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WHITNEY STRATIFICATIONS AND THE
CONTINUITY OF LOCAL LIPSCHITZ–KILLING

CURVATURES

by Nhan NGUYEN & Guillaume VALETTE (*)

Abstract. — In the paper we prove that the local Lipschitz–Killing curvatures
of a definable set in a polynomially bounded o-minimal structure are continuous
along the strata of a Whitney stratification. Moreover, if the stratification is (w)-
regular the local Lipschitz–Killing curvatures are locally Lipschitz in any o-minimal
structure.
Résumé. — On montre que les courbures Lipschitz–Killing locales d’un en-

semble définissable dans une structure o-minimale polynomialement bornée sont
continues le long des strates d’une stratification de Whitney. De plus, si la stra-
tification est (w)-régulière les courbures Lipschitz–Killing locales sont localement
lipschitziennes dans une structure o-minimale arbitraire.

1. Introduction

Given a compact definable set A ⊂ Rn, we can associate a sequence
of curvatures (Λ0(A), . . . ,Λn(A)) called Lipschitz–Killing curvatures. The
definition according to Comte and Merle [6] is as follows:
For 0 6 k 6 n, the k-th Lipschitz–Killing curvature of A is

(1.1) Λk(A) := c(n, k)
∫
P∈Gk

n

∫
x∈P

χ(A ∩ π−1
P (x)) dHk(x) dP,

where χ denotes the Euler characteristic, Hk denotes the k-dimensional
Hausdorff measure, dP denotes the standard probability measure of Gkn,

Keywords: o-minimal structures, definable sets, stratifications, local Lipschitz–Killing
curvatures.
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πP denotes the orthogonal projection from Rn onto P and c(n, k) is a
constant that depends only on n and k.
The study of the Lipschitz–Killing curvatures of subanalytic sets was

initiated by Fu [14] using geometric measure theory and then by Bröker and
Kuppe [2] in the more general setting of definable sets by using stratified
Morse theory. The formula (1.1) is not the original definition in the sense of
Fu and Bröcker–Kuppe but it is the linear kinematic formula (see [2, 14]).

For x ∈ A, Comte and Merle [6] proved that the litmit

(1.2) Λloc
k (A, x) := lim

r→0

1
µkrk

Λk(A ∩Bn

(x,r))

exists for any k = 0, . . . , n. They called the sequence

Λloc
∗ (A, x) := (Λloc

0 (A, x), . . . ,Λloc
n (A, x))

the local Lipschitz–Killing curvatures of A at x.
The notion of localization of Lipschitz–Killing curvatures has also been

introduced independently by Bernig and Bröker in [1]. Their definition
is based on the normalization of the trace of the germ on small spheres
instead of the trace of small balls as used in the article of Comte–Merle.
The two resulting invariants are the same up to a linear combination. It has
been shown in [6] that Λloc

∗ is a linear combination of the finite sequence
σ∗ = (σ1, . . . , σn) of polar invariants. It is proved that along the strata
of a (w)-regular stratification of a subanalytic set the sequence σ∗, and
hence Λloc

∗ , is continuous. Many other interesting results about Lipschitz–
Killing curvatures, real polar varieties and equisingularity can be found
in [4, 6, 10, 11, 12, 13].

Observe that Λloc
dA

(A, x), where dA denotes the dimension of A, is also
called the density of the set A at x. The existence of the density of a suban-
alytic set was first proved by Kurdyka and Raby [19]. Soon after, Trotman
conjectured that the density of a subanalytic set is continuous along the
strata of a Whitney stratification. Comte, in his thesis (1998), proved the
conjecture for Verdier (w)-regular stratifications (see also [4]). And, the sec-
ond author completely resolved the conjecture in [30]. Moreover, he proved
that the density is locally Lipschitz if the stratification is (w)-regular.
In the case of complex analytic sets, it is known by a result of Teissier [27]

that the Whitney condition (b) and the Verdier condition (w) are equiv-
alent. It is also well-known by a result of Draper [7] that the density is
equal to the multiplicity, hence by the continuity, it is constant along the
strata of a Whitney stratification. Notice that the condition (w) is strictly
stronger than the condition (b) in the real case (see [3, 16, 17, 20, 28]).

ANNALES DE L’INSTITUT FOURIER
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In this paper we show that the local Lipschitz–Killing curvatures are
continuous along the strata of a Whitney stratification of a definable set in
a polynomially bounded o-minimal structure. This result is a real version
of Teissier’s theorem [27] which says that (b)-regularity implies the con-
stancy of the multiplicities of polar varieties. The result does not hold for
non-polynomially bounded o-minimal structures. A counterexample can be
found in [29]. We show furthermore that if the stratification is (w)-regular
then Λloc

∗ is locally Lipschitz in any o-minimal structure, thus strengthening
the theorem of Comte–Merle.
The idea of the proof is to improve the technique developed in [30] to

study the invariance of the density. Given a closed definable set A ⊂ Rn
endowed with a Whitney stratification Σ. Assume Y is a stratum of Σ. In
order to prove the continuity of Λloc

∗ (A, · ) along stratum Y , in Theorem 5.1,
we first reduce the problem to proving the continuity of the local Lipschitz–
Killing curvatures of the fibres of a set, denoted A, along a parameter
stratum of a Whitney stratification satisfying the conditions (?) and (??)
in Section 4. On this stratification, we integrate a good lifting of a vector
field to obtain geometric control along the flow (see Lemma 4.2). Using this
control, we show in Proposition 4.3 that for each t in the parameter stratum
one can control the volume of the set of points in l-dimensional linear spaces
P , such that out of these sets, the fibers of the orthogonal projection of the
germs At and A0 onto P have the same Euler characteristic. Then by the
fact that the global Lipschitz–Killing curvatures are the mean values of such
Euler characteristics, with respect to the projections on the vector spaces
P , we obtain the desired continuity. For the Verdier regularity, the control
on the flow is better, and one obtains in the same way locally Lipschitz
continuity.
The following notations will be used throughout the paper besides some

already given in the introduction. For k 6 n positive integers, Bk(x, r),
Bk(x, r), Sk−1(x, r) respectively are the open ball, the closed ball and the
sphere in Rk of radius r centered at x, µk is the volume of the k-dimensional
unit ball; Gkn is the Grassmannian of k-dimensional linear subspaces of Rn;
if A ⊂ Rn, A denotes the closure of A in Rn; ‖·‖ denotes the Euclidean
norm, | · | denotes the absolute value; for two functions f, g : A→ R>0, we
write f . g (or g & f) if there is C > 0 such that f(x) 6 Cg(x) for all
x ∈ A, and write f ∼ g if f . g and g . f .

Acknowledgement. We would like to thank the referee for carefully
reading the manuscript and for giving valuable and helpful conmments.
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We would also like to thank D. Trotman for his interest and suggestion for
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2. Definable stratifications

2.1. O-minimal structures

A structure on the real closed field (R,+, · ) is a family D = (Dn)n∈N
satisfying the following properties:

(1) Dn is a boolean algebra of subsets of Rn,
(2) If A ∈ Dn then R×A ∈ Dn+1 and A× R ∈ Dn+1,
(3) Dn contains the zero sets of all polynomials in n variables,
(4) If A ∈ Dn then π(A) ∈ Dn−1, where π : Rn → Rn−1 is the projec-

tion onto the first n− 1 coordinates.
A structure D is said to be o-minimal if any element of D1 is a finite

union of open intervals and points.
A set belonging to Dn for some n is called a D-sets (or a definable set),

a map whose graph is a D-set is called a D-map (or a definable map).
A structure D is said to be polynomially bounded if for every D-function

f : R → R, there exist a > 0 and N ∈ N such that |f(x)| 6 xN for all
x > a.

The class of semialgebraic sets and the class of globally subanalytic sets
are examples of polynomially bounded o-minimal structures. For more de-
tails about o-minimal structures we refer the reader to [5, 8, 9, 21].

2.2. Stratifications

Let A be a D-subset of Rn. A D-stratification (or a stratification for
simplicity) of A is a partition Σ = {Sα}α of A into finitely many connected
C2 D-submanifolds of Rn, called strata, satisfying the frontier condition: if
Sα, Sβ ∈ Σ, Sα 6= Sβ , Sα ∩ Sβ 6= ∅, then Sβ ⊂ Sα. We call such (Sα, Sβ) a
pair of adjacent strata.
Let us denote by Sk the union of strata of Σ of dimension less or equal to

k. The stratification can be described as a filtration of skeletons as follows

A = SdA ⊇ SdA−1 ⊇ · · · ⊇ Sl 6= ∅

where dA is the dimension of A. Set S̊k := Sk \ Sk−1, so it is the union of
k-dimensional strata of Σ.

ANNALES DE L’INSTITUT FOURIER
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A vector field v defined on A is said to be a stratified vector field with
respect to the stratification Σ if the restriction of v to each stratum of Σ
is a tangent vector field of class C1.
Let vα denote the restriction of v to the stratum Sα of Σ. By integrating

the vector field vα we get a continuous flow θα : Dα → Sα where Dα

is the maximal domain induced by vα. Note that Dα ⊂ Sα × R is an
open neighborhood of Sα × {0} and for each x ∈ A there is a unique
Dα containing x and the intersection Dα ∩ ({x} × R) is an open interval
{x} × (s−x , s+

x ) containing (x, 0). Let θx = θαx : (s−x , s+
x ) → A denote the

integral curve through the point x. Set D :=
⋃
αD

α. We obtain the map

θ : D → A, θ(x, s) := θx(s),

and call it the flow generated by the vector field v. The vector field v is
said to be locally integrable (or integrable) if D contains a neighborhood
of A× {0} on which θ is continuous.
The reader may find in [15, 22, 26] the definitions of tubular neighbor-

hood, vector field controlled by a tubular neighborhood and more details
of the theory of controlled vector fields. By a controlled vector field we
mean a stratified vector field controlled by a tubular neighborhood. It is
well-known that controlled vector fields are integrable, and every Whitney
stratification admits a continuous controlled vector field (see [25, 26]).
Now let us recall the definitions of the regularity conditions which we

shall deal with later on. Let X,Y be C2 D-submanifolds of Rn and let
z ∈ X ∩ Y .

The pair (X,Y ) is said to be (a)-regular at the point z if for any sequence
{xk}k∈N in X converging to z such that the sequence of tangent spaces
{Txk

X}k∈N converges to τ ∈ GdimX
n , then TzY ⊂ τ .

The pair (X,Y ) is said to be (b)-regular at the point z if for any sequence
{xk}k∈N in X and any sequence {yk}k∈N in Y , both converging to z such
that the sequence of tangent spaces {Txk

X}k∈N converges to τ ∈ GdimX
n

and the sequence of vectors xk−yk

‖xk−yk‖ converges to a unit vector v, then
v ∈ τ .

The pair (X,Y ) is said to be (r)-regular at the point z if

lim
X3x→z

δ(TπY (x)Y, TxX)‖x− z‖
‖x− πY (x)‖ = 0,

where πY denotes the locally orthogonal projection onto Y and

δ(M,N) := sup
x∈M,‖x‖=1

‖x− PN (x)‖

TOME 68 (2018), FASCICULE 5
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where M,N are vector subspaces of Rn, PN is the orthogonal projection
from Rn onto N .
The pair (X,Y ) is said to be (w)-regular at the point z if there exist a

neighborhood Uz of z in Rn and a constant C > 0 such that

δ(TyY, TxX) 6 C‖x− y‖, ∀ x ∈ Uz ∩X,∀ y ∈ Uz ∩ Y.

Suppose that (γ) is a regularity condition defined on (X,Y ). The pair
(X,Y ) is called (γ)-regular if (X,Y ) is (γ)-regular at every point z ∈ Y . A
stratification is said to be (γ)-regular if every pair of adjacent strata of the
stratification is (γ)-regular. We call a (b)-regular stratification a Whitney
stratification.

Remark 2.1. — In the o-minimal setting, we have (w) ⇒ (r) ⇒ (b).
If the structure is polynomially bounded and dimY = 1 then (r) ⇔ (b)
(see [23, 29]). It is also known that every definable set admits a (w)-regular
stratification (see [20]).

3. Preliminary results of D-sets

Let A be a D-subset of Rn (consider A as a family of D-subsets of Rn−k
parametrized by Rk). For U ⊂ Rk, the restriction of A to U is the set

A|U := {x = (q, t) ∈ Rn−k × Rk : x ∈ A, t ∈ U}.

Given t ∈ Rk we call the set At := {q ∈ Rn−k : (q, t) ∈ A} the fibre of A
at the point t. If S = {Sα}α is a collection of definable sets in Rn then we
denote St := {Sαt }α.

Let B be a D-set in Rn such that A ⊂ B. Given ε > 0, the neighborhood
of A in B of radius ε is defined as follows

N (A,B, ε) := {x ∈ B : d(x,A) 6 ε},

where d( · , · ) denotes the Euclidean distance in Rn.
For r > 0, we define

ψ(A, r) := HdA

(
A ∩Bn

(0,r)

)
.

where dA := dimA.

Proposition 3.1. — Let A ⊂ Rn × Rm be a D-set. Suppose that A is
a family of D-sets of dimension l in Rn parametrized by Rm. Then, there
exists a constant C > 0 such that for any r > 0 and any t ∈ Rm, we have

(1) ψ(At, r) 6 Crl.

ANNALES DE L’INSTITUT FOURIER
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(2) If there is k > l such that At ⊂ Rk for every t, then for every ε > 0,

ψ(N (A,Rk, ε), r) 6 Crk−1ε.

Proof. — We follow closely the proof of Propositions 3.06 and 3.07 in [30].
(1). — In the case l = n, the set At ∩ Bn

(0,r) is included in the ball
Bn

(0,r) for all t ∈ Rm, the result is obvious (the constant C is the volume
of Bl

(0,1)). If l < n, by removing a D-subset of dimension less than l, we can
consider At as a finitely disjoint union of graphs of Lipschitz mappings after
a possible change of coordinates (the number of these graphs are bounded
by a constant independent of t (see [18, Prop. 1.4])). The volume of such a
graph is equivalent to the volume of its image under the projection onto Rl.
The conclusion then follows from the case l = n. Notice that the constant
C depends only on the set A, it does not depend on the parameter t.
(2). — Condider the D-set

A′ := {(x, t, α) ∈ Rk × Rm+1 : dist(x,At) = α}

Since dimAt < k, A′(t,α) is a D-set of dimension k − 1. By the case (1),
there exists C > 0 independent of the parameter (t, α) such that

ψ(A′(t,α), r) 6 Crk−1.

Then,

ψ(N (At,Rk, ε), r) =
∫
N (At,Rk,ε)∩Bk

(0,r)

dHk

6
∫ ε

0
ψ(A′(t,α), r) dH1(α)

6 Crk−1ε. �

Lemma 3.2. — Let A be a closed D-subset of Rn and x0 be a point in
A. Let Σ be a Whitney stratification of A such that {x0} ∈ Σ. Then, there
exists an r0 > 0 such that for every 0 < r < r′ < r0, there is a strong
deformation retract from A ∩ Bn

(0,r′) onto A ∩ Bn

(0,r) which preserves the
strata of Σ, i.e. there is a continuous map

F : A ∩Bn

(0,r′) × [0, 1]→ A ∩Bn

(0,r′)

such that F (x, 0) = x, F (x, 1) ∈ A ∩ Bn

(0,r), F |x∈A∩Bn

(0,r)
= x and

F |S×[0,1] ⊂ S, ∀ S ∈ Σ.
Moreover,

‖F (x, t)− x‖ 6 2t|r′ − r|.

TOME 68 (2018), FASCICULE 5
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Proof. — Without loss of generality we can assume x0 is the origin.
Let ρ : Rn → R, x 7→ ‖x‖ be the distance function to the origin. Choose

r0 > 0 such that for every 0 < r 6 r0, Sn−1
(0,r) is transverse to every stratum

of Σ. Put X := A ∩ Bn
(0,r0) \ {0}. It easy to see that the collection Σ′ :=

{Bn
(0,r0) ∩ S, S ∈ Σ \ {0}} is a Whitney stratification of X. Moreover, the

restriction of ρ to each stratum of Σ′ is a submersion.
For x ∈ S, S ∈ Σ′, we define v(x) := Px(∇xρ) where ∇xρ is the gradient

of ρ and Px : Rn → TxS is the orthogonal projection from Rn onto the
tangent space at x of S. Since ρ|S is a submersion, v(x) 6= 0 for every
x 6= 0. Since ∇xρ is C∞ on Rn \ {0} and Σ′ is a C2 stratification, v is a
C2 stratified vector field on Σ′. We claim that given an ε > 0, shrinking r0
if necessary, we have ‖v(x) − ∇xρ‖ 6 ε, ∀ x ∈ X. Indeed, if the claim is
not true, by Curve Selection ([8, Chap. 5]), there exist an ε > 0, a stratum
S ∈ Σ′ and a C1 D-curve γ : (0, 1) → S, limt→0 γ(t) = 0 such that for
every t ∈ (0, 1),

‖v(γ(t))−∇γ(t)ρ‖ > ε.

Since ∇xρ = x
‖x‖ and γ is a C1 curve through the origin, the angle between

∇γ(t)ρ and the tangent line at γ(t) of γ, denoted ̂(∇γ(t)ρ, Tγ(t)γ), tends to
0 when t tends to 0. This implies that the angle ̂(∇γ(t)ρ, Tγ(t)S), and hence
‖v(γ(t))−∇γ(t)ρ‖, tends to 0 when t tends to 0, which is a contradiction.
Now we consider Σ′ as a filtration of skeletons X = SdX ⊇ SdX−1 ⊇

· · · ⊇ Sl, where dX is the dimension of X. Notice that in general the vector
field v is not continuous though its restriction to each stratum of Σ′ is
continuous. First, we construct a continuous controlled vector field w on X
by induction on skeletons such that

‖w(x)−∇xρ‖ 6 cε,

where c stands for some constant.
Fix a tubular neighborhood for the stratification Σ′. On the smallest

skeleton Sl we take µ := v which is a C1 vector field satisfying ‖v(x) −
∇xρ‖ 6 ε. Write SdX = S̊dX ∪ SdX−1 where S̊dX is the union of the
strata of dimension dX of the stratification. By the inductive hypothesis,
µ is a continuous stratified vector field on SdX−1 controlled by the given
tubular neighborhood and satisfying ‖µ(x) − ∇xρ‖ 6 cε. It was proved
in [25] (see also [26]) that µ can be extended to a continuous stratified
vector field on SdX controlled by the tubular neighborhood. We use the
same notation µ for this extension. Since µ and ∇xρ both are continuous
on SdX , for each point y ∈ SdX−1 we can choose a neighborhood Uy in
Rn such that for any x ∈ SdX ∩ Uy, we have ‖µ(x) − µ(y)‖ 6 ε and

ANNALES DE L’INSTITUT FOURIER
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‖∇xρ − ∇yρ‖ 6 ε. The union
⋃
y∈SdX−1 Uy is an open neighborhood of

SdX−1 in Rn. Put T :=
⋃
y∈SdX−1(Uy ∩ S̊dX ). Clearly, T is an open subset

of S̊dX and T ⊃ SdX−1. We call such a set an open neighborhood of SdX−1

in S̊dX . Let T ′ be another open neighborhood of SdX−1 in S̊dX such that
the closure of T ′ in S̊dX is contained in T . Let {g1, g2} be a C2 partition
of unity subordinate to {S̊dX \ T ′, T} and define

w(x) :=
{
µ(x), x ∈ SdX−1

g1(x)v(x) + g2(x)µ(x), x ∈ S̊dX .

It is clear that w is a continuous controlled vector field (shrinking the given
tubular neighborhood a little bit if necessary). Thus, it is integrable.
Now we show that ‖w(x) − ∇xρ‖ 6 cε. It suffices to check that the

formula holds for every x ∈ T since, outside T , w(x) = µ(x) if x ∈ SdX−1

and w(x) = v(x) if x ∈ S̊dX \ T , and then the formula holds obviously.
Let x ∈ T . By the construction of T , there is y ∈ SdX−1 such that

‖µ(x)− µ(y)‖ 6 ε and ‖∇xρ−∇yρ‖ 6 ε. Hence,

‖w(x)−∇xρ‖ = ‖g1(v(x)−∇xρ) + g2(µ(x)−∇xρ)‖ 6 ε+ ‖µ(x)−∇xρ‖
6 ε+ ‖µ(x)− µ(y)‖+ ‖µ(y)−∇yρ‖+ ‖∇yρ−∇xρ‖
6 ε+ ε+ cε+ ε = (3 + c)ε.

Since w and ∇xρ are continuous and ‖w(x) −∇xρ‖ 6 cε and ‖∇xρ‖ = 1,
we have

ξ(x) := −w(x)
〈∇xρ, w(x)〉

is well-defined on X. Moreover, we can choose ε small enough such that
‖ξ(x)‖ < 2.

Because w is integrable, so is ξ. Write Φ(x, t) as the flow generated by
the vector field ξ and denote by dρ the tangent map of ρ. Notice that
dρ(ξ(x)) = −1. Therefore, if x ∈ X ∩Bn

(0,r) then Φ(x, s) ∈ X ∩Bn

(0,r−s) for
all r < r0. The map defined as follows

F (x, t) :=

Φ(x, t(‖x‖ − r)), if x ∈ A ∩
(

Bn

(0,r′) \Bn

(0,r)

)
x, if x ∈ A ∩Bn

(0,r)

is the desired deformation retract. �

Remark 3.3. — As in the proof, for any constant C > 1, we can choose
ε small enough such that ‖ξ‖ < C.

TOME 68 (2018), FASCICULE 5
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4. Lipschitz–Killing curvatures on fibres

Let A ⊂ Rn be a closed D-set. For 0 6 k 6 n and 0 6 l 6 n − k, we
denote

E :=
{

(z, t, x, P, r) ∈ Rn−k × Rk × Rn−k ×Gln−k × R :

x ∈ P, z ∈ π−1
P (x) ∩At ∩Bn−k

(0,r)

}
,

where πP denotes the orthogonal projection from Rn−k to P .
It is obvious that E is a D-set. Consider E as a family of D-sets para-

metrized in the variable (t, x, P, r). Let p be the orthogonal projection from
Rn−k × Rk × Rn−k × Gln−k × R onto the parameter space. By Hardt’s
triviality theorem ([8, Chap. 9]), there is a finite definable partition F of
the parameter space such that (p,E) is definably trivial over elements of
F. This implies that for each σi ∈ F and for (t, x, P, r) and (t′, x′, P ′, r′)
in σi, Et,x,P,r and Et′,x′,P ′,r′ are homeomorphic. Therefore, χ(Et,x,P,r) =
χ(π−1

P (x)∩At∩Bn−k
(0,r)) is a finite constant on each σi ∈ F. Since F has finite

many elements, there exists N ∈ N such that |χ(π−1
P (x)∩At∩Bn−k

(0,r))| 6 N
for every (t, x, P, r).
For P ∈ Gln−k, we decompose P into D-sets as follows

(4.1) KP
l,j

(
At ∩Bn−k

(0,r)

)
:=
{
x ∈ P : χ

(
π−1
P (x) ∩At ∩Bn−k

(0,r)

)
= j
}
,

where j ∈ {−N, . . . , N}. The formula (1.1) then becomes

(4.2) Λl
(
At∩Bn−k

(0,r)

)
= c(n−k, l)

N∑
j=−N

j

∫
P∈Gl

n−k

Hl
(
KP
l,j

(
At∩Bn−k

(0,r)

))
dP.

Throughout this section, we assume that A is a D-set, Σ is a stratification
of A, Y is a stratum of Σ. We also suppose that

(?) 0 ∈ Y ⊂ {0}n−k × Rk for some k 6 n,
(??) A = A|Y (consider Rk as the parameter set).
By abuse of notation we identity Rk with {0}n−k × Rk. We denote by

π : Rn → Rk the orthogonal projection onto the last k coordinates.

Lemma 4.1. — Let V be a C2 submanifold of Y . If Σ is a Whitney
(resp. (w)-regular) stratification, then

Σ′ := {X|V }X∈Σ

is a Whitney (resp. (w)-regular) stratification of A|V in a neighborhood of
the origin.
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Proof. — We may write Σ = {Y,X1, . . . , Xm} with Y ⊂ Xi \ Xi, i =
1, . . . ,m.

Case 1. — Assume Y = Rl ⊂ Rk.
Since A = A|Y , we have A|V = A ∩ π−1(Rk−l ⊕ V ). Similarly, for i =

1, . . . ,m, Xi|V = Xi ∩ π−1(Rk−l ⊕ V ).
Notice that Y is transverse to π−1(Rk−l⊕ V ). Since Σ satisfies Whitney

(b) condition, Xi is transverse to π−1(Rk−l ⊕ V ) and their intersection
Xi ∩ π−1(Rk−l ⊕ V ) is nonempty in a neighborhood of V . This shows that
Σ′ is a Whitney (resp. (w)-regular) stratification (see [24]).

General case. — By a linear change of coordinates, we may assume that
T0Y = Rl where l = dimY . In a neighborhood of the origin we can consider
Y as the graph of a C2 map ϕ : Rl → Rk−l with Dϕ(0) = 0.
Now we write (x1, x2, x3) ∈ Rn−k × Rk−l × Rl and define a map ψ :

Rn → Rn by ψ(x1, x2, x3) := (x1, x2 − ϕ(x3), x3). It is obvious that ψ is
a C2 diffeomorphism at the origin and ψ(Xi|V ) = ψ(Xi)|ψ(V ). It is known
that the conditions (b) and (w) are invariant under C2 diffeomorphisms.
Thus, to prove that Σ′ is a Whitney (resp. (w)) stratification it is enough
to show that

ψ(Σ′) = {ψ(V ), ψ(X1)|ψ(V ), . . . , ψ(Xm)|ψ(V )}

is a Whitney (resp. (w)-regular) stratification.
Since ψ(Σ) = {ψ(Y ) = Rl, ψ(X1), . . . , ψ(Xm)} is a Whitney (resp. (w)-

regular) stratification and ψ(Σ′) is the restriction of ψ(Σ) onto the C2

manifold ψ(V ), it must be a Whitney (resp. (w)-regular) stratification by
the case 1. �

4.1. Whitney condition (b)

In this part we assume that Σ is a Whitney stratification and D is a
polynomially bounded o-minimal structure.

Lemma 4.2. — Let γ(−ε, ε) be a C2 D-curve in Y such that γ(0) = 0.
Then, there exist ν > 0, 0 6 a < 1, c > 0, r∗ > 0 and a germ of homeo-
morphism

h : A|γ([0,ν]) → A0 × γ([0, ν]), h(q, t) = (ht(q), t),
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such that ∀ t ∈ γ([0, ν]), the map ht and h−1
t are well-defined inside Bn−k

(0,r∗),
and

‖ht(q)− q‖ 6 c‖t‖1−ar

‖h−1
t (q)− q‖ 6 c‖t‖1−ar

∀ r < r∗, ∀ q ∈ Bn−k
(0,r).

Proof. — We may write Σ = {Y,X1, . . . , Xm} with Y ⊂ Xi \ Xi,
∀ i ∈ {1, . . . ,m}. Set Y ′ := γ(−ε, ε). It follows from Lemma 4.1 that
in a neighborhood of the origin

Σ′ := {Y ′, X1|Y ′ , . . . , Xm|Y ′}

is a Whitney stratification of A|Y ′ .
Since D is polynomially bounded and dimY ′ = 1, Σ′ is (r)-regular along

Y ′ (see [24, 29]). As proven in [24, Prop. 2.6], there are an open neighbor-
hood Rn ⊃ U of the origin and an 0 6 a < 1 such that

(4.3) δ(Tπ(x)Y
′, Tx(Xi|Y ′))‖π(x)‖a . ‖x− π(x)‖,

for every x ∈ Xi|Y ′ ∩ U . Recall that Y ⊂ Rk and π is the orthogonal
projection from Rn onto Rk.

For a point y = γ(s) ∈ Y ′, we define µ(y) := γ′(s)/‖γ′(s)‖. For x ∈
U ∩ Xi|Y ′ , set w(x) := Px (µ(π(x))) ∈ Tx(Xi|Y ′), where Px denotes the
orthogonal projection from Rn onto the tangent space Tx(Xi|Y ′). Notice
that w(x) = µ(x) for every x ∈ Y ′. It follows from (4.3) that

(4.4) ‖w(x)− w(π(x))‖‖π(x)‖a . ‖x− π(x)‖.

Since Σ′ satisfies the Whitney condition (a), we can shrink U to make the
angle between Tπ(x)Y

′ and Tx(Xi|Y ′) arbitrarily small for all x ∈ U∩Xi|Y ′ .
This implies that for every x ∈ U ∩Xi|Y ′ , w(x) and π(w(x)) are bounded
below away from 0. Thus, the vector field

v(x) := w(x)
‖π(w(x))‖ ,

is well-defined, satisfying (4.4) and

(4.5) π(v(x)) = v(π(x)) = µ(π(x)).

It has been shown in the proof of Theorem 3.1 of [24] that the proper-
ties (4.4) and (4.5) keep the integral curves generated by v originating at
points outside Y ′ from touching Y ′. However, these curves might touch
other strata of the stratification Σ′. In other words, the vector field v is not
integrable in general.
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We are going to deform v slightly to obtain an integrable vector field such
that properties (4.4) and (4.5) still hold. The process is inductive “skeleton
by skeleton”.
Put Σ′′ := Σ′\{Y ′}, which is a stratification of A|Y ′\Y ′, and fix a tubular

neighborhood for this stratification. Write Σ′′ as a filtration of skeletons

A|Y ′ \ Y ′ = Sd ⊇ Sd−1 ⊇ · · · ⊇ Sl.

For Sl we take v′ := v. We assume inductively that v′ is a continuous
controlled vector field on Sd−1 satisfying (4.4) and (4.5). Extend v′ to a
continuous controlled vector field on Sd (this is possible due to [25, 26])
and use the same notation v′ for this extension. Since this vector field is
controlled, it is integrable. Set

v′′(x) := v′(x)
‖π(v′(x)‖ .

Because v′ is continuous and integrable so is v′′ even though it might not
be controlled. For each point y ∈ Sd−1 we can easily choose a neighborhood
Uy in Rn such that for every x in Uy ∩ S̊d,

‖v′′(x)− v′′(π(x))‖‖π(x)‖a . ‖y − π(y)‖

and
‖y − π(y)‖ ∼ ‖x− π(x)‖.

The above conditions implies that

‖v′′(x)− v′′(π(x))‖‖π(x)‖a . ‖x− π(x)‖, ∀ x ∈ Uy ∩ S̊d.

Set T :=
⋃
y Uy ∩ S̊d. The set T is an open subset of S̊d and its closure

contains Sd−1, we call such a set an open neighborhood of Sd−1 in S̊d.
Remark that the restriction of v′′ to T satisfies properties (4.4) and (4.5).
Now, on S̊d we shall glue vector field v′′ and v together by using a

partition of unity. For simplicity, we assume that S̊d has one connected
component. Let T ′ be another open neighborhood of Sd−1 in S̊d such that
its closure in S̊d is contained in T . Let {g1, g2} be a C2 partition of unity
subordinate to {S̊d \ T ′, T} and define

ξ(x) :=
{
v′′(x), x ∈ Sd−1

g1(x)v(x) + g2(x)v′′(x), x ∈ S̊d.

Since v and v′′ both satisfy properties (4.4) and (4.5), so does ξ. Notice that
ξ is a continuous stratified vector field and it is also integrable since it is
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formed by gluing smoothly integrable stratified vector fields. We then put

ϑ(x) :=
{
ξ(x), x ∈ A|Y ′ \ Y ′

v(x), x ∈ Y ′.

Next, we show that integral curves generated by ϑ through points outside
Y ′ do not touch Y ′ by using the same arguments as in [24]. Since ξ is
integrable, these curves also do not touch other strata, thus ϑ is integrable,
and hence the flow generated by ϑ gives a homeomorphism between fibres
of A along Y ′.
Let us denote by Φ(x, s) := Φx(s) the flow generated by the vector field

ϑ. Write

Φx(s) = (Φ1
x(s),Φ2

x(s)) ∈ Rn−k × Rk.

By shrinking U if necessary, we can reparametrize γ by the distance to
the origin, i.e. ‖γ(s)‖ = s for every s. Choose ν > 0 such that γ([0, ν]) ⊂
U . Since U is open and γ([0, ν]) is closed, there exists R > 0 such that
N (γ([0, ν]), A|Y ′ , R) ⊂ U .
Let x := (q, t) ∈ N (γ([0, ν]), A|Y ′ , R). For 0 < s 6 ν, set f(s) :=

‖Φx(s)− π(Φx(s))‖. We have

f ′(s) = 〈Φ
′
x(s)− π(Φ′x(s)),Φx(s)− π(Φx(s))〉

‖Φx(s)− π(Φx(s))‖ 6 ‖Φ′x(s)− π(Φ′x(s))‖.

Here

‖Φ′x(s)− π(Φ′x(s))‖ = ‖ϑ(Φx(s))− ϑ(π(Φx(s)))‖.

Combining with (4.4), there is a constant C > 0 such that

|f ′/f | 6 C‖π(Φx(s))‖−a.

Since π(Φx(s)) = Φπ(x)(s) and ‖Φπ(x)(s)‖ = s, |f ′/f | 6 Cs−a. Integrating
with respect to s over [0, s] (note that f(0) = ‖q‖) we get

(4.6) exp
(
−Cs(1−a)

1− a

)
‖q‖ 6 f(s) 6 exp

(
Cs1−a

1− a

)
‖q‖.

The left inequality of (4.6) shows that the integral curve through x does
not touch γ.
Now we construct the desired homeomorphism.
Set C ′ := exp

(
Cν1−a

1−a

)
. Since s 6 ν, and by the right inequality of (4.6),

f(s) 6 C ′‖q‖.
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Then,

‖Φ1
x(s)− q‖ =

∥∥∥∥∫ s

0

d
du (Φx(u)− π(Φx(u))) du

∥∥∥∥
=
∥∥∥∥∫ s

0
(Φ′x(u)− π(Φ′x(u))) du

∥∥∥∥
=
∥∥∥∥∫ s

0
(ϑ(Φx(u))− ϑ(π(Φx(u)))) du

∥∥∥∥
6
∫ s

0

‖Φx(u)− π(Φx(u))‖
‖π(Φx(u))‖a du =

∫ s

0
f(u)u−a du

6 C ′‖q‖
∫ s

0
u−a du = C ′

1− a‖q‖s
1−a = C ′′‖q‖s1−a,(4.7)

where C ′′ = C′

1−a . This implies that |‖Φ1
x(s)‖−‖q‖| < C ′′‖q‖s1−a, and then

‖q‖ < 1
1− C ′′s1−a ‖Φ

1
x(s)‖.

By (4.7),

(4.8) ‖Φ1
x(s)− q‖ < C ′′

1− C ′′s1−a ‖Φ
1
x(s)‖s1−a.

Again shrinking U , we assume that C ′′ν1−a < 1. Set ht(q) = (ht(q), t) :=
(Φ1

(q,t)(−‖t‖), t), c := max
{
C ′′, C′′

1−C′′ν1−a

}
, r∗ := R

1+cν1−a .
It is easy to check that for every x = (q, t) ∈ Aγ([0,ν]) such that ‖q‖ 6 r∗,

‖ht(q)‖ and ‖h−1
t (q)‖ do not exceed R, i.e. their images are inside U .

This shows that the map ht and h−1
t are well-defined. Moreover, by (4.7)

and (4.8) we can conclude that the map h is the desired homeo-
morphism. �

Proposition 4.3. — Fix 0 6 l 6 n − k. There exists C > 0 such that
for every ε > 0, there exists a neighborhood Uε of 0 in Y such that ∀ t ∈ Uε,
∃ rt,ε > 0 such that ∀ P ∈ Gln−k and for every 0 < r < rt,ε, there is a
D-subset ∆(t, P, r, ε) of P with

ψ (∆(t, P, r, ε), r) 6 Cεrl

such that for any x ∈ (P ∩Bn−k
(0,r)) \∆(t, P, r, ε),

χ
(
π−1
P (x) ∩At ∩Bn−k

(0,r)

)
= χ

(
π−1
P (x) ∩A0 ∩Bn−k

(0,r)

)
,

where πP is the orthogonal projection form Rn−k onto P .

Proof. — For r > 0 and t ∈ Y we denote by Art the collection{
St ∩Bn−k

(0,r), St ∩ Sn−k−1
(0,r)

}
S∈Σ

.
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For each stratum S ∈ Σ and for each σ ∈ {0, 1, 2, 3} we define

∇0,σ
S,Int :=

{
(z, t, x, P, r) ∈ Rn−k × Y × Rn−k ×Gln−k × (0, 1) :

x ∈ P, z ∈ π−1
P (x) ∩A0 ∩Bn−k

(0,r+σεr)

}
,

∇1,σ
S,Int :=

{
(z, t, x, P, r) ∈ Rn−k × Y × Rn−k ×Gln−k × (0, 1) :

x ∈ P, z ∈ π−1
P (x) ∩At ∩Bn−k

(0,r+σεr)

}
,

∇0,σ
S,bd :=

{
(z, t, x, P, r) ∈ Rn−k × Y × Rn−k ×Gln−k × (0, 1) :

x ∈ P, z ∈ π−1
P (x) ∩A0 ∩ Sn−k−1

(0,r+σεr)

}
,

∇1,σ
S,bd :=

{
(z, t, x, P, r) ∈ Rn−k × Y × Rn−k ×Gln−k × (0, 1) :

x ∈ P, z ∈ π−1
P (x) ∩At ∩ Sn−k−1

(0,r+σεr)

}
.

Observe that B :=
{
∇0,σ
S,Int,∇

1,σ
S,Int,∇

0,σ
S,bd,∇

1,σ
S,bd

}σ=0,...,3
S∈Σ is a finite collec-

tion of D-sets. Consider these sets as families of subsets of Rn−k parame-
trized in the variable (t, x, P, r). Let p denote the orthogonal projection
from Rn−k×Y ×Rn−k×Gln−k× (0, 1) to the parameter space. By Hardt’s
triviality theorem ([8, Chap. 9]), there exists a finite definable partitionD of
the parameter space such that (p,B) is definably trivial over each element
of D. For (t, P, r) we put C(t, P, r) := P ∩ Dt,P,r, the set of intersections
between P and elements of Dt,P,r. Then C(t, P, r) is a partition of P and
(πP , {Ar+σε0 ,Ar+σεt }σ=0,...,3) is definably trivial over each its element. This
trivialization is induced from the trivialization over D.

Denote by ∆1
r,P,t, . . . ,∆ν

r,P,t (ν depends on (t, P, r)) the elements of di-
mension l of C(t, P, r) and by ∂∆1

t,P,r, . . . , ∂∆ν
t,P,r their corresponding topo-

logical boundaries. We may assume that ε is sufficiently small. Set

∆(t, P, r, ε) := N (∪νi=1∂∆i
t,P,r, P, 18εr).

Claim 1. — ψ(∆(t, P, r, ε) 6 Cεrl for some C > 0 independent of (t, P, r, ε).

Let us give a proof for the claim 1. Consider the set

H := {(t, x, P, r) ∈ Y × Rn−k ×Gln−k × (0, 1) : x ∈ P,dimDt,P,r(x) = l}

where Dt,P,r(x) denotes the element of Dt,P,r containing x. It is clear that
H is a D-set and Ht,P,r is the union of l-dimensional elements of C(t, P, r).
Set

H ′ := {(t, y, P, r) ∈ Y × Rn−k ×Gln−k × (0, 1) : y ∈ ∂Ht,P,r}.
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Obviously, dimH ′t,P,r < l and N (H ′t,P,r, P, 18εr) = ∆(t, P, r, ε). Applying
Proposition 3.1(2) to the family H ′ (identify P with Rl) we get a constant
C independent of (t, P, r, ε) such that

ψ(N (H ′t,P,r, P, 18εr), r) 6 Cεrl.

This ends the proof of the claim.
Since Σ is a Whitney stratification, for each t ∈ Y there is a r̄t > 0 such

that for all 0 < r 6 r̄t, Ar0 and Art are Whitney stratifications of A0∩Bn−k
(0,r)

and At ∩Bn−k
(0,r) respectively.

It has been shown in the proof of Lemma 3.2 that for each t ∈ Y there is
an integrable stratified vector field ξt on At such that dρ(ξt) = −1 where
ρ is the distance function to the origin, and for 0 < r < r′ < r̄t the flow of
this vector field, denoted Φt, provides a deformation retract

F r,r
′

t : At ∩Bn−k
(0,r′) × [0, 1]→ At ∩Bn−k

(0,r′)

from At ∩Bn−k
(0,r′) onto At ∩Bn−k

(0,r) satisfying

‖F r,r
′

t (q, s)− F r,r
′

t (q, 0)‖ 6 2s|r′ − r|.

For P ∈ Gln−k, x ∈ P and λ > 0 we define

Art (x, λ) := At ∩Bn−k
(0,r) ∩ π−1

P (Bn−k
(x,λ) ∩ P ).

Claim 2. — It is possible to choose r̄t small enough such that for any
r < r̄t and any x ∈

(
Bn−k

(0,r) ∩ P
)
\∆(t, P, r, ε), the homomorphisms of the

homology groups induced by the following inclusion maps
(I) U1 := π−1

P (x) ∩A0 ∩Bn−k
(0,r) ↪→ U2 := Ar+2εr

0 (x, 4εr)
(II) W1 := Ar+εrt (x, εr) ↪→W2 = Ar+3εr

t (x, 6εr)
(III) W3 := π−1

P (x) ∩At ∩Bn−k
(0,r) ↪→W2 := Ar+3εr

t (x, 6εr)
are isomorphisms.

We shall prove (I). The proofs for (II) and (III) are similar.
Let t be fixed. Take r̄t sufficiently small such that the deformation re-

tracts F r,r
′

0 and F r,r
′

t are well-defined for every r < r′ < r̄t + 3εr.
It follows from the definition of ∆(t, P, r, ε) that for x ∈ Bn−k

(0,r) ∩ P \
∆(t, P, r, ε), there is a j ∈ {1, . . . , ν} such that x ∈ ∆j

t,P,r. Moreover,
Bn−k

(x,18εr) ∩ P ⊂ ∆j
t,P,r. Since (πP , {Ar+σεr0 ,Ar+σεrt }σ=0,...,3) is definably

trivial over ∆j
t,P,r, for 0 6 λ < λ′ 6 18εr and σ = 0, . . . , 3, there are two

deformation retracts, the first denoted Ψr+σεr
0 (x, λ, λ′), from Ar+σεr0 (x, λ′)

onto Ar+σεr0 (x, λ) that preserves the strata of Ar+σεr0 ; the second denoted
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Ψr+σεr
t (x, λ, λ′), from Ar+σεrt (x, λ′) onto Ar+σεrt (x, λ) that preserves the

strata of Ar+σεrt .
Let V1 := Ar0(x, 8εr) and V2 := Ar+2εr

t (x, 12εr). Consider the flow Φ0 on
A0. Put

U ′ := U1 ∪
{

Φ0(y,−2εr), y ∈ U1 ∩ Sn−k−1
(0,r)

}
⊂ A0 ∩Bn−k

(0,r+2εr)

and

V ′1 := V1 ∪
{

Φ0(y,−2εr), y ∈ V1 ∩ Sn−k−1
(0,r)

}
⊂ A0 ∩Bn−k

(0,r+2εr).

Because ‖ξ0‖ 6 2,
U ′1 ⊂ U2 ⊂ V ′1 ⊂ V2.

Consider the following commutative diagram of homology maps induced
by the inclusion maps

(4.9)
H∗(U ′1) H∗(U2)

H∗(V ′1) H∗(V2)
α∗

β∗

According to the construction, U1 and V1 are retracts of U ′1 and V ′1 re-
spectively given by the deformation retract F r,r+2εr

0 . Moreover, U1 is a
retract of V1 given by the deformation retract Ψr

0(x, 0, 8εr). Therefore, the
homology maps induced by the inclusion maps

H∗(U1) H∗(U ′1)

H∗(V1) H∗(V ′1)

α∗

are isomorphisms. We also have that U2 is a retract of V2 given by the
deformation retract Ψr+2εr

0 (x, 4εr, 12εr). Thus β∗ is an isomorphism. Since
α∗ and β∗ are isomophisms, so are the homomorphisms in the diagram (4.9).
This ends the proof of (I).
Now we are ready to prove the proposition.

Case 1: dimY = 1. — First, we choose a neighborhood U of 0 sufficiently
small so that Lemma 4.2 holds, i.e. there are 0 6 a < 1, c > 0, r∗ > 0 (all are
independent of t) such that for every t ∈ U there exists a homeomorphism
ht : (At, 0)→ (A0, 0) such that

‖ht(q)− q‖ 6 c‖t‖1−ar

and
‖h−1

t (q)− q‖ 6 c‖t‖1−ar
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where ‖q‖ 6 r < r∗.
We then choose Uε ⊂ U small enough such that c‖t‖1−a < ε for all

t ∈ Uε. For t ∈ Uε, we have

U1 ⊂ ht(W1) ⊂ U2 ⊂ ht(W2).

Let us show that U1 ⊂ ht(W1) (or h−1
t (U1) ⊂ W1). The other cases can

be done similarly. Let q ∈ U1 and q′ := h−1
t (q). Since πP (q) = x and

‖q − q′‖ 6 εr, πP (q′) ∈ Bn−k
(x,εr) ∩ P . This implies q′ ∈W1.

Consider the following commutative diagram induced by the inclusion
maps

(4.10)
H∗(U1) H∗(ht(W1))

H∗(U2) H∗(ht(W2))

ι1∗

u∗
ι∗

w∗

ι2∗

Take rt,ε := min{r̄t, r∗}. Combining the Claim 2 ((I) and (II)) and the fact
that ht is a homeomorphism, we have that for every r < rt,ε, the maps u∗
and w∗ are isomorphisms. Since the diagram (4.10) commutes, ι∗, ι1∗, ι2∗
are also isomorphisms. Together with (III) in the Claim 2, we get

H∗(U1) ∼= H∗(ht(W1)) ∼= H∗(ht(W2)) ∼= H∗(W2) ∼= H∗(W3).

Case 2: dimY > 1. — We define

Ω :=
{
t ∈ Y : ∀ ε > 0,∃ b > 0,∀ r ∈ (0, b),∀ P ∈ Gln−k,

∀ x ∈ Bn−k
(0,r) ∩ P \∆(t, P, r, ε),

χ
(
π−1
P (x) ∩At ∩Bn−k

(0,r)

)
= χ

(
π−1
P (x) ∩A0 ∩Bn−k

(0,r)

)}
.

Since χ(x, t, P, r, ε) := χ(π−1
P (x)∩At∩Bn−k

(0,r)) is a D-function, Ω is a D-set.
It suffices to prove that the set Ω contains a neighborhood of 0. This fact
follows directly from Curve Selection ([8, Chap. 6]) and the Case 1. �

Proposition 4.4. — For every 0 6 l 6 n− k, the function Λloc
l (At, 0)

is continuous in t along Y .

Proof. — It suffices to prove that Λloc
l (At, 0) continuous at t = 0. By

Proposition 4.3, with 0 6 l 6 n fixed, there is C > 0 such that for every
ε > 0, there is a neighborhood Uε of the origin in Y such that for any
t ∈ Uε, there is rt,ε > 0 such that for 0 < r < rt,ε and P ∈ Gln−k, there
exists a D-subset ∆(t, P, r, ε) of P with

ψ(∆(t, P, r, ε), r) 6 Cεrl
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such that for any x ∈ (Bn−k
(0,r) ∩ P ) \∆(t, P, r, ε):

χ
(
π−1
P (x) ∩At ∩Bn−k

(0,r)

)
= χ

(
π−1
P (x) ∩A0 ∩Bn−k

(0,r)

)
.

It follows from (4.1) that there is an N ∈ N independent of (t, P, r, ε) such
that for any j ∈ [−N,N ],

ψ
(
KP
l,j

(
At ∩Bn−k

(0,r)

)
\KP

l,j

(
A0 ∩Bn−k

(0,r)

)
, r
)
6 Cεrl

and
ψ
(
KP
l,j

(
A0 ∩Bn−k

(0,r)

)
\KP

l,j

(
At ∩Bn−k

(0,r)

)
, r
)
6 Cεrl

Thus, we get∣∣∣ψ(KP
l,j(At) ∩Bn−k

(0,r), r
)
− ψ

(
KP
l,j(A0) ∩Bn−k

(0,r), r
)∣∣∣ 6 Cεrl.

By formula (4.2),∣∣∣Λl(At ∩Bn−k
(0,r)

)
− Λl

(
A0 ∩Bn−k

(0,r)

)∣∣∣ 6 C ′εrl.
where C ′ is a constant that depends only on (n, l, k, C).

Dividing by µlrl and taking the limit when r tends to 0, we obtain

|Λloc
l (At, 0)− Λloc

l (A0, 0)| 6 C ′

µl
ε.

The theorem is proved. �

4.2. Kuo–Verdier condition (w)

In this part we assume that Σ is a (w)-regular stratification and D is an
arbitrary o-minimal structure. We shall establish results of the same types
as Lemma 4.2 and Proposition 4.3.

Lemma 4.5. — There are a neighborhood U of 0 in Y and constants c >
0, r∗ > 0 such that for every t, t′ in U , there is a germ of homeomorphism

ht,t′ : At → At′

such that the maps ht,t′ and h−1
t,t′ are well-defined inside Bn−k

(0,r∗), and

‖ht,t′(q)− q‖ 6 c‖t− t′‖r

‖h−1
t,t′(q)− q‖ 6 c‖t− t

′‖r

∀ r < r∗,∀ q ∈ Bn−k
(0,r).
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Proof. — First, since Σ is a (w)-regular stratification, there is an open
neighborhood V of 0 in Rn and a constant C > 0 such that

δ(Tπ(x)Y, TxXi) 6 C‖x− π(x)‖.

Take U to be an open neighborhood of 0 in Y such that U ⊂ V ∩Y . Since Y
is a C2 manifold, shrinking U if necessary, we may assume that for any t, t′
in U , there is a C2 D-curve γt,t′ : [0, νt,t′ ] → U in U joining t and t′ such
that γt,t′(0) = t′ and ‖γt,t′(s)− t′‖ ∼ s,∀ s ∈ [0, νt,t′ ]. The same arguments
as in the proof of Lemma 4.2 applied to γt,t′ (with the constant a = 0 and
consider t′ as the origin), there are constants c > 0, r∗ > 0 (independent
of (t, t′)), a germ of homeomorphism

h : Aγt,t′ → At′ × γt,t′ , h(q, u) = (hu(q), u),

such that hu and h−1
u are well-defined on Bn−k

(0,r∗), and moreover

‖hu(q)− q‖ 6 c‖u− t′‖r

‖h−1
u (q)− q‖ 6 c‖u− t′‖r,

∀ r < r∗,∀ q ∈ Bn−k
(0,r). Then, the map ht,t′ := ht : At → At′ is the desired

homeomorphism. �

Proposition 4.6. — Fix 0 6 l 6 n − k. There exist a constant C > 0
and a neighborhood U of 0 in Y such that for every t and t′ in U , there
exists rt,t′ > 0 such that for every P ∈ Gln−k and 0 < r 6 rt,t′ , there is a
D-subset ∆(P, r, t, t′) of P with

ψ ((∆(P, r, t, t′)) , r) 6 C‖t− t′‖rl

such that for any x ∈ (Bn−k
(0,r) ∩ P ) \∆(P, r, t, t′),

χ
(
π−1
P (x) ∩At ∩Bn−k

(0,r)

)
= χ

(
π−1
P (x) ∩At′ ∩Bn−k

(0,r)

)
.

Proof. — Choose a neighborhood U of 0 in Y sufficiently small so that
Lemma 4.5 holds, i.e. there exist c > 0, r∗ > 0 such that for every t and t′
in U , there is a germ of homeomorphism ht,t′ : At → At′ such that

‖ht,t′(q)− q‖ 6 c‖t− t′‖r, ∀ r < r∗,∀ q ∈ At ∩Bn−k
(0,r).

Applying the same arguments as in the proof of case 1 in Proposition 4.3
(just replace ε with ‖t − t′‖ and consider t′ as the origin) we obtain the
desired result. �
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Using Proposition 4.6 and arguments as in proof of Proposition 4.4
we get:

Proposition 4.7. — For every 0 6 l 6 n− k, the function Λloc
l (At, 0)

is locally Lipschitz in t along Y .

5. Continuity of local Lipschitz–Killing curvatures

Theorem 5.1 (Main Theorem). — Let A ⊂ Rn be a closed D-set. Let
Σ be a stratification of A. We have

(1) If D is polynomially bounded o-minimal structure and Σ is a
Whitney stratification, then Λloc

∗ (A, · ) is continuous along the strata
of Σ.

(2) If Σ is a (w)-regular stratification, then Λloc
∗ (A, · ) is locally Lipschitz

along the strata of Σ.

Proof. — Fix l ∈ {0, . . . , n}. Assume that Y is a stratum of Σ. Define

ϕ : Rn × Rn → Rn × Rn, (x, t) 7→ ϕ(x, t) := (x− t, t).

Set A := ϕ(A × Y ) and consider A as a family of D-subsets of Rn para-
metrized by Rn. We can consider the germ of A at t ∈ Y as the germ of At
at 0. This implies that

Λloc
l (A, t) = Λloc

l (At, 0), ∀ t ∈ Y.

We may write Σ = {Y,X1, . . . , Xm} where Y ⊂ Xi \Xi, i = 1, . . . ,m. If Σ
is a Whitney (resp. (w)-regular) stratification, then

Σ1 := {Y × Y,Xi × Y }i=1,...,m

is a Whitney (resp. (w)-regular) stratification of A× Y .
Set ∆(Y ) := {(x, x) ∈ R2n, x ∈ Y }. It is obvious that ∆(Y ) is a C2

submanifold of Y × Y . Hence,

Σ2 := {∆(Y ), Y × Y \∆(Y ), Xi × Y }i=1,...,m

is also a Whitney (resp. (w)-regular) stratification of A× Y .
Since the conditions (b) and (w) are preserved under C2 diffeomorphisms,

the collection

Σ3 := ϕ(Σ2) = {ϕ(∆(Y )), ϕ(Y × Y \∆(Y )), ϕ(Xi × Y )}i=1,...,m

is a Whitney (resp. (w)-regular) stratification of A.
Notice that ϕ(∆(Y )) = {0}n×Y and A|ϕ(∆(Y )) = A ⊂ Rn×Rn, i.e. the

stratification Σ3 satisfies the conditions (?) and (??) in Section 4. Applying
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Proposition 4.4 (resp. Proposition 4.7) to Σ3 we obtain that Λloc
l (At, 0) is

continuous (resp. locally Lipschitz) along {0}n×Y . This ends the proof. �

Remark 5.2. — In the paper we always assume the stratifications to be
C2 (i.e. their strata are C2 manifolds). We do not know whether the results
hold for C1 stratifications.
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