Lp(G) if p ∈ [1,∞)

or on Co(G) if p = ∞o such that Ψ vanishes identically on Range(Rp).
Then Ψ can be realised as the integration against a function f ∈ Lp′(G) if
p ∈ [1,∞) or a measure also denoted by f ∈ M(G) if p = ∞o. Using the
distributional notation, we have

Ψ(φ) = 〈f, φ〉 ∀ φ ∈ Lp(G) or ∀ φ ∈ Co(G).
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Then for any φ ∈ D(G), we know that φ ∈ Dom(Rp) and Rpφ = Rφ by
Theorem 3.3(1) thus

0 = Ψ(Rp(φ)) = 〈f,R(φ)〉 = 〈R̄f, φ〉,

since Rt = R̄. Hence R̄f = 0. By Liouville’s theorem, see Theorem 2.11,
this time applied to the positive Rockland operator R̄, we see that f is a
polynomial. This implies that f ≡ 0, since f is also a function in Lp′(G) in
the case p ∈ (1,∞), whereas for p = ∞o, f is in M(G) thus an integrable
polynomial on G. For p = 1, f being a measurable bounded function and
a polynomial, f must be constant, i.e. f ≡ c for some c ∈ C. This shows
that if p ∈ (1,∞)∪ {∞o} then Ψ = 0 and Range(Rp) is dense in Lp(G) or
Co(G), whereas if p = 1 then Ψ : L1(G) 3 φ 7→ c

∫
G
φ. This shows (2) for

p ∈ (1,∞) ∪ {∞o}.
Let us study more precisely the case p = 1. It is easy to see that∫

G

Xφ(x) dx = −
∫
G

φ(x) (X1)(x) dx = 0

holds for any φ ∈ L1(G) such that Xφ ∈ L1(G). Consequently, for any
φ ∈ Dom(R1), we know that φ and Rφ are in L1(G) thus

∫
G
R1φ = 0. So

the range of R1 is included in

S := {φ ∈ L1(G) :
∫
G

φ = 0} ⊃ Range(R1).

Moreover, if Ψ1 a bounded linear functional on S such that Ψ1 is identi-
cally 0 on Range(R1), by the Hahn–Banach Theorem, it can be extended
into a bounded linear function Ψ on L1(G). As Ψ vanishes identically on
Range(R1) ⊂ S, we have already proven that Ψ must be of the form
Ψ : L1(G) 3 φ 7→ c

∫
G
φ for some constant c ∈ C and its restriction to

S is Ψ1 ≡ 0. This concludes the proof of Part (2).
Let us prove Part (3). Integrating the formula

(µ+ λ)−1 =
∫ ∞

0
e−t(µ+λ) dt

against the spectral measure dE(λ) of R2, we have formally

(3.5) (µI +R2)−1 =
∫ ∞

0
e−t(µI+R2) dt,

and the convolution kernel of the operator on the right-hand side is (still
formally) given by

κµ(x) :=
∫ ∞

0
e−tµht(x) dt.
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From the properties of the heat kernel ht (see Theorem 2.8), we see that
κµ is continuous on G and that

‖κµ‖1 6
∫ ∞

0
e−tµ ‖ht‖1 dt = ‖h1‖

∫ ∞
0

e−tµ dt = ‖h1‖
µ

<∞.

Therefore κµ ∈ L1(G), the operator
∫∞

0 e−t(µI+R2) dt is bounded on L2(G).
Furthermore Formula (3.5) holds (it suffices to consider integration over
[0, N ] with N →∞).
For any φ ∈ D(G) and p ∈ [1,∞) ∪ {∞o}, Theorem 3.3(4) implies

(µI +Rp)φ = (µI +R)φ = (µI +R2)φ ∈ D(G),

thus
κµ ∗ ((µI +Rp)φ) = κµ ∗ ((µI +R2)φ) = φ.

This yields that the operator (µI +Rp)−1 : φ 7→ φ ∗ κµ bounded on Lp(G)
if p ∈ [1,∞) and on Co(G) if p = ∞o. Furthermore its operator norm is
6 ‖κµ‖1 6 ‖h1‖µ−1. �

3.2. Fractional powers of operators Rp

In this section we study the fractional powers of the operators Rp and
I +Rp. As explained in the proof of the following theorem, these fractional
powers are defined as the powers of a Komatsu-non-negative operator. In
the special case of p = 2, it coincides with the powers defined by functional
calculus.

Theorem 3.6. — Let R be a positive Rockland operator on a graded
Lie group G. We consider the operators Rp defined in Definition 3.2. Let
p ∈ [1,∞) ∪ {∞o}.

(1) Let A denote either R or I +R.
(a) For every a ∈ C, the operator Aap is closed and injective with

(Aap)−1 = A−ap . We have A0
p = I, and for any N ∈ N, ANp

coincides with the usual powers of differential operators on
S(G). Furthermore, the operator Aap is invariant under left
translations.

(b) For any a, b ∈ C, in the sense of operator graph, we have
AapAbp ⊂ Aa+b

p . If Range(Ap) is dense then the closure of AapAbp
is Aa+b

p . Moreover for any N ∈ N, Dom(AN ) ∩ Range(AN ) is
dense in Range(Ap).
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(c) Let ao ∈ C+.
• If φ ∈ Range(Aaop ) then φ ∈ Dom(Aap) for all a ∈ C

with 0 < −<a < <ao and the function a 7→ Aapφ is
holomorphic in {a ∈ C : −<ao < <a < 0}.

• If φ ∈ Dom(Aaop ) then φ ∈ Dom(Aap) for all a ∈ C with
0 < <a < <ao and the function a 7→ Aapφ is holomorphic
in {a ∈ C : 0 < <a < <ao}.

(d) If p ∈ (1,∞) then the dual of Ap is Āp′ . The dual of A∞o

restricted to L1(G) is Ā1. The dual of A1 restricted to Co(G) ⊂
L∞(G) is Ā∞o .

(e) If a, b ∈ C+ with <b > <a, then

∃ C = Ca,b > 0 ∀ φ ∈ Dom(Abp)
∥∥Aapφ∥∥ 6 C ‖φ‖1−<a<b ∥∥Abpφ∥∥<a<b .

(f) For any a ∈ C+, Dom(Aap) contains S(G).
(g) If f ∈ Dom(Aap) ∩ Lq(G) for some q ∈ [1,∞) ∪ {∞o}, then

f ∈ Dom(Aaq ) if and only if Aapf ∈ Lq(G), in which case Aapf =
Aaqf .

(2) For each a ∈ C+, the operators (I +Rp)a and Rap are unbounded
and their domains satisfy Dom [(I +Rp)a] = Dom(Rap) =
Dom [(Rp + εI)a] for all ε > 0,

(3) If 0 < <a < 1 and φ ∈ Range(Rp) then

R−ap φ = 1
Γ(a)

∫ ∞
0

ta−1e−tRpφ dt,

in the sense that limN→∞
∫ N

0 converges in the norm of Lp(G) or
Co(G).

(4) If a ∈ C+, then the operator (I + Rp)−a is bounded and for any
φ ∈ X with X = Lp(G) or Co(G), we have

(I +Rp)−aφ = 1
Γ(a)

∫ ∞
0

ta−1e−t(I+Rp)φdt,

in the sense of absolute convergence:
∫∞

0 ta−1
∥∥e−t(I+Rp)φ

∥∥
X dt <

∞.
(5) For any a, b ∈ C, the two (possibly unbounded) operators Rap and

(I +Rp)b commute.
(6) For any a ∈ C, the operator Rap is homogeneous of degree νa.

Here we say that two (possibly unbounded) operators A and B commute
when

x ∈ Dom(AB) ∩Dom(BA) =⇒ ABx = BAx.
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Let us recall that the domain of the product AB of two (possibly un-
bounded) operators A and B on the same Banach space X is formed by
the elements x ∈ X such that x ∈ Dom(B) and Bx ∈ Dom(A).

In Theorem 3.6, Γ denotes the usual Gamma function, that is, the
meromorphic extension of the function defined via z 7→

∫∞
0 tz−1e−t dt on

{<z > 0}.
Proof of Theorem 3.6. — In the case p = 2, the statement follows by

functional calculus and Part (4) of Theorem 3.3. We may therefore assume
p 6= 2. By Theorem 3.3(1), the operator Rp is closed and densely defined.
By Corollary 3.4, it is injective and Komatsu-non-negative in the sense
that (−∞, 0) is included in its resolvant set and it satisfies Property (3.4).
Necessarily I + Rp also satisfies these properties. Furthermore −(I + Rp)
generates an exponentially stable semigroup:∥∥∥e−t(I+Rp)

∥∥∥
L (Lp(G))

6 e−t
∥∥e−tRp∥∥

L (Lp(G)) 6 e
−t ‖h1‖1 ,

and similarly for Co(G).
Most of the statements then follow from the general properties of frac-

tional powers constructed via the Balakrishnan formulae, see [21]. More
precisely, from the Balakrishnan formula, [21, Section 3.1], for any N ∈ N,
ANp coincides with the usual powers of differential operators on S(G). Then
Part (1a) follows from the general properties of the construction, see [21,
Section 7]. Parts (5) and (6) are true for the operator given via the Bal-
akrishnan formula, therefore they hold for our fractional powers. Part (1d)
is obtained in the same way together with the properties of duality.
For Part (1b), see [21, Proposition 1.1.3(iii) and Section 7]. For Part (1c),

see Corollary 5.1.13 together with Proposition 7.1.5 and its proof both
in [21]. For Part (1e), see [21, Corollary 5.1.13]. Part (1f) follows from
Parts (1a) and (1c). Part (1g) is certainly true for any f ∈ S(G) and <a > 0
via the Balakrishnan formulae. By analyticity (see Part (1c)) it is true for
any a ∈ C. The density of D(G) in Lp(G) (or Co(G) if p = ∞o) together
with the maximality of Aap and the uniqueness of distributional convergence
imply the result. For Part (2), see [21, Theorem 5.1.7]. For Parts (3) and (4),
see [21, Lemma 6.1.5]. This concludes the proof of Theorem 3.6. �

3.3. Imaginary powers of Rp and I +Rp

In this section, we prove that imaginary powers of a positive Rockland
operator R as well as I +R are bounded operators on Lp(G), p ∈ (1,∞)
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by applying the consequence of the theorem of singular integrals stated
in Theorem 2.5. The operator bounds will follow as a general semi-group
property.
Let us show that ifR is a positive Rocklamd operator, then the imaginary

powers of I +Rp are bounded on Lp(G):

Proposition 3.7. — Let R be a positive Rocklamd operator. For any
τ ∈ R and p ∈ (1,∞), the operator (I +Rp)iτ is bounded on Lp(G). For
any p ∈ (1,∞), there exists C = Cp,R > 0 and θ ∈ [0, π] such that

∀ τ ∈ R
∥∥(I +Rp)iτ

∥∥
L (Lp(G)) 6 Ce

θ|τ |.

For any p ∈ (1,∞) and a ∈ C, Dom((I +Rp)a) = Dom((I +Rp)<a).

In the proof of Proposition 3.7, we will need the following estimates for
integral of the heat kernel ht of a positive Rockland operator R:

Lemma 3.8.
(1) For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn0 , and

any real number a with 0 < a < Q+[α]
ν , there exists a constant

C > 0 such that∫ ∞
0

ta−1|Xαht(x)|dt 6 C|x|−Q−[α]+νa.

For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn0 ,
there exists a constant C > 0 such that∫ ∞

0
|Xαht(x)|e−t dt 6 C|x|−Q−[α].

(2) For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn0 , and
any t > 0, we have∫

|x|>1/2
|Xαht(x)|dx 6 t−

[α]
ν ‖Xαh1‖L1 .

(3) For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn0 , any
N ∈ N and any t ∈ (0, 1), there exists a constant C > 0 such that∫

|x|>1/2
|Xαht(x)|dx 6 CtN .

Proof of Lemma 3.8. — Let us prove Part (1). We write∫ ∞
0

ta−1|Xαht(x)|dt =
∫ |x|ν

0
+
∫ ∞
|x|ν

.
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For the second integral, we use the property of homogeneity of ht (see (2.9)
or (2.13)) ∫ ∞

|x|ν
6

(
Q+ [α]

ν
− a
)−1
‖Xαh1‖∞ |x|

ν
(
a−Q+[α]

ν

)
.

As h1 ∈ S(G), ‖Xαh1‖∞ is finite. For the first integral, we use again (2.9)
to obtain ∫ |x|ν

0
6 C1a

−1|x|ν
(
a−Q+[α]

ν

)
,

where C1 := sup|y|=1,06t161 |Xαht1(y)| is finite by (2.12). Combining the
two estimates above shows the estimates for the first integral in Part (1).
We proceed in the same way for the second one:∫ ∞

0
|Xαht(x)|e−t dt =

∫ |x|ν
0

+
∫ ∞
|x|ν

.

We have (with C1 as above)∫ |x|ν
0

6 C1|x|ν
(
a−Q+[α]

ν

)
, whereas

∫ ∞
|x|ν
6 ‖Xαh1‖∞ |x|

−(Q+[α]).

We conclude in the same way as above and Part (1) is proved.
Let us prove Part (2). The property of homogeneity of ht (see (2.13))

together with h1 ∈ S(G) imply∫
|x|>1/2

|Xαht(x)|dx = t−
[α]
ν

∫
t

1
ν |x′|>1/2

|Xαh1(x′)|dx′ 6 t−
[α]
ν

∫
G

|Xαh1|,

having used the change of variable x′ = t−
1
ν x. This shows Part (2).

Let us prove Part (3). The properties of the heat kernel, especially (2.9)
and (2.12), imply∫

|x|>1/2
|Xαht(x)|dx 6 CtN

∫
|x|>1/2

|x|−[α]−Q−νN dx,

where C = sup|x′|=1,0<t′<1 t
′−N |Xαht′(x′)| <∞. This shows Part (3) and

concludes the proof of Lemma 3.8. �

Proof of Proposition 3.7. — Let us fix τ ∈ R\{0}. By functional calculus,
(I +R2)iτ is bounded on L2(G). The formula

∀ λ > 0 λiτ = λ

Γ(1− iτ)

∫ ∞
0

t−iτe−λt dt.

and the functional calculus of R2 implies that the right convolution kernel
of (I+R2)iτ is the tempered distribution κ which coincides with the smooth
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function away from 0 given via

κ(x) = 1
Γ(1− iτ)

∫ ∞
0

t−iτ (I +R)ht(x)e−t dt, x 6= 0,

because of Part (1) of Lemma 3.8. The rest of Lemma 3.8 imply easily
that the hypotheses of Theorem 2.5 are satisfied. This together with The-
orem 3.6(1f) and (1g) show that for each τ ∈ R, (I +Rp)iτ is bounded for
p > 2. By duality, it is bounded for any p ∈ (1,∞). The properties of the
semi-group [21, Corollary 7.1.2 and Proposition 8.1.1] imply the rest of the
statement in Proposition 3.7. �

Let us now prove the homogeneous case, that is, that the imaginary
powers of a positive Rockland operator are bounded on Lp(G):

Proposition 3.9. — For any τ ∈ R and p ∈ (1,∞), the operator Riτp
is bounded on Lp(G). For any p ∈ (1,∞), there exists C = Cp,R > 0 and
θ ∈ [0, π] such that

∀ τ ∈ R
∥∥Riτp ∥∥L (Lp(G)) 6 Ce

θ|τ |.

For any p ∈ (1,∞) and a ∈ C, Dom(Rap) = Dom(R<ap ).

Proof of Proposition 3.9. — Let p ∈ (1,∞) and τ ∈ R. Let us denote
by Rp,iτ the (possibly unbounded) operator given as the strong limit in
Lp(G) of (ε+Rp)iτφ as ε→ 0, for φ ∈ Dom((ε+Rp)iτ ) for any ε ∈ (0, ε0)
for some small ε0 > 0 and such that this strong limit exists. The domain
of Rp,iτ is naturally the subspace of all those functions φ. Note that the
homogeneity of R implies

(ε+Rp)iτφ = (I + ε−1Rp)iτφ = (I +Rp)iτ{φ(ε−1/ν · )}(ε1/ν · ),

for any ε > 0 and any φ ∈ Lp(G) such that φ(ε−1/ν ·) ∈ Dom((I +Rp)iτ ).
By Proposition 3.7, Dom((I +Rp)iτ ) = Lp(G) and the operator (I +Rp)iτ
is bounded. Therefore we have for all φ ∈ Lp(G) and ε > 0,

φ ∈ Dom((ε+Rp)iτ )

and
∥∥(ε+Rp)iτφ

∥∥
Lp(G) 6

∥∥(I +Rp)iτ
∥∥

L (Lp(G)) ‖φ‖ .

Consequently, Rp,iτ extends to a bounded operator on Lp(G). This im-
plies [21, Theorem 7.4.6] that Riτp is also a bounded operator on Lp(G).
As in the inhomogeneous case, the properties of the semi-group [21, Corol-
lary 7.1.2 and Proposition 8.1.1] imply the rest of the statement in Propo-
sition 3.9. �
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Remark 3.10. — In the stratified case, the Lp-boundedness of imagi-
nary powers of the sub-Laplacian −L and I + (−L) follows from general
properties of semigroups preserving positivity together with the Laplace
transform, see [12, Proposition 3.14 and Lemma 3.13]. More precisely, the
boundedness follows from Littlewood–Paley theory and the study of square
functions associated with the semi-group.

Note that in the case of a sub-Laplacian, the proof in [12] yields a bound
of the operator norm by |Γ(1− iτ)|−1, up to a constant of p.

In our case, we applied a consequence of the theorem of Singular In-
tegrals via Theorem 2.5 to obtain the Lp-boundedness. We can follow
the constants in the proof of this theorem as well as in our application:∥∥(I +R2)iτ

∥∥
L (L2(G)) 6 1 and the constants C0, C1, . . . Cn in the state-

ment of Theorem 2.5 in our context are bounded by (1 + c) where c :=
|Γ(1− iτ)|−1. Thus one can show that

∥∥(I +Rp)iτ
∥∥

L (Lp(G)) is bounded up
to a constant of p, by (1 + c)2| 1p−

1
2 |.

However, we do not need these precise bounds as the bounds obtained
from the general theory of semigroups as stated in Proposition 3.7 will
be sufficient for our purpose in the proofs of interpolation properties in
Theorem 4.8 and Proposition 4.13.

3.4. Riesz and Bessel potentials

Mimicking the usual terminology in the Euclidean setting, we call the
operators R−a/ν for {a ∈ C, 0 < <a < Q} and (I+R)−a/ν for a ∈ C+, the
Riesz potential and the Bessel potential, respectively. In the sequel we will
denote their kernels by Ia and Ba, respectively, as defined in the following:

Corollary 3.11. — We keep the setting and notation of Theorem 3.3.
(1) Let a ∈ C with 0 < <a < Q. The integral

Ia(x) := 1
Γ(a/ν)

∫ ∞
0

t
a
ν−1ht(x) dt,

converges absolutely for every x 6= 0. This defines a distribution Ia
which is a kernel of type a, that is, smooth away from the origin
and (a−Q)-homogeneous.
For any p ∈ (1,∞), if φ ∈ S(G) or, more generally, if φ ∈ Lq(G)∩

Lp(G) where q ∈ [1,∞) is given by 1
q −

1
p = <a

Q , then

φ ∈ Dom(R−
a
ν

p ) and R−
a
ν

p φ = φ ∗ Ia ∈ Lp(G).
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(2) Let a ∈ C+. The integral

Ba(x) := 1
Γ(aν )

∫ ∞
0

t
a
ν−1e−tht(x) dt,

converges absolutely for every x 6= 0. The function Ba is always
smooth away from 0 and integrable on G. If <a > Q/2, then Ba ∈
L2(G). For each a ∈ C+, the operator (I + Rp)−a/ν is a bounded
convolution operator on Lp(G) for p ∈ [1,∞) or Co(G) for p =∞,
with the same (right convolution) kernel Ba. If a, b ∈ C+, then as
integrable functions, we have Ba ∗ Bb = Ba+b.

Remark 3.12. — If the homogeneous degree of the Rockland operator
R is ν < Q then R admits a unique homogeneous fundamental solution
(see [12, Theorem 2.1]). Part (1) above shows that Iν is this fundamental
solution. This is the case for instance for sub-Laplacians and the existence of
such a unique homogeneous fundamental solution is used extensively in [12].
However one can find Rockland operators of degree ν > Q (see (2.6)). More-
over one can construct a graded group such that all its Rockland operators
will have this property: it suffices to consider the abelian group (Rn,+)
with well chosen anisotropic dilations or the three dimensional Heisenberg
group H̃1 with a graded non-stratified structure defined in Section 4.8.

Proof of Corollary 3.11. — The absolute convergence and the smooth-
ness of Ia and Ba follow from the estimates in (2.14) while the homogeneity
of Ia follows from the properties of the heat kernel (especially (2.9)) and a
the change of variable. By Proposition 2.4, the operator S(G) 3 φ 7→ φ∗Ia
is homogeneous of degree −a, and admits a bounded extension Lq(G) →
Lp(G) when 1

p −
1
q = <(a)

Q . The rest of Part (1) follows from Theorem 3.6.
By Theorem 2.8, we have

∫
G
|ht| = ‖h1‖L1 <∞ for all t > 0, so

(3.6)∫
G

|Ba(x)|dx 6 1
|Γ(aν )|

∫ ∞
0

t
<a
ν −1e−t

∫
G

|ht(x)|dxdt =
Γ(<aν )
|Γ(aν )| ‖h1‖L1(G) ,

and Ba is integrable. By Theorem 3.6 Part (4), the integrable function Ba
is the convolution kernel of (I +Rp)−a/ν .
Let us show the square integrability of Ba. We assume <a > 0. We

compute for any R > 0:∫
|x|<R

|Ba(x)|2 dx =
∫
|x|<R

Ba(x)Ba(x) dx

= |Γ
(a
ν

)
|−2
∫
|x|<R

∫ ∞
0

∫ ∞
0

t
a
ν−1s

ā
ν−1e−(t+s)ht(x)h̄s(x) dxdtds.
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From the properties of the heat kernel (see (2.10) and (2.8)) we see that∫
|x|<R

ht(x)h̄s(x) dx =
∫
|x|<R

ht(x)hs(x−1) dx

−→
R→∞

ht ∗ hs(0) = ht+s(0) = (t+ s)−
Q
ν h1(0).

Therefore,∫
G

|Ba(x)|2 dx 6 h1(0)
|Γ(a/ν)|2

∫ ∞
0

∫ ∞
0

(st)<aν −1e−(t+s)(t+ s)−
Q
ν dtds(3.7)

= h1(0)
|Γ(a/ν)|2

∫ 1

s′=0
(s′(1− s′))

<a
ν −1 ds′

∫ ∞
u=0

e−uu2(<aν −1)−Qν +1 du,(3.8)

after the change of variables u = s+ t and s′ = s/u. The integrals over s′
and u converge when <a > Q/2. Thus Ba is square integrable under this
condition. The rest of the proof of Corollary 3.11 follows easily from the
properties of the fractional powers of I +R. �

Corollary 3.13. — We keep the notation of Corollary 3.11. Then for
any p ∈ [1,∞), if a > Q/p′ then Ba ∈ Lp.

Proof of Corollary 3.13. — For p ∈ [1, 2], thanks to the estimates in (3.6)
(together with Stirling’s estimates) and (3.7), the map f 7→ (f,Bz) satisfies
the hypotheses of the complex interpolation (as stated in [24, Chapter V
§4], the image space being a singleton). This yields the result for p ∈ [1, 2].
For p > 2, we write a = a1 + a2 with a1 > Q/2 and apply Young’s
inequalities (see (2.2)) to Ba = Ba1 ∗Ba2 with space Lp, L2, Lq. This shows
that Ba ∈ Lp when a > Q/2 +Q/q′ = Q/p′. �

We now state the following technical lemma which will be useful in the
sequel.

Lemma 3.14. — We keep the notation of Corollary 3.11.
(1) For any φ ∈ S(G) and a ∈ C+, the function φ ∗ Ba is Schwartz.
(2) Let a ∈ C and φ ∈ S(G). Then (I + Rp)aφ does not depend on

p ∈ [1,∞) ∪ {∞o}. If a ∈ N, (I +Rp)aφ coincides with (I +R)aφ.
If a ∈ C+, we have

(3.9) (I +Rp)a (φ ∗ Baν) = ((I +Rp)aφ) ∗ Baν = φ (p ∈ [1,∞)∪ {∞o}).

(3) For any N ∈ N, (I +R)N (S(G)) = S(G).

Proof. — Let | · | be a homogeneous quasi-norm on G and N ∈ N. We
see that∫

G

|x|N |Ba(x)|dx 6 1
|Γ(aν )|

∫ ∞
0

t
<a
ν −1e−t

∫
G

|x|N |ht(x)|dxdt,
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and using the homogeneity of the heat kernel (see (2.13)) and the change
of variables y = t−

1
ν x, we get∫

G

|x|N |ht(x)|dx =
∫
G

|t 1
ν y|N |h1(y)|dy = cN t

N
ν ,

where cN =
∥∥|y|Nh1(y)

∥∥
L1(dy) is a finite constant since h1 ∈ S(G). Thus,∫

G

|x|N |Ba(x)|dx 6 cN
|Γ(aν )|

∫ ∞
0

t
<a
ν −1+N

ν e−t dt <∞,

and x 7→ |x|NBa(x) is integrable.
Let Co > 1 denote the constant in the triangle inequality for | · | (see

Proposition 2.1). Let also φ ∈ S(G). We have for any N ∈ N and α ∈ Nn0 :

(1 + |x|)N
∣∣X̃ [φ ∗ Ba] (x)

∣∣ 6 (1 + |x|)N
∣∣X̃φ∣∣ ∗ |Ba| (x)

6 CNo
∣∣(1 + | · |)N X̃φ

∣∣ ∗ ∣∣(1 + | · |)NBa
∣∣ (x)

6 CNo
∥∥(1 + | · |)N X̃φ

∥∥
∞

∥∥(1 + | · |)NBa
∥∥
L1(G) .

This shows that that φ∗Ba ∈ S(G) (for a description of the Schwartz class,
see [14, Chapter 1D] and Part (1) is proved.
Part (2) follows easily from Theorem 3.6 and Corollary 3.11.
Let us prove Part (3). By Theorem 3.3(4), we have the inclusion (I +

R)N (S(G)) ⊂ S(G). The reverse inclusion S(G) ⊂ (I +R)N (S(G)) follows
from (3.9) and Theorem 3.3(4). So for any N ∈ N, S(G) is included in
Dom

[
(I +Rp)N

]
∩ Range

[
(I +Rp)N

]
and we can apply the analyticity

results of Theorem 3.6: the function a 7→ (I + Rp)aφ is holomorphic in
{a ∈ C : −N < <a < N}. We observe that by Corollary 3.11(2), if
−N < <a < 0, all the functions (I +Rp)aφ coincide with φ ∗ Baν for any
p ∈ [1,∞) ∪ {∞o}. This shows that for each a ∈ C fixed, (I + Rp)aφ is
independent of p. This concludes the proof of Lemma 3.14. �

4. Sobolev spaces on graded Lie groups

In this section we define the Sobolev spaces associated to a positive
Rockland operator R and show that they satisfy similar properties to the
Euclidean Sobolev spaces. We will show that the constructed spaces are
actually independent of the choice of a positive Rockland operator R on a
graded Lie group with which we start our construction.
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4.1. Definition and first properties of Sobolev spaces

We first need the following lemma:

Lemma 4.1. — We keep the notation of Theorem 3.6. For any s ∈ R
and p ∈ [1,∞) ∪ {∞o}, the domain of the operator (I + Rp)

s
ν contains

S(G), and the map
f 7−→

∥∥(I +Rp)
s
ν f
∥∥
Lp(G)

defines a norm on S(G). We denote it by

‖f‖Lps(G) :=
∥∥(I +Rp)

s
ν f
∥∥
Lp(G) .

Moreover, any sequence in S(G) which is Cauchy for ‖ · ‖Lps(G) is convergent
in S ′(G).

We have allowed ourselves to write ‖ · ‖L∞(G) = ‖ · ‖L∞o (G) for the supre-
mum norm. We may also write ‖ · ‖∞ or ‖ · ‖∞o

.
Proof. — The domain of (I + Rp)

s
ν contains S(G): by Theorem 3.6

Part (2) for s > 0, by Corollary 3.11(2) for s < 0 and, trivially for s = 0
since (I + Rp)

s
ν = I. Since the operator (I + Rp)

s
ν is linear and injec-

tive (by Theorem 3.6(1)), the map
∥∥(I +Rp)

s
ν ·
∥∥
Lp(G) defines a norm on

S(G). Clearly ‖ · ‖Lp0(G) = ‖ · ‖p, so the case of s = 0 is trivial. Let us
assume s > 0. By Corollary 3.11(2), the operator (I +Rp)−

s
ν is bounded

on Lp(G). Hence we have ‖ · ‖Lp(G) 6 C ‖ · ‖Lps(G) on S(G). Consequently
a ‖ · ‖Lps(G)-Cauchy sequence of Schwartz functions converge in Lp-norm
thus in S ′(G). Now let us assume s < 0. Let {f`}`∈N be a sequence of
Schwartz functions which is Cauchy for the norm ‖ · ‖Lps(G). By (3.9) we
have f` =

(
(I +Rp)

s
ν f`
)
∗ Bs. Furthermore, if φ ∈ S(G) then using (2.1)

and (2.10), we have

(4.1)
∫
G

f`(x)φ(x) dx =
∫
G

(
(I +Rp)

s
ν f`
)

(x) (φ ∗ Bs) (x) dx.

By assumption the sequence {(I + Rp)
s
ν f`}`∈N is ‖ · ‖Lp(G)-Cauchy thus

convergent in Lp(G). By Lemma 3.14, φ ∗ Bs ∈ S(G). Therefore, the right
hand-side of (4.1) is convergent as `→∞. Hence the scalar sequence 〈f`, φ〉
converges for any φ ∈ S(G). This shows that the sequence {f`} converges
in S ′(G). �

Lemma 4.1 allows us to define the Sobolev spaces:

Definition 4.2. — Let R be a positive Rockland operator on G. We
consider its Lp-analogue Rp and the powers of (I + Rp)a as defined in
Theorems 3.3 and 3.6. Let s ∈ R.
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If p ∈ [1,∞), the Sobolev space Lps,R(G) is the subspace of S ′(G) ob-
tained by completion of S(G) with respect to the Sobolev norm

‖f‖Lp
s,R(G) :=

∥∥(I +Rp)
s
ν f
∥∥
Lp(G) , f ∈ S(G).

If p =∞o, the Sobolev space L∞o

s,R(G) is the subspace of S ′(G) obtained
by completion of S(G) with respect to the Sobolev norm

‖f‖L∞o
s,R(G) :=

∥∥(I +R∞o
) sν f

∥∥
L∞(G) , f ∈ S(G).

When the Rockland operator R is fixed, we may allow ourselves to drop
the index R in Lps,R(G) = Lps(G) to simplify the notation.

We will see later that the Sobolev spaces do not depend on the Rockland
operator R, see Theorem 4.20.

By construction the Sobolev space Lps(G) endowed with the Sobolev
norm is a Banach space which contains S(G) as a dense subspace and is
included in S ′(G). The Sobolev spaces share many properties with their
Euclidean counterparts.

Theorem 4.3. — Let R be a positive Rockland operator on G. We
consider the associated Sobolev spaces Lps(G) for p ∈ [1,∞) ∪ {∞o} and
s ∈ R.

(1) If s = 0, then Lp0(G) = Lp(G) for p ∈ [1,∞) with ‖ · ‖Lp0(G) =
‖ · ‖Lp(G), and L

∞o
0 (G) = Co(G) with ‖ · ‖L∞o0 (G) = ‖ · ‖L∞(G).

(2) If s > 0, then for any a ∈ C with <a = s, we have

Lps(G) = Dom
[
(I +Rp)

a
ν

]
= Dom(R

a
ν
p ) ( Lp(G),

and the following norms are equivalent to ‖ · ‖Lps(G):

f 7−→ ‖f‖Lp(G) +
∥∥(I +Rp)

s
ν f
∥∥
Lp(G) , f 7−→ ‖f‖Lp(G) +

∥∥∥R s
ν
p f
∥∥∥
Lp(G)

.

(3) Let s ∈ R and f ∈ S ′(G).
• If p ∈ (1,∞) and f ∈ Lps(G) then (I +Rp)s/νf ∈ Lp(G) in the

sense that the linear mapping S(G) 3 φ 7→ 〈f, (I + R̄p′)s/νφ〉
extends to a bounded functional on Lp

′(G). The converse is
also true.

• If f ∈ L1
s(G) then (I +R1)s/νf ∈ L1(G) in the sense that the

linear mapping S(G) 3 φ 7→ 〈f, (I + R̄∞o)s/νφ〉 extends to a
bounded functional on Co(G) which is realised as a measure
given by an integrable function. The converse is also true.

• Let p =∞o. If f ∈ L∞o
s (G) then (I +R∞o

)s/νf ∈ Co(G) and
the linear mapping S(G) 3 φ 7→ 〈f, (I + R̄1)s/νφ〉 extends to a
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bounded functional on L1(G). If s > 0 this linear mapping is
realised as integration against a function in Co(G). Conversely,
for any s, if the linear mapping S(G) 3 φ 7→ 〈f, (I + R̄1)s/νφ〉
extends to a bounded functional on L1(G) and if this bounded
extension is realised as integration against function in Co(G)
then f ∈ L∞o

s (G).
(4) If a, b ∈ R with a < b and p ∈ [1,∞), then the following continuous

strict inclusions hold

S(G) ( Lpb(G) ( Lpa(G) ( S ′(G),

and an equivalent norm for Lpb(G) is

Lpb(G) 3 f 7−→ ‖f‖Lpa(G) +
∥∥∥R b−a

ν f
∥∥∥
Lpa(G)

.

If p =∞o, the same properties hold for a, b > 0.
Furthermore if c ∈ (a, b), then there exists a positive constant

C = Ca,b,c such that we have for any f ∈ Lpb
‖f‖Lpc 6 C ‖f‖

1−θ
Lpa
‖f‖θLp

b
where θ := (c− a)/(b− a).

In Part (3) above, for the case p = ∞o, the bounded functional can be
identified with a function in L∞(G) and not (in general) with a function
in L∞o

0 (G) = Co(G) if s < 0. The converse does not hold in this case.
From now on, we will often use the notation Lp0(G) since this allows us

not to distinguish between the cases Lp0(G) = Lp(G) when p ∈ [1,∞) and
Lp0(G) = Co(G) when p =∞o.

We can now prove Theorem 4.3.
Proof of Theorem 4.3, Part (1). — This is true since (I +Rp)

0
ν = I. �

Proof of Theorem 4.3, Part (2). — Let s > 0. Clearly Lps(G) coin-
cides with the domain of the unbounded operator (I + Rp)

s
ν (see The-

orem 3.6(2)) hence it is a proper subspace of Lp(G). As the operator
(I + Rp)−

s
ν is bounded on Lp(G), we have ‖ · ‖Lp(G) 6 C ‖ · ‖Lps(G) on

Lps(G). So ‖ · ‖Lp(G) + ‖ · ‖Lps(G) is a norm on Lps(G) which is equivalent to
the Sobolev norm. By Theorem 3.6, the operators R

s
ν
p and (I +Rp)

s
ν share

the same domain. Hence Part (2) follows from general functional analysis,
especially the closed graph theorem. �

Proof of Theorem 4.3,Part (3). — This follows from Part (2) in the case
s > 0. We now consider the case s < 0. By Lemma 3.14 and Corollary 3.11,
the mapping

Ts,p′,f : S(G) 3 φ 7−→ 〈f, (I + R̄p′)s/νφ〉 = 〈f, φ ∗ B̄−s〉
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is well defined for any f ∈ S ′(G). If Ts,p′,f admits a bounded extension to
a functional on Lp

′

0 (G), then we denote this extension T̃s,p′,f and we have∥∥T̃s,p′,f∥∥L (Lp′ ) = ‖f‖Lps(G). This is certainly so if f ∈ S(G). The proof
of Part (3). follows from the following observation: a sequence {f`}`∈N of
Schwartz functions is convergent for the Sobolev norm ‖ · ‖Lps(G) if and only
if {T̃s,p′,f`} is convergent in L

p′

0 (G). �

Note that the proof of Part (3) of Theorem 4.3 implies easily

Lemma 4.4. — Let R be a positive Rockland operator on a graded
Lie group G. We consider the associated Sobolev spaces Lps,R(G) for p ∈
[1,∞) ∪ {∞o} and s ∈ R.
For any s ∈ R and p ∈ [1,∞), the dual space of Lps,R(G) is isomorphic to

Lp
′

−s,R̄(G) via the distributional duality, where p′ is the conjugate exponent
of p if p ∈ (1,∞), and p′ =∞o if p = 1.
For any s 6 0 and p = ∞o, the dual space of L∞o

s,R(G) is isomorphic to
L1
−s,R̄(G) via the distributional duality.

Lemma 4.4 will be improved in Proposition 4.22 once we show (see The-
orem 4.20) that Sobolev spaces are indeed independent of the considered
Rockland operator.

Proof of Theorem 4.3, Part (4). — If 0 < a < b, then by Parts (1)
and (2), which are already proven, and Theorem 3.6 on fractional powers,
there is a constant C = Ca,b > 0 such that

∀ f ∈ Lpb(G) ‖f‖Lpa(G) 6 C ‖f‖
1− ab
Lp(G) ‖f‖

a
b

Lp
b
(G) <∞,

and we have the inclusions Lpb(G) ⊂ Lpa(G) ⊂ Lp(G) for any p ∈ [1,∞) ∪
{∞o}. These inclusions are strict since the operator (I + Rp)

a−b
ν is un-

bounded, see Theorem 3.6(2).
We can now use the duality results given in Lemma 4.4 since its proof

relies on Part (3) shown above. Together with the duality result in Theo-
rem 3.6, this yields the reverse inclusions for b < a < 0 if p 6= ∞o. Since
Lp(G) = Lp0(G), we have obtained the inclusion of Part (4) for any a, b ∈ R
with a 6 b.
Let f ∈ Lpb(G) with a 6 b and p ∈ [1,∞) ∪ {∞o} with the additional

property that a, b > 0 if p = ∞o. So f ∈ Lpa(G) and one obtains easily by
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Theorem 3.6(1) and Part (2) above

‖f‖Lp
b
(G) =

∥∥(I +Rp)
a
ν f
∥∥
Lp
b−a(G)

�
∥∥(I +Rp)

a
ν f
∥∥
Lp(G) +

∥∥∥∥R b−a
ν

p (I +Rp)
a
ν f

∥∥∥∥
Lp(G)

.

By Theorem 3.6(5), we can commute the operators R
b−a
ν

p and (I + Rp)
a
ν

in this last expression. Consequently, for any f ∈ Lpb(G), we obtain

‖f‖Lp
b
(G) � ‖f‖Lpa(G) +

∥∥∥∥R b−a
ν

p f

∥∥∥∥
Lpa(G)

.

The end of Part (4) follows from Theorem 3.6(1). �

This concludes the proof of Theorem 4.3 which yields the two following
corollaries:

Corollary 4.5. — We keep the setting and notation of Theorem 4.3.
Let s < 0 and p ∈ [1,∞) ∪ {∞o}. Let f ∈ S ′(G).
The tempered distribution f is in Lps(G) if and only if the mapping

φ ∈ S(G) 7→ 〈f, φ ∗ B̄−s〉 extends to a bounded linear functional on Lp
′

0 (G)
with the additional property that for p = 1 this functional on Co(G) is
realised as a measure given by an integrable function, and if p = ∞o, this
functional on L1(G) is realised by integration against a function in Co(G).

Corollary 4.6. — We keep the setting and notation of Theorem 4.3.
Let s ∈ R and p ∈ [1,∞) ∪ {∞o}. Then D(G) is dense in Lps(G).

Proof of Corollary 4.6. — This is certainly true for s > 0 (see the proof
of Parts (1) and (2) of Theorem 4.3). For s < 0, it suffices to proceed
as in the last part of the proof of Part (3) with a sequence of functions
f` ∈ D(G). �

In the next statement, we show how to produce functions and converging
sequences in Sobolev spaces using the convolution:

Proposition 4.7. — We keep the setting and notation of Theorem 4.3.
Here a ∈ R and p ∈ [1,∞) ∪ {∞o}.

(1) If f ∈ Lp0(G) and φ ∈ S(G), then f ∗ φ ∈ Lpa for any a and p.
(2) If f ∈ Lpa(G) and ψ ∈ S(G), then

(4.2) (I +Rp)
a
ν (ψ ∗ f) = ψ ∗

(
(I +Rp)

a
ν f
)
,

and ψ ∗ f ∈ Lpa(G) with ‖ψ ∗ f‖Lpa(G) 6 ‖ψ‖L1(G) ‖f‖Lpa(G). Fur-
thermore, assuming

∫
G
ψ = 1 and writing ψε(x) := ε−Qψ(ε−1x) for

each ε > 0, then {ψε ∗ f} converges to f in Lpa(G) as ε→ 0.
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Proof of Proposition 4.7. — Let us prove Part (1). Here f ∈ Lp0(G). By
density of S(G) in Lp0(G), we can find a sequence of Schwartz functions
{f`} converging to f in Lp0-norm. Then f` ∗ φ ∈ S(G) and for any N ∈ N,

RN (f` ∗ φ) = f` ∗ RNφ −→
`→∞

f ∗ RNφ in Lp0(G),

thus RNp (f ∗ φ) = f ∗ RNφ ∈ Lp(G) and

‖f ∗ φ‖Lp0(G) +
∥∥RNp (f ∗ φ)

∥∥
Lp0(G) <∞.

By Theorem 4.3(4), this shows that f ∗ φ is in LpνN for any N ∈ N, hence
in any p-Sobolev spaces. This proves (1).

Let us prove Part (2). We observe that both sides of Formula (4.2) al-
ways make sense as convolutions of a Schwartz function with a tempered
distribution. Formula (4.2) is clearly true if a < 0 by Corollary 3.11(2)
since then the (I +Rp)

a
ν is a convolution operator. Consequently (4.2) is

true also for any f, ψ ∈ S(G) and a ∈ R by the analyticity result of The-
orem 3.6 and Lemma 3.14. Using this result for Schwartz functions yields
that Equality (4.2) holds as distributions for any f ∈ Lpa(G), φ ∈ S(G),
and a ∈ R, since we have

〈(I +Rp)
a
ν (ψ ∗ f), φ〉 = 〈ψ ∗ f, (I + R̄p′)

a
ν φ〉 = 〈f, ψ̃ ∗ (I + R̄p′)

a
ν φ〉

= 〈f, (I + R̄p′)
a
ν (ψ̃ ∗ φ)〉 = 〈(I +Rp)

a
ν f, ψ̃ ∗ φ〉.

Taking the Lp-norm on both sides of Equality (4.2) yields∥∥(I +Rp)
a
ν (ψ ∗ f)

∥∥
p

=
∥∥ψ ∗ ((I +Rp)

a
ν f
)∥∥
p
6 ‖ψ‖1

∥∥(I +Rp)
a
ν f
∥∥
p
.

Hence ψ ∗ f ∈ Lpa(G) with Lpa-norm 6 ‖ψ‖1 ‖f‖Lpa(G). Moreover, by Lem-
ma 2.6,

‖ψε ∗ f − f‖Lpa(G) =
∥∥(I +Rp)

a
ν (ψε ∗ f − f)

∥∥
p

=
∥∥ψε ∗ ((I +Rp)

a
ν f
)
− (I +Rp)

a
ν f
∥∥
p
−→ε→0 0,

that is, {ψε ∗ f} converges to f in Lpa(G) as ε→ 0. This proves (2). �

4.2. Interpolation between Sobolev spaces

In this section, we prove that interpolation between Sobolev spaces Lpa(G)
works in the same way as its Euclidean counterpart.

Theorem 4.8. — Let R and Q be two positive Rockland operators
on two graded Lie groups G and F . We consider their associated Sobolev
spaces Lpa(G) and Lqb(F ). Let p0, p1, q0, q1 ∈ [1,∞)∪{∞o} and a0, a1, b0, b1 ∈
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R. We also consider a linear mapping T from Lp0
a0

(G) + Lp1
a1

(G) to locally
integrable functions on F . We assume that T maps Lp0

a0
(G) and Lp1

a1
(G)

boundedly into Lq0b0(F ) and Lq1b1(F ), respectively.
Then T extends uniquely to a bounded mapping from Lpat(G) to Lqbt(F )

for t ∈ [0, 1] where at, bt, pt, qt are defined by(
at, bt,

1
pt
,

1
qt

)
= t

(
a0, b0,

1
p0
,

1
q0

)
+ (1− t)

(
a1, b1,

1
p1
,

1
q1

)
.

Proof of Theorem 4.8. — By duality (see Lemma 4.4 and the duality
property in Theorem 3.6), it suffices to prove Theorem 4.8 in the case
a1, b1, a0, b0 > 0. Furthermore, up to a change of notation, we may assume
b1 > b0.

The idea of the proof is similar to the one of the Euclidean or stratified
cases (see [12, Theorem 4.7]): we interpolate between the operators formally
given by Tz = (I + Q)bz/νQT (I +R)−az/νR , where νR and νQ denote the
degrees of homogeneity of R and Q respectively and the complex numbers
az and bz are defined by (az, bz) := z (a0, b0) + (1− z) (a1, b1) for z in S :=
{z ∈ C : <z ∈ [0, 1]}. More precisely, by Theorem 3.6(1), we may assume
that the fractional powers may not depend on the varying Lp-spaces which
they are acting upon and we set for any φ ∈ S(G) and z ∈ S,

Uzφ := (I +Qq1)
b1
νQ T (I +R)−

az
νR φ.

Necessarily Uzφ ∈ Lq10 (F ) and we can define its convolution with the in-
tegrable Bessel potential Ba corresponding to Q, <a > 0, or apply the
bounded operator (I +Qq1)a, <a = 0:

Tzφ :=
{

(Uzφ) ∗ Bb1−bz if <(b1 − bz) > 0,

(I +Qq1)
bz−b1
νQ (Uzφ) if <(b1 − bz) = 0.

Clearly for any ψ ∈ S(F ), we have

(4.3) 〈Tzφ, ψ〉 = 〈Uzφ, (I +Q)
z(b0−b1)

νQ ψ〉,

and this expression is analytic on S by Lemma 3.14 and its proof.
Inside the strip S, Corollary 3.11(2) and its proof, together with the

bound of ‖Ba‖1 in (3.6) with Sterling’s estimates easily yield:

∀ z = x+ iy ∈ S ln |〈Tzφ, ψ〉| 6 ln |y|(2|y|+O(ln |y|))

with the constant from the notation O depending on φ, ψ, a1, a0, b1, b0.
Similarly (using also Proposition 3.7 for the case <a = 0) one shows that
for j = 0, 1 we have

∀ y ∈ R e−3|y| ln ‖Tj+iy‖L (Lpj ,Lqj ) 6Mj ,
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for some finite positive constants M0 and M1 independent of y. The end of
the proof is now similar to the stratified case, see the proof of Theorem 4.7
in [12]. �

4.3. Homogeneous Sobolev spaces

Here we define and study the homogeneous version of our Sobolev spaces.

Definition 4.9. — Let R be a positive Rockland operator of homoge-
neous degree ν on a graded Lie group G, and let p ∈ (1,∞). We denote by
L̇ps,R(G) the completion of the Schwartz space for the norm

‖f‖L̇ps(G) :=
∥∥∥R s

ν
p f
∥∥∥
p
, f ∈ Dom(Rs/νp ).

As in the inhomogeneous case, we may write L̇ps(G) and omit the refer-
ence to the Rockland operator R when it is not useful.
Note that if s > 0 then S(G) ⊂ Dom(Rs/νp ) by Theorem 3.6(1f). How-

ever, even in the Euclidean case, we have S(Rn) 6⊂ L̇2
−s for s > n/2. Indeed

one can construct a Schwartz function φ ∈ S(Rn) such that ∆−s/2φ 6∈ L2

by choosing φ such that its Fourier transform is identically one on a neigh-
bourhood of 0 and compactly supported. And one can construct elements
of L̇2

s, again for s > n/2, which are not tempered distributions.
We realise the elements of Lps,R(G) as follows:

Proposition 4.10. — We continue with the notation of Definition 4.9.
We realise an element f of L̇ps,R(G) as a linear functional on Dom(R−

s
ν

p′ )
satisfying

(4.4) ∃ C > 0 ∀ φ ∈ Dom(R̄−
s
ν

p′ ) |f(φ)| 6 C
∥∥∥R̄− sνp′ φ∥∥∥

p′
.

In the case of s 6 0, f can also be viewed as a tempered distribition in
Lps(G).

Proof. — If (f`)`∈N0 is a ‖ · ‖L̇ps(G)-Cauchy sequence in Dom(Rs/νp ), then
one checks easily that φ 7→ lim`→∞〈f`, φ〉 define a linear functional f sat-
isfying (4.4) with C = lim inf ‖f`‖L̇ps(G). This shows that two equivalent
Cauchy sequences yields the same functional.
Let f be a linear functional satisfying (4.4). Then the linear functional

φ 7→ f(R̄
s
ν

p′φ) is defined on Dom(R̄
s
ν

p′) which is a dense subset of Lp′ by
Theorem 3.6(1) and Corollary 3.4. Hence it extends continuously to Lp′ and
can be identified with an element of Lp(G), which we denote byR s

ν f . We fix
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ψ ∈ S(G) with
∫
G
ψ = 1, and set ψε(x) = ε−Qψ(ε−1x) for ε > 0. We have

(R s
ν f)∗ψε ∈ Dom(RN ) for any N ∈ N, see the proof of Proposition 4.7(1).

Let us assume s 6 0. By Theorem 3.6(1), (R s
ν f) ∗ ψε ∈ Dom(R−s/νp ) and

we set

fε := R−s/νp

(
(R s

ν f) ∗ ψε
)
∈ Dom(R

s
ν
p ).

By Lemma 2.6, we have∥∥∥R s
ν
p fε −R

s
ν
p f
∥∥∥
Lp

=
∥∥∥(R s

ν f) ∗ ψε −R
s
ν
p f
∥∥∥
Lp
−→ε→0 0.

From this, we deduce that (fε) is a Cauchy sequence in Dom(R
s
ν
p ), converg-

ing to f for ‖ · ‖L̇ps in the case s 6 0. Note that still in the case s 6 0, by
adding ‖φ‖p to the right-hand side of the estimate (4.4) and using Theo-
rem 4.3(2), f extends into a continuous linear mapping on Lp

′

−s,R̄. Therefore
f may be viewed as an element of Lps,R by Lemma 4.4.
In the case s > 0, we need to choose ψ in RN (S(G)) for some integer

N > s, which is always possible: we fix N to be the smallest integer strictly
greater than s and choosing first ψ̃ ∈ S(G) with c̃ :=

∫
G
RN ψ̃(x) dx 6= 0,

we set ψ := c̃−1RN ψ̃. Proceeding as above, this ensures that (R s
ν f) ∗ψε is

in the range of RN , hence in the domain of R−s/νp . As above, we deduce
that (fε) is a Cauchy sequence in Dom(R

s
ν
p ), converging to f for ‖ · ‖L̇ps

and this proves the case s > 0. �

We can now obtain the following properties of homogeneous Sobolev
spaces:

Proposition 4.11. — Let R be a positive Rockland operator of homo-
geneous degree ν on G. Let s ∈ R and p ∈ (1,∞). We denote by p′ its
conjugate exponent: 1

p + 1
p′ = 1.

(1) If s = 0, then L̇p0(G) = Lp(G) for p ∈ (1,∞) with ‖ · ‖L̇p0(G) =
‖ · ‖Lp(G).

(2) If f ∈ L̇ps(G) then Rs/νp f ∈ Lp(G) in the sense that the linear func-
tional φ 7→ f(R̄s/νp′ φ) extends continuously from the dense subspace
Dom(R̄s/νp′ ) to Lp′(G).
Conversely, if g ∈ Lp(G) then R−s/νp g ∈ L̇ps(G) in the sense that

the linear functional φ 7→ 〈g, R̄−
s
ν

p′ φ〉 satisfies (4.4).
More generally, for any s1 ∈ R, Rs1/νp maps L̇ps bijectively onto

L̇ps+s1 .

TOME 67 (2017), FASCICULE 4



1710 Veronique FISCHER & Michael RUZHANSKY

(3) If s > 0, then S(G) ⊂ Dom(Rs/νp ) ⊂ L̇ps(G) and we have Lps(G) =
L̇ps(G) ∩ Lp(G); the Sobolev norm is equivalent to

‖ · ‖Lps(G) � ‖ · ‖Lp(G) + ‖ · ‖L̇ps(G) .

(4) For p ∈ (0, 1) and any a, b, c ∈ R with a < c < b, there exists a
positive constant C = Ca,b,c such that we have for any f ∈ L̇pb

‖f‖L̇pc 6 C ‖f‖
1−θ
L̇pa
‖f‖θL̇p

b
where θ := (c− a)/(b− a).

Proof. — Part (1) is trivial. Part (2) follows from the proof of Propo-
sition 4.10 and easy verifications. Part (3) follows from Part (2) of Theo-
rem 4.3 and the density of S(G). Part (4) follows from Theorem 3.6(1e)
and Part (2) proved above. �

From Proposition 4.10 and Part (2) of Proposition 4.11, we also obtain
the following duality result, which will be improved in Proposition 4.22:

Lemma 4.12. — LetR be a positive Rockland operator of homogeneous
degree ν on G. Let s ∈ R and p ∈ (1,∞). We denote by p′ its conjugate
exponent: 1

p + 1
p′ = 1.

The dual space of L̇ps,R(G) is isomorphic to L̇p
′

−s,R̄(G) via the duality:

(4.5) 〈f, g〉
L̇p
s,R(G)×L̇p

′
−s,R̄

(G) = 〈R
s
ν
p f, R̄

− sν
p′ g〉Lp(G)×Lp′ (G).

The proof of Lemma 4.12 is left to the reader.
The following interpolation property can be proved after a careful mod-

ification of the inhomogeneous proof:

Proposition 4.13. — LetR and Q be two positive Rockland operators
on two graded Lie groups G and F respectively. We consider their asso-
ciated homogeneous Sobolev spaces L̇pa(G) and L̇qb(F ). Let p0, p1, q0, q1 ∈
(1,∞) and a0, a1, b0, b1 ∈ R.
We also consider a linear mapping T from L̇p0

a0
(G) + L̇p1

a1
(G) to locally

integrable functions on F . We assume that T maps L̇p0
a0

(G) and L̇p1
a1

(G)
boundedly into L̇q0b0(F ) and L̇q1b1(F ), respectively.
Then T extends uniquely to a bounded mapping from L̇pat(G) to L̇qbt(F )

for t ∈ [0, 1], where at, bt, pt, qt are defined by(
at, bt,

1
pt
,

1
qt

)
= (1− t)

(
a0, b0,

1
p0
,

1
q0

)
+ t

(
a1, b1,

1
p1
,

1
q1

)
.

Sketch of the proof of Proposition 4.13. — By duality (see Lemma 4.12)
and up to a change of notation, it suffices to prove the case a1 > a0 and
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b1 6 b0. The idea is to interpolate between the operators formally on S(G)
given by

(4.6) Tz = Qz(b1−b0)/νQQb0TR−a0Rz(a0−a1)/νR , z ∈ S,

with the same notation for νR, νQ, az, bz and S as in the proof of The-
orem 4.8. In (4.6), we have abused the notation regarding the fractional
powers of Rp and Qq and removed p and q thanks to by Theorem 3.6(1).
Moreover, Theorem 3.6 implies that on S(G), each operator Tz, z ∈ S,
coincides with

Tz = Q(1−z)(b1−b0)/νQQb1TR−a1R(1−z)(a0−a1)/νR ,

and that for any φ ∈ S(G) and ψ ∈ S(F ), z 7→ 〈Tzφ, ψ〉 is analytic on S.
We also have

|〈Tzφ, ψ〉| 6 ‖T‖L (L̇p1
a1 ,L̇

q1
b1

)

∥∥∥R−az+a1
νR φ

∥∥∥
Lp1

∥∥∥∥Q̄ bz−b1
νQ ψ

∥∥∥∥
L
q′1

.

We have <(−az + a1) = (1− <z)(a1 − a0) ∈ [0, a1 − a0] and <(bz − b1) =
(1−<z)(b1 − b0) ∈ [b1 − b0, 0]. If <(−az + a1) ∈ (0, a1 − a0), then Theo-
rem 3.6(1) implies∥∥∥R−az+a1

νR φ
∥∥∥
p1
6 C

(
‖φ‖p1

+
∥∥∥R a1−a0

νR φ
∥∥∥
p1

)
,

whereas if <(−az +a1) = 0 or a1−a0, that is, −az +a1 = iy or −az +a1 =
a1 − a0 + iy, then by Proposition 3.9∥∥∥R−az+a1

νR φ
∥∥∥
p1
6 Ceθ|y| ‖φ‖p1

or Ceθ|y|
∥∥∥R a1−a0

νR φ
∥∥∥
p1

respectively.

We have similar bounds for
∥∥∥∥Q̄ bz−b1

νQ ψ

∥∥∥∥
q′1

and all these estimates imply that

e−|=z| ln |〈Tzφ, ψ〉|

is bounded uniformly with respect to z ∈ S by a constant depending on
φ, ψ, a1, a0, b1, b0. We proceed in a similar way to show

sup
y∈R

e−|y| ln ‖Tj+iy‖L (Lpj ,Lqj ) <∞, j = 0, 1.

We conclude the proof in the same way as for Theorem 4.8. �
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4.4. Differential operators acting on Sobolev spaces

In this section we show that left-invariant differential operators map
Sobolev spaces to Sobolev spaces in the following way:

Theorem 4.14. — If T is a left-invariant differential operator of homo-
geneous degree νT > 0 (at most), then, for every s ∈ R and p ∈ (1,∞), T
maps linearly boundedly Lps+νT (G) to Lps(G), and L̇ps+νT (G) to L̇ps(G).

Remark 4.15. — The proof of the stratified case (see [12, p. 190]) uses
at several stages the fact that the sub-Laplacian is of degree 2, and thus is
not adaptable here.

The proof of Theorem 4.14 relies on the following property:

Lemma 4.16. — LetR be a positive Rockland operator of homogeneous
degree ν.

If T is an operator of type 0, then, for each N ∈ N0, the operator
RNTR−N2 is of type 0.

For each j = 1, . . . , n and N ∈ N0, the operator RNXjR
−N−

υj
ν

2 is of
type 0.

Proof of Lemma 4.16. — Let Is be the kernel of the Riesz operator
of R as in Corollary 3.11. For each j = 1, . . . , n, by Corollary 3.11(1),
Iυj is a kernel of type υj ∈ (0, Q), so XjIυj is a kernel of type 0 by
Proposition 2.4(3). More generally if κ is a kernel of type 0, then κ ∗ Iνj
is a kernel of type νj by Proposition 2.4(4) and Xj(κ ∗ Iνj ) is a kernel of
type 0 by Proposition 2.4(3). Proceeding recursively shows that

(4.7) Xα
(
κ ∗ I∗αnυn ∗ . . . ∗ I

∗α1
υ1

)
is a kernel of type 0 for any α ∈ Nn0 .

Let T be an operator of type 0. Denoting by κ ∈ S ′(G) its kernel, the
kernel of the operator RNTR−N2 can be written as a linear combination of
kernels of type 0 as in (4.7) with [α] = νN . Thus RNTR−N2 is an operator
of type 0.
We can apply this to the operator XjR

−
υj
ν

2 which is of type 0 since its
kernel is XjIυj . �

Proof of Theorem 4.14. — It suffices to show Theorem 4.14 for any
left-invariant differential operator T which is homogeneous of degree νT .
By Lemma 4.16, for any N ∈ N0 and p ∈ (1,∞), the operator

RNTR−
νT
ν −N

p extends to an Lp(G)-bounded operator. Since RN+ νT
ν

p is
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injective, we obtain

∀ ψ ∈ S(G)
∥∥RNTψ∥∥

Lp(G) 6 CN
∥∥∥R νT

ν +N
p ψ

∥∥∥
Lp(G)

.

This shows that T maps L̇pN+νT /ν to L
p
N boundedly. By duality and interpo-

lation, this implies the boundedness of every νT -homogeneous left-invariant
differential operator T from L̇ps+νT (G) to L̇ps(G) for every s ∈ R.

We also have

‖Tψ‖p +
∥∥RNTψ∥∥

p
6 C0

∥∥∥R νT
ν
p ψ

∥∥∥
p

+ CN

∥∥∥RNp R νT
ν
p ψ

∥∥∥
p
.

By Theorem 4.3, the left-hand side is equivalent to the Sobolev norm of Tψ
in LpνN (G) whereas the right-hand side is equivalent to the Sobolev norm of
ψ in LpνT+νN (G). Therefore T is continuous from LpνN+νT (G) to LpνN (G).
By duality and interpolation, this implies the boundedness of every νT -
homogeneous left-invariant differential operator T from Lps+νT (G) to Lps(G)
for every s ∈ R. �

We observe that we can modify the proof above to show:

Proposition 4.17. — If T is an operator of type νT with <νT = 0,
then, for every s ∈ R and p ∈ (1,∞), T is bounded on Lps(G) and on
L̇ps(G).

Proof of Proposition 4.17. — Let κ ∈ S ′(G) be the kernel of T . Proceed-
ing as in Lemma 4.16, we see thatXj(κ∗Iνj ) is a kernel of type νT by Propo-
sition 2.4. Proceeding recursively shows that Xα

(
κ ∗ I∗αnυn ∗ . . . ∗ I

∗α1
υ1

)
is a

kernel of type νT for any α ∈ Nn0 . Consequently, the kernel of the operator
RNTR−N2 can be written as a linear combination of kernels of type νT and
RNTR−N2 is an operator of type νT . This implies that T is bounded on
L̇pνN for any N ∈ N0, and subsequently using duality and interpolation and
Theorem 4.3 that T is bounded on every homogeneous and inhomogeneous
Sobolev space. �

4.5. Independence with respect to Rockland operators

In this Section, we show that the Sobolev spaces do not depend on a par-
ticular choice of a Rockland operator. Consequently Theorems 4.3 and 4.8,
Corollary 4.6, and Proposition 4.7 hold independently of any chosen Rock-
land operator R.
We will need the following property:
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Lemma 4.18. — Let R be a Rockland operator on G of homogeneous
degree ν and let ` ∈ N0.

(1) The map φ 7→
∑

[α]=ν` ‖Xαφ‖p, is a norm on L̇pν`(G) equivalent
to the Sobolev norm. The space L̇pν`(G) is the completion of the
Schwartz space S(G) for this norm.

(2) The space Lpν`(G) is the collection of functions f ∈ Lp(G) such
that Xαf ∈ Lp(G) for any α ∈ Nn0 with [α] = ν`. Moreover the
map φ 7→ ‖φ‖p +

∑
[α]=ν` ‖Xαφ‖p is a norm on Lpν`(G) which is

equivalent to the Sobolev norm.

Remark 4.19. — Note that in the stratified case, it is proved that the
Sobolev Lp1(G) space consists of the function f ∈ Lp(G) such that Xjf ∈
Lp(G) for Xj a basis of the first stratum. And this property is proved
using the existence of a unique homogeneous fundamental solution of the
sub-Laplacian, cf. Theorem 4.10 and the lemmata below entering its proof
in [12].
Our lemma requires that the integers have to be multiple of the homo-

geneous degree of a positive Rockland operator. In our proof, we replace
the use of this fundamental solution (which does not necessarily exist for
Rockland operators) with Theorem 4.14.

Proof of Lemma 4.18. — Writing R` =
∑

[α]=`ν cα,`X
α we have on one

hand,

∃ C > 0 ∀ φ ∈ S(G)
∥∥R`φ∥∥

p
6 max |cα|

∑
[α]=`ν

‖Xαφ‖p .

On the other hand, by Theorem 4.14, Xα maps continuously L̇p[α](G) to
Lp(G). This implies that the maps

φ 7→
∥∥R`φ∥∥ = ‖φ‖L̇p

ν`
(G) and φ 7→

∑
[α]=ν`

‖Xαφ‖p

are two equivalent norms on S(G). This proves Part (1).
Adding ‖φ‖Lp on both sides of the inequality above implies by Theo-

rem 4.3, part (2), that the maps

φ 7→ ‖φ‖Lp
ν`

(G) and φ 7→ ‖φ‖Lp +
∑

[α]=ν`

‖Xαφ‖p

are two equivalent norms on S(G). This proves Part (2). �

One may wonder whether Lemma 4.18 would be true not only for integer
exponents of the form s = ν` but for any integer s. The answer is no, and
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this will be explained in Section 4.8 together with the construction of a
different type of Sobolev spaces on a graded Lie group due to Goodman.
We can now show the main result of this section, that is, that the Sobolev

spaces on graded Lie groups are independent of the chosen positive Rock-
land operators.

Theorem 4.20. — For each p ∈ (1,∞), the homogeneous (resp.
inhomogeneous) Lp-Sobolev spaces on G associated with any positive
Rockland operators coincide. Moreover the homogeneous (resp. inhomo-
geneous) Sobolev norms associated to two positive Rockland operators are
equivalent.

Proof of Theorem 4.20. — Let R(1) and R(2) be two positive Rockland
operators on G of homogeneous degree ν1 and ν2, respectively. Then Rν2

(1)
and Rν1

(2) are two positive Rockland operators with the same homogeneous
degree ν = ν1ν2. Their associated Sobolev spaces of exponent ν` = ν1ν2`

for any ` ∈ N0 coincide and have equivalent homogeneous (resp. inhomoge-
neous) Sobolev norms by Lemma 4.18. By duality and interpolation, this
is true for any Sobolev spaces. �

Corollary 4.21. — Let R(1) and R(2) be two positive Rockland op-
erators on G with degrees of homogeneity ν1 and ν2. Then for any s ∈ R
and p ∈ (1,∞), the operators

R(1)
s
ν1R(2)

− s
ν2 and (I +R(1))

s
ν1 (I +R(2))−

s
ν2

extends boundedly on Lp(G).

Proof of Corollary 4.21. — For the inhomogeneous case, we view the
operator (I+(R(2))p)−

a
ν2 as a bounded operator from Lp(G) to Lpa(G) and

use the norm f 7→
∥∥∥(I + (R(1))p)

a
ν1 f
∥∥∥
p
on Lpa(G). We proceed similarly in

the homogeneous case. �

Thanks to Theorem 4.20, we can now improve our duality result given
in Lemmata 4.4 and 4.12:

Proposition 4.22.
(1) For any s ∈ R and p ∈ (1,∞), the dual space of L̇ps(G) is isomorphic

to Lp
′

−s(G) via the duality in (4.5) where p′ is the conjugate exponent
of p if p ∈ (1,∞), i.e. 1

p + 1
p′ = 1.

(2) For any s ∈ R and p ∈ [1,∞), the dual space of Lps(G) is isomorphic
to Lp

′

−s(G) via the distributional duality, where p′ is the conjugate
exponent of p if p ∈ (1,∞), and p′ =∞o if p = 1.
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For any s 6 0 and p =∞o, the dual space of L∞o
s (G) is isomor-

phic to L1
−s(G) via the distributional duality.

If p ∈ (1,∞) then the Banach space Lps(G) is reflexive. It is also
the case for s 6 0 and p =∞o, and for s > 0 and p = 1.

We can also show that multiplication by a bump function is continuous
on Sobolev spaces:

Proposition 4.23. — For any φ ∈ D(G), p ∈ (1,∞) and s ∈ R, the
operator f 7→ fφ defined for f ∈ S(G) extends continuously into a bounded
map from Lps(G) to itself.

Proof. — The Leibniz’ rule for the Xj ’s and the continuous inclusions
in Theorem 4.3(4) imply easily that for any fixed α ∈ Nn0 there exist a
constant C = Cα,φ > 0 and a constant C ′ = C ′α,φ > 0 such that

∀ f ∈ D(G) ‖Xα(fφ)‖p 6 C
∑

[β]6[α]

∥∥Xβf
∥∥
p
6 C ′ ‖f‖Lp[α](G) .

Lemma 4.18 yields the existence of a constant C ′′ = C ′′α,φ > 0 such that

∀ f ∈ D(G) ‖(fφ)‖Lp
`ν

(G) 6 C
′′ ‖f‖Lp

`ν
(G)

for any integer ` ∈ N0 and any degree of homogeneity ν of a Rockland
operator.
This shows the statement for the case s = ν`. The case s > 0 follows

by interpolation (see Theorem 4.8), and the case s < 0 by duality (see
Proposition 4.22). �

4.6. Sobolev embeddings

In this section, we show the analogue of the classical fractional integration
theorems of Hardy–Littlewood and Sobolev. The main difference is that
the topological dimension n of G ∼ Rn is replaced by the homogeneous
dimension Q. The stratified case was proved by Folland in [12] (mainly
Theorem 4.17 therein).

Theorem 4.24.
(1) If 1 < p < q <∞ and a, b ∈ R with b− a = Q( 1

p −
1
q ) then we have

the following continuous inclusion L̇pb ⊂ L̇qa, that is, for every f ∈
L̇pb , we have f ∈ L̇qa and there exists a constant C = Ca,b,p,q,G > 0
independent of f such that

‖f‖L̇qa 6 C ‖f‖L̇pb .

ANNALES DE L’INSTITUT FOURIER



SOBOLEV SPACES ON GRADED LIE GROUPS 1717

(2) If 1 < p < q <∞ and a, b ∈ R with b− a = Q( 1
p −

1
q ) then we have

the following continuous inclusion Lpb ⊂ Lqa, that is, for every f ∈
Lpb , we have f ∈ Lqa and there exists a constant C = Ca,b,p,q,G > 0
independent of f such that

‖f‖Lqa 6 C ‖f‖Lpb .

(3) If p ∈ (1,∞) and s > Q/p then we have the following continuous
inclusion Lps ⊂ C(G) in the sense that any function f ∈ Lps(G)
admits a bounded continuous representative (still denoted by f).
Furthermore there exists a constant C = Cs,p,G > 0 independent of
f such that

‖f‖∞ 6 C ‖f‖Lps(G) .

Proof. — Let us prove Part (1). We fix a positive Rockland operatorR of
homogeneous degree ν and we assume that b, a > 0 and p, q ∈ (1,∞) satisfy
b− a = Q( 1

p −
1
q ). By Corollary 3.11(1), Ib−a is a kernel of type b− a and

for any p1 ∈ (1,∞) and φ ∈ S(G), R
b−a
ν

p1 φ ∈ Lp1
b and φ = (R

b−a
ν

p1 φ) ∗ Ib−a.
By Proposition 2.4(1), this implies with p1 = p,

‖φ‖Lq 6 C
∥∥∥∥R b−a

ν
p φ

∥∥∥∥
Lp
.

For the same reason we also have R
a
ν
q φ = R

b
ν
p ∗ Ib−aφ and∥∥∥R a

ν
q φ
∥∥∥
Lq
6 C

∥∥∥R b
ν
p φ
∥∥∥
Lp
.

This shows Part (1).
For Part (2), we add the two estimates above to obtain:

‖φ‖q +
∥∥∥R a

ν
q φ
∥∥∥
q
6 C

(∥∥∥∥R b−a
ν

p φ

∥∥∥∥
Lp

+
∥∥∥R b

ν
p φ
∥∥∥
Lp

)
.

By Theorem 4.3(4), and density of S(G) in the Sobolev spaces, this shows
Part (2) for b > a > 0. The result for any a, b follows by duality and
interpolation (see Proposition 4.22 and Theorem 4.8). The proof of Part (2)
is now complete.
Let us prove Part (3). Let p ∈ (1,∞) and s > Q/p. For any f ∈ Lps(G),

setting fs := (I +Rp)
s
ν f , we have f = fs ∗ Bs by Corollary 3.11(2). The

conclusion now follows from ‖Bs‖p′ <∞ (see Corollary 3.13). �

From the Sobolev embedding theorem (Theorem 4.24(2)) and the de-
scription of Sobolev spaces with integer exponent (Lemma 4.18) follows
easily the following property:
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Corollary 4.25. — Let G be a graded Lie group, p ∈ (1,∞) and
s ∈ N. We assume that s is proportional to the homogeneous degree ν of a
positive Rockland operator, that is, sν ∈ N, and that s > Q/p.

Then if f is a distribution on G such that f ∈ Lp(G) and Xαf ∈ Lp(G)
when α ∈ Nn0 satisfies [α] = s, then f admits a bounded continuous
representative (still denoted by f). Furthermore there exists a constant
C = Cs,p,G > 0 independent of f such that

‖f‖∞ 6 C

‖f‖p +
∑

[α]=s

‖Xαf‖p

 .

4.7. Properties of L2
s(G)

The case L2(G) has some special features, such as being a Hilbert space,
that we will discuss here.
Many of the proofs in this paper could be simplified if we had just con-

sidered the case Lp with p = 2. For instance, let us consider a positive
Rockland operator R and its self-adjoint extension R2 on L2(G). One can
define the fractional powers of R2 and I +R2 by functional calculus. Then
one can obtain the properties of the kernels of the Riesz and Bessel poten-
tials with similar methods as in Corollary 3.11.
The proof of the properties of the associated Sobolev spaces L2

s(G) would
be the same in this particular case, maybe slightly helped occasionally by
the Hölder inequality being replaced by the Cauchy–Schwartz inequality.
A noticeable exception is that Lemma 4.18 can be obtained directly in the
case Lp, p = 2, from the estimates due to Helffer and Nourrigat in [19].
The main difference between L2 and Lp Sobolev spaces is the structure

of Hilbert spaces of L2
s(G) whereas the other Sobolev spaces Lps(G) are

“only” Banach spaces:

Proposition 4.26 (Hilbert space L2
s). — Let G be a graded Lie group.

(1) For any s ∈ R, the homogeneous Sobolev space L̇2
s(G) is a Hilbert

space with inner product given by

(f, g)L̇2
s(G) :=

∫
G

R
s
ν
2 f(x) R

s
ν
2 g(x) dx,

where R is a positive Rockland operator of homogeneous degree ν.
If s > 0, an equivalent inner product is

(f, g)L̇2
s(G) :=

∫
G

f(x) g(x) dx +
∫
G

R
s
ν
2 f(x) R

s
ν
2 g(x) dx.
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If s = ν` with ` ∈ N0, an equivalent inner product is

(f, g) =
∑

[α]=ν`

(Xαf,Xαg)L2(G).

(2) For any s ∈ R, the inhomogeneous Sobolev space L2
s(G) is a Hilbert

space with inner product given by

(f, g)L2
s(G) :=

∫
G

(I +R2) sν f(x) (I +R2) sν g(x) dx,

where R is a positive Rockland operator of homogeneous degree ν.
If s > 0, an equivalent inner product is

(f, g)L2
s(G) :=

∫
G

f(x) g(x) dx +
∫
G

R
s
ν
2 f(x) R

s
ν
2 g(x) dx.

If s = ν` with ` ∈ N0, an equivalent inner product is

(f, g) = (f, g)L2(G) +
∑

[α]=ν`

(Xαf,Xαg)L2(G).

Proposition 4.26 is easily checked, using the structure of Hilbert space of
L2(G).

4.8. Comparison with other definitions of Sobolev spaces

If the group G is stratified, then we can choose as positive Rockland
operator R = −L with L a (negative) sub-Laplacian. The corresponding
Sobolev spaces have been developed by Folland in [12] for stratified groups,
see also [23]. Folland showed that his Sobolev spaces do not depend on a
particular choice of a sub-Laplacian [12, Corollary 4.14], and we have shown
the same for our Sobolev spaces and Rockland operators in Theorem 4.20.
Therefore, our Sobolev spaces coincide with Folland’s in the stratified case,
and gives new descriptions of Folland’s Sobolev spaces.
For instance, let us consider the “simplest” case after the abelian case,

that is, the three dimensional Heisenberg group H1, with Lie algebra h1 =
RX ⊕ RY ⊕ RT and canonical commutation relations [X,Y ] = T . This
is naturally a stratified group, with canonical (negative) sub-Laplacian
LH1 := X2 +Y 2. We have obtained that the Sobolev spaces (in our sense or
equivalently Folland’s) may be defined using any of the positive Rockland
operators

−LH1 , or L2
H1
, or L2

H1
− T 2.

To compare our Sobolev spaces Lps(G) with their Euclidean counterparts
Lps(Rn), that is, for the abelian group (Rn,+), we can proceed as in [12],
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especially Theorem 4.16 therein. First there can be only local relations
between our Sobolev Spaces and the Euclidean Sobolev spaces, since the
coefficients of Xj ’s with respect to the abelian derivatives ∂xk are poly-
nomials in the coordinate functions x`’s, and conversely, the coefficients
of ∂xj ’s with respect to the abelian derivatives Xk are polynomials in the
coordinate functions x`’s. Hence we are led to define the following local
Sobolev spaces for s ∈ R and p ∈ (1,∞):

(4.8) Lps,loc(G) :=
{
f ∈ D′(G) : φf ∈ Lps(G) for all φ ∈ D(G)

}
.

By Proposition 4.23, Lps,loc(G) contains Lps(G). We can compare locally the
Sobolev spaces on graded Lie groups and on their abelian counterpart:

Theorem 4.27. — For any p ∈ (1,∞) and s ∈ R,

Lps/υ1,loc
(Rn) ⊂ Lps,loc(G) ⊂ Lps/υn,loc(R

n).

Above, Lps,loc(Rn) denotes the usual local Sobolev spaces, or equivalently
the spaces defined by (4.8) in the case of the abelian (graded) Lie group
(Rn,+). Recall that υ1 and υn are respectively the smallest and the largest
weights of the dilations. In particular, in the stratified case, υ1 = 1 and
υn coincides with the number of steps in the stratification, and with the
step of the nilpotent Lie group G. Hence in the stratified case we recover
Theorem 4.16 in [12].

Proof of Theorem 4.27. — It suffices to show that the mapping f 7→ fφ

defined on D(G) extends boundedly from Lps/υ1
(Rn) to Lps(G) and from

Lps(G) to Lps/υn,loc(R
n). By duality and interpolation (see Theorem 4.8

and Proposition 4.22), it suffices to show this for a sequence of increasing
positive integers s.
For the Lps/υ1

(Rn) → Lps(G) case, we assume that s is divisible by
the homogeneous degree of a positive Rockland operator. Then we use
Lemma 4.18, the fact that the Xα may be written as a combination of the
∂βx with polynomial coefficients in the x`’s and that max[β]6s |β| = s/υ1.

For the case of Lps(G)→ Lps/υn,loc(R
n), we use the fact that the abelian

derivative ∂αx , |α| 6 s, may be written as a combination over the Xβ ,
|β| 6 s, with polynomial coefficients in the x`’s, that Xβ maps Lp → Lp[β]
boundedly together with max|β|6s[β] = sυn. �
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Proceeding as in [12, p. 192], one can convince oneself that Theorem 4.27
can not be improved.

In another direction, Sobolev spaces, and more generally Besov spaces,
have been defined on any group of polynomial growth in [15] using left-
invariant sub-Laplacians and an associated Littlewood–Paley decomposi-
tion. Considering stratified groups and homogeneous left-invariant sub-
Laplacians (as in (2.5)), this gives another description of the Sobolev spaces
in the stratified case which is equivalent to Folland’s and to ours. However,
for a general graded non-stratified Lie group, our Sobolev spaces may differ
from the ones in [15] on any Lie group of polynomial growth. For instance,
if we consider the three dimensional Heisenberg group endowed with the
dilations

(4.9) r · (x, y, t) = (r3x, r5y, r8t).

We denote this group H̃1, it is graded but not stratified. The sub-Laplacian
LH1 is not homogeneous and is of degree 10. One can check that that LH1

maps L2
10(H̃1) → L2(H̃1) and L2

2(H1) → L2(H1) boundedly and this can
not be improved. Hence our Sobolev spaces on H̃1 differ from the Sobolev
spaces based on the sub-Laplacian in [12] or equivalently in [15].
Sobolev spaces of integer exponents on graded Lie groups have already

been defined by Goodman in [18, Section III.5.4]: the Lp Goodman–Sobolev
spaces of order s ∈ N0 is the space of function φ ∈ Lp such that Xαφ ∈ Lp
for any [α] 6 s. Goodman’s definition does not use Rockland operators but
makes sense only for integer exponents. Adapting the proof of Lemma 4.18,
one could show easily that the Lp Goodman–Sobolev space of order s ∈ N0
always contains our Sobolev space Lps(G), and in fact coincides with it if s is
proportional to the homogeneous degree ν of a positive Rockland operator
or for any s if the group is stratified.
However, this equality between Goodman–Sobolev spaces and our

Sobolev spaces is not true on any general graded Lie group. For instance
this does not hold on graded Lie groups whose weights are all strictly
greater than 1. Indeed, the Lp Goodman–Sobolev space of order s = 1 is
Lp(G) which contains Lp1(G) stricly (see Theorem 4.3(4)). An example of
such a graded Lie group is the three dimensional Heisenberg group H̃1 with
weights given by (4.9).
Again, one consequence of these strict inclusions together with our results

is that the Goodman–Sobolev spaces do not satisfy interpolation properties
in general.
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