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TROPICAL SKELETONS

by Walter GUBLER, Joseph RABINOFF & Annette WERNER

Abstract. — In this paper, we study the interplay between tropical and an-
alytic geometry for closed subschemes of toric varieties. Let K be a complete non-
Archimedean field, and let X be a closed subscheme of a toric variety over K. We
define the tropical skeleton of X as the subset of the associated Berkovich space
Xan which collects all Shilov boundary points in the fibers of the Kajiwara–Payne
tropicalization map. We develop polyhedral criteria for limit points to belong to
the tropical skeleton, and for the tropical skeleton to be closed. We apply the limit
point criteria to the question of continuity of the canonical section of the tropical-
ization map on the multiplicity-one locus. This map is known to be continuous on
all torus orbits; we prove criteria for continuity when crossing torus orbits. When
X is schön and defined over a discretely valued field, we show that the tropical
skeleton coincides with a skeleton of a strictly semistable pair, and is naturally
isomorphic to the parameterizing complex of Helm–Katz.
Résumé. — Nous étudions les relations entre la géométrie tropicale et la géo-

métrie analytique pour les sous-schémas fermés des variétés toriques. Soit K un
corps non-archimédien et complet et soit X un sous-schéma fermé d’une variété
torique sur K. Nous définissons le squelette tropical de X comme le sous-ensemble
de l’espace de Berkovich associé Xan qui est composé de tous les points du bord de
Shilov dans les fibres du morphisme de tropicalisation de Kajiwara–Payne. Nous
développons des critères polyèdraux pour que des points limite appartiennent au
squelette tropical, et pour que cet espace soit fermé. Nous appliquons ce critère
pour les points limite à la question de la continuité de la section canonique du
morphisme de tropicalisation sur le lieu de multiplicité un. On sait que cette sec-
tion est continue sur chaque orbite du tore; nous donnons des critères de continuité
au croisement des orbites. Quand X est schön et défini sur un corps discrètement
valué, nous montrons que la squelette tropical coïncide avec le squelette d’une paire
strictement semistable, et qu’il est naturellement isomorphe au complexe paramé-
trisant de Helm–Katz.

1. Introduction

Let K be a field which is complete with respect to a non-Archimedean
absolute value, which might be trivial. Tropicalizing a scheme X of finite

Keywords: Tropical geometry, Kajiwara–Payne tropicalization, Berkovich spaces,
skeletons.
2010 Mathematics Subject Classification: 14G22, 14T05.



1906 Walter GUBLER, Joseph RABINOFF & Annette WERNER

type over K means, roughly speaking, applying the valuation map to a set
of coordinates on X. This produces a combinatorial shadow of X called the
tropical variety of X. Such coordinates are obtained by embedding X (or
an open subscheme) into a torus or, more generally, into a toric variety. The
tropicalization map extends uniquely to a proper continuous map from the
Berkovich space Xan to a Kajiwara–Payne compactification of Euclidean
space. In fact, by a result of Payne [31] and the generalizations given by
Foster, Gross and Payne [19], for any subscheme X of a toric variety, the
topological space underlyingXan is the inverse limit over all tropicalizations
of X with respect to suitable choices of coordinates.

An interesting question is the relationship between the Berkovich space
Xan and an individual tropicalization. If X is a curve, the problem of
finding subgraphs of Xan which are isometric to tropical varieties of X was
investigated by Baker, Payne and Rabinoff in [2, 3].
In [23], we generalize several of these results to the higher-dimensional

setting. Among other results, it is shown in loc. cit. that the tropicalization
map for a subvariety of a torus has a canonical continuous section on the
locus of all points with tropical multiplicity one. This section is defined by
associating to every point ω of tropical multiplicity one the unique Shilov
boundary point in the fiber of tropicalization over ω. For an overview of
these results, see [37].
In the present paper we consider higher dimensional subvarieties of toric

varieties. By the previous results we can define the locus of multiplicity one
and the section map from the tropicalization to the Berkovich analytifica-
tion of the variety stratum by stratum. Quite surprisingly, it turns out that
the section map is in general no longer continuous when passing from one
stratum to another. We provide an example where continuity fails in 8.11.
A delicate investigation of polyhedra in the tropicalization is necessary to
obtain criteria for continuity. We approach this problem from a more gen-
eral angle by investigating a subset of the Berkovich space Xan which we
call the tropical skeleton.
Before we will describe this notion and before we explain more general

continuity criteria, we formulate our main application which is continuity
of the section map in the case of a proper intersection with torus orbits.

Let Y∆ be the toric variety over K associated to a pointed rational fan
∆. Then Y∆ can be stratified into torus orbits O(σ), where σ runs over the
cones in ∆. The Kajiwara–Payne tropicalization of Y∆ is a natural partial
compactification N∆

R of the real cocharacter space NR of the dense torus
T in Y∆. As a set (but not as a topological space) it is the disjoint union
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TROPICAL SKELETONS 1907

of all cocharacter spaces NR(σ) := NR/〈σ〉 associated to the torus orbits
O(σ) in Y∆. There is a natural continuous tropicalization map Y an → N∆

R .
We consider a closed subscheme X of Y and its tropicalization Trop(X),
which is defined as the image of Xan under the tropicalization map

trop: Xan ↪→ Y an
∆ −→ N∆

R .

The intersection of X with each toric stratum O(σ) of N∆
R is a closed

subscheme of a torus, so that its tropical variety, which is simply Trop(X)∩
NR(σ), can be equipped with the structure of an integral affine polyhedral
complex. Hence there is a notion of tropical multiplicity mTrop(ω) for any
ω ∈ Trop(X) ∩ NR(σ) (see §3.5). Using our previous work [23] orbitwise,
this defines a canonical section sX of the tropicalization map on the subset
Trop(X)mTrop=1 of all points of tropical multiplicity one in Trop(X).

Theorem 8.15. — Let X be a closed subscheme of Y∆ such that X ∩T
is equidimensional and dense in X. Assume additionally that for all σ ∈
∆, either X ∩ O(σ) is empty or of dimension dim(X) − dim(σ). Then
sX : Trop(X)mTrop=1 → Xan is continuous.

Under the hypotheses of Theorem 8.15, the map sX : Trop(X)mTrop=1 →
Xan induces a homeomorphism onto its image and we may realize the lo-
cus Trop(X)mTrop=1 as a closed subset of trop−1(Trop(X)mTrop=1) in Xan.
Theorem 8.15 follows from Theorem 8.12 mentioned below in the intro-
duction which yields a completely combinatorial criterion for continuity of
sX .
In the higher-dimensional example of the Grassmannian of planes it was

shown in [14] that the tropical Grassmannian is homeomorphic to a closed
subset of the analytic Grassmannian. This result relies heavily on combina-
torial arguments using the interpretation of the tropical Grassmannian of
planes as a space of phylogenetic trees. Draisma and Postinghel [15] provide
an alternative proof using tropical torus actions.

Another interesting case from the point of view of moduli spaces is dis-
cussed in [11, Theorem 3.14], where it is shown that the tropicalization of
a suitable Hassett space can be identified with its Berkovich skeleton.

We will now explain the other results in this paper and how they lead to
Theorem 8.15. In §§2–3 we provide some background material on tropical
and analytic geometry. Working with several torus orbits at once forces us
to consider reducible subschemes of tori. We work out some fundamental
properties in this situation which we did not find in the literature. Note
that our ground field may be an arbitrary field endowed with the trivial
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1908 Walter GUBLER, Joseph RABINOFF & Annette WERNER

absolute value. This often requires a careful study of the behaviour of our
objects under non-Archimedean field extensions.

Let X be any closed subscheme of the toric variety Y∆ over a K and
let O(σ) be the orbit associated to the cone σ in the fan ∆. For every
ω ∈ Trop(X) the fiber trop−1({ω}) of the tropicalization map over ω is an
affinoid domain in (X ∩ O(σ))an. Therefore it contains a finite subset of
points B, the Shilov boundary, such that every element in the associated
affinoid algebra achieves its maximum absolute value on B. Then we define
the tropical skeleton of X in §4 as the subset

STrop(X) =
{
ξ ∈ Xan | ξ is a Shilov boundary point of trop−1(trop(ξ))

}
of Xan. The tropical skeleton does not change by passing to the induced
reduced subscheme and it is compatible with valued field extensions. More-
over, we show that it is locally closed in Xan, and that the tropical skeleton
of X is the union of the tropical skeletons of the irreducible components. In
Example 4.9 we discuss a concrete hypersurface in affine 3-space such that
its tropical skeleton is not closed. Motivated by this example, we define the
local dimension d(ω) of a point ω ∈ Trop(X) as the dimension of the local
cone at ω of the tropicalization of X. This coincides with the dimension of
the initial degeneration of X at ω. Then a polyhedron in the tropicalization
of X∩O(σ) containing ω is called d-maximal at ω if its dimension coincides
with d(ω). Note that the local cone of Trop(X) at ω can be identified with
the tropicalization of the initial degeneration at ω over the residue field of
K endowed with the trivial absolute value.

In Theorem 6.1, we prove a very general criterion for a limit point of a
sequence ξi ∈ STrop(X) to stay inside the tropical skeleton. For simplicity,
we assume here that the sequence ξi is in the dense torus T as well, and
that X ∩ T is of pure dimension d. As a consequence of Theorem 6.1, we
obtain the following result:

Theorem 6.3. — Let X be a closed subscheme of the toric variety
Y∆ such that X ∩ O(σ) is equidimensional of dimension dσ for any σ ∈
∆. We suppose that for all faces τ ≺ σ of ∆ and any dτ -dimensional
polyhedron P in Trop(X) ∩NR(τ) such that its closure meets NR(σ), the
natural projection of P to NR(σ) has dimension dσ. Then STrop(X) is
closed.

The situation is particularly nice if X meets every torus orbit not at all
or properly, which means that either X ∩O(σ) = ∅ or that its dimension is
equal to dim(X)−dim(σ). We investigate this situation in §7. In particular,
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TROPICAL SKELETONS 1909

we show in Corollary 7.7 that for such X the tropical skeleton STrop(X) is
closed in Xan.

Section 8 deals with continuous sections of the tropicalization map. Let
X be a closed subscheme of Y∆ and consider a point ω in Trop(X∩O(σ)) of
tropical multiplicity one. We show in Proposition 8.3 that in this case there
exists a unique irreducible component C of X∩O(σ) of (maximal possible)
dimension d(ω) such that ω lies in Trop(C) and such that trop−1(ω)∩Can

has a unique Shilov boundary point. Hence for every point ω of tropical
multiplicity one we can single out a Shilov boundary point in the fiber of the
tropicalization map over ω. This defines a section sX of the tropicalization
map on the subset Trop(X)mTrop=1 of all points of tropical multiplicity
one of Trop(X). The question of continuity of sX is closely related to the
question of the tropical skeleton being closed. We will deduce the following
theorem from the results of §§6–7:

Theorem 8.12. — Let ∆ be a pointed rational fan in NR and let X ⊂
Y∆ be a closed subscheme. Let {ωi}∞i=1 be a sequence in Trop(X)mTrop=1 ∩
NR converging to a point ω ∈ Trop(X)mTrop=1∩NR(σ) for σ ∈ ∆, σ 6= {0}.
Suppose that there exists a polyhedron P ⊂ Trop(X) ∩ NR which is d-
maximal at each ωi. If the natural projection of P to NR(σ) is d-maximal
at ω, then sX(ωi)→ sX(ω).

We assume now that the intersection of X with the dense torus T in Y∆
is dense in X. We can apply Theorem 8.12 to the case that the intersec-
tion X ∩ O(σ) of X with all torus orbits is equidimensional. We deduce
in Theorem 8.14 that if Trop(X) ∩ NR can be covered by finitely many
maximal-dimensional polyhedra P which project to polyhedra of maximal
dimension in all boundary strata which are met by the closure of P , then
sX : Trop(X)mTrop=1 → Xan is continuous. As an immediate consequence,
we get the neat criterion in Theorem 8.15 which we highlighted before.
In §9 we specialize to the case of a so-called schön subvariety X of a torus

T , defined over a discretely valued subfield K0 ⊂ K. In this situation, X
admits a compactification X in a toric scheme over the valuation ring
K◦ ⊂ K, such that the pair of X with the boundary divisor on the generic
fiber H form a strictly semistable pair in the sense of [23]. This allows us to
use the results of loc. cit.to define a skeleton S(X , H) ⊂ Xan associated to
the pair (X , H). In Theorem 9.12 we show that S(X , H) coincides with the
tropical skeleton STrop(X) (as subsets of Xan), and that both are naturally
isomorphic to the parameterizing complex ΓX defined by Helm–Katz [24].
As a consequence, the parameterizing complex is a deformation retract of
Xan, so the canonical isomorphism Hr(ΓX ,Q`) ∼= W0H

r
ét(XK0

,Q`) of [24]
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follows, at least over local fields, from a very general comparison result
of Berkovich; see Remark 9.14. Here, ` is assumed to be different from
the residue characteristic of K, and the isomorphism relates the singular
cohomology to the weight zero part of the étale cohomology of the base
change of X to the algebraic closure K0.
The interplay between tropical and analytic geometry has been intensely

studied during the last years. It plays an important role in the investigation
of tropical moduli spaces [1] and also for applications of tropical geometry
to arithmetic problems [26]. We hope that the general conceptual picture of
the relationship between analytic and tropical subschemes of toric varieties
which we develop in this paper will prove useful for further developments
in this area.
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on Non-archimedean and Tropical Geometry in 2015. The authors are very
grateful to the Simons Foundation for financial support of this meeting and
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supported by the collaborative research center SFB 1085 funded by the
Deutsche Forschungsgemeinschaft. The second author was sponsored by
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15-1-0105. We also thank the referee for his helpful comments.

2. Analytic spaces and their reductions

In this section we present some technical facts about analytic spaces,
mostly concerning reductions and Shilov boundaries. Since in our investi-
gation of torus orbits we are forced to consider reducible varieties and since
we want to include the case of an arbitrary non-archimedean ground field
endowed possibly with the trivial absolute value, we have to provide some
proofs which we could not locate in the literature in the required generality.

We assume that the reader is familiar with the terminology used in
Berkovich’s book [4].

2.1. General notation

This paper uses standard notations from the fields of non-Archimedean
analytic geometry and toric geometry. Appendix A contains a list of nota-
tions.

ANNALES DE L’INSTITUT FOURIER
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If X is an object (scheme, analytic space, formal scheme, algebra, arrow)
over a ring K and K → K ′ is a ring homomorphism, the extension of
scalars of X to K ′ will be denoted XK′ when convenient.

2.2. Non-Archimedean fields

By a non-Archimedean field we mean a field K which is complete with
respect to a (potentially trivial) non-Archimedean valuation v : K → R ∪
{∞}. If K is a non-Archimedean field then we write K◦ for its ring of
integers, K◦◦ for the maximal ideal in K◦, and K̃ = K◦/K◦◦ for the
residue field. We also write Γ = ΓK = v(K×) for the value group of K
and
√

Γ for its saturation in R. Let | · | = exp(−v( · )) be a corresponding
absolute value on K.
Throughout this paper, K will denote a non-Archimedean field. By a

valued extension field ofK we mean a non-Archimedean fieldK ′ containing
K such that the valuation on K ′ restricts to the valuation on K.

For r1, . . . , rn ∈ R>0, we denote the generalized Tate algebra by

K〈r−1
1 x1, . . . , r

−1
n xn〉 =

{ ∑
I∈Zn

>0

aIx
I | |aI |rI → 0 as |I| → ∞

}
.

2.3. Analytic spaces

We will generally use calligraphic letters to denote K-affinoid algebras.
The Berkovich spectrum of a (strictly) K-affinoid algebra A is denoted
M (A). These are the building blocks of a Berkovich (strictly) K-analytic
space X, see [6]. For x ∈ X we let H (x) denote the completed residue field
at x. This is a valued extension field of K.

Of major importance for us are good (strictly) K-analytic spaces which
means that every point has a neighborhood of the form M (A), where A is
a (strictly) K-affinoid algebra. Note that only good K-analytic spaces are
considered in [4].
For any K-scheme X locally of finite type, we let Xan denote its analyti-

fication, as constructed in [4, §3.4–3.5]. This is a good strictly K-analytic
space.

TOME 67 (2017), FASCICULE 5
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2.4. Dimension theory and irreducible decomposition

The basic dimension theory of K-analytic spaces is developed in [4, §2.3].
The dimension dim(X) of a strictly K-affinoid space X = M (A) is by
definition the Krull dimension of A. The dimension of a general K-affinoid
space X is the dimension of XK′ for K ′/K a valued field extension such
that XK′ is strictly K ′-affinoid. The dimension dim(X) of a K-analytic
space X is the maximum dimension of a K-affinoid domain in X. If X is
strictly K-analytic then this is equal to the maximal Krull dimension of
the stalk OX,x at a point x of the rigid analytic variety associated to X. We
say that a K-analytic space X is equidimensional of dimension d provided
that every K-affinoid domain in X has dimension d. The analytification of
a K-scheme X of dimension d (resp. of equidimension d) has dimension d
(resp. equidimension d) by [12, Lemma A.1.2(2)].

Let X be a good K-analytic space and let x ∈ X. The local dimension
dimx(X) is the infimum of dim(V ) for V ⊂ X an affinoid neighborhood of
x. One has dim(X) = maxx∈X dimx(X), and X is equidimensional if and
only if dimx(X) = dim(X) for all x ∈ X.
Let X = M (A) be a K-affinoid space. The irreducible components of

X are the reduced Zariski-closed subspaces of X defined by the minimal
prime ideals of A. Each irreducible component is equidimensional, and X
is equidimensional if and only if its irreducible components have the same
dimension by [4, Proposition 2.3.5]. If X is K-affinoid then dimx(X) is the
maximal dimension of an irreducible component containing x.

See [12] for a global theory of irreducible components. We need to extend
the following result, found in ibid., to the case of non-strict K-affinoid
domains.

Proposition 2.5. — Let X be a finite-type K-scheme, let Y ⊂ X be
an irreducible component, and let U ⊂ Xan be a (possibly non-strict) K-
affinoid domain. Then Y an ∩ U is a union of irreducible components of U .

Proof. — Let K ′ ⊃ K be a valued extension field of K which is non-
trivially valued and such that UK′ is strictly K ′-affinoid. Let X ′ = XK′ ,
Y ′ = YK′ , and U ′ = UK′ . Then the reduced space underlying Y ′an ∩ U ′
is a union of irreducible components of U ′ by [12, Corollary 2.2.9, Theo-
rem 2.3.1]. Let U = M (A) and let A′ = A⊗̂KK ′, so U ′ = M (A′). Then
A′ is a faithfully flat A-algebra by [5, Lemma 2.1.2]. Suppose that Y ∩U is
defined by the ideal a ⊂ A, so Y ′ ∩U ′ is defined by a′ = aA′. The question
is now purely one of commutative algebra: if A → A′ is a faithfully flat
homomorphism of Noetherian rings and

√
a′ is an intersection of minimal
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prime ideals ℘′i of A′, then
√
a is the intersection of the minimal prime

ideals ℘′i ∩ cA of A. This follows from [20, Proposition 2.3.4]. �

2.6. Admissible formal schemes

Suppose now that the valuation on K is non-trivial. An admissible K◦-
algebra in the sense of [10] is a K◦-algebra A which is topologically finitely
generated and flat (i.e. torsionfree) over K◦. We will generally use Roman
letters to denote admissible K◦-algebras. An admissible K◦-formal scheme
is a formal scheme X which has a cover by formal affine opens of the form
Spf(A) for A an admissible K◦-algebra. The special fiber of X is denoted
Xs = X⊗K◦ K̃; this is a K̃-scheme locally of finite type. If X has a locally
finite atlas, the analytic generic fiber Xη of X is the strictlyK-analytic space
defined locally by Spf(A)η = M (A ⊗K◦ K). Here we recall several facts
about admissible K◦-algebras and affine admissible K◦-formal schemes.

Proposition 2.7. — Let f : A→ B be a homomorphism of admissible
K◦-algebras, let X = Spf(A) and Y = Spf(B), and let φ : Y → X be the
induced morphism.

(1) f is finite if and only if fK : AK → BK is finite.
(2) Suppose that fK : AK → BK is finite and dominant, i.e. that

ker(fK) is nilpotent. Then φs : Ys → Xs is finite and surjective.
(3) If Xη has dimension d (resp. is equidimensional of dimension d),

then Xs has dimension d (resp. is equidimensional of dimension d).
(4) Suppose that fK : AK → BK is finite and dominant, and that Xη

and Yη are equidimensional (necessarily of the same dimension).
Then φs : Ys → Xs maps generic points to generic points.

Proof. — These are all found in [3, §3], except for the “dimension d” part
of (3), which uses a similar argument to the “equidimension d” part of [3,
Proposition 3.23]. Note that the proofs in loc. cit. do not use the standing
assumption there that K is algebraically closed. �

2.8. Power bounded elements

Assume that the valuation on K is non-trivial. Let A be a strictly K-
affinoid algebra and let X = M (A). We let A◦ ⊂ A denote the sub-
ring of power-bounded elements and we let A◦◦ ⊂ A◦ denote the ideal
of topologically nilpotent elements. The ring A◦ is flat over K◦, but it

TOME 67 (2017), FASCICULE 5
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may not be topologically of finite type, see [3, Theorem 3.17]. If | · |sup
is the supremum seminorm on A, then A◦ = {f ∈ A | |f |sup 6 1} and
A◦◦ = {f ∈ A | |f |sup < 1}. We set Ã = A◦/A◦◦.

2.9. The canonical reduction

With the notation in §2.9 the canonical model of X = M (A) is the
affine formal K◦-scheme Xcan := Spf(A◦). The canonical reduction of X is
X̃ := Spec(Ã). This is a reduced affine K̃-scheme of finite type, and the
association X 7→ X̃ is functorial. Since the radical of the ideal K◦◦A◦ is
equal to A◦◦, the canonical reduction X̃ is the reduced scheme underlying
the special fiber of the canonical model Xcan

s . If Γ = v(K×) is divisible (e.g.
if K is algebraically closed) then X̃ = Xcan

s .
We have the following analogue of Proposition 2.7 for the canonical re-

duction.

Proposition 2.10. — Let f : A → B be a homomorphism of strictly
K-affinoid algebras, let X = M (A) and Y = M (B), and let φ : Y → X be
the induced morphism.

(1) The following are equivalent: f is finite; f◦ : A◦ → B◦ is integral;
f̃ : Ã → B̃ is finite.

(2) Suppose that f is finite and dominant, i.e. that ker(f) is nilpotent.
Then φ̃ : Ỹ → X̃ is finite and surjective.

(3) If X has dimension d (resp. is equidimensional of dimension d), then
X̃ has dimension d (resp. is equidimensional of dimension d).

(4) Suppose that f is finite and dominant, and thatX and Y are equidi-
mensional (necessarily of the same dimension). Then φ̃ : Ỹ → X̃

maps generic points to generic points.

Proof. — Part (1) is [9, Theorem 6.3.5/1]. In the situation of (2), we
know from (1) that φ̃ is finite. Let Xcan = Spf(A◦) and Ycan = Spf(B◦).
Then φ̃ : Ỹ → X̃ is the morphism of reduced schemes underlying φs : Ycan

s →
Xcan
s , so φs is a closed map. Hence to show φ̃ is surjective, it suffices to show

that ker(f◦
K̃

: A◦
K̃
→ B◦

K̃
) is nilpotent. Let a ∈ A◦ have zero image in B◦

K̃
.

Then f(a) = $b for some b ∈ B◦ and $ ∈ K◦◦. Let

bn + f(cn−1)bn−1 + · · ·+ f(c1)b+ f(c0) = 0 (ci ∈ A◦)

be an equation of integral dependence for b over A◦. Then

an +$
(
cn−1a

n−1 + · · ·+$n−2c1a+$n−1c0
)
∈ ker(f) ,
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so the image of an in A◦
K̃

is nilpotent, as desired.
Now suppose that X has dimension d. By Noether normalization [9,

Theorem 6.1.2/1], there exists a finite injection K〈x1, . . . , xd〉 ↪→ A, which
by (2) yields a finite, surjective morphism X̃ → Ad

K̃
. Hence X̃ has di-

mension d. Suppose that X is equidimensional of dimension d. Choose
a generic point x̃ ∈ X̃, and choose a ∈ A◦ such that ã(x̃) 6= 0 and ã

vanishes on all other generic points of X̃. Let X ′ ⊂ X be the Laurent do-
main M (A〈a−1〉). Then dim(X ′) = dim(X) and X̃ ′ = Spec(Ã[ã−1]) by [9,
Proposition 7.2.6/3]. By the above, X̃ ′ has dimension d, and hence X̃ has
equidimension d.
Part (4) follows immediately from Parts (1)–(3). �

2.11. Relating the two reductions

We continue to assume the valuation on K is non-trivial. Let A be an
admissible K◦-algebra and let A = AK , a strictly K-affinoid algebra. Put
X = Spf(A), X = M (A), and Xcan = Spf(A◦), as above. Then A ⊂ A◦
since by definition A is generated by power-bounded elements, so we obtain
morphisms

(2.11.1) Xcan → X and X̃ ↪→ Xcan
s → Xs .

These morphisms are functorial in X. The next Proposition relates the two
finite-type K̃-schemes canonically associated with A.

Proposition 2.12. — With the above notation, the natural inclusion
A ↪→ A◦ is an integral homomorphism, and the morphism X̃ → Xs is finite
and surjective.

Proof. — Choose a surjection K◦〈x1, . . . , xn〉 � A. Tensoring with K,
we get a surjection K〈x1, . . . , xn〉 � A, so by [9, Theorem 6.3.5/1], the
composition

K◦〈x1, . . . , xn〉 → A→ A◦

is an integral homomorphism. Hence A → A◦ is integral. It follows that
A
K̃
→ A◦

K̃
� Ã is an integral homomorphism of finitely generated K̃-

algebras, so A
K̃
→ Ã and X̃ → Xs are finite. In particular, X̃ → Xs

is closed, and hence Xcan
s → Xs is closed, as X̃ and Xcan

s have the same
underlying topological space. Thus to show surjectivity it is enough to prove
that ker(A

K̃
→ A◦

K̃
) is nilpotent. This is done exactly as in the proof of

Proposition 2.10(2). �
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2.13. The Shilov boundary and the reduction map

Here the valuation on K is allowed to be trivial. The Shilov boundary
of a K-affinoid space X = M (A) is the unique minimal subset B(X) ⊂
X on which every f ∈ A achieves its maximum. It exists and is finite
and nonempty for any K-affinoid space by [4, Corollary 2.4.5]. The Shilov
boundary is insensitive to nilpotent elements of A.
We postpone the proof of the following Lemma until after Proposi-

tion 2.17.

Lemma 2.14. — Let X = M (A) be a K-affinoid space, let x ∈ B(X)
be a Shilov boundary point, and let | · |x : A → R>0 be the corresponding
seminorm. Then ker | · |x is a minimal prime ideal of A.

Proposition 2.15. — Let X = M (A) be a K-affinoid space and let
X = X1∪ · · ·∪Xn be its decomposition into irreducible components. Then
each Shilov boundary point ofX is contained in a unique irreducible compo-
nent Xi. Moreover, we have B(X) = B(X1)t· · ·tB(Xn), and if x ∈ B(Xi)
then dimx(X) = dim(Xi).

Proof. — It follows from Lemma 2.14 that a Shilov boundary point x ∈
B(X) is contained in a unique irreducible component Xi, namely, the one
defined by the prime ideal ker | · |x ⊂ A. For f ∈ A, by definition the
restriction of f to Xi achieves its maximum value on B(Xi), so it is clear
that B(X) ⊂

⋃n
i=1B(Xi).

Let x ∈ B(Xi) for some i = 1, . . . , n. Choose fi ∈ A which vanishes
identically on

⋃
j 6=iXj but not on Xi. By Lemma 2.14, |fi(x)| 6= 0. Choose

also g ∈ A such that |g| attains its maximum value on Xi only at x, i.e.
such that |g(x)| > |g(x′)| for all x′ ∈ Bi \ {x}. Using that B(X) is finite,
gnfi ∈ A achieves its maximum only on x for n � 0, so x ∈ B. Thus
B(X) =

⋃n
i=1B(Xi), and this union is disjoint because any x ∈ B(X)

lies on only one Xi. The final assertion is clear because x ∈ B(Xi) ad-
mits an equidimensional K-affinoid neighborhood contained in Xi, namely,
{|fi| > ε} for fi as above and ε small. �

Now we assume that the valuation on K is non-trivial. Let X = M (A)
be a strictly K-affinoid space. By [4, §2.4], there is a canonical reduction
map

(2.15.1) red: X −→ X̃ .

We have the following relationship between the reduction map and the
Shilov boundary, proved in [4, Proposition 2.4.4].
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Proposition 2.16. — Let X = M (A) be a strictly K-affinoid space,
and let red: X → X̃ be the reduction map.

(1) red is surjective, anti-continuous,(1) and functorial in X.
(2) If x̃ ∈ X̃ is a generic point, then red−1(x̃) consists of a single point.
(3) The inverse image under red of the set of generic points of X̃ is

equal to the Shilov boundary of X.

Now let X = Spf(A) be an affine admissible K◦-formal scheme, and
let X = Xη. Recall from (2.11.1) that we have a natural finite, surjective
morphism X̃ → Xs. We define the reduction map

(2.16.1) red: X → Xs

to be the composition of red: X → X̃ with the morphism X̃ → Xs.
This construction globalizes: if X is any admissible K◦-formal scheme with
generic fiber X = Xη, then one obtains a reduction map red: X → Xs by
working on formal affines and gluing.

Proposition 2.17. — Let X be an admissible K◦-formal scheme with
generic fiber X = Xη. Then the reduction map red: X → Xs is surjective,
anti-continuous, and functorial in X.

Proof. — We reduce immediately to the case of an affine formal scheme,
where the result follows from Propositions 2.12 and 2.16. �

Proof of Lemma 2.14. — By passing to an irreducible component of X
containing x, we may assume that A is an integral domain. First we sup-
pose that the valuation onK is non-trivial and thatX is strictlyK-affinoid.
Then red(x) is the generic point of the canonical reduction X̃ by Proposi-
tion 2.16(3). The canonical reduction is an equidimensional scheme of the
same dimension as X by Proposition 2.10(3), so x cannot be contained in
a smaller-dimensional Zariski-closed subspace of X by functoriality of the
reduction map.
Now we suppose that X is not strictlyK-affinoid or that the valuation on

K is trivial (or both). There exists a non-trivially-valued non-Archimedean
extension field K ′ ⊃ K, namely, the field K ′ = Kr1,...,rn for suitable
r1, . . . , rn ∈ R>0 as in [4, §2.1], such that X ′ = X⊗̂KK ′ is strictly K ′-
affinoid. Let A′ = A⊗̂KK ′, so X ′ = M (A′). Then A′ is an integral domain
by [4, Proposition 2.1.4(iii)] and the proof of [4, Proposition 2.1.4(ii)]. Let
π : X ′ → X be the structural morphism. We have π(B(X ′)) = B(X) by the
proof of [4, Proposition 2.4.5], so there exists x′ ∈ B(X ′) with π(x′) = x.

(1)The inverse image of an open set is closed.
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The above argument in the strictly K-affinoid case shows that the semi-
norm | · |x′ : A′ → R>0 is a norm, i.e., has trivial kernel. But A → A′ is
injective by [4, Proposition 2.1.2(i)], so | · |x is a norm. �

2.18. Extension of scalars

In the sequel it will be important to understand the behavior of extension
of the ground field with respect to the underlying topological space and the
Shilov boundary. First we make a simple topological observation. Here the
valuation on K is allowed to be trivial.

Lemma 2.19. — Let K ′ ⊃ K be a valued extension of K and let X be
a good K-analytic space. Then the structural morphism π : XK′ → X is a
proper and closed map on underlying topological spaces.

Proof. — Since X is good, every point ξ ∈ X has a K-affinoid neigh-
borhood U , which is compact. The inverse image U ′ = π−1(U) = UK′ is
also affinoid, hence compact. Thus every point of Xan admits a compact
neighborhood whose inverse image under π is compact. It is clear that any
such map is both proper and closed. �

The following Lemma is an analogue of [35, Proposition 3.1(v)].

Lemma 2.20. — Suppose that the valuation on K is non-trivial. Let
X = M (A) be a strictly K-affinoid space, let K ′ be a valued field extension
of K, and let X ′ = XK′ . Then the canonical morphism

X̃ ′ → X̃ ⊗
K̃
K̃ ′

is finite.

Proof. — There exists an admissibleK◦-algebra A ⊂ A◦ such that AK =
A (letA be the image ofK〈x1, . . . , xn〉◦ under a surjectionK〈x1, . . . , xn〉�
A). Let A′ = A⊗̂K◦K ′◦, let X = Spf(A), and let X′ = Spf(A′). Then A′ is
an admissible K ′◦-algebra and X′η = X ′. We have a commutative square of
affine K̃ ′-schemes

X̃ ′ //

��

X̃ ⊗
K̃
K̃ ′

��
X′s // Xs ⊗K̃ K̃ ′

where the left and right arrows are the morphisms coming from (2.11.1).
They are finite by Proposition 2.12. Since the bottom arrow is an isomor-
phism, the top morphism is also finite. �
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Recall that the Shilov boundary of aK-affinoid spaceX is denoted B(X).

Proposition 2.21. — Let K ′ ⊃ K be valued extension of K and let X
be a (possibly non-strict) K-affinoid space, let X ′ = XK′ , and let π : X ′ →
X be the structural map. Then π(B(X ′)) = B(X).

Proof. — It is clear a priori that π(B(X ′)) ⊃ B(X) since there are more
analytic functions on X ′ than on X. Therefore we are free to replace K ′
by a valued extension field.
Suppose that X is not strictly K-affinoid or that the valuation on K

is trivial (or both). There exists a non-trivially-valued non-Archimedean
extension field Kr := Kr1,...,rn ⊃ K for suitable r1, . . . , rn ∈ R>0 as in [4,
§2.1], such that X⊗̂KKr is strictly Kr-affinoid and such that the image
of B(X⊗̂KKr) under the structural morphism X⊗̂KKr → X is equal to
B(X). By [17, (0.3.2)], there exists a valued extension K ′′ ⊃ K which is
simultaneously a valued extension field of K ′ and Kr. Replacing K by Kr
and K ′ by K ′′, we may assume that X is strictly K-affinoid and that the
valuation on K is non-trivial.
Let X = X1 ∪ · · · ∪ Xn be the irreducible decomposition of X. Then

B(X) =
⋃n
i=1B(Xi) and B(X ′) =

⋃n
i=1B(π−1(Xi)) by Proposition 2.15,

since π−1(Xi) is a union of irreducible components of X ′. Replacing X by
Xi and X ′ by π−1(Xi) = (Xi)K′ , we may assume X is irreducible.
Consider the commutative diagram

X ′
red //

π

��

X̃ ′ //

π̃
��

X̃ ⊗
K̃
K̃ ′

xx
X

red // X̃

By [12, Lemma 2.1.5], X ′ is equidimensional of dimension d = dim(X), so
the same is true of X̃ ′ by Proposition 2.10(3). Also X̃ ⊗

K̃
K̃ ′ is equidi-

mensional of dimension d, and X̃ ⊗
K̃
K̃ ′ → X̃ sends generic points to

generic points. As the morphism X̃ ′ → X̃ ⊗
K̃
K̃ ′ is finite by Lemma 2.20,

it takes generic points to generic points, so π̃ : X̃ ′ → X̃ takes generic points
to generic points. It follows from Proposition 2.16 that π : X ′ → X takes
Shilov boundary points to Shilov boundary points. �

3. Toric varieties and tropicalizations

In this section we present the notions and notations that we will use for
toric varieties and their tropicalizations. We generally follow [22, 33]. See
Appendix A for a list of notations.
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3.1. Toric varieties

Fix a finitely generated free abelian group M ∼= Zn, and let N =
Hom(M,Z). We write 〈 · , · 〉 : M × N → Z for the evaluation pairing. For
an additive subgroup G ⊂ R we set MG = M ⊗Z G and NG = N ⊗Z G =
Hom(M,G), and we extend 〈 · , · 〉 to a pairing MG ×NG → R.
For a ring R and a monoid S we write R[S] for the monoid ring on S;

for u ∈ S we let χu ∈ R[S] denote the corresponding character. We set
T = Spec(K[M ]) ∼= Gn

m,K , the split K-torus with character lattice M and
cocharacter lattice N , where K is our fixed non-Archimedean field. For a
rational cone σ ⊂ NR we let Sσ = σ∨∩M and Yσ = Spec(K[Sσ]), an affine
toric variety. Given a rational pointed fan ∆ in NR we let Y∆ =

⋃
σ∈∆ Yσ

denote the corresponding K-toric variety with dense torus T . For σ ∈ ∆ we
writeM(σ) = σ⊥∩M and N(σ) = N/〈σ〉∩N , where 〈σ〉 ⊂ NR is the linear
span of σ. For G ⊂ R as above we write MG(σ) = M(σ)⊗ZG, etc., and by
abuse of notation we use 〈 · , · 〉 to denote the pairing MG(σ)×NG(σ)→ R.
The torus orbit [13, §3.2] corresponding to σ is O(σ) := Spec(K[M(σ)]),
and Y∆ =

⊔
σ∈∆O(σ) as sets.

We denote by πσ : NR → NR(σ) = NR/〈σ〉 the natural projection.
For τ ∈ ∆, the closure of O(τ) in Y∆ is the toric variety Y∆τ

with dense
torus O(τ), where ∆τ is the fan {πτ (σ) | σ ∈ ∆, τ ≺ σ}. We have

Y∆τ
=
⊔
σ∈∆
τ≺σ

O(σ) =
⊔

πτ (σ)∈∆τ

O(πτ (σ)) ,

where O(σ) = O(πτ (σ)) for σ ∈ ∆ such that τ ≺ σ.

3.2. Kajiwara–Payne compactifications

Much of this paper will be concerned with extended tropicalizations,
which take place in a Kajiwara–Payne partial compactification of NR. We
briefly introduce these partial compactifications here; see [31, 33] for details.
Put R = R∪{∞}, and for a rational pointed cone σ ⊂ NR we let Nσ

R denote
the space of monoid homomorphisms Hom(Sσ,R). As usual we let 〈 · , · 〉
denote the evaluation pairing Sσ × Nσ

R → R. For a face τ ≺ σ, a point
ω ∈ NR(τ) gives rise to a point of Nσ

R by the rule

u 7→

{
〈u, ω〉 if u ∈ τ⊥

∞ if not.
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This yields a decomposition Nσ
R =

⊔
τ≺σ NR(τ) as sets, but not as topolog-

ical spaces. In particular, NR is a subset of Nσ
R. For a rational pointed fan

∆ in NR, the spaces Nσ
R glue to give a partial compactification N∆

R , which
is to NR as Y∆ is to T . We have a decomposition N∆

R =
⊔
σ∈∆NR(σ).

For an additive subgroup G ⊂ R we let Nσ
G =

⊔
τ≺σ NG(τ) ⊂ Nσ

R and
N∆
G =

⊔
σ∈∆NG(σ) ⊂ N∆

R .
If we pass to the fan ∆τ defined above, the associated partial compacti-

fication N(τ)∆τ

R of NR(τ) is the disjoint union of all N(σ) for τ ≺ σ.

3.3. Tropicalization

Recall that K is a non-Archimedean field whose valuation is allowed to
be trivial. For a rational cone σ ⊂ NR we define the tropicalization map
trop: Y an

σ → Nσ
R by

〈u, trop(ξ)〉 = − log |χu(ξ)| ,

where we interpret − log(0) = ∞. This map is continuous, surjective,
closed, and proper, in the sense that the inverse image of a compact sub-
set is compact. Choosing a basis for M gives an isomorphism K[M ] ∼=
K[x±1

1 , . . . , x±1
n ]; when σ = {0} the tropicalization map trop: Gn

m = T →
NR = Rn is given by

trop(ξ) =
(
− log |x1(ξ)|, . . . ,− log |xn(ξ)|

)
.

The tropicalization map on Y an
σ has a natural continuous section s : Nσ

R →
Y an
σ given by s(ω) = | · |ω, where ω ∈ Hom(Sσ,R) and | · |ω : K[Sσ]→ R is

the multiplicative seminorm defined by

(3.3.1)
∣∣∣∣ ∑
u∈Sσ

auχ
u

∣∣∣∣
ω

= max
u

{
|au| exp(−〈u, ω〉)

}
,

where we put exp(−∞) = 0.
The image s(Nσ

R) is by definition the skeleton S(Y an
σ ) ⊂ Y an

σ of the affine
toric variety Y an

σ . The image of a continuous section of a continuous map
between Hausdorff spaces is closed, so S(Y an

σ ) is closed in Y an
σ .

If ∆ is a rational pointed fan in NR, then the maps trop glue to give
a tropicalization map trop: Y an

∆ → N∆
R . This map is again continuous

and proper. The sections also glue to a continuous section s : N∆
R → Y an

∆ ,
whose image is by definition the skeleton S(Y an

∆ ) of the toric variety Y an
∆ .

Again the skeleton S(Y an
∆ ) is closed in Y an

∆ . The tropicalization and sec-
tion are compatible with the decompositions Y∆ =

⊔
σ∈∆O(σ) and N∆

R =
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⊔
σ∈∆NR(σ), in that trop (resp. s) restricts to the tropicalization map

O(σ)an → NR(σ) (resp. the section NR(σ)→ O(σ)an) defined on the torus
O(σ) = Spec(K[M(σ)]) with cocharacter lattice N(σ).
For a closed subscheme X ⊂ Y∆, the tropicalization of X is

Trop(X) := trop(Xan) ⊂ N∆
R .

For any σ ∈ ∆ we have Trop(X) ∩ NR(σ) = Trop(X ∩ O(σ)), so that
Trop(X) may be defined on each torus orbit separately. The tropicalization
is insensitive to extension of scalars: if K ′ ⊃ K is a valued field extension
then Trop(XK′) = Trop(X) as subsets of N∆

R .

3.4. Fibers of tropicalization

For ω ∈ NR the subset Uω := trop−1(ω) ⊂ T an is a K-affinoid domain,
which is strictly K-affinoid when ω ∈ N√Γ. See [21, Proposition 4.1] and
its proof. The ring of analytic functions on Uω is

K〈Uω〉 =
{ ∑
u∈M

auχ
u | au ∈ K, v(au) + 〈u, ω〉 → ∞

}
,

where the sums are infinite and the limit is taken on the complement of
finite subsets of M . The supremum semi-norm | · |sup on K〈Uω〉 is multi-
plicative, and is given by the formula

− log
∣∣∣∣ ∑
u∈M

auχ
u

∣∣∣∣
sup

= min
{
v(au) + 〈u, ω〉 | au 6= 0

}
.

Compare (3.3.1). Suppose now that the valuation on K is non-trivial and
that ω ∈ N√Γ, so that Uω is strictly affinoid. Then the ring of power-
bounded elements in K〈Uω〉 is

K〈Uω〉◦ =
{ ∑
u∈M

auχ
u ∈ K〈Uω〉 | v(au) + 〈u, ω〉 > 0 for all u ∈M

}
.

If the value group Γ is discrete, then K〈Uω〉◦ is an admissible K◦-algebra
(i.e., it is topologically of finite presentation) for all ω ∈ N√Γ by [22,
Proposition 6.7]. If Γ is not discrete, then K〈Uω〉◦ is an admissible K◦-
algebra if and only if ω ∈ NΓ. This follows from [22, Proposition 6.9] by
noting that K〈Uω〉◦ is the completion of what is denoted K[M ]{ω} in ibid.

If K〈Uω〉◦ is an admissible K◦-algebra, then we set Uω = Spf(K〈Uω〉◦),
which is in our terminology the canonical model of Uω.

Let ∆ be a pointed rational fan in NR and assume that ω ∈ N∆
R is

contained in NR(σ) for σ ∈ ∆. Then we define Uω, K〈Uω〉, and Uω as
above, with the torus orbit O(σ) replacing the torus T .
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3.5. Initial degeneration

Let ∆ be a pointed rational fan in NR and let X ⊂ Y∆ be a closed
subscheme. For ω ∈ N∆

R we set Xω = Uω ∩Xan. This is an affinoid domain
in (X∩O(σ))an, where ω ∈ NR(σ); moreover,Xω is strictlyK-affinoid when
ω ∈ N∆√

Γ, and is a Zariski-closed subspace of Uω in any case. Suppose now
that the valuation on K is non-trivial and that ω ∈ N∆

Γ . Let aω ⊂ K〈Uω〉
be the ideal defining Xω. The tropical formal model of Xω is the admissible
formal scheme Xω defined as the closed formal subscheme of Uω given by
the ideal aω ∩K〈Uω〉◦. The initial degeneration of X at ω is by definition
the special fiber of Xω:

inω(X) := (Xω)s .
This closed subscheme of (Uω)s is defined by the ω-initial forms of the
elements of aω. See [3, §4.13] and [22, §5] for details.
Now let ω ∈ N∆

R be any point and let K ′ ⊃ K be an algebraically
closed valued field extension whose value group Γ′ = v(K ′×) is non-trivial
and large enough that ω ∈ N∆

Γ′ . Let X ′ = XK′ . Let Z ⊂ inω(X ′) be an
irreducible component with generic point ζ and let mZ be the multiplicity
of Z, i.e. the length of the local ring Oinω(X′),ζ . The tropical multiplicity
of X at ω is

mTrop(ω) = mTrop(X,ω) :=
∑
Z

mZ ,

where the sum is taken over all irreducible components Z of inω(X ′). This
quantity is independent of the choice of K ′: see [22, §13].

Remark 3.6. — Assuming the valuation on K is non-trivial, for ω ∈ N∆
Γ

we let
Xcan
ω = Spf

(
(K〈Uω〉/aω)◦

)
be the canonical model of Xω. Then (2.11.1) gives an integral morphism
Xcan
ω → Xω and a finite, surjective morphism

X̃ω → (Xω)s = inω(X)

by Proposition 2.12. Suppose now thatK is algebraically closed and that X
is reduced, so that Xcan

ω is an admissible affine formal scheme with special
fiber X̃ω (see [3, Theorem 3.17] and §2.9). The projection formula in this
case [3, (3.34.2)] says that for every irreducible component Z of inω(X),
we have

(3.6.1) mZ =
∑
Z′�Z

[Z ′ : Z] ,
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where the sum is taken over all irreducible components Z ′ of X̃ω surjecting
onto Z, and [Z ′ : Z] is the degree of the finite dominant morphism of
integral schemes Z ′ → Z.

4. The tropical skeleton

Let X be a closed subscheme of a K-toric scheme Y∆. In this section
we define a canonical locally closed subset STrop(X) ⊂ Xan which we call
the tropical skeleton. We prove that STrop(X) is closed in every torus orbit
O(σ)an. For a polyhedron in Trop(X) and ξ ∈ STrop(X), we introduce the
notions of d-maximality at ξ and relevance for ξ which will be crucial for
studying limit points of STrop(X) in Xan in the next section.

4.1. Definition and basic properties

For the rest of this section, we fix a pointed rational fan ∆ in NR. Let
X ⊂ Y∆ be a closed subscheme. Recall that trop maps Y an

∆ to N∆
R and that

Xω := trop−1(ω) ∩Xan for ω ∈ N∆
R .

Definition 4.2. — The tropical skeleton of a closed subschemeX ⊂ Y∆
is the set

STrop(X) :=
{
ξ ∈ Xan | ξ is a Shilov boundary point of Xtrop(ξ)

}
.

In other words, the tropical skeleton is the set of all Shilov boundary
points of fibers of tropicalization on Xan. It is clear that for σ ∈ ∆ we
have STrop(X ∩ O(σ)) = STrop(X) ∩ O(σ)an, where the left side of the
equation is defined with respect to the closed subscheme X ∩ O(σ) of the
torus O(σ). In other words, the tropical skeleton is defined independently
on each torus orbit. It is also clear that trop maps STrop(X) surjectively
onto Trop(X) = trop(Xan).

Lemma 4.3. — Let X ⊂ Y∆ be a closed subscheme and let Xred be the
underlying reduced subscheme. Then STrop(X) = STrop(Xred).

Proof. — The Shilov boundary of an affinoid space M (A) is obviously
equal to the Shilov boundary of M (Ared). �

Hence when discussing the tropical skeleton, we may always assume X
is reduced. The remainder of this subsection is devoted to showing that
STrop(X) ∩O(σ)an is closed in Xan ∩O(σ)an for each σ ∈ ∆. This is clear
when X = Y an

∆ , as in this case STrop(X) coincides with the usual skeleton
S(Y an

∆ ), which is closed in Y an
∆ , as we saw in §3.3.
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Lemma 4.4. — Let X ⊂ Y∆ be a closed subscheme, let K ′ ⊃ K be a
valued extension field, and let π : Xan

K′ → Xan be the structural map. Then
π(STrop(XK′)) = STrop(X).

Proof. — This is an immediate consequence of Proposition 2.21. �

Remark 4.5. — In the situation of Lemma 4.4, it is certainly not true
in general that π−1(STrop(X)) = STrop(XK′). Indeed, take K = Cp and
X = T = Gm. Then for ω ∈ R \ Q the non-strict affinoid domain Xω =
M (K〈ω−1T, ωT−1〉) is a single point (see [4, §2.1]), and if K ′ ⊃ Cp is an
extension containing ω in its value group, then X ′ω is a “modulus-zero”
closed annulus, where X ′ = XK′ . We conclude that π−1(STrop(X))∩X ′ω =
X ′ω while STrop(X ′) ∩X ′ω contains only one point.

Proposition 4.6. — Let X ⊂ T be an equidimensional closed sub-
scheme. Then the tropical skeleton STrop(X) is closed in Xan.

Proof. — This is a minor variation of the argument used in [23, The-
orem 10.6], so we only provide a sketch. By Lemmas 4.4 and 2.19, we
may assume that K is algebraically closed and that Γ = R, i.e. that
v : K× → R is surjective. By Lemma 4.3 we may also assume X is re-
duced. Let d = dim(X). A generic homomorphism ψ : T → Gd

m has the
property that the induced homomorphism f : NR → Rd is finite-to-one on
Trop(X). Using this and properness of the tropicalization maps, one de-
duces easily that the analytification of the composition φ : X ↪→ T → Gd

m

is proper as a map of topological spaces. Since it also boundaryless [4, The-
orem 3.4.1], it is a proper morphism of analytic spaces. We conclude that
ϕ is proper and hence finite as it is an affine morphism. Let ω ∈ NR, let
ω′ = f(ω) ∈ Rd, and let U ′ω′ = trop−1(ω′) ⊂ Gd,an

m . Then ψan : Xω → U ′ω′

is finite, so the map on canonical reductions X̃ω → Ũ ′ω′ is finite as well
by [9, Theorem 6.3.4/2]. Since X is equidimensional of dimension d, the
same is true of Xω, and hence of X̃ω by Proposition 2.10, so generic points
of X̃ω map to the generic point of Ũ ′ω′ . By functoriality of the reduction
map, this implies that the φ-inverse image of the Shilov boundary point of
U ′ω′ is the Shilov boundary of Xω. Therefore φ−1(STrop(Gd

m)) = STrop(X).
Since the skeleton S(Gd,an

m ) = STrop(Gd
m) is closed in Gd,an

m as we have
seen in §3.3, this proves that STrop(X) is closed. �

In Corollary 7.7 we will prove a more general statement about closed
subschemes in toric varietes.
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Proposition 4.7. — Let X ⊂ T be a closed subscheme and let X =
X1 ∪ · · · ∪Xn be its decomposition into irreducible components. Then

STrop(X) = STrop(X1) t · · · t STrop(Xn)

as topological spaces, i.e., the STrop(Xi) are disjoint open and closed subsets
of STrop(X).

Proof. — For each i, (Xi)ω is a union of irreducible components of Xω

by Proposition 2.5. We claim that for i 6= j, (Xi)ω and (Xj)ω do not share
any irreducible components. Let X = Spec(A) and Xω = M (Aω). Then
A→ Aω is flat, so Spec(Aω)→ X is flat. Thus the image of a generic point
of Spec(Aω) is a generic point of X, so we have shown that any irreducible
component of (Xi)ω is dense in Xi. This proves our claim.
By Proposition 2.15, the Shilov boundary of Xω is the disjoint union of

the Shilov boundaries of (X1)ω, . . . , (Xn)ω. Hence STrop(X) is the disjoint
union of the STrop(Xi). Each STrop(Xi) is closed in Xan

i (and hence in Xan)
by Proposition 4.6. Hence for all i the finite union

⊔
j 6=i STrop(Xj) is closed,

so the complement of STrop(Xi) in STrop(X) is also closed. This implies our
claim. �

Corollary 4.8. — Let X ⊂ Y∆ be a closed subscheme. Then
STrop(X) ∩ O(σ)an is closed in Xan ∩ O(σ)an for every σ ∈ ∆. Therefore,
STrop(X) is locally closed in Xan.

Proof. — Since STrop(X) is defined independently on each torus orbit,
we may assume O(σ) = T . Now apply Propositions 4.6 and 4.7. �

In general, STrop(X) is not closed in Xan when the ambient toric variety
Y∆ is not a torus, even whenX itself is irreducible, as the following example
shows.
Example 4.9. — For simplicity, we let K be an algebraically closed

non-Archimedean field with value group R. Let Y∆ = Yσ be the affine toric
variety A3, so σ = R3

+. Let x1, x2, x3 be coordinates on A3 and let X ⊂ A3

be the closed subscheme defined by the equation (x1− 1)x2 + x3 = 0. This
is an irreducible hypersurface.
The partial compactification N∆

R in this case is R3 = (R∪{∞})3, and the
tropicalization map trop: A3,an → R3 takes ξ to −(log |ξ(x1)|, log |ξ(x2)|,
log |ξ(x3)|). Let ω1, ω2, ω3 be coordinates on R3. Then Trop(X)∩R3 is the
union of the three cones

P1 = {ω ∈ R3 | ω1 > 0, ω3 = ω2}

P2 = {ω ∈ R3 | ω1 = 0, ω3 > ω2}

P3 = {ω ∈ R3 | ω1 6 0, ω3 = ω1 + ω2}.
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Let σ1 = {ω ∈ R3
+ | ω2 = ω3 = 0}, so O(σ1) = {x1 = 0, x2x3 6= 0} and we

identify NR(σ1) with {∞}×R2. Then X ∩O(σ1) is defined by the equation
x3 = x2 in {0} ×G2

m, so

Trop(X) ∩NR(σ1) = {∞} × {ω3 = ω2}.

Let σ2 = {ω ∈ R3
+ | ω1 = ω3 = 0}, so O(σ2) = {x2 = 0, x1x3 6= 0} and we

identify NR(σ2) with R× {∞} × R. Then X ∩O(σ2) = ∅ and therefore

Trop(X) ∩NR(σ2) = ∅ .

Let σ3 = {ω ∈ R3
+ | ω1 = ω2 = 0}, so O(σ3) = {x3 = 0, x1x2 6= 0} and we

identify NR(σ3) with R2×{∞}. Then X ∩O(σ3) is defined by the equation
x1 = 1 in G2

m × {0}, so

Trop(X) ∩NR(σ3) = {0} × R× {∞}.

Let σ12 = {ω ∈ R3
+ | ω3 = 0}, let σ13 = {ω ∈ R3

+ | ω2 = 0}, and let
σ23 = {ω ∈ R3

+ | ω1 = 0}. Then X ∩O(σ12) = ∅ and X ∩O(σ13) = ∅, so

Trop(X) ∩NR(σ12) = ∅ and Trop(X) ∩NR(σ13) = ∅ .

However, X contains O(σ23) = {x1 6= 0, x2 = x3 = 0}, so

Trop(X) ∩NR(σ23) = R× {∞} × {∞}.

Finally, O(σ) = {(0, 0, 0)} is contained in X, so

Trop(X) ∩NR(σ) = {(∞,∞,∞)}.

One checks that the initial form of the defining equation (x1− 1)x2 + x3
at every ω ∈ R3 is irreducible, and hence that each Xω contains a unique
Shilov boundary point sX(ω) by [23, Lemma 10.3] or Proposition 8.3 below.
In the following, B(r) denotes the closed disk with center 0 and radius r
in A3,an. For ω = (0, ω2,∞) ∈ Trop(X) ∩ NR(σ3), the tropical fiber Xω

is the modulus-zero annulus {(1, ξ, 0) | v(ξ) = ω2}, so the Shilov point
sX(ω) is the Gauss point of the disk {1} × B(exp(−ω2)) × {0}. Taking
ω2 → ∞, the Shilov points sX(ω) converge to (1, 0, 0). However, for ω =
(0,∞,∞) ∈ NR(σ23) the tropical fiber Xω is all of {(ξ, 0, 0) | v(ξ) = 0}, so
the Shilov point sX(ω) is the Gauss point of the disk B(1)×{0}×{0}. Hence
sX(ω) 6= (1, 0, 0), so STrop(X) does not contain the limit point (1, 0, 0).
With a bit more work, one can show that if ω(r) = (0, r, r) ∈ P2 for r > 0

then sX(ω(r))→ sX(0,∞,∞) as r →∞, but that if ω′(r) = (0, r, 2r) then
sX(ω′(r))→ (1, 0, 0).
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5. Relevant polyhedra and d-maximality

In this section we introduce two technical notions, those of relevant and
d-maximal polyhedra, which will be used to prove our main results in §6.

5.1. The local dimension

In Example 4.9, the “problem” with the “incorrect” limit point (1, 0, 0) ∈
O(σ23) of STrop(X) is that there exists a maximal polyhedron P2 in the
tropicalization of X intersected with the dense torus orbit, such that the
closure of P2 intersects the tropicalization of X ∩O(σ23) in a non-maximal
polyhedron. Note that in our example, X has codimension one in A3, but
X ∩O(σ23) has codimension zero in O(σ23) The main theorem of the next
section, Theorem 6.1, says that, in a precise sense, this dimensional incom-
patibility of polyhedra across torus orbits is the only possible reason for a
limit point of STrop(X) not to be contained in STrop(X).
In what follows, we fix a rational pointed fan ∆ in NR and a closed

subscheme X ⊂ Y∆. For ω ∈ Trop(X) we let LCω(Trop(X)) denote the
local cone of ω in Trop(X) ∩ NR(σ), where NR(σ) is the orbit containing
ω. See [22, §A.6].

Definition 5.2. — The local dimension of Trop(X) at ω ∈ Trop(X) is
defined as

d(ω) := dim(LCω(Trop(X))) .

Note that d(ω) only depends on X ∩ O(σ) and Trop(X) ∩ NR(σ). If
X ∩ O(σ) is equidimensional of dimension d then d(ω) = d for all ω ∈
Trop(X) ∩NR(σ) by the Bieri–Groves theorem.

Lemma 5.3. — Let σ ∈ ∆ and let ω ∈ Trop(X)∩NR(σ). Let K ′ ⊃ K be
a valued field extension whose value group Γ′ = v(K ′×) is non-trivial and
large enough that ω ∈ NΓ′(σ), and let X ′ = XK′ . The following numbers
coincide:

d(ω) = dim(inω(X ′)) = dim(X̃ ′ω) = dim(X ′ω) = dim(Xω) .

Proof. — The final equality holds by definition of dim(Xω). As all num-
bers in question depend only on the torus orbit whose tropicalization is
NR(σ), we may assume Y∆ = T , and as Trop(X) = Trop(X ′), we may
assume K = K ′ and X = X ′. By [22, Proposition 10.15], the local cone
of ω in Trop(X) is equal to the tropicalization of inω(X), considered as
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a scheme over the trivially valued field K̃ ′, so the first equality follows
from the Bieri–Groves theorem. The other two equalities are a result of
Proposition 2.10(3) and Remark 3.6. �

Definition 5.4. — For σ ∈ ∆, we call a polyhedron P ⊂ Trop(X) ∩
NR(σ) d-maximal at ω ∈ NR(σ) provided that ω ∈ P and d(ω) = dim(P ).

Let ω ∈ Trop(X) ∩ NR(σ) for σ ∈ ∆. Choose a polyhedral complex
structure Σ on Trop(X)∩NR(σ). Then there is a P ∈ Σ which is d-maximal
at ω, and any such P is a maximal element of Σ with respect to inclusion.

We will be concerned with limit points of STrop(X) contained in the
boundary Y an

∆ \ T an. First we recall what the limit points are in N∆
R of a

polyhedron in NR. The following lemma is [29, Lemma 3.9].

Lemma 5.5. — Let P ⊂ NR be a polyhedron and let P be its closure in
N∆

R . Let σ ∈ ∆, and recall that πσ : NR → NR(σ) denotes the projection
map.

(1) We have P ∩NR(σ) 6= ∅ if and only if the recession cone ρ(P ) of P
intersects the relative interior of σ.

(2) If P ∩NR(σ) 6= ∅, then P ∩NR(σ) = πσ(P ).

Proposition 5.6. — Let X be a closed subscheme of the toric variety
Y∆. Suppose that X∩T is dense in X and write Trop(X)∩NR as union of a
finite set Σ of polyhedra inNR. Then Trop(X) is the closure of Trop(X)∩NR
in N∆

R and for any σ ∈ ∆ we have

Trop(X) ∩NR(σ) =
⋃

ρ(P )∩relint(σ)6=∅

πσ(P ) ,

where P ranges over all polyhedra in Σ with ρ(P ) ∩ relint(σ) 6= ∅.

Proof. — By [28, Lemma 3.1.1], we have that Trop(X) is the closure
of Trop(X) ∩ NR in N∆

R , and by Lemma 5.5, for P ∈ Σ such that ρ(P ) ∩
relint(σ) 6= ∅, the closure P of P in N∆

R satisfies P ∩NR(σ) = πσ(P ). Hence
we get the last claim. �

Example 5.7. — We continue with Example 4.9. It is clear that Pi is d-
maximal at all ω ∈ Pi for i = 1, 2, 3. Consider now the orbit O(σ1) = {x1 =
0, x2x3 6= 0}. By Lemma 5.5 we have P 2 ∩NR(σ1) = P 3 ∩NR(σ1) = ∅, and

P 1 ∩NR(σ1) = Trop(X) ∩NR(σ1) = {∞} × {ω3 = ω2}.

Therefore P 1 ∩ NR(σ1) is d-maximal at all of its points. Similarly, P 1 ∩
NR(σ3) = P 3 ∩NR(σ3) = ∅ and

P 2 ∩NR(σ3) = Trop(X) ∩NR(σ3) = {0} × R× {∞},
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which is d-maximal at all of its points. Clearly

Trop(X) ∩NR(σ) = NR(σ) = {(∞,∞,∞)}

is d-maximal at its only point. We have X ∩ O(σ2) = X ∩ O(σ12) = X ∩
O(σ13) = ∅.

Now consider Trop(X) ∩NR(σ23) = R× {∞} × {∞}, which we identify
with R. We have

πσ23(P1) = P 1 ∩NR(σ23) = [0,∞)

πσ23(P2) = P 2 ∩NR(σ23) = {0}

πσ23(P3) = P 3 ∩NR(σ23) = (−∞, 0] .

Let Qi = πσ23(Pi) = P i ∩ NR(σ23) for i = 1, 2, 3. Then Q1 and Q3 are
d-maximal at all of their points, but Q2 is not d-maximal at its point. We
will see in Theorem 6.1 that this is related to the fact in Example 4.9 than
sX(ω′(r)) does not approach a point of STrop(X) as r → ∞ (note that
ω′(r) ∈ relint(P2) for r > 0).

5.8. Relevant polyhedra for Shilov boundary points

Let us consider a point ξ ∈ STrop(X) with tropicalization ω ∈ Trop(X)∩
NR(σ). We will see that not every polyhedron P ⊂ Trop(X) ∩ NR(σ) is
“relevant” for ξ for the purposes of checking limit points.
First, we assume that ω ∈ NΓ(σ) and that the valuation is non-trivial.

Then Xω is a strictly affinoid domain of dimension d(ω) (see Lemma 5.3)
and we have a finite surjective morphism ι : X̃ω → inω(X) of d(ω)-
dimensional affine schemes of finite type over K̃ (see 3.6). It is a fact of
tropical geometry [22, Proposition 10.15] that the local cone of the tropical
variety at ω decomposes as

(5.8.1) LCω(Trop(X)) = Trop(inω(X)) =
⋃
Z

Trop(Z) ,

where Z ranges over the irreducible components of inω(X) and where the
tropical varieties Trop(inω(X)) and Trop(Z) are taken with respect to the
trivial valuation on the residue field.

Definition 5.9.
(1) Assume that the valuation on K is non-trivial and that ω ∈ NΓ(σ).

Let ξ be a Shilov boundary point of Xω. Then the reduction red(ξ)
is a generic point of the canonical reduction X̃ω and hence ι(red(ξ))
is the generic point of an irreducible component Z of inω(X). Put
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trop(ξ) = ω ∈ NΓ. We say that a polyhedron P ⊂ Trop(X)∩NR(σ)
is relevant for ξ if ω ∈ P and P ⊂ Trop(Z)+ω. Equivalently, P has a
non-empty local cone at ω contained in Trop(Z) (see Lemma 5.11).

(2) For general ω ∈ NR(σ), we choose a valued extension field K ′ ⊃ K
whose value group Γ′ is non-trivial and large enough that ω ∈
NΓ′(σ). Let X ′ = XK′ and let π : X ′ → X be the canonical mor-
phism. Then it follows from Proposition 2.21 that π(B(X ′ω)) =
B(Xω). We conclude that there is ξ′ ∈ B(X ′ω) with π(ξ′) = ξ. We
say that the polyhedron P ⊂ Trop(X) ∩ NR(σ) is relevant for ξ if
there is such a ξ′ with P relevant for ξ′ in the sense of (1).

Lemma 5.10. — The above definition of ξ-relevance for a polyhedron
P ⊂ Trop(X) ∩NR(σ) does not depend on the choice of K ′.
Proof. — Suppose that P is relevant for ξ with respect to ξ′ ∈ B(X ′ω) as

in Definition 5.9(2). We choose another valued extension fieldK ′′ ⊃ K with
value group Γ′′ non-trivial and with ω ∈ NΓ′′(σ). Setting X ′′ := XK′′ , we
have to show that there is a ξ′′ ∈ B(X ′′ω) over ξ such that P is relevant for ξ′′
in the sense of Definition 5.9(1). By [17, (0.3.2)], there is a complete valued
extension field K ′′′ of K ′ and K ′′ simultaneously; we let X ′′′ = XK′′′ . It
follows from Proposition 2.21 that the Shilov boundary of X ′′′ω maps onto
B(X ′ω) and also onto B(X ′′ω). We choose a preimage ξ′′′ ∈ B(X ′′′ω ) of ξ′
and let Z ′′′ be the irreducible component of inω(X ′′′) with generic point
ι(red(ξ′′′)). It follows from functoriality of the reduction and the initial
degenerations that the canonical map

inω(X ′′′) = inω(X ′)⊗
K̃′
K̃ ′′′ → inω(X ′)

maps Z ′′′ onto Z ′, the closure of ι(ξ′). As Z ′′′ → Z ′ is surjective, we
have Trop(Z ′′′) = Trop(Z ′). By assumption, P is contained in Trop(Z ′).
We conclude that P is relevant for ξ′′′. Let ξ′′ ∈ B(X ′′ω) be the image of
ξ′′′ under the analytification of the canonical map X ′′′ → X ′′. A similar
argument as above shows that Z ′′′ surjects onto an irreducible component
Z ′′ of inω(X ′′) and that red(ξ′′) maps to the generic point of Z ′′. Since we
have Trop(Z ′′) = Trop(Z ′′′), we conclude that P is relevant for ξ′′. Since
ξ′′ is lying over ξ, this proves the claim. �

Lemma 5.11. — Let U be a closed d-dimensional subscheme of the torus
T and let Σ be a polyhedral complex with support equal to Trop(U). If Y
is a d-dimensional irreducible component of U , then there is a subcomplex
of Σ with support equal to Trop(Y ).
Proof. — By the Bieri–Groves theorem, Trop(Y ) is a finite union of d-

dimensional polyhedra and hence Trop(Y ) is covered by the d-dimensional
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polyhedra in Σ. It is enough to show that any d-dimensional P ∈ Σ with
relint(P ) ∩ Trop(Y ) 6= ∅ is necessarily contained in Trop(Y ). If not, then
P∩Trop(Y ) has a boundary point ω with respect to P . We may assume that
ω is in relint(P ) and also in the relative interior of a (d−1)-dimensional face
τ of a d-dimensional polyhedron Q ⊂ P ∩Trop(Y ). Let H be a supporting
hyperplane of the face τ of Q. By construction, there is a neighbourhood
Ω of ω in NR such that Ω ∩ P ∩ Trop(Y ) = Ω ∩ Q is contained in a half
space H+ bounded by H.

Bieri–Groves [8, Theorem D] proved that Trop(Y ) is totally concave in
ω which means that there is a polyhedron R ⊂ Trop(Y ) through ω and
intersecting the complement of H+. This can also be deduced from the
balancing condition. Since Ω∩P∩Trop(Y ) ⊂ H+, we conclude that R∩P ⊂
H+. Using that R expands from ω into the complement of H+ and that
Trop(Y ) ⊂ Trop(U), we deduce that there is a face S ∈ Σ through ω with
S 6= P . Since Σ is a polyhedral complex, this contradicts ω ∈ relint(P ).
This proves P ⊂ Trop(Y ). �

Proposition 5.12. — Let ξ ∈ STrop(X) with tropicalization ω ∈NR(σ).
Let K ′ ⊃ K be a valued extension field with non-trivial value group Γ′ and
with ω ∈ NΓ′ .

(1) A polyhedron P ⊂ Trop(X) ∩NR(σ) is relevant for ξ with respect
to the closed subscheme X of the toric variety Y∆ if and only if P is
relevant for ξ with respect to the affine closed subscheme X ∩O(σ)
of the orbit O(σ).

(2) We set X ′ := XK′ . The local cone at ω of the union of all ξ-relevant
polyhedra is the tropical variety of an irreducible component Z of
inω(X ′) with respect to the trivial valuation and with dim(Z) =
dimξ(X).

(3) Let Σ be a polyhedral complex in NR(σ) with support equal to
Trop(X) ∩NR(σ). If dimξ(Xan) = d(ω), then in (2) it is enough to
consider ξ-relevant d(ω)-dimensional polyhedra in Σ. Moreover, the
above local cone and Z are both of dimension d(ω). In particular,
there is a polyhedron in Σ which is d-maximal at ω and which is
relevant for ξ.

(4) If mTrop(ω) = 1, then every polyhedron in Trop(X) ∩ NR(σ) con-
taining ω is relevant for ξ.

Proof. — Property (1) is obvious from the definition. By Lemma 4.4,
there is ξ′ ∈ STrop(X ′) over ξ for the given valued extension field K ′ ⊃ K.
Then the canonical reduction red(ξ′) ∈ X̃ ′ω maps to the generic point of
an irreducible component Z of inω(X ′). By Proposition 4.7, ξ is contained
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in a unique irreducible component and hence X ′ is equidimensional in a
neighbourhood of ξ′ of dimension dimξ(X). By Proposition 2.10 and Propo-
sition 2.12, we deduce that dim(Z) = dimξ(X). It follows from (5.8.1) that

(5.12.1) Trop(Z) =
⋃

P⊂Trop(Z)+ω

LCω(P ) ,

where P ranges over all polyhedra contained in Trop(X) with ω ∈ P ⊂
Trop(Z) + ω. This proves (2).

If dimξ(Xan) = d(ω), then (2) shows that Z is d(ω)-dimensional and the
same is true for inω(X ′) by Lemma 5.3. We apply Lemma 5.11 to the fan
{LCω(P ) | P ∈ Σ} which has support Trop(inω(X ′)) by (5.8.1). This shows
that Trop(Z) is the union of the d(ω)-dimensional (LCω(P ))P∈Σ contained
in Trop(Z), which proves (3).

Let P be a polyhedron in Trop(X) containing ω. Then LCω(P ) is non-
empty and contained in Trop(inω(X)) = LCω(Trop(X)) by (5.8.1). If
mTrop(ω) = 1, then Z := inω(X) is irreducible, and (4) follows. �

In the following important lemma, X is any closed subscheme of the
multiplicative torus T over K with character lattice N . Recall that s(ω)
denotes the point of S(T an) = STrop(T ) lying above ω ∈ NR, that Xω =
trop−1(ω) ∩ Xan, and that B(Xω) denotes the Shilov boundary of the
affinoid space Xω.

Lemma 5.13. — Choose a polyhedral complex structure Σ on Trop(X).
Let ω ∈ Trop(X) and let d := d(ω). We consider a homomorphism ψ : T →
Gd
m, let f : NR → Rd be the induced linear map, let φ = ψ|X , and let

ω′ = f(ω). Then φ−1(s(ω′)) ∩ Xω is equal to the set of Shilov boundary
points ξ ∈ B(Xω) for which there is a P ∈ Σ satisfying the following three
conditions:

(1) P is d-maximal at ω;
(2) P is relevant for ξ;
(3) f is injective on P .

For such a ξ, we have always dimξ(Xω) = d.

Proof. — Assume to begin that the valuation on K is non-trivial and
that ω ∈ NΓ. Let U ′ω′ = trop−1(ω′) ⊂ Gd,an

m . We have φ(Xω) ⊂ U ′ω′ due to
the commutativity of the square

Xan φ //

trop
��

Gd,an
m

trop��
Trop(X)

f // Rd
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Consider the morphism φ : Xω → U ′ω′ and the induced morphism on canon-
ical reductions φ̃ : X̃ω → Ũ ′ω′

∼= Gd

m,K̃
. If ξ ∈ Xω maps to s(ω′) then by

functoriality of the reduction map, we have that red(ξ) ∈ X̃ω maps to the
generic point of Gd

m,K̃
. Since d(ω) = dim(X̃ω) = d by Lemma 5.3, it fol-

lows that red(ξ) is a generic point of X̃ω, so ξ is a Shilov boundary point
of Xω by Proposition 2.16. This proves that φ−1(s(ω′)) ∩Xω is contained
in the Shilov boundary B(Xω). Since red(ξ) is the generic point of an irre-
ducible component Z ′ of X̃ω of dimension d, the irreducible component of
Xω containing ξ must also have dimension d. Hence dimξ(Xω) = d.
Next, we show that ξ satisfies properties (1)–(3). Note that φ̃ : X̃ω →

Ũ ′ω′
∼= Gd

m,K̃
has a canonical factorization

(5.13.1) X̃ω −→ inω(X) inω(φ)−−−−→ inω′(Gd
m,K) ∼= Gd

m,K̃
.

We have seen in Remark 3.6 that the first map is surjective and finite. We
conclude that Z ′ maps onto a d-dimensional irreducible component Z of
inω(X). Since red(ξ) maps to the generic point of Gd

m,K̃
, the restriction of

inω(φ) to Z is dominant. By functoriality of the tropicalization, we get a
commutative square

(5.13.2)
Zan inω(φ) //

trop
��

Gd,an
m,K̃

trop
��

Trop(Z)
f
// Rd

using that the tropicalization of inω(φ) agrees with the restriction of f .
The Bieri–Groves theorem shows that Trop(Z) is a d-dimensional polyhe-
dral fan. Since the tropicalization maps are surjective and since inω(φ)(Z)
is dense in Gd

m,K̃
, commutativity of the diagram (5.13.2) shows that

f(Trop(Z)) = Rd. By Proposition 5.12(3), there is a d-dimensional poly-
hedron P ⊂ Trop(Z) in Σ containing ω such that f(P ) is d-dimensional.
In other words, P is d-maximal at ω and relevant for ξ. Moreover, f |P is
injective. This proves (1)–(3).
Conversely, we assume that ξ ∈ B(Xω) has a polyhedron P ∈ Σ satis-

fying (1)–(3). We must show that φ̃(red(ξ)) is the generic point of Gd

m,K̃
.

The first map in (5.13.1) is finite and surjective, hence it maps Z ′ onto an
irreducible component Z of inω(X). Since P is relevant for ξ by (2), we
conclude that P ⊂ Trop(Z) + ω. Property (1) says that P is d-maximal at
ω which means that dim(P ) = d(ω) = d. It follows from Lemma 5.3 and
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the Bieri–Groves theorem that dim(Z) = d. Using again the commutative
diagram (5.13.2), we deduce from Property (3) that the tropicalization of
inω(φ)(Z) contains a d-dimensional polyhedron. This is only possible if the
generic point of Z maps to the generic point of Gd

m,K̃
. Using the factoriza-

tion (5.13.1) of ϕ̃ and that the first map takes red(ξ) to the generic point
of Z, we deduce that ϕ̃ maps red(ξ) to the generic point of Gd

m,K̃
. This

proves ξ ∈ φ−1(s(ω′)) ∩Xω and hence we have shown the Lemma in case
of a non-trivial valuation on K with ω ∈ NΓ.
To deal with the general case, we choose a valued extension field K ′ ⊃ K

whose value group Γ′ = v(K ′×) is non-trivial and large enough that ω ∈
NΓ′ , and let X ′ = XK′ . Let ξ ∈ φ−1(s(ω′)) ∩Xω. We have a commutative
square

X ′ω
φK′ //

π
��

Gd,an
m,K′

π
��

Xω
φ

// Gd,an
m,K

where the vertical arrows are the structural morphisms. By [4, Thm. 1.2.1]
and [17, (0.3.2)], the spectrum F = M

(
H (ξ)⊗̂H (s(ω′))H (s′(ω′))

)
of the

Banach ring H (ξ)⊗̂H (s(ω′))H (s′(ω′)) is nonempty, where s′ : Rd → Gd,an
m,K′

is the section of tropicalization. If ξ′ is in the image of the natural mor-
phism F → X ′ω, then φK′(ξ′) = s′(ω′) and π(ξ′) = ξ. By the case handled
above, ξ′ ∈ B(X ′ω) and there is P ∈ Σ satisfying (1)–(3). Then ξ ∈ B(Xω)
by Proposition 2.21 and P is also relevant for ξ by definition. Moreover,
one always has dimξ′(X ′ω) 6 dimξ(Xω), so dimξ′(X ′ω) = d(ω) = dim(Xω)
implies dimξ(Xω) = d(ω). This proves one inclusion of the Lemma in the
general case and the last claim.
Conversely, let ξ ∈ B(Xω) with P ∈ Σ satisfying (1)–(3). Then there

exists ξ′ ∈ B(X ′ω) mapping to ξ by Lemma 5.10 such that P is also relevant
for ξ′. By the special case considered above, we have φK′(ξ′) = s′(ω′), so
φ(ξ) = π(s′(ω′)) = s(ω′). This proves ξ ∈ φ−1(s(ω′)) ∩Xω. �

6. Limit points of the tropical skeleton

We have seen in Example 4.9 that the tropical skeleton STrop(X) is not
necessarily closed in the toric variety Y an

∆ . In this section, we give conditions
under which a limit of a sequence of points of STrop(X) is contained in
STrop(X). Our goal is to study the accumulation points of STrop(X) for the
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closed subscheme X of the toric variety Y∆. By [32, Théorème 5.3], every
limit point of STrop(X) is the limit of a sequence of points.(2) We use the
notation from §3.1.

Theorem 6.1. — Let ∆ be a rational pointed fan in NR and letX ⊂ Y∆
be a closed subscheme. By T we denote the dense torus in Y∆. We assume
that X ∩T is equidimensional of dimension d. Let (ξi)i∈N be a sequence in
STrop(X) which is contained in (X ∩T )an such that ξi converges to a point
ξ ∈ (X ∩O(σ))an for some torus orbit O(σ) ⊂ Y∆. Put ωi = trop(ξi) ∈ NR
and ω = trop(ξ) ∈ NR(σ).
If there exists a polyhedron P ⊂ Trop(X)∩NR of dimension d containing

all ωi and relevant for all ξi such that πσ(P ) is d-maximal at ω, we have
ξ ∈ STrop(X) and dimξ(Xω) = d(ω).

Remark 6.2. — The hypotheses in Theorem 6.1 are sufficient but not
necessary. For example, let the notation be as in Examples 4.9 and 5.7,
and for r > 1 let ω′′(r) = (0, r, r + r−1) ∈ relint(P2). One can show that
sX(ω′′(r)) → sX(0,∞,∞) as r → ∞ even though ω′′(r) is contained in
P2 \ (P1 ∪ P3) and πσ23(P2) is not d-maximal at (0,∞,∞).

At a basic level, the proof of Theorem 6.1 uses a similar idea to [23,
Theorem 10.6] (and Proposition 4.6), in that we compare STrop(X) with
the inverse image of the skeleton of a smaller-dimensional toric variety.
However, one must be much more careful in constructing the smaller toric
variety.

Proof of Theorem 6.1. — If O(σ) = T , our claim follows from Corol-
lary 4.8. Hence we may assume that σ 6= 0.
Since ω = limωi ∈ NR(σ), we have P ∩NR(σ) 6= ∅, where P is the closure

of P in N∆
R . Hence by Lemma 5.5, the recession cone of P intersects the

relative interior of σ, and P ∩ NR(σ) = πσ(P ). This set contains ω. Let
H be a rational supporting hyperplane of the face {0} ≺ σ: that is, H
is rational and H ∩ σ = {0}, so σ is contained in one of the half-spaces
bounded by H. Let 〈σ〉 ⊂ NR be the linear span of σ, and let 〈P 〉0 ⊂ NR be
the linear (as opposed to the affine) span of P , i.e., 〈P 〉0 is the linear span
of P −η for any η ∈ P . The subspaces 〈σ〉 and 〈P 〉0 are rational. Note that
H + (〈σ〉 ∩ 〈P 〉0) = NR since the recession cone of P intersects relint(σ).

(2)This is mainly for convenience, as one could work with nets.
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We claim that there exists a rational subspace L ⊂ NR such that

L ⊂ H(a)
NR = L⊕ 〈P 〉0(b)

NR(σ) = πσ(L)⊕ πσ(〈P 〉0).(c)

This is pure linear algebra. Let n = dim(NR), recall d = dim(P ) and let
d′ = d(ω). By hypothesis, d′ = dim(πσ(P )), and hence dim(〈σ〉 ∩ 〈P 〉0) =
d − d′. Since 〈σ〉 6⊂ H, we have that H surjects onto NR(σ). Choose a
rational subspace V ⊂ H mapping isomorphically onto NR(σ), so H =
(〈σ〉 ∩ H) ⊕ V and NR = 〈σ〉 ⊕ V . As H + (〈σ〉 ∩ 〈P 〉0) = NR, we have
(〈σ〉 ∩H) + (〈σ〉 ∩ 〈P 〉0) = 〈σ〉, so dim(〈σ〉 ∩H ∩ 〈P 〉0) = d − d′ − 1, and
therefore,

dim(〈σ〉 ∩H)− dim(〈σ〉 ∩H ∩ 〈P 〉0) = (dim(〈σ〉)− 1)− (d− d′ − 1)
= dim(〈σ〉)− (d− d′)
= dim(〈σ〉)− dim(〈σ〉 ∩ 〈P 〉0) .

We conclude that

codim(〈σ〉 ∩H ∩ 〈P 〉0, 〈σ〉 ∩H) = codim(〈σ〉 ∩ 〈P 〉0, 〈σ〉)
= dim(〈σ〉)− (d− d′),

and

codim(πσ(〈P 〉0), NR(σ)) = n− dim(〈σ〉)− d′.

It is possible to choose (generic) rational subspaces L1 ⊂ 〈σ〉∩H of dimen-
sion dim(〈σ〉) − (d − d′) and L2 ⊂ V of dimension n − dim(〈σ〉) − d′ such
that L1 ∩ (〈σ〉 ∩ 〈P 〉0) = {0} and πσ(L2) ∩ πσ(〈P 〉0) = {0}. The subspace
L = L1 ⊕ L2 satisfies our requirements (a)–(c).
To prove the theorem, we may replace Y∆ by Yσ andX byX∩Yσ without

loss of generality. Let N ′ = N/(N ∩L) and let f : N → N ′ be the quotient
homomorphism. LetM ′ = Hom(N ′,Z) and let T ′ = Spec(K[M ′]) ∼= Gd

m be
the torus with cocharacter lattice N ′. The map f induces a homomorphism
ψ : T → T ′. Let σ′ = f(σ). This is a pointed cone inN ′R since the supporting
hyperplane H contains L. Thus ψ : T → T ′ extends to a toric morphism
of affine toric varieties ψ : Yσ → Y ′σ′ , f : NR → N ′R extends to a continuous
map f : Nσ

R → N ′σ
′

R , and the following squares commute:

T
trop //

ψ
��

NR

f
��

Yσ
trop //

ψ
��

Nσ
R

f��
T ′

trop
// N ′R Y ′σ′ trop

// N ′σ
′

R
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Note that N ′R(σ′) = NR/(〈σ〉 + L) = NR(σ)/πσ(L). Condition (b) for L
implies f is injective on P with dim(P ) = dim(N ′R), and condition (c)
implies f : NR(σ)→ N ′R(σ′) is injective on πσ(P ) with d′ = dim(πσ(P )) =
dim(N ′R(σ′)).
Let φ = ψ|X , and define S = φ−1(S(Y ′an

σ′ )
)
, the inverse image of the

skeleton of the affine toric variety Y ′σ′ . This is a closed subset ofXan because
S(Y ′an

σ′ ) is closed in Y ′an
σ′ , as we saw in §3.3. Lemma 5.13 implies that

ξi ∈ S∩Xωi for all i. Hence the limit point ξ lies in S∩Xω. By construction,
d′ = d(ω) = dim(N ′R(σ′)), which is equal to the dimension of the torus orbit
O′(σ′) ⊂ Y ′σ′ .
Again by Lemma 5.13, this time applied to T = O(σ), X = X ∩ O(σ),

and the map ψ : O(σ) → O′(σ′) on torus orbits, we see that S ∩ Xω is
contained in the Shilov boundary of Xω, and therefore that ξ ∈ STrop(X).
Moreover, the local dimension of Xω at any point of S ∩ Xω is d(ω) by
Lemma 5.13. �

If X intersects all torus orbits equidimensionally, we can deduce the
following result.

Theorem 6.3. — Let X be a closed subscheme of the toric variety Y∆
such that X ∩O(σ) is equidimensional of dimension dσ for any σ ∈ ∆. We
suppose that for all faces τ ≺ σ of ∆ there exists a finite polyhedral complex
structure Σ on Trop(X)∩NR(τ) with the following property: For every dτ -
dimensional polyhedron P in Σ such that its recession cone intersects the
relative interior of πτ (σ) in NR(τ), put σ = πτ (σ) and assume that the
canonical projection πσ(P ) has dimension dσ in NR(σ). Then STrop(X) is
closed.

Proof. — Let (ξi)i∈N be a sequence in STrop(X) converging to some point
ξ ∈ Xan. We have to show that ξ ∈ STrop(X). We may always pass to a
subsequence and so we may assume that the sequence {ξi} is contained in
a single torus orbit O(τ)an. Let σ ∈ ∆ be the cone such that ξ ∈ O(σ)an.
Then τ ≺ σ. Let ωi = trop(ξi) ∈ NR(τ) and let ω = trop(ξ) ∈ NR(σ), so
ω = limωi by continuity of trop.
Since X ∩O(τ) is equidimensional of dimension dτ , we have dimξi(X) =

dτ = d(ωi) for every i. By Proposition 5.12(3), there is a polyhedron Pi ⊂
Trop(X) ∩NR(τ) in Σ which is d-maximal at ωi and which is relevant for
ξi. After passing to a subsequence, we may assume that all Pi = P for a
single dτ -dimensional polyhedron P in Σ. Since ω lies in the closure of P ,
the recession cone of P meets the relative interior of πτ (σ) by Lemma 5.5.
Therefore the projection of P to NR(σ) is d-maximal by assumption. Hence
our claim follows from Theorem 6.1. �

ANNALES DE L’INSTITUT FOURIER



TROPICAL SKELETONS 1939

7. Proper intersection with orbits

In this section we discuss common dimensionality conditions under which
the hypotheses of Theorem 6.1 are automatically satisfied. We consider a
closed subscheme X of a toric variety Y∆ with dense torus T . We assume
throughout that X ∩ T is equidimensional of dimension d and that X ∩ T
is dense in X.

Definition 7.1. — Let σ ∈ ∆. We say that X intersects O(σ) properly
provided that dim(X ∩O(σ)) = dim(X)− dim(σ).

Note that if X intersects O(σ) properly then X ∩ O(σ) 6= ∅ when
dim(σ) 6 dim(X), and X ∩O(σ) = ∅ when dim(σ) > dim(X).

Lemma 7.2. — If dim(σ) 6 dim(X) and X intersects O(σ) properly,
then X ∩O(σ) is equidimensional and

codim(X ∩O(σ), O(σ)) = codim(X ∩ T, T ) .

Therefore, Trop(X ∩ O(σ)) = Trop(X) ∩ NR(σ) has pure dimension
dim(X)− dim(σ).

Proof. — This follows from [22, Proposition 14.7] and the fact that the
dimension of σ is codim(O(σ), T ). The last statement is a consequence of
the Bieri–Groves theorem. �

Remark 7.3. — For a polyhedron P ⊂ NR, we let ρ(P ) ⊂ NR denote
the recession cone of P . Let U be a closed subscheme of the torus T over
K. Then the Bieri–Groves theorem shows that we may write Trop(U) as a
finite union of integral Γ-affine polyhedra P (see [23, 2.2] for the definition of
integral Γ-affine polyhedra for a subgroup Γ of R). If U is of pure dimension
d, then we can choose all P d-dimensional. Let Σ be the collection of these
polyhedra and let Trop0(U) be the tropical variety of X with respect to the
trivial valuation. Then we recall from [22, Corollary 11.13] the non-trivial
fact that

(7.3.1) Trop0(U) =
⋃
P∈Σ

ρ(P ) .

The next proposition shows that the condition that X intersects O(σ)
properly can be checked on tropicalizations.
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Proposition 7.4. — Choose a finite collection Σ of integral R-affine
d-dimensional polyhedra whose union is Trop(X) ∩ NR. Fix σ ∈ ∆ with
dim(σ) 6 d. Then the following are equivalent:

(1) X intersects O(σ) properly.
(2) There exists P ∈ Σ such that ρ(P ) ∩ relint(σ) 6= ∅, and for all

such P ,
dim(ρ(P ) ∩ σ) = dim(σ) .

(3) There exists P ∈ Σ such that ρ(P ) ∩ relint(σ) 6= ∅, and for all
such P ,

dim(πσ(P )) = d− dim(σ) .

Proof. — The equivalence of (1) and (2) is [22, Corollary 14.4, Re-
mark 14.5], using (7.3.1) and noting that dim(ρ(P ) ∩ σ) = dim(σ) if and
only if dim(ρ(P ) ∩ relint(σ)) = dim(σ). For P ∈ Σ such that ρ(P ) ∩
relint(σ) 6= ∅, condition (3) is equivalent to having 〈σ〉 ⊂ 〈P 〉0, where
〈σ〉 is the span of σ and 〈P 〉0 is the linear span of P , as in the proof
of Theorem 6.1. As ρ(P ) ⊂ 〈P 〉0, it is clear that (2) implies (3). For (3)
implies (1), we have

Trop(X) ∩NR(σ) =
⋃

ρ(P )∩relint(σ)6=∅

πσ(P )

by Proposition 5.6, so

dim(X ∩O(σ)) = dim(Trop(X) ∩NR(σ)) = d− dim(σ)

proving (1). �

The following Corollary is a special case of Theorem 6.1.

Corollary 7.5. — Let σ ∈ ∆ be a cone such that X intersects O(σ)
properly. If (ξi)i∈N is a sequence in STrop(X) ∩ T an converging to a point
ξ ∈ O(σ)an, then ξ ∈ STrop(X).

Proof. — Since Xan is closed in Y an
∆ , we have ξ ∈ Xan ∩ O(σ)an. In

particular, X ∩ O(σ) 6= ∅, so dim(σ) 6 d. Let ωi = trop(ξi) ∈ NR and let
ω = trop(ξ) ∈ NR(σ). Choose a finite collection Σ of integral R-affine d-
dimensional polyhedra whose union is Trop(X)∩NR. By Proposition 5.12,
for every ξi there exists a polyhedron in Σ, which has dimension d and
is relevant for ξi. After passing to a subsequence, we may assume that
the same polyhedron P works for all ξi. By Lemma 5.5, this implies that
ρ(P ) ∩ relint(σ) 6= ∅, so by Proposition 7.4, the dimension of πσ(P ) is

dim(πσ(P )) = d− dim(σ) = dim(X ∩O(σ)) = dim(Trop(X) ∩NR(σ)) .
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It follows that πσ(P ) is d-maximal at all of its points, so we can apply
Theorem 6.1. �

The case when X intersects all torus orbits properly is even more special.
As above we assume that X∩T is equidimensional of dimension d and that
X ∩ T is dense in X.

Lemma 7.6. — Suppose that for all σ ∈ ∆, either X ∩ O(σ) = ∅ or
X intersects O(σ) properly. Fix τ ∈ ∆, and let Xτ ⊂ Y∆τ

be the closure
of X ∩ O(τ). Then for all σ = πτ (σ) ∈ ∆τ , either Xτ ∩ O(σ) = ∅ or Xτ

intersects O(σ) properly.

Proof. — If X ∩ O(τ) = ∅ then the assertion is trivial. Otherwise, X ∩
O(τ) is equidimensional of dimension d− dim(τ) by Lemma 7.2. Choose a
finite collection Σ of integral R-affine d-dimensional polyhedra whose union
is Trop(X) ∩NR, so

Trop(X ∩O(τ)) =
⋃

ρ(P )∩relint(τ)6=∅

πτ (P )

as seen in Proposition 5.6. By Proposition 7.4, we have dim(πτ (P )) =
d− dim(τ) for all such P . Fix σ ∈ ∆ with τ ≺ σ, let σ = πτ (σ) ∈ ∆τ , and
suppose that Xτ ∩ O(σ) 6= ∅. This implies X ∩ O(σ) 6= ∅, so dim(σ) 6 d.
If P ∈ Σ with ρ(P ) ∩ relint(τ) 6= ∅ has ρ(πτ (P )) ∩ relint(σ) 6= ∅ then the
closure πτ (P ) of πτ (P ) in N(τ)∆τ

R satisfies

πτ (P ) ∩N(τ)R(σ) = πτ (P ) ∩NR(σ) = πσ(πτ (P )) = πσ(P )

by Lemma 5.5. In particular, the closure P of P in N∆
R intersects NR(σ),

so Lemma 5.5 again shows ρ(P ) ∩ relint(σ) 6= ∅. Hence dim(πσ(P )) =
d− dim(σ) by Proposition 7.4, since X intersects O(σ) properly, so

dim(πσ(πτ (P ))) = dim(πσ(P )) = d− dim(σ) = (d− dim(τ))− dim(σ) .

This is true for all P with ρ(πτ (P )) ∩ relint(σ) 6= ∅, so again by Proposi-
tion 7.4, Xτ intersects O(σ) properly. �

Corollary 7.7. — If, for all σ ∈ ∆, eitherX∩O(σ) = ∅ orX intersects
O(σ) properly, then STrop(X) is closed in Xan.

Proof. — Let (ξi)i∈N be a sequence in STrop(X) converging to some ξ ∈
Xan. We wish to show ξ ∈ STrop(X). Passing to a subsequence, we may
assume that the sequence is contained in a single torus orbit O(τ). By
Lemma 7.6, the closure Xτ of X ∩ O(τ) in the toric variety Y∆τ

satisfies
the same hypotheses as X. Hence for dimension reasons, if σ ∈ ∆, τ ≺ σ,
and σ = πτ (σ), then Xτ ∩ O(σ) is a union of irreducible components of
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X∩O(σ). By Proposition 4.7 as applied to X∩O(σ), then, we may replace
X by Xτ to assume {ξi} ⊂ T an. Now we apply Corollary 7.5 to conclude
ξ ∈ STrop(X). �

Remark 7.8. — In the situation of Corollary 7.7, suppose that Y∆ = Yσ
is an affine toric variety. In this case it is possible using the techniques of
Theorem 6.1 to produce a morphism ψ : Yσ → Y ′σ′ of affine toric varieties
such that the composite morphism φ : X ↪→ Yσ → Y ′σ′ is finite and surjec-
tive over every torus orbit O(τ ′) ⊂ Y ′σ′ such that φ−1(O(τ ′)) 6= ∅. From
this it follows exactly as in Proposition 4.6 that φ−1(S(Y ′σ′)) = STrop(X).
This gives another proof of Corollary 7.7, and also shows that STrop(X) is a
kind of generalization of a c-skeleton in the sense of [16, 18]. Compare [23,
Remark 10.7].
In particular, one should be able to use the results of Ducros to prove that

each torus orbit in the tropical skeleton has a natural Q-affine structure.
Forthcoming work of Ducros–Thuillier may allow for stronger assertions.

Remark 7.9. — The hypotheses of Corollary 7.7 are commonly satisfied
in the context of tropical compactifications. Let Trop0(X) denote the trop-
icalization of X, considered as a subscheme of Y∆ over the field K endowed
with the trivial valuation. If Σ is a finite collection of integral R-affine d-
dimensional polyhedra whose union is Trop(X ∩ T ), then Trop0(X ∩ T ) is
the union of the recession cones of the polyhedra in Σ as we have seen in
Remark 7.3.
Suppose that the support of the fan ∆ is equal to Trop0(X ∩ T ). This

happens for instance if ∆ is a tropical fan forX∩T as defined by Tevelev [36]
for integralX∩T and generalized in [22, §12] to arbitrary closed subschemes
of T . Then X is proper over K by [36, Proposition 2.3], and X intersects
each torus orbit O(σ) properly by [22, Theorem 14.9]. In this case, STrop(X)
is closed by Corollary 7.7, so it is even compact.

8. Section of tropicalization

In this section we prove that there is a section of the tropicalization map
on the locus of tropical multiplicity one, and we use the results of §4 to
examine when this section is continuous.

8.1. Existence of the section

Let ∆ be a rational pointed fan in NR and let X ⊂ Y∆ be a closed
subscheme. Suppose that ω ∈ Trop(X) has mTrop(ω) = 1. We will show
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that in this case, there is a distinguished Shilov boundary point of Xω =
trop−1(ω) ∩ Xan, which will be the image of the section evaluated at ω.
However, as the following example shows, Xω may still have multiple Shilov
boundary points.

Example 8.2. — Suppose that the valuation on K is non-trivial. Let X
be the closed subscheme of T = Spec(K[x±1

1 , x±1
2 ]) given by the ideal a =(

x1−1, x2−1
)
∩
(
x1−1−$

)
for$ ∈ K× with |$| < 1. ThenX is the disjoint

union of the line {x1 = 1+$} with the point (1, 1). The initial degeneration
at ω = 0 is defined by the ideal inw(a) =

(
(x1 − 1)2, (x1 − 1)(x2 − 1)

)
over

K̃. This is a generically reduced line with an associated point at (1, 1). It
has tropical multiplicity 1, but the canonical reduction is the disjoint union
of a point and a line, so that Xω has two Shilov boundary points. Note
however that one of these points is contained in an irreducible component
of dimension one, and the other in a component of dimension zero.

Recall from Definition 5.2 that for ω ∈ Trop(X), the local dimension of
Trop(X) at ω is denoted d(ω) = dim

(
LCω(Trop(X))

)
.

Proposition 8.3. — Let X ⊂ Y∆ be a closed subscheme and let ω ∈
Trop(X) be a point with mTrop(ω) = 1. Let σ ∈ ∆ be the cone such that
ω ∈ NR(σ). Then there is a unique irreducible component C of X ∩ O(σ)
of dimension d(ω) such that ω ∈ Trop(C), and there is a unique Shilov
boundary point of Cω. Moreover, mTrop(C,ω) = 1.

Proof. — We immediately reduce to the case Y∆ = O(σ) = T . First
suppose that K is algebraically closed, non-trivially valued and ω ∈ NΓ. By
hypothesis, inω(X) is irreducible and generically reduced, and its dimension
is d := d(ω) = dim(Xω) = dim(X̃ω) by Lemma 5.3. Replacing X by its
underlying reduced subscheme Xred has the effect of replacing inω(X) by
the closed subscheme defined by a nilpotent ideal sheaf, so the same is true
of inω(Xred). The conclusions of the Proposition (except the last one) are
insensitive to nilpotents, so we may assume without loss of generality that
X is reduced (coming back to the last claim at the end).

The projection formula of §3.6 gives

1 =
∑

Z�inω(X)

[Z : inω(X)] ,

where the sum is taken over all irreducible components Z of X̃ω dominating
inω(X). Since X̃ω → (Xω)s is finite in any case by Proposition 2.12, this
proves that there is a unique irreducible component Z of X̃ω of dimension

TOME 67 (2017), FASCICULE 5



1944 Walter GUBLER, Joseph RABINOFF & Annette WERNER

d. Let ξ ∈ Xω be the Shilov boundary point reducing to the generic point
of Z.
Let D be an irreducible component of Xω of dimension d = dim(Xω).

The inclusion D ↪→ Xω gives a finite morphism of canonical reductions
D̃ → X̃ω. As D̃ is equidimensional of dimension d by Proposition 2.10(3),
every generic point of D̃ maps to the generic point of Z, so every Shilov
boundary point of D maps to ξ by Proposition 2.16. Since D → Xω is
injective, its Shilov boundary is {ξ}. By Proposition 2.15, D is the unique
irreducible component of Xω containing ξ, thus is the unique irreducible
component of Xω of dimension d.
Let C be an irreducible component of X containing the Shilov point ξ

in its analytification. Then Cω is a union of irreducible components of Xω

of the same dimension as C by Proposition 2.5. Since ξ ∈ Cω we have
D ⊂ Cω, so dim(C) = dim(D) = d, and therefore Cω = D. Finally, if C ′
is another irreducible component of X of dimension d such that C ′ω 6= ∅,
then D ⊂ C ′ω, which is impossible since dim(C ∩ C ′) < d. Thus C is the
unique irreducible component of X of dimension d such that ω ∈ Trop(C),
and ξ is the unique Shilov boundary point of Cω = D.
Now we allow K and ω ∈ NR to be arbitrary. Let K ′ ⊃ K be an alge-

braically closed valued extension field whose value group Γ′ = v(K×) is
non-trivial and large enough that ω ∈ NΓ′ , let X ′ = XK′ , and let π : X ′ →
X be the structural morphism. By the above, there is a unique irreducible
component C ′ of X ′ of dimension d = d(ω) such that ω ∈ Trop(C ′), and
there is a unique Shilov boundary point of C ′ω. Then C = π(C ′) is the
unique irreducible component of X of dimension d containing ω in its trop-
icalization, and C ′ = (π−1(C))red = CK′,red. Hence C ′ω = ((Cω)K′)red, so
B(Cω) = π(B(C ′ω)) by Proposition 2.21, so B(Cω) has only one point.

We come now to the last claim no longer assuming that X is reduced.
By definition, mTrop(C,ω) = 1 provided that inω(CK′) is irreducible and
generically reduced. The map on initial degenerations inω(CK′)→ inω(X ′)
is a closed immersion, as both are closed subschemes of inω(TK′) ∼= Gn

m,K̃′
.

Since inω(X ′) is irreducible and generically reduced, and dim(inω(CK′)) =
dim(inω(X ′)), this shows that inω(CK′) is also irreducible and generically
reduced. �

Definition 8.4. — Let X ⊂ Y∆ be a closed subscheme. Write

Trop(X)mTrop=1 :=
{
ω ∈ Trop(X) | mTrop(ω) = 1

}
for the tropical multiplicity-1 locus in Trop(X). If ω ∈ Trop(X)mTrop=1 ∩
NR(σ) for σ ∈ ∆, we let C(ω) be the unique irreducible component of

ANNALES DE L’INSTITUT FOURIER



TROPICAL SKELETONS 1945

X ∩O(σ) of dimension d(ω) with ω ∈ Trop(C(ω)), and we define
sX(ω) = the unique Shilov boundary point of C(ω)ω

= the unique Shilov boundary point ξ of Xω

such that dimξ(Xω) = d(ω).

We regard sX as a map Trop(X)mTrop=1 → STrop(X) ⊂ Xan.

It follows immediately from the above definition that the image of sX is
contained in STrop(X). By construction, trop ◦sX is the identity, so sX is a
section of trop defined on Trop(X)mTrop=1. If X ∩O(σ) is equidimensional
of dimension d then d(ω) = d for all ω ∈ Trop(X) ∩ NR(σ) by the Bieri–
Groves theorem, so sX(ω) is the unique Shilov boundary point of Xω in this
case: STrop(X) ∩ trop−1(ω) = {sX(ω)}. Therefore our sX coincides with
the section considered in [23, §10] for X ⊂ T irreducible. It also coincides
with the section s : N∆

R → Y an
∆ introduced in §3.3 when X = Y∆.

Remark 8.5 (Behavior with respect to extension of scalars). — LetK ′ be
a valued extension field of K, let X ′ = XK′ , and let π : X ′an → Xan be the
structural map. Then Trop(X ′)mTrop=1 = Trop(X)mTrop=1 by the definition
of mTrop. It is clear from the proof of Proposition 8.3 that π ◦ sX′ = sX .

The uniqueness of C(ω) for ω ∈ Trop(X)mTrop=1 gives us the following
decomposition of Trop(X)mTrop=1. Supposing for simplicity that X is a
closed subscheme of T , for an irreducible component C of X let

(8.5.1) Z(C) =
{
ω ∈ Trop(X)mTrop=1 | C(ω) = C

}
.

In other words, Z(C) is the set of all multiplicity-1 points ω such that
C is the unique irreducible component of X of dimension d(ω) with ω ∈
Trop(C). Hence sX(ω) is the Shilov boundary point of Cω. Then by defini-
tion, Trop(X)mTrop=1 is the disjoint union

⊔
C Z(C), and sX = sC on Z(C)

(which makes sense by the final assertion of Proposition 8.3). This obser-
vation, along with the following Lemma, will allow us to reduce topological
questions about Trop(X)mTrop=1 to the case when X is irreducible.

Lemma 8.6. — Let X ⊂ T be a closed subscheme, let C be an irre-
ducible component of X, and define Z(C) as in (8.5.1). Then Z(C) is open
and closed in Trop(X)mTrop=1.

Proof. — Since Trop(X)mTrop=1 =
⊔
C Z(C), it is enough to prove that

Z(C) is closed. Let (ωi)i∈N be a sequence in Z(C) converging to a point
ω ∈ Trop(X)mTrop=1. By passing to a subsequence, we may assume that
all ωi are contained in a single polyhedron P ⊂ Trop(C) of dimension

TOME 67 (2017), FASCICULE 5



1946 Walter GUBLER, Joseph RABINOFF & Annette WERNER

d = dim(C). Then ω ∈ P as well. We claim that d(ω) = d. If not, then
there exists a polyhedron P ′ ⊂ Trop(X) of dimension d′ > d also containing
ω. We note that LCω(P ) is not included in LCω(P ′) as we have d(ωi) = d

for all i. But then LCω(Trop(X)) = Trop(inω(X)) is not equidimensional,
so inω(X) is not irreducible, which contradicts mTrop(ω) = 1. This proves
the claim. We have ω ∈ P ⊂ Trop(C), so C is the unique irreducible
component of X of dimension d = d(ω) containing ω in its tropicalization,
and therefore ω ∈ Z(C). �

8.7. Continuity on torus orbits

The following analogue of Corollary 4.8 is a generalization of [23, The-
orem 10.6] to reducible X and a general non-Archimedean ground field
K.

Proposition 8.8. — For σ ∈ ∆, the section of tropicalization sX is
continuous on the multiplicity-1 locus Trop(X)mTrop=1 ∩NR(σ). Moreover,
if Z ⊂ Trop(X)mTrop=1 ∩ NR(σ) is contained in the closure of its interior
in Trop(X) ∩ NR(σ), then sX is the unique continuous partial section of
trop: Xan → Trop(X) defined on Z.

Proof. — The statement of the Proposition is intrinsic to the torus or-
bit O(σ), so we immediately reduce to the case Y∆ = O(σ) = T . Since
Trop(X)mTrop=1 is the disjoint union (as a topological space) of the sub-
spaces Z(C) by Lemma 8.6, it is enough to prove continuity and uniqueness
on Z(C) for a fixed irreducible component C of X. Since sX = sC on Z(C),
we may replace X by C to assume X irreducible.

Let Z = Trop(X)mTrop=1. It suffices to show that sX(Z) is closed
in trop−1(Z) ∩ Xan (endowed with its relative topology), since
trop: trop−1(Z)∩Xan → Z is a proper map to a first-countable topological
space, thus is a closed map by [30]. In this case, sX(ω) is the unique Shilov
boundary point of Xω for all ω ∈ Z. Thus sX(Z) = trop−1(Z)∩ STrop(X),
which is closed in trop−1(Z) ∩ Xan by Proposition 4.6. This settles the
continuity assertion.
Now let Z ⊂ Trop(X)mTrop=1 be a subset which is contained in the

closure of its interior in Trop(X), still assuming (as we may) that X is
irreducible. The proof of uniqueness of the section sX on Z goes through
exactly as in [23, Theorem 10.6], which only uses that in the situation of
Proposition 4.6, we have

φ−1(STrop(Gd
m)) = STrop(X) ,
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and that STrop(X) ∩ trop−1(ω) = {sX(ω)} for ω ∈ Trop(X)mTrop=1. �

Remark 8.9. — In the proof of Proposition 8.8, after reducing to the
case of irreducible X, we could have applied [23, Theorem 10.6] after an
extension of scalars to prove continuity. However, it is instructive to see
why continuity follows from the more general results of §4.

8.10. A sequential continuity criterion

The section sX need not be continuous on all of Trop(X) when X is a
closed subscheme of a toric variety Y∆.

Example 8.11. — In Example 4.9, sX(0, r, 2r) does not tend to
sX(0,∞,∞) as r →∞.

It is easy to see that N∆
R is a metric space. Hence sX is continuous

if and only if it is sequentially continuous. Given a sequence (ωi)i∈N in
Trop(X)mTrop=1 converging to a point ω ∈ Trop(X)mTrop=1, if ω and all ωi
are contained in the same torus orbit then sX(ωi) → sX(ω) by Proposi-
tion 8.8. If (ωi)i∈N is contained in several different torus orbits, one checks
sequential continuity on each torus orbit separately. Hence verifying se-
quential continuity amounts to showing that if (ωi)i∈N is a sequence in
Trop(X)mTrop=1 ∩ NR converging to ω ∈ Trop(X)mTrop=1 ∩ NR(σ), then
sX(ωi) converges to sX(ω). Decomposing by local dimension, one breaks
(ωi)i∈N into several subsequences, each one of which is contained in a single
polyhedron in Trop(X) which is d-maximal (Definition 5.4) at each point
of the subsequence.
The main ingredient in the proof of the following result is Theorem 6.1.

Theorem 8.12. — Let ∆ be a pointed rational fan in NR and let X ⊂
Y∆ be a closed subscheme. Let (ωi)i∈N be a sequence in Trop(X)mTrop=1 ∩
NR converging to a point ω ∈ Trop(X)mTrop=1 ∩NR(σ) for σ ∈ ∆. Suppose
that there exists a polyhedron P ⊂ Trop(X) ∩ NR which is d-maximal at
each ωi. If πσ(P ) is d-maximal at ω, then sX(ωi)→ sX(ω).

Proof. — First we reduce to the case whereX∩T is irreducible and dense
in X. In fact, equidimensionality would be enough to apply Theorem 6.1
later.
Let d = dim(P ), so d(ωi) = d for all i. By Proposition 8.3, there exists

a unique irreducible component Ci = C(ωi) of X ∩ T of dimension d with
ωi ∈ Trop(Ci). As all other irreducible components of X meeting Xωi have
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smaller dimension, we must have LCωi(P ) ⊂ LCωi(Trop(Ci)). Let C be a d-
dimensional irreducible component of X occurring as Ci for infinitely many
i. Replacing P by Trop(C) ∩ P , we may asssume that P ⊂ Trop(C). Note
that d-maximality of πσ(P ) at ω is preserved. The limit point ω lies in the
closure P of P intersected with NR(σ), and hence in πσ(P ) by Lemma 5.5,
which is d-maximal at ω. Letting C ⊂ X be the closure of C in Y∆, we
have P ⊂ Trop(C), so Lemma 5.3 yields

dim(Xω) = d(ω) = dim(LCω(Trop(C))) = dim(Cω) .

Therefore using Proposition 8.3, the unique irreducible component of X ∩
O(σ) containing sX(ω) is an irreducible component of C ∩ O(σ). This is
true for all irreducible components C occurring as Ci for infinitely many i,
so we may assume that X ∩ T = C is irreducible and dense in X = C.

Let W = {ωi | i ∈ N} and hence W = {ωi | i ∈ N} ∪ {ω}. Proving the
Theorem amounts to showing that sX is continuous on the subspace W
of Trop(X). As W is a first-countable Hausdorff space, as in the proof of
Proposition 8.8 it suffices to show that sX(W ) is closed in trop−1(W ) ∩
Xan. By [32, Théorème 5.3], Xan is a Fréchet–Urysohn space, so for every
subspace, closure is the same as sequential closure. Since sX(W ) is discrete,
we only have to prove that sX(ω) is the unique (sequential) limit point
of sX(W ) not contained in sX(W ). Any such is contained in Xω, so let
ξ ∈ Xω be a limit point of sX(W ). By Theorem 6.1, ξ ∈ STrop(X) and
dimξ(Xω) = d(ω). The only point with these properties is sX(ω). �

We can apply the preceeding result in the following situation.

Corollary 8.13. — Let ∆ be a pointed rational fan in NR and let
X ⊂ Y∆ be a closed subscheme. Suppose that X ∩ T is equidimensional
and let σ ∈ ∆ be a cone such that X intersects O(σ) properly. Then
every sequence (ωi)i∈N in Trop(X)mTrop=1 ∩NR converging to a point ω ∈
Trop(X)mTrop=1∩NR(σ) has the property that sX(ωi) converges to sX(ω).

Proof. — We choose a finite collection Σ of integral R-affine d-dimen-
sional polyhedra whose union is Trop(X)∩NR. For every P in Σ such that
ρ(P ) meets the relative interior of σ, Proposition 7.4 implies that πσ(P )
has dimension dim(X)−dim(σ) = d(ω). Hence we can apply Theorem 8.12
to every P containing infinitely many ωi. �

Theorem 8.14. — Let ∆ be a rational pointed fan in NR and let X ⊂
Y∆ be a closed subscheme. Suppose thatX∩T is dense in T , and that for all
σ ∈ ∆ the subscheme X ∩O(σ) of O(σ) is either empty or equidimensional
of dimension dσ, where we put d0 = d. Assume that Trop(X) ∩ NR can
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be covered by finitely many d-dimensional polyhedra P with the following
property: If the recession cone of P meets the relative interior of σ, the
projection πσ(P ) has dimension dσ. Then sX : Trop(X)mTrop=1 → Xan is
continuous.

Proof. — Let (ωi)i∈N be any sequence in Trop(X)mTrop=1 converging to
ω ∈ N∆

R . We have to show that sX(ωi) converges to sX(ω). By passing to
subsequences we may assume that all ωi are contained in NR(τ) for some
face τ ∈ ∆. Then ω lies in NR(σ) for a face σ with τ ≺ σ. According
to Proposition 5.6, Trop(X) ∩ NR(τ) is covered by the polyhedra πτ (P ),
where P runs over all polyhedra in our finite covering of Trop(X) ∩ NR
with ρ(P ) ∩ relint(τ) 6= ∅. Assume that infinitely many ωi are contained
in the same πτ (P ). By hypothesis, πτ (P ) has dimension dτ . Now we apply
Theorem 8.12 to the subscheme X ∩ Y∆τ

of Y∆τ
: We consider the face

σ = πτ (σ) of ∆τ . The projection πσ(πτ (P )) = πσ(P ) has dimension dσ,
which implies that sX applied to our subsequence converges to sX(ω). This
proves our claim. �

Theorem 8.15. — Let X be a closed subscheme of Y∆ such that X ∩T
is equidimensional and dense in X. Assume additionally that for all σ ∈ ∆,
either X ∩O(σ) = ∅ or X intersects O(σ) properly. Then

sX : Trop(X)mTrop=1 → Xan

is continuous.

Proof. — This follows from Theorem 8.14 using Lemma 7.2 and Propo-
sition 7.4. �

Example 8.16. — Let us now briefly discuss the example of the Grass-
mannian of planes X = Gr(2, n) in n-space with its Plücker embedding
ϕ : Gr(2, n) ↪→ P(n2)−1. The toric variety in this example is given by pro-
jective space with projective coordinates pkl indexed by pairs k < l in
{1, . . . , n}. In this case, continuity for the section map on tropical Grass-
mannians was shown directly in [14]. See also [37] for an expository account
of this construction. Note that in [14], we use log instead of − log for trop-
icalization.
Put T Gr(2, n) = Trop(Gr(2, n)). Let NR be the cocharacter space of the

dense torus in P(n2)−1. Let J be a proper subset of the set of all projective
coordinates {pkl}, and let EJ be the subvariety of projective space, where
precisely the coordinates in J vanish. These are the torus orbits in projec-
tive space. Hence the locally closed subvariety GrJ(2, n) from [14] is the
intersection of Gr(2, n) with a torus orbit. By [14, Lemma 5.2], GrJ(2, n)
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is irreducible. In particular, the intersection of Gr(2, n) with every torus
orbit is equidimensional.
Now let CT be a maximal cone in T Gr(2, n)∩NR. It has dimension 2(n−

2). By [34], it corresponds to all phylogenetic trees on the trivalent combi-
natorial tree T . With the help of the results in [14, §4 and 5], one can show
that the projection of CT to the cocharacter space of the torus orbit EJ
is d-maximal. Moreover, it is shown in [14, Corollary 6.5] that the tropical
Grassmannian has tropical multiplicity one everywhere. Therefore we can
apply Theorem 8.14 to deduce the existence of a continous section to the
tropicalization map.
This provides a conceptual explanation for the existence of a section for

the tropical Grassmannian. Note however that we need the combinatorial
arguments developed in [14] in order to show that the tropical Grassman-
nian satisfies the prerequisites of Theorem 8.14.

9. Schön subvarieties

In this section, we will prove that when X is a so-called schön subva-
riety of a torus T , the tropical skeleton STrop(X) can be identified with
the parameterizing complex of Helm–Katz [24]. It also coincides with the
skeleton of a strictly semistable pair in the sense of [23]. Since the latter is
a deformation retract of Xan, this answers a question of Helm–Katz.
In this section, K0 is a discretely valued field with value group Γ0. We

write K0 for an algebraic closure, and K for the completion of K0. We
assume that the value group Γ of K0 and K is equal to Q, so that Γ0 =
v(K×0 ) = rZ for some r ∈ Q×.

9.1. Tropical compactifications

Here we recall several standard facts about tropical compactifications.
For more details, see [22, §7, §12].

Let R+ = [0,∞) ⊂ R. Let Σ be a pointed rational fan in NR × R+. For
r ∈ R+ we let Σr = {σ ∩NR × {r} | σ ∈ Σ}; this is a polyhedral complex
in NR, which is a fan when r = 0. The K◦-toric scheme associated to Σ
will be denoted YΣ. This is a finitely presented, flat, normal, separated
K◦-scheme. The generic fiber of YΣ is the toric variety YΣ0 . The torus
T = Spec(K[M ]) is dense in YΣ, and the integral torus T := Spec(K◦[M ])
acts on YΣ. The torus orbits on the generic (resp. special) fiber correspond
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to cones (resp. polyhedra) in Σ0 (resp. Σ1); for σ ∈ Σ0 (resp. P ∈ Σ1) we
let O(σ) ⊂ YΣ0 (resp. O(P ) ⊂ (YΣ)s) denote the corresponding orbit. For
σ ∈ Σ0 and P ∈ Σ1, we have

(9.1.1) dim(σ) + dim(O(σ)) = dim(NR)
and dim(P ) + dim(O(P )) = dim(NR) .

By a variety we mean a geometrically integral, separated, finite-type scheme
over a field. In the following, X is always a closed subvariety of the torus T .

Definition 9.2. — Let Σ be a pointed rational tropical fan in NR×R+
and let X be the closure of X in YΣ. We say that X is a tropical compact-
ification of X provided that X is proper over K◦ and the multiplication
map

µ : T ×K◦ X −→ YΣ

is faithfully flat. In this case we call Σ a tropical fan for X.

We refer the reader to [22, §12] for proofs of the following facts in this
context. We write |Σr| for the support of Σr in NR.

Theorem 9.3. — Let Σ be a tropical fan for X.
(1) If Σ′ is a rational fan which subdivides Σ, then Σ′ is a tropical fan

for X.
(2) The support |Σ1| is equal to Trop(X).
(3) If O ⊂ YΣ is any torus orbit, then X ∩ O is a non-empty pure

dimensional scheme and codim(X ∩O, O) = codim(X, T ).

It follows from Theorem 9.3(3) that X \X is a closed subscheme of pure
codimension one, which we regard as a reduced Weil divisor on X .

Definition 9.4. — Let X ⊂ YΣ be a tropical compactification of a
variety X ⊂ T . The boundary divisor of X is the Weil divisor X \X. The
horizontal part of the boundary divisor is the closure of XK \X in X , and
the vertical part is the special fiber Xs.

In case of a tropical compactification as above, replacing K0 be a finite
extension, we may always assume that all vertices of Σ1 are in NΓ0 . Then
the toric scheme YΣ is defined overK◦0 (see [22, Proposition 7.11]). IfX ⊂ T
is defined over K0 (that is, X is the extension of scalars of a subvariety
of Spec(K0[M ])), then after passing to a larger finite extension, we may
assume that X is defined over K0, so X is defined over K◦0 . This means
that the tropical compactification X ⊂ YΣ is obtained by base change
from the corresponding toric compactification over K◦0 . This will be used
to quote results proved over discrete valuation rings.
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We have the following relationship between torus orbits and initial de-
generations. Let P ∈ Σ1, let TP ⊂ T be the subtorus that acts trivially
on O(P ) ⊂ YΣ, and let ω ∈ relint(P ) ∩ NΓ. Then by [24, §3], there is a
natural map inω(X)→X ∩O(P ), and an isomorphism

(9.4.1) inω(X) ∼−→ TP × (X ∩O(P )) .

In particular, inω(X) is smooth if and only if X ∩O(P ) is smooth.

9.5. Schön subvarieties

The following class of subvarieties of tori are sometimes called “tropically
smooth”.

Definition 9.6. — Let X ⊂ T be a subvariety. We say that X (or
more precisely, the embedding X ↪→ T ) is schön provided that there exists
a tropical compactification X ⊂ YΣ of X such that the multiplication map
µ : T ×K◦ X → YΣ is smooth.

Note that if X is schön then it is smooth. The following result is due to
Luxton and Qu [27, Proposition 7.6].

Lemma 9.7. — Let X ⊂ T be a schön subvariety defined over K0 and
let X ⊂ YΣ be any tropical compactification. Then µ : T ×K◦ X → YΣ
is smooth.

Proposition 9.8 (Helm–Katz). — Let X ⊂ T be a subvariety defined
over K0. The following are equivalent:

(1) X is schön.
(2) inω(X) is smooth for all ω ∈ Trop(X).
(3) For any tropical compactification X ⊂ YΣ and any polyhedron

P ∈ Σ1, the intersection X ∩O(P ) is smooth.

Proof. — See [24, Proposition 3.9]. �

De Jong defined in [25, §6] the notion of a strictly semistable pair (X , H)
over a complete discrete valuation ring R. Roughly, this consists of a pair
(X , H), where X is an irreducible, proper, flat, separated R-scheme, H
is an effective “horizontal” Cartier divisor on X , and H + Xs is a divisor
with strict normal crossings. Note that de Jong denotes such a strictly
semistable pair by (X , H + Xs), but we will omit the vertical part in the
notation.
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Proposition 9.9 (Helm–Katz). — Let X ⊂ T be a schön subvariety
defined over K0. Then there exists a tropical compactification X ⊂ YΣ
such that, letting H be the horizontal part of the boundary divisor of
X ⊂ YΣ (Definition 9.4), then H is Cartier and the pair (X , H) is the
base change a strictly semistable pair defined over the valuation ring of a
finite subextension of K/K0.

Proof. — Proposition 3.10 in [24] says that X is strictly semistable over
K◦ in the sense of de Jong [25, §2]. For the stronger fact that (X , H)
is a strictly semistable pair, one has to refer back to the proof of [24,
Proposition 2.3]. �

Remark 9.10. — The desingularization process [24, Proposition 2.3]
used in the proof of Proposition 9.9 is the primary reason for the assump-
tion that X ⊂ T is defined over K0. It involves subdividing Trop(X) into
unimodular simplicial polyhedra, which is not possible in general when the
value group is too large, e.g. if Γ = R. On the other hand, the proofs of
Lemma 9.7 and Proposition 9.8 can be extended to any valued field.

9.11. Skeletons and the parameterizing complex

Following Helm–Katz, the pair consisting of a schön subvariety X ⊂ T

and a tropical compactification X ⊂ YΣ satisfying the conclusions of
Proposition 9.9 is called a normal crossings pair. We associate to a normal
crossings pair (X,YΣ) a piecewise linear set HK(X,YΣ) (denoted Γ(X,P)
in [24, §4]), defined as follows. For P ∈ Σ1 we let XP be the closure of
X ∩ O(P ). The k-cells of HK(X,YΣ) are pairs (P,C), where P is a k-
dimensional polyhedron in Σ1 and C is an irreducible component (equiva-
lently, a connected component) of XP . The cells on the boundary of (P,C)
are the cells of the form (P ′, C ′), where P ′ is a facet of P and C ′ is the
irreducible component of XP ′ containing C; there is only one such compo-
nent as XP ′ is smooth. The piecewise linear set HK(X,YΣ) is called the
Helm–Katz parameterizing complex; it maps naturally to Σ1 by sending
(P,C) to P . See [24, §4] for details. Note that although Helm–Katz work
over a discretely valued field, their construction only depends on the (geo-
metric) special fiber of X , so one may as well pass to the completion of the
algebraic closure first. The complex HK(X,YΣ) inherits an integral Γ-affine
structure [23, §2] from Trop(X).
Let (X , H) be the strictly semistable pair associated to the normal cross-

ings pair (X,YΣ) in Proposition 9.9. It follows from [23, 3.2] that (X , H)
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is a strictly semistable pair in the sense of [23, Definition 3.1]. Such a pair
admits a canonical skeleton S(X , H) ⊂ Xan as constructed in [23, §4].
By [23, Proposition 4.10] there is a bijective, order-reversing correspon-
dence between strata S in Xs and polyhedra ∆S in the skeleton S(X , H).
These strata are precisely the connected components of the intersections
with torus orbits X ∩O(P ) for P ∈ Σ1: indeed, the stratum closures of Xs

are the intersections with stratum closures in YΣ because they are smooth
of the correct dimension by Theorem 9.3(3) and Proposition 9.8(3). Hence
the polyhedra ∆S correspond to cells in HK(X,YΣ). This correspondence
respects the facet relation, so that HK(X,YΣ) and S(X , H) are identified
as piecewise linear sets. It is not obvious that this identification respects
the respective integral Q-affine structures (see Lemma 9.15 below).

Theorem 9.12. — Let X ⊂ T be a schön subvariety defined over K0,
and let (X,YΣ) be a normal crossings pair. Let (X , H) be the associated
strictly semistable pair (Proposition 9.9), with skeleton S(X , H) as above.
Then

(1) S(X , H) = STrop(X) as subsets of Xan, and
(2) there is a canonical isomorphism S(X , H) ∼−→ HK(X,YΣ) of ab-

stract integral Q-affine piecewise linear sets, making the following
triangle commute:

S(X , H) ∼ //

trop ''

HK(X,YΣ)
vv

Trop(X)

One consequence of Theorem 9.12 is that for schön X, one can con-
struct the (Berkovich) skeleton S(X , H) using only tropical data, namely,
Trop(X) and the initial degenerations of X. This is a kind of “faithful
tropicalization” result. As a consequence, any invariant of X that can be
recovered from S(X , H) can be calculated tropically. For example, the
skeleton S(X , H) is a strong deformation retraction of Xan by [23, §4.9],
so we have the following Corollary.

Corollary 9.13. — With the notation in Theorem 9.12, there is a
canonical homotopy equivalence Xan → HK(X,YΣ).

Remark 9.14. — Suppose now that X ⊂ T is a schön subvariety and
that K0 is a local field (i.e., K̃0 is finite). Assume that X arises as the base
change of a subvariety XK0

of Spec(K0[M ]). The main theorem of the pa-
per of Helm–Katz [24, Theorem 6.1], which relates the weight-zero étale
cohomology of XK0

with the singular cohomology of the parameterizing
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complex of X, is now seen in the light of Theorem 9.12 to be a conse-
quence(3) of a general result of Berkovich [7], relating the weight-zero étale
cohomology of XK0

with the singular cohomology of Xan. This answers a
question posed in the introduction of [24].

Before beginning the proof of Theorem 9.12, we need the following Le-
mma, which roughly says that S(X , H) → Trop(X) is an “unramified
covering” of integral Q-affine piecewise linear sets.

Lemma 9.15. — With the notation in Theorem 9.12, let P ∈ Σ1, let S
be a connected component of X ∩ O(P ), and let ∆S ⊂ S(X , H) be the
corresponding cell. Then trop maps ∆S bijectively onto P , and this map is
unimodular in the sense of [23, §2].

Proof. — First suppose that X = T and X = YΣ. In this case, it is
straightforward to check that the skeleton S(X , H) is canonically identi-
fied with Σ1 (considered as a polyhedral subdivision of NR = Trop(T )), and
that the retraction to the skeleton τ : Xan → S(X , H) is identified with
trop: T an → NR. In particular, by [23, Proposition 4.10] or [22, Proposi-
tion 8.8], all points of trop−1(relintP ) reduce to the stratum S under the
reduction map red: Xan → Xs, and all points of Xan reducing to S are
contained in trop−1(relintP ).
No longer assuming X = YΣ, but restricting the previous sentence to

X ⊂ YΣ, we see that a point x ∈ Xan reduces to X ∩ O(P ) if and
only if trop(x) ∈ relintP . Applying [23, Proposition 4.10] to (X , H),
this shows that trop−1(relintP ) ∩ S(X , H) is the disjoint union of the
interiors relint ∆S′ for S′ a component of X ∩ O(P ). In particular, trop
maps relint ∆S (but not the boundary of ∆S) into relintP . Taking clo-
sures, we see that trop maps ∆S into P . The map trop: ∆S → P is in-
tegral Q-affine by [23, Proposition 8.2]. This is enough to ensure trop is
injective on ∆S . The dimensions of S and P are complementary by The-
orem 9.3(3) and (9.1.1), so dim(∆S) = dim(P ). Hence trop(relint ∆S) is
open in relintP , and it is also closed since the boundary of ∆S does not
map into relintP . It follows that trop maps relint ∆S (resp. ∆S) bijectively
onto relintP (resp. P ).

Now we treat unimodularity. Since Trop(X) is pure dimensional, the
same is true of S(X , H). Hence it suffices to consider P of maximal dimen-
sion. Let S1, . . . , Sr be the connected components of X ∩ O(P ). Choose

(3)At least over local fields; Helm–Katz work over slightly more general K0.
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ω ∈ (relintP ) ∩ NΓ. By the skeletal Sturmfels–Tevelev multiplicity for-
mula [23, Theorem 8.4], we have

(9.15.1) mTrop(ω) =
r∑
i=1

[NP : N∆Si
] > r ,

where the terms [NP : N∆Si
] are the lattice indices introduced in [23, §2].

By (9.4.1), we have inω(X) ∼= TP×
⊔r
i=1 Si, so it is clear thatmTrop(ω) = r.

It follows that [NP : N∆Si
] = 1 for all i, which is to say that trop is

unimodular on ∆Si . �

Proof of Theorem 9.12. — We have already argued that the cells and
facet relations of S(X , H) are in natural bijection with those of HK(X,YΣ).
The integralQ-affine structures of the cells of HK(X,YΣ) are inherited from
those of Σ1, and Lemma 9.15 proves that the same is true for the cells of
S(X , H). Moreover, the cell of S(X , H) corresponding to a cell (P,C) of
HK(X,YΣ) maps to P under trop by Lemma 9.15, so we have proved (2).

To prove (1), we will adapt the argument of [23, Proposition 10.8]. Let
K ′ be an algebraically closed, complete valued field extension of K whose
value group is all of R, let X ′ := X ⊗K K ′ and let π : X ′an → Xan be the
structural morphism. By Lemma 4.4, we have π(STrop(X ′)) = STrop(X).
Let (X ′, H ′) be the strictly semistable pair overK ′◦ in the sense of [23, Def-
inition 3.1] given by base change (X , H) to K ′◦. It is easy to see from the
construction [23, §4] that π induces an isomorphism S(X ′, H ′) ∼= S(X , H)
identifies faces and strata. Therefore to prove (1), it is enough to show that
STrop(X ′) = S(X ′, H ′).
Let ω ∈ Trop(X). By hypothesis inω(X ′) = inω(X) ⊗

K̃
K̃ ′ is smooth,

so its irreducible components are connected components. As inω(X ′) is the
special fiber of the tropical formal model X′ω, it follows from [3, Proposi-
tion 3.18] that the canonical model of X ′ω coincides with X′ω, so the canon-
ical reduction X̃ ′ω is equal to inω(X ′). Let C ⊂ inω(X ′) be a connected
component. Then X ′C := red−1(C) is a connected component of X ′ω by
anti-continuity of red, and it has a unique Shilov boundary point ξC by
Proposition 2.16. We claim that X ′C ∩ S(X ′, H ′) = {ξC}; this suffices to
prove (1), as clearly X ′C ∩ STrop(X ′) = {ξC}, and X ′an is covered (set-
theoretically) by the affinoid domains X ′C .
We introduce a partial ordering 6 on X ′an by declaring that x 6 y if

|f(x)| 6 |f(y)| for all f ∈ K ′[M ], where M is the character lattice of
T ′ = T ⊗K K ′. The tropicalization trop: X ′an → NR factors through the
retraction to the skeleton τ : (X ′ \ H ′)an → S(X ′, H ′) by [23, Proposi-
tion 8.2], so τ(ξC) ∈ X ′ω. By [6, Theorem 5.2(ii)] (as applied to a suitable

ANNALES DE L’INSTITUT FOURIER



TROPICAL SKELETONS 1957

affinoid neighborhood of ξC ; see the proof of [23, Proposition 10.8]), we
have ξC 6 τ(ξC). As ξC is by definition maximal with respect to 6, this
implies ξC = τ(ξC), so ξC ∈ S(X ′, H ′).
Let P ∈ Σ1 be the polyhedron containing ω in its relative interior, and

let C1, . . . , Cr be the connected components of inω(X ′). We have shown the
inclusion {ξC1 , . . . , ξCr} ⊂ S(X ′, H ′) ∩ trop−1(ω). By (9.4.1), C1, . . . , Cr
correspond to the open strata S1, . . . , Sr of X ′ lying on X ′ ∩ O(P ),
and by Lemma 9.15, each cell ∆Si ⊂ S(X ′, H ′) maps bijectively onto
P under trop, with no other such cells mapping into relint(P ). It follows
that S(X ′, H ′) ∩ trop−1(ω) contains exactly r points, so {ξC1 , . . . , ξCr} =
S(X ′, H ′) ∩ trop−1(ω). This completes the proof. �

Remark 9.16. — With the notation in Theorem 9.12, suppose in addi-
tion that all initial degenerations inω(X) are irreducible, or equivalently,
that mTrop(ω) = 1 for all ω ∈ Trop(X). Then Theorem 9.12 and its
proof imply that trop: STrop(X) = S(X , H) → Trop(X) is an isomor-
phism of integral Γ-affine piecewise linear sets, and that the canonical sec-
tion Trop(X) → STrop(X) of §8 is the inverse isomorphism. Compare [23,
Proposition 10.8].

Appendix A. Summary of notations

A.1. Analytic spaces and formal schemes

XK′ The extension of scalars of an object X/K to K′/K. 2.1, p. 1911
K A non-Archimedean field. 2.2, p. 1911
v : K → R ∪ {∞}, a complete non-Archimedean

valuation. 2.2, p. 1911
| · | = exp(−v( · )), an associated absolute value. 2.2, p. 1911
K◦ The valuation ring in K. 2.2, p. 1911
K◦◦ The maximal ideal in K◦. 2.2, p. 1911
K̃ = K◦/K◦◦, the residue field of K. 2.2, p. 1911
Γ = ΓK = v(K×) ⊂ R, the value group of K. 2.2, p. 1911√
Γ The saturation of Γ in R. 2.2, p. 1911

K〈r−1x〉 The generalized Tate algebra; also for n variables. 2.2, p. 1911
H (x) The completed residue field at a point x of a

K-analytic space. 2.3, p. 1911
M (A) The Berkovich spectrum of a K-affinoid algebra A. 2.3, p. 1911
Xan The analytification of a locally finite-type

K-scheme X. 2.3, p. 1911
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Xs = X⊗K◦ K̃, the special fiber of a formal
K◦-scheme X. 2.6, p. 1913

Xη The analytic generic fiber of an admissible formal
K◦-scheme X. 2.6, p. 1913

A◦ Ring of power-bounded elements in a strictly
K-affinoid algebra A. 2.8, p. 1913

A◦◦ The ideal of topologically nilpotent elements in A◦. 2.8, p. 1913
Ã = A◦/A◦◦, a K̃-algebra of finite type. 2.8, p. 1914

| · |sup The supremum (or spectral) semi-norm on a
K-affinoid algebra A. 2.8, p. 1914

Xcan = Spf(A◦), the canonical model of X = M (A). 2.9, p. 1914
X̃ = Spec(Ã), the canonical reduction of X = M (A). 2.9, p. 1914

B(X) The Shilov boundary of a K-affinoid space X. 2.13, p. 1916
red : X → X̃, the reduction map to the

canonical reduction. (2.15.1)
red : Xη → Xs, reduction map of an admissible formal

K◦-scheme X. (2.16.1)

A.2. Toric varieties and tropicalizations

M ∼= Zn, a finitely generated free abelian group. 3.1, p. 1920
N = Hom(M,Z), its dual. 3.1, p. 1920

MG = M ⊗Z G ⊂MR for G ⊂ R an additive subgroup. 3.1, p. 1920
NG Likewise. 3.1, p. 1920
〈 · , · 〉 : MG ×NG → R, the evaluation pairing. 3.1, p. 1920
R[S] The monoid ring over a ring R of a monoid S. 3.1, p. 1920
χu ∈ R[S], the character corresponding to u ∈ S. 3.1, p. 1920
T = Spec(K[M ]) ∼= Gn

m,K , a split K-torus. 3.1, p. 1920
Sσ = σ∨ ∩M , the monoid associated to a cone σ ⊂ NR. 3.1, p. 1920
Yσ = Spec(K[Sσ]), the affine toric variety from

a rational cone σ ⊂ NR. 3.1, p. 1920
Y∆ The toric variety associated to a rational

pointed fan ∆ in NR. 3.1, p. 1920
MG(σ) = (σ⊥ ∩M)⊗Z G for σ ⊂NR a rational cone

and G⊂ R. 3.1, p. 1920
NG(σ) = (N/〈σ〉 ∩N)⊗Z G. 3.1, p. 1920

πσ : NR → NR(σ), the projection. 3.1, p. 1920
O(σ) = Spec(K[M(σ)]), the torus orbit in Y∆

coming from σ ∈ ∆. 3.1, p. 1920
R = R ∪ {∞}, an additive monoid. 3.2, p. 1920

Nσ
G =

⊔
τ≺σ NG(τ). 3.2, p. 1920

N∆
G =

⊔
σ∈∆ NG(σ), the G-points in a partial

compactification of NR. 3.2, p. 1921
trop : Y an

∆ → N∆
R or Y an

σ → Nσ
R, the tropicalization map. 3.3, p. 1921
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s : N∆
R → Y an

∆ or Nσ
R → Y an

σ , the section
of tropicalization. 3.3, p. 1921

| · |ω = s(ω) for ω ∈ Nσ
R. 3.3, p. 1921

S(Y an
σ ) = s(Nσ

R), the skeleton of Y an
σ . 3.3, p. 1921

S(Y an
∆ ) = s(N∆

R ), the skeleton of Y an
∆ . 3.3, p. 1921

Trop(X) ⊂ N∆
R (resp. Nσ

R), the tropicalization of X ⊂ Y∆
(resp. Yσ). 3.3, p. 1922

Uω = trop−1(ω) ⊂ Y an
∆ for ω ∈ N∆

R . 3.4, p. 1922
Uω = Spf(K〈Uω〉◦), the canonical model of Uω

for ω ∈ N∆
Γ . 3.4, p. 1922

Xω = Uω ∩Xan for X ⊂ Y∆ a closed subscheme. 3.5, p. 1923
Xω The tropical formal model of Xω, a closed formal

subscheme of Uω. 3.5, p. 1923
inω(X) = (Xω)s, the initial degeneration of X at ω. 3.5, p. 1923

mZ The multiplicity of an irreducible component
Z of inω(X). 3.5, p. 1923

mTrop(ω) The tropical multiplicity of X at ω. 3.5, p. 1923
LCω(Π) The local cone at ω of a polyhedral complex Π in NR. 5.1, p. 1928

ρ(P ) The recession cone of a polyhedron P . (1), p. 1929
sX : Trop(X)mTrop=1 → STrop(X), the section

of tropicalization. 8.4, p. 1944
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