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A MODULAR SUPERCONGRUENCE FOR 6F5: AN
APÉRY-LIKE STORY

by Robert OSBURN, Armin STRAUB & Wadim ZUDILIN

Abstract. — We prove a supercongruence modulo p3 between the pth Fourier
coefficient of a weight 6 modular form and a truncated 6F5-hypergeometric series.
Novel ingredients in the proof are the comparison of two rational approximations
to ζ(3) to produce non-trivial harmonic sum identities and the reduction of the
resulting congruences between harmonic sums via a congruence relating the Apéry
numbers to another Apéry-like sequence.
Résumé. — On démontre une supercongruence modulo p3 entre le p-ième coef-

ficient de Fourier d’une forme modulaire de poids 6 et une série hypergéométrique
6F5 tronquée. Les nouveaux ingrédients de la preuve sont la comparaison de deux
approximations rationnelles de ζ(3) pour produire des identités non triviales entre
sommes harmoniques, et la réduction des congruences qui en résultent entre des
sommes via une congruence qui relie les nombres d’Apéry á une autre suite du type
de celle d’Apéry.

1. Introduction

There has been considerable recent interest in the study of arithmetic
properties connecting pth Fourier coefficients of integral weight modular
forms and truncated hypergeometric series. A motivating example of this
phenomenon is the modular supercongruence [14]

(1.1) 4F3

[ 1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

∣∣∣∣ 1
]
p−1
≡ a(p) (mod p3),

where p is an odd prime and a(n) are the Fourier coefficients of the Hecke
eigenform

(1.2) η(2τ)4η(4τ)4 =
∞∑
n=1

a(n)qn

Keywords: supercongruence, Apéry numbers, Apéry-like numbers, hypergeometric
function.
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of weight 4 for the modular group Γ0(8). Here and throughout, q = e2πiτ

with Im τ > 0, η(τ) = q1/24∏∞
n=1(1− qn) is Dedekind’s eta function and

n+1Fn

[
a0, a1, . . . , an
b1, . . . , bn

∣∣∣∣ z]
p−1

=
p−1∑
k=0

(a0)k · · · (an)k
(b1)k · · · (bn)k

zn

n! ,

with (a)k = a(a+ 1) · · · (a+ k− 1), is the truncated hypergeometric series.
Kilbourn’s result (1.1) verifies one of 14 conjectural supercongruences

between truncated 4F3-hypergeometric series (evaluated at 1) correspond-
ing to fundamental periods of the Picard–Fuchs differential equation for
Calabi–Yau manifolds of dimension 3 and the Fourier coefficients of mod-
ular forms of weight 4 and varying level [26]. Two more cases have been
proven in [10] and [18]. Moreover, there is now a general combinatorial
framework [16, 17] which not only covers these 14 cases, but also the 8
cases in dimensions 1 and 2. In addition, (1.1) is one of van Hamme’s orig-
inal 13 Ramanujan-type supercongruences (see [12, (M.2)]). For further
details on this and related topics we refer to [9, 13, 21, 29].
The purpose of this paper is to observe that a relationship akin to (1.1)

exists between a truncated 6F5-hypergeometric series and a modular form
of weight 6. Our main result is the following.

Theorem 1.1. — For all odd primes p,

(1.3) 6F5

[ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

∣∣∣∣ 1
]
p−1
≡ b(p) (mod p3),

where

(1.4) η(τ)8η(4τ)4 + 8η(4τ)12 = η(2τ)12 + 32η(2τ)4η(8τ)8 =
∞∑
n=1

b(n)qn

is the unique newform in S6(Γ0(8)).

Theorem 1.1 is of particular practical relevance due to Weil’s bounds
|b(p)| < 2p5/2, which tell us that the values of the truncated sums modulo
p3 are sufficient for reconstructing the Fourier coefficients b(p), and hence
the Hecke eigenform. Mortenson has further observed numerically that (1.3)
appears to hold modulo p5. The technical difficulties in generalizing our
approach to verify this observation seem considerable. It would therefore
be particularly interesting whether a different approach can be found, which
verifies the congruence more naturally.
The paper is organized as follows. In §2, we provide additional historic

context, going back to Apéry’s proof of the irrationality of ζ(3), and in-
troduce Apéry-like sequences. This also serves to prepare for our proof of

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.1, which, interestingly, involves two constructions [19, 25, 31] of
rational approximations to ζ(3) as well as a congruence between the Apéry
numbers and another Apéry-like sequence. This congruence is proven in §3.
In §4, we briefly review Greene’s Gaussian hypergeometric series. A result
of Frechette, Ono and Papanikolas [8] expresses the Fourier coefficients
b(p) in terms of these finite field analogs of the classical hypergeometric
series. The Gaussian hypergeometric functions that thus arise have been
determined modulo p3 in [20] in terms of sums involving harmonic sums.
In §5, we reduce the resulting congruences between sums involving har-
monic numbers, then prove Theorem 1.1. One of the challenging auxiliary
congruences is

(1.5)
m∑
k=0

(−1)k
(
m+ k

k

)3(
m

k

)3
(1 + 3k(Hm+k +Hm−k − 2Hk))

≡
m∑
k=0

(
m+ k

k

)2(
m

k

)2
(mod p2).

Here, and throughout the paper, p is an odd prime and m = (p− 1)/2. As
usual, Hn = H

(1)
n , and H(r)

n denote the generalized harmonic numbers

H(r)
n =

n∑
j=1

1
jr
.

The fact that the right-hand side of (1.5) involves the Apéry numbers and
the relation of the latter to the irrationality of ζ(3) helped us to apply
some “irrational” ingredients, in the form of two different constructions of
rational approximations to ζ(3), to complete the proof. Finally, in §6, we
comment on the need to certify congruences algorithmically.

Acknowledgments. The first and third authors would like to thank
the organizers of the workshop “Modular forms in String Theory” (Sep-
tember 26–30, 2016) at the Banff International Research Station, Alberta
(Canada). The three authors thank the Max Planck Institute for Mathe-
matics in Bonn (Germany), where part of this research was performed. The
third author would like to thank Ling Long for several helpful insights on
links between finite and truncated hypergeometric functions.
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2. Historic context and Apéry-like sequences

The Apéry numbers [28, A005259]

(2.1) A(n) =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

rose to prominence by Apéry’s proof [2] of the irrationality of ζ(3) at the
end of the 1970s and were studied by number theorists in the 1980s because
of their arithmetic significance. Prominently, for instance, Beukers concep-
tualized Apéry’s proof by realizing that the ordinary generating function
admits a parametrization by modular forms. Beukers also established [4] a
second relation to modular forms by showing that

(2.2) A

(
p− 1

2

)
≡ a(p) (mod p),

where a(n) are the Fourier coefficients of the Hecke eigenform (1.2). After
some dormancy, the Apéry numbers resurfaced when Ahlgren and Ono [1]
proved Beukers’ conjecture that (2.2) holds modulo p2. In a different direc-
tion, Beukers and Zagier [30] initiated the exploration of generalizations,
often referred to as Apéry-like sequences, which also arise as integral solu-
tions to recurrence equations like

(2.3) (n+ 1)3A(n+ 1)− (2n+ 1)(17n2 + 17n+ 5)A(n) + n3A(n− 1) = 0,

which is satisfied by the Apéry numbers A(n) and characterizes them to-
gether with the single initial condition A(0) = 1.
In reducing the harmonic sums that we encounter in the proof of The-

orem 1.1, a crucial role is played by the sequence C6(n), [28, A183204],
where

(2.4) C`(n) =
n∑
k=0

(
n

k

)̀ (
1− `k(Hk −Hn−k)

)
.

The phenomenon that these sequences are integral for all positive integers `
has been proved in [15, Proposition 1]. For ` = 1, 2, 3, 4, 5, these sequences
were explicitly evaluated by Paule and Schneider [22], who further ask
whether C`(n) can be expressed as a single sum of hypergeometric terms
for ` > 6. It turns out that C6(n) is one of the sporadic Apéry-like sequences
discovered in [7] (see also [32]), so that, for ` = 6, the question of Paule
and Schneider is answered affirmatively by the following observation.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.1. — The sequence C6(n) has the binomial sum repre-
sentations

C6(n) = (−1)n
n∑
k=0

(
n

k

)2(
n+ k

k

)(
2k
n

)

=
n∑
k=0

(−1)k
(

3n+ 1
n− k

)(
n+ k

k

)3
,

which make the integrality of C6(n) transparent.

That all three sums are equal can be verified by checking that each se-
quence satisfies the same three-term recursion (a variation of (2.3)). These
are recorded in [22] and [7], or can be automatically derived by an algo-
rithm such as creative telescoping. An expression for C6(n) as a variation
of the first of the sums in Proposition 2.1, and hence the answer to the
question of Paule and Schneider, for ` = 6, was already observed in [6,
Entry 17 in Table 2]. No single-sum hypergeometric expressions for C`(n)
are known when ` > 7.
The following unexpected congruence between the Apéry numbers A(n)

and the Apéry-like numbers C6(n), from (2.1) and (2.4), is another ingre-
dient in our proof of Theorem 1.1. It is proved in §3.

Lemma 2.2. — For all odd primes p,

(2.5) A

(
p− 1

2

)
≡ C6

(
p− 1

2

)
(mod p2).

We point out that suitable modular parameterizations of the generat-
ing functions

∑∞
n=0 A(n)zn and

∑∞
n=0 C6(n)zn convert them into weight 2

modular forms of level 6 and 7, respectively [5] and [7]. We further note that
the congruence (2.5) is rather trivially complemented by the congruence

A

(
p− 1

2

)
≡ D

(
p− 1

2

)
(mod p),

which is straightforward and is only true modulo p, where

D(n) =
∞∑
n=0

(
n

k

)4

is another Apéry-like sequence [28, A005260], associated with a modular
form of weight 2 and level 10 (see [7]).
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3. Another Apéry number congruence

This section is concerned with proving the congruence (2.5) of Lemma 2.2
and, thereby, collecting some basic congruences involving harmonic num-
bers. The form in which we will later use this congruence is

(3.1)
m∑
k=0

(
m

k

)2(
m+ k

k

)2
≡

m∑
k=0

(
m

k

)6(
1− 6k(Hk −Hm−k)

)
(mod p2).

Here, and throughout, p is an odd prime and m = (p − 1)/2. For our
proof of the congruence (3.1) it is however crucial to use the alternative
representation

C6(n) =
n∑
k=0

(−1)k
(

3n+ 1
n− k

)(
n+ k

k

)3

for the sequence C6(n) provided by Proposition 2.1.
First, note that

(3.2)
(
m+ k

m

)
= (m+ 1)k

k! =
( 1

2 )k
k!

(
1 + p

2

k−1∑
j=0

1
j + 1

2
+O(p2)

)
and

(3.3)
(
m

k

)
= (−1)k(−m)k

k! = (−1)k
( 1

2 )k
k!

(
1− p

2

k−1∑
j=0

1
j + 1

2
+O(p2)

)
.

Now, since
k−1∑
j=0

1
j + 1

2
=
k−1∑
j=0

1
j + 1

2 + p
2

+O(p) =
k−1∑
j=0

1
j +m+ 1 +O(p)

= Hm+k −Hm +O(p),

we can write the expressions (3.2) and (3.3) in the forms

(3.4)
(
m

k

)
= (−1)k

( 1
2 )k
k!

(
1− p

2(Hm+k −Hm) +O(p2)
)
,

and (
m+ k

m

)
=

( 1
2 )k
k!

(
1 + p

2(Hm+k −Hm) +O(p2)
)

(3.5)

= (−1)k
(
m

k

)(
1 + p

2(Hm+k −Hm) +O(p2)
)2

= (−1)k
(
m

k

)(
1 + p(Hm+k −Hm) +O(p2)

)
.
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Recall that 2m = p− 1, so that

H2m−k = Hp−1 −
k∑
j=1

1
p− j

=
k∑
j=1

(
1
j

+ p

j2

)
+O(p2)(3.6)

= Hk + pH
(2)
k +O(p2).

By swapping k with m− k, we get

(3.7) Hm+k = Hm−k + pH
(2)
m−k +O(p2),

and, in view of the invariance of
(
m
k

)
under replacing k with m− k, we can

translate formula (3.5) to(
2m− k
m

)
= (−1)m−k

(
m

k

)(
1 + p(H2m−k −Hm) +O(p2)

)
(3.8)

= (−1)m−k
(
m

k

)(
1 + p(Hk −Hm) +O(p2)

)
,

which will be useful later.
On the other hand,(

3m+ 1
k

)
=
(
m+ p

k

)
= (−1)k (−m− p)k

k!

= (−1)k (−m)k
k!

(
1− p

k−1∑
j=0

1
−m− p+ j

+O(p2)
)

=
(
m

k

)(
1 + p(Hm −Hm−k) +O(p2)

)
,

so that

(3.9)
(

3m+ 1
m− k

)
=
(
m

k

)(
1 + p(Hm −Hk) +O(p2)

)
.

It follows from (3.5), (3.7) and (3.9) that(
m+ k

m

)2(
m

k

)2
=
(
m

k

)4(
1 + p(Hm−k −Hm) +O(p2)

)2

=
(
m

k

)4(
1 + p(2Hm−k − 2Hm) +O(p2)

)

TOME 68 (2018), FASCICULE 5
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and

(−1)k
(

3m+ 1
m− k

)(
m+ k

m

)3

=
(
m

k

)4(
1 + p(Hm −Hk) +O(p2)

)(
1 + p(Hm−k −Hm) +O(p2)

)3

=
(
m

k

)4(
1 + p(3Hm−k −Hk − 2Hm) +O(p2)

)
.

It remains to use the symmetry k ↔ m− k in the form
m∑
k=0

(
m

k

)4
Hm−k =

m∑
k=0

(
m

k

)4
Hk

to conclude that the desired congruence (2.5) is indeed true modulo p2.

4. Gaussian hypergeometric series

In the following, we discuss some preliminaries concerning Greene’s
Gaussian hypergeometric series [11]. Let Fp denote the finite field with p

elements. We extend the domain of all characters χ of F×p to Fp by defining
χ(0) = 0. For characters A and B of F×p , define(

A

B

)
= B(−1)

p
J(A, B̄),

where J(χ, λ) denotes the Jacobi sum for χ and λ characters of F×p . For
characters A0, A1, . . . , An and B1, . . . , Bn of F×p and x ∈ Fp, define the
Gaussian hypergeometric series by

n+1Fn

(
A0, A1, . . . , An
B1, . . . , Bn

∣∣∣∣ x)
p

= p

p− 1
∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·
(
Anχ

Bnχ

)
χ(x),

where the summation is over all characters χ on F×p .
We consider the case where Ai = φp, the quadratic character, for all i,

and Bj = εp, the trivial character mod p, for all j, and write

n+1Fn(x) = n+1Fn

(
φp, φp, . . . , φp
εp, . . . , εp

∣∣∣∣ x)
p

for brevity. By [11], pnn+1Fn(x) ∈ Z.
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For λ ∈ Fp and ` > 2 an integer, we now define the quantities

X`(p, λ) = λm
m∑
k=0

(−1)`k
(
m+ k

k

)`(
m

k

)`(
1 + 4`k(Hm+k −Hk)

+ 2`2k2(Hm+k −Hk)2 − `k2
(
H

(2)
m+k −H

(2)
k

))
λ−k,

Y`(p, λ) = λm
m∑
k=0

(−1)`k
(
m+ k

k

)`(
m

k

)`(
1 + 2`k(Hm+k −Hk)

− `k(Hm+k −Hm−k)
)
λ−kp,

Z`(p, λ) = λm
m∑
k=0

(
2k
k

)2`
16−`kλ−kp

2
.

Here, as before, m = (p− 1)/2.
The main result in [20] provides an expression for 2`F2`−1 modulo p3.

Precisely, we have the following.

Theorem 4.1. — Let p be an odd prime, λ ∈ Fp, and ` > 2 be an
integer. Then

p2`−1
2`F2`−1(λ) ≡ −

(
p2X`(p, λ) + pY`(p, λ) + Z`(p, λ)

)
(mod p3).

An analogous result holds for the opposite parity, that is, for n+1Fn when
n is even.

5. Two lemmas and the proof of Theorem 1.1

Lemma 5.1. — Let p be an odd prime. Then

X3(p, 1)− Y2(p, 1) ≡ (−1)(p−1)/2 − 1 (mod p).

Proof. — Consider the rational function

R(t) = Rn(t) =
∏n
j=1(t− j)2∏n
j=0(t+ j)2 ,

defined for any integer n > 0. Its partial fraction decomposition assumes
the form

R(t) =
n∑
k=0

(
Ak

(t+ k)2 + Bk
t+ k

)
,

where

Ak =
(
R(t)(t+ k)2)∣∣

t=−k =
(
n+ k

k

)2(
n

k

)2
,
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and, on considering the logarithmic derivative of R(t)(t+ k)2,

Bk = d
dt
(
R(t)(t+ k)2)∣∣∣∣

t=−k

= 2
(
R(t)(t+ k)2)( n∑

j=1

1
t− j

−
n∑
j=0
j 6=k

1
t+ j

)∣∣∣∣∣
t=−k

= 2Ak
(
(Hk −Hn+k) + (Hk −Hn−k)

)
.

The related partial fraction decomposition

tR(t) =
n∑
k=0

(
Akt

(t+ k)2 + Bkt

t+ k

)

=
n∑
k=0

(
Ak((t+ k)− k)

(t+ k)2 + Bk((t+ k)− k)
t+ k

)

=
n∑
k=0

(
− kAk

(t+ k)2 + Ak − kBk
t+ k

+Bk

)
and the residue sum theorem imply

n∑
k=0

(Ak − kBk) =
∑

all finite poles
Respole tR(t) = −Rest=∞ tR(t)

= coefficient of s in Taylor’s s-expansion of 1
s
R
(1
s

)
= coefficient of s in Taylor’s s-expansion of s

∏m
j=1(1− js)2∏m
j=0(1 + js)2

= 1 = A0,

from which
∑n
k=1(Ak − kBk) = 0 follows. The resulting identity is then

(5.1)
n∑
k=0

(
n+ k

k

)2(
n

k

)2(
1− 2k(2Hk −Hn+k −Hn−k)

)
= 1,

which played a crucial role in [1] and [14]. Notice that (5.1) implies

(5.2) Y2(p, 1) = 1.

Equality (5.1) and its derivation above follow the approach of Nesterenko
from [19] of proving Apéry’s theorem (see also [31]).
We can perform a similar analysis for the rational function

R̃(t) = R̃n(t) =
∏n
j=1(t− j)3∏n
j=0(t+ j)3 =

n∑
k=0

(
Ãk

(t+ k)3 + B̃k
(t+ k)2 + C̃k

t+ k

)
.

ANNALES DE L’INSTITUT FOURIER
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As before, we get

Ãk =
(
R̃(t)(t+ k)3)∣∣

t=−k = (−1)n+k
(
n+ k

k

)3(
n

k

)3
,

B̃k = 3Ãk (2Hk −Hn+k −Hn−k),

C̃k = 9
2 Ãk (2Hk −Hn+k −Hn−k)2 − 3

2 Ãk
(
H

(2)
n+k − 2H(2)

k −H
(2)
n−k

)
and by considering the sum of the residues of the rational functions R(t),
tR(t) and t2R(t), we deduce that

n∑
k=0

C̃k =
n∑
k=0

(B̃k − kC̃k) = 0 and
n∑
k=0

(Ãk − 2kB̃k + k2C̃k) = 1.

We only record the first and last equalities for our future use:

(5.3)
n∑
k=0

(−1)k
(
n+ k

k

)3(
n

k

)3(
3(2Hk −Hn+k −Hn−k)2

−
(
H

(2)
n+k − 2H(2)

k −H
(2)
n−k

))
= 0

and

(5.4)
n∑
k=0

(−1)k
(
n+ k

k

)3(
n

k

)3(
1− 6k(2Hk −Hn+k −Hn−k)

+ 9
2k

2(2Hk−Hn+k−Hn−k)2− 3
2k

2
(
H

(2)
n+k−2H(2)

k −H
(2)
n−k

))
= (−1)n.

Recall that, throughout, m = (p − 1)/2. Now, taking n = m in (5.4)
and applying Hm−k ≡ Hm+k (mod p) and H(2)

m−k ≡ −H
(2)
m+k (mod p), we

obtain

X3(p, 1) =
m∑
k=0

(−1)k
(
m+ k

k

)3(
m

k

)3(
1− 12k(Hk −Hm+k)(5.5)

+ 18k2(Hk −Hm+k)2 − 3k2
(
H

(2)
m+k −H

(2)
k

))
≡ (−1)m (mod p).

The result then follows after combining (5.2) with (5.5). �

Lemma 5.2. — Let p be an odd prime. Then

Y3(p, 1) ≡ Z2(p, 1) (mod p2).

TOME 68 (2018), FASCICULE 5



1998 Robert OSBURN, Armin STRAUB & Wadim ZUDILIN

Proof. — Consider the rational function

R̂(t) = R̂n(t) =
n!2 (2t+ n)

∏n
j=1(t− j) ·

∏n
j=1(t+ n+ j)∏n

j=0(t+ j)4

=
n∑
k=0

(
Âk

(t+ k)4 + B̂k
(t+ k)3 + Ĉk

(t+ k)2 + D̂k

t+ k

)
.

Then

Âk = (−1)n((n− k)− k)
(
n+ k

n

)(
2n− k
n

)(
n

k

)4
,

B̂k = (−1)n
(
n+ k

n

)(
2n− k
n

)(
n

k

)4(
2 + (n− 2k)

(
−(Hn+k −Hk)

+ (H2n−k −Hn−k)− 4(Hn−k −Hk)
))
.

An important consequence of a hypergeometric transformation due to
W. N. Bailey [3], [33] (see also [25] and [31] for the links with rational
approximations to ζ(3)) is the equality

A(n) = 1
2

n∑
k=0

B̂k = (−1)n

2

n∑
k=0

(
n+ k

n

)(
2n− k
n

)(
n

k

)4
(5.6)

×(2+(n−2k)(5Hk−5Hn−k−Hn+k+H2n−k)).

Now, take n = m (recall that m = (p − 1)/2) and let b(m, k) denote the
summand in (5.6). Note that b(m, k) = b(m,m−k) and substituting of (3.5)
and (3.8) implies that

b(m, k)(5.7)

=
(
m

k

)6(
1 + p(Hm+k −Hm) +O(p2)

)
×
(
1 + p(Hk −Hm) +O(p2)

)
×
(
2 + (m− 2k)(5Hk − 5Hm−k −Hm+k +H2m−k)

)
=
(
m

k

)6(
1 + p(Hk +Hm−k − 2Hm) +O(p2)

)
×
(

2 + (m− 2k)
(

6Hk − 6Hm−k + pH
(2)
k − pH

(2)
m−k +O(p2)

))
=
(
m

k

)6(
2 + 6(m− 2k)(Hk −Hm−k) + 2p(Hk +Hm−k − 2Hm)

+ 6p(m− 2k)(H2
k −H2

m−k)− 12p(m− 2k)(Hk −Hm−k)Hm

+ p(m− 2k)
(
H

(2)
k −H

(2)
m−k

)
+O(p2)

)
.
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Moreover, it follows from the symmetry k ↔ m− k in the form
m∑
k=0

(
m

k

)6
Hm =

m∑
k=0

(
m

k

)6
Hm−k

as well as Lemma 2.2, (3.1) and (5.6) that
m∑
k=0

(
m

k

)6(
1 + 3(m− 2k)(Hk −Hm−k)

)
=

m∑
k=0

(
m

k

)6(
1− 6k(Hk −Hm−k)

)
≡ 1

2

m∑
k=0

b(m, k) (mod p2).

Substitution of the expansion (5.7) into the latter congruence results, after
simplifications, in

(5.8)
m∑
k=0

(
m

k

)6(
2(Hk +Hm−k − 2Hm) + 6(m− 2k)(H2

k −H2
m−k)

− 12(m− 2k)(Hk −Hm−k)Hm

+ (m− 2k)
(
H

(2)
k −H

(2)
m−k

))
≡ 0 (mod p).

From a different source, namely, from the equality (5.3) applied with n = m

and reduced modulo p, we obtain

(5.9)
m∑
k=0

(
m

k

)6(
6(Hk −Hm−k)2 +

(
H

(2)
k +H

(2)
m−k

))
≡ 0 (mod p).

Furthermore, denote

c(m, k) = (−1)k
(
m+ k

k

)3(
m

k

)3(
1 + 3k(Hm+k +Hm−k − 2Hk)

)
,

the summand of Y3(p, 1). Then, with the help of (3.5), we obtain

c(m, k) =
(
m

k

)6(
1 + p(Hm+k −Hm) +O(p2)

)3

×
(
1 + 3k(Hm+k +Hm−k − 2Hk)

)
=
(
m

k

)6(
1− 6k(Hk −Hm−k) + 3p(Hm−k −Hm)

− 18pk(Hk −Hm−k)(Hm−k −Hm) + 3pkH(2)
m−k +O(p2)

)
and thus

(5.10)
m∑
k=0

c(m, k) =
m∑
k=0

c̃(m, k),
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where

c̃(m, k) = c(m, k) + c(m,m− k)
2(5.11)

=
(
m

k

)6(
1 + 3(m− 2k)(Hk −Hm−k)

+ 3
2p(Hk +Hm−k − 2Hm)− 9pmHkHm−k

− 9p(m− 2k)(Hk −Hm−k)Hm + 9p(m− k)H2
k

+ 9pkH2
m−k + 3

2p(m− k)H(2)
k + 3

2pkH
(2)
m−k +O(p2)

)
.

Finally, from (3.2) and (3.3), we have(
2k
k

)2
2−4k = (1/2)2

k

k!2 ≡ (−1)k
(
m+ k

m

)(
m

k

)
(mod p2),

and so

(5.12) Z2(p, 1) ≡ A(m) (mod p2).

Therefore, by (5.6), (5.7) and (5.10)–(5.12),

Y3(p, 1)−Z2(p, 1) =
m∑
k=0

c(m, k)− 1
2

m∑
k=0

b(m, k)

= p

2

m∑
k=0

(
m

k

)6(
(Hk +Hm−k − 2Hm)− 18mHkHm−k

− 6(m−2k)(Hk−Hm−k)Hm+(2m−k)
(

6H2
k +H

(2)
k

)
+ (m+ k)

(
6H2

m−k +H
(2)
m−k

))
+O(p2).

The latter sum is seen to be half of the sum in (5.8) plus 3
2m times the

sum in (5.9). Thus, the result follows. �

We now prove our main result.

Proof of Theorem 1.1. — It was conjectured by Koike and proven by
Frechette, Ono and Papanikolas that the Fourier coefficients b(p) of (1.4)
can be represented in terms of Gaussian hypergeometric series. Specifically,
we have (see [8, Corollary 1.6])

b(p) = −p5
6F5(1) + p4

4F3(1) +
(
1− φp(−1)

)
p2.
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We now apply Theorem 4.1 with ` = 2 and ` = 3, respectively, and simplify
to obtain

b(p) ≡ p2(X3(p, 1)− Y2(p, 1) + 1− (−1)(p−1)/2)
+ p
(
Y3(p, 1)− Z2(p, 1)

)
+ Z3(p, 1) (mod p3).

As

Z3(p, 1) =
(p−1)/2∑
n=0

(1/2)6
n

n!6 ≡
p−1∑
n=0

(1/2)6
n

n!6 (mod p6),

since the summands for (p−1)/2 < n 6 p−1 are divisible by p6, the result
follows from Lemmas 5.1 and 5.2. �

6. A ≡ B wanted

At the time of Apéry’s proof it was by no means trivial to verify identi-
ties A = B like the ones in Proposition 2.1 by verifying that both sides, A
and B, satisfy the same recurrence. For instance, van der Poorten’s beau-
tiful article [24] describes the difficulty in checking Apéry’s claim that the
Apéry numbers A(n) satisfy the recurrence (2.3), and principally attributes
to Cohen and Zagier the clever insight to prove the claim using creative
telescoping. Since then, Wilf and Zeilberger, with subsequent support by
many others, have developed creative telescoping into a pillar of a rich com-
puter algebraic theory devoted to automatically proving identities between,
for instance, holonomic functions and sequences. We refer to [23] for a su-
perb introduction to these ideas. Among the more recent developments is
Schneider’s work [27], which extends the scope from holonomic sequences to
a class of sequences that also includes nested sums of terms involving har-
monic numbers. For instance, using Schneider’s computer algebra package
SIGMA, it is routine to verify that, for all integers n > 0,

n∑
k=0

(
n

k

)2(
n+ k

k

)2(
1− 2k(2Hk −Hn+k −Hn−k)

)
= 1,

which we derived earlier as (5.1) and which played a crucial role in Ahlgren
and Ono’s proof [1] of Beuker’s conjecture as well as Kilbourn’s proof [14]
of the supercongruence (1.1).
Building on these ideas, proving our main result (1.3) modulo p2, in-

stead of p3, is much more straightforward as this corresponds to verifying
Lemma 5.2 modulo p only, a task that can be performed in many differ-
ent ways (for example, using Kilbourn’s strategy from [14, §4]). Working
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modulo higher powers of p is considerably more difficult. In the course of
the derivation of Theorem 1.1 we encountered several technical difficulties
that were finally resolved by an intelligent cast of hypergeometric identities.
Specifically, in order to compute the congruence (1.3) we required the iden-
tities of Proposition 2.1 as well as the equalities (5.1), (5.3), (5.4) and (5.6),
reduced modulo a suitable power of p. Note that all these identities can,
nowadays, be easily resolved by using computer algebraic techniques like
the algorithms from [23] and [27] mentioned above. We are, however, very
restricted in this production because certain congruences (are expected to)
remain not derivable this way. For example, establishing (1.3) modulo p5

(or even p4) by using appropriate intermediate identities sounds to us like
a real challenge!
There is therefore a natural need for an algorithmic approach to directly

certifying congruences A ≡ B, say, when the terms A and B are holonomic.
Specifically, it would be great if such an approach could handle congruences
such as (1.5), or even just (2.5) in the form

n∑
k=0

(
n

k

)2(
n+ k

k

)2
≡ (−1)n

n∑
k=0

(
n

k

)2(
n+ k

k

)(
2k
n

)
(mod p2),

where n = (p− 1)/2 and p is an odd prime.
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