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FINITENESS OF GIBBS MEASURES ON
NONCOMPACT MANIFOLDS WITH PINCHED

NEGATIVE CURVATURE

by Vincent PIT & Barbara SCHAPIRA

Abstract. — We characterize the finiteness of Gibbs measures for geodesic
flows on negatively curved manifolds by several criteria, analogous to those pro-
posed by Sarig for symbolic dynamical systems over an infinite alphabet. These
criteria should be useful in the future to find more examples with finite Gibbs
measures. As an application, we recover Dal’bo–Otal–Peigné criterion of finiteness
for the Bowen–Margulis measure on geometrically finite hyperbolic manifolds, as
well as Peigné’s examples of geometrically infinite manifolds having a finite Bowen–
Margulis measure.
Résumé. — Nous donnons plusieurs critères caractérisant la finitude des me-

sures de Gibbs pour le flot géodésique sur les variétés à courbure négative, analogues
à ceux proposés par Sarig pour les sous-décalages sur des alphabets infinis. Ces cri-
tères effectifs devraient permettre de trouver davantage d’exemples de mesures de
Gibbs finies. En application, nous retrouvons le critère de Dal’bo–Otal–Peigné sur
la finitude de la mesure de Bowen–Margulis pour des variétés hyperboliques géomé-
triquement finies, ainsi que les exemples de Peigné de variétés à courbure négative
géométriquement infinies possédant une mesure de Bowen–Margulis finie.

1. Introduction

Hyperbolic dynamical systems are, heuristically, so chaotic that all be-
haviours that one can imagine indeed happen for some orbits. From the
point of view of ergodic theory, this can be expressed by the existence of
Gibbs measures. When the space is compact, choosing any regular enough
“weight function”, called a potential, i.e. usually a Hölder continuous map
on the space, we can find an invariant ergodic probability measure which
gives, roughly speaking, large measure to the sets where the potential is

Keywords: Gibbs measures, thermodynamic formalism, geodesic flow, geometrically in-
finite manifolds, Kac lemma.
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458 Vincent PIT & Barbara SCHAPIRA

large, and small measure to those where the potential is small. This is a
quantified way of saying that all behaviours that one can imagine, repre-
sented by the choice of a potential, indeed happen for a hyperbolic dynam-
ical system.
Such measures are called Gibbs measures, and their existence for Hölder

potentials and uniformly hyperbolic flows was proved by Bowen–Ruelle [6].
Thermodynamical formalism, i.e. the study of the existence and proper-
ties of these measures, has been extended to noncompact situations in two
main cases. In symbolic dynamics, Sarig ([17, 18]) studied thermodynami-
cal formalism of shifts over a countable alphabet. In the context of geodesic
flows of noncompact negatively curved manifolds, the measure of maximal
entropy, which is associated with the constant potential, now commonly
called the Bowen–Margulis measure, has been extensively studied, first by
Sullivan on geometrically finite hyperbolic manifolds [19], and later with
his ideas by many others. Among them, let us cite Otal–Peigné who ob-
tained an optimal variational principle in [12], and Roblin [16] who estab-
lished an equidistribution result of measures supported by periodic orbits
towards the Bowen–Margulis measure. Generalizations of their results to
Gibbs measures with general Hölder potentials have been proved in [14].
All these results hold if and only if the Gibbs measure associated with

the potential is finite. It is therefore very important to be able to charac-
terize, or at least to give sufficient conditions for the finiteness of Gibbs
measures. Some partial results and examples have already been proved in
the past. In [17, 18], in a symbolic context, Sarig established two finite-
ness criteria for the measure associated with a Hölder potential F . Iommi
and its collaborators extended this study to suspension flows over such
shifts, in [4, 11]. In the case of geodesic flows on the unit tangent bundle
of noncompact manifolds, the first criterion appeared in [8]. In the par-
ticular case of geometrically finite manifolds, Dal’bo–Otal–Peigné showed
that the Bowen–Margulis measure is finite if and only if a series involving
the parabolic elements of the fundamental group converges. This criterion
has been extended later by Coudène [7] to Gibbs measures on geometrically
finite manifolds. Finally, Peigné constructed in [15] the first examples of ge-
ometrically infinite hyperbolic manifolds whose Bowen–Margulis measure
is finite. His proof, once again, involved the convergence of a certain series.
Ancona [2] also obtained such examples, but through harmonic analysis.
Our main motivation is to give a unified way to check whether a Gibbs

measure is finite, not specific to a certain class of manifolds, and allowing
the recovery of all results mentioned above, the geometric ones as well as
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FINITENESS OF GIBBS MEASURES 459

Sarig’ symbolic criteria. We will provide three equivalent criteria for the
finiteness of Gibbs measures, all involving the convergence of some series,
two of them being the geometric analogues of Sarig’s criteria in terms of
lengths of periodic orbits, the other one being a reformulation in terms of
the action of the fundamental group Γ of M on its universal cover, which
is more convenient in our geometric context.
To this end, we will not rely on having a symbolic coding for the geodesic

flow, which cannot be ensured in the general case, but on geometrical esti-
mates and Kac’s Lemma. Recall that this lemma asserts that if a measure µ
is conservative and A is a measurable set with positive finite measure, then
the measure of the whole space equals

∑
n>1 nµ(An), where An denotes

the subset of points of A that return in A after exactly n iterations of the
dynamics. Therefore, the finiteness of µ is equivalent to the convergence
of a certain series. However, Kac’s Lemma is in general more an abstract
result than an useful criterion, due to the difficulty of estimating the mea-
sure of the sets An, but the geometry of negatively curved manifolds will
allow us to convert it into an explicit efficient criterion.
Let us first give some notations in order to state our results. We are

interested in the geodesic flow (gt) on the unit tangent bundle T 1M of a
complete manifold with pinched negative curvature. Our results also hold
when M is a negatively curved orbifold, that is the quotient of a complete
simply connected negatively curved manifold by a discrete nonelementary
group Γ which can contain torsion elements. We study this flow in restric-
tion to its nonwandering set Ω. We denote by P the set of periodic orbits,
by PW the set of periodic orbits which intersect some set W ⊂ T 1M , and
by P ′W the subset of primitive periodic orbits. For a given periodic orbit
p ∈ PW , we denote by l(p) its length, and by nW(p) the “number of times
that the geodesic p crossesW” (see Section 3 for a more precise definition).
We consider a potential F : T 1M → R, i.e. a Hölder continuous map, and
denote by F̃ : T 1M̃ → R its lift and P (F ) its pressure. It is shown in [14]
how one can build a Gibbs measure mF associated with the potential F .
The Hopf–Tsuji–Sullivan Theorem (see [14, Theorem 5.4]) asserts that

a Gibbs measure mF is either ergodic and conservative (possibly finite or
infinite) or totally dissipative, depending on whether the Poincaré series of
(Γ, F ) is respectively divergent or convergent. Therefore, before investigat-
ing the finiteness of a Gibbs measure, we investigate when it is ergodic and
conservative.

Definition 1.1 (Recurrence). — A potential F : T 1M → R is said to
be recurrent when there exists an open relatively compact subset W of
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460 Vincent PIT & Barbara SCHAPIRA

T 1M , which intersects the nonwandering set Ω, such that

∑
p∈P

nW(p)e
∫
p
(F−P (F )) = +∞ .

By analogy with the recurrence property for potentials on infinite sub-
shifts developed in [18], where a periodic orbit may be made of several
periodic points beginning with the same letter, this integer nW(p) can be
interpreted as how many changes of origins are possible along the geodesic
orbit p so that the parametrization starts in W.

Our first result is a reformulation of the divergence of the Poincaré series
in terms of periodic orbits.

Theorem 1.2 (Ergodicity criterion). — Let M be a negatively curved
orbifold with pinched negative curvature, and F : T 1M → R a Hölder
continuous potential with P (F ) < +∞. Then the Gibbs measure mF is
ergodic and conservative if and only if F is recurrent.

Unfortunately, this equivalence is unlikely to be very useful in practice.
The main interest of Theorem 1.2 is to enlighten the very strong analogy
between our results on geodesic flows on noncompact manifolds and Sarig’s
work in symbolic dynamics over a countable alphabet, despite the fact
that no general coding result of the geodesic flow by a symbolic dynamical
system is known in this context.

Definition 1.3 (Positive recurrence for the geodesic flow). — Let M
be a negatively curved orbifold with pinched negative curvature. A Hölder
continuous potential F : T 1M → R with P (F ) < +∞ is said positive
recurrent relatively to a set W ⊂ T 1M intersecting Ω and the integer
N > 1 if it is recurrent and

∑
p∈P′W

nW(p)6N

l(p)e
∫
p
(F−P (F ))

< +∞ .

Our main finiteness criterion is the following result, which is the geomet-
ric analogue of the symbolic criterion of Sarig [18].
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Theorem 1.4 (First finiteness criterion). — Let M be a negatively
curved orbifold with pinched negative curvature, and F : T 1M → R a
Hölder continuous potential with P (F ) < +∞. Denote by mF its associ-
ated Gibbs measure.

(1) If F is recurrent, and there exists an open relatively compact set
W ⊂M meeting π(Ω) such that F is positive recurrent with respect
to W = T 1W and some N > KW (where KW depends only on the
geometry of W and M), then mF is finite.

(2) If mF is finite, then F is recurrent, and positive recurrent with
respect to W = T 1W and any N > 1 for every open relatively
compact set W ⊂M meeting π(Ω).

We shall see in the proof that when M is a manifold, and W is a small
open ball, the constant KW equals one.

In particular, when F is recurrent, then F is positive recurrent with
respect to W = T 1W for some open relatively compact set W which in-
tersects π(Ω) and for some N > KW if and only if it is positive recurrent
relatively to any such set.
The proof of Theorem 1.4 follows from Theorem 1.6 below, which ex-

presses the finiteness of mF in terms of the action of Γ on M̃ instead of
periodic orbits on T 1M . This criterion does not appear in Sarig’s work
because it has no meaning in a purely symbolic setting. However, it is very
useful in our geometrical context.
We start by introducing the following notation. Given a subset W̃ ⊂ M̃ ,

denote by

Γ
W̃

=
{
γ ∈ Γ

∣∣∣∣∣ ∃ y, y′ ∈ W̃ , [y; γy′] ∩ gW̃ 6= ∅ ⇒
W̃ ∩ gW̃ 6= ∅
or γW̃ ∩ gW̃ 6= ∅

}

the set of elements γ such that there exists a geodesic starting from W̃ and
finishing in γW̃ that meets the orbit ΓW̃ only at the beginning or at the
end.

Definition 1.5 (Positive recurrence in the universal cover). — The pair
(Γ, F̃ ) is said to be positive recurrent with respect to a set W ⊂ M̃ such
that W = T 1W intersects Ω if F is recurrent and

∃ x ∈ M̃,
∑
γ∈Γ

W̃

d(x, γx)e
∫ γx
x

(F̃−P (F ))
< +∞ .

TOME 68 (2018), FASCICULE 2
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Theorem 1.6 (Second finiteness criterion). — Let M be a negatively
curved orbifold with pinched negative sectional curvature. Let F : T 1M →
R be a Hölder continuous potential with P (F ) < +∞, and denote by mF

the associated Gibbs measure on T 1M .
(1) If F is recurrent, and if (Γ, F̃ ) is positive recurrent with respect to

some open relatively compact set W̃ ⊂ M̃ meeting π(Ω̃), then mF

is finite.
(2) If mF is finite, then F is recurrent, and (Γ, F̃ ) is positive recurrent

with respect to any open relatively compact set W̃ ⊂ M̃ meeting
π(Ω̃).

In particular, when F is recurrent, then (Γ, F̃ ) is positive recurrent rela-
tively to some open relatively compact set W̃ which intersects π(Ω̃) if and
only if it is positive recurrent relatively to any such set.
In [17], Sarig proved a finiteness criterion, established earlier than the

symbolic analogue of Theorem 1.4. This criterion seems less practical than
his later work. However, we wanted to show a complete analogy between
the symbolic and our geometric settings, so we established the same crite-
rion in our situation. The proof is different from the previous criteria and
relies on equidistribution of weighted periodic orbits. This criterion requires
the assumption that the geodesic flow is topologically mixing on Ω. This
extremely classical assumption is satisfied in most interesting situations,
even if its validity is open in general.

Definition 1.7. — The potential F is said to be positive recurrent in
the first sense of Sarig [17] if there exists an open relatively compact subset
W of T 1M meeting Ω, and constants c > 0, t0 > 0 and C > 0 such that

∀ t > t0,
1
C
6

∑
p∈P

t−c<l(p)6t

nW(p)e
∫
p
(F−P (F ))

6 C .

Theorem 1.8 (Third finiteness criterion). — Let M be a negatively
curved complete orbifold, with pinched negative curvature. Assume that
its geodesic flow is topologically mixing. Let F : T 1M → R be a Hölder
continuous potential with P (F ) < +∞, and denote by mF its associated
Gibbs measure on T 1M . Then mF is finite if and only if F is positive
recurrent in the first sense of Sarig with respect to some open relatively
compact set W meeting Ω.

When this theorem holds, F is actually positive recurrent in the first
sense of Sarig with respect to any open relatively compact setW meeting Ω.
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The structure of this paper goes at follows. Section 2 introduces the
background on geometry and thermodynamic formalism, including some
elementary lemmas of hyperbolic geometry stated in a convenient way for
our purposes. In particular, Lemma 2.4 plays a crucial role in the proof.
Section 3 introduces the notion of number of returns of a periodic orbit,
which is used to state Theorem 1.2, 1.4 and 1.8. The proof of Theorem 1.2
is given in Section 4. Theorem 1.6 is proved in Section 5, from which an
intermediate Theorem 6.1 is derived in Section 6, and Theorem 1.4 is itself
derived in Section 7. In Section 8, we state and prove a couple of equidistri-
bution results for nonprimitive periodic orbits, and derive from it the proof
of Theorem 1.8. Finally, we show in Section 9 how to retrieve previous
finiteness results from ours.
We believe that these criteria will lead to new examples of interesting

manifolds with finite Gibbs measure. This will be done in the future.

2. Preliminaries

2.1. Geodesic flow in negative curvature

In the following, M̃ is a Hadamard manifold with pinched negative sec-
tional curvature −b2 6 k 6 −a2 < 0, Γ is a discrete group of isometries
preserving orientation of M̃ , M = Γ\M̃ is the quotient orbifold (mani-
fold whenever Γ has no torsion elements), and T 1M = Γ\T 1M̃ is its unit
tangent bundle. Observe once and for all that Riemannian/differential con-
cepts are still well defined on M or T 1M by defining objects first on the
universal cover, and then going down toM . With a slight abuse of notation,
we denote by π : T 1M → M or π : T 1M̃ → M̃ the canonical projection,
and by PΓ : T 1M̃ → T 1M or PΓ : M̃ →M the quotient maps.
The geodesic flow of T 1M̃ and of T 1M is denoted by (gt)t∈R. The bound-

ary at infinity ∂∞M̃ is the set of equivalence classes of geodesic rays staying
at bounded distance from each other. If v ∈ M̃ , we denote by v± the posi-
tive and negative endpoints of the geodesic it defines.
The limit set Λ(Γ) is the set of accumulation points in ∂∞M̃ of the Γ-

orbit of any point in M̃ . We will only consider the nontrivial case where
Γ is nonelementary, that is Λ(Γ) is infinite. Eberlein [9] proved that the
nonwandering set Ω of the geodesic flow coincides with the set of vectors
v ∈ T 1M̃ such that v± ∈ Λ(Γ).

The Hopf coordinates relatively to any base point x0 ∈ M̃ are given by

v ∈ T 1M̃ 7→ (v−, v+, βv+(x0, π(v)) .

TOME 68 (2018), FASCICULE 2
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where the so-called Busemann cocycle βv+(x0, v) is the limit of
d(x0, π(gtv)) − d(π(v), π(gtv)) when t → +∞. They induce an extremely
useful homeomorphism between T 1M̃ and (∂∞M̃ × ∂∞M̃) \ diagonal×R.
The geodesic flow acts by translation on the real coordinate, so that all
dynamically relevant sets can be expressed nicely in terms of these coordi-
nates.
The set of periodic orbits (respectively primitive periodic orbits) of the

geodesic flow is denoted by P (respectively P ′). Recall that each periodic
orbit of the geodesic flow corresponds to exactly one conjugacy class of
hyperbolic elements of Γ. More precisely, let Γh be the set of hyperbolic
(or loxodromic) isometries of Γ, and Γ′h those which are primitive. By
definition, such a γ has two fixed points in ∂∞M̃ , one repulsive and the
other attractive. It acts by translation on the geodesic line of M̃ joining
them so that the geodesic orbit of T 1M̃ from the repulsive to the attractive
endpoint induces on T 1M a periodic orbit of the geodesic flow. We will
denote by l(γ) for γ ∈ Γh, or equivalently l(p) for p ∈ P, the period of this
orbit.

2.2. Thermodynamical formalism

In this section, we recall briefly some facts about thermodynamical for-
malism on negatively curved manifolds, which are either classical or can be
found in [14].

Let F : T 1M → R be a Hölder continuous map (or potential), and F̃

be its Γ-invariant lift to T 1M̃ . Its topological pressure is defined as the
supremum

P (F ) = sup
µ∈M

(
h(µ) +

∫
F dµ

)
,

where the supremum is taken over the set M of all invariant probability
measures, and h(µ) is the Kolmogorov–Sinai entropy of µ.
A dynamical ball B(v, T, ε) is the set

B(v, T, ε) = PΓ

{
w ∈ T 1M̃

∣∣∣ d(π(gt(ṽ)), π(gt(w))) 6 ε for all 0 6 t 6 T
}
.

Here, there is a slight abuse of notation : we use the distance d on M̃ instead
of a distance on T 1M̃ , for example the Sasaki metric. However, standard
results about geodesic flows in negative curvature show that these two
points of views are equivalent. We refer to [14] for details. An invariant
Radon measure µ satisfies the Gibbs property (see [14, Section 3.8]) if for
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FINITENESS OF GIBBS MEASURES 465

all compact subsets K ⊂ T 1M , there exists a constant CK > 0, such that
for all v ∈ K and T > 0 such that gT (v) ∈ K, one has
(2.1)

1
CK

e

∫ T
0
F (gt(v)) dt−TP (F ) 6 µ(B(v, T, ε)) 6 CKe

∫ T
0
F (gt(v)) dt−TP (F )

.

The careful reader will observe that this definition is slightly simplified
compared to [14], but describes the same measures.
When P (F ) is finite, the Patterson–Sullivan–Gibbs construction, de-

tailed in [14], allows to build a measure mF , which satisfies the above
Gibbs property, whose lift m̃F on T 1M̃ has the following nice expression
in the Hopf coordinates

(2.2) dm̃F (v) = 1
DF−P (F ),x0(v−, v+)2 dµF◦ιx0

(v−) dµFx0
(v+) dt ,

where ι is the flip map ι : v → −v, µFx0
is the so-called Patterson–Sullivan–

Gibbs conformal density on the boundary, and DF is the F -gap map from
x defined as

DF,x(ξ, η) = exp 1
2

(
lim

t→+∞

∫ ηt

x

F̃ −
∫ ηt

ξt

F̃ +
∫ x

ξt

F̃

)
.

This map is continuous and positive on ∂∞M̃ × ∂∞M̃ \ {diagonal}, and
therefore bounded away from 0 and +∞ on all compact sets of ∂∞M̃ ×
∂∞M̃ \ {diagonal}. Moreover, the point x0 being arbitrary, the Patterson–
Sullivan–Gibbs conformal densities (µFx )

x∈M̃ form a family of measures
that have full support in Λ(Γ) and are Γ-quasi-invariant.
The Gibbs measure mF satisfies the following alternative, known as the

Hopf–Tsuji–Sullivan Theorem, proved by Roblin [16] in full generality when
F ≡ 0, and whose proof has been adapted to Gibbs measures in [14]. First,
recall that the pressure P (F ) is also the critical exponent of the following
Poincaré series

PΓ,x,F (s) =
∑
γ∈Γ

e

∫ γx
x

(F̃−s)
.

This Hopf–Tsuji–Sullivan–Roblin theorem for Gibbs measures illuminates
how the convergence or divergence of the above series for s = P (F ) is a
crucial point for the ergodicity of the Gibbs measure mF .

Theorem. — Let M be a negatively curved orbifold with pinched neg-
ative curvature, and F : T 1M → R a Hölder continuous map with finite
pressure. Then the measure mF is ergodic and conservative if and only if

TOME 68 (2018), FASCICULE 2
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the Poincaré series PΓ,x,F (s) diverges at s = P (F ), i.e.∑
γ∈Γ

e

∫ γx0
x0

(F̃−P (F )) = +∞ ,

and the measure mF is totally dissipative otherwise.

In fact, one can show that “the” measure mF built in [14] is well defined
if and only if the above series diverges. As this is the only interesting case
for us, we do not care about this problem of terminology.
When a Gibbs measure mF is finite, it is automatically ergodic and

conservative. However, of course, the converse is not true, and it is precisely
the purpose of this paper to propose criteria of finiteness.

2.3. Some exercises in hyperbolic geometry

This section gathers some well-known lemmas about the geometry of
manifolds with pinched negative sectional curvature.

We start by recalling a very classical comparison lemma, as stated for
example in [13, Lemma 2.1], from which we will derive the next lemmas.

Lemma 2.1. — Let (X, d) be a CAT(−1)-space. For all points x, y in X
and z in X ∪ ∂∞X, and every t ∈ [0; d(x, z)] (finite if z ∈ ∂∞X), if xt is
the point on [x; z] at distance t from x, then

d(xt, [y; z]) 6 e−t sinh(d(x, y)) .

In particular, applying this lemma twice leads to the following lemma.

Lemma 2.2. — Let r, r′ > 0. Let x, x′, y, y′ ∈ M̃ such that d(x, y) 6 r

and d(x′, y′) 6 r′. For every t ∈ [0; d(x, x′)], denote by xt the point on
[x;x′] at distance t from x. Then

d(xt, [y; y′]) 6 sinh(r)e−t + sinh(r′)et−d(x,x′)+sinh(r) .

Recall also the following.

Lemma 2.3 ([14, Remark 2 following Lemma 3.2]). — For every R > 0,
there is a constant C that only depends on F̃ , R and the bounds on the
sectional curvature of M̃ such that for every x, x′, y, y′ in M̃ satisfying
d(x, x′), d(y, y′) 6 R ∣∣∣∣∣

∫ y

x

F̃ −
∫ y′

x′
F̃

∣∣∣∣∣ 6 C .
ANNALES DE L’INSTITUT FOURIER
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2.4. Parallel geodesic segments avoiding images of a compact set

The following geometrical lemma is the key ingredient of the proof of
Theorem 1.6, from which Theorem 1.4 is derived. It asserts that, if a geo-
desic segment [y; y′] is known to avoid the Γ-orbit of balls B(x,R) except
maybe at its beginning or at its end, then every other geodesic segment
whose endpoints are close from y and y′ will also essentially avoid the Γ-
orbit of ε-shrinked balls B(x,R − ε), provided that the guiding segment
[y; y′] is long enough.

Lemma 2.4 (Long range subset avoidance). — Let W̃ be an open rel-
atively compact subset of M̃ . For every R > 0, there exists ρ = ρ(R)
such that for all ε > 0, all W̃ ′ ⊂ W̃ open relatively compact subsets with
d(W̃ ′, M̃ \ W̃ ) > ε, all y, y′, z, z′ ∈ M̃ with d(y, z), d(y′, z′) 6 R, and all
γ ∈ Γ, if

[y; y′] ∩ γW̃ = ∅ and [z; z′] ∩ γW̃ ′ 6= ∅ .

then we have

min
(
d(y, γW̃ ), d(y′, γW̃ )

)
6 ρ− log ε.

Proof. — Denote by l = d(z, z′). Let zt be a point of [z; z′] inside γW̃ ′,
with t = d(z, zt). Without loss of generality, we can assume that t 6 l

2 . By
Lemma 2.2, we have

d(zt, [y; y′]) 6 sinh(R)
(
e−t + et−l+sinh(R)

)
6 C

(
e−t + et−l

)
6 2Ce−t

with C = sinh(R)esinh(R). The assumption d(zt, [y; y′]) > ε ensures that
t 6 log( 2C

ε ) and henceforth that d(y, zt) 6 ρ − log ε with ρ = log(2C) +
diam W̃ . �

2.5. About finding hyperbolic isometries

In the proofs of Theorems 1.2 and 1.4, we will need to compare sums
indexed on periodic orbits of the geodesic flows, i.e. on conjugacy classes
of hyperbolic elements of Γ, with sums indexed on the whole group Γ. To
this end, we need some technical tools to go from the former to the latter.
We start by recalling a variant of Anosov closing lemma, which is easily
obtained by combining [10, Corollaire 8.22] with Lemma 2.2.

TOME 68 (2018), FASCICULE 2
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Lemma 2.5. — For every l, ε > 0, there exists ε′ ∈ ]0; 1] with limε→0 ε
′ =

0 such that for every isometry γ of any proper geodesic CAT(−1)-space X,
for every x0 in X, if d(x0, γx0) > l and d(x0,

[
γ−1x0; γx0

]
) 6 ε′, then γ is

hyperbolic and d(x0, Aγ) 6 ε, where Aγ is the translation axis of γ in X.

Let Γh be the set of hyperbolic elements of Γ. If γ ∈ Γh, we denote by
Aγ ⊂ T 1M̃ its axis, i.e. the set of vectors v ∈ T 1M̃ such that gl(γ)v = γv,
where l(γ) is the minimal displacement of a point by γ. In other words, Aγ
is the set of unit vectors on the geodesic joining the repulsive fixed point
to the attractive fixed point, oriented towards the latter.
If x ∈ M̃ , l > 0 and U ⊂ ∂∞M̃ is open, then the angular sector at

distance l based at x and supported by U is the open set

Cx,l(U) =
{
z ∈ M̃

∣∣∣ d(z, x) > l and ∃ ξ ∈ U, z ∈ ]x; ξ[
}
.

Lemma 2.6. — Let W̃ ⊂ T 1M̃ be an open relatively compact set inter-
secting Ω̃, ε > 0 and x ∈ π(W̃) ∩ Conv(Λ(Γ)). There exist g1, . . . , gk ∈ Γ
and a finite set S ⊂ Γ such that for every γ ∈ Γ\S, there exist i, j such that
γ′ = g−1

j γgi is hyperbolic and its axis satisfies Aγ′ ∩ W̃ ∩ T 1B(x, ε) 6= ∅.

Proof. — Take ε′ = ε′(ε, 1) given by Lemma 2.5. Let U and V be two
non empty open sets of ∂∞M̃ with disjoint closures, both meeting Λ(Γ),
such that any geodesic orbit of T 1M̃ from U to V meets W̃∩T 1B(x, ε′). Fix
two non empty open sets U0, V0 ⊂ ∂∞M̃ meeting Λ(Γ) such that U0 ⊂ U

and V0 ⊂ V . There exists l′ > 1 such that for every y ∈ U ′ = Cx,l′(U0)
and z ∈ V ′ = Cx,l′(V0), the geodesic orbit of T 1M̃ from y to z meets
W̃ ∩ T 1B(x, ε′).
As Γ acts minimally on Λ(Γ), there exist g1, . . . , gp, . . . , gk ∈ Γ such that

Λ(Γ) ⊂
p⋃
i=1

giU0 and Λ(Γ) ⊂
k⋃

i=p+1
giV0 .

Let R0 = sup
{
d(x, g−1

i x)
∣∣ i = 1, . . . , k

}
, R1 = R0 + 2ε, and define

U ′′ =
{
y ∈ M̃

∣∣∣B(y,R1) ⊂ U ′
}

and V ′′ =
{
z ∈ M̃

∣∣∣B(z,R1) ⊂ V ′
}
.

Denote by U ′′ and V ′′ their closures inside M̃∪∂∞M̃ . Observe that ∂∞U ′′ =
U0 and ∂∞V ′′ = V0, so that we still have in M̃ ∪ ∂∞M̃

Λ(Γ) ⊂
p⋃
i=1

giU
′′ and Λ(Γ) ⊂

k⋃
i=p+1

giV
′′ .
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Therefore, both sets

K = Conv(Λ(Γ)) \
p⋃
i=1

giU ′′ and L = Conv(Λ(Γ)) \
k⋃

i=p+1
giV ′′

do not meet ∂∞M̃ and are relatively compact in M̃ . Therefore, S ={
γ ∈ Γ

∣∣ γ−1x ∈ K or γx ∈ L
}
is finite.

Now if γ ∈ Γ \S, by construction, there exist i, j such that γ−1x ∈ giU ′′
and γx ∈ gjV ′′. If γ′ = g−1

j γgi, then u = γ′
−1
g−1
j x ∈ U ′′ and v = γ′g−1

i x ∈
V ′′, which means that γ′x satisfies

d(γ′x, v) = d(x, g−1
i x) 6 R0 < R1 ,

i.e. γ′x ∈ V ′ and similarly γ′
−1
x ∈ U ′. By our choice of U ′ and V ′,

this ensures that d(x, γ′x) > l and
[
γ′
−1
x; γ′x

]
meets B(x, ε′), so that

by Lemma 2.5, γ′ is hyperbolic and its axis Aγ′ meets T 1B(x, ε).
Finally, let z ∈ π̃(Aγ′) ∩B(x, ε). Since

d(γ′z, v) 6 d(γ′z, γ′x) + d(γ′x, v) 6 ε+R0 < R1 ,

we deduce that γ′z ∈ V ′ and likewise γ′−1
z ∈ U ′. This implies that the

geodesic orbit of T 1M̃ from γ′
−1
z to γ′z, i.e. Aγ′ , also meets W̃. �

2.6. Shadows

If y, y′ are two distinct points of M̃ ∪∂∞M̃ , let v−(y, y′) ∈ ∂∞M̃ (respec-
tively v+(y, y′) ∈ ∂∞M̃) be the endpoint of the one-sided infinite geodesic
ray going from y′ to y (respectively from y to y′). The maps v+ and v− are
continuous for the usual topology on (M̃ ∪ ∂∞M̃)2 \ {diagonal}.
With the above notations, if x ∈ M̃ ∪∂∞M̃ and W is an open, relatively

compact, geodesically convex subset of M̃ , the shadow of W viewed from
x is the set

OxW = {v+(x, y) | y ∈W} =
{
ξ ∈ ∂∞M̃

∣∣∣ ]x; ξ[ ∩W 6= ∅
}
.

We start by stating a classical lemma that asserts that, if the base point
is far enough from the set that casts the shadow, then it can be moved
around by a bounded amount almost without changing the shadow.

Lemma 2.7. — For every r > 0, every 0 < ε < r and every δ > 0, there
exists l0 > 0 such that for all x, y ∈ M̃ satisfying d(x, y) > l0 and for all
z ∈ B(y, δ) we have

OyB(x, r − ε) ⊂ OzB(x, r) ⊂ OyB(x, r + ε) .
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We will also need the two following lemmas about products of shadows.
Their proofs are very similar to [14, Lemma 3.17] and therefore ommitted.

Lemma 2.8. — For all r > 0, r′ > 0 and ε > 0, there exists l0 > 0
such that for all x, x′ ∈ M̃ satisfying d(x, x′) > l0, for all y ∈ B(x, r) and
y′ ∈ B(x′, r′), we have

(v−(y, y′), v+(y, y′)) ∈ Ox′B(x, r + ε)×OxB(x′, r′ + ε) .

Lemma 2.9. — For every r > 0, r′ > 0, and ε > 0, there exists l0 > 0
such that the following holds : for every x, x′ ∈ M̃ satisfying d(x, x′) > l0,
for every v− ∈ Ox′B(x, r) and every v+ ∈ OxB(x′, r′), there exist y ∈
B(x, r + ε) and y′ ∈ B(x′, r′ + ε) such that

(v−, v+) = (v−(y, y′), v+(y, y′)) .

The next lemma states that when two balls are far enough one from each
other, their shadows relative to each other’s center cannot intersect.

Lemma 2.10. — For every R > 0, there exists l0 > 0 such that, for
every x, y ∈ M̃ satisfying d(x, y) > l0, one has

OxB(y,R) ∩ OyB(x,R) = ∅ .

Proof. — Suppose not, and take ξ in the intersection. In the triangle
(x, y, ξ), we would have

d(x, [y; ξ[) 6 R and d(y, [x; ξ[) 6 R.

Triangles of M̃ are δ-hyperbolic for some positive constant δ depending only
on the upper bound of the sectional curvature. Therefore, this situation
is possible only if d(x, y) 6 2R + 2δ. Thus, the lemma is proved with
l0 = 2R+ 2δ. �

Measure of shadows

The Shadow Lemma, initially due to Sullivan, estimates the measure
given by Patterson–Sullivan–Gibbs densities to shadows of balls in terms
of integrals of the normalized potential. It has been proven by Mohsen in
our setting, and asserts the following.

Lemma 2.11 (Mohsen’s Shadow Lemma, [14, Lemma 3.10]). — Let
(µFx )

x∈M̃ be the Patterson–Sullivan–Gibbs conformal density associated
with F , and K be a compact subset of M̃ . There exists R0 > 0 such that,
for all R > R0, there exists C > 0 such that for all γ ∈ Γ and x, y ∈ K

1
C
e

∫ γy
x

(F̃−P (F )) 6 µFx (OxB(γy,R)) 6 Ce
∫ γy
x

(F̃−P (F ))
.
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A careful examination of the proof of this lemma shows that the condition
R > R0 is actually only necessary for the lower bound. In the following, we
will only use this lemma for its upper bound, so we can forget about this
restriction.

However, we will also need some lower bound estimates for the mF -
measure of dynamical balls. To this end, we will use the following variant
of the Shadow Lemma for product of shadows of balls, which replaces the
restriction on the size of balls by the assumption that the ball intersects
the nonwandering set of the geodesic flow.

Lemma 2.12 (Shadow product lemma). — Let (µFx )
x∈M̃ and (µF◦ιx )

x∈M̃
be the Patterson–Sullivan–Gibbs conformal densities respectively associ-
ated with F and F ◦ ι. Assume that B(x,R) ⊂ M̃ intersects the base of
the nonwandering set Ω̃. Then there exist C > 0 and S,G ⊂ Γ finite such
that for every γ ∈ Γ \ S there exist g, h ∈ G such that

1
C
e

∫ γx
x

(F̃−P (F )) 6 µF◦ιx (OγxB(gx,R))µFx (OxB(γhx,R))

6 Ce
∫ γx
x

(F̃−P (F ))
.

Proof. — If T 1B(x,R) ∩ Ω̃ 6= ∅, then we can find η, ξ ∈ Λ(Γ) distinct
such that the geodesic (ξη) intersects B(x,R). In particular there exists
ε > 0 such that η ∈ OξB(x,R − ε) and ξ ∈ OηB(x,R − ε). By continuity
of the shadows, there exist two neighbourhoods U, V of respectively ξ and
η in M̃ ∪ ∂∞M̃ such that

∀ y ∈ U , OξB(x,R− ε) ⊂ OyB(x,R)
and ∀ z ∈ V , OηB(x,R− ε) ⊂ OzB(x,R) .

By using the same technique as in the proof of Lemma 2.6, we can find
S,G ⊂ Γ finite such that, for every γ ∈ Γ\S, there exist g, h ∈ G such that
g−1γx ∈ U and h−1γ−1x ∈ V .
Since the Patterson–Sullivan–Gibbs densities charge any open set that

intersects the limit set,

α = min
{
µF◦ιg−1x(OξB(x,R− ε))

∣∣∣ g ∈ G} > 0

and β = µFx (OηB(x,R− ε)) > 0 .

Let γ ∈ Γ \ S and take g, h ∈ G such that g−1γx ∈ U and h−1γ−1x ∈ V .
By the invariance property of the densities, we have on the one hand

µF◦ιx (OγxB(gx,R)) = µF◦ιg−1x(Og−1γxB(x,R)) > µF◦ιg−1x(OξB(x,R−ε)) > α,
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and on the other hand

µFγhx(OxB(γhx,R)) = µFx (Oh−1γ−1xB(x,R)) > β .

But the conformal density property of (µFx ) ensures that

µFx (OxB(γhx,R)) =
∫
ζ∈OxB(γhx,R)

e−CF−P (F ),ζ(x,γhx) dµFγhx(ζ) ,

where CF,ζ(x, y) = limt→∞
∫ ζt
y
F̃ −

∫ ζt
x
F̃ is the Gibbs cocycle associated

with F . By applying [14, Lemma 3.4] (2), we get the existence of a constant
C1 > 1 independent of γ and h such that

1
C1
e

∫ γhx
x

(F̃−P (F )) 6
µFx (OxB(γhx,R))
µFγhx(OxB(γhx,R))

6 C1e

∫ γhx
x

(F̃−P (F ))
.

This implies that
αβ

C1
e

∫ γhx
x

(F̃−P (F )) 6 µF◦ιx (OγhxB(x,R))µFx (OxB(γhx,R))

6 C1e

∫ γhx
x

(F̃−P (F ))
.

Finally, after noting that d(γx, γhx) = d(x, hx) is bounded from above
independently from γ, we apply Lemma 2.3 to obtain a constant C2 > 0
that only depends on M̃ , F̃ , x and R such that∣∣∣∣∣

∫ γhx

x

(F̃ − P (F ))−
∫ γx

x

(F̃ − P (F ))

∣∣∣∣∣ 6 C2 .

This concludes the proof with C = C1
αβ e

C2 . �

3. Number of returns of a periodic orbit

The aim of this section is to introduce a useful mathematical definition
of the “number of times that a periodic geodesic enters in a given set W”.
Observe that as soon as W is non convex, or has holes, it may be highly
non trivial and cannot be done in a naive way.
Let W̃ be a relatively compact subset of T 1M̃ . If γ ∈ Γh, we define the

number of copies of the axis of γ intersecting W̃ as the quantity

nW̃(γ) = #
{
γ′ ∈ Γ

∣∣∣ ∃ g ∈ Γ, γ′ = g−1γg and Aγ′ ∩ W̃ 6= ∅
}
.

By definition, this number depends only on the conjugacy class of γ ∈ Γh.
Of course, it is also Γ-invariant, in the sense that

nW̃(γ) = n
gW̃(γ) .
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We shall now extend this definition to relatively compact subsets of T 1M

in the following way. First note that if W ⊂ T 1M is open and relatively
compact, then it admits an open relatively compact lift (actually many of
them), i.e. an open relatively compact set W̃ ⊂ T 1M̃ such that PΓ(W̃) =
W where PΓ : T 1M̃ → T 1M is the covering map. Indeed, it is enough
to cover W by trivializing open sets for the covering map PΓ, to take
for each of these sets the image of its intersection with W by one of the
inverse branches of PΓ, and then let W̃ to be the union of these preimages.
However, there might not exist an open lift W̃ ofW such that PΓ : W̃ → W
is 1−1 if, for example, the base π(W) contains a ball B(x,R) whose radius
R is larger than the injectivity radius at x.
GivenW ⊂ T 1M open relatively compact, and any periodic orbit p ∈ P,

this leads us to define the number of returns of p into W by

nW(p) = inf nW̃(γp) ,

where γp is any hyperbolic isometry in the conjugcy class associated with
p, and the infimum is taken over all open relatively compact lifts W̃ of W
to T 1M̃ . By definition, nW(p) > 1 if and only if p intersects W.
Note that the quantities nW̃(γ) and nW(p) do not depend on the mul-

tiplicity of γ or p. Indeed, two isometries γ and γ′ are conjugated by an
element g if and only if γk and γ′

k are conjugated by this element g, for
k > 1. Moreover, the axii Aγ and Aγk are equal for all k > 1. Therefore,
we get

∀ k > 1, nW̃(γk) = nW̃(γ) .

Equivalently, if p ∈ P is a periodic orbit with multiplicity whose associated
primitive orbit is p0 ∈ P ′, we have

nW(p) = nW(p0) .

Although there might not exist a lift of W that realizes the number of
returns nW(p) of p ∈ P intoW as a number of copies, the numbers of copies
of the axis of γ ∈ Γh intersecting two distinct open relatively compact lifts
of W are uniformly commensurable with each other.

Lemma 3.1. — Let W̃1, W̃2 be two open relatively compact lifts to T 1M̃

of an open relatively compact set W.
If W̃1 ⊂ W̃2, then for all γ ∈ Γh, we have nW̃1

(γ) 6 nW̃2
(γ).

If W̃1 and W̃2 are isometric, then for all γ ∈ Γh, we have n
W̃1

(γ) =
n
W̃2

(γ).
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More generally, there is C = CW̃1,W̃2
such that for all γ ∈ Γh, we have

1
C
nW̃2

(γ) 6 nW̃1
(γ) 6 CnW̃2

(γ) .

Proof. — The first assertions are clear. For the last one, it is enough to
show that nW̃1

(γ0) 6 CnW̃2
(γ0) for any γ0 ∈ Γ′h. Take γ′ = g−1γ0g for

some g ∈ Γ such that there exists v ∈ Aγ′ ∩W̃1. Since W̃1 and W̃2 are both
lifts of the same set W, the set

Hv =
{
h ∈ Γ

∣∣∣hv ∈ W̃2

}
is non-empty. Note that if h ∈ Hv, then h(v) ∈ W̃2∩Aγ′′ where γ′′ = hγ′h−1

is a conjugate of γ0. This ensures that{
γ′ ∈ Γ

∣∣∣ ∃ g ∈ Γ, γ′ = g−1γ0g and Aγ′ ∩ W̃1 6= ∅
}

⊂
⋃
h∈H

h−1
{
γ′′ ∈ Γ

∣∣∣∃ g ∈ Γ, γ′′ = g−1γ0g and Aγ′′ ∩ W̃2 6= ∅
}
h,

whereH = ∪
v∈W̃1

Hv depends only on W̃1 and W̃2 but not on γ0. In order to
conclude, it is enough to show that H is finite. Indeed, let W̃3 = W̃1 ∪ W̃2.
It is a compact subset of T 1M̃ and we have

H =
{
h ∈ Γ

∣∣∣ ∃ v ∈ W̃1, hv ∈ W̃2

}
⊂
{
h ∈ Γ

∣∣∣ W̃3 ∩ hW̃3 6= ∅
}
,

which is finite since the action of Γ on T 1M̃ is proper. �

In particular, if one takes a relatively compact lift W̃1 of W, then there
exists a constant C which depends only on W̃1 such that for every p0 ∈ P ′
and every γ0 in the conjugacy class associated with p0 we have

1
C
nW̃1

(γ0) 6 nW(p0) 6 CnW̃1
(γ0) .

Lemma 3.2. — IfW ⊂ T 1M is covered by a finite collection (Wi)i=1,...,n
of open relatively compact subsets of T 1M , then there exists C =
CW,W1,...,Wn

> 0 such that for all p ∈ P, we have

nW(p) 6 C
n∑
i=1

nWi
(p) .

Proof. — We may assume that p ∈ P ′. Fix γp ∈ Γ′h in the conjugacy
class associated with p. For each i, take an open relatively compact lift W̃i

of Wi to T 1M̃ , as well as a constant Ci independent from p and γp such
that

n
W̃i

(γp) 6 CinWi
(p) .
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Observe that

W̃ = P−1
Γ (W) ∩

n⋃
i=1
W̃i

is an open relatively compact lift of W, and that if an axis Aγ meets W̃
then it meets at least one of the W̃i. Therefore

nW(p) 6 nW̃(γp) 6
n∑
i=1

nW̃i
(γp) 6 max(Ci)

n∑
i=1

nWi
(p) . �

4. Ergodicity of Gibbs measures for recurrent potentials

Let F : T 1M → R be a Hölder continuous potential on T 1M . According
to the Hopf–Tsuji–Sullivan Theorem, we know that mF is ergodic and
conservative if and only if the Poincaré series associated with F diverges at
the critical exponent s = P (F ), in which case (Γ, F ) is said to be divergent
following the terminology in [14]. In this section, we will prove Theorem 1.2
which asserts that it is also equivalent to the divergence of the series∑

p∈P
nW(p)e

∫
p
(F−P (F ))

,

for W an open relatively compact set intersecting Ω. F is said to be recur-
rent relatively to W when this series diverges.
Note that periodic orbits meeting W are the only periodic orbits to

consider in the above sum, because otherwise nW(p) = 0.

Theorem 1.2. — Let M be a negatively curved orbifold with pinched
negative curvature, and F : T 1M → R a Hölder continuous potential with
P (F ) < +∞. Then the Gibbs measure mF is ergodic and conservative if
and only if F is recurrent with respect to some open relatively compact set
intersecting Ω.

In particular, the recurrence property does not depend on the choice of
the open relatively compact subset W.

Observe first that, for any real number k, this equivalence is satisfied for
a potential F if and only if it is satisfied for the potential F + k, as the
Gibbs measures mF and mF+k are equal. We may therefore assume from
now on that P (F ) = 0. We will also denote by F̃ the Γ-invariant lift of F
to T 1M̃ .

TOME 68 (2018), FASCICULE 2



476 Vincent PIT & Barbara SCHAPIRA

4.1. Recurrence implies divergence

Lemma 4.1. — If F is recurrent relatively to some open relatively com-
pact subset W of T 1M which intersects Ω, then (Γ, F ) is divergent.

Proof. — Let W̃ be an open relatively compact lift of W to T 1M̃ that
meets Ω̃. Choose a base point x ∈ π(W̃) ⊂ M̃ . If p ∈ P intersects W,
let γp,1, . . . , γp,np ∈ Γh be the distinct hyperbolic isometries whose axes
intersect W̃ and project onto the periodic orbit p. According to Lemma 3.1,
there exists C > 0 such that for every 1 6 i 6 np one has

np = nW̃(γp,i) >
1
C
nW(p) .

For each 1 6 i 6 np, pick zi(p) ∈ Aγp,i ∩ W̃ and let xi(p) = π(zi(p)) ∈ M̃ .
In particular, we have d(x, xi(p)) 6 diam π(W̃).
According to Lemma 2.3, there is a constant C ′ > 0 that only depends

on F , on diam π(W̃) and on the bounds on the sectional curvature of M̃
such that

∀ p ∈ P , ∀ i ,
∣∣∣∣∫
p

F −
∫ γp,ix

x

F̃

∣∣∣∣ =

∣∣∣∣∣
∫ γp,ixi(p)

xi(p)
F̃ −

∫ γp,ix

x

F̃

∣∣∣∣∣ 6 C ′ .
Hence we have∑

p∈P
nW(p)e

∫
p
F
6 CeC

′∑
p∈P

np∑
i=1

e

∫ γp,ix
x

F̃ 6 CeC
′∑
γ∈Γ

e

∫ γx
x

F̃
,

and the recurrence of F implies the divergence of (Γ, F ). �

4.2. Divergence implies recurrence

Lemma 4.2. — If (Γ, F ) is divergent, then F is recurrent relatively to
any open relatively compact subset W of T 1M which intersects Ω.

Proof. — Choose an open relatively compact lift W̃ of W to T 1M̃ . As-
sume that (Γ, F ) is divergent. As divergence is independent from the chosen
base point x ∈ M̃ , consider x ∈ Ω̃ ∩ π(W̃).
According to Lemma 2.6, there exist g1, . . . , gk ∈ Γ and S ⊂ Γ finite such

that ∑
γ∈Γ

e

∫ γx
x

F̃ 6
∑
γ∈S

e

∫ γx
x

F̃ +
∑
i,j

∑
γ′∈Γh

Aγ′∩W̃6=∅

e

∫ gjγ′g−1
i

x

x
F̃
.
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Let R0 = sup {d(x, gix) | i = 1, . . . , k}. Lemma 2.3 ensures that there exists
a constant C1 > 0 which depends only on F , R0 and the bounds on the
sectional curvature of M̃ such that for all 1 6 i, j 6 k,∣∣∣∣∣

∫ giγ
′g−1
j
x

x

F̃ −
∫ γ′x

x

F̃

∣∣∣∣∣ =

∣∣∣∣∣
∫ γ′g−1

j
x

g−1
i
x

F̃ −
∫ γ′x

x

F̃

∣∣∣∣∣ 6 C1 .

From this we deduce that∑
γ∈Γ

e

∫ γx
x

F̃ 6
∑
γ∈S

e

∫ γx
x

F̃ + k2eC1
∑
γ′∈Γh

Aγ′∩W̃6=∅

e

∫ γ′x
x

F̃
.

We can now reindex this last sum by summing first over p ∈ P, and then
over the hyperbolic isometries γ associated with p, i.e. those such that
PΓ(Aγ) = p and l(γ) = l(p), as follows.∑

γ∈Γh
Aγ∩W̃ 6=∅

e

∫ γx
x

F̃ =
∑
p∈P

∑
γ∈Γh

Aγ∩W̃6=∅
pγ=p

l(γ)=l(p)

e

∫ γx
x

F̃
.

Recall that for all p ∈ P meetingW, there exist only finitely many γp,1, . . . ,
γp,np ∈ Γh that project onto p, with l(γp,i) = l(p), and whose axis intersects
W̃. Thus this last sum is equal to∑

p∈P

np∑
i=1

e

∫ γp,ix
x

F̃
.

But according to Lemma 3.1, there exists C2 > 0 such that for every
1 6 i 6 np one has

np = nW̃(γp,i) 6 C2nW(p) .

As before, pick for every 1 6 i 6 np a point xi(p) ∈ π̃(Aγp,i ∩ W̃), that
satisfies d(xi(p), x) 6 diam π(W̃). Lemma 2.3 gives a constant C3 > 0
which depends only on F̃ , on diam π(W̃) and on the geometry of M̃ such
that for all p ∈ P and 1 6 i 6 np,∣∣∣∣∫ γp,ix

x

F̃ −
∫
p

F

∣∣∣∣ =

∣∣∣∣∣
∫ γp,ix

x

F̃ −
∫ γp,ixi(p)

xi(p)
F̃

∣∣∣∣∣ 6 C3 .

We finally get that∑
γ∈Γh

Aγ∩W̃6=∅

e

∫ γx
x

F̃ 6 C2e
C3
∑
p∈P

nW(p)e
∫
p
F
,
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and the divergence of (Γ, F ) implies the recurrence of F relatively toW. �

5. Finiteness of Gibbs measures for positive recurrent
potentials

The aim of this section is to prove Theorem 1.6. As noted the introduc-
tion, the only efficient tool to see whether a measure is finite or not is the
so-called Kac Lemma. Unfortunately, it is not very easy to use, and also
usually stated for single transformations, and not for flows. Translating this
statement in the criterion of Theorem 1.6 is the work done below.

5.1. Positive recurrence

For W̃ an open relatively compact subset of M̃ , we define the set

Γ
W̃

=
{
γ ∈ Γ

∣∣∣∣∣∃ y, y′ ∈ W̃ , [y; γy′] ∩ gW̃ 6= ∅ ⇒ W̃ ∩ gW̃ 6= ∅
or γW̃ ∩ gW̃ 6= ∅

}
of elements γ such that some interval [y; γy′] intersects ΓW̃ only around y
or γy′. When W̃ = B(x,R) for some x ∈ M̃ and R > 0, we shorten this
notation into Γx,R = ΓB(x,R). Note that for all g ∈ Γ, Γ

gW̃
= gΓ

W̃
g−1.

For any open and relatively compact set W̃ ⊂ T 1M̃ , and any γ ∈ Γ, we
define the W̃, γ-geodesic ball by

UW̃,γ =
{
v ∈ W̃

∣∣∣∃ t > 0, g̃t(v) ∈ γW̃
}
.

When W̃ = T 1B(x,R) for some x ∈ M̃ and R > 0, we simplify this
notation into

Ux,R,γ = UT 1B(x,r),γ .

We recall Definition 1.5 for the reader’s convenience. The pair (Γ, F̃ )
is said to be positive recurrent relatively to W̃ for some open relatively
compact set W̃ if P (F ) is finite, (Γ, F ) is divergent and the series∑

γ∈Γ
W̃

d(z, γz)e
∫ γz
z

(F̃−P (F ))
< +∞

for some z ∈ M̃ . According to Lemma 2.3, the behaviour of this series does
not depend on the choice of the point z ∈ M̃ . By replacing F by F −P (F ),
which does not change mF , we may also assume that P (F ) = 0.
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5.2. A Kac lemma for flows

Let (X,B, µ) be a measured space. If f : X → X and Y ∈ B, the return
time map TY to Y is defined by

TY : Y → N ∪ {+∞}
y 7→ inf {n > 1 | fn(y) ∈ Y }.

We start by recalling the statement of Kac’s Lemma for measure-preserving
invertible transformations, as stated in [1] or [20]. Note that this lemma
usually requires that the transformation is conservative, but the classical
proof shows that this hypothesis can be replaced by the amost sure finite-
ness of the return time in Y .

Lemma 5.1 (Kac’s Lemma for transformations). — Let (X,B, f, µ) be
a measured dynamical system, with f invertible and conservative. Let Y
be a set with 0 < µ(Y ) <∞. If the return time map TY is finite µ-almost
everywhere on Y , then∑

n>1
nµ ({TY = n}) = µ

(⋃
n∈Z

fn(Y )
)
.

Let X be a locally compact topological space equipped with the Borel
σ-algebra, and let (gt) be a continuous flow on X. For every W ⊂ X open
and ε > 0, we define the ε-hitting time of W by

∀ x ∈ X, τε,W (x) = inf
{
t > ε

∣∣ gt(x) ∈W
}
∈ [ε; +∞] .

We can now derive a Kac’s lemma for flows by applying Lemma 5.1 to the
ε-time of the flow. In particular, the ε-“margin of error” in the definition of
the ε-hitting time allows us to ignore any possible pathological behaviour
at the boundary of W . Although this proposition is the simplest analogue
of Kac’s lemma for flow that one can devise, we could not find any explicit
reference to this technique in the literature.

Proposition 5.2 (Kac’s lemma for flows). — Let X be a locally com-
pact topological space, B its Borel σ-algebra, (gt) a continuous flow on X,
and µ a Borel (gt)-invariant Radon measure on X, which is conservative.
Let W be an open relatively compact subset of X with positive µ-measure.
Then for every ε > 0, the set

Wε =
⋃

s∈[0;ε[

g−s(W )
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is open, relatively compact in X, the ε-hitting time map τε,W is finite
µ-almost everywhere on Wε and∑

k>0
kµ ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) = µ(X) .

Proof. — Fix ε > 0, and let

XW,k = {x ∈ X | τε,W (x) ∈ [εk; ε(k + 1)[}

be the set of points of the whole space X that ε-hit W after a time approx-
imately εk. Denote by f = gε the time-ε map of the flow. We have

x ∈ XW,k ⇔ ∃ t ∈ [εk; ε(k + 1)[ , gt(x) ∈W and ∀ s ∈ [ε; εk[ , gs(x) 6∈W

⇔ ∃ u ∈ [0; ε[ , fk(x) ∈ g−u(W )

and ∀ 1 6 i 6 k − 1 , ∀ s ∈ [0; ε[ , f i(x) 6∈ g−s(W )

⇔ fk(x) ∈Wε and ∀ 0 6 i 6 k − 1 , f i(x) 6∈Wε

with Wε as given in the statement. This set Wε is open, hence measurable.
Moreover, since W is relatively compact and the flow is continuous, Wε is
also relatively compact, and it contains W so it has positive µ-measure.
Thus

XW,k ∩Wε = {x ∈Wε |TWε
(x) = k}

with TWε
the f -return time map to Wε as defined before. Furthermore, if

we define
XW,∞ = {x ∈ X | τε,W (x) = +∞},

then the family of sets (XW,k)k>1 together with XW,∞ form a partition of
X and

XW,∞ ∩Wε = {x ∈Wε |TWε
(x) = +∞}.

Observe that µ(XW,∞ ∩Wε) = 0. Indeed, it is not straightforward that f
is conservative. However, the conservativity of (gt) ensures that µ-almost
every point ofW will return toW . Therefore, by definition ofWε, µ-almost
every point of Wε will return to Wε at some time multiple of ε. We can
now apply Lemma 5.1 to f and Wε to obtain that

µ

(⋃
k∈Z

fk(Wε)
)

=
∑
k>0

kµ ({TWε
= k})

=
∑
k>0

kµ ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) ,

where ⋃
k∈Z

fk(Wε) =
⋃
s∈R

gs(W )
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coincides µ-almost surely with X by conservativity of the geodesic flow. �

5.3. Positive recurrence implies finiteness of the Gibbs measure

The strategy of the proof of the theorem is very natural and simple. We
approximate the return time level sets {τε,W ∈ [εk; ε(k + 1)[}∩Wε appear-
ing in the above proposition by some products of shadows on the boundary,
whose mF -measure, thanks to Mohsen’s Shadow Lemma (Lemma 2.11),
can be expressed in terms of exponentials of integrals of F between points
of Γx. However, as the length of the next subsections shows, the rigorous
proof of this result is technically much more involved than the intuitive
idea. Recall that we only need to prove this result for P (F ) = 0.

Lemma 5.3. — Let M be a negatively curved orbifold, and F : T 1M →
R a Hölder continuous potential such that P (F ) = 0. For all x ∈ M̃ and
R > 0, there exist C > 0 and a finite set S ⊂ Γ such that for all γ ∈ Γ \ S,
we have

m̃F (Ux,R,γ) 6 Ce
∫ γx
x

F̃
.

We refer to Subsection 5.1 for the definition of Ux,R,γ .
Proof. — According to Lemma 2.8, there exists l0 > 0 such that for all

γ ∈ Γ satisfying d(x, γx) > l0, we have in the Hopf coordinates

Ux,R,γ ⊂ OγxB(x,R+ 1)×OxB(γx,R+ 1)× {τx(v) | v ∈ Ux,R,γ}.

Given any two vectors v, w ∈ Ux,R,γ , observe that both px(v) and px(w) are
inB(x,R), so that d(px(v), px(w)) 6 2R. This implies that |τx(v)−τx(w)| 6
2R and

Ux,R,γ ⊂ OγxB(x,R+ 1)×OxB(γx,R+ 1)× I2R ,

where I2R is some interval of R of length 2R.
We may assume that l0 is large enough so that Lemma 2.10 is satisfied

for balls of radius R + 1. Let S = {γ ∈ Γ | d(x, γx) < l0}. Fix γ ∈ Γ \ S.
The set OγxB(x,R+ 1)×OxB(γx,R+ 1) is relatively compact in ∂∞M̃ ×
∂∞M̃ \ {diagonal}, so that by continuity and positivity of the gap map,
there exists a constant C1 > 0 such that

for all (ξ, η) ∈ OγxB(x,R+ 1)×OxB(γx,R+ 1) , 1
DF,x(ξ, η)2 6 C1 .

Equation (2.2) defining the Gibbs measure m̃F implies therefore

m̃F (Ux,R,γ) 6 C1µ
F◦ι
x (OγxB(x,R+ 1))µFx (OxB(γx,R+ 1))2R.
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On the one hand, the measure µF◦ιx is a probability measure on ∂∞M̃ , so
µF◦ιx (OγxB(x,R + 1)) 6 1. On the other hand, Mohsen’s Shadow Lemma
(Lemma 2.11) ensures the existence of a constant C2 such that

µFx (OxB(γx,R+ 1)) 6 C2e

∫ γx
x

F̃
.

The lemma is proved with C = C1C22R. �

Lemma 5.4. — Let W be an open relatively compact subset of M . Fix
an open relatively compact lift W̃ of W to M̃ , and set W = T 1W ⊂ T 1M

and W̃ = T 1W̃ ⊂ T 1M̃ . For all ε > 0 and x ∈ M̃ , there exist R > 0 and
G ⊂ Γ finite such that the following holds.
For every v ∈ W such that τε,W(v) ∈ [εk; ε(k + 1)[ with k > 3, and any

lift ṽ of v to W̃, there exist g, h ∈ G and γ ∈ Γ
W̃

such that ṽ ∈ UW̃,hγg and
εk −R 6 d(x, γx) 6 ε(k + 1) +R.

Proof. — Since W̃ is relatively compact, there exists R > 0 such that
W̃ ⊂ B(x,R). The condition τε,W(v) ∈ [εk; ε(k + 1)[ with k > 3 means
that there exists T ∈ [εk; ε(k + 1)[ such that

v ∈ W and gT (v) ∈ W and ∀ s ∈ [ε;T − ε] , gs(v) 6∈ W ,

where 0 < ε < T − ε < T . Lift everything to M̃ . If zt = π(gt(ṽ)), observe
that

z0 ∈ W̃ and zT ∈ γ0W̃ and ∀ s ∈ [ε;T − ε] , zs 6∈ ΓW̃ ,

for some γ0 ∈ Γ. In particular, ṽ ∈ UW̃,γ0
.

Let us show now that we can replace γ0 by an element of Γ
W̃
. Define

G =
{
g ∈ Γ

∣∣∣∃ y, y′ ∈ W̃ , d(y, gy′) 6 ε
}
,

and note that

γ0Gγ
−1
0 =

{
g ∈ Γ

∣∣∣∃ y, y′ ∈ γ0W̃ , d(y, gy′) 6 ε
}
.

Notice also that

gW̃ ∩ [z0; zε] 6= ∅ ⇒ g ∈ G and gW̃ ∩ [zT−ε; zT ] 6= ∅ ⇒ g ∈ γ0Gγ
−1
0 .

Set I =
{
s ∈ [0; ε]

∣∣∣ zs ∈ GW̃}. There exists u ∈ I such that for every

g ∈ G with zu ∈ gW̃ , we have

∀ h ∈ Γ, hW̃ ∩ [zu; zε] 6= ∅ ⇒ hW̃ ∩ gW̃ 6= ∅ .

Indeed, otherwise we could find for every u ∈ I elements gu ∈ G and hu ∈ Γ
such that zu ∈ guW̃ and

huW̃ ∩ [zu; zε] 6= ∅ and huW̃ ∩ guW̃ = ∅ .
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In particular, note that hu ∈ G since huW̃ meets [z0; zε]. Denote by u∞ =
sup I ∈ I. Since G is finite, we can take an increasing sequence of (un)n
converging to u∞ such that gun = g and hun = h for every n. For every
n, there also exists vn ∈ [un; ε] such that zvn ∈ hW̃ . As h ∈ G, vn ∈ I

hence un 6 vn 6 u∞. Therefore both (un)n and (vn)n converge to u∞, and
taking the limit as n goes to infinity yields

zu∞ ∈ hW̃ ∩ gW̃ .

This is a contradiction. Likewise, there exists v ∈ {s ∈ [T − ε;T ] | zs ∈
γ0Gγ

−1
0 W̃} such that for every g ∈ γ0Gγ

−1
0 for which zv ∈ gγ0W̃ we have

∀ h ∈ Γ, hW̃ ∩ [zT−ε; zv] 6= ∅ ⇒ hW̃ ∩ gγ0W̃ 6= ∅ .

By definition of these u and v, one can find gu, gv ∈ G such that

zu ∈ guW̃ and zv ∈ (γ0gvγ
−1
0 )γ0W̃ .

Let γ1 = (γ0gvγ
−1
0 )γ0g

−1
u = γ0gvg

−1
u . Note that zv ∈ γ1guW̃ . The previous

discussion ensures that γ1 ∈ Γ
guW̃

= guΓ
W̃
g−1
u , therefore

γ = g−1
u γ1gu = g−1

u γ0gv ∈ Γ
W̃
,

and we still have ṽ ∈ UW̃,guγg−1
v

.
Finally, the triangle inequality gives that

|d(x, γx)− T | =
∣∣d(x, g−1

u γ0gvx)− d(z0, zT )
∣∣

6 |d(gux, γ0gvx)− d(zu, zv)|+ 2ε
6 d(gux, zu) + d(γ0gvx, zv) + 2ε < 2R+ 2ε

since zu ∈ guW̃ and zv ∈ γ0gvW̃ . Therefore εk − R′ 6 d(x, γx) 6
ε(k + 1) +R′ with R′ = 2R+ 2ε. �

Proposition 5.5. — Let W̃ be an open relatively compact subset of
M̃ such that T 1W̃ meets the nonwandering set Ω̃ of g̃t. If (Γ, F̃ ) is positive
recurrent relatively to W̃ , then mF is finite.

Proof. — Let W = PΓ(W̃ ), W = T 1W and z ∈ M̃ from the positive
recurrence property. Choose R such that W̃ ⊂ B(z,R). Fix ε > 0. If
v ∈ Wε, there exists s ∈ [0; ε[ such that v′ = gs(v) ∈ W. Now if τε,W(v) ∈
[εk; ε(k + 1)[, k > 4, then

τε,W(v′) ∈ [εk − s; ε(k + 1)− s[ ⊂ [ε(k − 1); εk[ t [εk; ε(k + 1)[ .

Since we assumed that k − 1 > 3, Lemma 5.4 gives the existence of R > 0
and G ⊂ Γ finite, both independent of v, such that for every lift ṽ′ of v′ to
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W̃ = T 1W̃ there are γ ∈ Γ
W̃

and g, h ∈ G such that

ε(k − 1)−R 6 d(z, γz) 6 ε(k + 1) +R and ṽ′ ∈ UW̃,hγg .

Therefore, any lift ṽ of v to W̃ will satisfy

ṽ ∈
⋃

γ∈Γ
W̃ ,k

⋃
g,h∈G

⋃
s∈[0;ε[

g̃−s
(
UW̃,hγg

)
⊂

⋃
γ∈Γ

W̃ ,k

⋃
g,h∈G

Uz,R+ε,hγg ,

where Γ
W̃ ,k

= {γ ∈ Γ
W̃
| ε(k − 1) − R 6 d(z, γz) 6 ε(k + 1) + R}. This

ensures that

∀ k > 4,mF ({τε,W ∈ [εk; ε(k+1)[} ∩Wε) 6
∑

γ∈Γ
W̃ ,k

∑
g,h∈G

m̃F (Uz,R+ε,hγg) .

According to Lemma 5.3, there exists S finite and C > 0 (both depending
on z, R and ε) such that

∀ k > 4,mF ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) 6 C
∑

γ∈Γ
W̃ ,k

∑
g,h∈G
hγg 6∈S

e

∫ hγgz
z

F̃
.

By Lemma 2.3, there is a constant C ′ > 0 which only depends on F̃ , the
geometry of M̃ and on sup {d(z, gz) | g ∈ G} < +∞ such that

∀ γ ∈ Γ,
∫ hγgz

z

F̃ =
∫ γgz

h−1z

F̃ 6 C ′ +
∫ γz

z

F̃ .

Hence if K = #G we get

∀ k > 4,mF ({τε,W ∈ [εk; ε(k + 1)[} ∩Wε) 6 CK2eC
′ ∑
γ∈Γ

W̃ ,k

e

∫ γz
z

F̃
.

For all k > k0 = max(6, 2R
ε ) and all γ ∈ Γ

W̃ ,k
, we have

d(z, γz) > ε(k − 1)−R > ε
(
k − 1− k

2

)
>
ε

3k .

Since (Γ, F ) is divergent, mF is ergodic and conservative (see Hopf–Tsuji–
Sullivan [14, Theorem 5.4]). Moreover, W meets Ω hence has positive mF -
measure. We can apply Lemma 5.2 to obtain

mF (T 1M) 6 A+ 3CK2eC
′

ε

∑
k>k0

∑
γ∈Γ

W̃ ,k

∑
g,h∈G

d(z, γz)e
∫ γz
z

F̃
,

where A is the finite sum of the first k0 − 1 terms in Kac’s lemma.
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Finally, note that for all γ ∈ Γ
W̃
, γ ∈ Γ

W̃ ,k
if and only if

d(z, γz)−R
ε

− 1 6 k 6 d(z, γz) +R

ε
+ 1 ,

which allows at most 2Rε + 3 possibilities. Therefore

mF (T 1M) 6 A+ 3CK2eC
′

ε

(
2R
ε

+ 3
) ∑
γ∈Γ

W̃

d(z, γz)e
∫ γz
z

F̃
,

and the positive recurrence of (Γ, F̃ ) with respect to W̃ implies that mF is
finite. �

5.4. Finiteness of the Gibbs measure implies positive recurrence

The aim of this section is to prove the following proposition which, com-
bined together with Proposition 5.5, will prove Theorem 1.6. The idea of
the proof, as said earlier, is very natural, even if the rigorous details take
a long time to be written.

Proposition 5.6. — Let M be a negatively curved orbifold and F :
T 1M → R a Hölder continuous potential such that P (F ) = 0. If mF is
finite, then (Γ, F̃ ) is positive recurrent relatively to any open relatively
compact subset W̃ ⊂ M̃ that intersects π(Ω̃).

Recall that when mF is finite, it is ergodic, so that (Γ, F ) is divergent.

Lemma 5.7. — For every x ∈ M̃ such that B(x,R) intersects π(Ω̃),
there exist C > 0 and S,G ⊂ Γ finite such that for all γ ∈ Γ\S, there exist
g, h ∈ G such that

m̃F

(
Ugx,R,γhg−1

)
> Ce

∫ γx
x

F̃
.

Proof. — The proof of this lemma is similar to the one of Lemma 5.3,
but we will use Lemma 2.12 instead of Lemma 2.11.

Take ε > 0 such that we still have B(x,R− 2ε)∩ π(Ω̃) 6= ∅. Lemma 2.12
applied to B(x,R − 2ε) gives us C1 > 0 and S,G ⊂ Γ finite such that for
all γ ∈ Γ there exist g, h ∈ G such that

1
C1
e

∫ γx
x

F̃ 6 µF◦ιx (OγxB(gx,R− 2ε))µFx (OxB(γhx,R− 2ε) 6 C1e

∫ γx
x

F̃
.

TOME 68 (2018), FASCICULE 2



486 Vincent PIT & Barbara SCHAPIRA

Thanks to Lemma 2.7 applied for δ = sup {d(x, gx) | g ∈ G}, there exists
l0 > 0 such that if d(x, γx) > l0 then

OγxB(gx,R− 2ε)×OxB(γhx,R− 2ε)
⊂ OγhxB(gx,R− ε)×OgxB(γhx,R− ε) .

But according to Lemma 2.9 (applied with ε
2 instead of ε), we can assume

that l0 is large enough that for all γ ∈ Γ satisfying d(x, γx) > l0, one has

OγhxB(gx,R− ε)×OgxB(γhx,R− ε)× {0} ⊂ Ugx,R− ε2 ,γhg−1 .

Indeed, for every v− ∈ OγhxB(gx,R− ε) and v+ ∈ OgxB(γhx,R− ε), the
geodesic (v−v+) intersects B(gx,R − ε

2 ), so that v = (v−, v+, 0) always
belongs to Ugx,R− ε2 ,γhg−1 . This implies easily that

OγhxB(gx,R− ε)×OgxB(γhx,R− ε)×
]
−ε2 ; ε2

[
⊂ Ugx,R,γhg−1 .

We may assume that l0 is large enough so that Lemma 2.10 is satisfied for
balls of radiusR−ε. By possibly adding finitely many elements to S, we may
also assume that d(x, γx) > l0. The setOγhxB(gx,R−ε)×OgxB(γhx,R−ε)
is relatively compact in ∂∞M̃ × ∂∞M̃ \ {diagonal}, thus continuity and
positivity of the gap map ensure the existence of C2 > 0 such that

∀ (ξ, η) ∈ OγxB(gx,R− ε)×OgxB(γhx,R− ε), 1
DF,x(ξ, η)2 > C2 .

Therefore, by (2.2) of the Gibbs measure m̃F , we have

m̃F (Ugx,R,γhg−1) > C2µ
F◦ι
x (OγhxB(gx,R− ε))µFx (OgxB(γhx,R− ε))

>
C2

C1
e

∫ γx
x

F̃
. �

For γ ∈ Γ, define

Ex,R,γ,ε =
{
v ∈ T 1B(x,R)

∣∣∣∣∣
{
∃ t > 2ε, gt(v) ∈ T 1B(γx,R)
∀ s ∈ [ε; t− ε] , gs(v) 6∈ ΓT 1B(x,R)

}
.

The following lemma ensures that a geodesic ball Ux,R,γ with γ “close”
from ΓB(x,R) is contained in a compact union of sets of the type Ex,R−ε,γ′,ε
which, as we will see later, project to vectors with ε-return time into T 1W

comparable with d(x, γx).

Lemma 5.8. — Assume that B(x,R) ⊂ W̃ with x ∈ M̃ \ Σ̃. For every
ε ∈ ]0;R[ and every D > 0, there exist finite subsets S,G ⊂ Γ and θ > 0
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such that for every γ0 ∈ Γ
W̃
\ S, every h ∈ Γ such that d(x, hx) 6 D, and

every γ ∈ Γ satisfying d(γ0x, γhx) 6 D we have

Uhx,R−ε,γ ⊂
⋃
g∈G

⋃
γ′∈γ0Gg−1

⋃
s∈[0;θ]

g−s (Egx,R−ε,γ′,ε).

Proof. — Since W̃ is relatively compact and H is finite, we can pick
R1 > max(R,D) such that

B(x,R) ⊂ W̃ ⊂ B(x,R1) .

By definition of γ0 ∈ Γ
W̃
, there exist y, y′ ∈ W̃ ⊂ B(x,R1) such that,

if [y; γ0y
′] intersects some gW̃ , then gW̃ intersects either W̃ or γ0W̃ . In

particular, since B(gx,R) ⊂ gW̃ ⊂ B(gx,R1), then either d(y, gx) 6 2R1
or d(γ0y

′, gx) 6 2R1.
Let ε ∈ ]0;R[, and ρε = ρ1(2R, 3R1) − log ε given by Lemma 2.4 for

the open relatively compact subsets B(x,R − ε) ⊂ B(x,R). By possibly
increasing it, we may assume that ρε > 3R1. Therefore, a ball B(gx,R)
at distance greater than ρε both from y and y′ cannot intersect [y; γ0y

′].
Lemma 2.4 ensures that for such g ∈ Γ the ball B(gx,R− ε) does not meet
any segment [z; z′] with d(y, z), d(γ0y

′, z′) 6 3R1.
Now take h and γ such that d(x, hx) 6 D and d(γ0x, γhx) 6 D. If

v ∈ Uhx,R,γ , we have for some T > 0

d(π(v), y) 6 R1 +D +R1 6 3R1 and d(π(gT (v)), γ0y
′) 6 3R1 .

Thus, for 0 6 t 6 T , gt(v) ∈ T 1B(gx,R− ε) only if d(y,B(gx,R)) 6 ρε or
d(γ0y

′, B(gx,R)) 6 ρε, which implies respectively

d(x, gx) 6 R1 + ρε +R or d(γ0x, gx) 6 R1 + ρε +R .

We denote by G = {g ∈ Γ | d(x, gx) 6 R1 +R+ ρε}. Observe that

{g ∈ Γ | d(γ0x, gx) 6 R1 +R+ ρε} = γ0G,

hence both sets are finite and have same cardinality.
Let v ∈ Uhx,R−ε,γ , i.e. v ∈ T 1B(hx,R− ε) and gtv (v) ∈ T 1B(γhx,R− ε)

for some tv > 0 satisfying

tv = d(π(v), π(gtv (v))) > d(hx, γhx)−2(R−ε) > d(x, γ0x)−2(D+R−ε) .

We recall that gs(v) ∈ T 1B(gx,R − ε) may only happen for g ∈ G ∪ γ0G.
If for example g ∈ G, note that

s = d(π(v), π(gs(v))) 6 d(hx, gx)+2(R−ε) 6 D+R1+R+ρε+2(R−ε) = θ .

Since every ball of M̃ is convex, the set

Iv =
{
t ∈ ]0; tv[

∣∣ gt(v) ∈ ΓT 1B(x,R− ε)
}
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is open and made of finitely many connected components included in ]0; θ[∪
]tv − θ; tv[. Let

S = {γ0 ∈ Γ | d(x, γ0x) 6 2θ + 2(D +R− ε)} ,

so that γ0 6∈ S implies tv > 2θ and these two intervals are disjoint. Fur-
thermore, we have that

(1) there exists sv ∈ ]0; θ[ such that gsv (v) ∈ T 1B(gvx,R− ε) for some
gv ∈ G ;

(2) there exists uv ∈ ]tv − θ; tv[ such that guv (v) ∈ T 1B(hvx,R−ε) for
some hv ∈ γ0G ;

(3) gt(v) 6∈ ΓT 1B(x,R− ε) for all t ∈ [sv + ε;uv − ε].
This means exactly that gsv (v) ∈ Egvx,R−ε,γ′,ε where γ′ is an isometry
mapping gvx to hvx. Since x 6∈ Σ̃, γ′ satisfies γ′gv = hv, i.e. γ′ ∈ γ0Gg

−1
v .

This concludes the proof. �

For all k > 1, we define

Γ
W̃ ,k

=
{
γ ∈ Γ

W̃

∣∣∣ d(x, γx) ∈ [k − 1; k[
}
.

Lemma 5.9. — Let R, ε > 0 and G ⊂ Γ finite. There are two constants
C,L > 0 such that the following holds : for every g ∈ G and every k > 1

m̃F

 ⋃
γ∈Γ

W̃ ,k

⋃
γ′∈γGg−1

⋃
s∈[0;ε[

g−s (Egx,R,γ′,ε)


6 CmF

 ⋃
s∈[0;ε[

g−s
({
τ
ε,T 1B(π̃(x),R) ∈ [k − L; k + 1 + L[

}).
Proof. — Take v ∈ Egx,R,γ′,ε with γ ∈ Γ

W̃ ,k
, g ∈ G and γ′ = γhg−1 for

some h ∈ G. This means that v ∈ T 1B(gx,R), gt(v) ∈ T 1B(γ′gx,R) for
some t > 2ε, and

∀ s ∈ [ε; t− ε] , gs(v) 6∈ ΓT 1B(x,R) .

In particular, t must satisfy |t− d(gx, γ′gx)| 6 2R, which implies, by tri-
angular inequality,

|t− d(x, γx)| 6 2(R+ L0) ,
where L0 = sup {d(x, gx) | g ∈ G}. Denote by W = T 1B(PΓ(x), R) the
projection of T 1B(x,R) in T 1M . Then PΓ(v) satisfies

(1) PΓ(v) ∈ W ;
(2) PΓ(gt(v)) ∈ W ;
(3) ∀ s ∈ [ε; t− ε] , PΓ(gs(v)) 6∈ W.
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Therefore

τε,W(PΓ(v)) ∈ [t− ε; t] ⊂ [d(x, γx)− L; d(x, γx) + L[ ⊂ [k − L; k + 1 + L[

with L = 2(R+ L0) + ε− 1. In other words,

PΓ (Egx,R,γ′,ε) ⊂ {τε,W ∈ [k − L; k + 1 + L[} ,

where the set on the right hand side depends neither on γ nor on γ′. Hence⋃
γ∈Γ

W̃ ,k

⋃
γ′∈γGg−1

⋃
s∈[0;ε[

g−s (Egx,R,γ′,ε)

⊂ P−1
Γ

 ⋃
s∈[0;ε[

g−s ({τε,W ∈ [k − L; k + 1 + L[})

.
The union on the left is relatively compact in T 1M̃ , because included in
T 1B(gx,R+ε). Therefore, any w ∈

⋃
s∈[0;ε[ g

−s ({τε,W ∈ [k−L; k+1+L[})
has finitely many preimages that lie in the union of the left hand side, their
number being bounded from above by

C = # {h ∈ Γ |B(gx,R+ ε) ∩B(hgx,R+ ε) 6= ∅},

which is actually independent of g. As mF is the measure induced by m̃F

on the quotient space T 1M , this concludes the proof of the lemma. �

Lemma 5.10. — For all x ∈ M̃ and R > 0, there exists a constant C > 0
such that for every k > 1

∑
γ∈Γ

W̃ ,k

m̃F (Ux,R,γ) 6 Cm̃F

 ⋃
γ∈Γ

W̃ ,k

Ux,R,γ

.
Proof. — Assume that γ, γ′ ∈ Γ

W̃ ,k
are such that Ux,R,γ ∩ Ux,R,γ′ 6= ∅.

There exist v ∈ T 1B(x,R) and t, s > 0 such that gt(v) ∈ T 1B(γx,R) and
gs(v) ∈ T 1B(γ′x,R). Without loss of generality, assume that t 6 s. We
have

d(γx, γ′x) 6 d(γx, π(gt(v))) + s− t+ d(π(gs(v)), γ′x) 6 s− t+ 2R.

But on the one hand,

t = d(π̃(v), π̃(gt(v))) > d(x, γx)− 2R > k − 1− 2R,

and on the other hand

s = d(π̃(v), π̃(gt(v))) 6 d(x, γx) + 2R 6 k + 2R.
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Therefore d(γx, γ′x) 6 1 + 6R i.e. γ′ ∈ γG where G = {g ∈ Γ | d(x, gx) 6
1 + 6R} is finite. This ensures that

∑
γ∈Γ

W̃ ,k

m̃F (Ux,R,γ) 6 Cm̃F

 ⋃
γ∈Γ

W̃ ,k

Ux,R,γ

,
where C = #G. �

We can now prove Proposition 5.6.

Proof. — Recall that we assumed that P (F ) = 0. Since Σ̃ is locally finite,
there exists x ∈ W̃ and 0 < R1 < R2 such that

T 1B(x,R1) ∩ Ω̃ 6= ∅ and B(x,R1) ⊂ B(x,R2) ⊂ W̃ .

Lemma 5.7 ensures that there exist finite sets S1, G1 ⊂ Γ and a constant
C1 > 0 such that for all γ ∈ Γ \ S1, there exist g, h ∈ G1 such that

e

∫ γx
x

F̃ 6
1
C1
m̃F

(
Ugx,R1,γhg−1

)
.

Fix k > 1. We have∑
γ∈Γ

W̃ ,k
\S1

e

∫ γx
x

F̃ 6
1
C1

∑
g,h∈G1

∑
γ∈Γ

W̃ ,k

m̃F

(
Ugx,R1,γhg−1

)
.

According to Lemma 5.10, there is a constant C2 > 0 which does not
depend on k such that

∑
γ∈Γ

W̃ ,k
\S1

e

∫ γx
x

F̃ 6
C2

C1

∑
g,h∈G1

m̃F

 ⋃
γ∈Γ

W̃ ,k

Ugx,R1,γhg−1

.
Observe that if g, h ∈ G1 then

d(γhg−1(gx), γx) = d(hx, x) 6 D = sup {d(x, gx) | g ∈ G1} .

Therefore, Lemma 5.8 applied with R = R2, ε < R2 −R1 and this D gives
the existence of finite sets S2, G2 ⊂ Γ and of θ < Nε such that for every
g, h ∈ G1 one has

∀ γ ∈ Γ
W̃
\ S2,Ugx,R1,γhg−1 ⊂ Ugx,Rε,γhg−1

⊂
⋃

g′∈G2

⋃
γ′∈γG2g′−1

⋃
s∈[0;θ]

g−s (Eg′x,Rε,γ′,ε) ,
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with Rε = R2 − ε > R1. Assume that S1 ⊂ S2. The (gt)-invariance of m̃F

gives ∑
γ∈Γ

W̃ ,k
\S2

e

∫ γx
x

F̃

6Mk + C3
∑
g∈G2

m̃F

 ⋃
γ∈Γ

W̃ ,k

⋃
γ′∈γG2g−1

⋃
s∈[0;ε[

g−s (Egx,Rε,γ′,ε)

,
where

C3 = C2N

C1
(#G1)2 and Mk = C2

C1

∑
g,h∈G1

m̃F

 ⋃
γ∈Γ

W̃ ,k
∩S2

Ugx,Rε,γhg−1

.
Note that Mk is finite, and even Mk = 0 for k > k0 since S2 is finite.

Apply now Lemma 5.9 with R = Rε to obtain two constants C4, L > 0
such that∑

γ∈Γ
W̃ ,k
\S2

e

∫ γx
x

F̃

6Mk + C3C4#G2mF

 ⋃
s∈[0;ε[

g−s ({τε,W ∈ [k − L; k + 1 + L[})

,
where W = T 1B(x,Rε) ⊃ T 1B(x,R1). If we denote by C5 = C3C4#G2
and

B =
∑
k>1

k
∑

γ∈Γ
W̃ ,k
∩S2

e

∫ γx
x

F̃

which is finite since S2 is finite, we get∑
γ∈Γ

W̃

d(x, γx)e
∫ γx
x

F̃

6 B +
∑
k>1

k
∑

γ∈Γ
W̃ ,k
\S2

e

∫ γx
x

F̃

6 B +
k0∑
k>1

kMk + C5
∑
k>1

kmF ({τε,W ∈ [k − L; k + 1 + L[} ∩Wε)

6 B +
k0∑
k>1

kMk + C5(2L+ 1)
∑
k>1

kmF ({τε,W ∈ [k; k + 1[} ∩Wε) .
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Since W contains T 1B(x,R1), it meets the nonwandering set Ω, hence
mF (W) > 0 and we can apply Kac’s Lemma 5.2 to finally obtain∑

γ∈Γ
W̃

d(x, γx)e
∫ γx
x

F̃ 6 B +
k0∑
k>1

kMk + C5(2L+ 1)mF (T 1M) < +∞ .

Therefore (Γ, F̃ ) is positive recurrent relatively to W̃ . �

6. An intermediate technical criterion of positive
recurrence in the universal cover

In this section, we prove a slightly modified version of the preceding
criterion (Theorem 1.6), which will allow us to prove Theorem 1.4 in the
next section. We introduce a notion of (Γ, F̃ )-positive recurrence with mul-
tiplicity N > 1, and prove that it is still equivalent to the finiteness of
mF .

For an open relatively compact set W̃ ⊂ M̃ , and N > 1, define

Γ?
W̃

(N) =
{
γ ∈ Γ

∣∣∣∃ y, y′ ∈ W̃ ,#
{
g ∈ Γ \ {id}

∣∣∣ [y; γy′] ∩ gW̃ 6= ∅
}
6 N

}
.

Of course, N 7→ Γ?
W̃

(N) is increasing, and for all g ∈ Γ,

Γ?
gW̃

(N) = gΓ?
W̃

(N)g−1 .

Theorem 6.1 (Alternative criterion). — Let M be a negatively curved
orbifold with pinched negative curvature, and F : T 1M → R a Hölder
continuous potential with P (F ) < +∞. Let mF be its associated Gibbs
measure on T 1M .

(1) If F is recurrent, and if there exists an open relatively compact
subset W̃ of M̃ meeting π(Ω̃) such that for some x ∈ M̃ ,∑

γ∈Γ?
W̃

(N)

d(x, γx)e
∫ γx
x

(F̃−P (F ))
< +∞ ,

with N > N
W̃

= 2#{g ∈ Γ \ {id} | W̃ ∩ gW̃ 6= ∅} + 1, then mF is
finite.

(2) If mF is finite, then F is recurrent, and for all x ∈ M̃ and N > 1,
we have ∑

γ∈Γ?
W̃

(N)

d(x, γx)e
∫ γx
x

(F̃−P (F ))
< +∞ ,

for every open relatively compact subset W̃ of M̃ .
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As in the previous sections, we can assume that P (F ) = 0, and we
will prove Theorem 6.1 as an immediate consequence of the following two
lemmas.

Lemma 6.2. — Let W̃ be an open relatively compact subset of M̃ . If
(Γ, F̃ ) is positive recurrent relatively to W̃ , then

∀ z ∈ M̃, ∀ N > 1,
∑

γ∈Γ?
W̃

(N)

d(z, γz)e
∫ γz
z

F̃
< +∞ .

Proof. — We shall show the convergence of this series by induction over
N > 1.

If γ ∈ Γ?
W̃

(1), then there are y, y′ ∈ W̃ such that [y; γy′] only meets W̃
and γW̃ , which naturally ensures that γ ∈ Γ

W̃
. Therefore Γ?

W̃
(1) ⊂ Γ

W̃
,

and the positive recurrence of (Γ, F̃ ) relatively to W̃ implies the conver-
gence of the series for N = 1.

We now assume that (Γ, F̃ ) is positive recurrent relatively to W̃ , and that
the sum converges for some N > 1. Let γ ∈ Γ?

W̃
(N + 1) \Γ?

W̃
(N), and pick

y, y′ ∈ W̃ such that [y; γy′] intersects g0W̃ = W̃ , g1W̃ , . . . gN+1W̃ = γW̃

where the gi are distinct. Suppose W̃ ⊂ B(z,R) for some R > 0. Except
for possibly finitely many γ, one has d(z, γz) > 12R, so that W̃ ∩ γW̃ = ∅.

Let

Iγ = {i ∈ {1, . . . , N} | d(z, giz) > 2R and d(γz, giz) > 2R}.

We shall first treat the case where Iγ 6= ∅. Pick some i ∈ Iγ and w ∈
[y; γy′] ∩ giW̃ . Then d(y, w) > 0, d(w, γy′) > 0, and there are at most N
copies gjW̃ that will intersect [y;w] ∪ [w; γy′], since they do not intersect
respectively γW̃ and W̃ by definition of i ∈ Iγ . Therefore gi ∈ Γ?

W̃
(N) and

γg−1
i ∈ Γ?

giW̃
(N), or in other words g−1

i γ ∈ Γ?
W̃

(N). Moreover, we have
either

d(z, giz) > d(y, w)− 2R > d(y, γy′)
2 − 2R > d(z, γz)

2 − 3R > d(z, γz)
4 ,

or similarly

d(z, g−1
i γz) = d(giz, γz) >

d(z, γz)
4 .
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Assume the former happens, for the second case can be treated similarly.
Remembering that d(giz, γz) > 2R, and thanks to Lemma 2.3, we get

d(z, γz)e
∫ γz
z

F̃ 6 4eCd(z, giz)e
∫ giz
z

F̃
e

∫ g−1
i

γz

z
F̃

6
2eC

R
d(z, giz)e

∫ giz
z

F̃
d(z, g−1

i γz)e
∫ g−1

i
γz

z
F̃
.

For every γ such that Iγ 6= ∅, we can find some gγ = gi ∈ Γ?W (N) such that
this estimate (or its symmetric version for g−1

i γ) holds. It follows that

∑
γ∈Γ?

W̃
(N+1)

Iγ 6=∅

d(z, γz)e
∫ γz
z

F̃

6
2eC

R

∑
γ∈Γ?

W̃
(N+1)

Iγ 6=∅

d(z, gγz)e
∫ gγz
z

F̃
d(z, g−1

γ γz)e
∫ g−1

γ γz

z
F̃

6
2eC

R

∑
g∈Γ?

W̃

(N)

d(z, gz)e
∫ gz
z

F̃
∑

h∈Γ?
W̃

(N)

d(z, hz)e
∫ hz
z

F̃
,

and this upper bound is finite by the recurrence hypothesis. To go from
the second to the third line above, observe that in the above reasoning
γ ∈ Γ?W (N+1) can be written γ = gh, so that for a given pair g, h ∈ Γ?W (N),
there is at most one γ = gh in the left sum.

Now assume that Iγ = ∅. Let G = {g ∈ Γ | d(x, gx) 6 2R}. Reasoning as
in the proof of Lemma 5.4, we can find g ∈ G, g′ ∈ γGγ−1, w ∈ gW̃ and
w′ ∈ g′W̃ such that

hW̃ ∩ [w;w′] 6= ∅ ⇒ hW̃ ∩ gW̃ 6= ∅ or hW̃ ∩ g′W̃ 6= ∅ ,

which means that g′g−1 ∈ Γ
gW̃

, or in other words that γ′ = g−1g′ ∈ Γ
W̃
.

Moreover, note that

d(z, γ′z) = d(gz, g′z) > d(z, γz)− 4R > 8R.

Applying once again Lemma 2.3, we get the existence of a constant C
(depending on R) such that

d(z, γz)e
∫ γz
z

F̃ 6 (4R+ d(gz, g′z))eC+
∫ g′z
gz

F̃
6

3
2e

Cd(z, γ′z)e
∫ γ′z
z

F̃
.
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This also ensures that the series∑
γ∈Γ?

W̃
(N+1)

Iγ=∅

d(z, γz)e
∫ γz
z

F̃

converges. Combining those two cases together, we get the convergence of
the series for N + 1. �

Lemma 6.3. — For every W̃ ⊂ M̃ open relatively compact, there exists
N
W̃
> 1 such that if

∃ N > N
W̃
,∃ z ∈ W̃ ,

∑
γ∈Γ?

W̃

(N)

d(z, γz)e
∫ γz
z

F̃
< +∞ ,

then (Γ, F̃ ) is positive recurrent relatively to W̃ .

Proof. — Set

N
W̃

= 2#
{
g ∈ Γ \ {id}

∣∣∣ W̃ ∩ gW̃ 6= ∅}+ 1 .

Let γ ∈ Γ
W̃
. If y, y′ ∈ W̃ are such that

[y; γy′] ∩ gW̃ 6= ∅ ⇒ W̃ ∩ gW̃ 6= ∅ or γW̃ ∩ gW̃ 6= ∅ ,

then clearly at most N
W̃

copies gW̃ with g 6= id can meet [y; γy′], thus
γ ∈ Γ?

W̃
(N

W̃
). We just showed that Γ

W̃
⊂ Γ?

W̃
(N

W̃
), and we always have

Γ?
W̃

(N
W̃

) ⊂ Γ?
W̃

(N) when N > N
W̃
, so the result is proved. �

7. Positive recurrence for the geodesic flow on the
manifold

In this section, we shall prove Theorem 1.4. We will assume once again
that P (F ) = 0.

Lemma 7.1. — Let W ⊂ M be open relatively compact, W = T 1W

and fix any open relatively compact lift W̃ of W to M̃ , so that W̃ = T 1W̃ .
There exists a constant C > 1 such that, for all z ∈ M̃ and N > 1, if∑

γ∈Γ?
W̃

(CN)

d(z, γz)e
∫ γz
z

F̃
< +∞ ,

then ∑
p∈P′W

nW(p)6N

l(p)e
∫
p
F
< +∞ .
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Proof. — According to Lemma 3.1, there exists C > 1 which depends
only on W̃ such that

∀ p ∈ P ′, 1
C
nW̃(p) 6 nW(p) 6 CnW̃(p) .

Pick p ∈ P ′W with nW(p) 6 N and γp ∈ Γh an hyperbolic element in the
conjugacy class associated with p. Then

0 < 1
C
6

1
C
nW(p) 6 nW̃(γp) = nW̃(p) 6 CnW(p) 6 CN .

In particular, one must have at least n = nW̃(γp) > 1, so fix zp ∈ π̃(Aγp)∩
W̃ . As γp is primitive, the geodesic segment [zp; γp(zp)] will meet at most n
copies gW̃ where g 6= id, for each of them yields a distinct conjugate gγpg−1

whose axis meets W̃. This ensures that γp ∈ Γ?
W̃

(CN), and therefore∑
p∈P′W

nW(p)6N

l(p)e
∫
p
F
6

∑
γp∈Γh∩Γ?

W̃

(CN)

d(zp, γpzp)e
∫ γpzp
zp

F̃
.

Finally, since zp ∈ W̃ , which is relatively compact, there exists a R > 0
such that d(zp, z) 6 R for any p. In particular,

d(zp, γpzp) 6 2R+ d(z, γpz) 6 2d(z, γpz)

whenever γp does not belong to the finite set S =
{
γ ∈ Γ

∣∣ d(z, γz) < R
2
}
.

Moreover, Lemma 2.3 gives the existence of a constant C ′ such that∫ γpzp

zp

F̃ 6 C ′ +
∫ γz

z

F̃ .

Therefore, ∑
p∈P′W

nW(p)6N

l(p)e
∫
p
F
6 A+ 2eC

′ ∑
γ∈Γ?

W̃

(CN)

d(z, γz)e
∫ γz
z

F̃
,

where A is the finite sum of terms that correspond to elements γp ∈ S.
This concludes the proof. �

Lemma 7.2. — Let W be an open relatively compact subset of M such
that T 1W meets Ω. For every open relatively compact lift W̃ ⊂ M̃ of W
to M̃ , and for every W̃ ′ open and relatively compact subset of W̃ , there
exists K > 0 such that for all N > 1, if∑

p∈P′W′
nW(p)6N+K

l(p)e
∫
p
F
< +∞ ,
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with W ′ = PΓ(T 1W̃ ′) ⊂ T 1W , then

∀ x ∈ M̃,
∑

γ∈Γ?
W̃

(N)

d(x, γx)e
∫ γx
x

F̃
< +∞ .

Proof. — By a routine application of Lemma 2.3, we may assume that
the base point x lies in W̃ ∩ π(Ω̃).

Take R > 0 such that W̃ ⊂ B(x,R). Since W̃ ′ is relatively compact
in W̃ , ε = d(W̃ ′, M̃ \ W̃ ) > 0. Lemma 2.4 gives then the existence of
ρε = ρ1(R,R)− log ε such that for every y, y′, z, z′ ∈ W̃ , if g ∈ Γ satisfies

[y; y′] ∩ gW̃ 6= ∅ and [z; z′] ∩ gW̃ = ∅ ,

then either d(y, gW̃ ) 6 ρε, or d(y′, gW̃ ) 6 ρε, or gW̃ ′ does not meet [z; z′].
In particular, pick γ ∈ Γ?

W̃
(N), and y, y′ ∈ W̃ such that [y; γy′] meets at

most N copies gW̃ , with g 6= id. Denote by K the cardinal

K = 2# {g ∈ Γ | d(x, gx) 6 ρε +R},

which depends on both W̃ and W̃ ′, but not on F , y, y′ and γ. Fix z, z′ ∈ W̃ .
Then [z; γz′] can meet hW̃ ′ only if either hW̃ meets [y; γy′], or

d(x, hx) 6 d(x, y) + d(y, hW̃ ) 6 ρε +R or d(γx, hx) 6 ρε +R.

Therefore there are at most N + K copies hW̃ ′ which meet any segment
[z; z′] going from W̃ to γW̃ , and K only depends on W̃ and W̃ ′.
According to Lemma 2.6, there exist g1, . . . , gk ∈ Γ and a finite set

S ⊂ Γ such that for every γ ∈ Γ \ S, there are i, j such that γ′ = g−1
j γgi

is hyperbolic and its axis π̃(Aγ′) meets W̃ ′. Moreover, the previous dis-
cussion ensures that if γ ∈ Γ?

W̃
(N) then γ′ ∈ Γ?

W̃ ′
(N + K), where the

segment going from W̃ ′ to γ′W̃ ′ meeting at most N + K copies hW̃ ′
can be chosen as [zγ′ ; γ′zγ′ ] where zγ′ ∈ W̃ ′ ∩ π̃(Aγ′). Denote by R1 =
sup {d(x, gix) | i = 1, . . . , k}, so that

∣∣d(g−1
j x, γ′g−1

i x)− d(zγ′ , γ′zγ′)
∣∣ 6 d(x, gix) + d(x, gjx) + 2d(x, zγ′)
6 2(R1 +R) .
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If C1 is the constant given by Lemma 2.3 for R2 = 2(R1 +R), then∑
γ∈Γ?

W̃

(N)

d(x, γx)e
∫ γx
x

F̃

6 A+
∑
i,j

∑
γ′∈Γ?

W̃ ′
(N+K)∩Γh

d(g−1
j x, γ′g−1

i x)e

∫ γ′g−1
i

x

g
−1
j

x
F̃

6 A+ k2
∑

γ′∈Γ?
W̃ ′

(N+K)∩Γh

(R2 + d(zγ′ , γ′zγ′))e
C+
∫ γ′z

γ′
z
γ′

F̃

,

where A is the sum over the elements γ ∈ S. By possibly adding finitely
many elements to S, we may assume that every γ 6∈ S satisfies d(x, γ′x) >
R2 + 2R so that

d(zγ′ , γ′zγ′) > d(x, γ′x)− 2R > R2 .

Therefore∑
γ∈Γ?

W̃

(N)

d(x, γx)e
∫ γx
x

F̃ 6 A+ 2k2
∑

γ∈Γ?
W̃ ′

(N+K)∩Γh

l(γ)e
∫
pγ
F
,

where pγ is the periodic orbit associated with γ ∈ Γh.
Our goal is now to obtain a sum over primitive hyperbolic isometries.

Recall that γ ∈ Γ?
W̃ ′

(N + K) means that [zγ ; γzγ ] meets q copies gW̃ ′

with g 6= id and q 6 N + K. Therefore, if such γ can be written γn0 with
γ0 ∈ Γ′h and n > 1, then n must divide q and furthermore γ0 ∈ Γ?

W̃ ′
( qn ) ⊂

Γ?
W̃ ′

(N +K). This means that

∑
γ∈Γ?

W̃ ′
(N+K)∩Γh

l(γ)e
∫
pγ
F
6

∑
16n6N+K

∑
γ0∈Γ?

W̃ ′
(N+K)∩Γ′

h

nl(γ0)e
n
∫
pγ0

F
.

For every p ∈ P ′W′ with nW(p) 6 N+K, there are exactly nW′(p) primitive
hyperbolic isometries γ ∈ Γ?

W̃ ′
(N +K) ∩ Γ′h such that pγ = p. Therefore

∑
γ0∈Γ?

W̃ ′
(N+K)∩Γ′

h

l(γ0)e
∫
pγ0

F
=

∑
p∈P′W′

nW′ (p)6N+K

nW′(p)l(p)e
∫
p
F

6 (N +K)
∑

p∈P′W′
nW′ (p)6N+K

l(p)e
∫
p
F
,
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which is finite by hypothesis. Moreover, l(γ0) > 1 except for maybe finitely
many γ0 in the above sum, hence the series

∑
γ0∈Γ?

W̃ ′
(N+K)∩Γ′

h

e

∫
pγ0

F
6 A′ + (N +K)

∑
p∈P′W′

nW′ (p)6N+K

l(p)e
∫
p
F

is convergent. This implies in particular that there exists a constant C ′
such that

∫
pγ0

F 6 C ′ for every γ0 ∈ Γ?
W̃ ′

(N +K)∩Γ′h. Gathering all these
elements together, we obtain

∑
γ∈Γ?

W̃ ′
(N+K)∩Γh

l(γ)e
∫
pγ
F

6

 ∑
16n6N+K

ne(n−1)C′

 ∑
γ0∈Γ?

W̃ ′
(N+K)∩Γ′

h

l(γ0)e
∫
pγ0

F

6
(N +K)3

2 e(N+K−1)C′
∑

p∈P′W′
nW′ (p)6N+K

l(p)e
∫
p
F
,

which proves precisely the statement of this lemma. �

Let us now complete the proof of Theorem 1.4.

Proof. — First, if mF is finite, we know by Theorem 6.1(2) that F is
recurrent and that (Γ, F̃ ) is positive recurrent in the sense of Theorem 6.1
for all N > 1 and x ∈ M̃ . By Lemma 7.1, this implies that F is positive
recurrent in the sense of Definition 1.3.
Conversely, if F is positive recurrent in the sense of Definition 1.3 for

some N > K where

K = 2# {g ∈ Γ | d(x, gx) 6 ρε +R} ,

then Lemma 7.2 implies that (Γ, F̃ ) will be positive recurrent in the sense
of Theorem 6.1 for some integer greater than N − K > 1 and, since F
is assumed to be recurrent in the sense of Definition 1.1, Theorem 6.1(1)
implies that mF is finite. �
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8. Finiteness of Gibbs measures from equidistribution of
weighted periodic orbits

8.1. An equidistribution result for nonprimitive orbits

If γ is an hyperbolic isometry, denote by Lγ the Lebesgue measure along
γ, that is the measure defined on T 1M̃ by∫

ϕ̃dLγ =
∫
R
ϕ̃(g̃t(ṽ)) dt

for any compactly supported continuous function ϕ̃ on T 1M̃ , where ṽ is
any vector of Aγ . This definition ignores the multiplicity of γ : if γ = γk0
with γ0 primitive, then Lγ = Lγ0 .
If p is a periodic orbit of the geodesic flow, denote by Lp the Lebesgue

measure along p, that is the measure defined on T 1M by∫
ϕdLp =

∫ l(p)

0
ϕ(gt(v)) dt

for any compactly supported continuous function ϕ on T 1M , where v is
any vector of p. This definition takes into account the multiplicity of the
periodic orbit : if p is the k-th iterate of a primitive periodic orbit p0, then
Lp = kLp0 . In the following, we will denote by m(p) the multiplicity of a
periodic orbit p ∈ P.
We remark that if Π : µ̃ 7→ µ denotes the projection of locally finite

Γ-invariant measures through the branched cover T 1M̃ → T 1M , then for
every γ0 ∈ Γh primitive we have

Π

∑
g∈Γ
Lg−1γ0g

 = Lp0 ,

where p0 is the primitive periodic orbit on which the axis of γ0 projects.
The third finiteness criterion will be derived from the next equidistribu-

tion result for weighted sums of measures supported on nonprimitive peri-
odic orbits of the geodesic flow, which itself requires the Gibbs measure to
be mixing. Note that by virtue of Babillot’s theorem (see [3, Theorem 1])
this is equivalent to the nonarithmeticity of the length spectrum, regardless
whether the Gibbs measure is finite or not. In more dynamical terms, it is
also equivalent to the topological mixing of the geodesic flow.

Theorem 8.1. — Let M = Γ\M̃ be a negatively curved orbifold with
pinched negative curvature, topologically mixing geodesic flow, and let F :
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T 1M → R be a Hölder continuous potential. Assume that the pressure
P (F ) is finite and positive. Define

νF,t = P (F )e−P (F )t
∑
p∈P
l(p)6t

e

∫
p
F 1
m(p)Lp .

(1) If mF is finite, then νF,t converges weakly to mF
‖mF ‖ .

(2) If mF is infinite, then νF,t converges weakly to 0.

Proof. — According to the remark above, νF,t can be rewritten in terms
of primitive periodic orbits as

νF,t = δe−δt
∑
k>1

∑
p∈P′
kl(p)6t

e
k
∫
p
FLp .

Since Π : µ̃ 7→ µ is continuous with respect to the weak convergence of
measures, and Π(m̃F ) = mF , it is enough to study the weak convergence
of the sequence

ν′F,t = δe−δt
∑
k>1

∑
γ∈Γ′h
kl(γ)6t

e
k
∫ γzγ
zγ

F̃
Lγ = δe−δt

∑
γ∈Γh
l(γ)6t

e

∫ γzγ
zγ

F̃
Lγ ,

where zγ ∈ M̃ is any point on the invariant axis of γ on M̃ . The first step of
the proof of [14, Theorem 9.11] shows that ν′F,t weak-star converges to m̃F

‖m̃F ‖
(respectively 0) whenever mF is finite (respectively infinite), therefore νF,t
weak-star converges to mF

‖mF ‖ or 0 accordingly. �

Theorem 8.2. — Let M = Γ\M̃ be a negatively curved orbifold with
pinched negative curvature, topologically mixing geodesic flow, and let F :
T 1M → R be a Hölder continuous potential. Assume that the pressure
P (F ) is finite and positive. For c > 0, define

ζF,c,t = P (F )
1− e−cP (F ) e

−P (F )t
∑
p∈P

t−c<l(p)6t

e

∫
p
F 1
m(p)Lp ,

with the convention that δ
1−e−cδ = 1 when c = 0.

(1) If mF is finite, then ζF,c,t converges weakly to mF
‖mF ‖ for every c > 0.

(2) If mF is infinite, then ζF,c,t converges weakly to 0 for every c > 0.

Proof. — First assume that mF is finite. It is enough to show the con-
vergence of this sequence of measures when tested against nonnegative
continuous functions with compact support in T 1M . Let ϕ be such a test
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function. If
∫
ϕdmF = 0, then the support of ϕ does not meet the non-

wandering set Ω, so ζF,c,t = 0 and the result holds. Otherwise denote by
δ = P (F ), set κ = max(0,−δ) + 1 so that δ+ κ > 1 and mF+κ = mF , and
let Pϕ = {p ∈ P | p ∩ suppϕ 6= ∅} as well as

f : Pϕ → [0; +∞[
p 7→ l(p)

and g : Pϕ → [0; +∞[

p 7→ ‖mF ‖∫
ϕdmF

e

∫
p
F 1
m(p)

∫
p
ϕdLp .

With these notations, Theorem 8.1 applied to the potential F + κ ensures
that

lim
t→+∞

(δ + κ)e−(δ+κ)t
∑
p∈Pϕ
f(p)6t

eκf(p)g(p) = 1 .

Note that f is proper since only finitely many periodic orbits of length
smaller than some constant can meet the support of ϕ. Therefore Lemma 9.5
from [14] shows that for every c > 0 one has

lim
t→+∞

δ

1− e−cδ e
−δt

∑
p∈Pϕ

t−c<f(p)6t

g(p) = 1 ,

which means exactly that
∫
ϕdζF,c,t converges to

∫
ϕdmF .

Now assume that mF is infinite, and take κ as before so that δ + κ > 0.
If ϕ is a nonnegative continuous function with compact support in T 1M ,
note that

∫
ϕdζF,c,t is comparable with

δ

1− e−cδ
1

δ + κ

(∫
ϕdνF+κ,t −

∫
ϕdνF+κ,t−c

)
= δ

1− e−cδ e
−δt

∑
p∈P

t−c<l(p)6t

e(l(p)−t)κe

∫
p
F 1
m(p)

∫
p

ϕdLp ,

which goes to 0 as t goes to infinity following Theorem 8.1(2). �

8.2. Proof of Theorem 1.8

In this section, the assumptions of Theorem 1.8 are satisfied. The geo-
desic flow is topologically mixing, and F is a Hölder continuous potential
with finite pressure. For W ⊂ T 1M , c > 0 and t > 0, define

Zc,t(F,W) =
∑
p∈P

t−c<l(p)6t

nW(p)e
∫
p
(F−P (F ))

.
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Lemma 8.3. — If mF is finite, then for every open relatively compact
set W meeting Ω and every c > 0 there exist a constant C > 0 and t0 > 0
such that

∀ t > t0 , Zc,t(F,W) > C .

Proof. — Fix c > 0, and denote by δ = P (F ) the pressure of F . First,
Lemma 3.2 ensures that for everyW ′ ⊂ W, there is a constant C1 > 0 such
that

∀ t > 0 , Zt,c(F,W ′) 6 C1Zt,c(F,W) .
It is therefore enough to show the result when π(W) = B(x,R) intersects
π(Ω) but R is small enough that the Γ-images of B(x,R) in M̃ are pairwise
disjoint. Let ϕ : T 1M → R be a continuous map with compact support in
W, such that

∫
ϕdmF > 0 and 0 6 ϕ 6 1. Since π(W) is a small ball, the

intersection ofW with a periodic orbit p of the geodesic flow is a collection
of at most nW(p) geodesic segments of length smaller than the diameter of
W, each of them being visited m(p) times. Hence

∀ p ∈ P ,
∫
ϕdLp 6 nW(p)m(p)2R.

According to Theorem 8.2 (1), the finiteness of mF gives that

lim
t→+∞

e−δt
∑
p∈P

t−c<l(p)6t

e

∫
p
F 1
m(p)

∫
ϕdLp = 1− e−cδ

δ‖mF ‖

∫
ϕdmF = C2 > 0 .

Therefore, with δ = P (F ), there is a t0 > 0 such that for all t > t0,
C2

2 e−cδ 6
∑
p∈P

t−c<l(p)6t

e

∫
p
(F−δ) 1

m(p)

∫
ϕdLp 6 2RZt,c(F,W) . �

Lemma 8.4. — If mF is finite, then for every open relatively compact
set W intersecting Ω and every c > 0 there is a constant C > 0 such that

∀ t > 0, Zt,c(F,W) 6 C .

Proof. — Since the set Σ of singular points of M is locally finite, we
can cover W by a finite collection of open relatively compact sets Wi =
T 1B(xi, Ri) for which there is an ε > 0 such that for each i we have

• either xi 6∈ Σ̃ and the Γ-images of B(xi, Ri + ε) in M̃ are pairwise
disjoint, in which case we let si = 1 ;

• or xi ∈ Σ̃ and B(xi, Ri + ε) ∩ gB(xi, Ri + ε) if and only if g is
an elliptic isometry fixing xi, in which case we denote by si the
cardinal of the stabilizer of xi.
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Let S = max si < +∞. Lemma 3.2 gives then a constant C1 such that

∀ p ∈ P , nW(p) 6 C1
∑
i

nWi
(p) .

It is therefore enough to find an upper bound when W = T 1B(xi, Ri) for
every i. Let ϕ : T 1M → R be a continuous map with compact support such
that ϕ = 1 on T 1B(xi, Ri + ε). By definition of xi and Ri, the intersection
of T 1B(xi, Ri+ε) with a periodic orbit p that meetsW is a collection of at
least nW(p) geodesic segments of length greater than 2ε, each of them being
visited m(p) times. However, at most si copies of these geodesic segments
in the universal cover are going to project onto the same geodesic segment
of M . Hence

∀ p ∈ P ,
∫
ϕdLp >

nW(p)m(p)
si

2ε > nW(p)m(p)
S

2ε.

According to Theorem 8.2 (1), the finiteness of mF gives that

lim
t→+∞

e−δt
∑
p∈P

t−c<l(p)6t

e

∫
p
F 1
m(p)

∫
ϕdLp = 1− e−cδ

δ‖mF ‖

∫
ϕdmF < +∞ .

Therefore there is a C2 > 0 such that

∀ t > 0 , 2ε
S
Zt,c(F,W) 6

∑
p∈P
l(p)6t

e

∫
p
(F−P (F )) 1

m(p)

∫
ϕdLp 6 ecδC2 . �

The same proof using Theorem 8.2(2) instead of (1) yields immediately
the following result.

Lemma 8.5. — If mF is infinite, then for every W open relatively com-
pact meeting Ω and every c > 0 we have

lim
t→+∞

Zt,c(F,W) = 0 .

9. Applications

In this section, we show that our results let us retrieve some partial
finiteness criteria existing in the litterature. It is likely that our criteria will
allow to find new interesting examples where the Bowen–Margulis measure
is finite, in addition to known examples of [2, 15].
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9.1. Finiteness of Gibbs measures on geometrically finite
manifolds

Geometrically finite manifolds are the most simple negatively curved
manifolds with infinite volume. We refer to [5] for details on their geometry.
Recall simply that they can be decomposed into the union of a compact
part, finitely many finite volume ends, the cusps, and finitely many infinite
volume ends, the funnels.
Moreover, the nonwandering set Ω⊂ T 1M of such a manifold is (transver-

sally) a Cantor set completely included in the unit tangent bundle of the
compact part and of the cusps. Therefore, dynamically, we can forget the
funnels.
In [8], Dal’bo–Otal–Peigné proposed a finiteness criterion for the so-called

Bowen–Margulis measure of such manifolds which is, in our terminology,
the Gibbs measure m0 associated with the zero potential F ≡ 0. It has
been generalized in [7] to all Gibbs measures. We refer to [14], where it was
also discussed, because the notations and construction of [7] are slightly
different (although equivalent).
Recall that for such manifolds, the lift to the universal cover of a cusp

is called a horoball, and the stabilizer of a horoball in Γ is a parabolic
subgroup, denoted by Π.

Let F : T 1M → R be a Hölder continuous potential, and F̃ be its Γ-
invariant lift to T 1M̃ . Recall that the pressure P (F ) that we consider since
the beginning is the critical exponent of the Poincaré series∑

γ∈Γ
e

∫ γx
x

(F̃−s)
,

The finiteness criterion from Dal’bo–Otal–Peigné–Coudène can be stated
in this way.

Theorem 9.1 ([7, 8, 14]). — Let M be a negatively curved geometri-
cally finite orbifold with pinched negative curvature, and F : T 1M → R
a Hölder continuous potential with finite pressure. Assume that (Γ, F ) is
divergent (i.e. F recurrent). Then the Gibbs measure mF is finite if and
only if the series ∑

π∈Π
d(x, πx)e

∫ πx
x

(F̃−P (F ))

converges for every parabolic subgroup Π < Γ.

We will infer immediately this result from the following proposition.
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Proposition 9.2. — The convergence of the series above is exactly
given by our criterion of positive recurrence of Definition 1.5 applied to a
connected lift W̃ inside a fundamental domain of the compact part of M .
Proof. — As usual, we may assume that P (F ) = 0. Let W̃ be the lift to

the universal cover of this compact part into a connected domain inside a
Dirichlet fundamental domain for the action of Γ on M̃ . We may assume
that the frontier of W̃ is the union of finitely many submanifolds of M̃ of
codimension 1, so that the intersection of any geodesic segment with this
frontier is a finite union of segments.
Now recall the definition of Γ

W̃
: it is the set of elements γ such that,

for some y, y′ ∈ W̃ , the geodesic [y; γy′] will intersect ΓW̃ only at the
beginning and at the end. More precisely, this geodesic intersects gW̃ if
and only if gW̃ ∩ W̃ 6= ∅ or gW̃ ∩ γW̃ 6= ∅. Geometrically on M = Γ\M̃ ,
it means that except during a time bounded from above by diam(W ) at
the beginning and at the end, and maybe except for finitely many γ, the
projection PΓ([y; γy′]) has to leave the compact part in the middle. This
is possible only if it enters inside some cusp C and then returns in the
compact part.
Lift this cusp to a horoball C̃ which has a common boundary with W̃ (and

therefore γW̃ ). Without loss of generality, we can assume that both y and
y′ lie on this common boundary ∂C̃ ∩ ∂W̃ . Therefore, there exists some
parabolic element π inside the parabolic subgroup Π stabilizing C̃ such
that πy′ ∈ ∂C̃ ∩ ∂γW̃ . Except maybe during a bounded length (less than
2 diam W̃ ), the geodesic segments [y; γy′] and [y;πy′] stay uniformly close
(at distance less than diam W̃ ), uniformly in π ∈ Π, so that

∣∣∣∫ γxx F̃ −
∫ πx
x

F̃
∣∣∣

stay uniformly bounded by a constant depending only on F and diam W̃ .
Thus, the series

∑
γ∈Γ

W̃

d(x, γx)e
∫ γx
x

F̃ is bounded from above, up to
some constant, by the sum over the finite number of parabolic subgroups
stabilizing a horoball with a common frontier with W̃ , of the sum∑
p∈Π d(x, πx)e

∫ πx
x

F̃ .
Conversely, the same reasoning shows that Π < Γ

W̃
, so that the reverse

inequality is trivial. This concludes the proof of the proposition. �

9.2. Existence of finite Bowen–Margulis measures on
geometrically infinite manifolds

We shall now apply our criteria to recover the finiteness of the Bowen–
Margulis measure mBM = m0 (which is the measure of maximal entropy,
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associated with any potential cohomologous to a constant), for free prod-
ucts of Kleinian groups in Schottky position as discussed in [15].
Recall first the main result in [15].

Theorem 9.3 (Peigné, [15]). — There exist geometrically infinite hy-
perbolic manifolds of dimension at least 4 with finite Bowen–Margulis mea-
sure mBM = m0. These manifolds are constructed by taking the free prod-
uct of two Kleinian subroups of SOo(4, 1) in Schottky position one of them
geometrically infinite inside some SOo(3, 1) < SOo(4, 1), the second diver-
gent with a larger critical exponent.

Let us briefly explain its construction. Let G and H be two Kleinian
groups, i.e. two nonelementary discrete torsion-free groups of orientation-
preserving isometries of the d-dimensional standard hyperbolic space Hd+1

(d > 1) with constant curvature −1. They are said to be in Schottky
position when there exist two closed disjoint sets FG, FH ⊂ Sd such that

G?(Sd \ FG) ⊂ FG and H?(Sd \ FH) ⊂ FH ,

where G? = G \ {idG} and H? = H \ {idH}. Note that the limit set Λ(G)
of G must be a subset of FG since the fixed points of hyperbolic elements
of G can only lie in FG, and likewise Λ(H) ⊂ FH .
A variation of the ping-pong lemma shows that the group Γ generated

by G and H is equal to the free product Γ = G ? H of G and H, and that
the limit set Λ(Γ) of Γ is included in FG ∪ FH . Any γ ∈ Γ has a unique
representation γ = g1h1 . . . gnhn where n > 1, g1 ∈ G, gj ∈ G? (j > 1),
hn ∈ H and hj ∈ H? (j < n). We denote by ΓG the subset of γ ∈ Γ
which are written gγ′ with g ∈ G? in this representation, and we define ΓH
similarly, so that Γ is the disjoint union of Γ = ΓG t ΓH t {id}.
In the following, we will readily identify G and H with their respective

images by the canonical inclusions G → G ? H and H → G ? H. We will
also denote by δG, δH and δΓ = P (0) the respective critical exponents of
G, H and Γ = G ? H, i.e. the exponents of convergence of the Poincaré
series ∑

g∈G
e−sd(x,gx),

∑
h∈H

e−sd(x,hx) and
∑
γ∈Γ

e−sd(x,γx) .

Theorem ([15, Theorem A]). — Let Γ = G ? H be the free product of
two Kleinian groups in Schottky position. If δG > δH and G is divergent,
then δΓ > max(δG, δH), Γ is divergent and its Bowen–Margulis measure is
finite.

These assumptions are satisfied in particular with G a convex cocom-
pact subgroup, which is always divergent, and H a geometrically infinite
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subgroup of SOo(3, 1) < SOo(4, 1). By conjugating G and H, it is easy
to obtain the inequality δG > δH , and the fact that they are in Schottky
position. When d > 2, one can even assume H to be finitely generated but
non geometrically finite.
We will use the criterion from Theorem 1.6 to retrieve the finiteness of the

Bowen–Margulis measure in these examples. To achieve this, we first need
the following lemma which will help us to choose the right open relatively
compact subset.

Lemma 9.4. — For every x ∈ Hd+1, there exists R > 0 such that

∀ g ∈ ΓG , ∀ h ∈ ΓH , [g(x);h(x)] ∩B(x,R) 6= ∅ .

Proof. — Take UG and UH two open sets of Hd+1 ∪ Sd, respectively
containing FG and FH , and whose closures are disjoint. In particular, there
is a R > 0 such that

∀ η ∈ UG , ∀ ξ ∈ UH , d(x, ]η; ξ[) < R.

The Schottky position condition ensures that the attractive fixed point of
any element of ΓG must lie in FG, therefore the ΓG-orbit of x accumulates in
FG, and only finitely many g ∈ ΓG are such that g(x) 6∈ UG. Hence we may
assume that R is large enough so that g(x) ∈ UG whenever d(x, g(x)) > R,
and likewise that h(x) ∈ UH whenever d(x, h(x)) > R. In any case, the
geodesic segment [g(x);h(x)] will meet B(x,R). �

We now use notations from Theorem 1.6, and we take W̃ = B(x,R) with
a fixed x and R large enough according to Lemma 9.4 and Theorem 1.6.
We will prove the following.

Proposition 9.5. — For W̃ = B(x,R) with R given by Lemma 9.4,
(Γ, F̃ ) is positive recurrent, and therefore mF is finite.

Lemma 9.6. — There exists S ⊂ Γ finite such that

Γ
W̃
\ S ⊂ G ∪H .

Proof. — If γ 6∈ G ∪ H, then it can be written γ = ghγ′ or γ = hgγ′,
with g ∈ G?, h ∈ H? and hγ′ 6∈ G (respectively gγ′ 6∈ H). We only consider
the first case, the second case being similar. Note that

ghγ′ 6∈ Γ
W̃
⇔ hγ′g 6∈ g−1Γ

W̃
g = Γ

g−1W̃
.

Now consider the geodesic segment

I =
[
g−1(x);hγ′(x)

]
=
[
g−1(x);hγ′gg−1(x)

]
.
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Both g−1W̃ and hγ′W̃ intersect I, but according to Lemma 9.4 W̃ also
intersects I. Finally, there is only a finite set S of such γ for which g−1W̃

or hγ′W̃ meets W̃ , so that if γ ∈ ΓW̃ \ S, then γ ∈ G ∪H. �

We can now complete the proof. Since δΓ > max(δG, δH) we have∑
g∈G

d(x, gx)e−δΓd(x,gx) < +∞ ,

and the same goes for H. Therefore,∑
γ∈G∪H

d(x, γx)e−δΓd(x,γx) < +∞ ,

and Theorem 1.6 ensures that the Bowen–Margulis measure mBM = m0
of T 1M is finite.
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