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SCAFFOLDS AND GENERALIZED INTEGRAL GALOIS
MODULE STRUCTURE

by Nigel P. BYOTT, Lindsay N. CHILDS & G. Griffith ELDER

Abstract. — Let L/K be a finite, totally ramified p-extension of complete
local fields with residue fields of characteristic p > 0, and let A be a K-algebra
acting on L. We define the concept of an A-scaffold on L, thereby extending and
refining the notion of a Galois scaffold considered in several previous papers, where
L/K was Galois and A = K[G] for G = Gal(L/K). When a suitable A-scaffold
exists, we show how to answer questions generalizing those of classical integral
Galois module theory. We give a necessary and sufficient condition, involving only
numerical parameters, for a given fractional ideal to be free over its associated
order in A. We also show how to determine the number of generators required
when it is not free, along with the embedding dimension of the associated order. In
the Galois case, the numerical parameters are the ramification breaks associated
with L/K. We apply these results to biquadratic Galois extensions in characteristic
2, and to totally and weakly ramified Galois p-extensions in characteristic p. We
also apply our results to the non-classical situation where L/K is a finite primitive
purely inseparable extension of arbitrary exponent that is acted on, via a higher
derivation (but in many different ways), by the divided power K-Hopf algebra.
Résumé. — Soit L/K une extension finie et totalement ramifiée, de degré une

puissance de p, de corps locaux complets dont le corps résiduel a caractéristique
p > 0. Soit A une K-algèbre qui opère sur L. Nous définissons le concept d’un
A-échafaudage sur L. Ceci étend et raffine la notion d’échafaudage galoisien, que
nous avons considérée dans plusieurs articles antérieurs, où L/K était une exten-
sion galoisienne et A = K[G] pour G = Gal(L/K). Dans le cas où il existe un
A-échafaudage convenable, nous montrons comment résoudre des questions qui
généralisent celles de la théorie classique des modules galoisiens des anneaux des
entiers. Nous donnons une condition nécessaire et suffisante, qui contient seule-
ment des paramètres numériques, pour qu’un idéal fractionnaire quelconque soit
un module libre sur son ordre associé dans A. Nous montrons aussi comment dé-
terminer le nombre de générateurs dont on a besoin si l’idéal n’est pas libre, et la
dimension d’immersion de l’ordre associé. Dans le cas galoisien, les paramètres nu-
mériques sont les nombres de ramification de L/K. Nous appliquons ces résultats
aux extensions galoisiennes biquadratiques de caractéristique 2, et aux extensions
totalement et faiblement ramifiées, de degré une puissance de p et de caractéris-
tique p. Nous appliquons nos résultats aussi à la situation non classique où L/K
est une extension finie, purement inséparable, d’exposant quelconque, sur laquelle
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966 Nigel P. BYOTT, Lindsay N. CHILDS & G. Griffith ELDER

opère la K-algèbre de Hopf des puissances divisées par une dérivation supérieure
(mais avec beaucoup d’actions différentes).

1. Introduction

Let K be a local field with residue field of characteristic p > 0, and let
L be a finite Galois extension of K with Galois group G. We write OK ,
OL for the valuation rings of K, L, respectively, and PK , PL for their
maximal ideals. Then OL is a module over the integral group ring OK [G].
By Noether’s criterion [35], it is a free module if and only if the extension
L/K is at most tamely ramified. In order to study integral Galois module
structure for wildly ramified extensions, H.-W. Leopoldt [30] introduced
the associated order

AL/K = {α ∈ K[G] : α ·OL ⊆ OL}

of OL in the group algebra K[G]. Over the last fifty years, many authors
have investigated, in various situations, when OL is free as a module over
AL/K , or, more generally, when a fractional ideal Ph

L of OL is free as a
module over its associated order in K[G]; see for instance [1, 3, 5, 7, 18, 25,
32, 33, 39, 42]. For a comprehensive overview of this area, and a far more
extensive bibliography, we refer the reader to the survey [44].
Our goal here is to give a systematic presentation of a new approach to

such questions of integral Galois module structure, in a somewhat general-
ized sense. This approach is restricted to totally ramified extensions of local
fields L/K, whose degree is a power pn of the residue characteristic p, and
which admit an action by a K-algebra A of dimension pn. An A-scaffold on
L consists of certain special elements in A which act on suitable elements of
L in a way which is tightly linked to the valuation on L. The most obvious
setting where scaffolds may occur is that described above, where L/K is a
Galois extension with Galois group G = Gal(L/K) and A = K[G]. Our ap-
proach is not, however, limited to that situation. We will show in §5 how it
can be applied to a divided power Hopf algebra A acting in many different
ways on an inseparable field extension. Other inseparable examples have
been given by Koch [27, 28]. Our approach could also be used for different
Hopf Galois structures on a given separable (but not necessarily normal)
field extension, as described by Greither and Pareigis [22].
When L/K admits an A-scaffold, L is a free module over A, in analogy

to the Normal Basis Theorem of Galois theory. We can then consider any
fractional ideal Ph

L of OL as a module over its associated order in A,

A(h,A) = {α ∈ A : α ·Ph
L ⊆ Ph

L},
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and ask whether it is a free module. It is in this sense that our work
is concerned with “generalized” integral Galois module structure. An A-
scaffold comes with a “precision” parameter, and the existence of a scaffold
of high enough precision will enable us to extract a considerable amount of
information about the A(h,A)-module Ph

L; not only can we determine if it
is free, but (following [39] for extensions of degree p), we can also find the
minimal number of generators required when it is not free, and obtain the
embedding dimension of A(h,A). An important feature of our approach is
that all this information depends on purely numerical data, namely certain
parameters bi attached to the scaffold (playing the role of ramification
breaks) and the exponent h of the ideal Ph

L under consideration. Given the
existence of a scaffold with specified parameters bi, our results are therefore,
in some sense, universal: they are independent of the characteristic (0 or
p) of the fields involved, and, in the Galois case, independent of the precise
structure of the Galois group. In particular, our results make no distinction
between abelian and non-abelian extensions. Moreover, we obtain exactly
the same results for, say, inseparable extensions as for Galois extensions,
provided that the parameters coincide.
The intuition underlying our notion of a scaffold can be explained some-

what informally as follows. Let vK , vL denote normalized valuations such
that vK(K×) = vL(L×) = Z. Given any positive integers bi for 1 6 i 6 n

such that p - bi, there are elements Xi ∈ L such that vL(Xi) = −pn−ibi.
Since the valuations, vL, of the monomials

Xa = X
a(0)
n X

a(1)
n−1 . . . X

a(n−1)
1 : 0 6 a(i) < p,

provide a complete set of residues modulo pn and, since L/K is totally
ramified of degree pn, these monomials provide a convenient K-basis for L.
The action of A on L is clearly determined by its action on the monomials
Xa. So if there were Ψi ∈ A for 1 6 i 6 n such that each Ψi acts on
the monomial basis element Xa of L as if it were the differential operator
∂/∂Xi (with the Xi treated as independent variables), namely

(1.1) ΨiXa = a(n−i)Xa/Xi ,

then the monomials in the Ψi (with exponents at most p−1) would furnish
a convenient basis for A whose effect on the Xa would be easy to follow.
As a consequence, the determination of the associated order of a particular
ideal Ph

L, and of the structure of this ideal as a module over its associated
order, would be reduced to purely numerical considerations. This remains
true if (1.1) is loosened to the congruence

(1.2) ΨiXa ≡ a(n−i)Xa/Xi (mod (Xa/Xi)Pc
L)

TOME 68 (2018), FASCICULE 3



968 Nigel P. BYOTT, Lindsay N. CHILDS & G. Griffith ELDER

for a sufficiently large “precision” c. The Ψi, together with the Xa, con-
stitute an A-scaffold on L. Our formal definition of an A-scaffold (Defini-
tion 2.3) is a generalization of this situation. When the equality (1.1) holds,
our scaffold has precision c =∞.
We now explain the background to this work. In the papers [13, 14, 19],

the first- and third-named authors began to develop the theory of scaffolds
in the setting of Galois extensions. There, the parameters bi of these Ga-
lois scaffolds are just the ramification breaks of the extension L/K. These
scaffolds all have precision ∞, apart from those on cyclic extensions of
degree p2 in [13]. The main result of [19] is the existence of a Galois scaf-
fold for a certain class of arbitrarily large elementary abelian extensions in
characteristic p (the “near one-dimensional extensions”). The Galois mod-
ule structure of the valuation ring in such extensions L/K is investigated
in [14], where a necessary and sufficient condition (in terms of the bi) is
given for OL to be free over AL/K . This condition turns out to be equiva-
lent to that given by Miyata [33] (and reformulated in [10]) for a class of
cyclic Kummer extensions in characteristic 0. The striking observation that
the same numerical condition holds for two apparently unrelated families
of extensions, differing both in Galois group and in characteristic, suggests
that the methods used in [14] to study Galois module structure for near
one-dimensional extensions might be applied more widely. The present pa-
per develops the machinery to substantiate this idea, while [13] indicates
the limitations of our approach by demonstrating that most extensions
will not admit a scaffold. In any case, our method is necessarily restricted
to totally ramified extensions of p-power degree, since if L/K admits an
A-scaffold, then it possesses a “valuation criterion”: there is an integer b
such that any element of L of valuation b is a free generator of L over
A (see Proposition 2.12). This property, which can be viewed as a strong
version of the Normal Basis Theorem, has been studied in a number of
papers [11, 12, 20, 38, 43], and can only hold when L/K is totally ramified
and of p-power degree (see [38, Prop. 1.2] for the Galois case).

When the residue field of K is perfect, we know from [19] that Galois
scaffolds exist for all totally ramified biquadratic extensions in characteris-
tic 2, and for all totally and weakly ramified p-extensions in characteristic
p. To illustrate the sort of explicit information our methods can yield, we
examine these two classes of extensions in detail (see Theorems 4.1 and 4.2).
However, in this paper we are not primarily concerned with the problem
of actually constructing A-scaffolds. In a separate paper [15], we give a
criterion for a totally ramified Galois p-extension to have a Galois scaffold

ANNALES DE L’INSTITUT FOURIER
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of a given precision. This enables us to give an explicit construction for a
class of extensions in characteristic 0 which admit Galois scaffolds. These
have elementary abelian Galois groups of arbitrarily large rank, and are the
analogs in characteristic 0 of the near one-dimensional extensions in charac-
teristic p constructed in [19]. They include the totally ramified biquadratic
extensions and the totally and weakly ramified p-extensions satisfying some
additional hypotheses. Under these hypotheses, our Galois module results
for biquadratic and weakly ramified extensions in characteristic p will also
hold in characteristic 0.
Our work is somewhat similar in spirit to that of Bondarko [6, 7, 8],

who considers the existence of ideals free over their associated orders in
the context of totally ramified extensions of p-power degree. (Unlike us,
Bondarko only considers Galois extensions.) Bondarko introduces the class
of semistable extensions. Any such extension contains at least one ideal free
over its associated order, and all such ideals can be determined from nu-
merical data. Moreover, any abelian extension containing an ideal free over
its associated order, and satisfying certain additional assumptions, must
be semistable. Abelian semistable extensions can be completely character-
ized in terms of the Kummer theory of (one-dimensional) formal groups. It
would be of interest to understand the precise relationship between Bon-
darko’s approach and our own, and we intend to return to this question in
future work.
Finally, regarding the hypotheses needed on the ground field K, we note

that our main results on A-scaffolds do not require the residue field of K
to be perfect. However, in order to construct scaffolds on particular fam-
ilies of Galois extensions (as we do in [13, 14, 15, 19]), this hypothesis is
essential. The hypothesis is also convenient when discussing higher ram-
ification groups, since the standard exposition [37] of higher ramification
theory makes use of it at various points. We will therefore not include the
condition that K has perfect residue field among the running hypotheses of
this paper, but will impose it from time to time when considering examples.

1.1. Outline of the paper

In §2 we define the notion of an A-scaffold on L and obtain some of its
properties. A detailed discussion of the relationship between the A-scaffolds
considered here and the Galois scaffolds of our earlier papers is relegated
to an Appendix at the end of the paper. Our main results, Theorems 3.1

TOME 68 (2018), FASCICULE 3
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and 3.6, relating A-scaffolds to generalized integral Galois module struc-
ture, will be stated and proved in §3. In §4, we give some applications of our
approach to Galois extensions, discussing in detail biquadratic extensions
and weakly ramified extensions. Finally, in §5, we consider A-scaffolds on
inseparable extensions L/K, where A is a divided power Hopf algebra.

2. A-scaffolds

In this section, we consider a totally ramified extension L/K of local
fields, together with a K-algebra A which has a K-linear action on L.
We assume that the residue field κ of K has characteristic p > 0. The
characteristic of K may be either 0 or p. We do not require κ to be perfect.
We assume that L/K has degree pn, and that dimK A = pn.

Before giving the definition of an A-scaffold on L, we require some
notation. We set Spn = {0, 1, . . . , pn − 1} and Sp = {0, 1, . . . , p − 1},
and we identify each s ∈ Spn with its vector of base-p coefficients (s) =
(s(n−1), . . . , s(0)) ∈ Snp where

(2.1) s =
n∑
i=1

s(n−i)p
n−i .

This indexing of the base-p digits as s(n−i), where increasing values of i
correspond to decreasing powers of p, is natural in the context of Galois
scaffolds, where the bi are the ramification breaks (in increasing order), and
we need to consider expressions of the form b(s) defined in (2.2) below. We
will almost always write s in this way.
We further endow Spn with a partial order that is based upon the usual

multi-index partial order on Snp , writing s � t (or t � s) if and only if
s(n−i) 6 t(n−i) for 1 6 i 6 n. For the convenience of the reader, we record
some facts.

Lemma 2.1. — Let s, t ∈ Spn and write s =
∑n
i=1 s(n−i)p

n−i and t =∑n
i=1 t(n−i)p

n−i where s(n−i), t(n−i) ∈ Sp. Then s � t if and only if s 6 t

and there are no carries in the base-p addition of s and t− s. Furthermore,
the following are equivalent:

(1) s(n−i) + t(n−i) 6 p− 1 for 1 6 i 6 n;
(2) s � pn − 1− t;
(3) t � pn − 1− s;
(4) s+ t ∈ Spn and s � s+ t.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Assume s � t. Then clearly s 6 t. Let m = t − s, and write
m =

∑n
i=1m(n−i)p

n−i with m(n−i) ∈ Sp. Since 0 6 t(n−i) − s(n−i) < p, we
havem(n−i) = t(n−i)−s(n−i). When we perform the addition s(n−i)+m(n−i)
we get t(n−i) with no carries. On the other hand, assume that s 6 t and
there are no carries in the base-p addition of s and m = t − s. As m > 0
we have m ∈ Spn , so that m =

∑n
i=1m(n−i)p

n−i for some m(n−i) ∈ Sp.
Since there are no carries, m(n−i) + s(n−i) 6 p − 1 for 1 6 i 6 n. Thus
t(n−i) = m(n−i) + s(n−i). Therefore t(n−i) > s(n−i) for each i, so that s � t.
The equivalence of (1)–(4) is then clear. �

Associated to an A-scaffold on L will be a sequence b1, . . . , bn of integer
shift parameters, which are required to be relatively prime to p. Using these
integers, we define a function b : Spn −→ Z by

(2.2) b(s) =
n∑
i=1

s(n−i)p
n−ibi .

We write r : Z −→ Spn for the residue function r(a) ≡ a (mod pn). The
coprimality assumption on the bi ensures that r◦b : Spn −→ Spn is bijective.
The function r ◦ (−b) : Spn −→ Spn , defined by r ◦ (−b)(s) = r(−b(s)), is
therefore also bijective. We denote its inverse by a : Spn −→ Spn . Abusing
notation, we will also write a(t) for a(r(t)) where t ∈ Z, and so regard a as
a function Z −→ Spn .

Lemma 2.2.
(1) r ◦ b is determined by the residues bi mod pi;
(2) if bi ≡ bn (mod pi) for all i then b(s) ≡ bns (mod pn) for s ∈ Spn ;
(3) if s, t ∈ Spn and s � t then b(s) + b(t− s) = b(t);
(4) b(a(t)) ≡ −t (mod pn) for all t ∈ Z;
(5) a(−b(s)) = s for all s ∈ Spn .

Proof. — Clear. �

We are now prepared for the definition.

Definition 2.3 (A-scaffold on L). — Let b1, . . . , bn, b and a be as
above, and let c > 1. Then an A-scaffold on L of precision c with shift
parameters b1, . . . , bn consists of

(1) elements λt ∈ L for t ∈ Z, such that vL(λt) = t and λt1λ
−1
t2 ∈ K

whenever t1 ≡ t2 (mod pn).
(2) elements Ψi ∈ A for 1 6 i 6 n, such that Ψi · 1 = 0, and such that,

for each i and for each t ∈ Z, there exists a unit ui,t ∈ O×K making

TOME 68 (2018), FASCICULE 3
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the following congruence modulo λt+pn−ibi
Pc
L hold:

Ψi · λt ≡

{
ui,tλt+pn−ibi

, if a(t)(n−i) > 1,
0 if a(t)(n−i) = 0 .

An A-scaffold of precision ∞ consists of the above data where the congru-
ence in (2) is replaced by equality.

Remark 2.4. — Condition (2) in Definition 2.3 should be interpreted as
saying that the effect of Ψi on λt is approximated either by a single term
or by 0. The precision c determines the accuracy of this approximation,
with a precision of ∞ meaning that the “approximation” is exact. In more
detail, the approximation works as follows. Since Ψi is associated with an
increase of valuation of pn−ibi, we express the effect of Ψi on the basis
{λt : 0 6 t 6 pn − 1} in terms of the basis {λpn−ibi+s : 0 6 s 6 pn − 1}.
Thus we have

Ψi · λt =
pn−1∑
s=0

atsλpn−ibi+s , ats ∈ K.

Then (2) says that ats ∈ πd(t−s+c)/pneOK when t 6= s, a condition which is
independent of i, and each diagonal coefficient att is congruent mod πdc/pne

to either 0 or a unit of OK , according to a criterion involving i as well as t.
We observe that the matrix of exponents (dt−s+c/pne)16t,s6pn is constant
on each of the 2pn−1 diagonals (from top left to bottom right) and the main
diagonal t = s resides within a band of pn diagonals where the exponent is
dc/pne. How this band straddles the main diagonal depends on the residue
class c mod pn.

Remark 2.5. — In all the examples of A-scaffolds known to date, we can
take all the units ui,t in Definition 2.3(2) to be 1. Moreover, we can assume
λt1 = π(t1−t2)/pn

λt2 , for some fixed uniformizing parameter π of K, when-
ever t1 ≡ t2 (mod pn). The extra generality allowed in Definition 2.3 does
not significantly add to the complexity of our arguments, and is included
since the flexibility it provides may be useful in future applications.

The reader should keep in mind the following situation.

Definition 2.6 (Galois scaffold). — Suppose that L/K is a Galois ex-
tension with Galois group G. We will call a K[G]-scaffold on L a Galois
scaffold if the residue field κ is perfect and the shift parameters bi of the
scaffold are the (lower) ramification breaks b1 6 · · · 6 bn of L/K, counted
with multiplicity in the following sense: we set bi = max{j : |Gj | > pn−i}
where Gj = {σ ∈ G : (σ − 1)OL ⊆ Pj+1

L } is the jth ramification group. In
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particular, the existence of a Galois scaffold means that the ramification
breaks bi are prime to p.

Remark 2.7. — In the setting of Definition 2.6, L has a subfield F such
that F/K is Galois of degree p with ramification break b1. Moreover, we
have bi ≡ b1 (mod p) for all i by [37, IV §2 Prop. 11], and p - b1 unless K
has characteristic 0 and b1 attains its maximal value, cf. (2.3) below. Thus
the requirement p - bi in Definition 2.6 is very mild.

As explained in the Appendix, the Galois scaffolds considered in [13, 14,
19] are all Galois scaffolds in the sense of Definition 2.6.

Example 2.8 (Galois extensions of degree p). — We show that a to-
tally ramified Galois extension L/K of degree p admits a Galois scaffold in
almost all cases. There is a unique ramification break b1, which in charac-
teristic p may be any positive integer relatively prime to p. In characteristic
0 we have

(2.3) b1 6 pvK(p)/(p− 1), and p - b1 unless b1 = pvK(p)/(p− 1) ;

see [37, IV,§2, Prop. 11 and Ex. 3].)
If we exclude the exceptional case b1 = pvK(p)/(p−1) in characteristic 0

then p - b1, and we can obtain a Galois scaffold as follows. Let Ψ1 = σ− 1,
where σ is any generator of Gal(L/K), let π be a uniformizing parameter
of K, and let ρ ∈ L with vL(ρ) = b1. Then b : Sp −→ Z and a : Z→ Sp are
given by b(s) = b1s and b1a(t) ≡ −t (mod p). In particular, a(b1) = p− 1.
For each t ∈ Z, put ft = (t − b1 − b1a(b1 − t))/p ∈ Z. Then the elements
λt := πftΨa(b1−t)

1 ·ρ satisfy condition (1) of Definition 2.3. Also, Ψ1 · 1 = 0,
and Ψ1 ·λt = λt+b1 unless a(b1− t) = p− 1. But a(b1− t) = p− 1 precisely
when t ≡ 0 (mod p), in which case t = vL(λt) = pft + pb1, a(t) = 0, and
Ψ1 · λt = πftΨp

1 · ρ. If K has characteristic p then Ψp
1 = (σ − 1)p = 0,

so Ψ1 · λt = 0 and we have a Galois scaffold of precision c = ∞. Now
suppose that K has characteristic 0. Expanding (Ψ1 + 1)p = σp = 1, we
have Ψp

1 = −
∑p−1
j=1

(
p
j

)
Ψj

1. Hence

vL(Ψ1 · λt) = vL
(
πftpΨ1 · ρ

)
= pft + pvK(p) + b1 + vL(ρ)
= (t− pb1) + pvK(p) + 2b1 .

Thus vL(Ψ1 · λt) = t+ b1 + [pvK(p)− (p− 1)b1] when a(t) = 0, so we have
a Galois scaffold of precision c = pvK(p)− (p− 1)b1.

Remark 2.9. — If we replace the element Ψi in an A-scaffold by πΨi,
where π is some uniformizing parameter ofK, then we obtain a new scaffold

TOME 68 (2018), FASCICULE 3
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with the same precision c, but with the shift parameter bi replaced by
bi + pi. Suppose that L/K is a Galois extension with ramification breaks
b1, . . . , bn. If there exists a Galois scaffold on L (whose shift parameters are,
by definition, the bi), we can adjust the Ψi by powers of π to obtain a K[G]-
scaffold whose shift parameters are any integers b′i with b′i ≡ bi (mod pi);
this new scaffold will in general not be a Galois scaffold, since its shift
parameters will not coincide with the ramification breaks. We do not know
whether it is possible to have a K[G]-scaffold on a Galois extension L/K
with shift parameters b′1, . . . , b′n that do not satisfy the congruences b′i ≡ bi
(mod pi). We do know from [13], however, that if L/K is a C3×C3-extension
in characteristic 3, and there exists a K[G]-scaffold on L with precision
c > 1 and some shift parameters b′1, b′2, then there will also exist a Galois
scaffold on L (with the ramification breaks b1, b2 as its shift parameters)
of precision c =∞.

Remark 2.10. — In an earlier version of this paper, we called c the
“tolerance” of the scaffold, and this terminology is used by Koch in [27].
We thank the referee for suggesting the more satisfactory word “precision”.

For each s =
∑n
i=1 s(n−i)p

n−i ∈ Spn , let Υ(s) be the set of monomials in
the (not necessarily commuting) elements Ψi such that, for each 1 6 i 6 n,
the exponents associated with Ψi in the monomial sum to s(n−i). We write
Ψ(s) for the distinguished element

(2.4) Ψ(s) = Ψs(0)
n Ψs(1)

n−1 . . .Ψ
s(n−1)
1 ∈ Υ(s).

When A is commutative, we have Υ(s) = {Ψ(s)}.
Suppose that we have an A-scaffold as in Definition 2.3. Then it follows

inductively that if t ∈ Z, s ∈ Spn and Ψ ∈ Υ(s) then there is a unit
UΨ,t ∈ O×K such that, modulo λt+b(s)P

c
L, we have

(2.5) Ψ · λt ≡
{
UΨ,tλt+b(s) if s � a(t),
0 otherwise,

and hence

(2.6) vL(Ψ · λt)
{

= t+ b(s) if s � a(t),
> t+ b(s) + c otherwise.

Thus we have

(2.7) Ψ ·Pt
L ⊆ P

t+b(s)
L for all Ψ ∈ Υ(s), s ∈ Spn , t ∈ Z .

In particular, (2.5), (2.6) and (2.7) hold for Ψ = Ψ(s).
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Remark 2.11. — Consider the special case of Definition 2.3 when the
precision is infinite, c = ∞, and the units are trivial, ui,t = 1 for all i, t.
Taking Ψ = Ψ(s) in (2.5), we then have the equality

Ψ(s) · λt =
{
λt+b(s) if s � a(t),
0 otherwise.

From this we may check that {Ψ(s) : s ∈ Spn} is a K-basis of A and
that L is a free A-module of rank 1 (cf. Proposition 2.12 below). Moreover,
Ψ(r) ·(Ψ(s) ·λt) = Ψ(s) ·(Ψ(r) ·λt) for all r, s ∈ Spn and all t ∈ Z, so that the
algebra A is commutative in this case. In general, there are two potential
sources of noncommutativity in A, namely the “error terms” which are
implied by the congruences of Definition 2.3(2), and the units ui,t.

To help fix ideas, we specialize further, assuming in addition that the
shift parameters all satisfy bi = 1. (Any totally and weakly ramified p-
extension in characteristic p has a scaffold satisfying these conditions; see
§4.2 below.) Then b(s) = s for all s ∈ Spn , and (2.7) states that

Ψ(s) ·Pt
L ⊆ Pt+s

L for all s ∈ Spn , t ∈ Z .

The Normal Basis Theorem ensures, in the Galois case, that L is a free
K[G]-module of rank 1. We now show that a similar assertion holds when-
ever we have an A-scaffold. Furthermore, L/K satisfies the stronger condi-
tion of having a “valuation criterion” for its A-module generator.

Proposition 2.12. — Let L/K have an A-scaffold of precision c > 1.
Then {Ψ(s) : s ∈ Spn} is a K-basis of A. Moreover, let b be any integer
that satisfies a(b) = pn − 1, and let ρ ∈ L with vL(ρ) = b. Then L is a
free A-module on the generator ρ. Additionally, for each h ∈ Z, the ring
A(h,A) = {α ∈ A : α ·Ph

L ⊆ Ph
L} is an OK-order in A.

Proof. — Since a : Spn → Spn is bijective, the condition a(b) = pn − 1
determines b uniquely mod pn. We have ρ = uλb +

∑
i>b aiλi for u ∈

O×K and ai ∈ OK . From (2.6), for i > b and for each s ∈ Spn we have
vL(Ψ(s) · aiλi) > vL(Ψ(s) · uλb) = b + b(s). Thus vL(Ψ(s) · ρ) = b + b(s)
for each s ∈ Spn . Since b : Spn −→ Spn is surjective, these valuations
represent all residue classes mod pn. As L/K is totally ramified, it follows
that {Ψ(s) · ρ : s ∈ Spn} is a K-basis for L. Thus A · ρ = L, and, comparing
dimensions, L is a free A-module on the generator ρ. Moreover, the Ψ(s)

must be linearly independent over K. Since dimK A = pn, it follows that
the Ψ(s) form a K-basis of A. As L is a free A-module and Ph

L spans L
over K, it is immediate that A(h,A) is an OK-order in A. �
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Remark 2.13. — Suppose we have a Galois scaffold on an abelian exten-
sion L/K. By the Hasse–Arf Theorem [37, V, §7], the ramification breaks
u1, . . . , un in the upper numbering are integers. Translating to the lower
numbering, we obtain the congruences bi ≡ bn (mod pi). Thus we have
b(s) ≡ bns (mod pn) and bna(t) ≡ −t (mod pn). In particular, we can
then take b in Proposition 2.12 to be bn. The same will hold if L/K is a
nonabelian Galois extension which satisfies the conclusion of the Hasse–Arf
theorem.
If L/K is a Galois extension not necessarily satisfying the conclusion of

the Hasse–Arf Theorem, then the ui need not be integers. In this case, the
condition a(b) = pn − 1 is equivalent to b ≡ bn − pnun (mod pn). Thus
Proposition 2.12 agrees with the valuation criterion for a normal basis
generator in [20].

3. Integral A-module structure

3.1. Statement of the main results

Fix L/K and A as in §2. Assume that there is an A-scaffold on L of
precision c > 1 as in Definition 2.3. Thus we have shift parameters b1, . . . , bn
and the associated functions b and a, as well as elements λt ∈ L with
vL(λt) = t for each t ∈ Z. By Proposition 2.12, we also have a K-basis
{Ψ(s) : s ∈ Spn} of A. We choose once and for all a uniformizing parameter
π of K.
Now let h ∈ Z, and consider the fractional OL-ideal Ph

L as a module over
its associated order

(3.1) A := A(h,A) = {α ∈ A : α ·Ph
L ⊆ Ph

L}

in A. If h′ = h + pnm for some m ∈ Z then Ph′

L = πmPh
L. It follows that

A(h′, A) = A(h,A), and that Ph′

L and Ph
L are isomorphic as modules over

this order. Thus h only matters up to congruence mod pn.
Let Spn(h) = {t ∈ Z : h 6 t < h + pn}. Note that Spn(0) = Spn ,

and that {λt : t ∈ Spn(h)} is an OK-basis for Ph
L. We now fix a specific

choice of b in Proposition 2.12 (where b was only determined mod pn) by
stipulating

(3.2) a(b) = pn − 1, b ∈ Spn(h) .

Thus we have L = A · λb.
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For each s ∈ Spn we define

(3.3) d(s) =
⌊
b(s) + b− h

pn

⌋
.

In particular, d(0) = 0 since b− h ∈ Spn . We also define

(3.4) w(s) = min{d(u)− d(u− s) : u ∈ Spn , u � s}.

Using Lemma 2.1, we have

w(s) = min{d(s+ j)− d(j) : j ∈ Spn , j � pn − 1− s}.

In particular, d(s) − 1 6 w(s) 6 d(s) − d(0) = d(s) for all s ∈ Spn . Note
that whether or not the upper bound w(s) = d(s) is achieved depends only
on the residue classes bi mod pi, not the integers bi themselves. In any case,
it is important to realize that both d(s) and w(s), as well as b and b − h,
depend on b1, . . . , bn and on h, although we do not indicate this dependence
explicitly in our notation.
For s ∈ Spn , we normalize the Ψ(s) in (2.4), and set

Φ(s) = π−w(s)Ψ(s).

The first of our main results explains how the existence of an A-scaffold
of high enough precision allows us to give an explicit description of A, and
to determine whether or not Ph

L is free over A, using only the numerical
invariants w(s) and d(s).

Theorem 3.1. — Let L/K admit an A-scaffold of precision c with shift
parameters b1, . . . , bn. Fix a fractional ideal Ph

L, and let A, b, d(s) and w(s)
be defined as in (3.1)–(3.4).

(1) Suppose that c > max(b − h, 1). Then {Φ(s) : s ∈ Spn} is an OK-
basis of A. If w(s) = d(s) for all s ∈ Spn , then Ph

L is free over A

with Ph
L = A · λb.

(2) Now suppose that the stronger condition c > pn + b − h holds.
Then Ph

L is free over A if and only if w(s) = d(s) for all s ∈ Spn .
Moreover, when Ph

L is free over A, we have Ph
L = A ·ρ for any ρ ∈ L

with vL(ρ) = b.

Remark 3.2. — Since b was chosen so that b − h ∈ Spn , the stronger
condition c > pn + b− h holds for all ideals if the A-scaffold has precision
c > 2pn − 1.

Example 3.3 (Galois extensions of degree p). — For a totally ramified
Galois extension L/K of degree p, the Galois module structure, both of
the valuation ring OL and of its fractional ideals Ph

L, has been studied
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extensively. We briefly review the existing results and relate them to The-
orem 3.1.

For the valuation ring itself, we have h = 0, so the number b in Theo-
rem 3.1 is just the least positive residue r(b1) of b1 mod p. For K of charac-
teristic 0, Bertrandias and Ferton [5] show thatOL is free over its associated
order if and only if b divides p− 1, provided that b1 is not too close to its
maximal value. (See [4] for the excluded cases.) Now d(s) = b(b1s+ b)/pc,
and one can verify that our condition w(s) = d(s) in this case is equivalent
to b | (p − 1). We therefore recover the result of Bertandias and Ferton
whenever we have a Galois scaffold with c > b + p; by Example 2.8, this
occurs when

(3.5) b1 <
pvK(p)
p− 1 − 2 .

In characteristic p, Aiba [1] gives a different condition for OL to be free,
but his condition can be shown to be equivalent to b | (p − 1); de Smit
and Thomas [39] also obtain b | (p − 1). Since there is a Galois scaffold
with c = ∞, these results follow from our Theorem 3.1, exactly as in
characteristic 0 (but with no upper bound on b1).
We now consider arbitrary ideals Ph

L. In characteristic 0, Ferton [21] de-
termines which ideals are free over their associated orders, giving her result
in terms of the continued fraction expansion of b1/p. A corresponding result
in characteristic p is given by Huynh [24], who gives a different criterion
but proves it is equivalent to Ferton’s. Our condition, w(s) = d(s) for all s,
must therefore be equivalent to Ferton’s continued fraction criterion. This
equivalence is verified in [31] (which also contains some partial results relat-
ing our Theorem 3.6 below to continued fractions). Given this equivalence,
and assuming (3.5) in the characteristic 0 case, the results of Ferton and
Huynh follow from our Theorem 3.1.

The following example considers another situation where the technical
details associated with Theorem 3.1 are easy to digest.

Example 3.4 (bi ≡ −1). — Suppose that L/K is a totally ramified
extension of degree pn (for arbitrary n > 1) which admits an A-scaffold with
precision c > pn − 1 such that bi ≡ −1 (mod pi) for each i. We consider
the valuation ring OL (so h = 0). Write bi = −1 + mip

i with mi ∈ Z.
Using (2.2), we see that b(s) = −s + (

∑n
i=1 s(n−i)mi)pn ≡ −s (mod pn).

Thus b = pn − 1 and d(s) =
∑n
i=1 s(n−i)mi =

∑n
i=1 s(n−i)d(pn−i). In

particular, d(s) + d(j) = d(s + j) for all j ∈ Spn with j � pn − 1 − s,
so that w(s) = d(s) for all s. Moreover, w(s) =

∑n−1
i=0 s(i)w(pi). Thus by

ANNALES DE L’INSTITUT FOURIER



SCAFFOLDS AND GALOIS MODULE STRUCTURE 979

Theorem 3.1(1), OL is free over A, and A has the particularly simple form:

A = OK

[
π−m1Ψ1, π

−m2Ψ2, . . . , π
−mnΨn

]
.

We make one further remark, concerning the precision in Theorem 3.1.

Remark 3.5. — In some cases it is possible to relax the assumptions
on c in Theorem 3.1 at the expense of stronger assumptions on the Ψi in
Definition 2.3. For example, in [13, Thm. 1.1] we give a freeness criterion,
which is equivalent to that in Theorem 3.1(2), for the valuation ring of a
cyclic extension of degree p2 in characteristic p admitting a different sort of
“scaffold”. From the perspective of Definition 2.3, this is a Galois scaffold
of precision c = b2 − pb1, but this value is not used in the proof of the
result. In fact, although the residue class b1 ≡ b2 (mod p2) satisfied by the
ramification breaks could be any class mod p2 relatively prime to p, the
proof of the result requires only that the “scaffold” have precision c > 1.
In contrast, we would need to assume that c > 2p2 − 1 to guarantee that
Theorem 3.1 applies for all possible values of the ramification breaks. The
result in [13] depends on the fact that the “scaffold” there satisfies the
additional relations Ψp

1 = Ψ2 and Ψp
2 = 0.

The second of our main results, Theorem 3.6, adapts the techniques
of [39] (see in particular Theorem 4) to extract some further information
from the numerical data d(s) and w(s). For s, t ∈ Spn , we write s ≺ t if
s � t and s 6= t. Let

D = {u ∈ Spn : d(u) > d(u− s) + w(s) for all s ∈ Spn with 0 ≺ s � u} ;
E = {u ∈ Spn : w(u) > w(u− s) + w(s) for all s ∈ Spn with 0 ≺ s ≺ u} .

Note that 0 ∈ D and 0, 1, p, . . . , pn−1 ∈ E since there are no relevant s
in these cases. Thus we always have |D| > 1 and |E| > n + 1. Again, the
dependence on h and on the bi is suppressed from the notation.

Theorem 3.6. — Let L/K be as in Theorem 3.1, with the strong con-
dition c > pn + b − h. Then the minimal number of generators of the
A-module Ph

L is |D|. Also, A is a (not necessarily commutative) local ring
with residue field κ = OK/PK , and, writing M for its unique maximal
ideal, the embedding dimension dimκ(M/M2) of A is |E|.

Since L is a free A-module by Proposition 2.12, the minimal number of
generators of Ph

L over A is one precisely when Ph
L is free over A.
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3.2. Proofs

We keep the notation of the previous subsection. In particular, L/K ad-
mits an A-scaffold with precision c > 1 and with shift parameters b1. . . . , bn,
giving rise to the functions b : Spn → Z and a : Spn → Spn . We fix h ∈ Z
and study the ideal Ph

L as a module over its associated order A := A(h, a).
Recall that b is the unique integer satisfying (3.2).
Our goal in this subsection is to prove Theorems 3.1 and 3.6, but we

first provide an overview of the strategy of the proofs. The reader might
find it helpful initially to consider the special case c = ∞, ui,t = 1 in
Remark 2.11 (which forces A to be commutative), and further to suppose
that b1 = · · · = bn = b, so that b(s) = bs.

Let t ∈ Spn(h) and s ∈ Spn . If s � a(t) and Ψ ∈ Υ(s) then by (2.6) the
element Ψ · λt has valuation t+ b(s). We wish to relate this element to the
OK-basis {λm : m ∈ Spn(h)} of Ph

L, so, for any t ∈ Spn(h) and s ∈ Spn , we
write

(3.6) t+ b(s) = H(s, t) + pnD(s, t) with H(s, t) ∈ Spn(h).

Thus we have

(3.7) D(s, t) =
⌊
t+ b(s)− h

pn

⌋
, H(s, t) = h+ r(t+ b(s)− h).

In particular, comparing with (3.3), we have

(3.8) D(s, b) = d(s).

By Proposition 2.12, λb has the normal basis property L = A · λb, so we
seek to compare Ψ(s) · λt with Ψ(u) · λb where u ∈ Spn is chosen to make
the valuations of these elements agree mod pn. Thus we require H(u, b) =
H(s, t). There will be a unique u with this property, since H(u, b) realizes
each element of Spn(h) exactly once as u varies in Spn .
In order to translate between t and u (for a fixed s), we will need a number

of facts which depend on the properties of b and a given in Lemma 2.2.
These facts are recorded in Lemma 3.7. We are interested in the valuations
of the elements Φ(s) · λt = π−w(s)Ψ(s) · λt or, more generally, π−w(s)Ψ · λt
for any Ψ ∈ Υ(s). In Proposition 3.8 we determine some of these valuations
precisely, and bound the rest in terms of c. To prove Theorem 3.1, we then
use this information to obtain an explicit description of the associated order
A and to determine when Ph

L is free over A.
Before proving Theorem 3.6, we need to deal with the fact that A need

not in general be commutative. We show in Proposition 3.9 that any two of
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our basis elements Φ(r), Φ(s) of A commute mod πA up to multiplication
by a unit in OK .
We begin the proof of Theorem 3.6 by showing that the OK-lattice M

in A, spanned by π and the Φ(s) for s 6= 0, is the unique maximal ideal
of A. Since Ψi · 1 = 0, it is easy to see that M is an ideal of A, and that
A/M ∼= κ, the residue field of K. To show the uniqueness, we check that M
is topologically nilpotent. This is easy to see in the special case considered
in Remark 2.11, where A is commutative and Ψp

i = 0 for each i. In general,
we use Proposition 3.9 to show that M is topologically nilpotent.
Once we have established that M is the unique maximal ideal of A (so

that A is a local ring), it follows by Nakayama’s Lemma that the minimal
number of generators for the A-module Ph

L (resp. M) is just the dimension
of Ph

L/M ·Ph
L (resp. M/M2) as a vector space over κ. To determine these

dimensions, we take the obviousOK-basis ofPh
L (resp.M), which is indexed

by the partially ordered set Spn . Some of these generators are redundant
because they can be obtained by the action of A on another generator
occurring earlier in the partial order. Removing these redundant generators
will leave a basis of the appropriate κ-vector space, since, by hypothesis, the
precision of the scaffold is too high to allow any further relations between
the surviving generators.
This concludes our overview of the proofs, and we now start the detailed

arguments.

Lemma 3.7. — Fix s ∈ Spn , and let t ∈ Spn(h) and u ∈ Spn satisfy
H(u, b) = H(s, t). Then we have

s � a(t)⇔ s � u,

Moreover, when s � a(t), the following hold:
(1) a(H(s, t)) = a(t)− s;
(2) u = pn − 1 + s− a(t);
(3) t = H(u− s, b);
(4) D(s, t) = d(u)− d(u− s).

Proof. — Let s � a(t). By Lemma 2.2, we have b(s) + b(a(t) − s) =
b(a(t)) ≡ −t (mod pn). Using (3.7), it follows that H(s, t) ≡ t + b(s) ≡
−b(a(t)−s) (mod pn). Applying a gives (1). Similarly, as u � a(b) = pn−1,
we have H(u, b) ≡ b + b(u) ≡ b(u) − b(pn − 1) = −b(pn − 1 − u). Since
H(s, t) = H(u, b), we therefore have a(t)− s = pn − 1− u, giving (2), and
thus a(t)(n−i) − s(n−i) = (p − 1) − u(n−i) for 1 6 i 6 n, since s � a(t) by
hypothesis. Hence s(n−i) = u(n−i)−(p−1−a(t)(n−i)) for each i, so that s �
u. This shows the implication s � a(t) ⇒ s � u. The reverse implication
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follows since the sets {t ∈ Spn(h) : s � a(t)} and {u ∈ Spn : s � u} have
the same cardinality.
It remains to prove (3) and (4). Still assuming s � a(t), we have from (3.7)

that

H(u− s, b) ≡ b+ b(u− s)
≡ b+ b(pn − 1− a(t))
≡ b+ b(pn − 1) + t

≡ t (mod pn) ,

and (3) follows as both sides are in Spn(h). Finally, using (3.6) and (3.8),
we have

pnD(s, t) = t+ b(s)−H(s, t)
= H(u− s, b) + b(s)−H(u, b)
= [b+ b(u− s)− pnD(u− s, b)] + b(s)− [b+ b(u)− pnD(u, b))]
= pnd(u)− pnd(u− s) ,

since b(u− s) = b(u)− b(s) because s � u. Dividing by pn yields (4). �

It is immediate from Lemma 3.7 that we may rewrite (3.4) as

(3.9) w(s) = min{D(s, t) : t ∈ Spn(h), a(t) � s}.

Moreover, it then follows from (3.7) that if s � a(t) then either D(s, t) =
w(s) or D(s, t) = w(s) + 1. We define

(3.10) ε(s, t) = D(s, t)− w(s) ∈ {0, 1} for s � a(t).

Proposition 3.8. — Suppose that the Ψi are as in Definition 2.3. Let
s ∈ Spn and t ∈ Spn(h). Let Ψ be any element of Υ(s), and set Φ = π−w(s)Ψ.

(1) If s � a(t) then there is a unit yΦ,t ∈ O×K such that

Φ · λt ≡ πε(s,t)yΦ,tλH(s,t) (mod πε(s,t)λH(s,t)P
c
L).

In particular,

vL(Φ · λt) =
{
H(s, t) if s � a(t) and ε(s, t) = 0 ,
H(s, t) + pn if s � a(t) and ε(s, t) = 1.

(2) If s 6� a(t) then we have the bounds

vL(Φ · λt) >
{
H(s, b) + t− b+ c if s 6� a(t) and w(s) = d(s),
H(s, b) + t− b+ pn + c if s 6� a(t) and w(s) 6= d(s)
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Proof. — It follows from (3.6) and Definition 2.3(1) that there is an
x ∈ O×K so that λt+b(s) = xπD(s,t)λH(s,t).

(1). — If s � a(t) then (2.5) gives Ψ ·λt ≡ UΨ,tλt+b(s) (mod λt+b(s)P
c
L).

Multiplying by π−w(s) and setting yΦ,t = xUΨ,t we obtain the required
congruence. The remaining assertions follow immediately.
(2). — If s 6� a(t) then (2.5) gives vL(Φ · λt) > t + b(s) − pnw(s) + c.

From (3.6) we have

t+ b(s) = H(s, t) + pnD(s, t) = t− b+H(s, b) + pnD(s, b).

Hence, using (3.8),

vL(Φ · λt) > t− b+H(s, b) + pn(d(s)− w(s)) + c ,

and by (3.3) and (3.4) either w(s) = d(s) or w(s) = d(s)−1. The two cases
give the stated inequalities. �

We can now prove the first of our main results,
Proof of Theorem 3.1.
(1). — Assume that c > max(b − h, 1). By Proposition 3.8, we have for

all s ∈ Spn and all t ∈ Spn(h) that vL(Φ(s) ·λt) > h. Since {λt : t ∈ Spn(h)}
is an OK-basis of Ph

L, this shows that Φ(s) ∈ A for all s. Any α ∈ A may
be written α =

∑
s∈Spn

csΦ(s) for some cs ∈ K. We have just shown that if
cs ∈ OK for all s then α ∈ A. We must show, conversely, that if α ∈ A then
each cs ∈ OK . Applying α to λb, we obtain α · λb =

∑
s csΦ(s) · λb. But

s � a(b) = pn−1, so, for each s with cs 6= 0, we have vL(csΦ(s)·λb) ≡ H(s, b)
(mod pn) by Proposition 3.8(1). These valuations are distinct mod pn, so
vL(csΦ(s) ·λb) > h. Thus cs ∈ OK if ε(s, b) = 0, and cs ∈ π−1OK otherwise.
Now assume for a contradiction that some cs 6∈ OK . Since ε(s, b) = 1, we
have d(s) = D(s, b) = w(s) + 1. By (3.9), there is some t ∈ Spn(h) with
a(t) � s and D(s, t) = w(s), so that ε(s, t) = 0. Amongst these t, take the
one with H(s, t) minimal, and consider α · λt =

∑
j∈Spn

cjΦ(j) · λt. For the
term j = s we have

vL(cjΦ(j) · λt) = vL(cs) +H(s, t) = −pn +H(s, t) < h

by Proposition 3.8(1). For the terms with j 6= s but j � a(t), we have

vL(cjΦ(j) · λt) > −pn +H(s, t)

by Proposition 3.8(1) again and the choice of t. For the terms with j 6� a(t),
since w(s) 6= d(s), we have

vL(cjΦ(j) · λt) > vL(cj) +H(j, b) + t− b+ pn + c > h
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by Proposition 3.8(2) and the hypothesis on c. Hence

vL(α · λt) = −pn +H(s, t) < h,

giving the required contradiction.
(2). — Now assume that the stronger condition c > pn + b − h holds.

Let ρ be an arbitrary element of Ph
L. We investigate when ρ is a free

generator for Ph
L over A. Since {λt : t ∈ Spn(h)} is an OK-basis for Ph

L,
we have ρ =

∑
t∈Spn (h) xtλt for some xt ∈ OK . By Proposition 3.8 and the

hypothesis on c, we therefore have

Φ(s) · ρ ≡
∑
t

xtys,tπ
ε(s,t)λH(s,t) (mod πPh

L) ,

where the sum is over those t ∈ Spn(h) with s � a(t). Using Lemma 3.7,
we can rewrite this as

Φ(s) · ρ ≡
∑
u�s

cs,uλH(u,b) (mod πPh
L) ,

where the sum is over u ∈ Spn satisfying u � s, and where cs,u = xtys,tπ
ε(s,t)

for t = H(u− s, b). The matrix (cs,u) expressing the elements Φ(s) · ρ (or-
dered by increasing s) in terms of the basis elements λH(u,b) (ordered by
increasing u) is therefore upper triangular mod π. Thus the Φ(s) · ρ also
form an OK-basis of Ph

L if and only if cs,s ∈ O×K for all s. But when u = s,
we have t = H(0, b) = b and D(s, t) = d(s). Since xb ∈ OK , ys,b ∈ O×K ,
and d(s) > w(s), it follows that Ph

L = A · ρ if and only if xb ∈ O×K and
d(s) = w(s) for all s. Thus Ph

L is a free A-module on some generator ρ
if and only if d(s) = w(s) for all s. Moreover, if vL(ρ) = b then we must
have vL(xtλt) > b for all t, with equality for t = b. In particular, xb ∈ O×K .
Hence ρ is a free generator for Ph

L over A, provided that d(s) = w(s) for
all s. �

Proposition 3.9. — Suppose that c > pn + b − h and let r, s ∈ Spn .
If r 6� pn − 1 − s or if w(r) + w(s) 6= w(r + s) then Φ(r)Φ(s) ∈ πA. In the
remaining case that r � pn − 1 − s and w(r) + w(s) = w(r + s), there is
some c ∈ O×K such that Φ(r)Φ(s) − cΦ(r+s) ∈ πA.

Proof. — By Proposition 3.8 applied successively to Ψ(s) and Ψ(r), to-
gether with Lemma 3.7(1), we have for any t ∈ Spn(h) that Φ(r)Φ(s) · λt ∈
πPh

L unless s � a(t) and r � a(H(s, t)) = a(t) − s. In particular, if
r 6� pn − 1 − s then Φ(r)Φ(s) · λt ∈ πPh

L for all t ∈ Spn(h), so that
Φ(r)Φ(s) ∈ πA.
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Now suppose that r � pn − 1 − s. Applying Proposition 3.8 to Ψ :=
Ψ(r)Ψ(s) ∈ Υ(r+s), we find that the element

Φ := π−w(r+s)Ψ = πw(r)+w(s)−w(r+s)Φ(r)Φ(s)

satisfies vL(Φ · λt) > h for all t ∈ Spn(h), so that Φ ∈ A. Now it follows
from (3.4) that w(r + s) > w(r) + w(s). Thus if w(r) + w(s) 6= w(r + s),
we have Φ(r)Φ(s) ∈ πw(r+s)−w(r)−w(s)A ⊆ πA.
It remains to consider the case that r � pn − 1 − s and w(r) + w(s) =

w(r + s), so that Φ = Φ(r)Φ(s). Since the Φ(u) form an OK-basis for the
order A, we have

(3.11) Φ(r)Φ(s) =
∑
u∈Spn

cuΦ(u)

for some cu ∈ OK . We apply Proposition 3.8 on the one hand to Ψ =
Ψ(r)Ψ(s), and on the other hand to each Ψ(u). This gives the following
congruences mod πPh

L:

(3.12) Φ(r)Φ(s) · λt ≡

{
ytλH(r+s,t) if r + s � a(t) and ε(r + s, t) = 0,
0 otherwise,

(3.13) Φ(u) · λt ≡

{
zu,tλH(u,t) if u � a(t) and ε(u, t) = 0,
0 otherwise,

with yt, zu,t ∈ O×K . In view of (3.11), if we multiply (3.13) by cu and sum
over u, we must obtain the same congruence as (3.12) for each t. Thus
cuΦ(u) · λt ∈ πPh

L unless u = r+ s � a(t) and ε(r+ s, t) = 0, in which case
we have cr+szr+s,t ≡ yt (mod πOK). Let c = cr+s. Since c is independent
of t, it follows that

(Φ(r)Φ(s) − cΦ(r+s)) · λt ∈ πPh
L

for all t ∈ Spn(h). Hence Φ(r)Φ(s) − cΦ(r+s) ∈ πA as required. �

Proof of Theorem 3.6. — Let M be the OK-submodule of A spanned
by π = πΦ(0) and the Φ(s) for s ∈ Spn\{0}. It is immediate from Proposi-
tion 3.9 that M is an ideal in A. Clearly A/M ∼= OK/PK = κ, so M is a
maximal ideal and has residue field κ. We claim that Mn(p−1)+1 ⊆ πA, so
that M is topologically nilpotent. This will show that every maximal ideal
is contained in M, so that M is in fact the unique maximal ideal and A is
a local ring.
To prove the claim, it will suffice to show that if Φ(s1) . . .Φ(sm) 6∈ πA with

s1, . . . , sm ∈ Spn\{0}, then m 6 n(p − 1). For s =
∑n
i=1 s(n−i)p

n−i ∈ Spn ,
define |s| =

∑n
i=1 s(n−i). Thus if s ∈ Spn\{0} then 1 6 |s| 6 n(p − 1).
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By Proposition 3.9, when Φ(s1)Φ(s2) 6∈ πA, we have Φ(s1)Φ(s2) ≡ cΦ(s1+s2)

(mod πA) for some c ∈ O×K , and s1 � pn − 1 − s2. Since s1, s2 6= 0, the
latter condition implies that s1 + s2 ∈ Spn and 0 ≺ s1 ≺ s1 + s2, using
Lemma 2.1. Inductively, if Φ(s1) . . .Φ(sm) 6∈ πA then

0 ≺ s1 ≺ s1 + s2 ≺ · · · ≺ s1 + · · ·+ sm ,

so that 0 < |s1| < |s1 + s2| < · · · < |s1 + · · · + sm|, which is only possible
if 0 < m 6 n(p− 1). This completes the proof that A is a local ring.
Consider now the minimal number of generators of Ph

L over A. By
Nakayama’s Lemma, a subset of Ph

L is a generating set if and only if it
generates Ph

L/(M · Ph
L) over A/M = κ. By Proposition 3.8, M · Ph

L is
spanned over O by πPh

L and the elements Φ(s) · λt where 0 6= s � a(t) and
ε(s, t) = 0. Let u correspond to t as in Lemma 3.7. Then Φ(s) ·λt ≡ yλH(u,b)
(mod πPh

L) with y ∈ O×K , and the condition ε(s, t) = 0 is equivalent to
D(s, t) = w(s), and hence to d(u)−d(u−s) = w(s). Thus M·Ph

L is spanned
by πPh

L and the λH(u,b) for those u ∈ Spn such that d(u) = d(u− s) +w(s)
for some s with 0 6= s � u. It follows that a κ-basis of Ph

L/(M · Ph
L) is

given by the images of the λH(u,b) for u ∈ D, and the minimal number of
generators of Ph

L over A is |D|.
Finally, consider the embedding dimension dimκ(M/M2). Write A+ for

the augmentation ideal {a ∈ A : a · 1 = 0} of A. This is spanned over K by
the Φ(s) for s ∈ Spn\{0}. Then πA∩A+ = πM∩A+, since both are spanned
over OK by the πΦ(u) for u ∈ Spn\{0}. Now M2 is spanned over OK by
πM and the products Φ(r)Φ(s) for r, s ∈ Spn\{0}. By Proposition 3.9 we
have Φ(r)Φ(s) ∈ πA ∩ A+ ⊂ πM unless s � pn − 1− r and w(r) + w(s) =
w(r + s). Conversely, when s � pn − 1 − r and w(r) + w(s) = w(r + s),
we have Φ(r)Φ(s) ≡ cΦ(r+s) (mod πM) for some c ∈ O×K . Now we may
write u ∈ Spn as u = r + s, where r, s ∈ Spn\{0} with s � pn − 1− r and
w(r) + w(s) = w(r + s), precisely when u 6∈ E . Thus the images in M/M2

of π and the Φ(u) with u ∈ E\{0} form a κ-basis of M/M2. Since 0 ∈ E ,
we have dimκ(M/M2) = |E|. �

4. Applications to Galois Extensions

In this section, we give some explicit applications of Theorems 3.1 and 3.6,
and relate our approach to various results already in the literature. Except
where otherwise stated, we consider only the classical setting, where L/K
is a Galois extension and A is the group algebra K[G] for G = Gal(L/K),
with its usual action on L. The scaffolds will then be Galois scaffolds in
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the sense of Definition 2.6. In particular the residue field κ of K will be
assumed to be perfect of characteristic p, and the shift parameters will be
the (lower) ramification breaks. Also, the units ui,t in Definition 2.3(2) will
always be 1.

Our basic examples are the near one-dimensional extensions constructed
in [19]. These are certain elementary abelian extensions in characteristic
p. In the terminology of this paper, the main result of [19] is that any
near one-dimensional extension admits a Galois scaffold of precision ∞. A
necessary and sufficient condition for the valuation ring OL of a near one-
dimensional extension to be free over AL/K is given in [14, Thm. 1.1] (see
§4.3 below). Theorem 3.1 of this paper, applied to near one-dimensional
extensions, improves on this result by giving an analogous result for any
fractional ideal of the valuation ring.
The near one-dimensional extensions include all totally ramified biquad-

ratic extensions in characteristic 2, and all totally and weakly ramified ex-
tensions in characteristic p. In the next two subsections, we study these two
cases in detail. In a separate paper [15], we construct a family of elemen-
tary abelian extensions in characteristic 0 which possess Galois scaffolds
and are the analog of the near one-dimensional extensions. These include
all biquadratic extensions and weakly ramified p-extensions satisfying some
mild additional hypotheses. The results of the next two subsections hold
also in characteristic 0 under these hypotheses.

4.1. Biquadratic extensions

Let L/K be a totally ramified biquadratic extension of local fields of
residue characteristic 2. When K has characteristic 0, the structure of OL

over its associated order in K[G] was studied by Martel [32]. When K has
characteristic 2 and has perfect residue field, OL is always free over its
associated order [14, Cor. 1.4]. These results trivially extend to fractional
ideals Ph

L when h ≡ 0 (mod 4), but we are not aware of any results for
h 6≡ 0 (mod 4). In this subsection, we give analogous results for arbitrary h.
We also provide supplementary information about the number of generators
for the ideals which are not free and the embedding dimensions of the
associated orders.

Theorem 4.1. — Let K be a local field of characteristic p = 2 with
perfect residue field. Let L be a totally ramified biquadratic extension of K
with lower ramification breaks b1, b2, let h ∈ Z, and let A be the associated
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Table 4.1. The biquadratic case: d(s), w(s), D and E .

d(s) w(s)
s = s =

b h 0 1 2 3 0 1 2 3 D E
1 1 0 0 0 0 0 0 0 0 {0} {0, 1, 2}
1 0 0 0 0 1 0 0 0 1 {0} {0, 1, 2, 3}
1 -1 0 0 1 1 0 0 1 1 {0} {0, 1, 2}
1 -2 0 1 1 1 0 0 0 1 {0, 1, 2} {0, 1, 2, 3}
3 3 0 0 1 2 0 0 1 2 {0} {0, 1, 2, 3}
3 2 0 1 1 2 0 1 1 2 {0} {0, 1, 2}
3 1 0 1 2 2 0 0 1 2 {0, 1, 2} {0, 1, 2, 3}
3 0 0 1 2 3 0 1 2 3 {0} {0, 1, 2}

order of Ph
L. Then Ph

L is free over A if and only if b1 ≡ 1 (mod 4), h 6≡ 2
(mod 4) or b1 ≡ 3 (mod 4), h 6≡ 1 (mod 4). In the cases where Ph

L is not
free, it requires 3 generators over A. The embedding dimension of A is 3 if
b1 ≡ 1 (mod 4), h ≡ 1 (mod 2) or b1 ≡ 3 (mod 4), h ≡ 0 (mod 2), and is
4 otherwise.

Proof. — By [19, Lem. 5.1], L/K has a Galois scaffold of precision ∞,
so we may apply Theorems 3.1 and 3.6. Recall that b in Theorem 3.1
satisfies b ≡ b2 (mod 4) and 0 6 b − h < 4. As the ramification breaks
b1 and 1

2 (b1 + b2) of the quadratic subextensions F/K of L/K must be
odd, we have b1 ≡ b2 ≡ 1 or 3 (mod 4). Since the condition w(s) = d(s),
together with the sets D and E , only depends on the residue classes of h,
b1 and b2 mod 4, there is no loss of generality in assuming that b1 = b2 =
b = 1 or 3 and b − 3 6 h 6 b. Then b(s) = bs and the values of d(s)
and w(s) are as shown in Table 4.1, which also shows the sets D and E
occurring in Theorem 3.6. To obtain the w(s), note that w(0) = d(0) = 0,
w(1) = min(d(1)− d(0), d(3)− d(2)), w(2) = min(d(2)− d(0), d(3)− d(1)),
w(3) = d(3)− d(0).
From Table 4.1, we have w(s) = d(s) for all s except in the cases b = 1,

h = −2 and b = 3, h = 1. The criterion for Ph
2 to be free then follows

from Theorem 3.1. In the cases where Ph
2 is not free, |D| = 3, so that Ph

2
requires 3 generators over A by Theorem 3.6. The cardinalities of the sets
E in Table 4.1 show that the embedding dimension is as stated. �
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4.2. Weakly ramified p-extensions

A Galois extension L/K of local fields with Galois group G is said to
be weakly ramified if its second ramification group G2 is trivial. Then
PL is free over the group ring OK [G], and OL is free over the order
OK [G][π−1∑

g∈G0
g], where π is a uniformizing parameter of K and G0

is the inertia subgroup of G (see for instance [26]). Moreover, a fractional
ideal Ph

L is free over OK [G] if and only if h ≡ 1 (mod |G1|) [29, Thm. 1.1].
Thus if L/K is totally and weakly ramified of degree pn then the ideals
Ph
L are free over their associated orders when h ≡ 0 or 1 (mod pn). For

other values of h, nothing seems to be known when n > 1 beyond the fact
that Ph

L cannot be free over OK [G]. The case n = 1 is covered by Ferton’s
result [21] mentioned in Remark 3.3.
In this subsection, we will give detailed information on Ph

L for all h (and
arbitrary n), assuming that K has characteristic p and has perfect residue
field. We will determine precisely when Ph

L is free over its associated order
A, and will obtain supplementary information about the minimal number
of generators of Ph

L over A and the embedding dimension of A. Our results
will be expressed in terms of combinatorial properties of the base-p digits
of numbers closely related to h.

Let K be as just described, and let L/K be a totally and weakly ramified
extension of degree pn. Thus L/K has ramification breaks b1 = · · · = bn =
1, and its Galois group must be elementary abelian. Moreover, L/K admits
a Galois scaffold of precision ∞. For n = 1, we have already seen this in
Example 2.8, and for n > 2 it follows from [19, Lem. 5.3]. We can therefore
apply Theorems 3.1 and 3.6.
We first define some notation. For s =

∑n
i=1 s(n−i)p

n−i =
∑n−1
j=0 s(j)p

j ∈
Spn , set

α(s) = |{j : 1 6 j 6 n− 1, j > vp(s), s(j) 6= p− 1}| ,
β(s) = max{c : 0 6 c < n− vp(s), s(n−1) = · · · = s(n−c) = 1

2 (p− 1)},

where the maximum is to be interpreted as 0 if no such c exists, and

γ(s) =
{

1 if p = 2 and s = 2n−1,

0 otherwise.

Thus α(s) is the number of base-p digits of s which are not equal to p− 1,
including any leading 0’s s(n−1) = · · · = s(m) = 0, but excluding the last
nonzero digit s(v) 6= 0 for v = vp(s) and any trailing 0’s s(v−1) = · · · =
s(0) = 0. Also, β(s) is the number of leading base-p digits (including leading
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0’s but excluding the last nonzero digit) which are equal to 1
2 (p − 1). In

particular, β(s) = 0 if s < 1
2p
n−1(p− 1) or if p = 2.

For 0 6 j 6 n− 1, we define

bscj = pj
⌊
s

pj

⌋
=
n−1∑
i=j

s(i)p
i,

and

dsej = pj
⌈
s

pj

⌉
=
{
bscj = s if s ≡ 0 (mod pj)
bscj + pj otherwise.

Theorem 4.2. — Let L/K be a totally and weakly ramified extension
of degree pn in characteristic p. Let h ∈ Z.

(1) If h ≡ 1 (mod pn) then Ph
L is free over its associated order, and

this order has embedding dimension n+ 1.
(2) If h 6≡ 1 (mod pn), let h′ ≡ h (mod pn) with 2 6 h′ 6 pn, and

write m = h′ − 1 and k = max(m, pn −m). Then
(a) Ph

L is free over its associated order A if and only if h′ > 1+ 1
2p
n;

(b) if Pn
L is not free, the minimal number of generators of Ph

L as
a module over A is 2 + α(m)− β(m);

(c) the embedding dimension of A is n+ 2 + α(k)− γ(k).
(Note that when h = 0 we have h′ = pn so that, in particular, OL is free
over its associated order; cf. Remark 4.4 below.)

Proof. — As bi = 1 for each i, we have b(s) = s. Without loss of gener-
ality, we suppose that 2 6 h 6 pn + 1. Thus b = pn + 1, and h′ = h in (2).
We then have

(4.1) d(s) =
⌊

1 + pn + s− h
pn

⌋
=
{

1 if s > m;
0 if s < m.

(1). — If h = pn + 1 we have d(s) = 0 for all s, and hence w(s) = 0 for
all s as well. Thus Ph

L is free over its associated order A by Theorem 3.1.
In Theorem 3.6, we have D = {0}, E = {0, 1, p, . . . , pn−1}, so that A has
embedding dimension n+ 1.

(2). — Now let 2 6 h 6 pn. We first determine the w(s); for any s ∈ Spn

we have

w(s) = 1⇔ d(u) = 1 and d(u− s) = 0 for all u � s
⇔ u > m and u− s < m for all u � s
⇔ s > m and (pn − 1)− s < m

⇔ s > max(m, pn −m) ,
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so that

(4.2) w(s) =
{

1 if s > k ;
0 if s < k.

Note that 1
2p
n 6 k 6 pn − 1.

(2a). — From (4.1) and (4.2) we have

d(s) = w(s) for all s ∈ Spn ⇔ k = m⇔ h > 1 + 1
2p
n.

(2b). — Let 2 6 h < 1+ 1
2p
n. Then 0 < m < k. It is immediate from (4.1)

and (4.2) that D contains 0 and m. Moreover, if 0 < u < m or u > k then
u 6∈ D since d(u) = d(0) + w(u).
We need to show that there are α(m) − β(m) elements u ∈ D with

m < u < k. Let j = vp(u). Then 0 6 j 6 n− 1 and u(j) 6= 0. If u− pj > m
then, taking s = pj , we have d(u − s) = 1 and 0 ≺ s � u, so that u 6∈ D.
Conversely, if u 6∈ D, then there is some s with d(u− s) = 1 and 0 ≺ s � u.
Since vp(u) = j, we must have s > pj and hence m 6 u − s 6 u − pj . It
follows that u ∈ D if and only if u − pj < m. But as j = vp(u), we have
u− pj < m < u if and only if u = dmej and vp(m) < j. We conclude that,
for each j > vp(m), there is at most one u ∈ D with vp(u) = j and u > m,
namely u = dmej ; such a u exists if and only if dmej < k and vp (dmej) = j.
Since j > vp(m), the latter condition is equivalent to m(j) 6= p− 1, and the
number of j for which this occurs is α(m). We claim that, amongst these,
there are β(m) values of j for which dmej > k.
We count the j 6 n− 1 such that

(4.3) m(j) 6= p− 1 and dmej > k .

Any such j automatically satisfies j > vp(m) since if j 6 vp(m) then
dmej = m < k. We distinguish two cases. Firstly, we consider the special
case where the base-p digits of m are all 1

2 (p − 1), possibly followed by a
block of 0’s. Thus m = 1

2 (p− 1)(pn−1 + · · ·+ pv) where v = vp(m) > 0. In
this case, β(m) = n− v − 1 and k = m+ pv. If j > n− β(m) = v + 1 then
dmej = dkej > k, and of course m(j) = 1

2 (p−1) 6= p−1, while if j 6 v then
dmej = m < k. Thus there are β(m) values of j satisfying (4.3) in this case.
Secondly, suppose we are not in this special case, and let c = β(m). Then
0 6 c 6 n−1 and vp(m) < n−c. Moreover, sincem < 1

2p
n (becausem < k)

and we are not in the first case, we have m(n−c−1) <
1
2 (p−1). If p 6= 2 then

m(n−c−1) 6
1
2 (p−3) and we may write m = 1

2 (p−1)(pn−1 + · · ·+pn−c)+r

with 0 < r < 1
2 (p − 3)pn−c−1 + pn−c−1 = 1

2 (p − 1)pn−c−1. Then dmej =
dkej > k if j > n − c, and dmej 6 bkcj 6 k if j < n − c. Thus there are
again β(m) values of j satisfying (4.3). Finally, if p = 2 then β(m) = 0
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and, since m < 2n−1 < k, we have dmej < k for all j < n, yet again giving
the required conclusion.
(2c). — By Theorem 3.6, the embedding dimension of A is |E| where

E = {u ∈ Spn : w(u) > w(u− s) + w(s) for all s ∈ Spn with 0 ≺ s ≺ u} .

This set will be unchanged on replacing h by pn+2−h, since both give the
same value for k and hence the same sequence w(s). Certainly E contains
the n + 1 elements 0, 1, p, . . . , pn−1, and no other elements u < k. It also
contains k since w(k) = 1 and w(s) = 0 for s < k. Note that k > pn−1

except in the case p = 2, k = 2n−1 (corresponding to h = 2n−1 + 1). Thus
the number of elements u ∈ E with u 6 k is n + 2 − γ(k). The proof will
be complete if we show that there are precisely α(k) elements u ∈ E with
u > k. But if u > k and vp(u) = j then, arguing as in (2b) above, u ∈ E
if and only if u − pj < k, and the number u satisfying this condition is
α(k). �

Remark 4.3. — When h ≡ 1 (mod pn), the associated order A is just
the group ring OK [G], and its maximal ideal is M = PK +I where I is the
augmentation ideal of OK [G]. Thus M/M2 is generated as a κ-vector space
by the n+ 1 elements π, σ1 − 1, . . . , σn − 1, where π ∈ K with vK(π) = 1
and σ1, . . . , σn is any set of generators of G.

Remark 4.4. — In the case h = 0, we have h′ = pn, so that k = m =
pn − 1 and α(k) = γ(k) = 0 (unless pn = 2, when γ(k) = 1). Hence OL is
free over its associated order AL/K , as we already know from [19, Lem. 5.3]
and [14, Thm. 1.1]. Moreover, AL/K has embedding dimension n + 2 (or
n+ 1 when pn = 2). One can check directly that

d(s) = w(s) =
{

1 if s = pn − 1;
0 if 0 6 s < pn − 1,

so that E = {0, 1, p, p2, . . . , pn−1, pn − 1}. In fact,

A = OK [G][π−1Σ] ,

where vK(π) = 1 and Σ =
∑
σ∈G σ is the trace element of K[G]. Thus,

with the notation of Remark 4.3, M/M2 is generated by π, σ1−1, . . . , σn−
1, π−1Σ.

To give some idea of the range of complexity occurring in the Galois mod-
ule structure of ideals for wildly ramified extensions, we record the maxima
and minima of the number of generators and the embedding dimension. We
are not aware of any similar results in the Galois module literature beyond
the discussion of the degree p case in [39].
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Corollary 4.5. — Let L/K be as in Theorem 4.2, and let A be the
associated order of Ph

L.
(1) (a) When p > 2, the maximal number of generators required for

Ph
L over A is n + 1. The minimal number of generators in

cases where Ph
L is not free is 2. This occurs, for example, when

h = 1
2 (pn + 1).

(b) When p = 2 and n > 1, the maximal number of generators for
Ph
L over A is again n+ 1. There are no Ph

L requiring precisely
2 generators. Precisely 3 generators are required, for example,
if h = 2n−1.

(2) (a) When p > 2, the embedding dimension of A can take any value
between n+ 1 and 2n+ 1. The minimum n+ 1 occurs only for
h ≡ 1 (mod pn). The value n+ 2 occurs, for example, if h = 2
or h = pn. The maximal value 2n + 1 occurs, for example, if
h = 1

2 (pn + 1).
(b) When p = 2, the minimum embedding dimension n + 1 is

attained only for h ≡ 1 and 2n−1 +1 (mod 2n). The maximum
is 2n, attained only for h ≡ 2n−1 and 2n−1 + 2 (mod 2n).

Remark 4.6. — If L/K is any extension of local fields (not necessarily
Galois) with an action of an algebra A admitting a scaffold of c > 2pn − 1
whose shift parameters satisfy bi ≡ 1 (mod pi), then we can reduce to
the case bi = 1 for all i by Remark 2.9. We will then obtain the same
sequences d(s) and w(s) as in the proof of Theorem 4.2, so the conclusions of
Theorem 4.2 will still hold. In particular, this gives an alternative approach
to Theorem 4.1 in the case that b1 ≡ 1 (mod 4).

Remark 4.7. — There is an arithmetic interpretation of the fact that
the sequence w(s) is unchanged on replacing h by pn + 2 − h. Let L/K
be a totally and weakly ramified extension of degree pn. Then its inverse
different is P

2(1−pn)
L . For any m ∈ Z, the ideals P1−pn+m

L and P1−pn−m
L

are therefore mutually dual under the trace pairing. Thus, for any h ∈ Z,
the ideals Ph

L and P2−2pn−h
L

∼= Ppn+2−h
L are mutually dual. When h ≡ 1

(mod p), the ideal Ph
L is isomorphic to its dual, and is free over the group

ring OK [G]. If p = 2 and h ≡ 1 + 2n−1 mod 2n, the ideal Ph
L is again

isomorphic to its dual, and is free over its associated order A; in this case
A 6= OK [G], although A attains the minimal embedding dimension n + 1.
In the remaining case 2h 6≡ 2 mod pn, the mutually dual ideals Ph

L and
P2−2pn−h
L are not isomorphic; they have the same associated order, since

both give rise to the same sequence w(s), but one ideal is free over this
order while the other is not.
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4.3. More on the valuation ring

In this subsection, we discuss how Theorem 3.1 is related to a result of
Miyata [33] and to our previous work in [10] and [14]. This will lead to a
strengthening of [14, Cor. 1.2].

We first recall Miyata’s result. Let K be a finite extension of Qp contain-
ing a primitive pnth root of unity, and let L = K( pn√

a) be an extension of
degree pn, where a ∈ K and p - vK(a − 1). Recall that r(x) denotes the
least non-negative residue mod pn of an integer x. We set t0 = r(vK(a−1)).
Miyata [33, Thm. 5] shows that OL is free over its associated order AL/K
if and only if the following condition holds: t0 + r(it0)− r(ht0) > 0 for all
integers h, i, j such that 0 6 h 6 i 6 j < pn, i + j = pn − 1 + h and
p -
(
i
h

)
. This can be interpreted as a condition on the ramification breaks

b1, . . . , bn of L/K, since, writing b = r(−vK(a − 1)) = pn − t0, we have
bi ≡ b (mod pi) for 1 6 i 6 n.

Miyata’s condition was reformulated in [10], where it was used to deduce
a more transparent (but less complete) criterion: OL is free over AL/K if
b divides pm − 1 for some m ∈ {1, . . . , n}. The converse is not always true
when n > 3, but for n = 2 the converse does hold. Thus, for n = 2, we have
that OL is free if and only if b divides p2 − 1. This is closely analogous to
the result [5] for n = 1 (cf. Example 3.3): OL is free if and only if b | (p−1).
In [14], we considered near one-dimensional extensions E/F , and gave a

criterion [14, Thm. 2.3] for OE to be free over its associated order. In the
notation of the present paper, this criterion is just the condition that w(s) =
d(s) for all s, and the result is a special case of Theorem 3.1 (with h = 0).
We also showed [14, Lem. 2.4] that this criterion was equivalent to Miyata’s,
as reformulated in [10]. (This is despite the fact that Miyata’s extensions
are cyclic in characteristic 0 and the near one-dimensional extensions are
elementary abelian in characteristic p).

Now, given that bi ≡ b (mod pi) for 1 6 i 6 n, the equivalence of
Miyata’s condition and our condition w(s) = d(s) is a purely numerical
statement, depending only on the parameter b. We may therefore combine
it with Theorem 3.1 (in the case h = 0) whenever we have an extension
L/K admitting a scaffold with high enough precision and suitable shift
parameters. We therefore obtain the following result:

Theorem 4.8. — Let L/K be a totally ramified extension of local
fields of degree pn. Let there be an A-scaffold on L with shift parame-
ters b1, . . . , bn that satisfy bi ≡ bn (mod pi) for all i and with precision
c > r(bn). Then OL is free over its associated order in A if r(bn) | (pm− 1)
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for some m ∈ {1, 2, . . . , n}. Conversely, if n 6 2 and c > pn + r(bn) then
OL is free only if r(bn) | (pn − 1).

Remark 4.9. — We reiterate that, in the case of near one dimensional
extensions, Theorem 4.8 is [14, Cor. 1.2]. The new feature here is that the
same statement holds for any extension (not necessarily Galois, and not
necessarily in characteristic p), provided that it admits a scaffold of high
enough precision whose shift parameters satisfy the stated congruences.
These congruences automatically hold for Galois scaffolds on abelian ex-
tensions, cf. Remark 2.13, but also for the inseparable examples in §5 below,
where there is a single shift parameter b.

One question which remains unanswered is whether (or under what con-
ditions) Miyata’s cyclic extensions admit a Galois scaffold of sufficiently
high precision for Theorem 3.1(2) to be applicable. If this were the case,
then Miyata’s result could be viewed as particular instance of ours. We
hope to return to this question in future work.

4.4. A result on the inverse different

Let L/K be a totally ramified Galois extension of degree pn, with abelian
Galois group. In [9, Thm. 3.10], it was shown that, under a rather mild
technical hypothesis, the inverse different D−1

L/K of L/K cannot be free over
its associated order unless the ramification breaks satisfy the congruence
bi ≡ −1 (mod pn). (Note that the modulus here is pn, and not pi.) Only the
characteristic 0 case was considered in [9], but the same argument works
in characteristic p. We will now show that, if L/K admits a suitable Galois
scaffold, this necessary condition for freeness is also sufficient, and we note
an interesting consequence for the order A.

Theorem 4.10. — Let L/K be an abelian extension of degree pn which
admits a Galois scaffold of precision c > 2pn − 1. Then D−1

L/K is free over
its associated order A if and only the ramification breaks satisfy bi ≡ −1
(mod pn) for 1 6 i 6 n. If this occurs, then A is also the associated order
of the valuation ring OL, and A is a Hopf order in the Hopf algebra K[G],
where G = Gal(L/K).

Proof. — The condition (3.11) in [9, Thm. 3.10] is only required to ensure
that A is a local ring (or, equivalently, that D−1

L/K is indecomposable as an
OK [G]-module). However, this is guaranteed by Theorem 3.6 under our
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hypothesis on c. It follows that D−1
L/K cannot be free over A unless bi ≡ −1

(mod pn) for all i.
Conversely, suppose that bi ≡ −1 (mod pn) for all i. Then Hilbert’s

formula for the different [37, IV§2 Prop. 4] gives D−1
L/K = P−wL with w ≡ 0

(mod pn), so that D−1
L/K = δOL for some δ ∈ K. It follows that D−1

L/K is
isomorphic to OL as an OK [G]-module. Thus both OL and D−1

L/K have the
same associated order A, and if either of them is free over A then so is the
other. Now since the assumption on the bi implies the weaker congruences
bi ≡ −1 (mod pi), it follows from Example 3.4 that OL, and hence also
D−1
L/K , is indeed free over A. Finally, as D−1

L/K = δOL with δ ∈ K, and A

is a local ring, A must be a Hopf order in K[G] by work of Bondarko [6,
Thm. A and Prop. 3.4.1]. �

Corollary 4.11. — Let L/K be an abelian extension of degree pn
which admits a Galois scaffold of precision c > 2pn − 1. If the largest
ramification break bn satisfies the congruence bn ≡ −1 (mod pn), then we
have bi ≡ −1 (mod pn) for all i.

Proof. — By the Hasse–Arf Theorem (see Remark 2.13), the hypothesis
bn ≡ −1 (mod pn) ensures that bi ≡ −1 (mod pi) for all i (which is weaker
than the desired conclusion). But then, on the one hand, it follows from
Example 3.4 that OL is free over its associated order A. On the other hand,
from Hilbert’s formula for the different, we again have D−1

L/K = δOL for
some δ ∈ K. Thus D−1

L/K also has associated order A, and is free over
A. Hence, by Theorem 4.10, we have the stronger congruence bi ≡ −1
(mod pn) for all i. �

One can easily construct elementary abelian extensions whose ramifica-
tion breaks satisfy bi ≡ −1 (mod pi) for all i, but do not satisfy bi ≡ −1
(mod pn) for all i. Corollary 4.11 therefore shows that certain realizable
sequences of ramification breaks preclude the existence of a Galois scaffold
of high precision.

5. Purely inseparable extensions

The purpose of this section is to provide an example of a particularly
natural scaffold (with precision c =∞) in the setting of purely inseparable
extensions, and since the results of §3 are therefore applicable, submit the
topic of generalized Galois module structure in purely inseparable exten-
sions for further study.
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The divided power Hopf algebra A(n) of dimension pn (see Definition 5.2
below) is a standard example of a Hopf algebra over a field K of charac-
teristic p > 0. We will prove the following result:

Theorem 5.1. — Let K be a local field of characteristic p > 0, and let
L be any totally ramified and purely inseparable extension of K of degree
pn. Let b satisfy 0 < b < pn and gcd(b, p) = 1. Then there is an action
of A(n) on L which makes L into an A(n)-Hopf Galois extension of K,
and which admits an A(n)-scaffold with unique shift parameter b and with
precision c =∞.

This means that we can study generalized Galois module structure ques-
tions for each of these actions of A(n): the valuation ring OL of L, or more
generally any fractional ideal Ph

L, is a module over its associated order in
A(n) under each action, and, as before, we can ask if it is free, how many
generators are required if it is not, and what the embedding dimension of
the associated order is. The answers to these questions are given in terms of
b by Theorems 3.1 and 3.6, and so will be identical to those for any Galois
extension of degree pn admitting a Galois scaffold of high enough precision
and having lower ramification breaks bi ≡ b (mod pi) for 1 6 i 6 n. In par-
ticular, it follows from Theorem 4.8 that OL will be free over its associated
order if b divides pm − 1 for any m 6 n (and conversely for n = 1, 2).

The material in this section is partly based on discussions with Alan
Koch.

5.1. Hopf Galois structures

Let L/K be a finite extension of fields, and let H be a cocommutative
K-Hopf algebra with comultiplication ∆ : H → H ⊗H, augmentation (or
counit) ε : H → K and antipode σ : H → H. We say that L is anH-module
algebra if there is a K-linear action of H on L such that the following hold:
for all h ∈ H and s, t ∈ L,

µ(∆(h)(s⊗ t)) = h(st)

where µ is the multiplication map L⊗ L→ L; and

h · 1 = ε(h)1 for all h in H.

Then L/K is an H-Hopf Galois extension if L is an H-module algebra and
the map

L⊗K H → EndK(L) ,
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given by (s⊗ h)(t) 7→ sh(t) for h ∈ H and s, t ∈ L, is a bijection.
This notion, defined (in dual form) in [16], extends the classical concept

of a finite Galois extension of fields: if L/K is Galois with group G, then
the map

L⊗K K[G]→ EndK(L)

is bijective.
An early example of a class of Hopf Galois extensions was furnished

by finite primitive purely inseparable field extensions. Let K be a field of
characteristic p > 0 and let L = K(x) with xp

n = a, where a ∈ K but
a1/p 6∈ K. Note that xpn − a is irreducible. Then L is called a primitive
extension of K of exponent n. Associated with a primitive extension L/K
of exponent n are higher derivations, or unital Hasse–Schmidt derivations,
of length pn. A higher derivation on L/K is a sequence

D = (D0 = 1, D1, . . . , Dpn−1)

of K-homomorphisms from L to L such that for all m and for all a, b in L,

Dm(ab) =
m∑
i=0

Di(a)Dm−i(b)

and Di(a) = δi,0a for all a ∈ K. (Unital means D0 = 1: see [23].) In
particular, D1 is a derivation of L. The set of all a ∈ L so that Di(a) = 0
for all i > 0 is the field of constants of D (which contains K).

The significance of higher derivations in inseparable field theory stems in
part from characterizations of finite modular purely inseparable field exten-
sions L/K. A finite purely inseparable field extension L of K is modular
if L is isomorphic to a tensor product K(x1) ⊗ · · · ⊗ K(xr) of primitive
extensions. Sweedler [40] characterized a finite modular extension as one
for which K is the field of constants of all higher derivations on L/K.
Higher derivations of purely inseparable field extensions can arise from

actions of divided power Hopf algebras, defined as follows.

Definition 5.2 ([34, 5.6.8]). — Let K be a field of characteristic p. The
divided power K-Hopf algebra of dimension pn is the K-vector space A(n)
of dimension pn with basis t0, t1, . . . , tpn−1. Multiplication is defined by

titj =


(
i+ j

j

)
ti+j if i+ j < pn ,

0 otherwise
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and t0 is the identity. The coalgebra structure is given by

∆(tr) =
r∑
j=0

tj ⊗ tr−j and ε(tr) = δ0,r .

The antipode is given by s(tr) = (−1)rtr.

Remark 5.3. — As Alan Koch has pointed out to us, the divided power
Hopf algebra A(n) represents the group scheme given by the kernel of the
Frobenius homomorphism on the additive group of Witt vectors of length
n over K.

Let L = K(x) be a primitive purely inseparable field extension of expo-
nent n. Let A(n) act on L by

(5.1) tr(xs) =
(
s

r

)
xs−r

(where
(
s
r

)
= 0 if r > s). Then, as Sweedler observes [41, p. 215], L is an

A(n)-module algebra, K is the field of constants

LA(n) = {y ∈ L : h(y) = ε(h)y for all h ∈ A(n)}

and [A(n) :K] = [L :K] = pn. By a theorem of Sweedler ([41, Thm. 10.1.1]),
these conditions imply that the map from L⊗K A(n) to EndK(L) is bijec-
tive, and hence L is an A(n)-Hopf Galois extension of K.
This example also shows up in [2, Lem. 1.2,3] and in dual form (that is,

L is an A(n)∗-Galois object) in [16, Ex. 4.11].
Evidently if A(n) acts on L/K, then the basis {t0, t1, . . . , tpn−1} of A(n)

defines a higher derivation of L/K. So henceforth we denote ti by Di. As
a K-vector space,

A(n) = K[D0, D1, . . . Dpn−1] ,
and we turn our attention now to the structure of A(n) as an algebra.

Proposition 5.4. — As a K-algebra,

A(n) = K[D1, Dp, . . . Dpn−1 ] ∼= K[T0, T1, . . . Tn−1]/(T p0 , T
p
1 , . . . , T

p
n−1]

is an exponent p truncated polynomial algebra over K.

To show this, it is convenient to invoke

Theorem 5.5 (Lucas’s Theorem, 1878). — Let p be prime, and let the
integers a, b > 0 be written p-adically:

a = a0 + a1p+ · · ·+ arp
r

b = b0 + b1p+ · · ·+ brp
r
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where we may assume b 6 a (so that br may be 0) and 0 6 ai, bi < p for
all i. Then (

a

b

)
≡
(
a0

b0

)(
a1

b1

)
. . .

(
ar
br

)
(mod p).

Here
(0

0
)

= 1 and
(
a
b

)
= 0 if a < b. For a nice proof of Lucas’s Theorem

using the Binomial Theorem modulo p, see [36].
Proof of Proposition 5.4. — This is a matter of showing by induction

(using Lucas’s Theorem) that modulo p: first,

k!Dkpr = Dk
pr

for 1 6 k 6 p, and hence Dp
pr = 0 for all r; and second,

Da0+a1p+...arpr = Da0Da1p . . . Darpr .

Hence
Da0+a1p+...arpr = Da0

1
a0! ·

Da1
p

a1! . . .
Dar
pr

ar!
.

Since all the factorials are units modulo p, the result follows. �

5.2. A(n)-scaffolds on purely inseparable extensions

Let K be a local field with normalized valuation vK and uniformizing
parameter π. Let L be a purely inseparable field extension of exponent n
which is totally ramified. To see that L/K is primitive, let ν be a uniformiz-
ing parameter for L. As L/K is purely inseparable, we have νpn ∈ K. As
L/K is totally ramified, it follows that vK(νpn) = 1, so that νpn−1 6∈ K

and L = K(ν). Now that L/K is primitive, A(n) = K[D1, Dp, . . . , Dpn−1 ],
the divided power Hopf algebra of dimension pn, acts on L/K. Indeed, it
can act on L/K in many ways.
Let 0 < b < pn with gcd(b, p) = 1, and set x = ν−b. Then L = K(x) and

vL(x) = −b. We specify that A(n) acts on L as in (5.1), that is,

(5.2) Dpr (xa) =
(
a

pr

)
xa−p

r

.

By Lucas’s Theorem, (
a

pr

)
= a(r)

where a(r) is the rth digit of the p-adic expansion of a. Note that this action
depends on the choice of the generator x for L/K, and therefore depends
on b.
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Remark 5.6. — At this point, we make explicit the connection with the
intuition of a scaffold, presented in §1. Let Xi = xp

n−i , and Ψi = Dpn−i .
Then (5.2) and (1.1) agree where 0 6 a < pn is expressed p-adically as
both a = a0 + a1p+ · · ·+ an−1p

n−1 to be consistent with Theorem 5.5 and
a = a(0) + a(1)p+ · · ·+ a(n−1)p

n−1 to be consistent with (2.1).

Remark 5.7. — In the present purely inseparable situation, the conven-
tion adopted by (2.1) where integers 0 6 a < pn are expressed p-adically
as a =

∑n
i=1 a(n−i)p

n−i (and thus necessarily Xi = xp
n−i and Ψi = Dpn−i)

may seem awkward. So it is worth reiterating that we adopted this con-
vention because scaffolds arose first in the setting of Galois extensions and
in that setting it is natural to label the ith ramification break with the
subscript i.

To complete the proof of Theorem 5.1 we now define an A(n)-scaffold on
L/K with b as its sole shift parameter. This means, following Definition 2.3,
that we need two sets of elements: elements λt ∈ L for all integers t with
vL(λt) = t, and elements Ψk ∈ A(n) for 1 6 k 6 n. But since the shift
parameters are all the same, we can simplify notation. From (2.2), we see
that b(s) = bs. Let a be an integer with ab ≡ −1 (mod pn). Thus for t ∈ Z,
a(t) can be more easily understood as the least non-negative residue of at
modulo pn. For each t in Z, define ft by

t = −ba(t) + pnft .

Hence ft > 0 for all t > 0. Expand a(t) p-adically as a(t) = a(t)(0) +
a(t)(1)p+ · · ·+ a(t)(n−1)p

n−1. For the λt with t ∈ Z, set

λt = πftxa(t)

a(t)(0)!a(t)(1)! . . . a(t)(n−1)!
= πft

n∏
i=1

X
a(t)(n−i)
i

a(t)(n−i)!
,

where Xi is as in Remark 5.6. Observe that ft was defined so that vL(λt) =
−ba(t)+pnft = t, and if t1 ≡ t2 (mod pn), then a(t1) = a(t2) and λt1λ−1

t2 =
πft1−ft2 ∈ K. As in Remark 5.6, for 1 6 r 6 n, set

Ψr = Dpn−r .

Now observe that (5.2) together with Lucas’s Theorem imply

Ψrλt =
{
λt+pn−rb if a(t)(n−r) > 0 ,
0 if a(t)(n−r) = 0 .

Based upon Definition 2.3 this justifies our assertion that the intuition of
a scaffold yields a scaffold. It also proves the following result.
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Proposition 5.8. — The elements {λt}t∈Z, {Ψr}06r6n form an A(n)-
scaffold on L of precision ∞.

Appendix A. Comparison of definitions of scaffold

A.1. An alternative characterization of A-scaffolds

Let K be a local field with residue characteristic p, let L/K be a totally
ramified field extension of degree pn, and let A be a K-algebra of dimension
pn with a K-linear action on L. We assume that we are given a family
of elements Ψ1, . . . ,Ψn of A. For s ∈ Spn , we then have the set Υ(s) of
monomials in the Ψi, as defined before (2.4). We also suppose we are given
functions b, a corresponding to a family of shift parameters b1, . . . , bn, all
relatively prime to p. We consider the following conditions on the Ψi:

Ψi · 1 = 0 for each i ;(A.1)

vL(Ψ · ρ) = vL(ρ) + b(s) for all Ψ ∈ Υ(s) and s ∈ Spn ,(A.2)

for some given ρ ∈ L\{0};

(A.3) vL(Ψp
i · α) > vL(α) + bip

n−i+1 for all i and all α ∈ L\{0} ;

and the stronger form of (A.3),

(A.4) Ψp
i = 0 for all i .

Let {λt}t∈Z be any family of elements of L satisfying the conditions of
Definition 2.3(1): vL(λt) = t for all t, and λt1λ

−1
t2 ∈ K whenever t1 ≡ t2

(mod pn).

Theorem A.1.
(1) Suppose that the Ψi satisfy (A.1) and (A.3), and there is some ρ

for which (A.2) holds. Then the λt and the Ψi form an A-scaffold
of precision c = 1 on L in the sense of Definition 2.3, and its shift
parameters are b1, . . . , bn. Moreover a(vL(ρ)) = pn − 1.

(2) If, furthermore, (A.4) holds and A is commutative, then the λt may
be chosen so that the A-scaffold has precision ∞.

(3) Conversely, if the λt and the Ψi form an A-scaffold of some precision
c > 1 in the sense of Definition 2.3, then (A.1) and (A.3) hold,
and (A.2) holds for any ρ ∈ L with a(vL(ρ)) = pn − 1.
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Proof.
(1). — Since (A.1) holds by hypothesis, we will have an A-scaffold of

precision 1 provided that the congruence in Definition 2.3(2) holds with
c = 1 and some choice of the units ui,t. This will be the case if, for each
t ∈ Z and each i, we have

(A.5) vL(Ψi · λt)
{

= t+ pn−ibi if a(t)(n−i) > 1,
> t+ pn−ibi if a(t)(n−i) = 0 .

Fix i, and, for each s ∈ Spn , define Ψ(s)
∗ ∈ Υ(s) by

Ψ(s)
∗ = Ψs(n−i)

i Ψs(0)
n . . .Ψs(n−i−1)

i−1 Ψs(n−i+1)
i+1 . . .Ψs(n−1)

1 .

Thus Ψ(s)
∗ is obtained from Ψ(s) by bringing all the factors Ψi to the left

(so in particular Ψ(s)
∗ = Ψ(s) if i = n). From (A.2) we have vL(Ψ(s)

∗ · ρ) =
vL(ρ)+b(s). Thus {vL(Ψ(s)

∗ ·ρ) : s ∈ Spn} is a complete set of residues mod
pn, and hence {Ψ(s)

∗ · ρ : s ∈ Spn} is a K-basis for L.
Now fix s as well. If s(n−i) < p−1 then ΨiΨ(s)

∗ ∈ Υ(s′) where s′ = s+pn−i,
so that s′(n−i) = s(n−i) + 1 and s′(n−j) = s(n−j) for j 6= i. Thus, from (A.2),

(A.6) vL(ΨiΨ(s)
∗ ·ρ) = vP (ρ)+b(s′) = vL(Ψ(s)

∗ ·ρ)+bipn−i if s(n−i) < p−1 .

On the other hand, if s(n−i) = p − 1 then ΨiΨ(s)
∗ = Ψp

iΨ
(s′′)
∗ where s′′ =

s − (p − 1)pn−i, so that s′′(n−i) = 0 and s′′(n−j) = s(n−j) for j 6= i. Then
vL(ΨiΨ(s)

∗ · ρ) = vL(Ψp
iΨ

(s′′)
∗ · ρ) > vL(Ψ(s′′)

∗ · ρ) + bip
n−i+1 by (A.3). But

vL(Ψ(s′′)
∗ ·ρ) = vL(ρ)+b(s′′) = vL(ρ)+b(s)−bi(p−1)pn−i by (A.2). Hence

(A.7) vL(ΨiΨ(s)
∗ · ρ) > vL(Ψ(s)

∗ ρ) + bip
n−i if s(n−i) = p− 1.

Now let α 6= 0 be an arbitrary element of L with vL(α) = t. Then we
may write α =

∑
s∈Spn

xsΨ(s)
∗ · ρ with the xs ∈ K. The sum contains

a unique term of minimal valuation; let this occur at s = s′. Then t =
pnvK(xs′)+vL(ρ)+b(s′). Applying (A.6) or (A.7) to each term in the sum
separately, we obtain

(A.8) vL(Ψi · α)
{

= t+ pn−ibi if s′(n−i) < p− 1,
> t+ pn−ibi if s′(n−i) = p− 1.

Before completing the proof of (A.5), we consider vL(ρ). There is some
s ∈ Spn for which vL(Ψ(s)

∗ · ρ) ≡ 0 (mod pn). By (A.2), s is independent
of i. We may write Ψ(s)

∗ · ρ = x + β where x ∈ K and vL(β) > vL(Ψ(s)
∗ ρ).

Using (A.1) and (A.8), we therefore have

vL(ΨiΨ(s)
∗ · ρ) = vL(Ψi · β) > vL(Ψ(s)

∗ · ρ) + pn−ibi .
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Comparing with (A.8), we see that we must have s(n−i) = p−1. This holds
for each i, so s = pn−1. Thus, by the choice of s, we have vL(ρ) ≡ −b(pn−1)
(mod pn), or equivalently, a(vL(ρ)) = pn − 1.
Recall that in (A.8) we have t = vL(α) ≡ vL(ρ) + b(s′) (mod pn). Thus

t ≡ −b(pn − 1) + b(s′) = −b(pn − 1− s′). Hence a(t) = pn − 1− s′, so the
condition s′(n−i) < p− 1 in (A.8) is equivalent to a(t)(n−i) > 1. Now (A.5)
follows on applying (A.8) to α = λt.
(2). — Fix a uniformizing element π of K. Given t ∈ Z, we choose λt =

πfΨ(s) · ρ where pnf + vL(ρ) + b(s) = t. Then vL(λt) = t, and λt1λ−1
t2 =

π(t1−t2)/pn ∈ K when t1 ≡ t2 (mod pn). Also, as we have shown above,
a(t) = pn− 1− s, so that a(t)(n−i) > 1 if and only if sn−i) < p− 1. As A is
commutative and Ψp

i = 0, we have ΨiΨ(s) · ρ = 0 if s(n−i) = p− 1, so that
Ψi · λt = 0. On the other hand, if s(n−i) 6= p − 1 then Ψi · λt = λt+bipn−i .
Thus the congruence in Definition 2.3(2) becomes an equality (with ui,t = 1
for all i and t).
(3). — Since we have an A-scaffold in the sense of Definition 2.3, (A.1)

holds. Also, from (2.6), for any s ∈ Spn and any Ψ ∈ Υ(s) we have

(A.9) vL(Ψ · λt)
{

= t+ b(s) if s � a(t),
> t+ b(s) otherwise.

For an arbitrary α∈L with vL(α) = t, we may write α = uλt+
∑pn−1
j=1 yjλt+j

for some u ∈ O×K and yj ∈ OK . Applying (A.9) to each term, we find
that (A.9) still holds if we replace λt by α. In particular, taking Ψ = Ψi,
we have

(A.10) vL(Ψi · α)
{

= t+ bip
n−i if a(t)(n−i) > 0 ,

> t+ pn−ibi otherwise.

Moreover, writing t′ = vL(Ψi · α), we have a(t′)(n−i) = a(t)(n−i) − 1 if
a(t)(n−i) > 0. Repeating this argument p times, we obtain (A.3). Finally,
for any ρ with a(vL(ρ)) = pn−1, (A.2) follows inductively from (A.10). �

A.2. Galois scaffolds in previous papers

We now use Theorem A.1 to explain how the A-scaffolds of this paper are
related to the Galois scaffolds of the earlier papers [19, 13, 14]. There we
considered only abelian extensions L/K in characteristic p; the extensions
in [19, 14] were elementary abelian of arbitrary rank, and those in [13] were
elementary abelian or cyclic of degree p2. The algebra A acting on L was
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Table A.1. Properties of Galois scaffolds.

Paper Explicit in definition Used for Galois module structure
[19] (A.11)
[13] (A.1), (A.11), (A.12) (A.1), (A.2), (A.3)
[14] (A.1), (A.11), (A.12), (A.1), (A.2), (A.4)

always the group algebra A = K[G] with G = Gal(L/K); in this setting,
(A.1) simply says that the Ψi lie in the augmentation ideal of K[G].
The definition of Galois scaffold varies slightly between these papers,

and the conditions explicitly required are a little less restrictive than those
of this paper. The Galois scaffolds constructed turn out to satisfy supple-
mentary conditions which were used in obtaining results on Galois module
structure. For the reader’s convenience, the role of the different conditions
in the various papers is summarized in Table A.1. (The conditions not
already mentioned are introduced below.)

A.2.1. The paper [19]

Galois scaffolds first appeared in [19], where they were presented as a
strengthening of the valuation criterion. Let K be a local field of residue
characteristic p > 0, and let L/K be a totally ramified Galois extension of
degree pn with Galois group G = Gal(L/K). We say that L/K satisfies the
valuation criterion if there exists c ∈ Z such that L = K[G] · ρ for every
ρ ∈ L with vL(ρ) = c. In [19], L/K was said to have a Galois scaffold if
there exist c ∈ Z and elements Ψ1, . . . ,Ψn ∈ K[G] such that, for every
ρ ∈ L with vL(ρ) = c, the following condition holds:

(A.11)
{
vL

(
Ψ(s) · ρ

)
: s ∈ Spn

}
is a complete set of residues pn.

Since L/K is totally ramified, (A.11) implies the valuation criterion for
L/K.

For the Galois scaffolds actually constructed in [19], the conditions (A.1)
and (A.2) hold, where the shift parameters bi used to define b are the
(lower) ramification breaks of L/K, and ρ is any element of L with vL(ρ) ≡
bn (mod pn). (Indeed, for the near one-dimensional extensions considered
in [19], the bi are all congruent mod pn, so b(s) ≡ bns (mod pn).) Moreover,
(A.4) holds, and Theorem A.1(1)(2) shows that the Galois scaffolds in [19]
are K[G]-scaffolds of precision ∞ in the sense of this paper.

TOME 68 (2018), FASCICULE 3



1006 Nigel P. BYOTT, Lindsay N. CHILDS & G. Griffith ELDER

A.2.2. The paper [14]

In [14] (which was in fact written before [13]), the definition of Galois
scaffold was refined to require (A.1) explicitly, and also to require the uni-
formity condition

(A.12) vL(Ψj
i · ρ)− vL(ρ) = j · (vL(Ψi · ρ′)− vL(ρ′))

whenever 0 6 j 6 p− 1 and vL(ρ), vL(ρ′) ≡ c (mod pn). Here, as above, c
is the integer occurring in the valuation criterion. Note that (A.12) makes
no explicit mention of the ramification breaks bi. If we set

ai = vL(Ψi · ρ)− vL(ρ) ,

then (A.12) means that ai is independent of the choice of ρ with vL(ρ) ≡ c
(mod pn), and that

(A.13) vL(Ψj
i ·ρ) = vL(ρ)+jai if 0 6 j 6 p−1 and vL(ρ) ≡ c (mod pn) .

Moreover, if (A.2) holds for the function b given by some shift parameters
b1, . . . , bn, then (A.13) holds for ai = pn−ibi and any c ≡ −b(pn − 1)
(mod pn).
In view of (A.2), it is reasonable to replace (A.12) by

(A.14) vL

(
Ψ(s) · ρ

)
= vL(ρ) +

n∑
i=1

s(n−i)ai for all s ∈ Spn ,

where again ρ is any element of L with vL(ρ) ≡ c (mod pn). Now if (A.14)
holds for some integers ai, then, by Proposition A.2 below, (A.11) is equiv-
alent to the condition that (possibly after renumbering the Ψi and the ai)
there are integers b1, . . . , bn, all relatively prime to p, such that ai = pn−ibi.
If we use these to define the function b, then, in the case of an abelian ex-
tension, (A.14) is equivalent to (A.2). We may therefore regard (A.2) as a
natural strengthening of (A.14), and hence of (A.12).
The extensions considered in [14] are the near one-dimensional extensions

constructed in [19], and the Galois scaffolds used are those of that paper.
As explained above, they satisfy (A.1), (A.2) and (A.4). These properties
were used in [14] to investigate the Galois module structure of the valuation
rings.

A.2.3. The paper [13]

So that we focus on those results in [13] which are in neither [19] nor [14],
we restrict our discussion here to cyclic extensions of degree p2. In any case,
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[13] used the same definition of Galois scaffold as [14]. The Galois scaffolds
considered in [13] satisfy (A.1) and (A.2). The cyclic Galois scaffolds satisfy
Ψp

1 = Ψ2, Ψp
2 = 0, and (A.3) holds since b2 > p2b1. Thus again they

are K[G]-scaffolds of some precision c > 1. (In fact c = b2 − pb1.) These
properties are used in [13] to investigate the Galois module structure of the
valuation ring in cyclic extensions of degree p2 admitting a Galois scaffold.

A.3. An alternative form of the function b

In the above discussion, we needed the following result:

Proposition A.2. — Given ai ∈ Z, let b′ : Snp −→ Z be defined by

b′(x1, . . . , xn) =
n∑
i=1

aixi .

Let r : Z −→ Spn be given by r(a) ≡ a (mod pn), and let v denote the
normalized valuation on the p-adic rationals. Then the function r ◦ b′ :
Spn → Spn is bijective if and only if, after relabelling if necessary, v(ai) =
n− i for 1 6 i 6 n.

Proof. — Note that r ◦ b′ is surjective if and only if it is bijective. If
v(ai) = n − i for 1 6 i 6 n, then clearly the image of r ◦ b′ is Spn . So
consider the converse: Let b′n(x1, . . . , xn) =

∑n
i=1 aixi and induct on n.

For n = 1 the statement holds, since r ◦ b′1 : Sp −→ Sp is bijective if and
only if gcd(a1, p) = 1. Assume the statement holds for n− 1, and consider
it for n. If v(ai) > 1 for all i, then each b′n(x1, . . . , xn) is a multiple of p.
So we may assume there is an ai that is relatively prime to p. Relabel so
that v(an) = 0.
We prove now that, for 0 6 k 6 pn−1 − 1, there exist xi,k ∈ Sp with

(A.15) kpan = b′n(x1,k, . . . , xn−1,k, 0) = x1,ka1 + · · ·+ xn−1,kan−1.

The case k = 0 is clear. Assume the statement holds for k−1, and consider
it for k. Since r(kpan) ∈ Spn and r◦b′n is surjective, there are xi,k ∈ Sp such
that kpan = x1,ka1 +x2,ka2 + · · ·+xn,kan. If xn,k 6= 0 then, on subtracting
(k − 1)pan = x1,k−1a1 + · · ·+ xn−1,k−1an−1, we find that

(A.16) (p− xn,k)an = (x1,k − x1,k−1)a1 + · · ·+ (xn−1,k − xn−1,k−1)an−1 .

Let yn = p− xn,k, and, for 1 6 i 6 n− 1, let

yi =
{
xi,k−1 − xi,k if xi,k−1 > xi,k ,

0 if xi,k−1 < xi,k .
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Let zn = 0, and for 1 6 i 6 n− 1 let

zi =
{

0 if xi,k−1 > xi,k ,

xi,k − xi,k−1 if xi,k−1 < xi,k .

Then (A.16) means that b′n(y1, . . . , yn) = b′n(z1, . . . , zn). As yn 6= zn, this
contradicts the injectivity of r◦b′n. Thus xn,k = 0, and the statement holds
for k.
Since r ◦ bn is injective, (A.15) establishes a bijection between Sn−1

p

and the multiples of p in Spn . In particular, ai = b′n(0, . . . , 0, 1, 0 . . . 0)
is a multiple of p for each i 6 n − 1. Thus the image of Sn−1

p under
b′n−1(x1, . . . , xn−1) =

∑n−1
i=1 xi(ai/p) maps modulo pn−1 onto Spn−1 . Us-

ing induction, we may relabel so that v(ai/p) = n− 1− i for 1 6 i 6 n− 1.
We conclude that v(ai) = n− i for 1 6 i 6 n. �
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