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LACUNARY MÜNTZ SPACES:
ISOMORPHISMS AND CARLESON EMBEDDINGS

by Loïc GAILLARD & Pascal LEFÈVRE

Abstract. — In this paper we prove that Mp
Λ is almost isometric to `p in

the canonical way when Λ is lacunary with a large ratio. On the other hand, our
approach can be used to study also the Carleson measures for Müntz spaces Mp

Λ
when Λ is lacunary. We give some necessary and some sufficient conditions ensuring
that a Carleson embedding is bounded or compact. In the hilbertian case, the
membership to Schatten classes is also studied. When Λ behaves like a geometric
sequence the results are sharp, and we get some characterizations.
Résumé. — Dans cet article, nous montrons que Mp

Λ est presque isométrique
à `p, et ce de façon naturelle, lorsque Λ est lacunaire avec une raison grande.
Par ailleurs, notre approche permet aussi d’étudier les mesures de Carleson pour
les espaces Müntz Mp

Λ lorsque Λ est lacunaire. Nous donnons des conditions né-
cessaires et des conditions suffisantes qui permettent d’assurer qu’un plongement
de Carleson est borné ou compact. Dans le cadre hilbertien, nous étudions aussi
l’appartenance de ce plongement aux classes de Schatten. Nous obtenons des ca-
ractérisations complètes lorsque Λ se comporte comme une suite géométrique.

1. Introduction

Let m be the Lebesgue measure on [0, 1]. For p ∈ [1,+∞), Lp(m) =
Lp([0, 1],m) (sometimes denoted simply by Lp when there is no ambigu-
ity) denotes the space of complex-valued measurable functions on [0, 1],
equipped with the norm ‖f‖p = (

∫ 1
0 |f(t)|pdt)

1
p . In the same way, C =

C([0, 1]) is the space of continuous functions on [0, 1] equipped with the
usual sup-norm. We shall also consider some positive and finite measures
µ on [0, 1) (see the remark at the beginning of Section 2), and the as-
sociated Lp(µ) space. For a sequence w = (wn)n of positive weights, we
denote `p(w) the Banach space of complex sequences (bn)n equipped with

Keywords: Müntz spaces, Carleson embeddings, lacunary sequences, Schatten classes.
2010 Mathematics Subject Classification: 30B10, 47B10, 47B38.



2216 Loïc GAILLARD & Pascal LEFÈVRE

the norm ‖b‖`p(w) = (
∑
n |bn|pwn)

1
p and the vector space c00 consisting

on complex sequences with a finite number of non-zero terms. All along
the paper, when p ∈ (1,+∞), we denote as usual p′ = p

p−1 its conjugate
exponent.
The famous Müntz theorem ([3, p. 172],[7, p. 77]) states that if Λ =

(λn)n∈N is an increasing sequence of non-negative real numbers, then the
linear span of the monomials tλn is dense in Lp (resp. in C) if and only
if
∑
n>1

1
λn

= +∞ (resp. and λ0 = 0). We shall assume that the Müntz
condition

∑
n>1

1
λn

< +∞ is fulfilled and we define the Müntz space Mp
Λ

as the closed linear space spanned by the monomials tλn , where n ∈ N.
We shall moreover assume that Λ satisfies the gap condition: infn

(
λn+1 −

λn
)
> 0. Under this later assumption Clarkson–Erdös theorem holds [7,

Thm. 6.2.3]: the functions inMp
Λ are the functions f in Lp such that f(t) =∑

ant
λn (pointwise on [0, 1)). This gives a class of Banach spacesMp

Λ ( Lp

of analytic functions on (0, 1).
In full generality, the Müntz spaces are difficult to study, but for some

particular sequences Λ, we can find some interesting properties of the spaces
Mp

Λ. Let us mention that lately these spaces received an increasing atten-
tion from the point of view of their geometry and operators: the monograph
of Gurariy–Lusky [7], and various more or less recent papers (see for in-
stance [1, 2, 4, 9, 10]).
We shall focus on two different questions on Müntz spaces. The first one

is related to an old result: Gurariy and Macaev proved in [8] that, in Lp, the
normalized sequence ((pλn + 1)

1
p tλn)n is equivalent to the canonical basis

of `p if and only if Λ is lacunary (see Theorem 2.3 below). More recently,
the monograph [7] introduces the notion of quasi-lacunary sequence (see
Definition 2.1 below), and states that Mp

Λ is still isomorphic to `p when
Λ is quasi-lacunary. On the other hand, some recent papers discuss about
Carleson measures for Müntz spaces. In [4], the authors introduced the
class of sublinear measures on [0, 1), and proved that when Λ is quasi-
lacunary, the sublinear measures are Carleson embeddings for M1

Λ. In [10],
the authors extended this result to the case p = 2 but only when the
sequence Λ is lacunary.
In this paper, we introduce another method to study the lacunary Müntz

spaces: for a weight w and a measure µ on [0, 1), we define TwΛ,µ : `p(w)→
Lp(µ) by TwΛ,µ(b) =

∑
n bnt

λn for b = (bn) ∈ `p(w). The operator TwΛ,µ
depends on w, µ, p and Λ, and when it is bounded we shall denote its
norm by

∥∥TwΛ,µ∥∥p. We shall see that an estimate of
∥∥TwΛ,µ∥∥p can improve

ANNALES DE L’INSTITUT FOURIER



LACUNARY MÜNTZ SPACES 2217

Gurariy–Macaev theorem, and allows to generalize former Carleson embed-
ding results to lacunary Müntz spaces Mp

Λ for any p > 1.
The paper is organized as follows: in Section 2, we specify the miss-

ing notation and some useful lemmas. The main result gives an upper
bound for the approximation numbers of TwΛ,µ (see Proposition 2.9). In
Section 3, we focus on the classical case: we fix the weight w(p) defined by
wn(p) = (pλn + 1)−1 and consider Tw(p)

Λ = T
w(p)
Λ,m : `p(w(p)) → Mp

Λ, the
isomorphism occuring in Gurariy–Macaev theorem. For p > 1, we prove
that Tw(p)

Λ is bounded exactly when Λ is quasi-lacunary. On the other
hand, when Λ is lacunary with a large ratio, we also get a sharp bound for∥∥(Tw(p)

Λ
)−1∥∥

p
(see Theorem 3.5 below). Our approach leads to an asymp-

totically orthogonal version of Gurariy–Macaev theorem exactly for the
super-lacunary sequences. In Section 4, we apply the results of Section 2
for a positive and finite measure µ on [0, 1) with the weight wn = λ−1

n , in
order to treat the Carleson embedding problem. When Λ is lacunary, we
give an estimate of the approximation numbers of the embedding operator
ipµ : Mp

Λ → Lp(µ). In Section 5, we focus on the compactness of ipµ using the
same tools as in Section 4. In the case p = 2, this leads to some control of
the Schatten norm of the Carleson embedding and some characterizations
when Λ behaves like a geometric sequence.
As usual the notation A . B means that there exists a constant c > 0

such that A 6 cB. This constant c may depend on Λ (or sometimes only
on its ratio of lacunarity), on p . . . . We shall specify this dependence to
avoid any ambiguous statement. In the same way, we shall use the notation
A ≈ B or A & B.

Acknowledgments. We wish to thank the referee for the very careful
reading of the paper and many suggestions in order to improve its quality.

2. Preliminary results

Let us first give a few words of explanation about our choice of mea-
sures on [0, 1). The measures involved (if considered on [0, 1]) must satisfy
µ({1}) = 0. Indeed, we focus either on the Lebesgue measure m (satisfying
of course m({1}) = 0) or on measures such that the Carleson embedding
Mp

Λ → Lp(µ) is (defined and) bounded, so that testing a sequence of mono-
mials gn(t) = tλn we must have

µ({1}) = lim ‖gn‖pLp(µ) . lim ‖gn‖pLp(m) = 0.

TOME 68 (2018), FASCICULE 5



2218 Loïc GAILLARD & Pascal LEFÈVRE

Moreover, by Clarkson–Erdös theorem, the value at any point of [0, 1) of
any function in Mp

Λ can be defined without ambiguity.
We shall need several notions of growth for increasing sequences.

Definition 2.1.
• A sequence u = (un)n of positive numbers is called lacunary if there
exists r > 1 such that un+1 > run, for every n ∈ N. We shall say
that such a sequence is r-lacunary and that r is a ratio of lacunarity
of this sequence.

• A sequence u is called quasi-lacunary if there is an extraction (nk)k
such that supk∈N(nk+1 − nk) < +∞, and (unk)k is lacunary.

• A sequence u is called quasi-geometric if there are two constants r
and R such that 1 < r 6 un+1

un
6 R < +∞, for every n ∈ N. Such a

sequence is lacunary.
• A sequence u is called super-lacunary if un+1

un
−→ +∞.

Remark 2.2. — It is proved in [7, Prop. 7.1.3, p. 94] that a sequence is
quasi-lacunary if and only if it is a finite union of lacunary sequences.

The following result is due to Gurariy and Macaev.

Theorem 2.3 ([7, Cor. 9.3.4, p. 132]). — Let p ∈ [1,+∞). The following
assertions are equivalent

(1) The sequence Λ is lacunary.
(2) The sequence

(
tλn

‖tλn‖p

)
in Lp is equivalent to the canonical basis

of `p.
In particular, when Λ is lacunary, we have for any b ∈ c00∥∥∥∑ bnt

λn
∥∥∥
p
≈
(∑ |bn|p

pλn + 1

) 1
p

and the underlying constants depend on p and Λ only.

We shall recover and generalize partially this result: for a given sequence
of weights (wn)n and a positive finite measure µ on [0, 1), we study the
boundedness of the operator

TwΛ,µ :
{
`p(w) −→ Lp(µ)
b 7−→

∑
bnt

λn .

Example 2.4. — In the case of the Lebesgue measure µ = m and when
the weights are wn(p) = (pλn + 1)−1 or in a simpler way (if we do not
care about the value of the constants) wn = λ−1

n , Theorem 2.3 states in
particular that TwΛ and Tw(p)

Λ are bounded on `p(w) or `p(w(p)), when Λ
is lacunary.

ANNALES DE L’INSTITUT FOURIER
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Remark 2.5. — In the case p > 1, a (rough) sufficient condition ensuring
the boundedness of TwΛ,µ is∫

[0,1)

(∑
n

w
− p
′
p

n tp
′λn

) p

p′

dµ <∞.

Indeed, this comes from the estimate∥∥TwΛ,µ∥∥p = sup
a∈B`p
a∈c00

sup
g∈B

Lp
′ (µ)

∣∣∣∣∣
∫

[0,1)

∑
n

anw
− 1
p

n tλng(t) dµ

∣∣∣∣∣
6 sup
g∈B

Lp
′ (µ)

∫
[0,1)
|g(t)| sup

a∈B`p
a∈c00

∣∣∣∣∣∑
n

anw
− 1
p

n tλn

∣∣∣∣∣ dµ.

For standard weights, wn ≈ λ−1
n and for a quasi-geometric sequence Λ,

this condition can be reformulated with the help of Lemma 2.10 below as∫
[0,1)

1
1− t dµ ≈

∫
[0,1)

1
1− tp′ dµ <∞ .

Such a condition will be considered later (see Proposition 5.5 below for
instance).

To get a sharper estimate, we introduce the sequence
(
Dw,p

Λ,µ(n)
)
n
defined

for n ∈ N and p > 1, with a priori values in R+ ∪ {+∞} by

Dw,p
Λ,µ(n) =

(∫
[0,1)

w
− 1
p

n tλn

(∑
k>0

w
− 1
p

k tλk

)p−1

dµ
) 1
p

.

Proposition 2.6. — Let p ∈ [1,+∞). Assume that
(
Dw,p

Λ,µ(n)
)
n
is a

bounded sequence of real numbers. Then we have for every b ∈ `p(w),

∥∥∥∑
n>0

bnt
λn
∥∥∥
Lp(µ)

6

∑
n>0
|bn|pwn

(
Dw,p

Λ,µ(n)
)p 1

p

.

Proof. — If p = 1 the result is obvious. Assume now that p > 1. For any
t ∈ [0, 1) and n ∈ N, we have

bnt
λn = bnw

1
pp′
n t

λn
p × w

− 1
pp′

n t
λn
p′ ,

By Hölder’s inequality, we get∣∣∣∑ bnt
λn
∣∣∣ 6 (∑

n

|bn|pw
1
p′
n tλn

) 1
p
(∑

k

w
− 1
p

k tλk

) 1
p′

.

TOME 68 (2018), FASCICULE 5



2220 Loïc GAILLARD & Pascal LEFÈVRE

We conclude∫
[0,1)

∣∣∣∑ bnt
λn
∣∣∣pdµ 6 ∫

[0,1)

∑
|bn|pwn.w

− 1
p

n tλn

(∑
k

w
− 1
p

k tλk

)p−1

dµ

=
∑
n

|bn|pwnDw,p
Λ,µ(n)p. �

Assume that
(
Dw,p

Λ,µ(n)
)
n
is a bounded sequence of real numbers. We may

define the bounded diagonal operator

Dw,pΛ,µ : `p(w)→ `p(w)

acting on the canonical basis of `p(w) whose diagonal entries are the num-
bers Dw,p

Λ,µ(n). In other words TwΛ,µ and Dw,pΛ,µ are bounded, and we have

∀ b ∈ `p(w), ‖TwΛ,µ(b)‖Lp(µ) 6 ‖Dw,pΛ,µ(b)‖`p(w).

This gives informations about the approximation numbers of TwΛ,µ. Let us
recall some definitions.

Definition 2.7. — For a bounded operator S : X → Y between two
separable Banach spaces X,Y , the approximation numbers (an(S))n of S
are defined for n > 1 by

an(S) = inf{‖S −R‖, rank(R) < n}.

The essential norm of S is defined by

‖S‖e = inf{‖S −K‖,K compact}.

It is the distance from S to the compact operators.

We shall use in the sequel the following notions of operator ideals.

Definition 2.8.
• An operator S : X → Y is nuclear if there is a sequence of rank-one
operators (Rn) satisfying S(x) =

∑
nRn(x) for every x ∈ X with∑

n ‖Rn‖ < +∞. The nuclear norm of S is defined as

‖S‖N = inf
{∑

n

‖Rn‖, rank(Rn) = 1,
∑
n

Rn = S

}
.

• An operator S : X → Lp(µ) is order bounded if there exists a
positive function h ∈ Lp(µ) such that for every x ∈ BX and for
µ−almost every t ∈ Ω we have |S(x)(t)| 6 h(t).

ANNALES DE L’INSTITUT FOURIER
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• For r > 0 and when X,Y are Hilbert spaces, we say that a (com-
pact) operator S : X → Y belongs to the Schatten class Sr if∑

n

(
an(S)

)r
< +∞.

In this case, we define its Schatten norm by ‖S‖Sr =
(∑

n

(
an(S)

)r)1r.
Recall that nuclear and Schatten class operators are always compact.
Of course, the Schatten norm is really a norm when r > 1. The S2 class

is also called the class of Hilbert–Schmidt operators.
We shall be interested in how far from compact (the essential norm) or,

on the contrary, how strongly compact (possibly Schatten in the Hilbert
framework) are the Carleson embeddings.

For technical reasons, we introduce the following notation: for a bounded
sequence (un)n in R+, we define (u∗N )N the decreasing rearrangement of
(un)n by

u∗N = inf
A⊂N
|A|=N

sup{un, n 6∈ A}.

We have limN→+∞ u∗N = lim supn→+∞ un.

Now, we can state,

Proposition 2.9. — If
(
Dw,p

Λ,µ(n)
)
n
is a bounded sequence of real num-

bers, then we have
(1) aN+1(TwΛ,µ) 6

(
Dw,p

Λ,µ
)∗(N).

(2) ‖TwΛ,µ‖p 6 supn∈ND
w,p
Λ,µ(n).

(3) ‖TwΛ,µ‖e 6 lim supn→+∞Dw,p
Λ,µ(n).

(4) ∀ p > 1, ‖TwΛ,µ‖N 6
∑
n>0 w

− 1
p

n

∥∥tλn∥∥
Lp(µ) .

(5) If p = 2, for any r > 0, ‖TwΛ,µ‖Sr 6
(∑

n>0
(
Dw,2

Λ,µ(n)
)r) 1

r .

Proof. — We first prove (1). For n ∈ N, we denote ϕ∗n : `p(w) → C the
functional on `p(w) defined by ϕ∗n(b) = bn for a sequence b = (bn)n ∈ `p(w).
We define also gn ∈ Lp(µ) by gn(t) = tλn . For any integer N and A ⊂ N
with |A| = N , we have

aN+1(TwΛ,µ) 6

∥∥∥∥∥TwΛ,µ −∑
n∈A

ϕ∗n ⊗ gn

∥∥∥∥∥ .
By Proposition 2.6, for b ∈ `p(w),∥∥∥∥∥TwΛ,µ(b)−

∑
n∈A

ϕ∗n(b)gn

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
n 6∈A

bnt
λn

∥∥∥∥∥∥
Lp(µ)

6 sup
n6∈A

(
Dw,p

Λ,µ(n)
)
‖b‖`p(w)

TOME 68 (2018), FASCICULE 5
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and so (1) holds.
Assertions (2) and (3) are direct consequences of (1).
Assertion (4) follows easily from the natural decomposition TwΛ,µ(b) =∑
n ϕ
∗
n(b)gn and the fact that ‖ϕ∗n‖ = w−

1
p

n .
For (5): if (Dw,2

Λ,µ(n))n 6∈ `r then the result is obvious. If (Dw,2
Λ,µ(n))n ∈ `r,

we have in particular Dw,2
Λ,µ(n)→ 0 when n→ +∞. Since for all ε > 0, the

set {n,Dw,2
Λ,µ(n) > ε} is finite, there exists a bijection β : N→ N such that

for any n ∈ N, Dw,2
Λ,µ(n)∗ = Dw,2

Λ,µ(β(n)). We have∑
N

aN+1(TwΛ,µ)r 6
∑
N

(
Dw,2

Λ,µ(N)∗
)r =

∑
n

(
Dw,2

Λ,µ(β(n))
)r

=
∑
n

(
Dw,2

Λ,µ(n)
)r
. �

Lemma 2.10. — Let α ∈ R∗+. Assume that Λ is a quasi-geometric se-
quence. Then there are two constants C1, C2 ∈ R∗+ such that for any
t ∈ [0, 1) we have

C1

(
1

1− t

)α
6
∑
n

λαnt
λn 6 C2

(
1

1− t

)α
·

Proof. — Since Λ is quasi-geometric, it is r-lacunary for some r > 1,
so there exists a constant C = (r − 1)−1 such that for any n ∈ N, λn 6
C(λn+1 − λn). Moreover, there is a constant R > 1 such that λn+1 6 Rλn
and hence we have

λαn ≈ (λn+1 − λn)α ≈ λαn+1

where the underlying constants do not depend on n. We obtain∑
n

λαnt
λn ≈

∑
n

(λn+1 − λn)αtλn ≈
∑
n

∑
λn6m<λn+1

(λn+1 − λn)α−1tλn

≈
∑
n

∑
λn6m<λn+1

mα−1tλn

For m such that λn 6 m < λn+1, we have tm 6 tλn 6 t
m
R and so we obtain∑

n

λαnt
λn .

∑
m>0

mα−1t
m
R .

(
1

1− t 1
R

)α
.

(
1

1− t

)α
·

On the other hand we have∑
n

λαnt
λn &

∑
m>1

mα−1tm &

(
1

1− t

)α
· �

ANNALES DE L’INSTITUT FOURIER
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Remark 2.11. — If Λ is only lacunary, the right inequality in Lemma 2.10
still holds. Indeed, the above proof can be easily adapted. We can also notice
that there exists a quasi-geometric sequence Λ′ = (λ′n)n which contains Λ,
and we have ∑

n∈N
λαnt

λn 6
∑
n∈N

λ′αn t
λ′n 6 C2

1
(1− t)α ·

A new proof of the upper bound part in Gurariy–Macaev theorem (The-
orem 2.3) follows from the next proposition.

Proposition 2.12. — Let p ∈ [1,+∞). Assume that the weights are
given by wn = λ−1

n or (pλn + 1)−1. If Λ is lacunary and µ is the Lebesgue
measure, then

(
Dw,p

Λ,µ(n)
)
n
is a bounded sequence.

Proof. — From Lemma 2.10 and Remark 2.11 we get

(
Dw,p

Λ,µ(n)
)p = λ

1
p
n

∫
tλn

(∑
k∈N

λ
1
p

k t
λk

)p−1

dt

. λ
1
p
n

∫ 1

0
tλn
(

1
1− t

) 1
p′

dt

= λ
1
p
n

∫ 1− 1
λn

0
tλn
(

1
1− t

) 1
p′

dt+ λ
1
p
n

∫ 1

1− 1
λn

tλn
(

1
1− t

) 1
p′

dt

6 λ
1
p
nλ

1
p′
n

∫ 1

0
tλn dt+ λ

1
p
n

∫ 1

1− 1
λn

(1− t)−
1
p′ dt

6
λn

λn + 1 + λ
1
p
n
p

λ
1
p
n

6 p+ 1. �

From Proposition 2.6, we obtain as claimed∥∥∥∥∥∑
n∈N

bnt
λn

∥∥∥∥∥
p

.

(∑
n∈N

|bn|p

λn

) 1
p

,

for any b ∈ c00, when Λ is lacunary.
From Lemma 2.10 and Gurariy–Macaev’s Theorem, one can easily get

an estimate of point evaluations on Mp
Λ.

Proposition 2.13. — Let Λ be a quasi-geometric sequence and p > 1.
For any t ∈ [0, 1), the point evaluation f ∈Mp

Λ 7−→ δt(f) = f(t) satisfies∥∥δt∥∥(Mp
Λ)∗ ≈

1
(1− t)

1
p

·

When Λ is only lacunary, we only have
∥∥δt∥∥(Mp

Λ)∗ .
1

(1−t)
1
p
·

TOME 68 (2018), FASCICULE 5
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Proof. — Since Λ is in particular lacunary, Gurariy–Macaev theorem
gives ∥∥δt∥∥(Mp

Λ)∗ = sup
f∈BMp

Λ

|f(t)| ≈ sup
a∈B`p

∣∣∣∣∣∑
n>0

λ
1
p
n ant

λn

∣∣∣∣∣
where the underlying constants depend on p and Λ. If p > 1, the last term

is
(∑

n>0 λ
p′
p
n tp

′λn
) 1
p′ and we conclude with Lemma 2.10.

If p = 1, we have for t close to 1 (say t > exp(−1/λ1))

∥∥δt∥∥(M1
Λ)∗ ≈ sup

a∈B`1

∣∣∣∣∣∑
n>0

λnant
λn

∣∣∣∣∣ = sup
n>0

λnt
λn

6 sup
s>λ0

sts = 1
e| ln(t)| ≈

1
(1− t) ·

Moreover, if Λ is quasi-geometric then there exists some δ ∈ (0, 1) (depend-
ing on Λ only) and some integer nt such that λnt ∈

(
δ/| ln(t)|, 1/| ln(t)|

)
so

that
sup
n>0

λnt
λn > λntt

λnt >
δ

e| ln(t)| ≈
1

(1− t) · �

3. Revisiting the classical case

We consider the Lebesgue measure µ = m on [0, 1]. We define the oper-
ator

T
w(p)
Λ :

{
`p(w(p)) −→ Mp

Λ
b 7−→

∑
n bnt

λn

where the weights w(p) = (wn(p))n∈N are given by wn(p) = (pλn + 1)−1 =
‖tλn‖pp. In particular, if we denote by (ek)k the canonical basis of `p(w(p)),
we have

∀ k ∈ N, ‖Tw(p)
Λ (ek)‖p = ‖ek‖`p(w(p)).

Gurariy–Macaev theorem says that Tw(p)
Λ is an isomorphism if and only

if Λ is lacunary. By our Propositions 2.6 and 2.12, we recover that Tw(p)
Λ is

bounded when Λ is lacunary.
Since

∥∥Tw(1)
Λ

∥∥
1 = 1, we focus mainly on the case p > 1. We shall also

prove that Tw(p)
Λ is bounded if and only if Λ is quasi-lacunary (for p > 1).

We shall refine the method used in Proposition 2.12 and get a sharper
estimate of the norm. Our approach is different from the original one (which
was based on some slicing of the interval (0, 1)). We control the norm with
explicit quantities depending only on the ratio of lacunarity (and p). As a
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consequence, we shall get that for p ∈ (1,+∞), the operator Tw(p)
Λ is an

asymptotical isometry if and only if Λ is super-lacunary.

Lemma 3.1. — Let α ∈ (0,+∞), p ∈ (1,+∞) and (qn)n be an r-
lacunary sequence. We have

sup
n∈N

∑
k∈N
k 6=n

 q
1
p
n q

1
p′

k
qn
p + qk

p′

α

6
p′α

r
α
p − 1

+ pα

r
α
p′ − 1

·

Proof. — Let n ∈ N. For k < n, we have q
1
p
n q

1
p′
k

qn
p + qk

p′
6 p

(
qk
qn

) 1
p′
6 pr

−n−k
p′ ·

We obtain
n−1∑
k=0

 q
1
p
n q

1
p′

k
qn
p + qk

p′

α

6 pα
n−1∑
k=0

1

r
(n−k)α
p′

6
pα

r
α
p′ − 1

·

Similarly, when k > n, we use q
1
p
n q

1
p′
k

qn
p + qk

p′
6 p′

(
qn
qk

) 1
p

6 p′r−
k−n
p . �

For p ∈ [1,+∞) we consider the sequence
(
Dw,p

Λ,µ(n)
)
n
defined in Sec-

tion 2, but since we focus on the case µ = m and w = w(p), we lighten the
notation and write

D
(p)
Λ (n) =

(∫ 1

0
(pλn + 1)

1
p tλn

(∑
k

(pλk + 1)
1
p tλk

)p−1

dt
) 1
p

.

Proposition 3.2. — Let p > 2 and Λ be a (lacunary) sequence such
that (pλn + 1)n is r-lacunary. Then we have

‖Tw(p)
Λ ‖p 6

(
1 + 2p

1
p−1

r
1

p(p−1) − 1

) 1
p′

.

Proof. — For j ∈ N, we denote qj = pλj + 1 and fj(t) = q
1
p

j t
λj = tλj

‖tλj ‖p
·

We have

(
D

(p)
Λ (n)

)p =
∫ 1

0
fn

(∑
k

fk

)p−1

dt =

∥∥∥∥∥∑
k

fk

∥∥∥∥∥
p−1

Lp−1(fndt)

.

Since p− 1 > 1, the triangle inequality gives

(
D

(p)
Λ (n)

)p′
6
∑
k

‖fk‖Lp−1(fndt) =
∑
k

(
q

1
p
n q

1
p′

k

∫ 1

0
tλn+(p−1)λkdt

) 1
p−1

.
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For n, k ∈ N, we have

q
1
p
n q

1
p′

k

∫ 1

0
tλn+(p−1)λkdt =

q
1
p
n q

1
p′

k

λn + (p− 1)λk + 1 =
q

1
p
n q

1
p′

k
qn
p + qk

p′
·

By Lemma 3.1, we obtain for any n ∈ N

(
D

(p)
Λ (n)

)p′
6
∑
k∈N

(
q

1
p
n q

1
p′

k
qn
p + qk

p′

) 1
p−1

6 1 + 2p
1
p−1

r
1

p(p−1) − 1

since p > p′ and the term indexed by n = k is 1. Thanks to Proposition 2.6,
we have

‖Tw(p)
Λ ‖p 6 sup

n
D

(p)
Λ (n). �

Let us point out that the operators Tw(p)
Λ : `p(w(p))→Mp

Λ ⊂ Lp(m) are
not defined on the same scale of Lp-spaces, since the weight w(p) depends on
p. We cannot apply directly the Riesz–Thorin theorem with Tw(1)

Λ and Tw(2)
Λ

to estimate the norm of Tw(p)
Λ when p ∈ (1, 2), even not its weighted version.

The next result gives a bound different from the one in Proposition 3.2;
they coincide when p = 2.

Proposition 3.3. — Let p ∈ [1, 2] and Λ be a (lacunary) sequence such
that (pλn + 1)n is r-lacunary. Then we have

‖Tw(p)
Λ ‖p 6

(
1 + 4

r
1
2 − 1

) 1
p′

·

Proof. — Our proof is adapted from the classical proof of Riesz–Thorin
theorem, with an additional trick.

Let θ = 2
p′ ∈ (0, 1). We have 1

p = 1 − θ
2 · As usual, for z ∈ C such

that 0 6 Re(z) 6 1, we define 1
p(z) = 1 − z

2 and 1
p′(z) = z

2 · We have
p(θ) = p and p′(θ) = p′. We fix a = (an)n a sequence in R+ with a
finite number of non-zero terms and a positive function g ∈ Lp′ , such that
‖a‖`p(w(p)) = ‖g‖p′ = 1. Finally we define

F (z) =
∑
n∈N

a
p
p(z)
n

∫ 1

0
t

p
p(z)λng(t)

p′
p′(z) dt .

This is actually a finite sum, and F is a holomorphic function on the band
{z ∈ C | Re(z) ∈ (0, 1)}. For x ∈ R, we have

|F (ix)| 6
∑
n∈N

apn

∫ 1

0
tpλn dt =

∑
n∈N

apn
pλn + 1 = 1 .

ANNALES DE L’INSTITUT FOURIER



LACUNARY MÜNTZ SPACES 2227

On the other hand, for every real number x,

|F (1 + ix)| 6
∑
n∈N

a
p(1− 1

2 )
n

∫ 1

0
tp(1−

1
2 )λng(t)

p′
2 dt

=
∫ 1

0
g(t)

p′
2
∑
n∈N

bnt
ψndt

where bn = a
p
2
n and Ψ = (ψn)n =

(
pλn

2
)
n
. Since (2ψn+1)n is also r-lacunary

we can apply Proposition 3.2. in the hilbertian case∥∥∥∑
n∈N

bnt
ψn
∥∥∥

2
6

(
1 + 4

r
1
2 − 1

) 1
2
(∑

n

|bn|2

2ψn + 1

) 1
2

·

By Cauchy–Schwarz inequality, we get

|F (1 + ix)| 6 ‖g
p′
2 ‖2 ×

∥∥∥∑
n

bnt
ψn
∥∥∥

2
6

(
1 + 4

r
1
2 − 1

) 1
2

.

Now, the proof ends in a standard way and the three lines theorem gives

|F (θ)| 6
(

1 + 4
r

1
2 − 1

) θ
2

.

From this, we conclude easily that for arbitrary a ∈ `p(w(p)), we have

‖Tw(p)
Λ (a)‖p 6

(
1 + 4

r
1
2 − 1

) 1
p′

‖a‖`p(w(p)). �

Now we can give a characterization of the boundedness of Tw(p)
Λ .

Theorem 3.4. — Let p ∈ (1,+∞). The following are equivalent
(1) The sequence Λ is quasi-lacunary ;
(2) The operator Tw(p)

Λ : `p(w(p))→Mp
Λ is bounded.

Proof. — Assume that Λ is a quasi-lacunary sequence. Using Remark 2.2,
there exist K > 1 and lacunary sets Λj ⊂ Λ (with j ∈ {1, . . . ,K}) such
that Λ = Λ1 ∪ · · · ∪ ΛK . We define the operators

T (j) :
{
`p(w(p)) −→ Mp

Λ
b 7−→

∑
n bnt

λn1Λj (λn)

where 1Λj is the indicator function of the set Λj .
We have Tw(p)

Λ =
∑K
j=1 T

(j). Since each Λj is lacunary, Proposition 3.2
and Proposition 3.3 (or Gurariy–Macaev theorem) imply that Tw(p)

Λ is
bounded.
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For the converse, we assume that Λ is not quasi-lacunary. We denote qk =
pλk + 1. For an arbitrarily large N ∈ N, the sequence qNk is not lacunary
since (Nk)k∈N has bounded gaps. This implies lim infk→+∞

q(k+1)N
qkN

= 1, so
there exists k0 such that it is less than 2. For n0 = k0N we have

qn0+N 6 2qn0 .

Let A = {n0, . . . , n0 + N − 1}. Thanks to the inequality between arith-
metic and geometric means, we have

‖Tw(p)
Λ (1A)‖pp =

∫ 1

0

∣∣∣∣∣∑
j∈A

tλj

∣∣∣∣∣
p

dt >
∫ 1

0
Np

∏
j∈A

t
pλj
N dt.

We obtain

‖Tw(p)
Λ (1A)‖pp >

Np∑
j∈A

qj
N

>
Np

qn0+N
>

Np

2qn0

·

On the other hand, ‖1A‖p`p(w(p)) =
∑
j∈A

1
qj
6 N

qn0
· Since N is arbitrarily

large and p > 1, Tw(p)
Λ is not bounded. �

The following is a refinement of Gurariy–Macaev theorem for lacunary
sequences with a large ratio.

Theorem 3.5. — Let p > 1. For any ε ∈ (0, 1), there exists rε > 1 with
the following property:
For any Λ such that (pλn + 1)n is rε-lacunary, we have

∀ a ∈ `p(w(p)), (1− ε)‖a‖`p(w(p)) 6
∥∥Tw(p)

Λ (a)
∥∥
p
6 (1 + ε)‖a‖`p(w(p)).

Remark 3.6. — If we denote q = max{p, p′}, the parameter rε =(
1 + 4q

1
q−1

ε

)q(q−1)
is suitable for Theorem 3.5.

Proof. — Let q = max{p, p′} > 2 and rε =
(

1 + 4q
1
q−1

ε

)q(q−1)
. In order

to lighten the computation below, we shall write ω instead of w(p) so that
ωn = wn(p) = 1

pλn+1 ·
Let a be a sequence with ‖a‖`p(ω) = 1. Thanks to the above choice of

rε, we have that
∥∥TωΛ ∥∥p 6 (1 + ε

2
) 1
p′ 6 1 + ε

2 either by Proposition 3.2 if
p > 2, or by Proposition 3.3 if p 6 2.
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For the lower estimate, we consider a sequence b ∈ `p
′(ω) such that

‖b‖`p′ (ω) = 1. We define Ψ = (ψn)n by ψn = pλn
p′ = (p− 1)λn. We have

∥∥TωΛ (a).TωΨ(b)
∥∥

1 =
∫ 1

0

∣∣∣∣∣∑
n,k

anbkt
λn+(p−1)λk

∣∣∣∣∣dt
>

∣∣∣∣∣
+∞∑
n=0

anbn
pλn + 1

∣∣∣∣∣− ∑
n,k∈N
k 6=n

|an|.|bk|
λn + (p− 1)λk + 1 ·

Since ‖a‖`p(ω) = 1, we have by duality

sup
{∑

n

anbn
pλn + 1 , ‖b‖`p

′ (ω) = 1
}

= 1.

Denoting (qn)n = (pλn + 1)n, Young’s inequality gives for any n, k,

|anbk| =
∣∣∣∣anω 1

p
n bkω

1
p′

k

∣∣∣∣× q 1
p
n q

1
p′

k

6

(
1
p
|an|pωn + 1

p′
|bk|p

′
ωk

)
× q

1
p
n q

1
p′

k .

We sum over n and k, and we obtain

∑
n,k∈N
k 6=n

|an|.|bk|
qn
p + qk

p′
6

1
p
‖a‖p`p(ω) sup

n

∑
k∈N
k 6=n

q
1
p
n q

1
p′

k
qn
p + qk

p′

+ 1
p′
‖b‖p

′

`p′ (ω) sup
k

∑
n∈N
n 6=k

q
1
p
n q

1
p′

k
qn
p + qk

p′
·

Applying Lemma 3.1, this quantity is less than 2q

r
1
q
ε −1

6 ε
2 thanks to the

choice of rε again. Finally

sup
{∥∥TωΛ (a).TωΨ(b)

∥∥
1 ; ‖b‖`p′ (ω) = 1

}
> 1− ε

2 ·

On the other hand, Hölder’s inequality gives∥∥TωΛ (a).TωΨ(b)
∥∥

1 6
∥∥TωΛ (a)

∥∥
p
.
∥∥TωΨ(b)

∥∥
p′
6
(

1 + ε

2

)∥∥TωΛ (a)
∥∥
p

because p′ψn + 1 = pλn + 1 (hence is also an rε-lacunary sequence), so we
may apply the upper bound part for

∥∥TωΨ∥∥p′ . Considering the supremum
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over the sequences b, we finally obtain, for any rε-lacunary Λ and for any
a in the unit sphere of `p(ω),

(1− ε) 6
1− 1

2ε

1 + 1
2ε
6
∥∥TωΛ (a)

∥∥
p
6 (1 + ε). �

Before stating the next corollary, let us recall that a (normalized) se-
quence (xn) in a Banach space X is asymptotically isometric to the canon-
ical basis of `p if for every ε ∈ (0, 1), there exists an integer N such that

(1− ε)

∑
n>N

|an|p
 1

p

6
∥∥∥ ∑
n>N

anxn

∥∥∥
X
6 (1 + ε)

∑
n>N

|an|p
 1

p

for any a = (an)n ∈ c00.
Equivalently there exists a null sequence (εn) of positive numbers such

that for every N , we have for any a = (an)n ∈ c00

(1− εN )

∑
n>N

|an|p
 1

p

6
∥∥∥ ∑
n>N

anxn

∥∥∥
X
6 (1 + εN )

∑
n>N

|an|p
 1

p

.

When p = 2, we can also say that such a sequence (xn) is asymptotically
orthonormal.
We can now prove

Corollary 3.7. — Let p ∈ (1,+∞). The following are equivalent
(1) Λ is super-lacunary.
(2) The sequence

(
tλn

‖tλn‖p

)
n
in Lp is asymptotically isometric to the

canonical basis of `p.

Proof. — Assume that Λ is super-lacunary: limn→+∞
λn+1
λn

= +∞. As

usual, we denote qn = pλn + 1, and fn(t) = q
1
p
n tλn = tλn

‖tλn‖p . We need to
prove that for any ε > 0, there exists N ∈ N such that

(3.1) (1− ε)

∑
n>N

|an|p
 1

p

6

∥∥∥∥∥ ∑
n>N

anfn

∥∥∥∥∥
p

6 (1 + ε)

∑
n>N

|an|p
 1

p

for any a = (an)n ∈ c00. For a given ε ∈ (0, 1) we consider the number rε
given by Theorem 3.5. Since (qn)n is also super-lacunary, there is an integer
N large enough to insure that qk+1 > rεqk when k > N and so the sequence
(pλn+N + 1)n is rε−lacunary. We apply the estimate of ‖Tw(p)

Λ (ã)‖p given
by Theorem 3.5 to the sequence ã =

(
anq

1
p
n

)
n>N

and we get the result.
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For the converse, let ε ∈ (0, 1). From the right hand inequality of (3.1),
we get the existence of an integer N ∈ N such that for any integer n > N ,
for any u ∈ (0, 1),

‖fn + ufn+1‖p 6 (1 + ε)(1 + up)
1
p 6 (1 + ε)(1 + up).

On the other hand, Hölder’s inequality and ‖fp−1
n ‖p′ = 1 give

‖fn + ufn+1‖p >
∫ 1

0
(fn + ufn+1)fp−1

n dt

= 1 + u

∫ 1

0
fn+1f

p−1
n dt

Applying this for u = ε
1
p , we finally get∫ 1

0
fn+1f

p−1
n dt 6 3ε1− 1

p

and since p > 1, we obtain
∫ 1

0 fn+1f
p−1
n dt→ 0 when n→ +∞.

But∫ 1

0
fn+1f

p−1
n dt =

∫ 1

0
q

1
p

n+1q
1
p′
n t(p−1)λn+λn+1dt > qn

∫ 1

0
tpλn+1dt = qn

qn+1
·

Thus, pλn+1
pλn+1+1 → 0 when n→ +∞, and Λ is super-lacunary. �

4. Carleson measures

In this section, µ denotes a positive and finite measure on [0, 1) and Λ is
a fixed lacunary sequence. We shall generalize some results of [4] and [10]
using the estimates from Section 2. In particular, we give a positive answer
to a question asked in [10]: if µ is a sublinear measure on [0, 1) and Λ is
lacunary, then the embedding operator ipµ : Mp

Λ → Lp(µ) is bounded.

Definition 4.1. — Let p ∈ [1,+∞). We say that
(1) µ is sublinear if there exists a constant C > 0 such that

∀ ε ∈ (0, 1), µ([1− ε, 1]) 6 Cε.

The smallest admissible constant C above is denoted ‖µ‖S .
(2) µ satisfies (Bp) if there exists a constant C (depending only on Λ

and p) such that

(Bp) ∀ n ∈ N,
∫

[0,1)
tpλndµ 6 C

λn
·
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(3) µ is a Carleson measure for Mp
Λ if there exists a constant C (de-

pending only on Λ and p) such that, for any Müntz polynomial
f(t) =

∑
n ant

λn ,

‖f‖Lp(µ) 6 C‖f‖p .

In this case we may define the following bounded embedding

ipµ :
{
Mp

Λ −→ Lp(µ)
f 7−→ f.

Remark 4.2. — The notions defined above are related as follows:

(1) Since condition (Bp) is equivalent to supn>0
‖tλn‖Lp(µ)
‖tλn‖p < +∞, any

Carleson measure for Mp
Λ satisfies (Bp).

(2) For p ∈ [1,+∞), we have

µ is sublinear =⇒ µ satisfies (B1) =⇒ µ satisfies (Bp).

Indeed, since t ∈ [0, 1) 7→ tpλn is an increasing function, [4, Lem. 2.2]
gives ∫

[0,1)
tpλndµ 6 ‖µ‖S

∫ 1

0
tpλndt 6 p−1‖µ‖S

λn
·

(3) Moreover, if Λ is a quasi-geometric sequence, and µ satisfies (Bp)
for some p ∈ [1,+∞) then µ is sublinear. It is essentially proved
in [4] in the case p = 1. More precisely, there exists a constant
C > 0 depending only on Λ and p such that

‖µ‖S 6 C

(
sup
n∈N

λn

∫
[0,1)

tpλndµ
)
,

The previous remarks suggest a natural question: does (Bp) imply that
µ is a Carleson measure for Mp

Λ ?
The answer is not clear in general. In [4, Ex. 6.2], the authors build a

sublinear measure (so it satisfies (B1)) and a sequence Λ such that µ is not
a Carleson measure for M1

Λ. When Λ is lacunary, we shall see that condi-
tion (Bp) is almost sufficient for µ to be a Carleson measure for Mp

Λ (see
Theorem 4.5 below) and even sufficient when p = 1 (see Proposition 4.4).
The cornerstone of our approach is the following remark.
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Remark 4.3. — For a lacunary sequence Λ, we can factorize ipµ through
`p(w) as follows:

Mp
Λ

ipµ //

(
TwΛ

)−1
""

Lp(µ)

`p(w)
TwΛ,µ

;;

where w = (wn)n is a weight satisfying wn ≈ λ−1
n . With such a weight,

the operator TwΛ realizes an isomorphism between `p(w) and Mp
Λ: this is a

rewording of Gurariy–Macaev Theorem (Theorem 2.3). The most natural
weight is wn = wn(p) = (pλn + 1)−1 but in this section, we are interested
in estimates up to constants (possibly depending on p and Λ). Of course,
the results are the same with equivalent weights. So, we choose (in order
to simplify) to fix the weight wn = λ−1

n .
In particular, by Proposition 2.6 we obtain

‖ipµ‖ .
∥∥TwΛ,µ∥∥p 6 sup

n
D(p)
µ (n),

and for n ∈ N, by Proposition 2.9 we have

an+1(ipµ) . an+1(TwΛ,µ) 6
(
D(p)
µ

)∗(n)

where the sequence
(
D

(p)
µ (n)

)
n
is defined as in Section 2 by the formula

(here with our specified weight and since there is no ambiguity relatively
to Λ in the sequel):

D(p)
µ (n) = Dw,p

Λ,µ(n) =

∫
[0,1)

λ
1
p
n t
λn

(∑
k∈N

λ
1
p

k t
λk

)p−1

dµ

 1
p

.

We first treat the case p = 1.

Proposition 4.4. — Let Λ = (λn)n be a lacunary sequence. The fol-
lowing are equivalent:

(1) µ satisfies (B1) ;
(2) µ is a Carleson measure for M1

Λ.
In this case there exists a constant C depending only on Λ such that

‖i1µ‖ 6 C

(
sup
n∈N

λn

∫
[0,1)

tλndµ
)
·

Proof. — (2)⇒ (1) is obvious. For the converse, we apply the factoriza-
tion described in Remark 4.3 : this gives ‖i1µ‖ 6

∥∥TwΛ,µ∥∥1.
∥∥(TwΛ )−1∥∥

1. On
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the other hand, Proposition 2.9 gives ‖TwΛ,µ‖1 6 supnD
(1)
µ (n) and we get

the result. �

As a corollary, we recover quickly [4, Thm. 5.5] in the lacunary case: the
sublinear measures satisfy (B1), and so any sublinear measure is a Car-
leson measure for M1

Λ. For the general lacunary case, we have the following
theorem.

Theorem 4.5. — Let Λ = (λn)n be a r-lacunary sequence. Let µ be a
positive measure on [0, 1) and p ∈ [1,+∞). We assume that µ satisfies (Bp).
Then µ is a Carleson measure for Mq

Λ for any q > p. Moreover, we have

‖iqµ‖ 6 C

(
sup
n∈N

λn

∫
[0,1)

tpλndµ
) 1
q

where C depends only on p, q and Λ.

Proof. — Since Λ is lacunary, we can factorize iqµ through `q(w) as in
Remark 4.3. We obtain

‖iqµ‖ .
∥∥TwΛ,µ∥∥q 6 sup

n
D(q)
µ (n)

The following lemma 4.6 gives the result. �

Lemma 4.6. — Under the assumptions of Theorem 4.5, we have

(
D(q)
µ (n)

)q
6 C

(
sup
k>n

λk

∫
[0,1)

tpλkdµ
) 1
p
(

sup
k∈N

λk

∫
[0,1)

tpλkdµ
) 1
p′

6 C sup
k∈N

λk

∫
[0,1)

tpλkdµ,

where C is a constant depending only on p, q and r.

Proof. — Since (λk)k is r-lacunary, for any β ∈ R∗+ we have

∑
k6n

λβk 6
1

1− r−β λ
β
n and

∑
k>n

λ−βk 6
1

rβ − 1λ
−β
n ·

For any j ∈ N, we denote Mj = λj
∫

[0,1) t
pλjdµ and M = supjMj < +∞.

Since q > 1, we have for any A,B ∈ R+, (A+B)q−1 6 2q−1(Aq−1 +Bq−1).
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This gives:(
D(q)
µ (n)

)q
=
∫

[0,1)
λ

1
q
n t
λn

(∑
k∈N

λ
1
q

k t
λk

)q−1

dµ

.
∫

[0,1)
λ

1
q
n t
λn

(∑
k6n

λ
1
q

k t
λk

)q−1

dµ+
∫

[0,1)
λ

1
q
n t
λn

(∑
k>n

λ
1
q

k t
λk

)q−1

dµ

We estimate the first term above. If p > 1, Hölder’s inequality gives

∫
[0,1)

λ
1
q
n t
λn

(∑
k6n

λ
1
q

k t
λk

)q−1

dµ

6 λ
1
q
n

(∫
tpλndµ

) 1
p

∫ (∑
k6n

λ
1
q

k t
λk

)p′(q−1)

dµ


1
p′

6M
1
p
n λ

1
q−

1
p

n

(∑
k6n

λ
1
q

k ‖t
λk‖Lp′(q−1)(µ)

)q−1

where we used the triangle inequality since p′(q−1) > p > 1. For any k 6 n
we have

∫
[0,1) t

p′(q−1)λkdµ 6
∫

[0,1) t
pλkdµ 6Mkλ

−1
k . This gives

∫
[0,1)

λ
1
q
n t
λn

(∑
k6n

λ
1
q

k t
λk

)q−1

dµ

6

(
sup
k6n

M
1
p′

k

)
M

1
p
n λ

1
q−

1
p

n

∑
k6n

λ
1
q−

1
p′(q−1)

k

q−1

.

(
sup
k6n

M
1
p′

k

)
M

1
p
n λ

1
q−

1
p

n λ
1
q′−

1
p′

n

=
(

sup
k6n

M
1
p′

k

)
M

1
p
n .

If p = 1, the inequality tλk 6 1 gives directly∫
[0,1)

λ
1
q
n t
λn

(∑
k6n

λ
1
q

k t
λk

)q−1

dµ 6Mnλ
−1
n λ

1
q
n

(∑
k6n

λ
1
q

k

)q−1

.Mn.
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For the second term we treat two cases. First if q − 1 > p, the triangle
inequality gives

∫
[0,1)

λ
1
q
n t
λn

(∑
k>n

λ
1
q

k t
λk

)q−1

dµ

6 λ
1
q
n

(∑
k>n

‖λ
1
q

k t
λk‖Lq−1(tλnµ)

)q−1

= λ
1
q
n

∑
k>n

λ
1
q

k

(∫
[0,1)

t(q−1)λk+λndµ
) 1
q−1
q−1

6 λ
1
q
n

∑
k>n

λ
1
q

k

(∫
[0,1)

tpλkdµ
) 1
q−1
q−1

6

(
sup
k>n

Mk

)
λ

1
q
n

(∑
k>n

λ
1
q−

1
q−1

k

)q−1

.

(
sup
k>n

Mk

)
λ

1
q
n

(
λ
−1

q(q−1)
n

)q−1 = sup
k>n

Mk.

If q− 1 < p, let α = p
p−(q−1) · It satisfies α > q and (q− 1)α′ = p. We apply

Hölder’s inequality:

∫
[0,1)

λ
1
q
n t
λn

(∑
k>n

λ
1
q

k t
λk

)q−1

dµ

6 λ
1
q
n

(∫
[0,1)

tαλndµ
) 1
α
(∫

[0,1)

(∑
k>n

λ
1
q

k t
λk
)pdµ) 1

α′

6M
1
α
n λ

1
q−

1
α

n

∑
k>n

λ
1
q

k

(∫
[0,1)

tpλndµ
) 1
p


p

α′

where we applied again the triangle inequality. We obtain

∫
[0,1)

λ
1
q
n t
λn

(∑
k>n

λ
1
q

k t
λk

)q−1

dµ 6M
1
α
n

(
sup
k>n

M
1
α′
k

)
λ

1
q−

1
α

n

(∑
k>n

λ
1
q−

1
p

k

)q−1

.M
1
α
n

(
sup
k>n

M
1
α′
k

)
.
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We finally get (
D(q)
µ (n)

)q
.M

1
p
n

(
sup
k6n

M
1
p′

k

)
+ sup
k>n

Mk· �

Corollary 4.7. — If µ is sublinear and Λ is lacunary, then µ is a
Carleson measure for Mq

Λ, for any q ∈ [1,+∞).

Proof. — Remark 4.2 implies that the sublinear measures satisfy (B1),
and we obtain

‖iqµ‖ . ‖µ‖
1
q

S . �

The previous fact was proved for p = 2 in [10, Thm. 4.3], and the authors
announced the result for p ∈ (1, 2) (see [10, Cor. 5.2]). Unfortunately there
is a gap in the proof of their interpolation result [10, Thm. 5.1] : interpola-
tion is not easy to handle in Müntz spaces because f ∈Mp

Λ does not imply
that |f | ∈Mp

Λ in general.
Theorem 4.5 has the following interesting consequence.

Corollary 4.8. — Let Λ be a lacunary sequence and p, q ∈ [1,+∞)
such that p < q.

(1) If ipµ is bounded, then iqµ is bounded.
(2) The converse is false in general.

Proof. — If ipµ is bounded, then µ satisfies (Bp). Theorem 4.5 implies
that iqµ is bounded. Assertion (2) is a consequence of the Examples 5.14
and 5.15 below. �

Corollary 4.9. — Let q ∈ [1,+∞) and let Λ be a quasi-geometric
sequence. Then we have

‖iqµ‖ ≈ sup
n

(∫
[0,1)

λnt
qλndµ

) 1
q

≈ ‖µ‖
1
q

S

≈ sup
n

(∫
[0,1)

λnt
λndµ

) 1
q

≈ sup
n

(
D(q)
µ (n)

)
,

where the underlying constants depend only on q and Λ.
In particular, µ is a Carleson measure if and only if it is sublinear.

Proof. — Since Λ is lacunary, Remark 4.2(2) and Lemma 4.6 give easily

‖iqµ‖ . sup
n

(
λn

∫
[0,1)

tλndµ
) 1
q

. ‖µ‖
1
q

S .
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On the other hand, since Λ quasi-geometric, Remark 4.2(3) gives

‖µ‖S . sup
n

∫
[0,1)

λnt
qλndµ 6 ‖iqµ‖q. �

5. Compactness and Schatten classes

In this part we are interested in the compactness of the embedding

ipµ :
{
Mp

Λ −→ Lp(µ)
f 7−→ f

where µ is a Carleson measure for Mp
Λ.

We now investigate its membership of various classes of operator ideals,
in particular Schatten classes (when p = 2).

As in Section 4, we work with wn = λ−1
n ; we consider the operators TwΛ

and TwΛ,µ and the sequence D(p)
µ (n) = Dw,p

Λ,µ(n) associated to this weight.

Definition 5.1. — Let p ∈ [1,+∞). We say that
(1) µ is vanishing sublinear when limε→0

µ([1−ε,1])
ε = 0;

(2) µ satisfies (Bp) when we have

(bp) lim
n→+∞

λn

∫
[0,1)

tpλndµ = 0.

Let us point out that (bp) exactly means that limn→+∞
‖tλn‖Lp(µ)
‖tλn‖Lp(m)

= 0.

Remark 5.2. — Let µ be a Carleson measure for Mp
Λ.

(1) If ipµ is compact and p > 1, then µ satisfies (bp). Indeed, since for
any k ∈ N,∫ 1

0
tλnλ

1
p
n t
kdt = λ

1
p
n

λn + k + 1 → 0 when n→ +∞,

for any polynomial g,
∫ 1

0 t
λnλ

1
p
n g(t)dt → 0. Since p > 1 the poly-

nomials are dense in Lp′ and so (λ
1
p
n tλn)n converges weakly to 0 in

Mp
Λ. Since the embedding ipµ is compact, ‖λ

1
p
n tλn‖Lp(µ) → 0 when

n→ +∞.
(2) For p, q ∈ [1,+∞) such that p < q, we have

µ is vanishing sublinear =⇒ µ satisfies (bp) hence (bq).

ANNALES DE L’INSTITUT FOURIER



LACUNARY MÜNTZ SPACES 2239

Indeed, by assumption, for any ε > 0, there exists η > 0 such that
‖µ|[1−η,1)‖S 6 ε. We have

λn

∫
[0,1)

tpλndµ 6 λnηpλnµ([0, 1)) + λn

∫
[1−η,1)

tpλndµ.

The first term tends to 0 when n→ +∞ and the second is less than
p−1‖µ|[1−η,1)‖S 6 ε

p thanks to Remark 4.2(2).
(3) The conditions in (2) are equivalent when Λ is a quasi-geometric

sequence. More precisely, for ε > 0 close to 0, we have

µ([1− ε, 1))
ε

6 3pRλn
∫

[0,1)
tpλndµ

where n is the index such that ε ∈
(

1
pλn+1

, 1
pλn

]
, and R is a constant

such that λk+1 6 Rλk for any k ∈ N. So if µ satisfies (bp), then µ
is vanishing sublinear.

5.1. The case p = 1.

If i1µ is compact, µ satisfies (b1) but the method to prove it is not the
same as for p > 1.

Proposition 5.3. — Let Λ be a lacunary sequence. The following are
equivalent

(1) µ satisfies (b1) ;
(2) i1µ is compact ;
(3) i1µ is weakly compact.

Proof. — Let us prove that (1) ⇒ (2). Since Λ is lacunary, we can fac-
torize i1µ through `1(w) as in Remark 4.3: we have i1µ = TwΛ,µ ◦

(
TwΛ
)−1. On

the other hand, µ satisfies (b1), so we have D(1)
µ (n) = λn

∫
[0,1) t

λndµ → 0
when n → +∞. Proposition 2.9 implies that an(TwΛ,µ) → 0 and we get
an(i1µ)→ 0 when n→ +∞.
The implications (2) ⇒ (3) ⇒ (1) are valid for any Müntz space M1

Λ,
without any assumption of lacunarity for Λ.
(2)⇒ (3) is obvious.
(3) ⇒ (1). We denote H = {λntλn}. Since H is bounded in M1

Λ, H
is bounded and by assumption weakly relatively compact in L1(µ), hence
uniformly integrable in L1(µ) (see [12, Thm. III.C.12, p. 137]). This means
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that for any ε > 0, there exists δ > 0 such that for any n ∈ N and any
measurable set A ⊂ [0, 1) with µ(A) 6 δ, we have∫

A

λnt
λndµ 6 ε.

Since µ({1}) = 0, there exists s ∈ (0, 1) such that µ([s, 1)) 6 η. We have∫
[0,1)

λnt
λndµ =

∫
[0,s)

λnt
λndµ+

∫
[s,1]

λnt
λndµ

6 λns
λnµ([0, 1)) + ε.

Since λnsλn → 0 as n→ +∞, we obtain that µ satisfies (b1). �

Remark. — Without any assumption of lacunarity on Λ, the embedding
i1µ is a Dunford–Pettis operator (i.e. maps a weakly convergent sequence
into a norm-convergent sequence) if and only if i1µ is bounded. This is due
to the fact that M1

Λ has the Schur property since it is isomorphic to a
subspace of `1 (see [11], see also [6] for some extensions of this result).

5.2. The case p > 1.

Let us mention without proof the next remark (the argument is the same
as in Lemma 5.10 below, but we shall not use this result in the general case).

Remark 5.4. — Let Λ be a quasi-geometric sequence. For p > 1, there
exist an integer K > 1 and C depending only on Λ such that for any n ∈ N
we have

Cλn+K

∫
[0,1)

tλn+Kdµ 6 λn
∫

[0,1)
tpλndµ 6

(
D(p)
µ (n)

)p
.

We first give an easy sufficient condition ensuring compactness. This is
closely related to the rough sufficient condition ensuring the boundedness
of ipµ stated in Remark 2.5

Proposition 5.5. — Let Λ be a quasi-geometric sequence and p > 1.
The Carleson embedding ipµ is order bounded if and only if∫

[0,1)

dµ
1− t <∞.

This condition ensures that ipµ is a p-summing operator (see [5,
Thm. 5.18]), hence compact from Mp

Λ to Lp(µ) when p > 1. In the case
p = 1, apply Proposition 5.3.
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Proof. — Since the space Mp
Λ is separable, ipµ is order bounded if and

only if t 7→ supf∈BMp
Λ
|f(t)| belongs to Lp(µ). Now, the estimate on the

point evaluation (see Proposition 2.13) gives the conclusion. �

In the same way as for the boundedness problem, we can “almost” char-
acterize the compactness of iqµ for q > 1, by testing the monomials.

Theorem 5.6. — Let Λ be a lacunary sequence. Assume that µ satis-
fies (bp) for some p ∈ [1,+∞). Then iqµ is compact for any q > p.

Proof. — Since Λ is lacunary, we can factorize iqµ through `q(w) as in
Remark 4.3: iqµ = TwΛ,µ◦

(
TwΛ
)−1 (recall that TwΛ is an isomorphism). Propo-

sition 2.9 gives

‖iqµ‖e . ‖TwΛ,µ‖e 6 lim sup
n→+∞

D(q)
µ (n).

Since µ satisfies (bp), Lemma 4.6 implies that D(q)
µ (n)→ 0 when n→ +∞

and so iqµ is compact. �

Corollary 5.7. — Let Λ be a lacunary sequence and p, q ∈ [1,+∞)
such that p < q.

(1) If ipµ is compact, then iqµ is compact.
(2) The converse is false in general.
(3) If µ is vanishing sublinear, ipµ is compact.

Proof. — If ipµ is compact, then µ satisfies (bp) and iqµ is compact by
Theorem 5.6. Assertion (2) is a consequence of Example 5.14 or Exam-
ple 5.15 below. At last (3) holds since any vanishing sublinear measure
satisfies (b1). �

Corollary 5.8. — Let q ∈ [1,+∞) and let Λ be a quasi-geometric
sequence. Assume that µ is a Carleson measure for Mq

Λ. Then we have

‖iqµ‖e ≈ lim sup
n

(∫
[0,1)

λnt
λndµ

) 1
q

≈
(

lim sup
ε→0

µ([1− ε, 1)
ε

) 1
q

≈ lim sup
n→+∞

D(q)
µ (n),

where the underlying constants depend only on q and Λ.
In particular, iqµ is compact if and only if µ is vanishing sublinear.
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Proof. — We already saw in Lemma 4.6 and the proof of Theorem 5.6
that

‖iqµ‖e . lim sup
n→+∞

D(q)
µ (n) . lim sup

n

(∫
[0,1)

λnt
λndµ

) 1
q

.

(
lim sup
ε→0

µ([1− ε, 1)
ε

) 1
q

,

this part only requires the lacunarity assumption on Λ.
To get the minoration of ‖iqµ‖e we use [4, Thm. 3.5] which proves

‖i1µ‖e = lim
n→+∞

‖i1µ′n‖

where µ′n is the restriction µ|[1− 1
n ,1). The proof can be easily adapted for

q > 1 as it was noticed in [10, Prop. 2.6] and we have

‖iqµ‖e = lim
n→+∞

‖iqµ′n‖.

Since Λ is quasi-geometric, Corollary 4.9 gives a constant C > 0 such that
for any measure ν on [0, 1): ‖iqν‖ > C‖ν‖

1
q

S . We have

‖iqµ‖e = lim
n→+∞

‖iqµ′n‖ > C lim
n→+∞

‖µ|[1− 1
n ,1)‖

1
q

S

=
(

lim sup
ε→0

µ([1− ε, 1)
ε

) 1
q

· �

The following result is an improvement of [4, Prop. 3.2]. It requires no
assumption on the lacunarity of Λ but a strong assumption on µ.

Proposition 5.9. — If Supp(µ) lies in a compact set of [0, 1), then ipµ
is a nuclear operator.

Proof. — Assume that Supp(µ) ⊂ [0, δ] with δ < 1. We fix ε > 0 such
that (1+ε)δ < 1. Since Λ satisfies the gap condition, we have the following
classical estimate essentially proved in [7, Prop. 6.2.2]: there exists Kε such
that for any Müntz polynomial f(t) =

∑
k akt

λk , we have

|an| 6 Kε(1 + ε)λn‖f‖p.

This implies that the functionals

e∗n :
{

Mp
Λ −→ C∑

k akt
λk 7−→ an

are well defined, bounded, and ‖e∗n‖ 6 Kε(1 + ε)λn .
We define gn : [0, 1)→ C by gn(t) = tλn . The functions (gn)n belong to

Lp(µ) and we have ‖gn‖Lp(µ) 6 µ([0, 1))δλn . On the other hand, for any

ANNALES DE L’INSTITUT FOURIER



LACUNARY MÜNTZ SPACES 2243

Müntz polynomial f , we have ipµ(f) =
∑
k>0 e

∗
k(f)gk. So ipµ and

∑
k>0 e

∗
k⊗

gk coincide on a dense set of Mp
Λ. Moreover, we have∑

‖e∗k ⊗ gk‖ 6 Kεµ([0, 1))
∑
k

(δ(1 + ε))λk < +∞

Therefore ipµ is a nuclear operator. �

5.3. The case p = 2.

From now on we focus on the hilbertian setting.

Lemma 5.10. — Let Λ be a quasi-geometric sequence and µ such that
i2µ is bounded.

(1) There exist an integer K > 1 and C > 0 depending only on Λ such
that for any n ∈ N we have

Cλn+K

∫
[0,1)

tλn+Kdµ 6 λn
∫

[0,1)
t2λndµ 6

(
D(2)
µ (n)

)2
.

(2) For any q ∈ (0,+∞), we have

‖(D(2)
µ (n))n‖`q ≈

∥∥∥∥∥∥
(
λn

∫
[0,1)

t2λndµ
) 1

2

n

∥∥∥∥∥∥
`q

≈

∥∥∥∥∥∥
(
λn

∫
[0,1)

tλndµ
) 1

2

n

∥∥∥∥∥∥
`q

where the involved constants depend only on Λ and q.

Proof. — We first prove (1). For n ∈ N we have(
D(2)
µ (n)

)2 =
∑
k∈N

(λnλk) 1
2

∫
[0,1)

tλn+λkdµ > λn
∫

[0,1)
t2λndµ

since this last term is the term n = k in the sum. On the other hand, we
assume that Λ is r-lacunary. There exists K ∈ N such that rK > 2 and
since Λ is quasi-geometric, there exists R ∈ R such that λk+1 6 Rλk for
any k. We obtain

λn+K

∫
[0,1)

tλn+Kdµ 6 RKλn
∫

[0,1)
tr
Kλndµ . λn

∫
[0,1)

t2λndµ

Now, we prove (2). For k ∈ N we shall denote mk = λk
∫

[0,1) t
λkdµ.

Assume that the sequence (m
1
2
k )k lies in `q. We shall compare ‖D(2)

µ (n)‖`q
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and ‖m
1
2
n‖`q and shall, in some sense, improve the estimate of Lemma 4.6.

For n ∈ N, we have:(
D(2)
µ (n)

)2 =
∑
k6n

(λnλk) 1
2

∫
[0,1)

tλn+λkdµ+
∑
k>n

(λnλk) 1
2

∫
[0,1)

tλn+λkdµ

6
∑
k6n

(λnλk) 1
2
mn

λn
+
∑
k>n

(λnλk) 1
2
mk

λk

6 mn
1

1− 1√
r

+
∑
k>n

mk
1

√
r
k−n ·

So the number
(
D

(2)
µ (n)

)2 is less than the n-th entry of the vector
A[(mk)k], where A = (An,k)n,k is the matrix defined by

An,k =


0 if k < n

(1− r− 1
2 )−1 if k = n

1√
rk−n

if k > n.

Assume first that q > 2. Since A satisfies

sup
n

∑
k

An,k 6
2

1− 1√
r

and sup
k

∑
n

An,k 6
2

1− 1√
r

,

we can apply the Schur test: A defines a bounded operator A : `
q
2 → `

q
2

and we have ‖A‖ q
2
6 2

1− 1√
r

· In particular, for (mk)k ∈ `
q
2 we obtain

‖(D(2)
µ (n))‖`q 6

(
2

1− 1√
r

) 1
2

‖(mk) 1
2 ‖`q .

Now we treat the case q < 2. Since q
2 < 1, we have

(D(2)
µ (n))q 6

(
mn

1
1− 1√

r

+
∑
k>n

mk
1

√
r
k−n

) q
2

6
(
m

1
2
n

)q 1
(1− 1√

r
) q2

+
∑
k>n

(
m

1
2
k

)q 1
r
q(k−n)

4

and we get

∑
n∈N

(D(2)
µ (n))q 6

∑
n

(
m

1
2
n

)q ( 1
1− 1√

r

) q
2

+
∑
k∈N

(
m

1
2
k

)q k−1∑
n=0

(
1
r

) q(k−n)
4

. ‖
(
m

1
2
n

)
n
‖q`q

where the underlying constants depend on r and q only.
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We have then

‖(D(2)
µ (n))n‖`q .

∥∥∥∥∥∥
(
λn

∫
[0,1)

tλndµ
) 1

2

n

∥∥∥∥∥∥
`q

whereas (1) implies∥∥∥∥∥∥
(
λn

∫
[0,1)

tλndµ
) 1

2

n

∥∥∥∥∥∥
`q

.

∥∥∥∥∥∥
(
λn

∫
[0,1)

t2λndµ
) 1

2

n

∥∥∥∥∥∥
`q

. ‖(D(2)
µ (n))n‖`q

The conclusion follows. �

Theorem 5.11. — Let Λ be a lacunary sequence and q > 0. We have
(1) If (D(2)

µ (n))n ∈ `q then we have

‖i2µ‖Sq . ‖D(2)
µ (n)‖`q ;

(2) If moreover Λ is quasi-geometric and q > 2, we have

‖i2µ‖Sq ≈ ‖D(2)
µ (n)‖`q ,

where the involved constants depend only on q and Λ.

Proof. — We first prove (1). As in Remark 4.3, since Λ is lacunary we
may factorize i2µ through `2(w), and we get an(i2µ) . an(TwΛ,µ). Proposi-
tion 2.9 gives ∑

n

(an(i2µ))q .
∑
n

(
D(2)
µ (n)

)q
.

Now, we prove (2). As a direct consequence of [5, Thm. 4.7], for any Riesz
basis (fn)n of M2

Λ (i.e. an orthonormal basis up to an invertible operator),
there exists a constant C > 0 such that

‖i2µ‖Sq > C

(∑
n

‖fn‖qL2(µ)

) 1
q

.

By Gurariy–Macaev theorem the sequence (fn)n = (λ
1
2
n tλn)n is a Riesz

basis of M2
Λ, so we obtain:

‖i2µ‖
q
Sq &

∑
n

(
λn

∫
[0,1)

t2λndµ
) q

2

and Lemma 5.10 gives the result. �

We also have an integral expression for ‖i2µ‖Sq .
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Proposition 5.12. — Assume that Λ is quasi-geometric and q > 2.We
have:

‖i2µ‖Sq ≈

∫ 1

0

(∫
[0,1)

dµ(t)
(1− st)

2
q+1

) q
2

ds

 1
q

.

Proof. — We denoteMn = λn
∫

[0,1) t
2λndµ. The previous estimate gives:

‖i2µ‖Sq ≈

(∑
n

M
q
2
n

) 1
q

= ‖(Mn)n‖
1
2

`
q
2
.

On the other hand we can apply Gurariy–Macaev theorem to estimate an
equivalent of ‖(Mn)‖

`
q
2
. We obtain, using Lemma 2.10,

‖i2µ‖Sq ≈
∥∥∥∑

n

Mnλ
2
q
n s

λn
∥∥∥ 1

2

L
q
2 (ds)

=

∫ 1

0

(∑
n

λn

∫
[0,1)

t2λndµ(t)λ
2
q
n s

λn

) q
2

ds

 1
q

=

∫ 1

0

(∫
[0,1)

∑
n

λ
2
q+1
n (st2)λndµ(t)

) q
2

ds

 1
q

≈

∫ 1

0

(∫
[0,1)

dµ(t)
(1− st2)

2
q+1

) q
2

ds

 1
q

.

We get the result since (1 − st) 6 (1 − st2) 6 (1 + st)(1 − st) 6 2(1 − st)
for s, t ∈ [0, 1]. �

Note that the previous estimate shows that, as soon as Λ is quasi-
geometric, i2µ belongs to the Schatten class Sq if and only if a quantity
depending only on µ and q is finite.
As a particular case (q = 2), we have a characterization of the Hilbert–

Schmidt embeddings.

Theorem 5.13. — Let Λ be a quasi-geometric sequence. The following
are equivalent

(1) i2µ is a Hilbert–Schmidt operator ;
(2)

∫
[0,1)

1
1−tdµ < +∞.
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In this case we have

‖i2µ‖S2 ≈

(∫
[0,1)

1
1− tdµ

) 1
2

.

Proof 1. — We apply Proposition 5.12 in the case q = 2. Fubini theorem
gives

‖i2µ‖2S2 ≈
∫ 1

0

∫
t∈[0,1)

dµ(t)
(1− st)2 ds =

∫
[0,1)

1
1− tdµ. �

Proof 2. — Since order bounded and Hilbert–Schmidt operators are the
same in an L2-framework, Proposition 5.5 gives the result. �

5.4. Examples

Now we give two examples inspired by [10], showing that in a strong way,
boundedness and compactness of Carleson embeddings on Müntz spaces
Mp

Λ depend in general on p and not only on Λ.

Example 5.14. — Let p ∈ [1,+∞). We are going to construct a lacunary
sequence Λ and a measure µ on [0, 1) such that

(1) iqµ is not bounded when q ∈ [1, p] ;
(2) iqµ is compact when q ∈ (p,+∞).

Proof. — Note that Λ cannot be a quasi-geometric sequence (see Corol-
lary 4.9 and 5.8). We shall consider a measure µ with the form µ =∑
k>2 ckδxk where xk ∈ (0, 1) and ck > 0.
We define λ2 = 1, (λn)n>2 such that for any n > 3, λn > np+1λn−1.

For n > 2 let cn = np log(n)
λn

and xn = 1 − log(n)
λn
· We have xλnn ∼ 1

n when

n→ +∞, and for n > k we have xλnk .
( 1
k

)λn
λk . We check that µ does not

satisfy (Bp):

λn

∫
[0,1)

tpλndµ =
∑
k

λnckx
pλn
k > λncnx

pλn
n

∼ λn
np log(n)

λn

1
np

= log(n)→ +∞.

Hence ipµ is not bounded.
On the other hand, for q > p, we have

λn

∫
[0,1)

tqλndµ =
∑
k<n

λnckx
qλn
k + λncnx

qλn
n +

∑
k>n

λnckx
qλn
k .
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We control these three terms. For the first:

∑
k<n

λnckx
qλn
k .

∑
k<n

log(k)kpλn
λk

(
1
kq

)λn
λk

.
∑
k<n

λn
λk

(
1
kq

)λn
λk
−1
·

Since k > 2 and λn
λn−1

→ +∞, this term tends to 0 when n→ +∞. For the
term n = k we have λncnxqλnn ∼ λn

np log(n)
λn

1
nq = log(n)

nq−p → 0. For the last
sum, xk 6 1 gives

∑
k>n

λnx
qλn
k ck 6

+∞∑
k=n+1

λn
kp log(k)

λk
6

+∞∑
k=n+1

log(k)
k
× λn
λk−1

.
log(n)
n

+∞∑
k=n

λn
λk
→ 0.

Thus, µ satisfies (bq), and using Theorem 5.6, irµ is compact for any
r > q. �

Example 5.15. — Let p ∈ (1,+∞). We shall construct a lacunary se-
quence Λ and a measure µ on [0, 1) such that

(1) iqµ is not bounded when q ∈ [1, p) ;
(2) iqµ is compact when q ∈ [p,+∞).

Proof. — We consider again a measure µ with the form µ =
∑
k>2 ckδxk .

Let Λ = (λn)n>2 with λ2 = 1, and for all n > 3, λn > npmax{p,p′}λn−1.

Let cn = np

λn log(n) and xn = 1− log(n)
λn
·We have xλnn ∼ 1

n when n→ +∞,

and for n > k we have xλnk .
( 1
k

)λn
λk .

Let q ∈ [1, p). We check that µ does not satisfy (Bq):

λn

∫
[0,1)

tqλndµ > λncnxqλnn ∼ λn
np

λn log(n)
1
nq

= np−q

log(n) → +∞.

Hence iqµ is not bounded. On the other hand, let us show that the sequence
D

(p)
µ (n) tends to 0 when n→ +∞:

(
D(p)
µ (n)

)p =
∑
j∈N

λ
1
p
n cjx

λn
j

(∑
k

λ
1
p

k x
λk
j

)p−1

. λ
1
p
n cnx

λn
n

(∑
k

λ
1
p

k x
λk
n

)p−1

+
∑
j 6=n

λ
1
p
n cjx

λn
j

(
1

1− xj

) 1
p′
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using Lemma 2.10 and Remark 2.11 for the second term. We first control
the second term. If j > n, xλnj 6 1 gives

∑
j>n

λ
1
p
n cjx

λn
j

(
1

1− xj

) 1
p′

6
∑
j>n

λ
1
p
n
jp

λj

λ
1
p′

j

log(j)1+ 1
p′
6
∑
j>n

jp
(
λn
λj

)1
p

6
∑
j>n

1
jp

since λj > jp
2
λj−1. Hence this term tends to 0.

For j < n, since xλnj .
(

1
j

)λn
λj , we obtain:

∑
j<n

λ
1
p
n cjx

λn
j

(
1

1− xj

) 1
p′

.
∑
j<n

λ
1
p
n
jp

λj

(
1
j

)λn
λj λ

1
p′

j

log(j)1+ 1
p′

6
∑
j<n

(
λn
λj

) 1
p
(

1
j

)λn
λj
−p

and since j > 2 and λn
λn−1

→ +∞, this term tends to 0 when n→ +∞.
To get an upper bound for the part “j = n”, we split the sum in three

terms:

λ
1
p
n cnx

λn
n

(∑
k

λ
1
p

k x
λk
n

)p−1

. λ
1
p
n cnx

λn
n

(∑
k<n

λ
1
p

k x
λk
n

)p−1

+ λnx
pλn
n cn

+ λ
1
p
n cnx

λn
n

(∑
k>n

λ
1
p

k x
λk
n

)p−1

For k < n, since xn 6 1 and λn−1 > 2p(n−1−k)λk, we obtain

λ
1
p
n cnx

λn
n

(∑
k<n

λ
1
p

k x
λk
n

)p−1

.
λ

1
p
nnp

log(n)λn
1
n

( ∑
k6n−1

λ
1
p

k

)p−1

.
np−1

log(n)

(
λn−1

λn

) 1
p′

6
1

n log(n)

since λn > λn−1n
pp′ .
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For the term n = k, we have λnxpλnn cn ∼ λnn
p

npλn log(n) = 1
log(n) → 0. For

k > n, since xλkn .
( 1
n

) λk
λn , we obtain

λ
1
p
n cnx

λn
n

(∑
k>n

λ
1
p

k x
λk
n

)p−1

.
np−1

log(n)λ
− 1
p′

n

∑
k>n

λ
1
p

k

(
1
n

) λk
λn

p−1

6

∑
k>n

(
λk
λn

) 1
p
(

1
n

) λk
λn
−1
p−1

and this term tends to 0 since λn+1
λn

→ +∞. Indeed one might invoke
Lebesgue domination theorem. In a simpler way, for n large enough and
k > n, λk/λn is large enough to ensure(

λk
λn

) 1
p
(

1
n

) λk
λn
−1
6

(
1
n

) λk
2λn−1

6
1
2k

since λk > k4λn > 2(k + 1)λn; and this suffices to conclude.
Thus, D(p)

µ (n) → 0 when n → +∞. Since Λ is lacunary we can factor-
ize ipµ as in Remark 4.3. We have ipµ = TwΛ,µ ◦

(
TwΛ
)−1 (recall that TwΛ is

an isomorphism) and TwΛ,µ is compact thanks to Proposition 2.9. Hence
Corollary 5.7 implies that iqµ is compact for any q > p. �
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