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LEVI-FLAT HYPERSURFACES AND THEIR
COMPLEMENT IN COMPLEX SURFACES

by Carolina CANALES GONZÁLEZ

Abstract. — In this work we study analytic Levi-flat hypersurfaces in com-
plex algebraic surfaces. First, we show that if this foliation admits chaotic dynamics
(i.e. if it does not admit a transverse invariant measure), then the connected com-
ponents of the complement of the hypersurface are modifications of Stein domains.
This allows us to extend the CR foliation to a singular algebraic foliation on the
ambient complex surface. We apply this result to prove, by contradiction, that an-
alytic Levi-flat hypersurfaces admitting a transverse affine structure in a complex
algebraic surface have a transverse invariant measure. This leads us to conjecture
that Levi-flat hypersurfaces in complex algebraic surfaces that are diffeomorphic
to a hyperbolic torus bundle over the circle are fibrations by algebraic curves.
Résumé. — Dans ce travail nous étudions les hypersurfaces Levi-plates ana-

lytiques dans les surfaces algébriques complexes. Dans un premier temps nous
montrons que si leur feuilletage admet une dynamique chaotique (c’est à dire, s’il
n’admet pas de mesure transverse invariante) alors les composantes connexes de
l’extérieur de l’hypersurface sont des modifications de domaines de Stein. Ceci
permet d’étendre le feuilletage CR en un feuilletage algébrique singulier sur la
surface complexe ambiante. Nous appliquons ce résultat pour montrer, par l’ab-
surde, qu’une hypersurface Levi-plate analytique qui admet une structure affine
transverse dans une surface algébrique complexe possède une mesure transverse
invariante. Ceci nous amène à conjecturer que les hypersurfaces Levi-plates dans
les surfaces algébriques complexes qui sont difféomorphes à un fibré hyperbolique
en tores sur le cercle sont des fibrations par courbes algébriques.

1. Introduction

In this work, we study real analytic hypersurfaces in complex algebraic
surfaces that satisfy a certain partial differential equation that we describe
here below. Given a real hypersurfaceM in a complex surface X, we define
the Cauchy–Riemann distribution on M , called in abbreviated form CR

Keywords: complex analysis and complex geometry, theory of foliations, Levi-flat hyper-
surfaces, invariant measure, Stein manifold, holomorphic convexity, analytic extension.
2010 Mathematics Subject Classification: 32V40, 32T15, 32D15, 37F75, 37C40.



2424 Carolina CANALES GONZÁLEZ

distribution, that in a point p of M is the unique complex line contained
in TpM , i.e. the distribution TM ∩ iTM . The hypersurface M is called
Levi-flat if the CR distribution is integrable. This means that through any
point ofM passes a non-singular holomorphic curve of X that is completely
contained in M . These curves correspond then to the leaves of a foliation
on M , noted F hereafter, called the Cauchy–Riemann foliation or CR fo-
liation. The condition that ensures a real hypersurface to be Levi-flat can
be synthesized by the vanishing of the Levi form. The purpose of this work
is to understand the interaction between the dynamics of the CR foliation,
the topology of the hypersurface, and the geometry of its complement in
the ambient surface.
Before stating our results, let us give some examples of Levi-flat hy-

persurfaces, which we organize following the dynamic complexity of their
CR foliation. This gives us the opportunity to introduce some terminology
borrowed from the theory of dynamical systems.

Periodic Levi-flat Hypersurfaces. These hypersurfaces are those
fibered by algebraic curves. They appear in all birational equivalence classes
of algebraic surfaces. In fact, any complex algebraic surface admits a
pencil that, after a finite number of blow-ups, becomes a singular fibration.
A family of fibers of such a fibration parametrized by the circle describes
a periodic Levi-flat hypersurface. The topology of these Levi-flat hyper-
surfaces can be very rich: all Thurston’s geometries except the spherical
geometry are realized by Levi-flat hypersurfaces of this type. Certain com-
pact quotients of each of the following models appear thus as a periodic
Levi-flat hypersurface

S2 × R , R3 , Nil , Sol , H2 × R , ˜SL(2,R) , H3.

We refer to [9] for more details on these constructions.

Quasi-periodic Levi-flat hypersurfaces. Emblematic examples of
these are linear hypersurfaces in a complex torus. In this case, the CR
foliation is a linear foliation of a real torus of dimension three. In general,
we will say that a Levi-flat hypersurface is quasi-periodic if its CR foliation
is defined (up to a double cover) by a closed differential form, or equiva-
lently as the pre-image by a smooth map of a codimension 1 linear foliation
on a torus. Examples of such hypersurfaces appear in line bundles of degree
zero on a curve, and therefore in the neighbourhood of linearizable curves
in complex surfaces. Arnol′d has provided such examples in the blow-up of
CP2 in nine generic points with respect to the Lebesgue measure [1, §27].

ANNALES DE L’INSTITUT FOURIER
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Chaotic Levi-flat hypersurfaces. These are the hypersurfaces for
which the CR foliation admits no transverse invariant measure. A trans-
verse invariant measure is a family of Borel measures on the transversals
to the foliation that are invariant under any holonomy map. To get an idea
of these objects, a property satisfied by chaotic Levi-flat hypersurfaces is
the existence of a leaf with hyperbolic holonomy, see [10]: some leaves wind
around others with exponential rate. Important examples of such hyper-
surfaces are constructed in flat CP1-bundles with real monodromy over a
curve: just consider the corresponding RP1-bundle.(1)

These three classes do not describe all Levi-flat hypersurfaces in complex
algebraic surfaces. For example, there are Levi-flat hypersurfaces containing
algebraic curves, but that are not periodic. This is the case of the Levi-flat
hypersurfaces constructed by Nemirovskĭı, see [28]. Furthermore, although
we know no example of this kind, one could imagine that there are ana-
lytic Levi-flat hypersurfaces that admit a non atomic transverse invariant
measure but that is singular with respect to the Lebesgue measure. Such
hypersurfaces would be similar to quasi-periodic Levi-flat hypersurfaces,
yet still different.

An important part of this work concerns the study of the geometrical
properties of the connected components of the complement of a Levi-flat
hypersurface. These exterior components are by definition pseudoconvex
and, as we shall see, it is interesting to understand how this local convex-
ity property globalizes. Here are several ideas of global convexity that we
present in “increasing order”:

(1) Weakly pseudoconvex: there is a plurisubharmonic exhaustion func-
tion.

(2) Holomorphically convex: the holomorphic convex envelope of a com-
pact is compact.

(3) Strongly pseudoconvex: there is an exhaustion function that is
strictly plurisubharmonic outside a compact.

(4) Stein: it is holomorphically convex and holomorphic functions sep-
arate points.

It is well known that in the case of a domain with C2 boundary in a
compact complex manifold, each of these properties implies the previous
one. The implication (4) ⇒ (3) is valid for any complex manifold. This

(1) In particular, when the monodromy of the CP1-bundle is that given by the uniformiza-
tion of the base curve C, the CR foliation of the previously considered hypersurface is
analytically conjugated to the weak stable foliation of the geodesic flow on C equipped
with its conformal metric with curvature −1. Such a flow is the emblematic example of
a chaotic flow, reinforcing the terminology used here.

TOME 67 (2017), FASCICULE 6



2426 Carolina CANALES GONZÁLEZ

follows from the fact that a complex manifold is Stein if and only if it admits
a strictly plurisubharmonic exhaustion function, according to a theorem of
Grauert, see [19]. The implication (3)⇒ (2) is a theorem due to Grauert [19]
and Narasimhan [27]: it shows in particular that, by Remmert’s reduction,
a strongly pseudoconvex domain is a modification of a Stein variety. We
see then that (3) and (4) are very close: we pass from one to the other by
a blow-up procedure.
It turns out that global convexity properties of the exterior components

of an algebraic Levi-flat hypersurface are intimately related to the dynam-
ics of the CR foliation. For instance, a famous example of Grauert in [20]
shows that the exterior of a linear hypersurface in a complex torus is always
pseudoconvex, and it is holomorphically convex when the CR foliation is
periodic. This phenomenon generalizes to quasi-periodic Levi-flat hypersur-
faces. However, exterior components of quasi-periodic Levi-flat hypersur-
faces are never strongly pseudoconvex. Indeed, in these components there
are holomorphic curves or Levi-flat hypersurfaces arbitrarily close to their
boundary, which doesn’t allow the strictly subharmonicity of an exhaustion
function near the boundary.

The main result of this work states that external components of (ana-
lytic) chaotic Levi-flat hypersurfaces are strongly pseudoconvex, i.e. mod-
ifications of a Stein space by the result of Grauert and Narasimhan men-
tioned above. This result was known in particular cases, including that of
the hypothetical Levi-flat hypersurfaces of the complex projective plane by
Takeuchi’s theorem, see [33], or flat bundles in CP1 over a curve of genus
> 2 whose monodromy is real, faithful and discrete (i.e. associated to the
uniformization of a curve with the same genus of the base), according to a
theorem of Diederich and Ohsawa [14]. It is interesting to remark that our
condition, although quite general, is not optimal: in the very interesting
article [28], Nemirovskĭı defines Levi-flat hypersurfaces in some elliptical
surfaces that cut the surface into Stein domains. These Levi-flat hypersur-
faces contain invariant elliptic curves and therefore are not chaotic. How-
ever they admit similar turbulence properties to those satisfied by chaotic
Levi-flat hypersurfaces. It would be interesting to understand what is the
optimal condition for this problem, but we do not pursue such a study in
this paper.

To prove our result, we analyze the geometry of neighbourhoods of
chaotic Levi-flat hypersurfaces, building positive curvature metrics on the
normal bundle to the foliation. Our construction is based on the work of
Deroin and Kleptsyn in [10], where the heat equation along the leaves of

ANNALES DE L’INSTITUT FOURIER
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the foliation is considered: it is shown that under the chaotic hypothesis,
the leaves converge exponentially quickly towards each other along brown-
ian foliated trajectories. It is this phenomenon that allows us to build the
mentioned metric on the normal bundle of the CR foliation. A theorem
of Brunella is used then to deduce the strongly convexity of the exterior
components of the hypersurface, see [3].
Our study of global convexity properties of the exterior components of

a Levi-flat hypersurface has several consequences. The first one is the fol-
lowing rigidity property: every analytic chaotic Levi-flat hypersurface is
tangent to a singular complex algebraic foliation defined on the ambient
surface. This fact follows from extension techniques of analytic objects in
modified Stein spaces, which are now classic, see [22, 25, 26, 32], but that we
detail in this text, particularly the delicate passage through critical levels of
the plurisubharmonic exhaustion function. Thus, chaotic Levi-flat hyper-
surfaces appear as regular invariant sets of algebraic differential equations.
So this is a new manifestation of the GAGA principle (“Géométrie Ana-
lytique Géométrie Algébrique”) in the context of Levi-flat hypersurfaces,
but whose validity requires dynamic assumptions, unlike the conventional
case. Indeed, without the chaotic hypothesis, Sad noticed that there are
counterexamples: the quasi-periodic Levi-flat hypersurfaces constructed by
Arnol′d in the blow-up of CP2 in nine generic points are not tangent to a
complex algebraic foliation.
It seems reasonable to think that the algebraic differential equations

constrained to preserve a real analytic set are sufficiently rare to be classi-
fiable. As a comparison, in the theory of iteration, we know all the rational
applications of a complex variable whose Julia sets are analytical: there
are only Tschebychev polynomials and Blaschke products. This interesting
problem, certainly a difficult one, will not be considered in this gener-
ality here. However, we can use the above-mentioned rigidity properties
to study particular classes of Levi-flat hypersurfaces. This technique al-
lows us to understand the structure of transversely affine analytic Levi-flat
hypersurfaces, i.e. whose holonomy pseudogroup is given in an analytical
coordinate by affine transformations of the form x ∈ R 7→ ax + b ∈ R,
with a ∈ R∗ and b ∈ R. We show, by combining our rigidity result with
a theorem of Ghys, that a transversely affine Levi-flat hypersurface in a
complex algebraic surface is quasi-periodic, or contains an algebraic curve.
This result echoes the recent work of Pereira and Cousin on the classifi-
cation of singular transversely affine algebraic foliations of codimension 1,
see [8].

TOME 67 (2017), FASCICULE 6
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Our study of transversely affine analytic Levi-flat hypersurfaces has in-
teresting consequences for the geometry of analytic Levi-flat hypersurfaces
that are diffeomorphic to a hyperbolic torus bundle. These manifolds are
bundles with toric fibers T2 = R2/Z2 whose monodromy is isotopic to a
linear automorphism A ∈ GL(2,Z) with eigenvalues of norm different from
1. We conjecture that analytic Levi-flat hypersurfaces of complex algebraic
surfaces that are diffeomorphic to a hyperbolic torus bundle are periodic.
We are not able to prove this conjecture,(2) but we do have a result that
goes in this direction: we show that analytic Levi-flat hypersurfaces in com-
plex algebraic surfaces that are diffeomorphic to a hyperbolic torus bundle
contain an elliptic curve. This gives in particular an alternative proof of
a recent theorem of Deroin and Dupont [9] in the analytic case: analytic
Levi-flat hypersurfaces in surfaces of general type have a non solvable fun-
damental group. The proof of these results is immediate if one remembers
the beautiful classification of codimension 1 analytical foliations on hyper-
bolic torus bundles, due to Ghys and Sergiescu [17]. These foliations are of
two types: either they are analytically conjugated to the suspension of the
stable or unstable foliation associated to the matrix A (in which case they
are chaotic and transversely affine, which is excluded for the CR foliation
of a Levi-flat in an algebraic surface), or they admit a compact leaf that is
a torus and isotopic to a fiber of the bundle.

Acknowledgements. I would like to thank my advisors, Bertrand
Deroin and Christophe Dupont, and their institutions, for their help and
the discussions about this work. I would also like to thank the referee for
carefully reading this manuscript and the suggestions made.

2. Preliminaries

In this section, we give some well-known definitions and results in order
to fix notations. These notations will be kept throughout all the text.

2.1. Foliations

Definition 2.1. — LetM be a compact analytic 3-manifold. A foliation
F by Riemann surfaces on M is an atlas A = {(Uj , ϕj)}j∈J for M that is
maximal with respect to the following properties:
(2)Note here that Proposition 2 in [17] would demonstrate this conjecture, but Étienne
Ghys warned us about the existence of a counterexample to this statement, which he
kindly let us reproduce in this text.
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(1) For all j ∈ J , ϕj : Uj → Aj × Bj is an analytic diffeomorphism,
where Aj is an open disc in C and Bj =]0, 1[.

(2) If (Uj , ϕj) and (Uk, ϕk) belong to A with Uj ∩ Uk 6= ∅, then

ϕjk := ϕj ◦ ϕ−1
k : ϕk(Uj ∩ Uk)→ ϕj(Uj ∩ Uk)

is of the form

ϕjk(zk, tk) = (fjk(zk, tk), gjk(tk)) ,

where fjk and gjk, are analytic functions and fjk depends holomor-
phically of zk.

We will note NF and TF the tangent and normal bundle of the foliation
respectively, which are line bundles given by the transition functions

{ dgjk

dtk

}
and

{ dfjk

dzk

}
respectively. We define also the conormal bundle to the foliation

N∗F by taking
{

( dgjk

dtk )−1} as transition functions.
A metric m on these bundles will be given locally in the chart

(Uj , (zj , tj , ξj)) by a collection of functions

mj(zj , tj , ξj) = e−σj(zj ,tj) |ξj |2

where σj is a C∞ function and the curvature of m will be given locally by
the (1,1)-form

Θmj
= i

2π∂∂̄Fσj := i

2π
∂2σj
∂z∂z̄

.

We can also define a foliation on a compact 3-manifold by local sub-
mersions, vector fields or differential forms. This follows from Frobenius’
Theorem.

Theorem 2.2 (Frobenius’ Theorem). — Let M be a compact analytic
3-manifold. Let E = {Ep}p∈M be an analytic distribution of planes and
{ωp}p∈M be a family of differential 1-forms such that ker(ωp) = Ep. The
following conditions are equivalent:

(1) For all p ∈ M , there exists a submanifold N of M , such that
ι∗(TpN) = Ep, where ι : N →M is the natural inclusion.

(2) For all vector fields X1, X2 in E we have that [X1, X2] belongs to
E, where [ · , · ] is the Lie bracket of vector fields.

(3) For all p ∈ M the differential form dωp vanishes on ker(ωp), i.e.
dω ∧ ω = 0.

(4) For all p ∈M there exists a neighbourhood U of p and a differential
1-form η on U such that dω = η ∧ ω.

(5) For all p ∈ M there exists a neighbourhood U of p and functions
f, g : U → R such that ω = f dg.

TOME 67 (2017), FASCICULE 6
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If one of the conditions is verified, we will say that the distribution of
planes E is Frobenius integrable.
Let X be a complex surface. We define a holomorphic foliation G on X in

a similar way as Definiton 2.1: we change the transversal real coordinates
tj ∈]0, 1[ for complex coordinates wj ∈ D and functions fjk, gjk become
holomorphic.
We define also in a similar way the normal bundle NG , the conormal

bundle N∗G and a metric m on these bundles. The curvature of m will be
given locally by the (1,1)-form

Θmj
= i

2π∂∂̄Xσj ,

where ∂X := ∂z + ∂w and ∂̄X := ∂z̄ + ∂w̄.
Propositions 2.3, 2.5 and 2.6 are holomorphic versions of Frobenius’ The-

orem.

Proposition 2.3. — Let G be a non-singular holomorphic foliation.
There exists a cover {Uj}j∈J of X by open sets and a family of submersions
gj : Uj → C, such that if Uj ∩ Uk 6= ∅ then gj = Hjk ◦ gk, where Hjk :
gk(Uj ∩ Uk) ⊂ C→ C is a holomorphic function.

Definition 2.4. — A singular holomorphic foliation on X is given by
a non-singular holomorphic foliation on X defined away from a finite set
of points. We note sing(G) this finite set and we call it the singular set of
the foliation.

The following proposition characterizes singular holomorphic foliations
using holomorphic 1-forms. We remark that on a complex surface every
holomorphic 1-form ω is integrable because dω ∧ ω is a 3-form.

Proposition 2.5. — Let G be a singular holomorphic foliation on X.
There exists an open cover {Uj}j∈J of X and a collection of holomorphic
1-forms ωj on Uj with isolated zeros such that if Uj ∩ Uk 6= ∅ then

ωj = hjk ωk , where hjk ∈ O∗(Uj ∩ Uk) .

Moreover, the set sing(G) is equal to ∪j∈J{ωj = 0}.

The following proposition is immediate.

Proposition 2.6. — Let G be a non-singular holomorphic foliation on
X. Let gj : Uj → C be a familly of holomorphic submersions such that
gj = Hjk ◦ gk as in Proposition 2.3. Then we can take ωj = dgj and
hjk = H ′jk in Proposition 2.5.

ANNALES DE L’INSTITUT FOURIER
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To finish this section we define the notion of meromorphic 1-form defining
a singular foliation on a complex surface X.

Definition 2.7. — Let G be a singular holomorphic foliation on X de-
fined by a collection of holomorphic 1-forms {ωj}j∈J as in Proposition 2.5.
We say that a meromorphic 1-form ω on X defines G if, for all j ∈ J and for
all p ∈ Uj that is not a zero nor a pole of ω, we have kerω(p) = kerωj(p).

Finally, we explain how the existence of meromorphic sections of the
conormal bundle N∗G allows us to construct meromorphic 1-forms on X

that define the foliation in the sense of Definition 2.7. This will be useful
in Section 6.2.2.

Proposition 2.8. — LetX be a complex surface and let G be a singular
holomorphic foliation on X. Let {Uj}j∈J be an open cover of X \ sing(G)
and gj : Uj → C be submersions that define G as in Proposition 2.3.
Let f = (fj) be a meromorphic section of N∗G . Then the collection of
meromorphic 1-forms ωj := fj dgj glues into a meromorphic 1-form on X
that defines the foliation G in the sense of Definition 2.7.

2.2. Levi-flat hypersurfaces

Levi-flat hypersurfaces are real hypersurfaces of complex surfaces that
are foliated by Riemann surfaces. The complex structure of the leaves is
of course compatible with the complex structure of the ambient surface.
Their name is justified by the vanishing of the Levi-form.

Definition 2.9. — Let X be a complex surface and M ⊂ X be a
compact analytic 3-manifold. Let TpM ⊂ TpX be the tangent space to M
in the point p. We say thatM is a Levi-flat hypersurface if the distribution
of planes Ep := TpM ∩ iTpM on M is Frobenius integrable. We note F
the corresponding foliation by Riemann surfaces on M and we call it the
Cauchy–Riemann foliation, or CR foliation, of M .

In the following, we give some examples that illustrate each of the notions
of Levi-flat hypersurfaces mentioned in the introduction: periodic, quasi-
periodic and chaotic.

Example 2.10. — Our first example is a periodic Levi-flat in an algebraic
surface that is diffeomorphic to a hyperbolic torus bundle. Here is the idea
of its construction, which is detailed in [9].

TOME 67 (2017), FASCICULE 6
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We consider a pencil of cubics in CP2, for example the pencil of cubics
that in affine coordinates are defined by

Ct := {y2 = x(x− 1)(x− t)} ,

where t ∈ CP1. These cubics are smooth if t 6= {0, 1,∞}. They intersect all
in nine distinct points p1, . . . , p9 of the projective complex plane. Blowing-
up CP2 in these nine points, we obtain a rational surface X provided with
a singular fibration whose fibers are the strict transforms Ĉt of the curves
Ct in X.

Let us now move the variable t along a loop in CP1 \ {0, 1,∞}. The
union of curves Ĉt in X is an immersed Levi-flat hypersurface that is dif-
feomorphic to a torus bundle by construction. If the curve described by t
is complicated enough, then the monodromy of this bundle is hyperbolic.
We obtain a periodic Levi-flat hypersurface diffeomorphic to a hyperbolic
torus bundle in a rational surface, but a priori this hypersurface is only
immersed if the curve described by t is not simple.
To obtain an embedded Levi-flat hypersurface of this type, we have to

take the preimage of this construction by a cover over CP1, whose only ram-
ification points are 0, 1,∞, and in which the curve described by t transforms
into a simple loop.

Example 2.11. — Our second example is a perturbation of the first one
due to Arnol′d, see [1].
In order to describe it, we will need the following notion: a curve C in a

complex surface X is linearizable if the inclusion of C in its normal bundle
extends to a biholomorphism from a neighbourhood of C to a neighbour-
hood of its image in the normal bundle. If a smooth curve with trivial
self-intersection in a complex surface is linearizable, then there exist quasi-
periodic Levi-flat hypersurfaces arbitrarily near C. Indeed, it suffices to
consider the zero section of the normal bundle: we can take then the levels
of the unique flat metric on it.
If we choose nine points p1, . . . , p9 generically in CP2, then there exists

a unique cubic C passing through these nine points. This cubic is of self-
intersection 9, so the strict transform Ĉ of C in the blow-up X of CP2 along
the points p1, . . . , p9 has trivial self-intersection. In [1] Arnol′d shows that
this curve is linearizable. Then there are quasi-periodic Levi-flat hypersur-
faces in its neighbourhood. A remark of Sad shows that these hypersurfaces
are never tangent to an algebraic foliation of X.

Example 2.12. — Let Σ be a compact Riemann surface of genus > 2.
Let ρ : π1(Σ) → PSL(2,R) be a representation of the fundamental group

ANNALES DE L’INSTITUT FOURIER
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of Σ in the group of real Moebius transformations. We define a complex
surface X as the quotient of D× CP1 by the relation (z, t) ∼ (γ · z, ρ(γ)t)
for all γ ∈ π1(Σ). We note X := Σ nρ CP1. Let p : D × CP1 → X be the
projection to the quotient space X. Then M := p(D × S1) = Σ nρ RP1 is
a Levi-flat hypersurface in X. As we will see, this Levi-flat hypersurface is
chaotic for generic representations ρ.

3. Dynamics of Levi-flat hypersurfaces

In this section we will prove that if F is a foliation by Riemann surfaces
on a compact 3-manifold without transverse invariant measure, then the
normal bundle NF of the foliation has a metric with positive curvature. It
is the crucial part of this work.

3.1. Dynamics on foliated 3-manifolds

Let M be a compact 3-manifold and F a codimension 1 foliation on M .
Recall that a transverse invariant measure is a family of finite measures
{µT }T on each transversal T of the foliation F such that every holonomy
map hγ : dom(hγ) ⊂ T0 → T1 verifies µ(hγ(B)) = µ(B) on the borelian
subsets of dom(hγ). An invariant transverse measure is ergodic if it cannot
be written as a convex non trivial combination of two different transverse
invariant measures.
It is not common for a foliation to have a transverse invariant measure.

We have the following result in the case of Fuchsian representations.

Example 3.1. — Let Σ be a Riemann surface and ρ : π1(Σ)→ PSL(2,R)
a representation of the fundamental group of Σ. Define M := Σ nρ RP1.
Then there exists a transverse invariant measure on M if and only if the
representation ρ is elementary, i.e. the image of π1(Σ) by ρ is conjugated to

• a subgroup of SO(2), or
• a subgroup of the affine group, or
• a subgroup of the group generated by z 7→ 1

z and z 7→ az, where
a ∈ R∗.

In the first case the invariant transverse measure is the Lebesgue measure,
in the other cases it is a sum of two Dirac masses. See for example the book
of Beardon [2, §5.1].

TOME 67 (2017), FASCICULE 6
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One can’t always find invariants measures for a foliation, but we can
always find harmonic measures, see [5, Chapter 2.1]. These were introduced
by Garnett [15]. If g is a metric on the tangent bundle TF of the foliation
with laplacian ∆g, a probability measure µ on M is g-harmonic if for all
f ∈ C∞F (M) we have

∫
M

∆gf(x) dµ(x) = 0.
These measures generalize in some sense transverse invariant measures:

given a harmonic measure, we can construct a family of transverse measures
that are, on average, invariant by holonomies with respect to the heat
distribution on the leaves. We can construct these measures by hand in
some cases, see [5] for the case of hyperbolic torus bundles and [15] for the
case of unit tangent bundle of hyperbolic Riemann surfaces.

We can associate to an ergodic harmonic measure a number, called Lya-
punov exponent, which measures the exponential rate of separation of
leaves. In [10] Deroin and Kleptsyn prove that for an ergodic g-harmonic
measure µ on M the Lyapunov exponent of µ is

λ(µ) = −
∫
M

ϕ dµ,

where ϕ : M → R is the function verifying ΘmF = ϕ · volg and mF is a
metric on the normal bundle NF .

In [10] also, they prove that the Lyapunov exponent of an invariant
measure is zero and that it is negative when the foliation doesn’t have an
invariant measure:

Theorem 3.2 ([10]). — Let M be a compact 3-manifold foliated by
Riemann surfaces and g a metric on TF . If F doesn’t have a transverse in-
variant measure then F has a finite number of minimal setsM1, . . . ,Mr,
each supports a unique g-harmonic measure νi and each Lyapunov expo-
nent λ(νi) is < 0. Every harmonic measure on M is a convex combination
of ν1, . . . , νr.

3.2. Dynamics and positive curvature

In this section we show that if a compact 3-manifold foliated by Rie-
mann surfaces has no transverse invariant measure then the normal bundle
NF has a metric whose curvature is positive. We begin with the following
lemma, whose proof is inspired by [10].
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Lemma 3.3. — Let M be a compact 3-manifold and F a foliation by
Riemann surfaces. Let g be a metric on the tangent bundle TF . Let ϕ :
M → R be a continuous function such that

∫
M
ϕdν > 0 for all g-harmonic

measure ν on M . Then there exists g ∈ C∞F (M) such that ϕ−∆gg > 0.

Proof. — We consider the space C0(M) of continuous functions φ : M →
R. It is a Banach space for the topology of uniform convergence. We note
E the closed subspace

E := {φ ∈ C0(M) | ∃ (gn)n ∈ C∞F (M) such that ‖φ−∆ggn‖∞ → 0}

and C the cone
C := {ψ ∈ C0(M) | ψ > 0 on M}.

The set C is a convex cone because for every α > 0 and every function
ψ ∈ C, the function αψ is in C. We note F = C0(M)/E and π : C0(M)→
F the canonical projection. Since E is closed, ‖π(φ)‖ := infe∈E ‖φ− e‖∞
defines a norm on the space F , hence F is a Banach space. Moreover the
projection π is linear and continuous.

Let ϕ ∈ C0(M) such that
∫
M
ϕdν > 0 for every harmonic measure ν.

To show that there exists g ∈ C∞F (M) such that ϕ−∆gg > 0, it is enough
to prove that π(ϕ) ∈ π(C).
Indeed, if π(ϕ) ∈ π(C) then there exists a function c ∈ C and a function

e ∈ E such that ϕ = c + e. Since M is compact and c is a continuous
function on M there exists ε > 0 such that c > ε. Therefore we have
ϕ − e > ε on M . According to the definition of E there exist g ∈ C∞F (M)
such that |e− g|∞ < ε/2. Consequently we have ϕ−∆gg > ε/2 as desired.
So we have to prove that π(ϕ) ∈ π(C). By contradiction we suppose

that π(ϕ) 6∈ π(C). The set π(C) is convex and open in F . We use the
classical Hahn–Banach theorem for π(C) and the closed subset {π(ϕ)} of
F . According to this theorem there exists a linear continuous functional
L : F → R and α ∈ R such that L(π(ϕ)) 6 α and L > α on π(C). We
verify that this gives us

(3.1) L(π(ϕ)) 6 0 and L > 0 on π(C).

If we take a sequence of constant functions εn ∈ C such that εn → 0, then
since L and π are linear and continuous we have α 6 L(π(εn))→ L(π(0)) =
0. Hence α 6 0 and then L(π(ϕ)) 6 0. To verify L◦π > 0 on C, we suppose
by contradiction that there exists g ∈ C such that L(π(g)) = β < 0. Since
C is a cone, and L and π are linear, for all λ ∈ R we have

L(π(λg)) = λL(π(g)) = λβ → −∞, if λ→ +∞

and this is a contradiction with L(π(C)) > α. This shows (3.1).

TOME 67 (2017), FASCICULE 6



2436 Carolina CANALES GONZÁLEZ

We define a linear functional L̃ on the space C0(M) by L̃(φ) := L(π(φ)).
It is positive since, by definition of L̃ on C, we have L̃(ψ) = L(π(ψ)) > 0
for every function ψ ∈ C. Since L̃ is positive, the Riesz Representation
Theorem tells us that there exists a positive measure ν representing L̃, i.e.
L̃(φ) =

∫
M
φ dν for all φ ∈ C0(M). This measure is g-harmonic because for

every C∞-function g we have L̃(∆gg) = L(π(∆gg)) = 0, since ∆gg ∈ E.
Thus, we have constructed a harmonic measure ν such that∫

M

ϕ dν = L(π(ϕ)) = L̃(ϕ) 6 0 .

But by hypothesis
∫
M
ϕdν > 0 has to be positive. This contradiction shows

that π(ϕ) ∈ π(C). �

Theorem 3.4. — Let M be a compact 3-manifold and let F be a foli-
ation by Riemann surfaces on M . If F doesn’t have a transverse invariant
measure then NF has a metric with positive curvature.

Proof. — Let m̃ be a metric on the normal bundle NF and g a metric
on the tangent bundle TF . Let ϕ : M → R be the continuous function
such that ΘmF = ϕ · volg. According to Theorem 3.2, since the foliation
F doesn’t have a transverse invariant measure, every g-harmonic measure
ν supported on M is a convex combination ν =

∑
i tiνi, with νi a ergodic

harmonic measure of Lyapunov exponent λ(νi) < 0. In particular, we have

−
∫
M

ϕ dν = −
∑
i

ti

∫
M

ϕ dνi =
∑
i

tiλ(νi) < 0 .

Then Lemma 3.3 gives us a C∞-function g such that

ϕ−∆gg > 0 on M.

We define
mF = m̃ · eg .

The curvature of this metric on NF verifies

ΘmF = Θm̃ −
i

2π∂∂̄Fg = (ϕ−∆gg) volg .

Hence the curvature ofmF is positive because ϕ−∆gg is positive onM . �
We end this section with some particular examples where we can con-

struct explicitly a metric on the normal bundle of the CR foliation with
positive curvature.

Example 3.5. — Let F be a foliation by Riemann surfaces of a com-
pact 3-manifold, and g a metric on TF . Let µ be a harmonic measure.
We suppose that µ is absolutely continuous with respect to the Lebesgue
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measure, and that its density is a continuous function that is everywhere
strictly positive. In this case, we can split the harmonic measure into the
product of the volume form along the leaves associated to the metric g and
a transverse volume element. This transverse volume allows us to build a
metric on the normal bundle of the foliation. The measure µ being har-
monic, we get that the norm of a non zero plane section of the normal
bundle, with respect to the Bott connection, is a positive function and it is
harmonic along the leaves. Hence the curvature of this metric is non neg-
ative, since the laplacian of the logarithm of a positive harmonic function
is non positive.

The existence of a harmonic measure that is absolutely continuous with
respect to the Lebesgue measure is not very common. Indeed, it could hap-
pen that F has minimal exceptional sets, and in this case µ is supported
on the union of these minimals [10]. These minimals are conjectured to be
of Lebesgue measure zero. Moreover, even in the case where the foliation
is minimal, the harmonic measures will often be singular with respect to
the Lebesgue measure. We refer to the papers [11, 12] for these delicate
questions. However, there exist some particular cases where the harmonic
measures are smooth and have a positive density. This is the case for ho-
mogeneous foliations for example.

Example 3.6. — Let G be a Lie group of dimension 3. We suppose that
G contains a lattice Γ and a copy of the affine group

A = {x 7→ ux+ v | u ∈ R∗+, v ∈ R}.

Let M := Γ\G and F the foliation of M defined by the locally free action
of A on M by the left product given by

a · Γg := Γga−1 for every a ∈ A, g ∈ G.

We consider on A the metric g = du2+ dv2

u2 with constant curvature −1.
We verify that it is invariant by left multiplication. We remark that g is
not invariant by right multiplication, nor is its volume. If Da : a′ ∈ A 7→
a′a−1 ∈ A is the right product by a−1, we have

(3.2) D∗a volg = u volg .

The orbits of the action of A onM are quotients of A by a discrete subgroup
of A acting on the left. Consequently g endows the leaves of F with a
riemannian metric with constant curvature −1.
Let µ̃ be a Haar measure on G. This measure is bi-invariant by Γ, hence

it descends to a volume measure µ on M that is invariant by the action of

TOME 67 (2017), FASCICULE 6



2438 Carolina CANALES GONZÁLEZ

the affine group A. This form decomposes into the product µ = d volg ∧ω,
where ω is a form that gives the foliation F . By relation (3.2), and the
invariance of µ by right multiplication, we obtain

D∗aω = 1
u
ω , for every a ∈ A.

In particular, if s is a plane section of the normal bundle of F along the
leaves, we have ω(s) = ku, with k a constant, for any parametrisation of the
leaf seen as an orbit of the affine group. This shows that the curvature of
the metricmF := |ω| on the normal bundle of F is given by ΘmF = 1

4π volg.
In particular, it is positive.
We remark that in the case where G is the group Sol := R>0 n R2,

where R>0 acts on R2 by u · (v, w) := (uv, u−1w), the manifolds M that we
obtain in this way are, up to a finite cover, hyperbolic torus bundles. We
send the reader to [15] for a more geometric view-point in the case where
G = PSL(2,R).

4. Geometry of the complement

In this section we prove the following

Theorem 4.1. — Let X be a compact complex surface, M a compact
real analytic Levi-flat hypersurface in X. If M doesn’t have a transverse
invariant measure, then the connected components of X \M are modifica-
tions of Stein spaces.

This result was known in some particular cases, in particular in the case
of hypothetical Levi-flat hypersurfaces of the complex projective plane by a
theorem of Takeuchi [33], or in the case of flat CP1-bundles over a curve of
genus > 2 with real, faithful and discrete monodromy (i.e. associated to the
uniformisation of a curve with the same genus as the base), by a theorem
of Diederich and Ohsawa [14]. It is interesting to remark that our condi-
tion, although quite general, is not optimal: in the interesting work [28],
Nemirovskĭı defines Levi-flat hypersurfaces in some elliptic surfaces, that
separate the surface in Stein domains. These Levi-flat hypersurfaces con-
tain some elliptic invariant curves, and hence they are not chaotic. However
they have turbulent properties similar to those satisfied by chaotic Levi-flat
hypersurfaces. It would be interesting to understand what is the optimal
condition for this problem, but we don’t push this question further in this
work.
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To prove our result, the idea is to construct an exhaustion function on
the complement of the Levi-flat hypersurface that is strictly pseudoconvex
outside of a compact set. Doing this we obtain that X \M is strongly pseu-
doconvex. Using a result of Grauert [20] we get that X\M is a modification
of a Stein domain. We follow the following strategy:

(1) Construct a metric with positive curvature on the normal bundle
of the CR foliation.

(2) Extend the CR foliation locally.
(3) Extend the metric with positive curvature locally.
(4) Construct a strictly pseudoconvex exhaustion function on the com-

plement.

The first step is Theorem 3.4, which we proved in Section 3. The second
step is a well known result that we can find in [6] or [25]:

Proposition 4.2. — Let X be a complex surface, M a real analytic
Levi-flat hypersurface in X and F the Cauchy–Riemann foliation of M .
Then, there exists a neighbourhood U of M in X and a non-singular holo-
morphic foliation G on U such that G|M = F .

The last step is a result of Brunella:

Theorem 4.3 ([3]). — Let X be a compact complex surface and M a
real analytic Levi-flat hypersurface in X. We suppose that M is invariant
by a foliation G defined on some neighbourhood U of M in X. Moreover,
we suppose that the normal bundle NF of the foliation has a metric with
positive curvature. Then there exists a neighbourhood U ′ ⊂ U of M in X
and a strictly plurisubharmonic function h : U ′ → (−∞,+∞] such that

(1) h(p)→ +∞ when p→M .
(2) h is an exhaustion function on U ′ \M .

We remark that Brunella proves this result in C2,α regularity. The idea
is to construct several local strictly plurisubharmonic exhaustion functions
on the complement of M and the difficult part is to glue them together.

The only step that we are left then in order to prove Theorem 4.1 is
the third. We will extend the metric on NF with positive curvature along
the leaves to a metric on the normal bundle of the extended foliation with
positive curvature in every direction. The continuity of the curvature will
be needed.
But before doing this, let us give some examples of applications of The-

orem 4.1.
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4.1. Examples of modified Stein complements

CP1-bundles with real monodromy. In this paragraph we consider
the flat bundles over a curve Σ associated to the real representation ρ :
π1(Σ)→ PSL(2,R) that we introduced in Example 3.1.

In this case, the hypersurface M := Σ nρ RP1 of X := Σ nρ CP1 is a
Levi-flat hypersurface and cuts X into two domains D± := ΣnρH±, where
H± := {z ∈ C | ± Im z > 0} are the upper and lower half-planes.(3) We
have seen that M admits a transverse invariant measure only in the case
where ρ is elementary, see Example 3.1. We obtain then

Corollary 4.4. — If ρ is non elementary, then the domains D± are
modifications of Stein domains.

This result was shown by Diederich and Ohsawa in [14] in the case where
ρ is a faithful and discrete representation with values in PSL(2,R), i.e. cor-
responding to the uniformisation of a curve of the same genus as Σ. In an
earlier article [13] they have shown, without conditions on ρ, that the do-
mains D± are always weakly pseudoconvex. In the two cases, the argument
lies on the existence of harmonic equivariant maps. In the case where the
monodromy is faithful and discrete, the argument to show strongly pseu-
doconvexity lies on the Schoen–Yau theorem, which says that a harmonic
equivariant map between two hyperbolic compact surfaces is a diffeomor-
phism [31].

It is interesting to remark that the components D± are not always Stein
surfaces, even though they are minimal (i.e. they do not contain a rational
curve). Indeed, it can happen that these domains contain sections of the
natural fibration X → Σ.

To see this, take an integer 0 6 k < 2g−2, where g is the genus of Σ, and
k points p1, . . . , pk of Σ that we assume distinct for simplicity. A theorem
of Troyanov assures then that there exists a unique hermitian metric g on
Σ \ {p1, . . . , pk} of curvature −1 with conic singularities of angle 4π on the
pi’s. See [34] for more details.

(3)Remark that we could adapt our arguments to the case of representations with values
in PGL(2,R), which would allow us to produce examples of non orientable Levi-flat
hypersurfaces that don’t cut X into two connected components D± but define a unique
component D instead. We will not be doing this in order to simplify the exposition.
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The fact that these conic angles are multiples of 2π shows that on the
universal cover Σ̃ of Σ, the metric g is the preimage of the Poincaré metric
| dz|2

(Im z)2 on the half-plane H+ by a holomophic map D : Σ̃→ H+, i.e.

π∗g = D∗
|dz|2

(Im z)2

where π : Σ̃→ Σ is the cover map. Since the metric π∗g is invariant by the
fundamental group of Σ, the map D is equivariant by some representation

ρ : π1(Σ)→ Isom+
(
H+,

|dz|
(Im z)2

)
' PSL(2,R) ,

called the holonomy of the conic metric.
The ρ-equivariant map D : Σ̃→ H+ defines a holomorphic section Σ→

D+ = Σ nρ H+. The representation ρ is of Euler class k − 2g + 2 and by
consequence it is non elementary. Hence, the domain D+ is an example
of a modification of a Stein domain that is minimal, but admitting an
exceptional set containing a curve of genus g > 2.

Torus bundles. This example, given by Nemirovskĭı [28], is a Levi-
flat hypersurface with Stein complement in a complex surface obtained
by taking the quotient of a line bundle over an elliptic curve. What is
interesting is that this Levi-flat has algebraic curves, showing that our
Theorem 4.1 is not optimal.
Let Σ be a compact Riemann surface and L → Σ a holomorphic line

bundle. We consider a meromorphic section s : Σ → L with only simple
zeros and poles. We note Z the zeroes and P the poles and we suppose
that there exists at least a zero or a pole. Let Σ∗ = Σ \ (Z ∪ P ). We note
L∗ the fiber bundle L without the zero section. On each fiber L∗x of L∗
over x ∈ Σ∗, we consider the real line passing by s(x) that we note lx.
The set Rs = {lx}x∈Σ∗ of all lines is an analytic Levi-flat whose leaves
are biholomorphic to Σ∗. The set E := Rs is an analytic Levi-flat in the
bundle L∗.
We consider the equivalence relation on L∗ given by p ∼ 2p. We note

X := L∗/ ∼ the quotient space that is then a torus bundle over Σ. The
quotient of Rs by this relation is a Levi-flat hypersurface that cuts X into
two Stein domains. Indeed, every connected component of the complement
is a trivial fibration in annuli over Σ∗. The annulus and the surface Σ∗
are both open Riemann surfaces and hence they are Stein by a theorem of
Behnke and Stein. Finally, the product of two Stein spaces is Stein.
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4.2. Local extension of the metric with positive curvature

To extend a metric with positive curvature along the leaves on NF to
a metric with positive curvature in every direction on NG , where F is the
CR foliation and G is the local extension of F , we will use the following
lemmas. The first one is a classical result that we can find in [25]:

Lemma 4.5 (Local description of Levi-flats). — Let X be a complex
surface and M a real analytic Levi-flat hypersurface in X. For all p ∈
M there exist a neighbourhood Up of p homeomorphic to a ball, and a
holomorphic function H = u + iv defined in Up such that dH(p) 6= 0 and
M ∩ Up = {v = 0}.

The second one gives a condition for the Levi form of a function to be
positive. We recall that the Levi form of a function f defined on an open
set U ⊂ C2 is the hermitian form over C2 defined by

Lf (p)(ζ1, ζ2) = ∂2f(p)
∂z∂z̄

ζ1ζ̄1 + ∂2f(p)
∂z∂w̄

ζ1ζ̄2 + ∂2f(p)
∂w∂z̄

ζ2ζ̄1 + ∂2f(p)
∂w∂w̄

ζ2ζ̄2 .

We say that Lf is positive on U if Lf (p)(ζ1, ζ2) > 0 for all p ∈ U and every
(ζ1, ζ2) ∈ C2 \ {(0, 0)}. Moreover we have the relation

i∂∂̄f ∧ iα ∧ ᾱ = Lf (α1.α2) volX
for every 1-form α = −α2 dz + α1 dw. So the Levi form of f is positive if
and only if the (1,1)-form i∂∂̄f is positive.

Lemma 4.6. — If ∂2f(p)
∂z∂z̄ > 0 and if

∣∣∣∂2f(p)
∂z∂w̄

∣∣∣2 < ∂2f(p)
∂z∂z̄

∂2f(p)
∂w∂w̄ for all

p ∈ U , then the (1,1)-form i∂∂̄Xf is positive on U .

Proof. — We remark that with these hypothesis ∂2f(p)
∂z∂z̄ > 0 if and only

if ∂2f(p)
∂w∂w̄ > 0. To prove the lemma it suffices to show that Lf (p) > 0 on

C2 \ {(0, 0)}. If α1 = 0 and α2 6= 0 then Lf (p)(α1, α2) = |α2|2 ∂2f
∂w∂w̄ and

we are done. Now, if α1 6= 0 then Lf (p)(α1, α2) = |α1|2 Lf (p)(1, α2
α1

). It is
sufficient then to prove

Lf (p)(1, α) = ∂2f

∂z∂z̄
+ 2 Re

(
∂2f

∂w∂z̄
α

)
+ ∂2f

∂w∂w̄
|α|2 > 0

for all α ∈ C. We remark that

Lf (p)(1, α) > ∂2f

∂z∂z̄
− 2

∣∣∣∣ ∂2f

∂w∂z̄

∣∣∣∣ |α|+ ∂2f

∂w∂w̄
|α|2 .

This quadratic polynomial is positive because its first coefficient is and its
discriminant is negative. �
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Now we can extend our metric:

Proposition 4.7. — Let X be a complex surface, M a real analytic
Levi-flat hypersurface in X and F its Cauchy–Riemann foliation. We sup-
pose that the normal bundle NF has a metric with positive curvature in
the direction of the leaves. Then there exists a neighbourhood U ′ of M in
X and a non-singular holomorphic foliation G on U ′ such that G|M = F
and the normal bundle NG has a metric with positive curvature in every
direction.

Proof. — We note mF a metric on the normal bundle NF on M with
positive curvature in the direction of the leaves.
By Proposition 4.2 there exists a neighbourhood U of M in X and a

non-singular holomorphic foliation G defined on U such that G|M = F .
We take a cover of U by charts (Uj , (zj , wj)) such that M ∩ Uj =

{Im(wj) = 0} as in Lemma 4.5. In these charts we note mj := mF |Uj ,
mj(zj , tj , ξj) = e−σj(zj ,tj) |ξj |2.

We extend mj to Uj by m̃j(zj , wj , ξ̃j) := mj(zj ,Re(wj))
∣∣ξ̃j∣∣2. We con-

sider a partition of unity {φj}j∈J subordinate to the cover {Uj}j∈J and
we define m̃ =

∑
j φjm̃j . By continuity, this extends the metric mF to a

metric m̃ on the bundle NG that has positive curvature in the direction of
the leaves. To obtain a positive curvature in every direction we set

mG := m̃ exp(−Cd2
M )

where dM is the distance to M (with respect to a fixed metric on X) and
C is a constant. The curvature of mG is then equal to

ΘmG = Θm̃ + C
i

2π∂∂̄Xd
2
M ,

that we will write in the following way
i

2π∂∂̄X [− log(mG)] = i

2π∂∂̄X
[
− log(m̃ exp(−Cd2

M ))
]
.

We will show that this (1, 1)-form is positive when C is big enough. By
Lemma 4.6 it is sufficient to verify the inequality∣∣∣∣ ∂2

∂w∂z̄

[
− log(m̃) + CdM ( · )2]∣∣∣∣2

<

(
∂2

∂z∂z̄

[
− log(m̃) + CdM ( · )2])( ∂2

∂w∂w̄

[
− log(m̃) + CdM ( · )2])

on a neighbourhood ofM . By continuity of these derivatives, it is sufficient
to verify this inequality onM . Let p ∈ U and Uj be an open set of the cover
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of U containing p. On Uj we can write the distance dM in the following
way

d2
M (zj(p), wj(p)) = Im(wj(p))2h(zj(p), wj(p))

where h is smooth and positive. The laplacian in the direction of the leaves
is then

∂2

∂z∂z̄

[
− log(m̃) + CdM ( · )2]

= ∂2

∂z∂z̄
[− log(m̃)] + C Im(wj)2 ∂2

∂z∂z̄
h(zj , wj) .

In the point p ∈M the first term on the left hand side is a positive (1, 1)-
form, it is in fact the curvature of m̃ in the direction of the leaves. The
second term is zero in p ∈ M because Im(wj) = 0. The laplacian in the
direction of the leaves is then positive. Now, the transverse laplacian is
equal to

∂2

∂w∂w̄

[
− log(m̃) + CdM ( · )2]

= ∂2

∂w∂w̄
[− log(m̃)] + C

4

(
2h(zj , tj) + (2wj − 2w̄j)

∂

∂wj
h(zj , wj)

− (2wj − 2w̄j)
∂

∂w̄j
h(zj , wj)

+ 4 Im(wj)2 ∂2

∂wj∂w̄j
h(zj , wj)

)
.

On M we have Im(wj) = 0, hence the transverse laplacian is equal to

∂2

∂w∂w̄

[
− log(m̃) + CdM ( · )2] = ∂2

∂w∂w̄
[− log(m̃)] + C

2 h(zj , tj)

that is positive and big if C is big enough. We calculate finally the mixed
derivative

∂2

∂w∂z̄

[
− log(m̃) + CdM ( · )2]

= ∂2

∂w∂z̄
[− log(m̃)]

+ C

(
−1
4 (2wj − 2w̄j)

∂

∂z̄
h(zj , wj) + Im(wj)2 ∂2

∂w∂z̄
h(zj , wj)

)
.

On M this mixed derivative is equal to
∂2

∂w∂z̄

[
− log(m̃) + CdM ( · )2] = ∂2

∂w∂z̄
[− log(m̃)] .
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We see then that if we take a big constant C the desired inequality is
verified on M . �

5. Extension of foliations

We show a result on the extension of foliations to strongly pseudoconvex
domains in complex algebraic surfaces. We extend the foliation little by
little through the levels of the strictly plurisubharmonic exhaustion func-
tion. Passing through the non critical levels is classic and consists in the
construction of well placed Hartogs figures. We detail the gluing of exten-
sions in the different Hartogs figures on a given level of the exhaustion
function. We also detail how to pass through the critical levels of the ex-
haustion function, which doesn’t use the delicate construction of Hartogs
figures near critical points, see [22, 25, 26, 32].

All this will allow us to extend the CR foliation of a chaotic analytic Levi-
flat hypersurface in a complex algebraic surface to a complex analytic global
foliation. This has been used by Lins Neto [25] to show the non existence
of Levi-flat hypersurfaces in complex projective spaces of dimension > 3.
In this case, the connected components of the complement of the Levi-flat
hypersurface are Stein by a theorem of Takeuchi [33].

Theorem 5.1. — Let X be a complex algebraic surface and V b X a
strongly pseudoconvex domain. Let K ⊂ V be a compact containing the
exceptional set A of V and such that U = V \K is connected. Then every
holomorphic foliation G on U extends to a holomorphic foliation on V .

By Theorem 4.1, the connected components of the complement of a
Levi-flat hypersurface whose normal bundle NG has a metric with posi-
tive curvature are modifications of Stein domains. By a result of Coltoiu
and Mihalache [7], such a connected component has a continuous exhaus-
tion function ρ : V → [−∞,∞), with value −∞ on the exceptional set A,
that is C∞ and strictly plurisubharmonic outside A. Moreover, perturbing
ρ on the set V \A in the topology C2, we can suppose that ρ|V \A is a Morse
function, i.e. its critical points are non degenerate and the levels ρ−1(t) have
at most one critical point for t ∈ R. This function will help us to extend
the foliation, defined on a neighbourhood of the Levi-flat hypersurface, to
the entire complex surface.
We will start by extending the foliation to V without its exceptional set A

(Sections 5.1 and 5.2). Next, we will extend the foliation to A (Section 5.3).
Using Remmert’s Reduction [29, Section 2.1], this will be done by extending
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a meromorphic function (representing the slope of the leaves) on a singular
space. To do this it will be fundamental to use Hartogs figures and Levi’s
Extension Theorem [24] for meromorphic functions, which we recall now:

Theorem 5.2 (Levi’s Extension Theorem). — Let X be a complex sur-
face. Let H be a Hartogs figure in X and f a meromorphic function on H.
Then f can be extended to a meromorphic function on Ĥ.

We recall that a Hartogs figure H ⊂ X is an open set biholomorphic to

(5.1) {(z1, z2) ∈ D(R1)× D(R2) | |z1| > R1 − r1 or |z2| < r2)} ⊂ C2 ,

with 0 < rk < Rk for k = 1, 2. Its holomorphic envelope is Ĥ ' D(R1) ×
D(R2).

For t ∈ R, we define

Kt := {ρ 6 t} , Vt := V \Kt ,

and

E = {t ∈ R | there exists a foliation Gt on Vt such that Gt|U∩Vt
= G}.

We remark that if t ∈ E, then the extension Gt of G|U∩Vt
to Vt is unique.

This is because the exhaustion function ρ doesn’t have a local maximum
(because it is plusisubharmonic) and hence each connected component of
Vt intersects U . In particular, for all t, t′ ∈ E, with t < t′, we have (Gt)|Vt′ =
Gt′ . Hence, if t∗ is the infimum of E, there exists a singular holomorphic
foliation Gt∗ on Vt∗ that extends Gt for all t ∈ E. We have to show that
t∗ = −∞.

5.1. Passing through non critical levels

In this paragraph we show that t∗ can’t be a non critical value of ρ. This
follows from the following classical result.

Lemma 5.3. — If t is a non critical value of ρ and if Gt is a singular
holomorphic foliation defined on Vt, then there exists ε > 0 and a foliation
Gt−ε defined on Vt−ε extending Gt.

In order to prove this, we will apply the extension theorems of Hartogs
and Levi, that respectively extend holomorphic and meromorphic functions
defined on a Hartogs figure to its convex envelope.

We will need the following result, which gives the normal form of strictly
plurisubharmonic functions on a neighbourhood of a non critical point. For
a proof, see the book of Henkin and Leiterer [21, Theorem 1.4.14].

ANNALES DE L’INSTITUT FOURIER



LEVI-FLAT HYPERSURFACES AND THEIR COMPLEMENT 2447

Theorem 5.4. — Let ρ be a strictly plurisubharmonic function of class
C2 defined on a neighbourhood of 0 in C2. If dρ(0) 6= 0, then there exists
a biholomorphism h : U → V , where U and V are neighbourhoods of 0
in C2, such that the function ρ ◦ h−1 is strictly convex (in the real sense)
on V .

This theorem allows us to place Hartogs figures near the levels of a strictly
plurisubharmonic function:

Proposition 5.5. — For every t ∈ R and every non critical p ∈ ρ−1(t),
there exists an embedding ι : Ĥ → V , such that

(1) ι(H) ⊂ Vt,
(2) ι(Ĥ) contains a neighbourhood of p,
(3) ι(Ĥ) ∩ Vt is connected.

Proof. — We choose coordinates z1, z2 centered at p such that the func-
tion ρ is a strictly convex function (in the real sense). Up to a linear change
of coordinates, we may assume that the kernel of dρ(0, 0) contains C×{0}.
We consider the Hartogs figure H defined by Equation (5.1) with R1, R2

very small and R2 much smaller than r1. By the strict convexity of ρ, the
Hartogs figure H ′ = H + (0, r2+R2

2 ) is completely contained in Vt and its
convex envelope Ĥ ′ = Ĥ + (0, r2+R2

2 ) contains the origin.
To show that the intersection Ĥ ′ ∩Vt is connected, we see that the slices

({z1} × C) ∩ (Ĥ ′ ∩ Vt) are, in the coordinate z2, discs |z2| < R2 without
a convex set of C that do not intersect the disc |z2| < r2+R2

2 (because the
level ρ 6 t is convex). Such a set is connected and contains the annulus
r2 < |z2| < r2+R2

2 . It follows that the fibered union of these sets (i.e.
Ĥ + (0, r2+R2

2 ) ∩ Vt) is connected. �

Proof of Lemma 5.3. — We start with the proof of the following result.

Lemma 5.6. — Let t ∈ R. For every regular point p ∈ ρ−1(t) there
exists a neighbourhood Wp of p in V such that Gt extends to Vt ∪Wp.

Proof. — Let (Up, φp) be a chart of X centered in p. The function ρ̃ :=
ρ ◦ φ−1

p is strictly plurisubharmonic on a neighbourhood of 0 in C2. We
consider the function ι of Proposition 5.5 that places a Hartogs figure H
in φp(Vt ∩ Up). Let G′ be the restriction of φp∗(Gt) to H ⊂ C2. We will
prove that there exists a differential 1-form ω with isolated zeroes on Ĥ

that defines G′ on H.
Let {Uj}j∈J be a cover of H by flow boxes and {ωj}j∈J be 1-forms

defined on the open sets Uj that give the foliation G′ as in Proposition 2.5.

TOME 67 (2017), FASCICULE 6



2448 Carolina CANALES GONZÁLEZ

Taking (z, w) as coordinates in the chart φp, we can write

ωj = g1
j dz + g2

j dw,

where g1
j , g

2
j ∈ O(Uj). By Proposition 2.5 there exist non vanishing holo-

morphic functions hjk defined on Uj ∩ Uk such that

ωj = hjkωk .

The two last expressions imply that if Uj ∩ Uk 6= ∅ then

(5.2) g1
j = hjkg

1
k , g2

j = hjkg
2
k .

If glj is identically zero for a j ∈ J , the last equation and the fact that H
is connected tell us that glj is zero for all j ∈ J . Since the forms ωj are not
equally zero, the function glj is not identically zero for at least one l ∈ {1, 2}
and all j ∈ J . We suppose that g1

j is not identically zero. Then g2
j

g1
j
defines a

meromorphic function fj on Uj . Equation (5.2) implies that if Uj ∩Uk 6= ∅
then fj = fk on Uj ∩ Uk. Hence there exists a meromorphic function f

defined on H such that f |Uj
= fj . By Levi’s Extension Theorem 5.2, this

function f extends to a meromorphic function on Ĥ that we call f̂ . We
define a meromorphic 1-form on Ĥ by

η := dz + f̂ dw.

Since Ĥ is a polydisc, there exists a function h ∈ O(Ĥ) and a holo-
morphic differential 1-form ω defined on Ĥ with isolated zeroes such that
hη = ω. We see that for all j ∈ J there exists gj ∈ O∗(Uj) such that
ω|Uj = gjωj . Then the foliation G̃ defined by ω on Ĥ extends G′. This ex-
tension coincides with φp∗(Gt) on the set {ρ̃ > 0}∩Ĥ since, by construction
of our Hartogs figure, this intersection is connected.
This extension is unique because for any other differential 1-form ω′ on

Ĥ whose foliation extends φp∗(Gt), there exists a non vanishing holomor-
phic function a on φp(Vt ∩ Up) such that ω = aω′. The open set Ĥ being
connected, the form ω∧ω′ is zero on Ĥ. Hence there exists a non vanishing
holomorphic function ã on Ĥ such that ω = ãω′. To finish we pullback the
foliation G̃ on V by the chart map φp. The open setWp is then φ−1

p (Ĥ). �
By Lemma 5.6, for all p ∈ ρ−1(t), we have an open setWp of V containing

p such that G extends to Wp. Its intersection with ρ−1(t) defines an open
set V ′p of ρ−1(t) containing p. The family {V ′p}, for p in ρ−1(t), is then a
cover of ρ−1(t). Since this hypersurface is compact, we can choose a finite
subcover {V ′j }j=1,...,n, where V ′j = V ′pj

.
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For p ∈ ρ−1(t), we define Jp ⊂ {1, . . . , n} the set of indexes j such that
p ∈ Wpj

. The intersection W0,p :=
⋂
j∈Jp

Wj is an open neighbourhood of
p. We note rp := dist(p, ∂W0,p) and we define

W ′p := Bp(rp/3) , W ′ :=
⋃

p∈ρ−1(t)

W ′p .

We note Wj := Wpj
and Gj the extension of G to Wj given by Lemma 5.6.

Let ωj be a holomorphic 1-form on Wj that defines the foliation Gj .

Lemma 5.7. — For all p ∈ ρ−1(t) and all j ∈ Jp, the foliations Gj |W ′p co-
incide. More precisely, there exists a holomorphic function h, not vanishing
on W ′p ⊂Wj ∩Wk, such that ωj = hjkωk on W ′p.

Proof. — The foliations Gj |W ′p and Gk|W ′p coincide on W ′p ∩ Vt by con-
struction. Hence ωj ∧ ωk = 0 restricted to W ′p ∩ Vt. Since W ′p is connected,
the product of these two forms is still zero on W ′p. So there exists a holo-
morphic function h, not vanishing onW ′p ⊂Wj∩Wk, such that ωj = hjkωk
on W ′p. �

Lemma 5.8. — The foliation Gt extends in a unique way to W ′.

Proof. — First we show the uniqueness. Let G1 and G2 be two extensions
of Gt toW ′. Since by definition the setsW ′p coverW ′, it is sufficient to show
that G1|W ′p = G2|W ′p for all p ∈ ρ−1(t). The arguments used in the proof of
Lemma 5.7 give us the result.
Now we show the existence. We cover W ′ with the open sets

W ′j :=
⋃

q∈Wj∩ρ−1(t)

W ′q ⊂Wj .

Since Gt extends to Wj then Gt extends to W ′j . It is sufficient to show then,
that for all j 6= k ∈ {1, . . . , n} we have ωj = hjkωk on W ′j ∩W ′k with hjk a
non vanishing holomorphic function.
To do this, we verify that

W ′j ∩W ′k =
⋃

q∈Wj∩Wk∩ρ−1(t)

W ′q .

The inclusion ⊃ come from the definition of W ′j . In the other sense, if
x ∈W ′j ∩W ′k, then there exists qj , qk ∈ ρ−1(t) such that qj ∈Wj , qk ∈Wk

and x ∈ W ′qj
∩W ′qk

. To obtain the conclusion, it suffices that qj or qk be
in Wj ∩Wk. If this is not the case, then d(qj , qk) > d(qj , ∂Wj) > rqj and
also d(qj , qk) > d(qk, ∂Wk) > rqk

. Since by definition W ′p = Bp(rp/3), we
would obtain that W ′qj

and W ′qk
are disjoints, which is a contradiction.
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Let q0 ∈ W ′j ∩W ′k. Then there exists q1 ∈ Wj ∩Wk ∩ ρ−1(t) such that
q0 ∈ W ′q1

⊂ Wj ∩Wk. By Lemma 5.7 there exists a holomorphic function
h1
jk, not vanishing on W ′q1

, such that ωj = h1
jkωk on W ′q1

. Now, if q2 ∈
Wj ∩Wk ∩ ρ−1(t) and q0 ∈W ′q2

, we also have ωj = h2
jkωk on W ′q2

. We can
deduce then

h1
jk(q0) = h2

jk(q0) .

For all q0 ∈W ′j∩W ′k we can then define hjk(q0) := h1
jk(q0), and this does not

depend on the choice of q1. The function hjk is a non vanishing holomorphic
function because it satisfies these properties everywhere locally. Since ωj =
hjkωk on W ′j ∩W ′k, this ends the proof. �

Lemma 5.9. — W ′ is an open neighbourhood of ρ−1(t) in X. In partic-
ular, there exists ε > 0 such that ρ−1(]t− ε, t+ ε[) ⊂W ′.

Proof. — For all q ∈ ρ−1(t) we define

d∂W ′(q) := inf
q′∈∂W ′

|ρ(q)− ρ(q′)| .

It is the distance between q and the border of W ′ measured with the func-
tion ρ. This function is continuous and defined on the compact ρ−1(t), so
it reaches its minimum at a point q0 ∈ ρ−1(t). This minimum is not zero
because the set of critical points of ρ is discrete in V . Finally, W ′ contains
ρ−1(]t− ε, t+ ε[), where ε = d∂W ′(q0). �

Lemmas 5.8 and 5.9 conclude the proof of Lemma 5.3. �

5.2. Passing through critical levels

In this paragraph we show that t∗ cannot be a critical value of the re-
striction of ρ to V \A. This follows essentially from the fact that the indexes
of the function ρ in its critical points can take only the values 0, 1 or 2.
Remember that the index of a critical point is the maximal dimension of
a subspace of the tangent space at this point such that the Hessian of the
function is negative. For a strictly plurisubharmonic function on a complex
surface such a space cannot have dimension > 3, otherwise it would contain
a complex line on which the Levi form of the function would be negative.
Formally, the passage of critical values will be possible thanks to the

following perturbation result.
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Lemma 5.10. — Let p∗ be a critical point of the exhaustion function
ρ|V \A and I∗ be a neighbourhood of t∗ = ρ(p∗) such that ρ−1(I∗) does not
contain any other critical points. Then there exists a continuous function
ρ′ : V → [−∞,+∞) such that

(1) ρ′ coincides with ρ on V \ ρ−1(I∗).
(2) ρ′ is smooth and strictly plurisubharmonic on V \A.
(3) ρ′ admits a unique critical point p′∗ in ρ−1(I∗) and ρ′(p∗) > ρ′(p′∗).
(4) The critical levels ρ−1(]t∗,+∞)) and ρ′−1(]t′∗,+∞)) have connected

intersection, where t′∗ = ρ(p′∗).

Before proving this lemma, let us explain why it gives us a contradiction
if t∗ is supposed to be > −∞ and a critical value of ρ. In fact, applying the
techniques of Section 5.1 to the function ρ′, we would be able to extend the
foliation G to a singular holomorphic foliation (G)′t′∗ defined on the critical
level ρ′ > t′∗ (indeed, if we note t+∗ the border of I∗ bigger than t∗, the
foliation Gt∗ is defined on (ρ′)−1(t+∗ ) and therefore we could extend it to
the next critical level of ρ′, i.e. the level (ρ′)−1(t′∗)).
Since the intersection of the levels ρ−1(]t∗,+∞)) and ρ′−1(]t′∗,+∞)) is

connected, the foliations Gt∗ and (G)′t′∗ coincide on the intersection of their
definition domains. We can then extend the foliation G to a foliation de-
fined on ρ−1(]t∗,+∞)) ∪ ρ′−1(]t′∗,+∞)) that contains a neighbourhood of
p∗. Applying the techniques of Section 5.1, this allows us to show that G
extends to a foliation on a level of type ρ−1(]t∗−ε,+∞)) where ε > 0. This
contradicts the minimality of t∗.

Proof of Lemma 5.10. — Since the index of ρ in p∗ is 6 2, the Morse
Lemma gives us coordinates (x1, x2, y1, y2) centered in p0 such that (4)

(5.3) ρ = x2
1 + x2

2 ± y2
1 ± y2

2 .

We consider a neighbourhood W∗ of p∗ and a number ε∗ > 0 such that the
coordinates (x1, x2, y1, y2) take W∗ to the bidisc

Dε∗ × Dε := {x2
1 + x2

2 6 ε
2
∗ and y2

1 + y2
2 6 ε

2}.

We will choose ε∗ > ε > 0 small enough for W∗ to be contained in ρ−1(I∗),
and we will suppose in what follows that ε is very small with respect to ε2∗.
To simplify notations, we can suppose that t∗ = 0 (we can consider the

function ρ− t∗). We introduce
• a smooth function δ : Dε∗ → R+ such that δ(0, 0) > 0, δ(y1, y2) = 0
if y2

1 + y2
2 > ε

2/2, and with C2-norm smaller than ε

(4)These real coordinates have no reason to be holomorphic!
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• a smooth function φ : [0, ε2∗]→ [0, 1] that satisfies φ = 1 on [0, ε2∗/3]
and φ = 0 on [2ε2∗/3, ε2∗].

We define then

ρ′′ = (x1 − δ(y1, y2))2 + x2
2 ± y2

1 ± y2
2 ,

and
ρ′ = (1− φ(x2

1 + x2
2))ρ+ φ(x2

1 + x2
2)ρ′′.

The function ρ′ coincides with ρ outside W∗, therefore it satisfies condi-
tion (1) of the lemma. Moreover, it is ε close to ρ in the C2 norm, so that
it satisfies condition (2) if ε is small enough. In this case the point p′∗ of
coordinates (δ(0, 0), 0, 0, 0) is the only critical point of ρ′ inW∗, therefore in
ρ−1(I∗). We have then ρ′(p∗) = δ(0, 0)2 > 0, hence condition (3) is equally
satisfied.
We have to prove condition (4). For this we will take slices (y1, y2) =

(c1, c2) as in the proof of Proposition 5.5, where c21 + c22 6 ε
2. If x2

1 + x2
2 >

ε2∗/3 then we have

ρ = x2
1 + x2

2 ± y2
1 ± y2

2 > ε
2
∗/3− ε2 > 0

and
ρ′′ = (x1 − δ(y1, y2))2 + x2

2 ± y2
1 ± y2

2 = ε2∗/3 +O(ε) > 0
therefore ρ′ > 0. If x2

1 +x2
2 < ε2∗/3, then φ = 1, and hence ρ > 0 and ρ′ > 0

are equations of the exterior of small discs contained in x2
1 + x2

2 < ε2∗/3. In
summary, in the slice (y1, y2) = (c1, c2) the place where ρ and ρ′ are > 0 is
described by the exterior of the union of two small discs contained in the
disc centered in the origin and of radius ε∗/

√
3. In particular, this shows

that the set
{ρ > 0} ∩ {ρ′ > 0} ∩W∗

is connected. Now, the set {ρ > 0} retracts by deformation to {ρ > 0} ∩
V \W∗ (by a radial retraction in coordinates x). The equality

{ρ > 0} ∩ {ρ′ > 0} = ({ρ > 0} \W∗) ∪ ({ρ > 0} ∩ {ρ′ > 0} ∩W∗)

shows that this set is connected and concludes the proof of Lemma 5.10. �

5.3. Extension through the exceptional set

We will need the following two results:

Lemma 5.11 ([23, Corollary 1.5]). — Let Y be a reduced and normal
complex surface. Let B ⊂ Y be a finite set of points. Then every meromor-
phic function f on Y \B extends to a meromorphic function on Y .
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Proposition 5.12 (Remmert’s Reduction, [29, Section 2.1]). — Let V
be a holomorphically convex complex surface. Then there exists a normal
Stein space Y and a proper and surjective holomorphic function π : V → Y

such that:
(1) The fibers of π are connected.
(2) π∗(OV ) = OY .
(3) The canonical map OY (Y )→ OV (V ) is an isomorphism.
(4) For every holomorphic map σ : V → Z with Z a Stein space there

exists a unique holomorphic map τ : Y → Z such that σ = τ ◦ π.

Now we can proceed to the last step of our proof.

Proposition 5.13. — Let X be a compact complex surface, let V b X
be a strongly pseudoconvex domain and let A be the exceptional set of V .
Let G be a holomorphic foliation on V \A. Then G extends to a holomorphic
foliation G̃ on V .

Proof. — The idea is similar to that used to exhibit differential forms
defining the foliation in a neighbourhood of singularities: we will extend
the slope of the leaves.

First we will construct this slope function outside A. Let Φ : X →
CPN be an embedding of the algebraic surface X. Let [z0 : . . . : zN ] be
homogeneous coordinates of CPN . Up to reducing N and composing Φ by
an automorphism of CPN , we may assume that Φ(X) is not contained in the
hyperplane {zN = 0} and hence Ω1 := Φ∗ d(z0/zN ) and Ω2 := Φ∗ d(z1/zN )
are a basis of the space of meromorphic differential 1-forms on X.

Let {Uj}j∈J be a cover of V \ A such that on each Uj the foliation G is
defined by ωj := fjΩ0 + gjΩ1, where fj and gj are meromorphic functions.
On Uj ∩ Uk 6= ∅ we have

Ω0 + gj
fj

Ω1 = Ω0 + gk
fk

Ω1 .

The collection {gk/fk} defines then a meromorphic function on V \A, noted
F . The foliation G is then defined on V \A by

Ω := Ω0 + FΩ1 ,

and the function F corresponds to the slope of the leaves. Let π : V → Y

be the Remmert’s Reduction of V and let F̃ be the meromorphic function
defined on Y \ π(A) by F̃ := F ◦ π−1. Since π(A) is a finite set of points,
and since V is a normal analytic space, F̃ extends to a meromorphic func-
tion on Y , noted F̃ext (see Lemma 5.11). We pullback this function to a
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meromorphic function on V by setting F̂ := F̃ext ◦ π. We define like that a
meromorphic 1-form on V

Ω̂ := Ω0 + F̂Ω1

that extends the meromorphic form Ω. This extends the foliation G to the
exceptional set A. �

6. Transversely affine foliations

In this part we apply the previous results in the context of transversely
affine foliations. In the first section we define these foliations on compact
3-manifolds and we study the case of hyperbolic torus bundles as in [17].
In the second section we define degenerate transversely affine foliations on
complex surfaces as in Scárdua’s work [30]. We have chosen to call these
foliations degenerate instead of singular to avoid creating any confusion
with a singular holomorphic foliation. The third section is devoted to an
extension theorem for transversely affine foliations using the same ideas as
in the last section. We show next that a transversely affine Levi-flat hyper-
surface in a compact algebraic complex surface necessarily has a transverse
invariant measure. This allows us to establish that if a hyperbolic torus
bundle appears as a Levi-flat hypersurface in a compact algebraic complex
surface, then its Cauchy–Riemann foliation necessarily has a compact leaf.
Indeed, Ghys and Sergiescu [17] give a classification of foliations on these
bundles: up to conjugation, these foliations either have a compact leaf or
they correspond to stable and unstable foliations of Anosov’s flow. These
last foliations are transversely affine and do not have a transverse invariant
measure.

6.1. Transversely affine foliations on 3-manifolds

Let M be a compact 3-manifold and F a foliation by Riemann surfaces
on M . We say that F is transversely affine if it has an atlas for which
the transversal changes of coordinates gjk of Definition 2.1 are affine or,
equivalently, if there exists a cover {Uj}j∈J of M and a family of local
submersions gj : Uj → R such that for all j, k ∈ J , on Uj ∩ Uk there exist
ajk ∈ R∗, bjk ∈ R such that gj = ajkgk + bk. For more details one can
consult the book of Godbillon [18, Chapitre III].
Before passing to complex surfaces, we study the example of hyperbolic

torus bundles of Ghys and Sergiescu [17].
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Hyperbolic torus bundles and model foliations. Let T2 = R2/Z2

be a real torus and let A be a matrix in GL(2,Z). Let T3
A be the 3-manifold

obtained as the quotient of T2 × R by the equivalence relation (p, 0) ∼
(Ap, 1) for all p ∈ T2. We call such a manifold a torus bundle over the
circle.
We say that this bundle is hyperbolic if A is hyperbolic, i.e. if |trA| > 2.

We will restrict our study to the case detA = 1 and trA > 2.
A hyperbolic matrix A defines a hyperbolic automorphism of the torus

T2. This automorphism has two eigenvectors of irrational slope. The foli-
ation of the plane R2 by parallel lines to one of these directions passes to
the quotient torus T2 as a linear foliation. Moreover the foliation produced
on T2 × R is invariant by the map (p, 0) ∼ (Ap, 1) and hence it defines a
foliation by planes on the bundle T3

A. We call these foliations the model
foliations of T3

A. They are all transversely affine and moreover

Theorem 6.1 ([17]). — Let T3
A be an orientable hyperbolic torus bun-

dle. Then every transversely orientable foliation of class Cr on T3
A with

r > 2 and without compact leaves is Cr−2 conjugated to one of the model
foliations.

6.2. Transversely affine foliations on complex surfaces

In this section we define the notion of degenerate transversely affine foli-
ation on a complex surface as in the papers of Scárdua [30], Camacho and
Scárdua [4] and Cousin–Pereira [8]. The latter gives a beautiful classifica-
tion of these foliations that precises Singer’s characterization of foliations
having a liouvillian first integral.

6.2.1. Transversely affine foliations

Definition 6.2. — Let X be a complex surface. Let G be a (non-
singular) holomorphic foliation on X. The foliation G is transversely affine
if there exists a foliated atlas {(Uj , ϕj)}j∈J such that on Uj ∩ Uk 6= ∅ we
have

ϕjk(zk, wk) = (fjk(zk, wk), ajkwk + bjk) = (zj , wj)
with ajk, bjk ∈ C, ajk 6= 0. A singular holomorphic foliation G defined
on a complex surface X is transversely affine if it is transversely affine on
X \ sing(G).
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Proposition 6.3. — Let X be a complex surface, M be an analytic
Levi-flat hypersurface in X and F the Cauchy–Riemann foliation of M .
Let U be a neighbourhood of M in X such that F extends to a non-
singular holomorphic foliation G on U (such a neighbourhood exists by
Proposition 4.2). If F is transversely affine on M then G is transversely
affine on U .

Proof. — Let {(Uj , (zj , wj))} be a family of charts of M such that M ∩
Uj = {Im(wj) = 0}, see Lemma 4.5. Since the extended foliation G is
holomorphic, there exists a sequence {cl} of complex numbers such that

wj =
∞∑
l=0

clw
l
k .

If F is transversely affine, then for tj = Re(wj) and tk = Re(wk) we have

tj = ajktk + bjk

where ajk ∈ R∗ and bjk ∈ R. These two equations tell us that c0 = bjk,
c1 = ajk and cl = 0 for all l > 2. Hence wj = ajkwk + bjk, the foliation G
is transversely affine. �

6.2.2. Degenerate transversely affine foliations

Definition 6.4. — Let X be a complex algebraic surface and G a holo-
morphic foliation on X. Let ω be a meromorphic 1-form on X defining G.
We say that G has a degenerate transverse affine structure, or that G is a
degenerate transversely affine foliation, if there exists a closed meromorphic
1-form η on X such that dω = η ∧ ω.

Logarithmic foliations and Bernoulli foliations on CP2 are examples of
such structures, see [30] for more details. Degenerate transversely affine
foliations can also be defined by connections, see the paper of Cousin and
Pereira [8]. If ω is a holomorphic section of NG⊗Ω1

X , then G is degenerately
transversely affine if there exists a divisor D of X and a meromorphic flat
connection

∇ : NG → NG ⊗ Ω1
X(∗D)

such that ∇(ω) = 0, where Ω1
X(∗D) is the sheaf of meromorphic 1-forms on

X with poles on D. The irreducible components of D are invariant by the
foliation G. Moreover we have the following property, see [8, Proposition 2.2]
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Proposition 6.5. — InH2(X,C), the Chern class of the normal bundle
NG is equal to

c1(NG) = −
∑

αC [C]
where the sum is over all the irreducible components of D, and where
αC ∈ C is the residue ResC(∇) of any meromorphic 1-form defining ∇ in
a generic point of C.

6.3. Extension of transversely affine foliations

Theorem 6.6. — Let X be an algebraic complex surface and V b X

a strongly pseudoconvex domain. Let K ⊂ V be a compact such that
U = V \ K is connected and contains the exceptional set of V . Then
every regular transversely affine foliation G on U extends to a degenerate
transversely affine foliation on V .

By Theorem 5.1 the foliation G defined on U extends to a foliation G̃ on
V . Let ω be a meromorphic 1-form on X defining G̃.

Lemma 6.7. — There exists a closed meromorphic 1-form η on U such
that dω = η ∧ ω on U .

Proof. — Let {Uj}j∈J be a cover of U by flow boxes of the transversely
affine foliation G. Let {gj : Uj → C} be a collection of holomorphic local
submersions defining the transverse affine structure of G on U . On each
Uj ∩ Uk 6= ∅, we have

(6.1) gj = ajkgk + bjk where (ajk, bjk) ∈ C∗ × C .

Let f = (fj)j∈J be a meromorphic section of NG associated to ω such
that ω|Uj

= fj dgj on Uj (see Proposition 2.8). We will verify that the
meromorphic 1-forms dfj

fj
glue together on U . Since ω|Uj

come from the
global differential form ω, on each Uj ∩ Uk 6= ∅ we have

(6.2) fj dgj = fk dgk .

Derivating Equation (6.1) and replacing the result in (6.2) we obtain
fjajk = fk. Thus

dfj
fj

= dfk
fk

.

We can then define a meromorphic 1-form η on U by η|Uj
= dfj

fj
. Moreover

we have dω|Uj
= dfj ∧ dgj = ( dfj/fj) ∧ fj dgj = η|Uj

∧ ω|Uj
, hence

dω = η ∧ ω in U . �
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The form η extends to V because V is strongly pseudoconvex. To see this,
it is sufficient to apply to η the methods from Section 5. This establishes
Theorem 6.6.

6.4. Existence of invariant measures

Theorem 6.8. — Let X be a complex algebraic surface. Let M be an
analytic Levi-flat hypersurface ofX. We suppose that the Cauchy–Riemann
foliation of M is transversely affine. Then this foliation has a transverse
invariant measure.

Proof. — We suppose that F , the Cauchy–Riemann foliation onM , does
not have a transverse invariant measure. By Theorem 3.4, the normal bun-
dle NF of M has a metric with positive curvature in the direction of the
leaves that we note mF .

By Section 5, the foliation F defined on the Levi-flat hypersurface M
extends to a holomorphic foliation G̃ on the whole surface X. By Theo-
rem 6.6 this extended foliation is transversely affine on a neighbourhood
of M and degenerately transversely affine on X. By Proposition 6.5 the
bundle NG̃ ⊗ O(

∑
αC [C]) is flat on X, where C denotes the irreducible

components of the divisor D where the transverse structure degenerates.
Since X is kählerian, this bundle has a metric with trivial curvature by
the ∂∂̄-Lemma. Since the irreducible components C of D do not meet a
neighbourhood of M , the bundle NF has, on M , a metric m0 with trivial
curvature.
The metrics mF and m0 on NF are related by mF = e−τm0, where

τ : M → R is a function of class C∞. The curvatures of these two metrics
are related then on M by the equation

(6.3) i

2π∂∂̄F (− logmF ) = i

2π∂∂̄Fτ + i

2π∂∂̄F (− logm0) .

The last term on the right hand side is zero because it is equal to the
curvature of the metric m0. Now, since M is compact and τ is continuous,
the function τ reaches its maximum on M at a point p. The restriction of
τ to the leaf of F passing by p reaches also its maximum at p and then
i∂∂̄Fτ is negative on p. We obtain a contradiction because the left term in
the equation (6.3) is strictly positive. �

As we announced in the introduction, combining this result with the
following theorem of Ghys, which gives the nature of transverse invariant
measures on foliated 3-manifolds that are transversely affine, we obtain
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that a transversely affine Levi-flat hypersurface in an algebraic complex
surface is quasi-periodic or has an algebraic curve.

Theorem 6.9 ([16]). — Let M be a compact analytic 3-manifold and
let F be a codimension 1 analytic foliation on M . We suppose that F is
transversely affine and that it has an ergodic transverse invariant measure
µ. Then µ is of one of the following types:

(1) µ is supported on a compact leaf of F .
(2) F is Riemannian, i.e. there exists a riemannian metric on the normal

bundle of F that is invariant by holonomy and µ is the volume
measure associated to this metric.

6.5. Hyperbolic torus bundles as Levi-flat hypersurfaces

Theorem 6.10. — Let X be an algebraic complex surface. Let M be
an analytic Levi-flat hypersurface on X diffeomorphic to a hyperbolic torus
bundle. Then the Cauchy–Riemann foliation onM has at least one compact
leaf.

Proof. — If the Cauchy–Riemann foliation on M does not have a com-
pact leaf, then it is conjugated to the stable or unstable foliation on M by
Ghys and Sergiescu’s Theorem 6.1. These foliations are transversely affine
and do not have a transverse invariant measure. Theorem 6.8 gives us then
a contradiction. �

Under the hypotheses of the last theorem, we can ask if the Cauchy–
Riemann foliation has several compact leaves, or even if it is a fibration
in compact Riemann surfaces. The following proposition, communicated to
us by Étienne Ghys, shows that this is not always the case (in particular,
[17, Proposition 2, p. 194] is not true).

Proposition 6.11. — Every hyperbolic torus bundle T3
A admits foli-

ations by Riemann surfaces presenting simultaneously compact and non
compact leaves.

Proof. — Let us view T3
A as a quotient of a Lie group G of dimension 3

by a lattice Γ ⊂ G. Let G = RnR2 where the semi-direct product is given
by the action of R on R2

t · (x, y) = (etx, e−ty) ,

Let A be a hyperbolic matrix. Let Λ be a lattice invariant by the matrix
A. We define Γ = Z log λn Λ. Then

R2/Λ→ Γ\G→ Z log λ\R
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is a torus bundle. We define 3 one-parameter groups

φt : R→ G : t 7→ (t, 0, 0)
φx : R→ G : x 7→ (0, x, 0)
φy : R→ G : y 7→ (0, 0, y)

that give us respective vector fields Z,X and Y , which applied to a C∞-
function h : Γ\G→ R and calculated at a point p = (t0, x0, y0) give

Z · h(p) = ∂h

∂t
(p) , X · h(p) = et0

∂h

∂x
(p) , Y · h(p) = e−t0

∂h

∂y
(p) .

These satisfy moreover the commutator relations:

[Z,X] = X , [Z, Y ] = −Y and [X,Y ] = 0 .

These vector fields give us a frame of the tangent bundle of the group
G. With them we can define foliations by giving integrable distributions of
planes, for example

RZ + RX, RZ + RY, RX + RY,

that correspond respectively to unstable, stable and trivial foliations. With
these three fields we can build a foliation without Reeb component and
with compact leaves on our torus bundle. Indeed, let f : G → R be an
analytic function that depends only on t and let

C := RX + R(Z + f(t)Y )

be a distribution of planes on G/Γ. We verify that this is an integrable
distribution:

[X,Y + f(t)Z] = [X,Y ] + [X, f(t)Z]
= X(f(t)Z)− f(t)ZX
= (X · f)Z + f(t)[X,Z]
= (X · f)Z − f(t)X (since [X,Z] = −X)
= −f(t)X (since f does not depend on t) .

So [X,Y + f(t)Z] = −f(t)X belongs to C and our distribution is inte-
grable. This foliation has compact leaves for all t ∈ R such that f(t) = 0.
They are tori of the fibration. It does not have Reeb components: between
two compact leaves the leaves are dense and wind around the compact
leaves. �
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[28] S. Y. Nemirovskĭı, “Stein domains with Levi-plane boundaries on compact complex
surfaces”, Mat. Zametki 66 (1999), no. 4, p. 632-635.

[29] T. M. Peternell, “Pseudoconvexity, the Levi problem and vanishing theorems”, in
Several complex variables, VII, Encyclopaedia Math. Sci., vol. 74, Springer, Berlin,
1994, p. 221-257.

[30] B. Scárdua, “Transversely affine and transversely projective holomorphic folia-
tions”, Ann. Sci. Éc. Norm. Supér. 30 (1997), no. 2, p. 169-204.

[31] R. Schoen & S.-T. Yau, “On univalent harmonic maps between surfaces”, Invent.
Math. 44 (1978), no. 3, p. 265-278.

[32] Y.-T. Siu & G. Trautmann, Gap-sheaves and extension of coherent analytic
subsheaves, Lecture Notes in Mathematics, vol. 172, Springer, Berlin, 1971,
v+172 pages.

[33] A. Takeuchi, “Domaines pseudoconvexes infinis et la métrique riemannienne dans
un espace projectif”, J. Math. Soc. Japan 16 (1964), p. 159-181.

[34] M. Troyanov, “Prescribing curvature on compact surfaces with conical singulari-
ties”, Trans. Am. Math. Soc. 324 (1991), no. 2, p. 793-821.

Manuscrit reçu le 24 octobre 2016,
accepté le 28 avril 2017.

Carolina CANALES GONZÁLEZ
Laboratoire de Mathématiques d’Orsay
Univ. Paris-Sud, CNRS
Université Paris-Saclay
91405 Orsay (France)
Current address:
Anillo PIA-CONICYT ACT1415,
Universidad de la Frontera,
Departamento de Matemática y Estadística,
Temuco (Chile)
carolina.canales@ufrontera.cl

ANNALES DE L’INSTITUT FOURIER

mailto:carolina.canales@ufrontera.cl

	1. Introduction
	2. Preliminaries
	2.1. Foliations
	2.2. Levi-flat hypersurfaces

	3. Dynamics of Levi-flat hypersurfaces
	3.1. Dynamics on foliated 3-manifolds
	3.2. Dynamics and positive curvature

	4. Geometry of the complement
	4.1. Examples of modified Stein complements
	4.2. Local extension of the metric with positive curvature

	5. Extension of foliations
	5.1. Passing through non critical levels
	5.2. Passing through critical levels
	5.3. Extension through the exceptional set

	6. Transversely affine foliations
	6.1. Transversely affine foliations on 3-manifolds
	6.2. Transversely affine foliations on complex surfaces
	6.2.1. Transversely affine foliations
	6.2.2. Degenerate transversely affine foliations

	6.3. Extension of transversely affine foliations
	6.4. Existence of invariant measures
	6.5. Hyperbolic torus bundles as Levi-flat hypersurfaces

	Bibliography

